Description: Developing the correspondence among Towers, selecting from two colors, Pascal's Triangle, and the symbolic algebraic expansions of (a+b) squared and (a+b) cubed Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Six of Seven Date: 1996-03-27 Location: Union Catholic Researcher: Professor Carolyn MaherTran Tran Trance Trance Triangle Date	ranscriber(s): Aboelnaga, Eman erifier(s): DeLeon, Christina ate Transcribed: Spring 2009 age: 1 of 7
---	--

1	Stephanie	And that's how you can get (inaudible) Should I keep going with that?
2	R2	Did you do that last night?
3	Stephanie	Last
4	R2	Last time
5	Stephanie	Um
6	R2	Did you carry it further?
7	Stephanie	Yeah, I think we went a little bit. I think 'cause what happened was we were doing this problem like before that, like way before we started this, on 'a' plus 'b' quantity squared [<i>writes</i> $(a + b)^2$]
8	R2	Um hm.
9	Stephanie	And at first, I did um [<i>writes</i> $a^2 + b^2$] but that was proved wrong, and it was a squared plus two <i>ab</i> .
10	R2	Two ab!
11	Stephanie	Plus <i>b</i> squared [<i>writes</i> $a^2 + 2ab + b^2$] and um we kept going like I think I got up to like six like <i>a</i> plus <i>b</i> quantity squared, quantity like to the sixth power.
12	R2	Ah.
13	Stephanie	And I think see this is where I forgot and um, I think with the numbers let's see (inaudible) [<i>draws Pascal's triangle until the sixth row</i>] There. I think that's onezero, one, two, three, four, five, six. [<i>Stephanie points to each row as she</i> <i>counts</i> .] All right. That's six, and um, I think, using that see this is where I forget, I think she figured out the exponents or something to some of the numbers or like you know that there's going to be an <i>a</i> but I think she figured

Description: Developing the correspondence1among Towers, selecting from two colors, Pascal'sXTriangle, and the symbolic algebraic expansionsDof (a+b) squared and (a+b) cubedFParent Tape: Early Algebra Ideas About BinomialEExpansion, Stephanie's Interview Six of SevenDate: 1996-03-27Location: Union CatholicResearcher: Professor Carolyn Maher	Transcriber(s): Aboelnaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009 Page: 2 of 7
--	--

		out like what the numbers were going to be up here [indicates the position of
		<i>the exponents</i>]. The exponents, is that what you did? I don't
14	R1	I don't know. I don't remember it myself and I didn't look at the tape, but I
		have a question now. You just wrote down what <i>a</i> plus <i>b</i> quantity squared was.
		Why don't you write it on the top of this paper? [gives Stephanie a new piece
		of paper and she writes $(a + b)^2 = a^2 + 2ab + b^2$]
15	Stephanie	Okay.
16	R1	And I guess my question now is can that at all be related to the triangle or what
		you built with your
17	Stephanie	I'm sorry. [Stephanie moves a tower that was in the way.]
18	R1	With, with your tow- with your cubes, can you take each of those terms in that expansion <i>a</i> squared, 2 <i>ab</i> , <i>b</i> squared and see any relationship to the towers or any of those lines of the triangle or any part of the triangle – column, line, diagonal, anything.
19	Stephanie	I guess like here [<i>takes the towers two high</i>] there's, I don't, I don't, I mean, not
		with the exponents. Like I don't see how <i>a</i> squared
20	R1	Tell us what you do see.
21	Stephanie	Well, I guess cause like there's two with an <i>a</i> and a <i>b</i> . [<i>indicates</i> $\begin{bmatrix} G \\ B \end{bmatrix}$ and $\begin{bmatrix} B \\ G \end{bmatrix}$
] Like
22	R1	What's an <i>a</i> and a <i>b</i> ?
23	Stephanie	If green was a. And
24	R1	Okay. Lets call green <i>a</i> and lets call blue <i>b</i> .

