
OPERATIONS SCHEDULING WITH DELIVERY DEADLINES

IN MULTI-ECHELON SUPPLY CHAINS

By

GANG WANG

A Dissertation submitted to the

Graduate School - Newark

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Management Science

written under the direction of

Dr. Lei Lei

and approved by

Newark, New Jersey

October, 2012

ii

 ABSTRACT OF THE DISSERTATION

Operations Scheduling with Delivery Deadlines in Multi-

Echelon Supply Chains

by GANG WANG

Dissertation Director: Dr. Lei Lei

We study the operations scheduling problem with delivery deadlines over

capacitated multi-echelon shipping networks. Our main results consist of new

mathematical models, structural analysis, and solution methodologies for this type of

operations scheduling problems, which are in general computationally difficult due to

their inherent combinatorial nature.

Part I of the dissertation investigates three polynomial-time solvable cases,

including case 1) identical order sizes; case 2) designated suppliers; and case 3) divisible

order sizes. For the first case, we prove that the original problem can be decomposed into

two sub-problems: the transportation problem and a specially structured mixed integer

programming model that is totally unimodular. For the second case, we show that the

original problem can be solved by the Minimal Spanning Tree algorithm that runs in

polynomial time. The third case is shown to be solvable in polynomial time by extending

the literature results for a special case of the well- known bin packing problem. Part II of

this dissertation analyzes the structure properties of the network scheduling problem with

iii

a single processing center (PC) between the suppliers and customers. A dynamic

programming-based search algorithm that correctly identifies the optimal subset of

customer orders to be fulfilled under each given utilization level of the PC capacity is

proposed. We also prove that the resulting search algorithm converges to the optimal

solution within pseudo-polynomial time. Part III of the dissertation focuses on the

methodology of solving the general operations scheduling problems with customer

delivery deadlines. We propose a linear programming relaxation-based algorithm. With

this algorithm, a given network scheduling problem is solved through an iterative process.

During each iteration, a threshold parameter is used to select the relaxed linear variables

to be binary variables for the next iteration, while a subset of binary variables is still

relaxed to bounded linear variables. The iteration continues until the values of all the

binary variables are determined. This partial relaxation allows us to avoid dealing with

the generalized knapsack problem, a difficult NP-hard problem, in the solution process.

iv

Preface

This Ph.D. thesis contains the results of the research carried out at the Department of

Supply Chain Management and Marketing Sciences, Rutgers Business School, Rutgers

University from January 2008 to July 2012, entitled “Operations Scheduling with

Delivery Deadlines in Multi-Echelon Supply Chains.”

The subject of this Ph.D. thesis is on new methodologies for solving the operations

scheduling problem with delivery deadlines on the capacitated multi-echelon shipping

networks. We develop mathematical models to describe the multi-echelon supply chain

operations subject to network capacity and delivery timeliness constraints. Furthermore,

we analyze some special cases related to the operations scheduling problem, thus propose

new solution approaches, and report the effectiveness of these methodologies based on

the numerical or computational experiments. The main contribution of this thesis is that

our research results extend and improve the existing approaches in the literature for

solving the operations scheduling problems with delivery deadlines in multi-echelon

supply chain.

The thesis is submitted as a partial fulfillment of the requirement for obtaining the

Ph.D. degree at the Rutgers University. The project was supported by the Dissertation

Fellowship of the Graduate School, Rutgers University.

v

Acknowledgements

Five years has been a challenging trip, with both ups and downs. It would not

have been possible to write this doctoral thesis without the help and support of the kind

people around me, to only some of whom it is possible to give particular mention here.

Above all, I would like to thank my advisor, Prof. Lei Lei, for her thoughtful

guidance and great patience at all times, not to mention her invaluable advice and

unsurpassed knowledge of Supply Chain Management. Moreover, my career path would

not be clear as it is now without her inspiration, help and support on both academic and

personal level, for which I extremely appreciate.

I would also like to express sincere appreciation to my committee members: Prof.

Yao Zhao, Prof. Tan C. Miller at Rider University, and Prof. Yeinyurt for their valuable

time, efforts, and insightful comments on the drafts of my dissertation. I would like to

acknowledge the professors and the staff at the Department of Supply Chain Management

and Marketing Sciences for their support and assistance during my wonderful five years

at Rutgers Business School.

I would also like to thank my colleagues and friends at Rutgers Business School

for their comfort and encouragement. Last, but by no means least, I would like to thank

my mother and younger uncle, who have given me their unequivocal support throughout,

as always, for which my mere expression of thanks likewise does not suffice.

Gang Wang

New Jersey, July 2012

vi

Table of Contents

Preface .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Tables ... vii

List of Figures ... viii

List of Symbols ... ix

1 Introduction ... - 1 -

 Motivation ... - 2 - 1.1

 Integrated Supply and Distribution Problem .. - 4 - 1.2

 Summary of this Research .. - 6 - 1.3

2 Multi-Echelon Operations Scheduling with Delivery Deadlines .. - 8 -

 Problem Statement .. - 8 - 2.1

 Mathematical Model ... - 9 - 2.2

 Literature Review .. - 11 - 2.3

3 Polynomial-Time Solvable Cases ... - 18 -

 Case 1: Identical Order Quantities .. - 19 - 3.1

 Case 2: Designated Suppliers .. - 24 - 3.2

 Case 3: Divisible Order Sizes ... - 29 - 3.3

4 Dynamic Programming-based Algorithm with A Single PC .. - 37 -

 Problem Description ... - 38 - 4.1

 A Dynamic Programming-based Algorithm for Solving Single_ISDP - 44 - 4.2

 Numerical Example .. - 52 - 4.3

5 Linear Partial Relaxation-based Heuristic Algorithm ... - 53 -

 Heuristic Algorithm .. - 56 - 5.1

 Computational Results .. - 64 - 5.2

6 Conclusion and Future Extensions .. - 69 -

Bibliography ... - 73 -

Appendix A Computational Results of Algorithm LW ... - 79 -

Appendix B CPLEX code for Algorithm LW .. - 95 -

Curriculum Vita .. - 108 -

vii

List of Tables

Table 3.1 Shipping rate, fixed shipping cost and shipping time from PCs to customers (DPs) - 24 -

Table 3.2 Shipping rate and travel time from suppliers to PCs - 28 -

Table 3.3 Shipping rate, fixed cost and shipping time form PCs to customers (DPs) - 28 -

Table 3.4 Demand quantities, deadlines and unit penalty cost of DPs - 28 -

Table 3.5 Total shipping time from suppliers to DPs through PCs - 28 -

Table 3.6 Order size, penalty cost, saving and variable and fixed cost - 36 -

Table 4.1 Parameters for the suppliers - 53 -

Table 4.2 Parameters for the customer demand points - 53 -

Table 4.3 The values of ()S d


obtained in Step 2 of SPO - 53 -

Table 4.4 The values of ()
j

z d


 and z



 obtained in Step 4 of SPO (3 ) - 53 -

Table 4.5 The value of ()
j

z d


 and z



 obtained in Step 4 of SPO (4 ) - 54 -

Table 4.6 The value of ()
j

z d


 and z



 obtained in Step 4 of SPO (5 ) - 54 -

Table 4.7 The values of ()
j

z d


 and z



 obtained in Step 4 of SPO (6 ) - 55 -

Table 5.1 Experimental design - 64 -

Table 5.2 Auxiliary parameters used in the experiments - 65 -

Table 5.3 Impact of network size, |J|, on the algorithm performance - 66 -

Table 5.4 LPR algorithm vs. CPLEX on σ/ μ (S=5 N=3 J=5) - 67 -

Table 5.5 LPR algorithm vs. CPLEX on σ/ μ (S=8 N=5 J=10) - 67 -

Table 5.6 LPR algorithm v.s. CPLEX on R (S=5 N=3 J=5) - 68 -

Table 5.7 LPR algorithm vs. CPLEX on R (S=8 N=5 J=10) - 68 -

Table A.1 Impact of network size, |J|, on the algorithm performance - 79 -

Table A.2 Impact of network size, |J|, on the algorithm performance (Con’t) - 80 -

Table A.3 Impact of network size, |J|, on the algorithm performance (Con’t) - 81 -

Table A.4 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5) - 82 -

Table A.5 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5) (Con’t) - 83 -

Table A.6 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5) (Con’t) - 84 -

Table A.7 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10) - 85 -

Table A.8 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10) (Con’t) - 86 -

Table A.9 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10) (Con’t) - 87 -

Table A.10 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5) - 88 -

Table A.11 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5) (Con’t) - 89 -

Table A.12 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5) (Con’t) - 90 -

Table A.13 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10) - 91 -

Table A.14 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10) (Con’t) - 92 -

Table A.15 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10) (Con’t) - 93 -

viii

List of Figures

Figure 1.1 A two-echelon supply chain process for plywood .. - 3 -

Figure 4.1 A three-stage supply chain process ... - 38 -

ix

List of Symbols

S Set of contracted suppliers, i.e., S {1,2, , }S

J Set of demand points, i.e., J {1,2, , }J

N Set of processing centers or PCs, N {1,2, , }N

s
F Capacity of supplier s , Ss

snb Shipping rate ($/unit) from supplier s to
n

PC , Ss , Nn

snt Shipping time from supplier s to
n

PC , Ss , Nn

n
C Processing capacity of

n
PC , Nn

n Unite processing time at
n

PC , Nn

j
Order quantity of demand point j , Jj

nja Shipping rate from
n

PC to demand point j , Nn , Jj

nj Fixed shipment cost from
n

PC to demand point j , Nn , Jj

njt Shipping time from
n

PC to demand point j , Nn , Jj

jp Unit penalty cost for unsatisfied demand point j , Jj

jT Deadline of delivering the order to demand point j , Jj

m The total number of distinct customer orders

id thi order size, 1,2, ,i m , and
1 2 m

d d d  

i
 The subset of orders of size id , 1 i m  . Let

i i
n  

1

nr The residual capacity of
n

PC only used for orders of size 1,d
1

2
(mod)

n n
r C d , Nn 

1h

The maximum number of fulfilled orders of size
1

d by utilizing the PC residual capacity nr ,

Nn  , and  1

1 1 11
min , /

N

nn
h n r d


   

- 1 -

1 Introduction

Increasing global operations, greater cost pressure, and more volatile market

dynamics are making the supply chain more complex and thus creating an ever-growing

demand for effective and efficient supply chain management. According to a survey from

PRTM, most applicants expect that future business growth will come primarily from

international customers and customized products, and more than 85% of companies

expect their supply chain complexity to increase significantly (PRTM Management

Consultants, 2011). In addition, a survey by Aberdeen Group revealed that the impact of

increasing supply chain complexity (i.e., longer lead times, increasing number of

suppliers, partners, carriers, customers, countries, logistics channels) and rising supply

chain management costs (e.g., total landed costs, fuel costs, labor costs) are the current

top business pressures (Aberdeen Group, 2011). To succeed in the global marketplace

during the economic upturn, companies must capitalize on the compelling international

market’s opportunities and prepare their supply chain operations for the supply chain

challenges. However, despite strong growing expectations on effectively managing the

supply chain operations, the findings by PRTM indicated that many companies lacked the

capabilities critical for meeting growing demand or for managing an increasingly

complex and global supply chain. The survey also showed that approximately 30%

mentioned the lack of integration between supply chain functions. Integrated supply

chain management across all key functions still seems to be a myth, with many

procurement and manufacturing vice presidents making soloed optimization decisions.

- 2 -

Therefore, one of the many optimization problems to be solved regarding supply chain

performance optimization is the operations scheduling problem over multi-echelon

shipping networks under the consideration of timely delivery deadlines and customized

products, i.e., integrated supply and distribution problem.

 Motivation 1.1

Our study on the supply chain operations scheduling problem of the multi-echelon

shipping network was motivated by the practice of a supplier for construction materials.

The company outsources its production to contracted lumber suppliers in Asia and then

uses capacitated ocean vessels to ship the semi-finished construction materials back to

North America to serve regional markets. Before arriving at their destinations, semi-

finished goods must be processed for customization and final configuration (e.g.,

trimming, sanding, sizing, labeling and packaging) at one of the processing centers (PCs)

following customer specifications and requirements. After that, the finished goods are

shipped to different regional markets (many demand points) via domestic trucking. Each

regional market (a demand point) specifies its order quantity, quality grades, together

with a delivery time (deadlines). Any delay in meeting the delivery time may result in

lost sales, delay in construction projects, and thus customer dissatisfaction.

A simplified flowchart (i.e., with the second-tier suppliers and contracted operations

at PCs omitted) of plywood/composite board production and shipping process is depicted

below.

- 3 -

Figure 1.1 A two-echelon supply chain process for plywood

Another application on the multi-echelon supply chain networks was the logistics

challenges faced by a company that designs/purchases and distributes various backpacks,

luggage, handbags, and laptop socks, etc. The company outsources its production of

semi-finished products/subassemblies, product accessories, and packaging materials to

the suppliers in Asia, and then ships the goods back to North America to meet the

seasonal demand (e.g., Mother’s Day sales and back to school sales) of different regional

markets. Before arriving at regional markets, the products must be finalized (and

sometimes customized for individual vendors) and packaged at contracted processing

centers (PCs). There are multiple groups of capacitated suppliers, and the suppliers in the

same group are capable of producing the same supplies. Each business customer (i.e.,

distributor serving a regional market) specifies its order quantity, packaging

specifications, and a delivery date (deadlines). Any failure in meeting the deadlines could

result in lost sales and thus a penalty. In addition, there is a target order fill rate that the

company prefers to retain for each sales region, which however may not always be

- 4 -

achieved due to demand seasonality and capacity limits of both PCs and suppliers in

practice. Whenever a target fill rate is missed, additional operation cost due to handling

rush orders and a special shipping arrangement is imposed. Major operational issues that

the company has been facing include, for any given set of customer orders from a given

region, which customers should be notified if their orders cannot be delivered on time;

which suppliers should be contracted, and how to assign suppliers and customer orders to

the PCs, so that the total operation cost (shipping, manufacturing, and additional handling

cost) is minimized. Since the inbound and outbound shipping and the packaging

operations at the PCs are non-instantaneous, the resulting mathematical optimization

problem is not a trivial one, especially when a large number of customer demand points

are involved.

Such multi-echelon supply chain networks, involving original suppliers, multiple

distribution centers with non-negligible processing times, and then many demand points,

are usually more difficult to model and optimize than the single-stage shipping network,

which can be typically handled as a variation of transportation problem (Miller, 1999).

Effective multi-echelon operations scheduling in practices requires one to take into

account both the shippers’ capacities and processing centers’ availability and to cope with

the customer expectations in terms of time, costs, and reliability.

 Integrated Supply and Distribution Problem 1.2

In this work, we are interested in the operations scheduling problem of the following

integrated supply and distribution problem (ISDP). A semi-finished product needs to be

- 5 -

shipped from a set of contracted manufactures to processing centers for their final

configuration. After that, the finished products will then be shipped to many regional

markets (demand points). The shipping network has three stages: suppliers (stage 1),

processing centers or PCs (stage 2), and customer demand points (stage 3). Each

Supplier has a limited production capacity and charges a shipping cost (via chartered

vessels) proportional to the shipping quantity. Each PC has a limited capacity for

processing the products. For any given PC, the processing starts only after all the

shipment from assigned suppliers are received. It is assumed that each customer receives

(customized) final products from no more than one PC, and the shipment arrival time at

the customer site must be no later than its specified due date. If the shipment cannot

arrive at a demand point at the specified due date (due to the delay in shipping and/or the

limitation of network capacity), a penalty cost proportional to the order size placed by

that customer is imposed. No partial delivery is acceptable. That is, if a customer receives

the supply, then the order must be fully fulfilled. Both the shipping rate and the transit

time from PCs to customer demand points are given. The objective is to determine the

assignment of the demand points to the capacitated PCs and the operation schedules of

transporters such that the total shipping and penalty cost is minimized.

