Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathbf{b})$
cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 8

0:00	1	Stephanie	Okay. So then it would be [resumes writing] $2 a b$ times a plus b, which is, a times $2 a b$ is $2 a$ squared b. And b times $2 a b$ is $2 a b$ squared. Ahem. Plus... um... b squared times a plus b, which would be a times b squared is $a b$ squared, plus b times b squared, which is b to the third. And that can be simplified. [pause] That can be [writes] a s- cubed plus you can - ahem- a squared b plus $2 a$ squared b is [writes] $3 a$ squared b. Plus $2 a$ squared- $2 a b$ squared plus $a b$ squared is $3 a b$ squared plus b to the third. And that's [turns paper to show work]- can't be simplified anymore, so that's the same thing as- um- [writes] a plus b quantity cubed. And then- ahem- we- [pause, flips through papers] So then if you were gonna use these [places Algebra blocks on table] to show this, um, we'd start out with the two dimensional figure, which was [retrieves paper] a plus b quantity squared.
	2	R4	So a plus b quantity squared is a two dimensional?
	3	Stephanie	Yes.
	4	R4	Even though you showed that, right there? [indicating 10x10x1 block used earlier]
	5	Stephanie	Yeah.
	6	R4	That's two dimensional?
	7	Stephanie	Well, no-
	8	R4	Okay.
	9	Stephanie	But I was just... Cause you know, there's nothing else to use, to show it... so that, a squared [pointing at drawing], $a b, b$ squared, $a b$, makes up a plus b quantity squared. So, um, if you took like, if this was $a b$ [places $a^{2} b$ piece on picture], if this fit there and that fit there [places base layer of Algebra cubes on drawing]. There you built it up-
	10	R4	How-How is that-
	11	Stephanie	Like-
	12	R4	How is that a squared b ? That, the green with the- a squared b ? How is that a squared b ? And the other one is $a b$ squared? How do they differ? 'Cause I was back there, I couldn't really see what you were doing with Dr. Maher...
	13	Stephanie	Wait, which one's $a b$?

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathbf{b})$
cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 8

	14	R4	This one's- you said this was a squared b ?			
	15	Stephanie	Oh.	$	$	16
:---						

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathbf{b})$ cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 3 of 8
$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}a^{2} \text { b piece on drawing, indicating dimensions]. Okay? And this } \\ \text { piece [picks up piece], so we know that this piece is } a \text { squared } b \\ \text { [places piece back on paper on the side, picks up a } \\ \text { to piece, points }\end{array} \\ \text { [placegion of tracing]. This piece is } a \text { squared. If you build it } a\end{array}\right]$

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathbf{b})$ cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 4 of 8

	49	R3	And then you've got three of these things [a'b pieces], and three of these things [ab Bieces], you can build it all up into a cube. But the colors are confusing me. They're not helping me.
	50	Stephanie	But the colors don't, like-
51	R3	But they did before	

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathrm{b})$ cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 5 of 8

	72	R1	See the difference?			
	73	R3	-is this 4 of it? $\left[\right.$ referring to b^{3} piece $]$			
	74	R1	No-			
	75	R3	Or is it not 4 of it?			
	76	R1	-it doesn't matter.			
	78	R1	Well, yeah, but, you can't do it both ways. I don't think- it's confusing-			
	79	Stephanie	Let's ask Stephanie the question. That- I think she called that a by a by a, the yellow. Is that right?			
	80	R1 The yellow is a cubed.		$	$	a cubed?
:---						

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathrm{b})$
cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 6 of 8

