Description: Developing the correspondence
among Towers, selecting from two colors, Pascal's
Triangle, and the symbolic algebraic expansions
of (a+b) squared and (a+b) cubed
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 1 of 7

1	Stephanie	And that's how you can get (inaudible) Should I keep going with that?
2	R2	Did you do that last night?
3	Stephanie	Last
4	R2	Last time
5	Stephanie	Um
6	R2	Did you carry it further?
7	Stephanie	Yeah, I think we went a little bit. I think 'cause what happened was we were doing this problem like before that, like way before we started this, on 'a' plus ' b ' quantity squared [writes $(a+b)^{2}$]
8	R2	Um hm.
9	Stephanie	And at first, I did um [writes $a^{2}+b^{2}$] but that was proved wrong, and it was a squared plus two $a b$.
10	R2	Two $a b$!
11	Stephanie	Plus b squared [writes $a^{2}+2 a b+b^{2}$] and um we kept going like I think I got up to like six like a plus b quantity squared, quantity like to the sixth power.
12	R2	Ah.
13	Stephanie	And I think see this is where I forgot and um, I think with the numbers let's see (inaudible) [draws Pascal's triangle until the sixth row] There. I think that's one...zero, one, two, three, four, five, six. [Stephanie points to each row as she counts.] All right. That's six, and um, I think, using that see this is where I forget, I think she figured out the exponents or something to some of the numbers or like you know that there's going to be an a but I think she figured

Description: Developing the correspondence
among Towers, selecting from two colors, Pascal's
Triangle, and the symbolic algebraic expansions
of (a+b) squared and (a+b) cubed
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 2 of 7

		out like what the numbers were going to be up here [indicates the position of the exponents]. The exponents, is that what you did? I don't
14	R1	I don't know. I don't remember it myself and I didn't look at the tape, but I have a question now. You just wrote down what a plus b quantity squared was. Why don't you write it on the top of this paper? [gives Stephanie a new piece of paper and she writes $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
15	Stephanie	Okay.
16	R1	And I guess my question now is can that at all be related to the triangle or what you built with your
17	Stephanie	I'm sorry. [Stephanie moves a tower that was in the way.]
18	R1	With, with your tow- with your cubes, can you take each of those terms in that expansion a squared, $2 a b, b$ squared and see any relationship to the towers or any of those lines of the triangle or any part of the triangle - column, line, diagonal, anything.
19	Stephanie	I guess like here [takes the towers two high] there's, I don't, I don't, I mean, not with the exponents. Like I don't see how a squared
20	R1	Tell us what you do see.
21	Stephanie	Well, I guess cause like there's two with an a and $a b$. [indicates $\left[\begin{array}{l}G \\ B\end{array}\right]$ and $\left[\begin{array}{l}B \\ G\end{array}\right]$] Like
22	R1	What's an a and a b ?
23	Stephanie	If green was a. And
24	R1	Okay. Lets call green a and lets call blue b.

Description: Developing the correspondence
among Towers, selecting from two colors, Pascal's
Triangle, and the symbolic algebraic expansions
of (a+b) squared and (a+b) cubed
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 3 of 7

25	Stephanie	$\left[l i f t s\left[\begin{array}{l}G \\ B\end{array}\right]\left[\begin{array}{l}B \\ G\end{array}\right]\right.$] you have two with green is a, and blue is b.
26	R1	Okay.
27	Stephanie	You know like one of each.
28	R1	Okay, so you have an $a b$ and a $b a$ or $2 a b$. [points to the towers $\left[\begin{array}{l}G \\ B\end{array}\right]$ and $\left[\begin{array}{l}B \\ G\end{array}\right]$ that Stephanie put aside]
29	Stephanie	You have one that's all $a\left[\right.$ indicates $\left[\begin{array}{l}G \\ G\end{array}\right]$] and one that's all b. [indicates $\left[\begin{array}{l}B \\ B\end{array}\right]$]
30	R1	Ok but this says what do you mean by all a ? This is an a and a b [indicates $\left[\begin{array}{l}G \\ B\end{array}\right]$] and an a and a $b\left[\right.$ indicate $\left[\begin{array}{l}B \\ G\end{array}\right]$].
31	Stephanie	Yeah, well
32	R1	aa $\left[\right.$ points to $\left.\left[\begin{array}{l}G \\ G\end{array}\right]\right]$ bb [points to $\left[\begin{array}{l}B \\ B\end{array}\right]$]
33	Stephanie	Yes.
34	R1	So what do you mean $a a$? What could these $a a$ and $a b$ mean? Is that a
35	Stephanie	Oh. I get to, oh, well if you're saying that this is a [takes one green cube] and two of them would like $a a$ would be like a squared. [lifts $\left[\begin{array}{l}G \\ G\end{array}\right]$]
36	R1	Could be (inaudible) how many of those do you have?