A fully effective supply chain requires the integration of the front end of the supply

chain (customer) with the back end of the supply chain (supplier). The global economic

crisis of 2008 and 2009 provided significant disruptions and high demand volatility in

supply chains for companies across many industries. As the global economy continues to

recover, most of the companies now believe that there will be a significant upturn in

- 6 -

demand from their customer base. Many companies, however, lack the capabilities

critical for meeting growing demand or for managing an increasingly complex and global

supply chain. To capture benefit from an eventual upturn, it depends largely on the

implementation of effective supply chain operations strategies in increasing the total level

of supply chain integration. The needs for effective decision tools that help to determine

the supply chain operations decisions have been continuously increasing.

 Summary of this Research 1.3

In this study, considering the delivery deadlines and customized products, we

investigated the operations scheduling problem over the capacitated multi-echelon

shipping networks. This problem is commonly encountered in the practices of

outsourcing domestic production to low cost countries. Such operations scheduling

problems, however, are also computationally difficult since they contain generalized

assignment problems as sub-problems. To develop an algorithm to solve the general case

of this problem, we proposed and proved mathematically that three special cases of this

problem can be solved in polynomial time. The first case assumes that customer order

sizes are identical and the shipping times from suppliers to PC are equal. It was proved

that the original problem was equivalent to two sub problems: the transportation problem

and its variant (i.e., when supply is not equal to demand), and the latter was solved in

polynomial time due to its totally unimodular constraint matrix. The second one holds

when each PC has its own exclusively designated supplier, and both suppliers and PCs

have sufficient capacity. We showed that the original problem could be transformed into

- 7 -

a Minimal Spanning Tree problem that is solvable in polynomial time. The third case

relates to the assumptions that customer order sizes are divisible and all the operation

costs (e.g., variable and fixed shipping cost) are customer-dependent. We showed the

necessary conditions for this special case and proved mathematically that this case can be

optimally solved in strongly polynomial time by the algorithm we developed. To solve

the general case of this problem, we studied the operations scheduling problems with a

single PC and multiple PCs, respectively. We proposed dynamic programming based

search schemes that can successfully find the optimal subset of customer orders to be

fulfilled under each given utilization level of the PC capacity and proved the resulting

search algorithm convergence in pseudo-polynomial time. More importantly, we

proposed a linear programming partial relaxation based algorithm to solve the problem

with multiple PCs. This partial relaxation allowed us to avoid dealing with the

generalized knapsack problem, a difficult NP-hard problem, in the solution process. With

this algorithm, a given network shipping operations scheduling problem was solved

through an iterative process.

This thesis is organized as follow. In chapter 2, a mathematical model for the

operations scheduling problem of the capacitated multi-echelon shipping networks with

delivery deadlines is proposed, and some literature on this problem and its methodology

is reviewed. In chapter 3 we prove three polynomial time solvable cases: 1) Identical

order quantities; 2) Designated suppliers; 3) Divisible order sizes and presented

numerical examples to show the effectiveness of these cases. In chapter 4, we propose a

dynamic programming based algorithm to solve the case where only PC is considered.

- 8 -

We prove that this algorithm can converge to the optimal solution within pseudo-

polynomial time and use numerical example to show the solution process of this

algorithm. Chapter 5 is dedicated to a linear programming based search algorithm that is

designed to solve the general case of this problem. And then we conduct computational

experiment to verify this proposed heuristic algorithm. Finally, we conclude the study

and discuss future research directions in Chapter 6.3.

2 Multi-Echelon Operations Scheduling with Delivery Deadlines

In this chapter, we describe the operations scheduling problem for a capacitated

multi-echelon shipping-network with delivery deadlines. We then formulate this problem

as a mixed integer linear programming problem, based on the analysis of the multi-

echelon supply chain operations, and discuss mathematical models and existing

methodologies for solving this type of the operations problems in the literature.

 Problem Statement 2.1

Over the network, semi-finished goods are shipped from a given set of origins

(suppliers’ sites) to many demand points (regional markets) through capacitated

transshipment/ processing centers where the final configuration/customization of the

product takes place. The shipping operations are performed by a fleet of capacitated

transporters (vessels and tracks) which require a non-instantaneous time to move from

one location to another. Each demand point has a specified a shipment quantity and a

fixed deadline for delivery. Violating the deadline is not acceptable, and partial delivery

- 9 -

is not considered. The problem is to find an operation schedule for the shipping network

so that the network capacity constraints are satisfied while the sum of the shipping cost

and the penalty cost due to missed delivery are minimized. This problem is commonly

encountered in the practices of supply chains that outsource their production to low cost

countries and then ship back the goods to meet the domestic demand. However, this

problem is also a computationally difficult problem because of its inherent combinatorial

nature.

 Mathematical Model 2.2

To model this operations problem, we need to define the following decision variables

used in our analyses:

 snx = Amount shipped from supplier s to
n

PC , Nn ;

 snz =
n

PC1, if supplier ships to , S, N

0, otherwise.

s s n 



;

njy =

n
PC 1, if supplies customer point , N, J,

0, otherwise.

j n j 



.

Our problem can now be formulated as the following mixed integer program (MIP).

 : min 1

. .

sn sn nj j nj nj j j nj

s n n j j n

G b x a y p y

s t

  
     

 
    

 
   

S Ν Ν J J N

 =

ISDP

1. Capacity constraints for suppliers:

sn sn

x F


 , Ss (2.1)

- 10 -

 sn sn sx z F , Ss , Nn (2.2)

2. Flow balance constraints for PCs :

sn j njs S j J

x y
 

  , Nn (2.3)

3. Each demand point accepts the supplies from at most one PC :

 1njn N
y


 , Jj (2.4)

4. Constraints on delivery deadlines, for all nPC , Nn :

  max (1)sn sn sn n nj nj nj j

s S

t z x t y M y T


     , Jj (2.5)

5. Constraints on the PC capacities:

j nj nj J
y C


 , Nn (2.6)

6. Integrality and non-negativity:

 0snx  ,    0,1 , 0,1sn njz y  , Ss , Nn , Jj (2.7)

 The first term in the objective function of ISDP defines the shipping cost from

suppliers to PCs , where sn snb x estimates the cost of shipping a quantity of snx from

supplier s to
n

PC . The second term represents the variable and fixed shipping cost from

PCs to demand points. The third term denotes the total penalty costs incurred by

unsatisfied demands. Constraints (2.1) ensure that all the quantities shipped out of

supplier s do not exceed supplier’s capacity while constraints (2.2) defines the

relationship between the shipping quantities from supplier s to
n

PC and the binary flow

- 11 -

indicator variables snz , which equals to one if 0snx  . Constraints (2.3) are flow

conservation constraints for each PC . Constraints (2.4) ensure that each demand point is

supplied by at most one PC in accordance with the assumptions. Constraints (2.5) impose

the requirement that the shipment arrives at demand point j must be no later than the

specified due date. Constraints (2.6) ensure that PC capacities are not violated.

Throughout the remaining discussion in this paper, we shall denote this problem as ISDP.

ISDP can be shown to be NP-hard in strong sense, as it can be reduced to a dynamic

generalized assignment problem (Kogan & Shtub, 1997) even if the deadlines of all

demand points are relaxed and only a single supplier with infinity capacity is considered.

 Literature Review 2.3

The problem of integrated capacitated network operations scheduling (ICNOS)

has received an increasing attention during the past two decades because of the trend of

outsourcing and globalization and the need to improve the operation efficiency by a

highly collaborative and integrated production, inventory and distributions of supply

chain networks. The relevant literature results can be classified into two categories: a).

those involving integrated production-distribution scheduling (IPDS) and b). those with a

focus on the integrated supply-distribution planning (ISDP) (i.e., without production or

machine scheduling). A larger amount of research results in the first category can be

found in the literature (Bhutta, K.S., 2003; Chang & Lee, 2004; Hall & Potts, 2005;

Wang & Lee, 2005; Chen & Pundoor, Order assignment and scheduling in a supply chain,

2006; Lo, Wee, & Huang, 2007; Chiang, Russell, Xu, & Zepeda, 2009; Gebennini,

- 12 -

Gamberini, & and Manzini, 2009; Rong, Akkerman, & and Grunow, 2011; Yan, Banerjee,

& and Yang, 2011). Such models were proposed to find detailed order by order

production and delivery schedules at the individual order level to optimize the tradeoffs

between relevant revenues, costs and customer service levels. It is clear that the

integrated production and distribution scheduling can significantly improve service and

cost performance at the operational level.

On the contrary, the integrated supply-distribution planning focuses on coordinating

the flows of supply and the demand of customers with respect to a given objective such

as minimizing the sum of inventory, shipment, and shortage cost. Since our study is about

a special case solution to the integrated supply-distribution planning problem over a

capacitated multi-echelon network, we shall focus more on the literature in the second

category. An early work in this area was done by Cohen & Lee (1988). Cohen and Lee

(1988) studied a four-stage model with stochastic demands where the four stages

included multiple vendors, multiple production plants, multiple DCs, and multiple

customer zones. They formulated this problem as a decomposable mathematical program:

material, production, inventory, and distribution sub-problems subject to a certain level

customer service level. Then these four sub-problems were solved one on one to

determine ordering policies which was able to minimize the total system-wide cost.

Chandra & Fisher (1994) considered an integrated production and transportation planning

problem with multi-products, a single production facility, multiple customers, and

deterministic demand. This problem involved a setup cost for each production, inventory

at both the plant and the customers, and transportation costs (variable and fixed costs).

- 13 -

They compared sequential and integrated approaches and obtained observations

according to computational tests on randomly generated data for various parameters.

Fumero & Vercellis (1999) investigated the similar problem to the one by Chandra and

Fisher (1994). They considered a single-plant logistics system involved with a

manufacturing unit and many retail outlets or peripheral depots. They then decomposed

the problem into two sub-problems: a capacitated lot-sizing problem and a multi period

vehicle routing problem and solved the proposed problem by Lagrangean relaxation. The

comparison between decoupled approach and the integrated approach revealed that the

optimal coordination of interrelated logistics decisions (e.g., capacity management,

inventory allocation and vehicle routing) could be achieved through solving the dual

master problem. Lei et al. (2006) considered an integrated production, inventory and

distribution routing problem involving heterogeneous vessels with non-instantaneous

traveling times, capacitated manufacturing facilities, and many customer demands (ocean

terminals). They presented a two-phase solution approach where the first phase attempted

to solve the direct shipment problem between manufacturing facilities and customers and

showed that its optimal solution was always a feasible solution to the original problem.

Then the second phase focused on a capacitated transportation problem with additional

constraints used to supplement the potential inefficiency of direct shipments. Empirical

studies demonstrated the potential improvement over classical decoupled approaches (i.e.,

separately solving the production and the transportation problems). Eksioglu et al. (2007)

studied an integrated production and transportation planning problem in a two-stage

supply chain. This supply chain consists of a number of facilities, each capable of

- 14 -

producing the final products, and a number of retailers with deterministic demands. They

formulated this problem as a multi-commodity network flow problem with fixed charge

costs and production capacity constraints and proposed a Lagrangean-based

decomposition approach to solve it. Computational tests were conducted on a large set of

randomly generated problems to verify the quality of the lower and upper bounds of the

solution that the proposed algorithm found. Bard et al (2009) developed a model that

included a single production facility, a set of customers with time varying demand, and a

fleet of vehicles. A reactive tabu search based solution approach which first solved an

allocation model, as a mixed integer program, and used feasible solutions of the model as

the starting points of tabu search. Computational testing on a set of 90 benchmark

instances showed that 10-20\% improvements had been realized when compared to those

from a greedy randomized adaptive search. Sawik (2009) considered a long-term

integrated scheduling problem of material manufacturing, supply and assembly in a

customer-driven supply chain. The supply chain consisted of three distinct stages:

manufacturer/supplier of product-specific materials (parts), producer (assembled finished

products), and a set of customers. The manufacturing stage consisted of identical

production lines in parallel and the producer stage was a flexible assembly line. The

problem was to coordinate manufacturing and supply of parts and assembly of products

such that the total holding and shipping costs were minimized. Compared with a

hierarchical approach, they used a monolithic approach (i.e., Schedule the manufacturing,

supply and assembly simultaneously). Finally they presented numerical examples and

reported some computational results. Zegordi & Beheshti Nia (2010) studied the

- 15 -

integration of production and transportation scheduling in a two-stage supply chain

environment with the assignment of orders to the suppliers. The first stage contains a set

of suppliers distributed in various geographic zones, and the second stage consists of a

fleet of vehicles with different speeds and transportation capacities. They presented a

genetic algorithm to solve this problem and evaluated the performance of this proposed

algorithm by comparing its outputs with optimum solutions for small-sized problems and

to the random search approach for larger problems in addition to a similar problem from

the literature. Amorima et al. (2012) studied an integrated production and distribution

planning problem for highly perishable products that considered the intangible value of

freshness. To find the integration advantages, they formulated this problem as multi-

objective models for perishable goods with a fixed and a loose shelf-life. Their results

showed that the economic benefits that an integrated approach results in strongly rely on

the freshness level of products delivered. Bashiri et al. (2012) presented a new

mathematical model for strategic and tactical planning in a multiple-echelon, multiple-

commodity production–distribution network. In the proposed model, different time

resolutions and expansion of the network are both considered for strategic and tactical

decisions. To illustrate applications of the proposed model as well as its performance

based on the solution times, some hypothetical numerical examples have been generated

and solved by CPLEX. Results show that in small and medium scale of instances, high

quality solutions can be obtained using this solver, but for larger instances, some

heuristics has to be designed to reduce solution time. More importantly, to design the

efficient heuristic algorithms for solving this multi-echelon operations scheduling

- 16 -

problem, Lei & Wang (2012) reported three polynomial-time solvable cases of this

problem with (a) identical order quantities; (b) designated suppliers; and (c) divisible

customer order sizes. These analytical results revealed some interesting properties of the

problem, and provided the theoretical foundation and initial solutions for the design of

fast heuristic algorithms.

Our problem can be considered as a variation of the generalized transshipment

problem with additional constraints (Guinet, 2001). While the classical transshipment

problem has been well studied in the literature (Ahuja, Magnanti, & Orlin, 1993), its

generalization to capacitated multi-echelon supply chain networks with additional

constraints introduces new challenges for optimization. Yan et al. (2005) studied a

transshipment problem with concave transportation cost and proposed a genetic algorithm

along with a new encoding method to find a network flow solution by modifying

infeasible flows into feasible ones. The proposed method was then evaluated against that

of four local search algorithms developed upon the idea of threshold accepting criterion,

great deluge heuristic, and tabu search. The results indicated that their proposed approach

was more effective than local algorithms. Lei et al. (2009) studied a multi-period and

multi-stage supply chain network optimization problem with both forward and reverse

flows. An iterative partial-relaxation based search algorithm was proposed to schedule

the amount of forward and reverse flows to minimize the total inventory and shipping

cost. In each iteration, an optimization problem involving only the current time period,

the next time period with partially relaxed integer variables, and a condensed period

consisting of all future time periods with all integer variables relaxed, is solved. This

- 17 -

partial relaxation allows one to solve a multi-period problem more quickly. Alpan et al.

(2011) studied a transshipment scheduling problem encountered in a multiple-dock

configuration. They presented three heuristics to solve the transshipment problem based

on the solution space generated by a dynamic programming model for the same problem.

Numerical experiments showed that, while these heuristics were well parameterized, they

were able to find the near optimal solution much faster than dynamic programming.

Kannegiesser & Günther (2011) presented a decision support tool for global value chain

planning in the production of chemical commodities. They proposed a linear optimization

model to reflect sales, distribution, production, and procurement activities. The objective

of the model was to maximize profit by coordinating all activities within the supply chain.

Then they explained the use of the model to support decision making from sales to

procurement by volume and value. Bertazzi & Zappa (2012) studied the real case of

Mesdan S.P.A., an Italian worldwide leader in the textile machinery sector. This

company has two production units with two warehouses, one located in Italy (Brescia)

and the other in China (Foshan), and owns different types of vehicles with different unit

costs and extremely different lead times. They aimed to determine integrated policies

between production and transportation management so as to minimize the total cost

including variable production costs, variable and fixed transportation costs, and possible

inventory costs. To this end, they formulated this problem as integer linear programming

models, solved the real instance and performed a sensitivity analysis.

