Description: Clip 6 of 9: Explaining the algebraic and geometric representations of $(\mathbf{a}+\mathrm{b})$ squared and the algebraic expansion of $(\mathbf{a}+\mathrm{b})$ cubed to observers
Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Four of Seven
Date: 1996-02-21
Location: Harding Elementary School Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 2

0:00	1	R1	Does anyone have any questions? Anyone back there? Did you all...? 'Cause you all can come close and I think she'll show you now.
	2	Stephanie	Do I have to start with a plus b ? Squared?
	3	R1	You've gotta start with where they are-
	4	Stephanie	Do I have to start with a plus b quantity squared?
	5	R1	You may have to start with the very basic-
	6	Stephanie	Alright.
	7	R1	Feel free to ask Stephanie questions.
	8	Stephanie	Alright [begins writing]. a plus b, quantity, squared, is a plus b, times a plus b. Right? Okay. So, if I were to like, draw it as a square, like [begins to use 10x10x1 box], if this were- this is a square, and say that, well [draws a square] if that was a square, and that piece is a [divides square in drawing] and that piece is b [labels drawing]. Okay? [Divides in other direction, labels] That piece is a, and that piece is b. Okay, so, each, like, little section, like, has its own area. And it would be [labels drawing] a squared [trails off]. So, you understand that?
	9	R3	Yes.
	10	Stephanie	Okay. So then a plus b squared would be a squared, plus $a b$, plus $a b$, plus b squared [points to diagram]. Or, a squared plus two $a b$, plus b squared. Okay?
	11	R3	Mhm.
	12	Stephanie	So then, um, [begins to write on new paper]
	13	R3	What is that $a b$? The a squared was a square, and the b squared was a square, (inaudible), what was the $a b$?
	14	Stephanie	Oh, it's a rectangle.
	15	R3	Oh, okay.
	16	Stephanie	So [resumes writing] a plus b cubed. a plus b quantity cubed, which is the same thing as [writes] a plus b, quantity a plus b, a plus b. But we already know that quantity a plus b times a plus b is a plus b squared, or [writes] a squared, plus $2 a b$, plus b squared. Right?
	17	R3	Right.
	18	Stephanie	So... You'd have to multiply that times [writes] the other a plus

Description: Clip 6 of 9: Explaining the algebraic and geometric representations of $(a+b)$ squared and the algebraic expansion of $(\mathbf{a}+\mathrm{b})$ cubed to observers
Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Four of Seven
Date: 1996-02-21
Location: Harding Elementary School Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010
Page: 2 of 2

			. Right?			
	19	R3	Okay.			
	20	Stephanie	So.. It would be a squared [writes] times a plus b, which is- a times a squared is a to the third- plus a squared times b, which is a squared b.			
	21	R4	How did you get that? How did you get from one step to the other? How'd you go- Where'd you get that a squared from?			
	22	Stephanie	Oh-This a sq- Oh-	$	$	23
:---						

