Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 1 of 14

1	R2	I think it's hard to go backwards. Let's, maybe we can, you want to try going forwards
2	Stephanie	Okay.
3	R2	and then see if we can meet in the middle and then put all our information together. Okay. We started with four towers that had one green
4	R1	Let's get another piece of paper.
5	Stephanie	Okay.
6	R2	And, then, um - one green and three blues. Ready?
7	Stephanie	All right.
8	R2	We started with four towers
10	R2	Yes.
11	Stephanie	Triangle.]

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 2 of 14

16	R2	So how many choices?
17	Stephanie	Three.
18	R2	Three. So we multiplied by three, the four towers we had by three, we multiplied by three choices.
19	Stephanie	Um hm.
20	R2	And then we found
21	Stephanie	That we had duplicates and we divided it by, um. You divided it by three, right? Or did we, we divided it by four?
22	R2	I think you found that
23	R1	Well, why don't we
24	R2	the number of duplicates was the number of greens.
25	R1	Let's, let's um, maybe it would help Bob
26	R2	If I remember it.
27	R1	if you did the writing and Stephanie did the thinking.
28	R2	Okay. So. Well, let me swing around so that we're actually sort of sitting straight up. [R2 moves his chair next to Stephanie's chair.]
29	R1	So, you could write down what Stephanie's saying. Right.
30	R2	Okay. So, we started - can you read my writing?
31	Stephanie	Yes.

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): AboeInaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 3 of 14

32	R2	Good. Okay. We started with four towers with one green [R2 writes this on the paper.] and three blues. And then
33	R1	Here they are.
34	R2	Okay. So that was the, that was the first one. And then, from each.
35	R1	From each. Here's one. [the $\left[\begin{array}{l}B \\ B \\ B \\ G\end{array}\right]$ tower]
36	R2	We built
37	R1	How many Stephanie?
38	Stephanie	From each, we built three.
39	R1	Okay, this one you built three [R1 points to the $\left[\begin{array}{l}B \\ B \\ B \\ G\end{array}\right]$ tower.]
40	R2	We built three.
41	R1	This one you built three [the $\left[\begin{array}{l}B \\ B \\ G \\ B\end{array}\right]$ tower], this one you built three [the $\left[\begin{array}{l}B \\ G \\ B \\ B\end{array}\right]$

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 4 of 14

		tower], this one you built three $\left[\right.$ the $\left[\begin{array}{l}G \\ B \\ B \\ B\end{array}\right]$
42	Stephanie	Well-
43	R1	Right?
44	Stephanie	How many green, we're adding how many greens on though?
45	R1	Exactly one green.
46	Stephanie	Like? Yeah.
47	R1	Okay. So- right? So from
48	Stephanie	'Cause I have three spaces to put it.
49	R1	'Cause you have three spaces to put it.
50	Stephanie	Yeah.
51	R1	So, from this you got
52	Stephanie	Um, three.
53	R1	three.
54	Stephanie	Yeah. I got three from all of them. So, I got twelve.
	Three from the blue spaces, three from the blue spaces... So from the four	

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 5 of 14

56	Stephanie	Um hm.
57	R1	you tripled it.
58	Stephanie	(inaudible)
59	R1	You started with the four, you tripled it. Right?
60	Stephanie	Yeah.
61	R1	And you got twelve?
62	Stephanie	Yes.
63	R1	But, you know that, there aren't
64	Stephanie	Um hm. There's three of each kind.
65	R1	exactly two green. You know there aren't twelve.
66	Stephanie	Yes.
67	R1	Well, how many are there?
68	Stephanie	There's four, so you divided it by
69	R1	No, think a minute, think a minute. When you have exactly two green
70	Stephanie	Um hm.
71	R1	how many are there?
72	Stephanie	When I have exactly two green?
6		

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 6 of 14

73	R1	Towers four high.
74	Stephanie	Towers four high, and exactly two green, I'm building on or that's how many I have?
75	R1	Just, just tell me what, you know the result of that. When you have exactly two green.
76	Stephanie	I have four. No, wait, no. I have six.
77	R1	It should be six, right?
78	R2	That's right.
79	Stephanie	Yeah.
80	R1	But when you, you started with the four, you ended up with four times three, or twelve. You're supposed to have six...
81	Stephanie	Um hm.
82	R1	Ste, how many duplicates, did you have?
84	R2	Two. So they came in
85	R1	That first time you did it, there were only, there was only one duplicate for each one. I couldn't remember all of this. But, doesn't that make sense? Here's the six. Right? [R1 points to the '6' on Pascal's Triangle.]
86	Stephanie	Yeah.

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 7 of 14

87	R1	But you didn't get six, you got twelve. So, and then if you pulled them out and you did... We weren't recording as we went along, and that's what's hard.
88	R2	Let me check out what I'm writing and see if it makes sense to you.
89	Stephanie	Okay.
90	R2	And, then, um, what l'd like to do is, is correct it if I need to so that it begins to look like what you're really thinking.
91	Stephanie	All right.
92	R2	Okay, because what I'm thinking may be different from what you're thinking. And I really want to understand your thinking.
93	Stephanie	Um hm. Okay.
94	R2	Okay? Okay. Ah. We built three towers with two greens - from each, okay, we started with four towers with one green and from each of those four, we built three towers with two greens. This gave four times three, which was twelve towers, but they came in pairs of two. [R2 reads this from the paper on which he has been writing.]
95	Stephanie	Okay.
96	R2	These are the duplicates. So, there are really, it seems like, four times three is twice as many as we should have had. So, that's four times three, is twice as many.
97	Stephanie	Yeah.
98	R2	So, we had to divide it by two,

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 8 of 14

99	Stephanie	Um, hm.
100	R2	and that gives
101	Stephanie	Six.
102	R2	Six.
103	R1	Okay. I'd like you to look at this [R1 points to the towers.] again Stephanie. Because, it helps me when I see four. Right?
104	Stephanie	Um hm.
105	R1	Three. Right? Three blue?
106	Stephanie	Um hm.
107	R1	Imagining twelve. And then when you looked at them and pulled them together, you saw the duplicates.
108	Stephanie	Um hm. Okay.
109	R1	But, it may be hard to remember, because each of these were chunked separately.
110	Stephanie	All right.
111	R2	Where do you think
112	R1	Do you think you'll remember that? You're not sure, you're not really sure where you got how many duplicates each time, I think.
113	Stephanie	It, ehh. I understand that like, from these you're going to get three.