To our knowledge, most existing work that are related to our study does not take into

account the assignment of suppliers to processing/distribution centers and the customer

- 18 -

receiving deadlines. Our model has two fundamental differences from those in the

literature of integrated supply-distribution planning. First, most related literature focus

on allocating supplies from production facilities, inventory, and distribution centers to

demand points, while we also need to consider assigning capacitated suppliers to serve

the needs of the distribution centers (i.e., PCs in our case). Second, we have to face the

customers with shipment receiving deadlines and the assignment to the distribution

centers. More importantly, all available approaches to solving the problems in this area

are developed upon either problem decomposition or heuristics. However, the solution to

our problem requires a simultaneous optimization of assigning demand points to PCs,

assigning PCs to suppliers, altogether with flow quantities subject to network capacities,

processing time, shipping time, and delivery deadlines to minimize the total cost of

shipping and shortage. While our problem is still a variation of those studied in the

second category, the existing solution approaches cannot be directly extended to our case

due to additional complexities introduced by its bin-packing type of constraints, see

constraints (2.4), and customer receiving deadlines, see constraints (2.5) of model ISDP.

3 Polynomial-Time Solvable Cases

In this chapter, we report the three strongly polynomial-time solvable cases with a).

Identical order quantities; b). Designated suppliers; and c). Divisible customer-order sizes.

These results reveal the fundamental properties of the problem we study, and can be used

to facilitate the design of fast heuristics for operations scheduling of capacitated shipping

networks.

- 19 -

 Case 1: Identical Order Quantities 3.1

In many applications, the customer order sizes are equal (e.g., each customer orders a

full truckload of plywood panels or a tank of gasoline). For instance, Whirlpool has made

a concerted effort to ship products in full truckloads rather than in multiple less-than-

truckload shipments. Another example is a Houston-based food distributor, Sysco, for

various meat and food products. At its new redistribution centers (i.e., processing centers),

full truckloads are prepared and sent to its customers. When the customer order sizes are

all equal, we have the case of identical order sizes, or j  , Jj . Furthermore, we

assume that the shipping times from suppliers to PCs can be approximated as a constant

(note that we still allow the shipping time from PCs to customers to be arbitrary), then the

following results holds.

Theorem 3.1 Let n nK C    
, Nn . If snt T , j  , nja , nj are integral, and

n

n

K J


 , for all Ss , Nn and Jj , then the resulting special case of ISDP, PIOS,

can be solved in strongly polynomial time.

Proof. Our proof consists of two parts: a) PIOS is decomposable and b) PIOS can be

solved in strongly polynomial time.

Part a) Under the given assumptions, P can be written as follows:

 : min 1

. .

sn sn nj j nj nj j j nj

s n n j j n

G b x a y p y

s t

  
     

 
    

 
   IOS

S N N J J N

P =

- 20 -

sn sn N
x F


 , Ss  (3.1)

sn ns S
x K 


 , Nn  (3.2)

 (1)n n nj nj nj jT K t y M y T     , Jj  (3.3)

1njn N
y


 , Jj  (3.4)

nj nj J
y K


 , Nn  (3.5)

 0, 0,1sn njx y  , S, N, Js n j    (3.6)

Since IOSP does not contain any constraint that has both variables snx and njy , for all

S, N, Js n j   , it can be decomposed into the following two sub-problems, P1 and P2 :

1 : min

. .

sn sn

s n

P b x

s t

 


S N

2 : max

. .

nj nj

n j

P c y

s t

 


N J

N

, Ssn sn
x F s


  and

J
, Nnj nj

y K n


 

S
, Nsn ns

x K n


 
N

1, Jnjn
y j


 

0, S, Nsnx s n    0,1 , N, Jnjy n j  

where

,

0, .

nj j nj j j n n nj j

nj

a p if T K t T
c

otherwise

        





 .

- 21 -

Part (b) To prove the complexity of PIOS , first note that P1 is a transportation problem

and is thus solvable in 2(() log())O N S N S N  (Kleinschmidt & Schannath, 1995). We

now prove that P2 can also be solved in strongly polynomial time due to the total

unimodularity of tis constraint matrix. Thus, solving P2 is equivalent to solving its LP

relaxation. To start, consider that the constraint matrix of 2P has N J columns and

N J rows and takes the form

1 0 0

0 1 0

0 0 1

A

Ι I I

 
 
 
 

  
 
 
  

,

where the 1 is a row vector with J 1’s and Ι is an identity matrix. All but two entries in

each column of A matrix are zero; the two nonzero entries are equal to 1. Let

 1, , rR i i be any subset of 1,2, , N J . Divide set R into two disjoint subset 1R

and 2R such that 1 2R R R  . Let  
11 1, , rR i i  ,  

22 1, , rR i i  and 1 2r r r  . Since only

two non-zero entries in each column of A are nonzero and the remaining entries are all

equal to zero, we have that

  
1

0,1kj

k R

a


 for all jJ .

In the same way, we observe that

- 22 -

  
2

0,1kj

k R

a


 for all jJ .

Hence,  
1 2

1,0,1kj kjk R k R
a a

 
    . According to Theorem 5.23 (Korte & Vyen,

2006), the constraint matrix A is totally unimodular. In addition, since all the nonzero

right-hand sides are integers, the total unimodularity of the constraint matrix indicates

that the optimal solution to the LP relaxation of 2P gives an optimal integral solution to

2P and the LP relaxation of 2P is known to be solvable in polynomial time (Korte &

Vyen, 2006). Furthermore, note that the LP relaxation of 2P is obtained by relaxing

binary variable
njy , i.e., 0 njy for all n and j . Let

nj nj jy   and then the LP problem

can be transformed into a variant of transportation problem as shown below:

 2P

 min

. .

nj nj

n j

c

s t

 
 


N J

J nj nj

K 


 , for Nn , (3.7)

N njn
 


 , for Jj , (3.8)

 0nj  , for all Nn and Jj . (3.9)

It’s well known that there is a strongly polynomial time solution to 2
P that can be

obtained in 2(() log())O N N J N J  (Kleinschmidt & Schannath, 1995). Therefore, we

- 23 -

can state that PIOS can be solved in 2

1 1(() log())O N m N m N  , where 1 max{ , }m S J ,

which completes the proof. □

Under the above assumptions (i.e.,
n

n

K J



N

), each processing center achieves

its full capacity utilization so that that total inbound quantities from suppliers and

outbound quantities to customers both amount to the processing capacity (
n

C). This

ensures that the assignment of suppliers to processing centers does not affect the

assignment of processing centers to customers. Hence, this special case can be

decomposed into two independent sub-problems: a transportation problem and a

customer assignment problem. Due to the assumption of the full truckloads, the customer

assignment problem has a total modular constraint matrix, which implies that this sub-

problem can be solvable in polynomial time. Thus this special case is solved efficiently.

We now show an example of this special case with S=3, N=2 and J=3. The

shipping rate, fixed cost and shipping time from PCs to customers (DPs) are given in

Table 1. In addition, we assume that the suppliers’ capacities are 1 13F  , 2 9F  , and

3 12F  ; the shipping time from each supplier to any PC is 10snt T  ; the shipping

rates from suppliers to PCs are 11 2b  , 12 1b  , 21 4b  , 22 6b  , 31 5b  and 32 3b  ; the

capacity and processing times of PCs are 1 11C  , 2 23C  , 1 4  and 2 6  ; and the

order sizes, penalty cost and receiving deadlines of demand points are 1 2 3 10     ,

1 100p  , 2 200p  , 3 250p  and 1 80T  , 2 160T  , 3 200T  , respectively.

- 24 -

Table 3.1 Shipping rate, fixed shipping cost and shipping time from PCs to

customers (DPs)

nja / nj / njt DP1 DP2 DP3

PC1 2 10 3 3 12 1 2 12 8

PC2 4 14 6 5 15 5 7 9 2

Since the original problem is decomposable (Theorem), combining the optimal

solutions to P1 and P2 leads to the optimal solution to IOSP : we first solve P1 to obtain

*

11 1x  , *

12 12x  , *

21 9x  , * *

22 31 0x x  , *

32 8x  , then solve 2P for * * *

11 12 23 0y y y   ,

* * *

13 21 22 1y y y   , which together form the optimal solution to IOSP with a minimum

operations cost  * *, 225G x y  .

According to a recent survey on parcel shipping and global trade management

[Recession Leads to Widespread Adoption of Lower Cost Shipping Options,2010], about

96% percent of survey respondents made changes to their business plans in response to

the ever increasing fuel prices, and targeted at using lower cost shipping options. Toward

that end, collaborative distribution and full truck load (FTL) operations have started to

gain an increasing amount of attention as effective cost reduction strategies. When the

full load operations are implemented, the results in the section can certainly be used to

guide the shipping network operations scheduling.

 Case 2: Designated Suppliers 3.2

In this section, we consider the case where each processing center in our study has a

designated supplier, or equivalently each supplier has its own exclusive subset of PCs to

serve. Furthermore, we assume that the processing time at each PC is approximately a

http://www.kewill.com/Benchmark2010

- 25 -

constant independent of the quantity processed and the capacity of both the designated

supplier and the processing center are sufficiently large, then ISDP has an efficient

solution. To formally state this result, we assume

(A1) Each PC has its unique supplier, i.e., each supplier is designated to an exclusive

subset of PCs; Let N s be the subset of PCs served by supplier s and S N Ns s  ,

N Ns s  , , Ss s  .

(A2)
J

min{ , }s n jj
F C 


 , S, Ns n   .

(A3) The total processing time at nPC is a constant, nB , independent of flow quantity,

Nn  .

Having designated suppliers for processing centers are common in the practices

where processing centers are located over different geographical regions and supplied by

local supplies, especially for bulky and heavy raw materials (e.g., farm products). This

special case result has its potential applications such as supplier base rationalization and

reduction. This strategy has been adapted widely in today’s industry as an important

business strategy to improve supply chain performance. With fewer suppliers, it is more

likely that each customer is served via a sole-sourcing arrangement and thus designated

supplier. It has been observed that such a strategy could achieve enhanced leverage,

better communication and information sharing, reduced unit cost, better flexibility, and

responsiveness, easier access to technology and innovations, improved delivery

performance, decreased inventories and cost per unit, and better quality monitoring and

- 26 -

management (Institute for Supply Management, 2010). For any shipping network with

reduced supplier base and designated suppliers for each PC, the results derived can be

used as a decision support tool for the operations planning.

Theorem 3.2 If Assumptions A1-A3 hold, then the resulting instance of ISDP, PDS is

solvable in 2(())O S N J  .

Proof: By Assumptions A1-A3, P is equivalent to the following problem:

 : min 1

. .

sn sn nj j nj nj j j nj

s n n j j n

G b x a y p y

s t

  
     

 
    

 
   DS

S N N J J N

P =

sn sn sx z F , Ss  , Nn  (3.10)

sn j njj J
x y


 , Nsn  (3.11)

 max{ } (1)sn sn n nj nj nj jt z B t y M y T     , Jj  , Nsn  (3.12)

1njn N

y


 , Jj  (3.13)

0snx  , Ss  , Nn  (3.14)

 0, , 0,1sn sn njx z y  , S, N, Js n j    (3.15)

To show the correctness of this result, let us construct a network (,)G V E :

S N JV    and {(,),(,) | , S, N , J}sn n nj j sE s n n j t B t T s n j        . Add a

- 27 -

dummy node O and arcs linked with all suppliers. Note that, since we are considering a

three-stage network and there are only arcs between different stages, the network

(,)G V E can be constructed in ()O S N J  . Solve the minimum spanning tree problem

upon (,)G V E , which runs in 2(())O S N J  (Korte & Vyen, 2006). Then, the

solution obtained has the following properties: (a) Each demand point is served by only

one PC; (b) All the time constraints are satisfied; (c) All capacity constraints are satisfied

due to Assumption A2. □

Theorem 3.3 If the assumptions A2 and A3 do not hold, then even if all the demand

points have the same deadlines, i.e.,
jT T for all j J , the problem remains NP-hard

in strong sense.

Proof: Even if all the demand point have the same deadlines, i.e.,
j jT T  for all , Jj j ,

and even if we ignore suppliers, the assignment of demand points to PCs remains to be a

dynamic generalized assignment problem. The dynamic generalized assignment problem

is well-known to be NP-hard (Kogan & Shtub, 1997). □

To better understand this special case, let us consider the following instance of

PDS with S=2, N=4 and J=5. The shipping rate and travel time from suppliers to PCs, the

shipping rate, travel time and fixed cost from PCs to customers, and customer orders and

shown in Table 3.2-3.4, respectively. Other parameters are as follows: suppliers’ capacity:

1 160F  and 2 140F  ; capacity and processing time of PCs: 1 70C  , 2 72C  , 3 82C  ,

- 28 -

4 65C  , 1 5B  , 2 6B  , 3 13B  and 4 11B  . In addition, we have 1 1 2{ , }N PC PC and

2 3 4{ , }N PC PC .

 Since each supplier serves and exclusive subset of PCs, and the processing time at

each PC is a constant, we can directly compute the total time from each supplier to each

demand point as shown in Table 3.5.

Table 3.2 Shipping rate and travel time from suppliers to PCs

sn snb t PC1 PC2 PC3 PC4

S1 2 10 3 13 0 0 0 0

S2 0 0 0 0 2 12 4 9

Table 3.3 Shipping rate, fixed cost and shipping time form PCs to customers (DPs)

nja / nj / njt DP1 DP2 DP3 DP4 DP5

PC1 2 3 3 4 2 2 5 3 5 6 9 5 9 7 2

PC2 4 4 5 5 7 3 4 5 4 6 6 4 8 2 5

PC3 1 6 3 8 2 3 5 3 2 11 3 6 4 8 10

PC4 2 2 2 2 5 12 4 1 3 4 5 3 1 4 7

Table 3.4 Demand quantities, deadlines and unit penalty cost of DPs

 DP1 DP2 DP3 DP4 DP5

Demand (j) 10 11 12 14 18

Deadline (jT) 23 16 24 32 17

Penalty Cost (jp) 100 200 250 210 200

Table 3.5 Total shipping time from suppliers to DPs through PCs

Shipping time DP1 DP2 DP3 DP4 DP5

S1-PC1 18 17 20 23 17

S1-PC2 24 22 23 21 24

S2-PC3 28 28 31 21 35

S2-PC4 22 32 18 23 27

- 29 -

Construct the shipping network, and apply the algorithm for solving the MST problem

(Korte and Vyen, 2006), and we obtain the following optimal solution to PDS :
*

11 1y  ,

* * *

21 31 41 0y y y   ; * * * *

12 22 32 42 0y y y y    ; *

13 1y  , * * *

23 33 43 0y y y   ; *

44 1y  ,

* * *

14 24 34 0y y y   ; *

25 1y  , * * *

15 35 45 0y y y   as well as *

11 22x  , *

12 18x  ,

* *

13 14 0x x  , *

24 14x  , * * *

21 22 23 0x x x   , which results in a minimum cost of

* 2647G  .

 Case 3: Divisible Order Sizes 3.3

We now consider a special case where we allow an arbitrary number of customers

and heterogeneous PC capacities. However, customer order sizes must be divisible.

Coffman et al. (1987) studied such a problem and focused on minimizing the number of

identical bins with the same capacity. Detti (2009) discussed a multiple knapsack

problem with divisible item sizes and presented a polynomial algorithm that run in

2()O n nm , where n and m are the number of different item sizes and the number of

knapsacks, respectively. We will extend the existing results on multiple knapsack

problems with divisible item sizes to our three-stage shipping network problem with

additional assignment (i.e., PCs to suppliers and customers to PCs) and customer

receiving deadlines, which add new challenges into our solution process. In addition, we

develop a necessary condition which ensures that our algorithm converges at the optimal

solution to the problem.