Description: Developing the correspondence	Transcriber(s): Aboelnaga, Eman
among Towers, selecting from two colors, Pascal's	Verifier(s): DeLeon, Christina
Triangle, and the symbolic algebraic expansions	Date Transcribed: Spring 2009
of (a+b) squared and (a+b) cubed	Page: 3 of 7
Parent Tape: Early Algebra Ideas About Binomial	
Expansion, Stephanie's Interview Six of Seven	
Date: 1996-03-27	
Location: Union Catholic	
Researcher: Professor Carolyn Maher	

25	Stephanie	$\begin{bmatrix} lifts \begin{bmatrix} G \\ B \end{bmatrix} \begin{bmatrix} B \\ G \end{bmatrix}$ you have two with green is <i>a</i> , and blue is <i>b</i> .
26	R1	Okay.
27	Stephanie	You know like one of each.
28	R1	Okay, so you have an <i>ab</i> and a <i>ba</i> or 2 <i>ab</i> . [<i>points to the towers</i> $\begin{bmatrix} G \\ B \end{bmatrix}$ and $\begin{bmatrix} B \\ G \end{bmatrix}$ that Stephanie put aside]
29	Stephanie	You have one that's all <i>a</i> [<i>indicates</i> $\begin{bmatrix} G \\ G \end{bmatrix}$] and one that's all <i>b</i> . [<i>indicates</i> $\begin{bmatrix} B \\ B \end{bmatrix}$]
30	R1	Ok but this says what do you mean by all <i>a</i> ? This is an <i>a</i> and a <i>b</i> [<i>indicates</i> $\begin{bmatrix} G \\ B \end{bmatrix}$] and an <i>a</i> and a <i>b</i> [<i>indicate</i> $\begin{bmatrix} B \\ G \end{bmatrix}$].
31	Stephanie	Yeah, well
32	R1	aa [points to $\begin{bmatrix} G \\ G \end{bmatrix}$] bb [points to $\begin{bmatrix} B \\ B \end{bmatrix}$]
33	Stephanie	Yes.
34	R1	So what do you mean <i>aa</i> ? What could these <i>aa</i> and <i>ab</i> mean? Is that <i>a</i>
35	Stephanie	Oh. I get to, oh, well if you're saying that this is <i>a</i> [<i>takes one green cube</i>] and two of them would like <i>aa</i> would be like <i>a</i> squared. [<i>lifts</i> $\begin{bmatrix} G \\ G \end{bmatrix}$]
36	R1	Could be (inaudible) how many of those do you have?

Description: Developing the correspondence	Transcriber(s): Aboelnaga, Eman
among Towers, selecting from two colors, Pascal's	Verifier(s): DeLeon, Christina
Triangle, and the symbolic algebraic expansions	Date Transcribed: Spring 2009
of (a+b) squared and (a+b) cubed	Page: 4 of 7
Parent Tape: Early Algebra Ideas About Binomial	
Expansion, Stephanie's Interview Six of Seven	
Date: 1996-03-27	
Location: Union Catholic	
Researcher: Professor Carolyn Maher	

37	Stephanie	Well one of <i>a</i>
38	R1	So where's the one I don't see the one in this.
39	Stephanie	Well, the one's just there. [points in front of a^2 on her paper]
40	R1	So imagine there's a one
41	Stephanie	Yeah.
42	R1	in front of that <i>a</i> squared.
43	Stephanie	I mean I could put it
44	R1	Yeah. Put it somewhere okay? [Stephanie writes ones on the paper in front of a^2 and b^2 .] So now, now help me see what that might mean.
45	Stephanie	Okay, there's one with two <i>a</i> 's with like <i>aa</i> or <i>a</i> squared. [<i>lifts</i> $\begin{bmatrix} G \\ G \end{bmatrix}$]
46	R1	Two factors of <i>a</i> .
47	Stephanie	Yeah, and there's two with <i>ab</i> , with <i>a</i> and <i>b</i> . [<i>indicates</i> $\begin{bmatrix} G \\ B \end{bmatrix}$ and $\begin{bmatrix} B \\ G \end{bmatrix}$]
48	R1	One factor of <i>a</i> and one factor of <i>b</i> .
49	Stephanie	One factor of <i>b</i> . And there's one with two factors of <i>b</i> .
50	R1	So, so that relates to the <i>a</i> plus <i>b</i> quantity squared. What about the triangle?
51	Stephanie	One, two, one. [points to the third row of the triangle]
52	R1	Okay, tell me what you think <i>a</i> plus <i>b</i> quantity cubed will be. Without having to work out all the details of it now. Using your cubes and using what you just