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 9 of 14

114	R2	Right.
115	R1	Right.
116	Stephanie	Like, 'cause, oops. [Stephanie knocks over some towers and sighs.]
117	R1	Um hm.
118	Stephanie	'Cause, there's only three places for you to move them.
119	R1	Um hm.
120	Stephanie	And then, I think what messed me up was how many duplicates you were going to get from each of them.
121	R2	Okay.
122	R1	Stephanie
124	R1 Ym hm. You know there have to be a total of six when you're done. I just	
125	Stephanie	I
126	R2	Yeahht. Sure. There was a step that we talked about at that point. And, um, that was if we took any one of these with the two greens, how many of the old ones did it come from?
127	Stephanie	Two.
129	Stephanie	Oh. 'Cause there were two, two of, that would have the possibility, like two
120		

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 10 of 14

		parents, or two, like these two [the $\left[\begin{array}{l}G \\ B \\ B \\ B\end{array}\right]$ and $\left[\begin{array}{l}G \\ G \\ B \\ B\end{array}\right]$ towers].
130	R2	Yeah. And how do you count, okay, what is it about this tower $\left[\right.$ the $\left[\begin{array}{l}G \\ G \\ B \\ B\end{array}\right]$ tower] that counts the number of parents?
131	Stephanie	It has a green in two places where
132	R2	Excellent. So, it's that two [the two green blocks] which counts the parents.
133	Stephanie	Okay.
134	R2	And then it's this two [the two blue blocks] that count the next one.
135	Stephanie	Yeah. So, like here I divide by three, because there's three green?
136	R2	Excellent. Excellent.
137	Stephanie	Okay.
138	R2	Okay. In the next step - uh- we took each of the six towers with two greens. [R2 writes this on the paper.] Right?
139	Stephanie	Um hm.
140	R2	And produced how many new ones?

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 11 of 14

141	Stephanie	Um. We produced, from the six with two greens?
142	R2	Yeah. How many new ones would you get from this one $\left[\right.$ the $\left[\begin{array}{l}B \\ G \\ B \\ G\end{array}\right]$

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 12 of 14

154	R2	And how many came up at a time?
155	Stephanie	Two. Um. Two at a time. Well, like. You'll get two from each, but you have to divide it by three 'cause there's three green?
156	R2	Aha. There's three green in the next generation.
157	Stephanie	Yes.
158	R2	Okay. [R2 writes.] Okay. So this gives, uh, six times two divided by three actual towers, with, now it's three greens, right?
159	Stephanie	Yes.
160	R2	Okay. So, the first time we multiplied by three, the second time we multiplied by two.
161	Stephanie	Um hm.
163	R2	The first time we divided by two, and then, the second time we multiplied by
164	R2	By three.
165	Stephanie	You'll multiply by um four and divide by one. Oh, wait, no! The opposite. You multiply by one and you divide by four.
166	R2	Okay. So in the next step... [R2 writes.] Prediction. This is by you. [Stephanie laughs.] Okay. We, we'd multiply by
167	Stephanie	By one
168	R2	one and 162
10		

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 13 of 14

169	Stephanie	and divide by four.
170	R2	and divide by four. Okay. How did you guess one and how did you guess four?
171	Stephanie	'Cause it decreased on
172	R2	Or how did you predict one?
173	Stephanie	Um, like I guess, the numerator, decreased. And the denominator, increased.
174	R2	Increased. Terrific. Suppose we do that
175	Stephanie	Okay.
177	Stephanie	Und let's just see what turns up. So, the actual number of towers here is six times two over three, which is?
178	R2	Four. Sophanie laughs and covers her face.] four?
179	Stephanie	(inaudible)
180	R2	Which is? happens when we multiply by one and divide by
181	Stephanie	One.
182	R2	Stephanie
Yes.		
183		
1 Inat what you found?		
10		

Description: Developing mathematical
expressions for generating the number of towers
4-cubes tall selecting from green and blue cubes
for exactly 2 green cubes, exactly 3 green cubes
and for 4 green cubes
Parent Tape: Early Algebra Ideas About Binomial
Expansion, Stephanie's Interview Six of Seven
(student view)
Date: 1996-03-27
Location: Union Catholic
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): DeLeon, Christina
Date Transcribed: Spring 2009
Page: 14 of 14

184	R2	So, the prediction is that there are this many towers.
185	Stephanie	Um hm.
186	R2	with four greens.
187	Stephanie	Yes.
188	R2	Which is an old story. Okay. But, um. Now the next, the final question is this. Okay. Um, here are the actual four towers with the three greens. Right?
189	Stephanie	Um hm.
190	R2	How do you see them multiplying by one and dividing by four when we make the next generation?
191	Stephanie	Well. Each one gives off one new one, one with four green, 'cause there's only one place for you to put the green.
192	R2	Excellent.
193	Stephanie	And because there's four greens, you divided by four. Like the new generation has four greens. You divided by four.
194	R2	You know what?
195	Stephanie	What?
196	R2	I'm convinced.
197	Stephanie	Oh, good.