In particular, we make the following assumptions:

- 30 -

E1) Order sizes are divisible, i.e.,
1i id d 
 for 1,2, , 1i m  .

E2) snb b , nj ja a and nj j   for all s S , n N and Jj .

E3) snt T , n is a constant dependent of PCs, and j nj nT T t    for all Ss , Nn

and Jj .

E4) Sufficient suppliers’ capacity, i.e.,
S Js js j
C 

 
  .

E5) Let j j j nj j nj jv p a b        be the contribution of fulfilling order j and let iM

be the set of the remaining orders with size less than or equal to id that are not fulfilled

by using residual capacity when the orders of size id are evaluated, and let iW be any

subset of 1i id d orders from iM . Then 1min{ | }
i

k j i

k W

v v j 



  , 1,2, , 1i m  .

These assumptions imply that the sizes of larger orders are integer multiples of

those of smaller orders, shipping rate depends on only customer locations, the shipping

deadlines are not binding constraints, the suppliers’ capacities are sufficient for given

customer demand points and that the total savings of any subset of smaller orders, with

the sum of their sizes no more than ,id is no more than the saving of any order in 1iN  .

Not that Assumption E1 is the strongest assumption in this case, which says that the size

of a larger order, ,id is always an integer multiple of a smaller order size, ,'id

.'1 mii  Nevertheless, such an assumption does occur in real life supply chain

practices. For example, lumber dying operations is done in batches within large kiln

dryers according to the requirements specified by industry standards (Gaudreault, et al.,

2010). Bundles of lumbers of different length can be dried in the same batch (e.g., 8- and

- 31 -

16 foot). A bundle must be assembled as a rectangular prism filling the kiln dryer almost

entirely. Each sawmill defines its own set of loading patterns that can be used (see Fig.2).

Another example is IKEA, a pioneer flat-pack furniture designer and distributor of

approximately 10,000 products with 1,600 contracted suppliers and 27 distribution

centers, has been a known leader in modular product design. Its product are typically in

the size such as 16 × 16, 2 × 2, 4 × 4, etc., to meet various product design needs. IKEA

can utilize the following algorithm proposed in the special case to efficiently group the

products of smaller sizes into the ones with larger sizes, which facilitates operations

planning for the production of final products and transportation. Then, let us start with the

following results. Upon E1)-E5), our original problem ISDP now reduces to the

following mixed integer program:

S N N J J N

: max () (1)

 . .

sn j j j nj j j nj

s n n j j n

bx a y p y

s t

  
     

       DOSP

 sn sn N
x F


 , Ss  , (3.16)

S Jsn j njs j
x y

 
  , Nn  , (3.17)

N
1njn

y


 , Jj  , (3.18)

J j nj nj
y C


 , Nn  , (3.19)

 0, 0,1sn njx y  , S, N, Js n j    . (3.20)

Summing over index n for constraint (3.17), we have the following equivalence:

N S N J S N J N

sn j nj sn j nj

n s n j s n j n

x y x y 
       

     

- 32 -

By the definition that j j j nj j nj jv p a b        , PDOS is equivalent to the following

maximization problem:

 DOS

N J

P : max j nj

n j

v y
 

  (3.21)

 s.t. (3.18), (3.19)

  0,1njy  , Nn  , Jj (3.22)

which is a generalized knapsack problem and thus the focus of the remaining analysis in

this section.

Let k

nC be the remaining capacity of nPC after the orders of size 1kd  have been

evaluated and 1(mod)k k

n n kr C d  be the residual capacity for orders of size kd ,

1,2, ,k m , Nn . Let  1
min , /

N k

k k n kn
h n r d


    , and ˆ

k be the sequence of orders

in non-increasing values of jv during iteration k .

Theorem 3.4 An optimal solution to DOSP exists in which the first kh orders in ˆ
k are

assigned to the PCs using at most a capacity k

nr
from each nPC , Nn , 1,2, ,k m .

Proof: Let  be the set consisting of the kh orders in ˆ
k , 1,2, ,k m . Note that, by the

definition of kh , an optimal solution to DOSP contains at least kh orders from set  .

Otherwise, we can always substitute an element in the solution with an unassigned order

of the same size but a larger value of saving jv , and improve the objective function value.

On the other hand, if order j is not in an optimal solution to PDOS, but order 'j 'j ,

then substituting j’ by j will lead to a solution with equal or better objective function

- 33 -

value. Hence, all the orders in set  must be in the optimal solution. Since

 1
min , /

N k

k k n kn
h n r d


    and residual capacity cannot be used for any orders of larger

than
kd , all the orders in set  can be always assigned using at most a residual capacity

of each
nPC , Nn , 1,2, ,k m . □

According to Theorem 4, we propose the following algorithm.

Algorithm A1

Input: An instance of PDOS (, , , , , , , , ,)s n j j j jS N J F C a b p   ;

Output: The optimal solution *

snx and *

njy that minimizes (3.21)

(1) Let the iteration index 1k  .

(2) While k m , do

(2a) Rearrange the orders in k into a non-increasing sequence, ˆ
k , in terms of

jv , and compute k

nr and kh . Select/assign the first kh orders in ˆ
k to be fulfilled

using at most a residual capacity k

nr at each nPC , Nn . For each assigned order

j to nPC , let *

njy =1.

(2b) Let ,/1 kkk dd  . For the remaining orders in ˆ
k , concatenate every

consecutive k orders to form a new composite order of size 1kd . Add such

composite orders, each of size 1kd , to set 1k .

(2c) Set 1k k  , and 1 1k k k

n n nC C r   , Nn  .

- 34 -

(3) If (k m)

Form the sequence ˆ
k , assign the first kh orders and discard the remaining orders.

(4) Given *

njy , apply (3.16) and (3.17) to solve for *

snx by Gaussian elimination

method (Korte and Vyen, 2006), S, N, Js n j    .

Lemma 3.1 [From Coffman et al. (1987)] If order sizes are divisible, then any set of

orders that individually do not exceed id and that in total sum equal to at least must

contain a subset that sums exactly to id , 1,2, ,k m .

Theorem 3.5 Algorithm A1 always finds the optimal solution to PDOS.

Proof. Let 1 2, , nL I I I be the ordered list of orders that A1 found. The processing

center 1PC contains order 1I . Let PC be the corresponding processing center containing 1I .

Choose optimal solutions that maximize the index k of the first order in L on which 1PC

and PC differ, with k  if the two processing centers are identical. Hence if k  , we

are done. Otherwise, assume that kI belong to 1PC and not PC . Now, by Lemma 3.1,

either the sum of all the orders in PC with index smaller than k is less than kI or some

subset of those orders sums exactly to kI . In either case, we can remove the

corresponding orders from PC , replace them with kI . But this creates a new optimal

solution with larger value of k , contradicting our original choice of an optimal solution.

Thus it must be k  . Therefore, the solution of Algorithm A1 is optimal. □

- 35 -

Theorem 3.6 If an instance of ISDP , DOSP , satisfies the assumptions E1-E5, then it can be

solved in 3 2(log)O SN NJ J J  .

Proof. Our proof consists of two parts: a) Under the given conditions E1)-E5), problem

PDOS can be solved in polynomial time; and b) upon the optimal solution to PDOS, the

optimal solution to P can be constructed in polynomial time.

Part a) Sorting in Step 1 requires (log)O J J . Computing nr and 1h requires 1()O n N .

The number of demand point of size 2d

produced is 1 2 1(/) (/ 2)O n f O n that follows

from Detti (2009), where 2 2 1/ 2f d d  . In fact, at least two demand points of size 1d

must be grouped to construct a demand point of size 2d . After assigning the demand

points with size 1d , the smallest demand size is 2d , and 1 2 2(/)O n f n

demand points of

size 2d

exist. Hence, the iteration requires 1 2 2 1 2(/) (/ 2)O n f n N O n n N    

operations and produces 1 2 3 2 3 1 2(/ () /) (/ 4 / 2)O n f f n f O n n   demand points of size

3d , where 3 3 2/ 2f d d  . Repeating the above argument, we have that the last iteration

starts with
1 1

1
(/ 2)

m m k

kk
O n

  

 demand points of size 1md  , and requires

1 1

1
(/ 2)

m m k

kk
O N n

  




operations. Summarizing, we have

1 1 1

1 1
1 1 1 1

(1) (1)
2 2

m m k m m
k k

i i
k i k i

n n
m N m N

   

 
   

     

operations in total. Therefore, DOSP can be solved in (log)O NJ J J time.

- 36 -

Part b) Based on the *

njy obtained from PDOS, solving the linear systems of equations

(3.16) and (3.17) can derive the value of *

snx by using Gaussian Elimination method

(Korte & Vyen, 2006).

We now consider an instance of this special case with 4, 3, 10S N J   , 3m  ,

5T  , 5b  , 1 2 3 47, 10, 11, 13F F F F    and 1 2 315, 10, 14C C C   . The additional

parameters regarding customer orders are presented in Table 3.6, which shows

1 {1,2,3,4,5}  , 2 {6,7}  and 3 {8,9,10}  .

Table 3.6 Order size, penalty cost, saving and variable and fixed cost

Order Size j Penalty Cost jp Shipping cost ja Fixed shipping cost j  jv

1 2 200 2 18 368

2 2 120 3 12 212

3 2 100 5 10 170

4 2 115 6 40 168

5 2 100 5 16 164

6 4 200 3 13 755

7 4 180 2 10 682

8 8 300 1 24 2328

9 8 210 4 15 1593

10 8 200 2 11 1533

In the Step 1 of Algorithm A1, the orders in i are sequenced in non-increasing

order of values, jv , as shown in Table 3.6. During the iteration 1 of Step 2, we have

1
ˆ 1,2,3,4,5   , 1 1 1

1 2 33, 2, 2r r r   , and thus 1 3h  . Hence, order 1, 2 and 3 are

assigned to three PCs and the remaining orders in 1̂ are grouped to form the composite

orders of size 4 with value 332, denoted as order 4-5. At the beginning of the second

iteration, 1 1 1

1 2 313, 8, 12C C C   and 2 {6,7,4 5}   , 2
ˆ 6,7,4 5    with 755, 682

and 332, respectively. Since 2

1 5r  , 2

2 0r  , 2

3 4r  and 2 2h  , both 6 and 7 in 2̂ a re

- 37 -

assigned to PC 1 and 3, respectively. The only remaining order 4-5 is then combined with

a dummy order of value zero into a new order of size 8 with the value of 332. At the end

of Step 2, we have 2 2 2

1 2 39, 8, 8C C C   . In Step 3, we obtain that
3 3h  so that all the

orders are assigned except for that composite order 4-5 with the value of 332. Table 3.7

summarizes the final solution, which shows that * * * *

11 22 33 16y y y y   

* * * *

37 18 29 3,10 1y y y y    .

 According to the given *

njy , we can use the Gaussian elimination method to

simultaneously solve (3.16) and (3.17) and obtain *

snx : *

11 2x  , * * *

21 31 41 4x x x   ,

* *

12 22 2x x  , * *

32 42 3x x  , * * *

13 23 33 3x x x   and *

43 5x  . Hence, we have that the total

cost * 829G  .

4 Dynamic Programming-based Algorithm with A Single PC

In this chapter, we solve a special case of ISDP when the number of processing

centers (PC) equals to one, and develop a dynamic programming based search algorithm

which identifies the optimal subset of customer orders to be fulfilled under each given

utilization level of the PC capacity. We then construct a cost function of a recursive form,

and prove that the resulting search algorithm always converges to the optimal solution

within pseudo-polynomial time. Note that this single PC in our study may be interpreted

as a single production facility or a single distribution center, which is designated to serve

the customers in a given region. Note that the problems with a single PC or DC serving a

- 38 -

given region are very common in practices. For example, Americares, a nonprofit disaster

relief and humanitarian aid organization, has only three distribution centers/warehouses

for its global operations; each serves the demand from a particular country (i.e., US, India,

and Haiti). Cardinal Health Inc., a pharmaceutical product wholesaler, has only one

distribution center serving all the demand points in Alaska. This result can also serve as a

subroutine embedded in a more general heuristic that solves the supply chain operation s

scheduling problem with multiple PCs.

 Problem Description 4.1

We consider a three-stage supply chain process (see Figure 1) consisting of

heterogeneous groups of suppliers, a single processing center (PC), and a network of

customer demand points. Assumptions about suppliers, the PC, and customers, upon

which we shall construct the mathematical model, are as follows.

Figure 4.1 A three-stage supply chain process

- 39 -

Customers: Each customer j, J,j has an order which specifies the delivery deadline

(jT) and order quantity (j). Since the network is capacitated, not all the customers may

receive their shipment by the deadline and thus some customer orders will be missed (and

then handled differently). However, if customer j is selected to receive the shipment, then

a shipment of
j units of customized product must arrive at the customer site no later than

jT . Otherwise, a customer-dependent penalty due to missed delivery, jjp  , is imposed.

Suppliers: Let H denote the total types of distinct functional components used for

processing at the PC, and let hS denote the set of candidate suppliers specialized in

making component h,  H 1,2, ,h H  . Let  H
SS




h h stand for the set of suppliers

in the network. Each candidate supplier s , Ss , has a limited production capacity, sF ,

charges a fixed shipping rate to the PC, (unit), and requires a lead/shipping time to

deliver to the PC, sup

st , Ss .

PC: The PC has a limited capacity, C, for finalizing the products and requires a non-

negligible processing time,  , for each unit of product to be finalized. Let
DP

jt be the

required shipping time from the PC to customer j, let ja be the shipping rate, and
j be

the fixed cost if there is any shipment, from the PC to customer j. It is assumed that the

PC does not have any initial inbound and outbound inventory, and serves only as a

processing center. It is also assumed that the processing at the PC will not start until all

the required components (i.e., raw materials) have arrived.

- 40 -

In addition, there is a non-linear penalty that applies whenever the total amount of

order quantity delivered to the customer network is below a given target fulfillment rate

%.1000,   We assume this penalty cost as follows

J J

[max{0, }]j j jj j
y , (4.1)

where ,1,0   are penalty parameters and can take any positive values greater than

1, and }1,0{jy , Jj , are binary variables where
jy = 1 if the order of customer j is

fulfilled on time; and
jy =0 otherwise, so that

J j jj
y


 is the total quantity fulfilled for

the network. Quantity
J jj

stands for the minimum quantity to fulfill to meet the

target fill rate  . The nonlinear penalty cost here defines the additional expenses

incurred for handling rush orders that missed the delivery deadlines.

Our problem is then to select a subset of customer orders to be fulfilled on-time,

and to select candidate suppliers from each group to support the PC production for the

selected customers such that the sum of the shipping, processing, and penalty cost is

minimized while all the capacity and delivery deadline constraints for selected customers

are satisfied.

Let

sx = The total shipping quantity from supplier s to the PC, Ss ;

sz = Binary variables, and sz =1 if supplier s is selected; and 0 otherwise, Ss ;

- 41 -

jy = Binary variables, and
jy =1 if the order of customer j is fulfilled on time; and

0 otherwise, Jj .

The problem that we are interested in this study can now be formally defined as follows:

Single_ISDP:

H S J J J J
min () (1) [max{0, }]

h
s s j j j j j j j j j jh s j j j j

G b x a y p y y       
     

              
s.t.

