| Description: Developing numerical |
| :--- |
| representations for each case for the number of |
| Unifix-cube towers 5 and 6 cubes tall selecting |
| from red and yellow cubes |
| Parent Tape: Early Algebra Ideas About Binomial |
| Expansion, Stephanie's Interview Seven of Seven |
| Date: 1996-04-17 |
| Location: Union Catholic |
| Researcher: Professor Carolyn Maher |

Description: Developing numerical
representations for each case for the number of
Unifix-cube towers 5 and 6 cubes tall selecting
from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009
Page: 1 of 9

| 1 | R1 | Yeah. So I guess the next thing is to try this with five. I mean you know what the answers are. So you know what you're working for. |
| :---: | :---: | :---: |
| 2 | Stephanie | Okay. |
| 3 | R1 | You may not even have to build them. 'Cause if you think of the number of positions. I mean you just have to do it for one. |
| 4 | Stephanie | Alright. For the first one - if you're |
| 5 | R1 | Oh! You want to do it now? |
| 6 | Stephanie | Well. Oh! |
| 7 | R1 | Okay. We can if you want to. Wow! Um. Alright. Let's do it. For the first one. Okay. We need some more. We'll build the basic ones. This destroys all the things I worked on. I tried this before I came. But we can rebuild these. So if we're going five - this is what we're starting with, right? |
| 8 | Stephanie | Um hm. |
| 9 | R1 | One of these. There. [R1 builds $\left[\begin{array}{c}Y \\ Y \\ Y \\ Y \\ Y\end{array}\right]$.] Okay. |
| 10 | Stephanie | Okay. |
| 11 | R1 | So l'll let you be recorder. This is my attempt at recording. So we're going to start with the case with |
| 12 | Stephanie | The first one's one |


| Description: Developing numerical |
| :--- |
| representations for each case for the number of |
| Unifix-cube towers 5 and 6 cubes tall selecting |
| from red and yellow cubes |
| Parent Tape: Early Algebra Ideas About Binomial |
| Expansion, Stephanie's Interview Seven of Seven |
| Date: 1996-04-17 |
| Location: Union Catholic |
| Researcher: Professor Carolyn Maher |

Transcriber(s): AboeInaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009
Page: 2 of 9

| 13 | R1 | There's one of those |
| :---: | :---: | :---: |
| 14 | Stephanie | times five |
| 15 | R1 | Why five? |
| 16 | Stephanie | 'Cause there's five positions. |
| 17 | R1 | Okay. |
| 18 | Stephanie | Divided by one, 'cause they come in groups of one. |
| 19 | R1 | Um hm. |
| 20 | Stephanie | Five. |
| 21 | R1 | Okay. So that's five things taken one at a time. |
| 22 | Stephanie | Yes. The second one |
| 23 | R1 | Why don't we write that down? Five things taken - equals five things taken one at a time. [Stephanie writes.] |
| 24 | Stephanie | Okay. For the second one - um - there's four spaces. But there's - out of five - so it's five times four and they'll come in groups of - I don't know um - that's what we don't know though. |
| 25 | R1 | Alright. So. Let's - Can we make these five? - Just - here |
| 26 | Stephanie | Well - maybe they'll come in groups of two? |
| 27 | R1 | One - Let's think about at least one of these. |
| 28 | Stephanie | They might come in groups of two, I guess. |
| 29 | R1 | Hm. Interesting. It's not easy to imagine what they come in. That - - one |


| Description: Developing numerical |
| :--- |
| representations for each case for the number of |
| Unifix-cube towers 5 and 6 cubes tall selecting |
| from red and yellow cubes |
| Parent Tape: Early Algebra Ideas About Binomial |
| Expansion, Stephanie's Interview Seven of Seven |
| Date: 1996-04-17 |
| Location: Union Catholic |
| Researcher: Professor Carolyn Maher |

Transcriber(s): AboeInaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009
Page: 3 of 9

|  |  | more do we need? [They have built $\left.\left[\begin{array}{c}R \\ Y \\ Y \\ Y \\ Y\end{array}\right]\left[\begin{array}{l}Y \\ R \\ Y \\ Y \\ Y\end{array}\right]\left[\begin{array}{l}Y \\ Y \\ R \\ Y\end{array}\right]\left[\begin{array}{l}Y \\ Y \\ Y \\ R \\ Y\end{array}\right].\right]$ |
| :---: | :---: | :---: |
| 30 | Stephanie | Yeah. |
| 31 | R1 | (inaudible) |
| 32 | Stephanie | One red on the bottom. [They add $\left[\begin{array}{c}Y \\ Y \\ Y \\ Y \\ R\end{array}\right]$ to the row of towers.] |
| 33 | R1 | Alright. So. That's these five, right? |
| 34 | Stephanie | Yes. |
| 35 | R1 | Okay. so what you're saying here - - move some of this aside - - um - okay. Let's think of that one. [R1 indicates $\left[\begin{array}{c}R \\ Y \\ Y \\ Y \\ Y\end{array}\right]$.] |
| 36 | Stephanie | Okay. |
| 37 | R1 | There are five. |