Description: Developing the correspondence among Towers, selecting from two colors, Pascal's Triangle, and the symbolic algebraic expansions of (a+b) squared and (a+b) cubed Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Six of Seven Date: 1996-03-27 Location: Union Catholic Researcher: Professor Carolyn MaherTran Tran Veri Date: Transion, Stephanie's Interview Six of Seven Date: 1996-03-27 Location: Union Catholic	ranscriber(s): Aboelnaga, Eman erifier(s): DeLeon, Christina ate Transcribed: Spring 2009 age: 5 of 7
--	--

		told me.
53	Stephanie	I guess it would be
54	R1	'Cause you didn't like multiplying those out all the time. That was a lot of hard work.
55	Stephanie	I know there'll be an a cubed and a b cubed. [writes a^3 and b^3 on the paper leaving a large space between them.]
56	R1	How do you know that?
57	Stephanie	Because there's a one and a one [<i>points to the fourth row of the triangle</i>] and besides I mean
58	R1	What's the <i>a</i> cubed? Which cube, which tower is this? Don't make new ones. You have them made, I think.
59	Stephanie	That would be that. [<i>indicates</i> $\begin{bmatrix} G \\ G \\ G \end{bmatrix}$]
60	R1	Oh, okay.
61	Stephanie	And the <i>b</i> would be that. [<i>indicates</i> $\begin{bmatrix} B \\ B \\ B \end{bmatrix}$]
62	R1	That was easy.
63	Stephanie	And there's gonna be, I guess, three <i>a</i> squared <i>b</i> cubed and three <i>ab</i> squared.
64	R1	Ok. Why don't you write that down and then see if we can find them. [Stephanie writes: 3ab ²] Tell me why you think that.

65	Stephanie	All right. Here. The <i>a</i> is the green. So here's the [5 second pause; then picks $up \begin{bmatrix} G \\ G \\ B \end{bmatrix} and \begin{bmatrix} B \\ G \\ G \end{bmatrix}$] Am I missing one?
66	R1	How many do you want? How many towers three high should you have and let's, let's find them. How many should you have altogether?
67	Stephanie	I should have eight.
68	R1	Okay. I see eight. There's four here and then you have four up there. [<i>indicates towers three high</i>] Let's get these out of the way. [<i>pushes away the towers two high</i>] Right, here's eight of them. Right? [<i>R2 uprights four towers that have fallen</i> .]
69	Stephanie	Zero, one, two, three, yeah, that's three high. Oh here $\begin{bmatrix} G \\ B \\ G \end{bmatrix}$ um okay so.
70	R1	Tell me what's <i>a</i> and what's <i>b</i> again. I keep forgetting.
71	Stephanie	Green is <i>a</i> .
72	R1	Why don't you write that down what <i>a</i> is. I get [<i>Stephanie writes: Green</i> – <i>A</i> , <i>Blue</i> – <i>B</i>] Okay, green is <i>a</i> , blue is <i>b</i> .
73	Stephanie	I have three with two factors of <i>a</i> and one factor of <i>b</i> . [Stephanie indicates $\begin{bmatrix} G \\ G \\ B \\ G \end{bmatrix} \begin{bmatrix} G \\ B \\ G \end{bmatrix} \begin{bmatrix} B \\ G \\ G \end{bmatrix}$ $\begin{bmatrix} G \\ G \\ G \end{bmatrix} \begin{bmatrix} G \\ G \\ G \end{bmatrix}$

Description: Developing the correspondence among Towers, selecting from two colors, Pascal's Triangle, and the symbolic algebraic expansions of (a+b) squared and (a+b) cubed Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Six of Seven Date: 1996-03-27 Location: Union Catholic	Transcriber(s): Aboelnaga, Eman Verifier(s): DeLeon, Christina Date Transcribed: Spring 2009 Page: 7 of 7
Researcher: Professor Carolyn Maher	

74	R1	Okay.
75	Stephanie	And I have three with two factors of <i>b</i> and one factor of <i>a</i> [<i>indicates</i> $\begin{bmatrix} G \\ B \\ B \end{bmatrix} \begin{bmatrix} B \\ G \\ B \end{bmatrix} \begin{bmatrix} B \\ B \end{bmatrix}$
		$\begin{bmatrix} B \\ B \\ G \end{bmatrix}$ so I guess it would be <i>a</i> cubed plus three <i>a</i> squared <i>b</i> plus three <i>ab</i> squared plus <i>b</i> cubed. [<i>inserts plus signs so that her paper now reads:</i>
		$a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$]
76	R1	So how do you know there can't be a <i>c</i> in here?
77	Stephanie	Because I only have two colors.
78	R1	Oh.
79	Stephanie	If I had a third color there could be a <i>c</i> , but
80	R1	That's interesting. That's something to explore later. [Stephanie writes $(a + b)^3$ before the expansion she has written previously.] We could look into that. Okay so now could you tell me about another one of those binomials raised to a power?