1. Capacity constraints on suppliers:

s s sx z F , Ss  (4.2)

2. Flow balance constraints on the PC:

S Jh

s j j

s j

x y
 

  , Hh  (4.3)

3. Constraints on delivery deadlines:

   sup

S
J

max (1)DP

s s l l j j j j
s

l

t z y t y M y T 




     , Jj  (4.4)

4. Constraint on the PC capacity:

J

j j

j

y C


 (4.5)

5. Integrality and non-negativity:

- 42 -

 0sx  ,  0,1sz  , Ss  , and  0,1jy  , Jj  (4.6)

The first, and the second, term in the objective function define the shipping cost

from suppliers to the PC, and the fixed and variable shipping costs from the PC to

customer demand points, respectively. The third term denotes the total penalty cost

incurred by missed customer orders and the fourth term is a nonlinear penalty cost due to

the shortage (if any) to meet the target fill rate () for the sales network. Constraints

(4.2) ensure that all the quantities shipped out of a supplier do not exceed its capacity and

that the relationship between the shipping quantity from a supplier to the PC and its flow

indicator variable is correctly established. Constraints (4.3) guarantee that incoming flow

quantity of component h, h  H, at the PC matches the required amount to meet the

selected orders to be fulfilled. While we assume in this model a one-to-one conversion

ratio that exactly one unit of each component is used in each unit of final product, this

assumption can be easily extended to where multiple units of certain component are

needed to make one unit of a finalized/customized product. Constraints (4.4) impose the

requirement that the shipment arrives at a demand point must be no later than its

specified delivery deadline. Finally, constraint (4.5) ensures the usage of the PC capacity

to be within its maximum limit.

Single_ISDP remains to be a NP-hard problem even with a single component (i.e.

H = 1), instantaneous transportation (i.e.,
sup 0DP

s s jb t t  ), no penalty for the shortage

(0 ), and completely relaxed jT and sF . In this case, Single_ISDP can be reduced to

the classical knapsack problem (Brotcorne, Hanafi, & Mansi, 2009), which is known to

- 43 -

be NP hard, with a knapsack capacity C, item sizes
j and item values

j j j j jp a    ,

Jj  . While the classical knapsack problem is solvable in pseudo-polynomial time by

dynamic programming (Kellerer & Pferschy, 2004), the exiting literature results cannot

be directly applied to Single_ISDP due to its multi-echelon network structure, travelling

time requirement, non-instantaneous processing operations at the PC, and customer

receiving deadlines. Furthermore, the departure time of finished orders from the PC to

customers is a variable whose value depends on i). which suppliers are selected, and ii).

the total quantity to be processed, and thus the amount of processing time needed, at the

PC. The algorithm that we shall propose for solving Single_ISDP must be able to

simultaneously optimize the selection of suppliers, the quantity to be shipped from each

selected supplier to the PC, and the selection of customers to receive the shipments on

time. Solving Single_ISDP requires us to make the optimal tradeoff among production

quantity (and thus the required processing time and potential delays in shipping), supplier

selection (and thus the shipping cost, the required shipping time, and the PC starting time

of processing), and the customer selection (and thus the penalty cost and the service level

for the network), while subject to all the constraints. The algorithm that we shall propose

in this study for solving Single_ISDP must be able to simultaneously optimize the

integrated supply, manufacturing, and distribution operations. We are interested in

solving this problem in pseudo-polynomial time, and shall propose such a search

algorithm in the following section.

- 44 -

 A Dynamic Programming-based Algorithm for Solving Single_ISDP 4.2

In this section, we focus on the solution approach for solving Single_ISDP. To

start, let’s arrange suppliers in an increasing order of their shipping times to the PC, i.e.,

sup sup sup

1 2 st t t   , and then customers in a decreasing order of their latest departure

times (for the on-time shipment) from the PC, i.e.,
1 1 2 2 ,DP DP DP

J JT t T t T t     

J.j  Let  S  be the set of first  suppliers, i.e.,  S {1,2,..., }  , and  Sh  be

defined by  S Sh  .

Let us define a sub-problem of P, P , ,1 S 1 ,J which involves the

first  suppliers, the first  customers, and a revised PC capacity),(C defined as

 
sup

H
S () 1

, min ,min , ,
h

DP

s j
h

s j

T t t
C C F


  



  


 

        
     

        
 

 (4.7)

where sup() /DPT t t       gives an upper bound on the maximum quantity that the PC

can produce between its earliest possible starting time and the latest feasible completion

time under the given  and  . We exclude all such sub-problems P if
supDPT t t   

and/or .0),(C Note that, in case the first  suppliers are not able to supply all the

distinct H components, then, by definition of),,(C the revised capacity is zero and

thus a trivial solution that selects no customers becomes the unique solution. Also note

that for any given sub-problem P , the customers in set { +1,  +2, …, J}, are not

served and thus penalized. An important advantage of introducing such a revised

- 45 -

processing capacity of the PC is that the deadline constraints are always satisfied for the

given subset of customers. We shall therefore remove constraints (4.4) from the analysis

of P .

For a given pair of  and  , ,1 S 1 ,J P
 can be rewritten in the following:

 
H S () 1 1 1 1 1

min = (1) + [max{0, }] :
h

J J

s s j j j j j j j j j j j j

h s j j j j j

G b x a y p y p yP
  

 

 


       

       

              

. .s t s sx F , S()s   (4.8)

S () 1

,
h

s j j

s j

x y





 

  Hh  (4.9)

 
1

, ,j j

j

y C


  


 (4.10)

0sx  ,  0,1jy  , S()s   ,  1,2, ,j   (4.11)

Now let us further consider a sub-problem of P , denoted by ()jP d
, in which only the

first j customers can be served, j = 1, 2, …, , for order fulfillment by utilizing exactly d

units, 0 (,),d C    of the PC capacity. Note that since the time constraints are no

longer needed for P , the optimality of the supplier selection, for any given ()jP d
,

depends only upon the values of  and d, but not  . Therefore, we can separately solve

the supplier selection problem under any given  and d. Furthermore, for any given PC

- 46 -

capacity level d,
H

S ()

0 min ,min ,
h

s
h

s

d C F





    
    

    
 to be utilized and the subset of

suppliers S() , let ()P d denote the following transportation problem from the

suppliers in S() to the PC and)(dG
 be its optimal objective function value:

() :P d
H S ()

() min
h

s s

h s

G d b x

 

  

s.t.

S ()

,
h

s

s

x d


 Hh  , s sx F , 0sx  , S()s  

where)(dG
 defines the minimum cost of shipping d units of supplies from suppliers in

each subset S (), 1,2,..., ,h h H to the PC. Moreover, ()P d can be decomposed into

the following H independent sub-problems ()hP d , each aims to minimize the inbound

shipping cost for component h,)(dGh

 , h = 1, 2, …, H:

() :hP d

S ()

() min
h

h s s

s

G d b x



  s.t.

S ()

,
h

s

s

x d


 s sx F , 0sx  , S ()hs  

such that
H

() ()h

h

G d G d . In order to solve),(dPh

 we sort suppliers in set S ()h 
in

a non-decreasing order of their unit shipping costs and let 1 2 S ()
, ,...,

h
s s s

be such an

ordering of elements in S (),h  i.e.,
 1 2 S ()h

s s sb b b . If
1

1 1

s sF d F , then

- 47 -

() (1)h h sG d G d b . Thus, ()hG d can be computed by increasing the value of d by

one unit at a time, starting with d = 0, with the initial value of (0) 0hG , and updating

the value of accordingly. Therefore, with a given  , it takes  O C time to obtain all

values of ()hG d for all
S ()

0 min , .
h

s

s

d C F


  
   

  


Since we only need to sort the S

suppliers in a non-decreasing order of their unit shipping costs once at the beginning and

then use the first  suppliers in the sorted supplier list each time, it takes

 logO S S CS time to obtain all the values of
H

() ()h

h

G d G d

for all 1 S 

and
H

S ()

0 min ,min .
h

s
h

s

d C F





    
    

    
 Note that)(dG

 is the supplier-dependent fixed

cost for the respective ()jP d
. Hence,)(dG

 and sx , S()s   , are handled as

constants in the process of solving ()jP d
, and all the constraints associated with sx

can

be removed from ()jP d
. For any given ,  , j,)(dG

, and a capacity level to be

utilized, d, the sub-problem ()jP d

can be formally defined as follows:

 
1 1 1 1 1

min ()= () (1) + [max{0, }]
j j jJ J

j k k k k k k k k k k k k

k k k j k k

z d G d a y p y p y         
     

            

. .s t

1

,
j

k k

k

y d


 (4.12)

- 48 -

  0,1ky  ,  1,2, ,k j  . (4.13)

which is a standard knapsack problem and is known to be solvable by dynamic

programming (Garey & Johnson, 1979). To construct the network for dynamic

programming, let each stage be an individual customer j, 1 j   , and each state at a

given stage be a specific utilized PC capacity level, d, 0,1,2, , (,)d C   . Then the

recursive equation for the cost function of (),jP d ()jz d
, can be defined as

1

1

1

1

() if

(),

()

min () () (() ())

{[max{0, }

j j

j

j

j j j j j j j j

J

k

k

z d d

z d

z d

z d a p G d G d

d







  



    

  













      

   
1

, otherwise

] [max{0, }] }

J

k j

k

d
 

  


   





  



 



 (4.14)

with boundary conditions of 0

1 1

() : ()
J J

j j j

j j

z d p    
 

     for S , J ,

0,1,...., (,)d C   , and
1 1

(0) : ()
J J

j j j j

j j

z p    
 

     for S , J , {1,..., }j  .

Let
*G be the global minimum of the objective function. Our proposed search algorithm,

called SPO, that utilizes the revised PC capacity,),,(C together with a dynamic

programming based subroutine for solving ()jP d , for each given combination of  ,  ,

j, and d, can be outlined as follows.

Algorithm SPO

- 49 -

Input: S , H, J and sF ,
sup

st , sb ,

C ,  , j , jT ,

DP

jt , j , ja , jp , ,

 for

Ss  , Jj  ;

Output: The optimal solution to P, *

sx , *

sz and

*

jy , Ss  , Jj  ;

Step 1. Order suppliers and customers.

Sort suppliers in an increasing order of their shipping times to the PC,
sup

st ,

Ss  ; sequence customers in a decreasing order of their latest departure

times from the PC for the on-time delivery,
DP

j jT t , Jj  .

Step 2. Solve the transportation problem ()P d for *

sx .

 For : H  to S

 For : 0d  to
H

S ()

min ,min ,
h

s
h

s

C F





    
  

    


 Solve ()P d
 for }{ *

sx .

Step 3. Seek for the optimal network operations schedules.

a) Let 0

1 1

() : ()
J J

j j j

j j

z d p    
 

     for S , J , 0,1,...., (,)d C   and

1 1

(0) : ()
J J

j j j j

j j

z p    
 

     for S , J , {1,..., }j  . Set
* :G  .

b)

For : H  To S

 For : 1  To J

 For : 1j  To 

 For : 1d  To (,)C  

 If jd  , Then 1() : ()j jz d z d 



 Else

 () :jz d 

1

1

1 1

(),

() () (() ())min

{[max{0, }] [max{0, }] }.

j

j j j j j j j j
J J

k k j

k k

z d

z d a p G d G d

d d



  

 

    

     





 



       

       


 

 : min{ () | 0,..., (,)}z z d d C 

    

 If
*G z , Then

* :G z .

 Step 4. Backtrack
*

jy to obtain the values of
*

sx and
*

sz .

- 50 -

Theorem 4.1 Algorithm SPO terminates with the optimal solution to Single_ISDP in

2(log)O S S CSJ

time.

Proof. We first prove that Algorithm SPO terminates at the optimal solution to

Single_ISDP. For any given pair of  1,2, ,S and },,...,2,1{ J let ()jz d

denote the minimum total cost when a subset of customers,  1,2, ,D j , with

k

k D

d


 , is selected, where  1,2, ,j  . The algorithm correctly computes the

values of ()jz d
using the formula (4.14) and enumerates all the subsets  1,2, ,D 

except for those that are either infeasible or dominated by the others for any given

 1,2, ,S and  1,2, , J . Thus, given (,),  the proposed algorithm

identifies the optimal subsets of suppliers and customers subject to the revised capacity

(,)C   . Furthermore, throughout the iteration process, SPO finds the optimal solution,

*{ }sx and }{ *

jy , by enumerating all possible combinations of (,)  and solving P
 for

*

S

arg max{ 0}s
s

x


  and *

J

arg max{ 1}j
j

y


  . If the optimal solution utilizes only a zero

capacity, then this solution by default is specified in the boundary condition. Otherwise,

in the optimal solution, *

S

arg max{ 0}s
s

x


 and *

J

arg max{ 1}j
j

y


 are well defined. Therefore,

Algorithm SPO solves Single_ISDP optimally.

We now show that the complexity of SPO is
2(log)O S S CSJ . Sorting

suppliers, and customers, require (log)O S S , and (log)O J J , time in Step 1,

- 51 -

respectively. The computational effort in calculating ()G d
 is (log)O S S CS for all

 1,2, ,S and all
H

S ()

0,1,2, ,min ,min
h

s
h

s

d C F





    
   

    
 in Step 2. In Step 3,

setting two types of boundary values takes ()O CSJ and
2()O SJ , respectively. In Step 4,

for any given  1,2, ,S and  1,2, , J , SPO finds z in ()O CJ . Therefore,

the time complexity of Step 4 is 2()O CSJ , and therefore Algorithm SPO terminates in

2(log)O S S CSJ . □

Remark 1. Algorithm SPO may be applied to a more general setting where different

customer orders may require different unit processing times (i.e., unit processing time j

for customer j at the PC). In this case, we can use

 
H

S () 1

, min ,min , ,
h

s j
h

s j

C C F




  


 

     
    

    
 

as the revised capacity, while keep
supDPT t t    as the maximum processing time at the

PC, and generalize the recursive equation with the given (, ) as follows

1

1

1

1

(,) if or

(,)

(,)
min (,) () (() ())

{[max{0, }] [max{0,

j j j j

j

j

j j j j j j j j j j

J

k k

k k

z d u d u

z d u

z d u
z d u a p G d G d

d







  



  

      

    









 


       

     
1

 otherwise

}] }
J

jd 








 
 



  
 



- 52 -

for 1 j   ,
H

S () 1

0 min ,min , ,
h

s j
h

s j

d C F







 

     
     

    
  and sup0 DPu T t t      where u

denotes the remaining time from
supDPT t t    . This generalization could result in

another pseudo-polynomial time algorithm with, however, a higher level of

computational complexity 2(log max{ })j
j

O S S T CSJ


 .

Remark 2. Algorithm SPO may also be extended to the case where the component-

product conversion ratio becomes h:1, instead of 1:1. That is, to produce one unit of

final product, we need h units of component h, where .1h When this is the case, we

shall change equation (4.3) to
S () 1h

s h j j

s j

x y




 
 

   and then apply the same algorithm.

However, if the component conversion ratios become customer-dependent, then we will

no longer have a polynomial time solution. In this case, our problem becomes a

multidimensional knapsack problem which is a strongly NP-hard problem.

 Numerical Example 4.3

We now present a numerical example that illustrates the step-by-step search process

by the proposed Algorithm SPO to find the optimal solution. In this example, we are

given six suppliers for three types of supplies (S = 6, H = 3) and five customer demand

points (J = 5), each has an order defined by),,(jj T as described in Tables 4.1-4.2. Also,

we assume that for the PC, we have 2  and C = 8. Let the target fill rate β=87.5%,

and the penalty cost parameter
J

26 max{ }j
j

p


  and the penalty exponent  =1.25.

- 53 -

Table 4.1 Parameters for the suppliers

Supplier s Supplier set Sh (s  Sh) Capacity sF Shipping time
sup

st Unit shipping cost sb

1 S1 5 1 3

2 S2 8 1 3

3 S3 7 2 4

4 S1 5 3 2

5 S3 3 4 2

6 S2 4 6 1

Table 4.2 Parameters for the customer demand points

Customer j Demand
j Deadline

jT Shipping time
DP

jt Fixed cost
j Shipping cost

ja Penalty cost
jp

 2 32 3 8 5 22

2 2 28 5 9 3 18

3 1 26 4 7 4 26

4 2 25 5 5 2 20

5 1 21 1 10 6 25

For  = 1 or 2, the revised capacity is always zero since all distinct three types cannot be

provided (H = 3), i.e., C(,) = 0 for = 1 or 2, and thus we summarize the steps for

3,4,5  and 6. Table 3 shows the procedures for Step 2 and Tables 4.4-4.7 show the

procedures for Step 4.