| Description: Developing numerical |
| :--- |
| representations for each case for the number of |
| Unifix-cube towers 5 and 6 cubes tall selecting |
| from red and yellow cubes |
| Parent Tape: Early Algebra Ideas About Binomial |
| Expansion, Stephanie's Interview Seven of Seven |
| Date: 1996-04-17 |
| Location: Union Catholic |
| Researcher: Professor Carolyn Maher |

Transcriber(s): AboeInaga, Eman Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 4 of 9

| 38 | Stephanie | Yes. [Stephanie begins to build.] You have one like that. [builds $\left[\begin{array}{l}R \\ R \\ Y \\ Y \\ Y\end{array}\right]$ ], one <br> like that [builds $\left[\begin{array}{c}R \\ Y \\ R \\ Y \\ Y\end{array}\right]$ ] |
| :---: | :---: | :---: |
| 39 | R1 | Well, can you predict before you do it? |
| 40 | Stephanie | Yeah. There's going to be four from each. There's gonna be |
| 41 | R1 | four from each. |
| 42 | Stephanie | Yeah. |
| 43 | R1 | Okay. So - and what's the each? How many make up each? |
| 44 | Stephanie | How - wh - what do you mean? |
| 45 | R1 | You're saying - it's four from this. |
| 46 | Stephanie | Yeah. Four from |
| 47 | R1 | What does |
| 48 | Stephanie | one |
| 49 | R1 | each mean in this case? |

```
Description: Developing numerical
representations for each case for the number of
Unifix-cube towers 5 and 6 cubes tall selecting
from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher
```

Description: Developing numerical representations for each case for the number of Unifix-cube towers 5 and 6 cubes tall selecting from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Seven of Seven Date: 1996-04-17

Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009
Page: 5 of 9

| 50 | Stephanie | Oh! Like there's going to be four from this one. Four from that one. Four <br> from that one. Four from that one. Four from that one. |
| :---: | :--- | :--- |
| 51 | R1 | Okay. So how many eaches? |
| 52 | Stephanie | There's five. |
| 53 | R1 | Five eaches. Okay. |
| 54 | Stephanie | Yeah. |
| 55 | R1 | Alright. So - so that - you say - five times four |
| 56 | Stephanie | Yes. I have that. I just don't know what the - |
| 57 | R1 | right |
| 58 | Stephanie | bottom part. It |
| 59 | R1 | So - - and by groups you mean. The groupings you mean. |
| 60 | Stephanie | Groups like - one after we've put all of them out. Like how many groups <br> there are going to - come in - |
| 61 | R1 | I don't know. I'm |
| 62 | Stephanie | duplicates? |
| 63 | R1 | I'm wondering - when you say you divide by |
| 64 | Stephanie | Oh! 'Cause that's the number of duplicates. That there are. |
| 65 | R1 | But how do you know that before hand? Do you think there's a way? |
| 66 | Stephanie | Oops. [She is building towers.] |
| 67 | R1 | So if this um, is going to be a pattern to this - the five times four - what do |

```
Description: Developing numerical
representations for each case for the number of
Unifix-cube towers 5 and 6 cubes tall selecting
from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion,Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher
```

```
Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 6 of 9
```

|  |  | you think you would divide by? |
| :---: | :---: | :---: |
| 68 | Stephanie | Five times four - what do I think I'd - um - maybe two. |
| 69 | R1 | You would guess two? Let's see, what does Pascal's triangle say? Do it quick. Right? [R1 draws Pascal's Triangle as she speaks.] Have to make that a four. Okay. - Is that right? Did I do that right? |
| 70 | R2 | Um hm. |
| 71 | Stephanie | You've - well - there's the ten, so ...if - I guess this is the |
| 72 | R1 | So this is |
| 73 | Stephanie | Five, 'cause that's zero. So that's one. That's like this one. [/t is not apparent to which she is referring from this vantage point.] Right? Or that's |
| 74 | R1 | This is |
| 75 | Stephanie | Like - |
| 76 | R1 | Um hm. |
| 77 | Stephanie | That's this one. [She points to the row of towers of four yellow and one red.] |
| 78 | R1 | Alright. So if we were writing a formula - |
| 79 | Stephanie | This is this. [points to the one and then to the all yellow tower.] |
| 80 | R1 | Um hm. |
| 81 | Stephanie | This is these. [points to the five and then to the row of the five towers, each with four yellows and one red] So that - it - you would divide by two. |
| 82 | R1 | So it works with the result. Okay. We'll explore that later. |

```
Description: Developing numerical
representations for each case for the number of
Unifix-cube towers 5 and 6 cubes tall selecting
from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion,Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher
```