Description: Developing the correspondence
among Towers, selecting from two colors, Pascal's
Triangle, and the symbolic algebraic expansions
of (a+b) squared and (a+b) cubed
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 4 of 7

37	Stephanie	Well one of a
38	R1	So where's the one I don't see the one in this.
39	Stephanie	Well, the one's just there. [points in front of a^{2} on her paper]
40	R1	So imagine there's a one
41	Stephanie	Yeah.
42	R1	in front of that a squared.
43	Stephanie	I mean I could put it
44	R1	Yeah. Put it somewhere okay? [Stephanie writes ones on the paper in front of a^{2} and b^{2}.] So now, now help me see what that might mean.
45	Stephanie	Okay, there's one with two a 's with like $a \operatorname{a}$ or a squared. [lifts $\left[\begin{array}{l}G \\ G\end{array}\right]$]
46	R1	Two factors of a.
47	Stephanie	Yeah, and there's two with $a b$, with a and b. [indicates $\left[\begin{array}{l}G \\ B\end{array}\right]$ and $\left[\begin{array}{l}B \\ G\end{array}\right]$]
48	R1	One factor of a and one factor of b.
49	Stephanie	One factor of b. And there's one with two factors of b.
50	R1	So, so that relates to the a plus b quantity squared. What about the triangle?
51	Stephanie	One, two, one. [points to the third row of the triangle]
52	R1	Okay, tell me what you think a plus b quantity cubed will be. Without having to work out all the details of it now. Using your cubes and using what you just

Description: Developing the correspondence
among Towers, selecting from two colors, Pascal's
Triangle, and the symbolic algebraic expansions
of (a+b) squared and (a+b) cubed
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 5 of 7

		told me.
53	Stephanie	I guess it would be
54	R1	'Cause you didn't like multiplying those out all the time. That was a lot of hard work.
55	Stephanie	I know there'll be an a cubed and $a b$ cubed. [writes a^{3} and b^{3} on the paper leaving a large space between them.]
56	R1	How do you know that?
57	Stephanie	Because there's a one and a one [points to the fourth row of the triangle] and besides I mean
58	R1	What's the a cubed? Which cube, which tower is this? Don't make new ones. You have them made, I think.
59	Stephanie	That would be that. [indicates $\left[\begin{array}{l}G \\ G \\ G\end{array}\right]$]
60	R1	Oh, okay.
61	Stephanie	And the b would be that. [indicates $\left[\begin{array}{l}B \\ B \\ B\end{array}\right]$]
62	R1	That was easy.
63	Stephanie	And there's gonna be, I guess, three a squared b cubed and three $a b$ squared.
64	R1	Ok. Why don't you write that down and then see if we can find them. [Stephanie writes: $3 a b^{2}$] Tell me why you think that.

Description: Developing the correspondence	Transcriber(s): Aboelnaga, Eman
among Towers, selecting from two colors, Pascal's	Verifier(s): DeLeon, Christina
Triangle, and the symbolic algebraic expansions	Date Transcribed: Spring 2009
of (a+b) squared and (a+b) cubed	Page: 6 of 7
Parent Tape: Early Algebra Ideas About Binomial	
Expansion, Stephanie's Interview Six of Seven	
Date: 1996-03-27	
Location: Union Catholic	
Researcher: Professor Carolyn Maher	

65	Stephanie	All right. Here. The a is the green. So here's the [5 second pause; then picks up $\left[\begin{array}{l}G \\ G \\ B\end{array}\right]$ and $\left[\begin{array}{l}B \\ G \\ G\end{array}\right]$] Am I missing one?
66	R1	How many do you want? How many towers three high should you have and let's, let's find them. How many should you have altogether?
67	Stephanie	I should have eight.
68	R1	Okay. I see eight. There's four here and then you have four up there. [indicates towers three high] Let's get these out of the way. [pushes away the towers two high] Right, here's eight of them. Right? [R2 uprights four towers that have fallen.]
69	Stephanie	Zero, one, two, three, yeah, that's three high. Oh here [takes $\left[\begin{array}{l}G \\ B \\ G\end{array}\right]$] um okay so.
70	R1	Tell me what's a and what's b again. I keep forgetting.
71	Stephanie	Green is a.
72	R1	Why don't you write that down what a is. I get [Stephanie writes: Green $-A$, Blue - B] Okay, green is a, blue is b.
73	Stephanie	I have three with two factors of a and one factor of b. [Stephanie indicates $\left.\left[\begin{array}{l} G \\ G \\ B \end{array}\right]\left[\begin{array}{l} G \\ B \\ G \end{array}\right]\left[\begin{array}{l} B \\ G \\ G \end{array}\right]\right]$

Description: Developing the correspondence	Transcriber(s): Aboelnaga, Eman
among Towers, selecting from two colors, Pascal's	Verifier(s): DeLeon, Christina
Triangle, and the symbolic algebraic expansions	Date Transcribed: Spring 2009
of (a+b) squared and (a+b) cubed	Page: 7 of 7
Parent Tape: Early Algebra Ideas About Binomial	
Expansion, Stephanie's Interview Six of Seven	
Date: 1996-03-27	
Location: Union Catholic	
Researcher: Professor Carolyn Maher	

74	R1	Okay.
75	Stephanie	And I have three with two factors of b and one factor of a [indicates $\left[\begin{array}{l}G \\ B \\ B\end{array}\right]\left[\begin{array}{l}B \\ G \\ B\end{array}\right]$ $\left[\begin{array}{l}B \\ B \\ G\end{array}\right]$] so I guess it would be a cubed plus three a squared b plus three $a b$ squared plus b cubed. [inserts plus signs so that her paper now reads: $\left.a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right]$
76	R1	So how do you know there can't be a c in here?
77	Stephanie	Because I only have two colors.
78	R1	Oh.
79	Stephanie	If I had a third color there could be a c, but
80	R1	That's interesting. That's something to explore later. [Stephanie writes $(a+b)^{3}$ before the expansion she has written previously.] We could look into that. Okay so now could you tell me about another one of those binomials raised to a power?