Table 4.3 The values of ()S d


obtained in Step 2 of SPO


H

S ()

min ,min
h

s
h

s

C F





    
  

    


d

0 1 2 3 4 5 6 7 8

3 5 0 10 20 30 40 50

4 7 0 9 18 27 36 45 55 65

5 8 0 7 14 21 30 39 49 59 69

6 8 0 5 10 15 22 31 41 51 61

Table 4.4 The values of and obtained in Step 4 of SPO ()

 C(,) j
d

z
0 1 2 3 4 5

1 2
0 467.0 467.0 467.0

359.4
1 467.0 467.0 359.4

()
j

z d


z


 3 

- 54 -

2 4

0 467.0 467.0 467.0 467.0 467.0

266.7 1 467.0 467.0 359.4 364.0 369.3

2 467.0 467.0 359.4 364.0 266.7

3 5

0 467.0 467.0 467.0 467.0 467.0 467.0

220.8
1 467.0 467.0 359.4 364.0 369.3 375.8

2 467.0 467.0 359.4 364.0 266.7 277.7

3 467.0 410.2 359.4 307.1 266.7 220.8

4 5

0 467.0 467.0 467.0 467.0 467.0 467.0

210.8

1 467.0 467.0 359.4 364.0 369.3 375.8

2 467.0 467.0 359.4 364.0 266.7 277.7

3 467.0 410.2 359.4 307.1 266.7 220.8

4 467.0 410.2 354.4 302.1 256.7 210.8

5 5

0 467.0 467.0 467.0 467.0 467.0 467.0

210.8

1 467.0 467.0 359.4 364.0 369.3 375.8

2 467.0 467.0 359.4 364.0 266.7 277.7

3 467.0 410.2 359.4 307.1 266.7 220.8

4 467.0 410.2 354.4 302.1 256.7 210.8

5 467.0 410.2 354.4 302.1 256.7 210.8

Table 4.5 The value of and obtained in Step 4 of SPO ()

 C(,) j
d

z
0 1 2 3 4 5 6 7

1 2
0 467.0 467.0 467.0

357.4
1 467.0 467.0 357.4

2 4

0 467.0 467.0 467.0 467.0 467.0

262.7 1 467.0 467.0 357.4 362.0 367.3

2 467.0 467.0 357.4 362.0 262.7

3 5

0 467.0 467.0 467.0 467.0 467.0 467.0

215.8
1 467.0 467.0 357.4 362.0 367.3 373.8

2 467.0 467.0 357.4 362.0 262.7 273.7

3 467.0 409.2 357.4 304.1 262.7 215.8

4 7

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

143.0

1 467.0 467.0 357.4 362.0 367.3 373.8 383.4 399.2

2 467.0 467.0 357.4 362.0 262.7 273.7 288.6 311.0

3 467.0 409.2 357.4 304.1 262.7 215.8 232.9 257.6

4 467.0 409.2 352.4 299.1 252.7 205.8 174.0 143.0

5 7

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

143.0

1 467.0 467.0 357.4 362.0 367.3 373.8 383.4 399.2

2 467.0 467.0 357.4 362.0 262.7 273.7 288.6 311.0

3 467.0 409.2 357.4 304.1 262.7 215.8 232.9 257.6

4 467.0 409.2 352.4 299.1 252.7 205.8 174.0 143.0

5 467.0 409.2 352.4 299.1 252.7 205.8 171.0 143.0

Table 4.6 The value of and obtained in Step 4 of SPO ()

()
j

z d


z


 4 

()
j

z d


z


 5 

- 55 -

 C(,) j
d

 z
0 1 2 3 4 5 6 7 8

1 2
0 467.0 467.0 467.0

353.4
1 467.0 467.0 353.4

2 4

0 467.0 467.0 467.0 467.0 467.0

256.7 1 467.0 467.0 353.4 358.0 365.3

2 467.0 467.0 353.4 358.0 256.7

3 5

0 467.0 467.0 467.0 467.0 467.0 467.0

209.8
1 467.0 467.0 353.4 358.0 365.3 373.8

2 467.0 467.0 353.4 358.0 256.7 269.7

3 467.0 407.2 353.4 298.1 256.7 209.8

4 7

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

137.0

1 467.0 467.0 353.4 358.0 365.3 373.8 383.4 399.2

2 467.0 467.0 353.4 358.0 256.7 269.7 286.6 311.0

3 467.0 407.2 353.4 298.1 256.7 209.8 228.9 255.6

4 467.0 407.2 348.4 293.1 246.7 199.8 168.0 137.0

5 8

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

137.0

1 467.0 467.0 353.4 358.0 365.3 373.8 383.4 399.2 435.0

2 467.0 467.0 353.4 358.0 256.7 269.7 286.6 311.0 356.4

3 467.0 407.2 353.4 298.1 256.7 209.8 228.9 255.6 306.0

4 467.0 407.2 348.4 293.1 246.7 199.8 168.0 137.0 191.9

5 467.0 407.2 348.4 293.1 246.7 199.8 165.0 137.0 138.0

Table 4.7 The values of and obtained in Step 4 of SPO ()

 C(,) j
d

z
0 1 2 3 4 5 6 7

1 2
0 467.0 467.0 467.0

349.4
1 467.0 467.0 349.4

2 4

0 467.0 467.0 467.0 467.0 467.0

248.7 1 467.0 467.0 349.4 354.0 361.3

2 467.0 467.0 349.4 354.0 248.7

3 5

0 467.0 467.0 467.0 467.0 467.0 467.0

201.8
1 467.0 467.0 349.4 354.0 361.3 371.8

2 467.0 467.0 349.4 354.0 248.7 263.7

3 467.0 405.2 349.4 292.1 248.7 201.8

4 7

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

129.0

1 467.0 467.0 349.4 354.0 361.3 371.8 383.4 399.2

2 467.0 467.0 349.4 354.0 248.7 263.7 282.6 309.0

3 467.0 405.2 349.4 292.1 248.7 201.8 217.9 251.6

4 467.0 405.2 344.4 287.1 238.7 191.8 160.0 129.0

5 7

0 467.0 467.0 467.0 467.0 467.0 467.0 467.0 467.0

129.0 1 467.0 467.0 349.4 354.0 361.3 371.8 383.4 399.2

2 467.0 467.0 349.4 354.0 248.7 263.7 282.6 309.0

()
j

z d


z


 6 

- 56 -

3 467.0 405.2 349.4 292.1 248.7 201.8 217.9 251.6

4 467.0 405.2 344.4 287.1 238.7 191.8 160.0 129.0

5 467.0 405.2 344.4 287.1 238.7 191.8 157.0 129.0

We then backtrack to find the optimal solution: * * * *

1 2 3 4 1y y y y    , *

5 0y  ; *

1 2x ,

*

2 3x , *

3 4x , *

4 5x , *

5 3x , and *

6 4x ; *

1 1z , *

2 1z , *

3 1z , *

4 1z , *

5 1z , and

*

6 1z with (, ) = (6, 4), the utilized PC capacity of 7, and * 129.0G  .

5 Linear Partial Relaxation-based Heuristic Algorithm

In this chapter, we study a general version of ISDP where multiple processing centers

are considered. We provide some theoretical results of the linear relaxation problem of

ISDP, upon which the design of the proposed algorithm for solving ISDP is based. Then

we develop an iteration algorithm, partial linear relaxation-based heuristic algorithm, in

which a small number of relaxed linear variables are fixed to be binary variables during

each iteration. The iteration process stops until all the values of the binary variables are

determined.

 Heuristic Algorithm 5.1

In this section, we propose a LP relaxation based heuristic for solving ISDP. In

the literature, there are many linear programming relaxation based algorithms for solving

multiple knapsack problems or generalized assignment problems. Dawande et al. (2000)

studied the multiple knapsack problems with the assignment restrictions and presented

approximate solutions in polynomial computational time. Dahl et al. (2004) proposed a

- 57 -

linear programming based heuristics for the multiple knapsack problems with assignment

restrictions. Trick (1992) investigated the basis structure of the linear relaxation of the

generalized assignment problems and presented an improvement heuristic based on the

problem properties and violated inequalities. Our solution approach extends the existing

results to solve a three-stage shipping network operations scheduling problem with

delivery deadlines, supplier selections and customer assignments.

To begin, let us consider the following mixed integer linear program, ISDP
 LR

,

formed by relaxing binary variables njy , {0,1}njy  to bounded linear variables nj ,

0 1nj  , , , .n N j J   

  
S N N J J N

: min (1)sn sn snj nj nj nj j j nj

s n n j j n

b x a p    
     

       LR
ISDP

 . .s t

sn sn

x F


 , Ss (5.1)

 sn sn sx z F , s S , Nn (5.2)

S Jsn nj j njs j
x   

 
  , Nn (5.3)

S

max{ } (1) , Jsn sn sn n nj nj nj j

s

t z x t M T j  


      (5.4)

N

1njn



 , Jj (5.5)

J j nj nj

C 


 , Nn (5.6)

 0snx  ,  0,1snz  , 0 1nj  , Ss , Nn , Jj (5.7)

- 58 -

Since the number of customers, J, is usually much greater than the number of

processing centers, N, and/or the number of suppliers, S, such a partially relaxed model

has potential to achieve a significant reduction in the number of integer variables. One

remaining issue here is then how this relaxation may affect the solution quality. The

analysis below serves for this purpose.

Let  ,x C   be a feasible solution to ISDP
 LR

, where  denote the sub-

vector of  containing fractional variables (0 1nj ) and C denote the set of feasible

solutions to ISDP
 LR

. Let
FG be the sub-graph of

LRG induced by the fractional edges

associated with nj , where (,)LR LR LRG V E , LRV S N J   and

{(,),(,) | (,) }LR

sn njE s n n j x C    , s S , n N , j J . In the following theorem,

we introduce the solution properties of ISDP
 LR

 that facilitates the design of our hybrid

heuristic algorithm.

Theorem 5.1 If min maxn j
n N j J

C 
  

 , then there exists a basic solution to ISDP
LR

,  , in

which all of the following properties hold:

a) FG consists of trees 1W , 2W , ,W ,  denotes the number of trees in
FG ;

b) kW includes at most one customer demand point in J as a leaf node, 1 k   ;

c) kW has at most one PCn , Nn , that is not used up to its maximum capacity nC ;

or kW

has at most one demand point not assigned completely, 1 k   ;

- 59 -

d) If kW has a demand point as a leaf node in J , then the corresponding inequality

in (11) is strict, 1 k m  .

Proof. Let W be any tree in
FG and we shall start with the proof of a).

a) To prove that a) holds, we need to show that
FG has no cycle. Hence, we suppose that

FG contains a cycle and the cycle incudes a node sequence from i to j , where

, Fi j V . Letting l be the perturbation of a feasible solution to ISDP
LR

, now we can

find a path from i to j , i.e.,

1 1 2 1(,() ,() ,() ,() ,())i i i i i i i j i jl                         

with zero for other arcs (Dahl et al., 2004). Here we choose 0  to be small enough,

and construct two feasible solutions 1v l  and 2v l  . We conclude that

1 21 2()v v   , which contradicts the fact that  is the basic feasible solution.

b) By the similar arguments as in the proof of a), consider that two demand points as

leaf nodes in kW , i.e., i and j . Define l to be the perturbation of the feasible

solution to ISDP
LR

 along the path from i to j in
FG . Let  be positive and small

enough, and then we have the following:

1 1 2 1(,() ,() ,() ,() ,())i i i i i i i j i jl                          .

We also construct two feasible solutions, 1v l  and 2v l  , so that we have

the same result as in the proof of a), 1 21 2()v v   , which is a contradiction

against the extreme point  .

- 60 -

c) Since kW has | () | | () | 1k kV W V W S   edges associated with nj where ()kV W S

denotes the set of supplier nodes in kW , and  is the basic solution to ISDP
LR

, at least

| () | | () | 1k kV W V W S   inequalities from (11) and (12) must be active (Dahl et al.,

2004), that is, they are equalities. Therefore, at most one PC is not used to its

capacity or at most one demand point is not assigned completely in kW .

d) If kW has a demand point j as a leaf node in J , then only 0nj  is fractional, thus

1njn



 N

. □

Theorem 5.2 If min maxn j
n N j J

C 
  

 , then the number of demand points that are partially

fulfilled, i.e., 0 1nj  , is no more than the number of PCs that offer supplies to

partially assigned demand points, i.e., () ()k k

k k

V T N V T J
 

    .

Proof. Let kW

be any tree in

FG . Let kr be the number of supplier nodes, kp be the

number of PC nodes, and kq be the number of customer nodes in kW . The number of

edges in kW

is 1k k kr p q   . Let 1 , and 2 , be the number of suppliers in kW S , and

the number of customer demand points (leaf) in kW J , respectively. It follows that

2 1  from part c) of Theorem 1. Let id denote the degree of node i in kW . Then, we

have that the following inequality holds:

1 2 : 2 : 2

1 2 1 2

1 2

1

 2() 2()

 2()

k k i k i
k k k i i ii W i W S d i W J d

k k

k k

r p q d d d

r q

r q

 

   

 

      
       

     

   

  

- 61 -

From the inequality above, it follows that 1()k k k k kp r q p q     , which indicates

that () ()k k

k k

V T N V T J
 

    by summing up over all the trees, kW , in
FG . □

Theorem 5.3 There exists at least J N demand points that are fully fulfilled in the

optimal solution to ISDP
LR

, i.e., 1nj  .

Proof. Let  be the optimal solution to ISDP
LR

. If
FG is empty, then there exists no

customer demand point that is partially fulfilled by  . In other words, customer demand

points are either fully fulfilled by a single PC (i.e., the single coursing constraints (3)) or

entirely unassigned. Let p

be the number of PCs that serve partially fulfilled demand

points in ,  be the number of integrally fulfilled demand points in  ,  be the

number of partially fulfilled demand points in  . Hence J   and we have that

p N   by Theorem 5.2. Since each demand point that is partially fulfilled is assigned

to at least two PCs, we derive the following inequality, 2 N J    , based on the

statement of c) in Theorem 5.1. This means that J N   . □

According to the single-sourcing constraints (2.4), all such partial fulfilled

demand point j with 0 1nj  must be reevaluated to be either 0nj or 1nj in

order to obtain the final feasible solution. Nevertheless, Theorem 5.2 indicates that the

total number of bounded linear variables with fractional values under the optimal solution

to ISDP
LR

, 0 1nj  , is likely to be small comparing to |J|. This observation leads to our

two-phase LP relaxation based heuristic, called LPR, for solving ISDP, where phase 2 is

- 62 -

an iterative process and in each iteration a subset of variables with fractional values are

fixed. To do so, let us define the contribution of demand point j if j is fulfilled by PCn

 nj j j nj j njr p a     for all n N and j J , (5.8)

and then this proposed heuristic is summarized in the table below.

Algorithm LW

Phase 1: Determine an initial assignment of demand points to PCs

Solve ISDP LR, and fix 1njy  if
* 1nj  , and let  is a pre-specified threshold. Note that for

any link (,)n j over the shipping network,
* 1nj  defines a feasible assignment that satisfies the

PC capacities and delivery deadline constraints. Define

*

0 {(,)| 1}njn j    and
* *{(,)| 0 0 1}nj njn j either or      , ,n N j J   .

Phase 2: Iteration for solution improvement

a) Calculate the saving factor for each link (,)n j  ,

 nj j j nj j njr p a     , (,)n j  .

b) Based on the values of njr , (,)n j  , partition  into 1 and 2 where

 }|),({1  njrjn and }|),({2  njrjn

c) Solve the following
LR

ISDP upon the links defined by the given 

: min () (1)

 . .

sn sn nj j nj nj j j nj

s S n N n N j J j J n N

G b x a p

s t

    


     

        LR
ISDP

sn sn

x F


 , s S 

 sn sn sx z F , s S  , n N

 sn j njs S j J
x  

 
  , n N 

 1njn N



 ,  ,n j 

 max{ } (1)sn sn sn n nj nj nj j

s S

t z x t M T  


     , j J 

 j nj nj J
C 


 , n N 

- 63 -

 0 1nj  , 2(,)n j 

 {0,1}nj  , 1(,)n j 

 nj are fixed as binary constants,   0,n j 

d) Let
*

nj be the optimal solution to
LR

ISDP , then update

*

0 0 {(,) | 1}njn j     and
*/ {(,) | 1}njn j   .

e) Terminate if the value of G no longer improves.