| 83 | Stephanie | Um. |
| :---: | :--- | :--- |
| 84 | R1 | Okay. |
| 85 | Stephanie | And the next one, there's three spaces to put it. And there's |
| 86 | R1 | But you have how many of them? |
| 87 | Stephanie | Ten. So it would be ten times three and you divide by three. [Stephanie <br> writes as she speaks.] |
| 88 | R1 | And it worked? |
| 89 | Stephanie | Yeah. And the next one, there is two spaces to put it and you have ten. So <br> that's ten times two and you divide by two? [Stephanie writes on the paper <br> in front of her.] And the last one - there's one space to put it - it's five <br> times one divided by five equals one. |
| 90 | R1 | Okay. Why did you switch to dividing by two here? Why didn't you divide <br> by four? Why didn't you go one, two, three, four, five? Here you went two <br> and here you went five. |
| 91 | Stephanie | Because - um - well, I was kind of thinking that if there there was one red <br> and there were two reds and - I don't know - I guess I should've divided by <br> four. Oh! - Duh - Yeah. [Stephanie changes the two she wrote to a four.] <br> Yeah. That's right. It should be a four. I just wrote - I wasn't dividing right. |
| 95 | R1 | Stephanie |
| 93 | Stephanie | So is that right then? <br> 94 <br> R1 heah. <br> Un hoing that? |
| 95 |  |  |

Description: Developing numerical representations for each case for the number of Unifix-cube towers 5 and 6 cubes tall selecting from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 8 of 9

| 96 | R1 | Should we try the next row? You think - |
| :---: | :---: | :---: |
| 97 | Stephanie | Okay. |
| 98 | R1 | You think that makes sense? One - six - fifteen - twenty - fifteen - six one. So we know the one and six. That's easy, right? |
| 99 | Stephanie | Times six divided by one - six - [Stephanie writes.] The next one is six times five divided by two. That's fifteen. The next one is fifteen times four divided by three. Gosh. Fifteen times four - sixty divided by three twenty. The next one is twenty times three divided by four. Oops. Sixty. Fifteen. Next is fifteen times oh and there's two spaces. That's thirty um divided by five. That's um six - six - [Stephanie is writing very quickly as she is speaking.] is one. Yeah. That works. |
| 100 | R1 | Okay. What do you think? |
| 101 | Stephanie | Um hm. |
| 102 | R1 | Um. There's a nice pattern here. Um. Why are those - that many duplicates coming up? |
| 103 | Stephanie | Um. |
| 104 | R1 | You know what I'm saying? We - we know - you know it after you do it and then you can count them. |
| 105 | Stephanie | Um hm. |
| 106 | R1 | You understand what I'm saying? |
| 107 | Stephanie | Um hm. |
| 108 | R1 | You know it after you do it and you count the next one. Right? |
| 109 | Stephanie | Um hm. |


| Description: Developing numerical | Transcriber(s): Aboelnaga, Eman |
| :--- | :--- |
| representations for each case for the number of | Verifier(s): DeLeon, Christina |
| Unifix-cube towers 5and 6 cubes tall selecting | Date Transcribed: Spring 2009 |
| from red and yellow cubes | Page: 9 of 9 |
| Parent Tape: Early Algebra Ideas About Binomial |  |
| Expansion, Stephanie's Interview Seven of Seven |  |
| Date: 1996-04-17 |  |
| Location: Union Catholic |  |
| Researcher: Professor Carolyn Maher |  |

Description: Developing numerical
representations for each case for the number of Unifix-cube towers 5 and 6 cubes tall selecting from red and yellow cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Seven of Seven
Date: 1996-04-17
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 9 of 9

| 110 | R1 | But the question is - um - which is not a trivial question, is - how can you <br> think about those duplicates if you'd - and I bet you can justify it by going <br> through all the tediousness of finding it, but I don't think any of us want to <br> do that, right? Um. But it would be nice to know in advance, how many <br> duplicates come up. And that's - we have a good conjecture. It matches <br> this and this, so it's a good tool, but we still haven't thought about why that <br> works. Let's put that aside for a minute. Okay? Can I switch gears? |
| :---: | :--- | :--- |