			corresponding side length on other side] is a long. And so it's a squared. We're saying that this is a cubed [indicating a^{3} piece]. We're saying that this is a long [pointing to edge of cube], by a long [pointing to other edge of cube] y-you know? Length, width, and height; they're all a. [pause] Okay? [pause] This [referring back to the drawing] is b like, um, this is b long by b long $\left[\right.$ redrawing segments on sides of $b x b$ square in $(a+b)^{2}$ model $]$. Okay? So we're saying- and this is b cubed- s - or well [mumbles to self; picks between Algebra block pieces] this is b cubed [choosing b^{3} piece] and they're saying that this is $b \mathrm{u}$ - they're all b. We're not saying that like [pauses, picks up a piece again]this isn't a [indicating whole cube] this is a [indicating side length of cube] this little piece, this unit is a. Okay? [pauses] Okay. So-
	95	R4	And the white, that's all b ? The-
	96	Stephanie	The white is-
	97	R4	'Cause I think we're looking at the whole-
	98	Stephanie	-b by b by-
	99	R4	-cubes, and that's
	100	Stephanie	-yeah-
	101	R4	throwing us off
	102	Stephanie	yeah.
	103	R4	Okay.
	104	Stephanie	So, this is a squared [looking at a^{2} box in drawing, placing a^{3} piece on top] you build it up a units, and it would be a cubed.
	105	R4	Okay.
	106	Stephanie	So this piece is a cubed [picks up a ${ }^{3}$ piece]. Okay.
	107	R4	Mhm.
	108	Stephanie	This is $a b$ [pointing to $a b$ rectangle in picture, holding $a^{2} b$ piece in hand], and you're- and if you build it up a, it's a units, it's a squared b. So this is a squared b [picking up piece again]. K?
	109	R1	Or a squared b times. See how you have the a squared b times? You have another a squared and another a squared.
	110	Stephanie	Yes.
	111	R4	Mhm.

Description: Clip 7 of 9: Explaining each
piece of the geometric model of $(\mathbf{a}+\mathbf{b})$
cubed as it relates to the terms in the algebraic expansion to observers
Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 7 of 8

	112	R1	Or a squared b times.
	113	Stephanie	This is [cough] b squared [points at b^{2} part of diagram on paper]. If you build it up a units, it's $a b$ squared. Okay? So this piece is $a b$ squared. [pause] And, um-
	114	???	Where's the other piece?
	115	Stephanie	Oh, this is like the same thing [places second $a^{2} b$ piece on diagram]. It's a squared b. So you know that this piece is a squared b [picks up $a^{2} b$ piece], this piece is- no [picking up ab ${ }^{2}$ piece]- yeah. This piece is a squared b [picks up $a^{2} b$ piece], this piece is $a b$ squared [picks up $a b^{2}$], and this piece is a cubed [picks up a ${ }^{3}$ piece].
	116	R1	Right.
	117	Stephanie	Alright [places all pieces on table]. And so then what we-
	118	???	(inaudible)
	119	Stephanie	[Stephanie reaches for paper from earlier with $(a+b)^{3}$ expanded and simplified] -oops- [knocks into table] -was- find out if we had, like, all the pieces that were here, and so if you build, um, and then [reaches for Algebra blocks, drops one]-oops- if we build this up, like if you keep building like that, like this is $a b$ cubed [placed $a b^{2}$ piece on diagram], a cubed b [places $a^{2} b$ piece on diagram, then a^{3}]-um a squared b, a cubed [places $a^{2} b$ piece], a squared b, [places b^{3} piece on top of $\left.a b^{2}\right]$ and you build it up. If you built [removes b^{3}, $a b^{2}$ pieces, points to b^{2} part of diagram, holding b^{3} piece] b squared up b times- b units, it would become b to the third. So this piece is b cubed. So you have every piece here [referring back to the paper with $(a+b)^{3}$ work on it]. You have a cubed [picks up a piece, places it down; picks up $a^{2} b$ piece], you have, um [pauses], what is that? a squared b [places piece down, picks up ab ${ }^{2}$ piece] you have $a b$ squared [places piece down, picks up b^{3} piece] and you have, um, b cubed [places piece down, gathers all $a^{2} b$ pieces]. And you have three of these, so that becomes $3 a$ squared b [gathers $a b^{2}$ pieces], and you have three of these, so it becomes $3 b-3 a b$ squared, and you have your a cubed and your b cubed. And that makes up the problem. And you can build that into like [pauses, assembles pieces into cube].
	120	R4	And it doesn't matter which way you put the colors?

Description: Clip 7 of 9: Explaining each	Transcriber(s): Aboelnaga, Eman
piece of the geometric model of (a+b)	Verifier(s): Yedman, Madeline
cubed as it relates to the terms in the	Date Transcribed: Fall 2010
algebraic expansion to observers	Page: 8 of 8
Parent Tape: Early Algebra Ideas About	
Binomial Expansion, Stephanie's Interview	
Four of Seven	
Date: 1996-02-21	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

	121	Stephanie	No, because the colors don't matter. It's the [points to edge of cube] units.
	122	R4	I have to tell you, I find that very interesting, because I- I know what a plus b quantity cubed, uh, raised to the third power is, but I never saw it like that.
	123	Stephanie	Yeah.
124	R4	And why is it $3 a$ squared b, and 3ab squared- that- th- I- I find that totally interesting.	