In Algorithm LPR, the phase I solves ISDP
LR

 to obtain an initial assignment of

customer demand points to PCs by fixing 1njy  if the optimal solution to ISDP
LR

, nj ,

equals to 1. However, customer demand points associated with * 0nj  or *0 1nj  may

still be fully fulfilled at the optimal solution to ISDP. Hence, in Phase II, we divide set

 into two disjoint subsets, 1 and 2 , based on the value of saving factors, njr ,

defined by (5.8). Since customer demand points with a more significant saving if served

are more likely to be fully fulfilled, we set variables, nj , with higher saving factors to be

binary variable. According to Theorem 5.2 that the number of variables with fractional

value, nj , is small, we can solve LR
ISDP


quickly. Theorem 5.3 guarantees that

Algorithm LPR will fix some variables, njy , to be 1 in each iteration and the total

number of binary valuables { njy } is bounded by a constant, the heuristic terminates

within polynomial steps.

- 64 -

 Computational Results 5.2

In this section, we report on the computational performance of the proposed search

algorithm in the experiments defined by following parameters:

a) The level of variability in customer demand, σ/μ, where σ, and μ, stands for the

standard deviation, and the mean, of the order sizes }{ j , respectively;

b) The relative penalty cost, R, defined by

 ()j j nj j njj J n N j J
R p a  

  
    (5.9)

where the value of parameter R increases as the level of shortage cost.

c) The size of the distribution network, |J|. In our experiment, the size of the network

ranged from |J|=5 to |J|=65. For all the test cases with |J|>65, we were unable to

obtain the optimal solution to problem CNOS within 30 minutes of CPU time (on a

Dell 600, Pentium-M 1.4 GHz with 1 GB RAM). The main reason is that the

CNOS problems we study in this work contains the generalized assignment

problem as a sub-problem, which introduces the combinatorial nature into the

search process and therefore the time needed to verify the optimality of a solution

becomes excessive when the network size becomes large.

Table 5.1 Experimental design

Parameters Range Settings of the other parameters

J
5, 8, 12, 20, 50, 65, 80, 90, 100, 110, 120,
130, 140, 150

S=8, N=5

R 100%, 110%,120%,130%,140%,150% S {5, 8}, N {3, 5}, J {5, 10}  

σ/μ 10%, 15%, 20%, 25%, 30%, 35%, 40% S {5, 8}, N {3, 5}, J {5, 10}  

- 65 -

 Table 5.2 Auxiliary parameters used in the experiments

Parameter
s

C snb snt n nja
nj


nj

t
j


j

T

Value [100,1000]

[0.3,0.8]

[15,40]

[15,25]

[0.1,0.5]

[20,100]

[5,10]

[80,800]

[10,100]

For each given set of parameter values (|J|, R, σ/μ) in Table 5.1, 30 random test

cases were generated for our empirical study. The computational performance of the

proposed search algorithm was measured by its required CPU time (in second) on a Dell

600 (Pentium-M 1.4 GHz with 1 GB RAM) and the error gap defined below

*

*
%

LPR
G G

Gap
G


 (5.10)

where
*G stands for the minimum operation cost obtained by using the commercial

CPLEX solver to solve the respective CNOS problem defined by (2.1) - (2.7), and LPRG

stands for the total operation cost by our proposed two-phase search algorithm LPR.

In Tables 5.3-5.7, Columns 1-4 contain the following information in the order of

network size (|J|), average CPU time required by CPLEX, the average running time of

LPR algorithm, the average objective function value of CPLEX, and the average

objective function value obtained by the LPR algorithm. Column 6 gives the average

performance gap measured by (5.10). Each data point reported in these tables stands for

the average of 30 observations from the randomly generated test cases.

Table 5.3 below reveals the impact of problem size in terms of the network size,

J, on the algorithm performance. As we can see, when the number of demand points or

network size is relatively small (J=5, 8, 12, 20, 50), using CPLEX solver directly to solve

problem CNOS is a practical option. It requires only a minimal amount of CPU time

- 66 -

while guarantees the optimality. However, as the problem size increases, CPLEX solver

starts to lose its computational advantage to the proposed heuristic. Especially, when the

problem size goes beyond J=50 in our experiments, the required computation time by the

CPLEX solver becomes fairly excessive, while that required by the proposed algorithm

LPR is constantly within 2 CPU seconds. The resulting error gaps are constantly within

3%, with most gaps within 2.5%. One main reason behind this observation is that with

the proposed LPR heuristic, we solve a variation of the linear transshipment problem – a

relatively easier problem, instead of the generalized assignment problems which is a

much harder problem computationally.

 Table 5.3 Impact of network size, |J|, on the algorithm performance

|J|
CPU Time (seconds)

1
 Performance in total cost

1

CPLEX LPR CPLEX (G*) LPR (G
LPR

) Gap (%) Std. Dev.

5 0.29271 0.037838 293052.7 294195.5 1.39% 0.02

8 2.730231 0.052462 66163.44 67589.51 2.22% 0.02

12 5.538677 0.052462 85544.04 87453.86 2.23% 0.01

20 8.329728 0.102374 93651.33 95750.96 2.24% 0.01

50 67.52745 0.16115 63401.65 64828.73 2.28% 0.01

65 164.3722 1.162197 66160.37 67631.21 2.29% 0.02

80 183.3276 2.33649 81525.77 83403.05 2.30% 0.01

90 222.9948 6.76009 79915.98 81702.53 2.35% 0.02

100 329.3213 12.07849 60608.96 62046.94 2.37% 0.02

110 466.752 19.69129 77604 79482.26 2.42% 0.01

120 639.8884 25.99809 57435.2 58840.46 2.45% 0.01

130 853.4773 40.39849 86308.32 88428.83 2.46% 0.02

140 2112.401 58.29209 86042.32 88224.45 2.54% 0.01

150 3421.671 71.07849 37921.84 38911.97 2.61% 0.01

1
Each data listed here stands for the average of 30 observations.

In Tables 5.4-5.5, we present the results of an experiment in which we compare

the performance of LPR algorithm against the levels of demand variability (σ/μ) with

- 67 -

the following two sets of parameters: S = 5, N = 3, J = 5 and S = 8, N = 5, J = 10,

respectively. As the results show, the proposed LPR algorithm works very nicely in

seeking for the optimal solution under a more homogeneous demand. However, as the

variability in demand increases, the level of error gaps also increases slightly. Indeed, we

notice that the average gap increases from 1.40% to 2.2% as the variability level in

demand increases from σ/μ = 10% to σ/μ =20%. Our second observation is that the

proposed LPR algorithm is capable to handle the cases where the level of demand

variation is large. As shown in Tables 4-5, when the value of σ/μ exceeds 25%, the

average error gap has the tendency to increase at a fairly reasonable rate. For instance,

when σ/μ> 25% for the case with S = 5, N = 3, J = 5, the average error gap is about

1.99% and as for the cases with S = 8, N = 5, J = 10, the average error gap is about

2.56%.

Table 5.4 LPR algorithm vs. CPLEX on σ/ μ (S=5 N=3 J=5)

σ/μ (%)
CPU Time (seconds)

1
 Performance in total cost

1

CPLEX LPR CPLEX (G*) LPR (G
LPR

) Gap (%) Std. Dev.

10 0.304493 0.042883 868760.3 881201.8 1.43% 0.01

15 0.306397 0.03382 59555.73 60511.59 1.60% 0.01

20 0.295177 0.025183 59671.34 60793.98 1.88% 0.01

25 0.28583 0.030893 62322.72 63560.39 1.99% 0.02

30 0.347783 0.025607 59868.15 61114.19 2.08% 0.01

35 0.399228 0.027595 60544.49 61935.89 2.30% 0.02

40 0.412017 0.030187 41605.5 42640.01 2.49% 0.01

1
Each data listed here stands for the average of 30 observations.

Table 5.5 LPR algorithm vs. CPLEX on σ/ μ (S=8 N=5 J=10)

- 68 -

σ/μ (%)
CPU Time (seconds)

1
 Performance in total cost

1

CPLEX LPR CPLEX (G*) LPR (G
LPR

) Gap (%) Std. Dev.

10 219.1416 3.4196 2393402 2432013 1.61% 0.01

15 231.0398 3.518 1971913 2009988 1.93% 0.02

20 240.9033 3.3141 343295 351039.8 2.26% 0.01

25 256.1943 3.6156 1943578 1988117 2.29% 0.02

30 258.1018 3.4829 1931199 1976402 2.34% 0.02

35 259.0081 3.5075 2318260 2375737 2.48% 0.01

40 268.7694 3.4831 1741057 1784030 2.47% 0.01

1
 Each data listed here stands for the average of 30 observations.

From Table 5.4 and Table 5.5, we can see that when the level of σ/μ is relatively

low, the resulting empirical error gaps are fairly small. This indicates that the LPR

algorithm has the potential to find near optimal solutions when the customer demands in

a supply chain network are more homogeneous. This observation is consistent with the

fact that a knapsack problem can be easily solved optimally if all the items (ordered)

sizes are equal (i.e., σ/μ). However, after the level of σ/μ goes beyond 25%, the

empirical error gaps tend to increase. Nevertheless, about 72% of empirical average error

gaps were within 2.4% from the optimal values obtained in our experiment, with the

largest average error gap 2.48%.

 Table 5.6 LPR algorithm v.s. CPLEX on R (S=5 N=3 J=5)

R (%)
CPU Time (seconds)

1
 Performance in total cost

1

CPLEX LPR CPLEX (G*) LPR (G
LPR

) Gap (%) Std. Dev.

100 0.297637 0.024263 77346.87 79737.32 3.09% 0.02

110 0.291357 0.024130 84759.02 87394.06 3.11% 0.01

120 0.293400 0.024777 67180.79 68851.04 2.49% 0.01

130 0.296697 0.026237 63614.78 65358.51 2.74% 0.01

140 0.297017 0.026690 55917.41 57016.72 1.97% 0.01

150 0.304967 0.024990 58698.15 59810.35 1.89% 0.01
1
 Each data listed here stands for the average of 30 observations.

Table 5.7 LPR algorithm vs. CPLEX on R (S=8 N=5 J=10)

- 69 -

R (%)
CPU Time (seconds)

1
 Performance in total cost

1

CPLEX LPR CPLEX (G*) LPR (G
LPR

) Gap (%) Std. Dev.

100 7.3927 0.1100 64739.35 66535.97 2.78% 0.02

110 8.1032 0.1210 57703.48 59217.53 2.62% 0.02

120 8.2268 0.1141 77454.95 79168.09 2.21% 0.02

130 8.4321 0.1112 76506.89 78187.34 2.20% 0.01

140 8.6006 0.1129 62744.66 63870.97 1.80% 0.01

150 9.1991 0.1159 57379.4 58283.94 1.58% 0.01
 1

 Each data listed here stands for the average of 30 observations.

In Tables 5.6-5.7, we report the impact on empirical error gaps by the relative

penalty cost (R) as defined by (5.9). As the value of R goes beyond certain level, the total

penalty cost dominates the shipping cost. According to the improvement criterion, the

proposed LPR algorithm will now allocate the demand points to proper processing

centers to lessen the penalty cost as much as possible. As we see in Tables 5.6-5.7, it

appears that the average gap between the objective function values by the LPR algorithm

and that by the CPLEX solver steadily decreases when the value of R increases from

100% to 150% for the two instances with S =5, N =3, J =5 and S =8, N =5, J =10,

respectively.

6 Conclusion and Future Extensions

In this work, we studied the problem of scheduling the multi-echelon supply chain

operations with customer delivery deadlines. To develop new methodologies for solving

this problem, we analyzed three strongly polynomial time solvable cases of the

scheduling problem, developed a dynamic programming-based algorithm for solving a

special case with a single PC, and proposed a linear programming partial relaxation-

- 70 -

based search algorithm to solve the general version of this problem. Meanwhile, we

presented numerical examples and conducted empirical observations on the heuristic

algorithm. The computational performances obtained from randomly generated test cases

are reported. It is observed that the partial relaxation approach consistently obtained near

optimal solution (within 2%) in 600 instances out of 800 test cases. There are several

major extensions for this research.

1) Supply Chain Operations Scheduling with Multi-Modal Shipping Modes

This research was motivated by DHL SEAIR multimodal service. DHL SEAIR

moves goods by ocean from Asia to a connecting transit hub in Dubai/Vancouver/Los

Angeles, then transferring to flights into Europe, Middle East, Africa and Latin America.

DHL SEAIR provides a service that is faster than pure ocean freight and more

economical than standard air freight. This saves both cost - up to 50% versus standard air

freight, and time, up to 50% versus standard ocean freight.

The multimodal transport modes will be introduced into the above operations

scheduling problem. Mathematical properties of this problem will then be analyzed to

find some special cases which can lead to polynomial-time optimal solutions. And then

based on these efficient special cases, fast heuristic algorithms will be developed to solve

the scheduling problem with multimodal shipping modes. Afterwards, computational

experiments will be conducted to verify the effectiveness of the proposed algorithm.

2) The multimodal transshipment/distribution problem with convex cost functions

- 71 -

We shall allow multiple transportation modes along each network link from the

source/supplier locations and customer demand points, and aim at choosing the optimal

shipping mode and transshipment locations, each of which can also be a demand point,

under convex cost functions. The fundamental properties of this problem will be analyzed,

and the methodology for solving a generalized version of this problem will be explored.

We shall prove that solving this optimization problem as a mixed integer program with

non-linear cost functions is not much harder that its linear objective function version.

Special cases of this problem will be analyzed and solution methodologies will be

developed.

3) Supply Chain Operations with Uncertainty

Modern supply chains are very complex, and recent lean practices have resulted in

these networks becoming more vulnerable. For instance, there is often little buffer

inventory and any disruption can have a rapid impact on the supply process. Since 9/11,

managers are more aware of the vulnerability of their supply chains, but most of them are

still confused on the way to manage risk disruptions. First of all, this is simply because

there is no easy answer in crafting strategies under uncertainty. Second, it is because

managers are reluctant to implicate recent manufacturing practices; years of optimization

theory have led to the supply chain as it is currently and including the notion of risks is a

difficult challenge. Finally, as we will see, although managers do understand the costs

that are related to risk management, they have a hard time quantifying the benefits.

- 72 -

With the Japan earthquake and tsunami and Thailand flooding, major manufacturers

with global suppliers have had to halt operations. Can disaster planning really help

prevent these supply chain disruptions? Are the risks associated with lean inventories

worth the cost when operations are halted until supplies are re-stocked? Natural disasters

like this, and even the current BP oil leak, can prompt manufacturers to look more closely

at their master operating plans. Therefore, my future research will concentrate on the

formulation and solution approach for the supply chain operations problems with

uncertainty in the global supply chain.

‐ 73 ‐

Bibliography

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network Flows: Theory, Algorithms, and

Applications. New York: Prentice Hall.

Alpan, G., Ladier, A., Larbi, R., & Penz, B. (2011). Heuristic solutions for transshipment

problems in a multiple door cross docking warehouse. Computers & Industrial

Engineering, 61(2), 402-408.

Amorima, P., Güntherb, H.-O., & B., A.-L. (2012). Multi-objective integrated production

and distribution planning of perishable products. International Journal of

Production Economics, 138(1), 89-101.

Bard, J., & NananuKul, N. (2009). Integrated production-inventory-distribution-routing

problem. Journal of Scheduling, 12(3), 257-280.

Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic

planning in production–distribution networks. Applied Mathematical Modeling,

36(4), 1703-1717.

Bertazzi, L., & Zappa, O. (2012). Integrating transportation and production: an

international study case. Journal of the Operational Research Society, 63, 920–

930.

Bhutta, K.S. (2003). An integrated location, production, distribution and investment

model for a multinational corporation. International Journal of Production

Economics, 86(3), 201-216.

‐ 74 ‐

Brotcorne, L., Hanafi, S., & Mansi, R. (2009). A dynamic programming algorithm for the

bi-level knapsack problem. Operations Research Letters, 37(3), 215-218.

Chandra, P., & Fisher, M. (1994). Coordination of Production and Distribution Planning.

European Journal of Operational Research, 72(3), 503-517.

Chang, Y., & Lee, Y. (2004). Machine scheduling with job delivery coordination.

European Journal of Operational Research, 158(2), 470-487.

Chen, Z., & Pundoor, G. (2006). Order assignment and scheduling in a supply chain.

Operations Research, 54(3), 555-572.

Chen, Z., & Vairaktarakis, G. L. (2005). Integrated Scheduling of Productoin and

Distribution Operations. Management Science, 51(4), 614-628.

Chiang, W.-C., Russell, R., Xu, X.-J., & Zepeda, D. (2009). A simulation/metaheuristic

approach to newspaper production and distribution supply chain problems.

International Journal of Production Economics, 121(2), 752-767.

Coffman, E. G., Jr., G. M., & Johnson, D. S. (1987). Bin-Packing with Divisible Item

Sizes. Journal of Complexity, 3(4), 406-428.

Cohen, M., & Lee, H. (1988). Strategic Analysis of Integrated Production-Distribution

Systems: Models and Methods. Operations Research, 36(2), 216-228.

Dahl, G., & Foldnes, N. (2006). LP based heuristics for the multiple knapsack problem

with assignment restrictions. Annuals of Operations Research, 146(1), 91-104.

Dawande, M., Keskinocak, P., & Ravi, R. (2000). Approximation Algorithms for the

Multiple Knapsack Problems with Assignment Restrictions. Journal of

Combinatorial Optimization, 4(2), 171-186.

‐ 75 ‐

Detti, P. (2009). A polynomial algorithm for the multiple knapsack problem with

divisible item sizes. Information Processing Letters, 109(11), 582-584.

Eksioglu, S. D., Eksiogulu, B., & Romeijn, H. E. (2007). A Lagrangean heuristic for

integrated production and transportation planning problems in a dynamic, multi-

item, two-layer supply chain. IIE Transactions, 39(2), 191-201.

Fumero, F., & Vercellis, C. (1999). Synchronized development of production, inventory

and distribution schedules. Transportation Science, 33(3), 330-340.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A guide to the theory of

NP-completeness. Germany: W. H. Freeman.

Gaudreault, J., Forget, P., Frayret, J. M., Rousseau, A., Lemieux, S., & Amours, S.

(2010). Distributed Operations Planning for the Softwood Lumber Supply Chain:

Optimization and coordination. International Journal of Industrial Engineering,

17(3), 168-189.

Gebennini, E., Gamberini, R., & and Manzini, R. (2009). An integrated

production¨Cdistribution model for the dynamic location and allocation problem

with safety stock optimization. International Journal of Production and

Economics, 122(1), 286-304.

Guinet, A. (2001). Multi-site planning: A transshipment problem. International Journal

of Production Economics, 74(1), 21-32.

Hall, N., & Potts, C. (2005). The coordination of scheduling and batch deliveries. Annals

of Operations Research, 135(1), 41-64.

‐ 76 ‐

Kannegiesser, M., & Günther, H.-O. (2011). An integrated optimization model for

managing the global value chain of a chemical commodities manufacturer.

Journal of the Operational Research Society, 62, 711–721.

Kellerer, H., & Pferschy, U. (2004). Improved dynamic programming in connection with

an FPTAS for the knapsack problem. Journal of Combinatorial Optimization,

8(1), 5-11.

Kleinschmidt, P., & Schannath, H. (1995). A strongly polynomial algorithm for the

transportation problem. Mathematical Programming, 98(1-3), 1-13.

Kogan, K., & Shtub, A. (1997). The Dynamic Generalized Assignment Problem. Annuals

of Operations Research, 69(0), 227-239.

Korte, B., & Vyen, J. (2006). Combinatorial Optimization: Theory and Algorithms. New

York: Springer-Verlag.

Lei, L., & Wang, G. (2012). Polynomial-time solvable cases of the capacitated multi-

echelon shipping network scheduling problem with delivery deadlines.

International Journal of Production Economics, 137(2), 263-271.

Lei, L., Liu, S., Ruszczynski, A., & Park, S. (2006). On the Integrated Production,

Inventory, and Distribution Routing Problem. IIE Transactions, 38(11), 955-970.

Lei, L., Zhong, H., & Chaovalitwongse, W. (2009). On the integrated production and

distribution problem with bidirectional flows. INFORMS Journal on Computing,

21(4), 585-598.

‐ 77 ‐

Lo, S., Wee, H., & Huang, W. (2007). An integrated production-inventory model with

imperfect production processes and Weibull distribution deterioration under

inflation. International Journal of Production Economics, 106(1), 240-260.

Miller, R. (1999). Optimization: Foundations and Applications. New York: Wiley-

Interscience.

Rong, A., Akkerman, R., & and Grunow, M. (2011). An optimization approach for

managing fresh food quality throught the supply chain. International Journal of

Production Economics, 131(1), 421-429.

Sawik, T. (2009). Monolithic versus hierarchical approach to integrated scheduling in a

supply chain. International Journal of Production Research, 47(21), 5881-5910.

Trick, M. A. (1992). A linear relaxation heuristic for the generalized assignment problem.

Naval Research Logistics, 39(2), 137-151.

Wang, H., & Lee, C. (2005). Production and transport logistics scheduling with two

transport mode choices. Naval Research Logistics, 52(8), 796-809.

Yan, C.-Y., Banerjee, A., & and Yang, L.-B. (2011). An integrated

production¨Cdistribution model for a deteriorating inventory item. International

Journal of Production Economics, 133(1), 228-232.

Yan, S., Juang, D., Chen, C., & Lai, W. (2005). Global and local search algorithms for

concave cost transshipment problems. Journal of Global Optimization, 33(1),

123-156.

Zegordi, S. H., & Beheshti Nia, M. A. (2010). Integrating production and transportation

scheduling in a two-stage supply chain considering order assignment.

‐ 78 ‐

International Journal of Advanced Manufacturing Technology, 44(9-10), 928-

939.

- 79 -

Appendix A Computational Results of Algorithm LW

Table A.1 Impact of network size, |J|, on the algorithm performance

Run J=5 J=8

Cplex LW %Gap Cplex LW %Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.2212 43288.44 0.0328 43288.44 0.00% 1.7312 88675.24 0.0551 90522.26 2.08%

2 0.2480 38034 0.0250 38164.3 0.34% 3.1216 46977.87 0.0525 47952.13 2.07%

3 0.3655 313330 0.0681 318330 1.60% 2.2197 74786.44 0.0614 75828.61 1.39%

4 0.3823 44330.3 0.0636 44330.6 0.00% 3.5301 45981.93 0.0490 47466.89 3.23%

5 0.3132 515000 0.0391 515210 0.04% 2.9563 75148.24 0.0574 76334.98 1.58%

6 0.3243 4005100 0.0208 4006012 0.02% 1.4310 67597.12 0.0437 68695.62 1.63%

7 0.2701 96060 0.0168 100240.3 4.35% 3.2776 53487.09 0.0470 53635.68 0.28%

8 0.2282 200000 0.0607 200128 0.06% 3.4229 57040.89 0.0587 57809.62 1.35%

9 0.2922 43330 0.0680 43330 0.00% 3.0428 40951.9 0.0626 42470.78 3.71%

10 0.3112 87860 0.0787 87860 0.00% 1.4169 89402.73 0.0531 91582.7 2.44%

11 0.334 93910 0.0317 93940.3 0.03% 2.5880 56251.12 0.0520 58228.75 3.52%

12 0.3155 46012 0.0421 47140.3 2.45% 3.3389 54207.99 0.0478 56447.19 4.13%

13 0.2630 30025 0.0195 30046 0.07% 3.8709 54978.79 0.0604 56106.78 2.05%

14 0.2434 15678 0.0156 16012.3 2.13% 3.6635 79737.97 0.0559 82872.9 3.93%

15 0.2611 111499.1 0.0132 116129.9 4.15% 1.7677 31394.35 0.0411 31736.04 1.09%

16 0.3290 45412 0.0124 47430 4.44% 3.3395 31898.81 0.0557 32640.44 2.32%

17 0.2986 200000 0.0409 200128 0.06% 1.5810 37921.84 0.0402 38911.97 2.61%

18 0.3294 43330 0.0223 43330 0.00% 2.6877 95661.63 0.0558 96633.08 1.02%

19 0.3042 57860 0.0362 60160 3.98% 2.3411 86308.32 0.0481 88428.83 2.46%

20 0.2312 82012 0.0146 83210 1.46% 3.4315 76945.2 0.0445 78572.3 2.11%

21 0.2813 42036.8 0.0718 43684.13 3.92% 2.5739 86079.15 0.0588 88525.78 2.84%

22 0.3648 50436.21 0.0252 52147.95 3.39% 1.5832 89554.01 0.0406 89832.02 0.31%

23 0.3355 59023.41 0.0262 60513.13 2.52% 2.6880 111753.7 0.0580 112110.7 0.32%

24 0.3310 56758.15 0.0228 57046.83 0.51% 2.3415 88547.69 0.0293 91887.3 3.77%

25 0.2826 57556.46 0.0220 57988.4 0.75% 3.4356 45813.8 0.0671 46900.46 2.37%

26 0.2286 49080.36 0.0244 50615.27 3.13% 2.5753 55052.41 0.0449 57259.76 4.01%

27 0.2768 66503.96 0.0201 67968.07 2.20% 1.5877 91749.3 0.0415 95451.56 4.04%

- 80 -

28 0.2947 71262.13 0.0225 71497.72 0.33% 2.6906 32915.52 0.0575 33592.17 2.06%

29 0.3136 39576.01 0.0291 40088.75 1.30% 2.3489 -11522.6 0.0361 -12024.3 4.35%

30 0.3140 34245.05 0.0287 35133.77 2.60% 3.4422 -2235.64 0.0640 -2241.33 0.25%

Table A.2 Impact of network size, |J|, on the algorithm performance (Con’t)

Run

J=12 J=20

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 5.7835 57633.91 0.8163 57679.61 0.08% 7.05965 94364.84 0.114782 94673.39 0.33%

2 6.7767 46086.63 0.820121 46815.99 1.58% 8.153869 93485.06 0.113093 93540.89 0.06%

3 6.4816 74866.59 0.806836 75985.37 1.49% 9.917107 87424.5 0.093261 89553.14 2.43%

4 5.9714 44584.86 0.770038 45810.59 2.75% 8.97502 96927.91 0.10491 103154.1 6.42%

5 4.5680 93651.33 0.694366 95750.96 2.24% 9.517485 76655.66 0.092253 77182.01 0.69%

6 5.9788 36610.41 0.658025 38301.53 4.62% 7.067543 63426.5 0.095318 64823.59 2.20%

7 4.5319 68745.71 0.801731 69294.1 0.80% 8.131906 44514.16 0.091231 46519.19 4.50%

8 5.4089 69785.43 0.607282 73071.16 4.71% 7.97417 63958.53 0.092351 67004.9 4.76%

9 5.2612 48149.51 0.681081 50090.33 4.03% 10.10799 91835.72 0.116352 94079.5 2.44%

10 4.4336 32948.02 0.56709 33156.05 0.63% 10.42584 39044.49 0.092534 39494.5 1.15%

11 6.0516 73907.76 0.825689 76648.08 3.71% 6.916429 79592.9 0.092635 82206.09 3.28%

12 4.3986 85723.1 0.652684 86526.86 0.94% 7.198528 104023.9 0.094146 104061.8 0.04%

13 6.7839 83231.22 0.834934 83272.88 0.05% 7.348375 97364.63 0.114233 98319.08 0.98%

14 5.5044 55546.04 0.556478 56904.48 2.45% 10.45188 93546.03 0.104326 94600.36 1.13%

15 6.7359 78604.39 0.680317 79194.46 0.75% 8.184652 77058.2 0.100087 77139.17 0.11%

16 3.9218 86213.66 0.566952 86403.35 0.22% 7.83269 68772.84 0.115519 72104.91 4.85%

17 5.6904 79473.97 0.558958 80524 1.32% 7.192276 76335.41 0.111532 80227.65 5.10%

18 6.1637 80518.44 0.542859 84175.41 4.54% 8.172877 66612.7 0.093612 68625.51 3.02%

19 5.3709 33211.72 0.721482 34169.44 2.88% 8.041657 86042.32 0.106547 88024.45 2.30%

20 4.1955 64622.77 0.560652 66317.72 2.62% 8.165951 80374.3 0.11084 81823.62 1.80%

21 6.2989 95316.68 0.644345 99287.24 4.17% 8.088395 96875.06 0.100285 98595.39 1.78%

22 6.1929 35906.47 0.573921 37618.21 4.77% 7.201303 83750.8 0.105033 87556.71 4.54%

23 5.5560 41335.24 0.829872 42824.96 3.60% 8.18007 39316.06 0.115194 40475.38 2.95%

24 5.8251 38223.68 0.656155 38512.36 0.76% 8.043053 80492.89 0.113603 81888.01 1.73%

25 5.0198 38946.9 0.837788 39378.83 1.11% 8.167639 108422.1 0.102575 109305.2 0.81%

- 81 -

26 5.2586 34766.79 0.556595 36301.7 4.41% 8.089501 97171.2 0.109838 100357.7 3.28%

27 5.2609 46288.12 0.68322 47752.22 3.16% 7.202147 57407.66 0.110886 57468.23 0.11%

28 4.9560 47822.22 0.573852 48057.81 0.49% 8.181907 66946.82 0.091858 67253.46 0.46%

29 5.5574 27067.67 0.560387 27580.4 1.89% 8.04772 85487.73 0.110981 86164.3 0.79%

30 4.9266 24015 0.543661 24903.72 3.70% 8.173374 78900.86 0.118496 78993.39 0.12%

Table A.3 Impact of network size, |J|, on the algorithm performance (Con’t)

Run

J=50 J=65

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 95.73663 52399.78 0.154758 52510.46 0.21% 997.0197 61099.53 1.707064 62927.61 2.99%

2 53.66383 97150.9 0.163765 97341.9 0.20% 989.2864 59767.74 2.204828 60327.54 0.94%

3 90.37819 66211.86 0.186468 70453.77 6.41% 972.9428 73870.65 0.325722 76980.01 4.21%

4 76.35046 70472.87 0.192202 70672.87 0.28% 978.1642 42679.76 0.516363 44970.45 5.37%

5 49.91873 81525.77 0.145619 83203.05 2.06% 972.9083 41427.33 2.173319 42960.86 3.70%

6 55.00465 48002.87 0.154509 50221.28 4.62% 943.6285 62648.81 1.220847 64752.41 3.36%

7 42.67561 69934.46 0.132921 71494.94 2.23% 927.1662 69946.16 0.970988 70669.21 1.03%

8 80.21126 56127.56 0.162995 56327.56 0.36% 943.7258 85544.04 1.390937 87453.86 2.23%

9 96.75856 49887.24 0.111146 51641.3 3.52% 912.1351 79762.92 1.559757 83467.73 4.64%

10 88.27884 78507.43 0.148644 81844.97 4.25% 965.4421 48382.58 0.554582 50486.66 4.35%

11 49.69013 43738.28 0.186585 46205.81 5.64% 960.6469 39405.76 1.79941 40880.77 3.74%

12 96.09661 55036.03 0.19859 56892.61 3.37% 936.6232 42956.83 0.977745 43520.62 1.31%

13 74.9037 47396.4 0.15705 47596.4 0.42% 990.9526 55480.35 0.297074 56473.59 1.79%

14 75.48693 59125.71 0.146738 59325.71 0.34% 930.1659 53251.22 1.496489 53596.36 0.65%

15 50.64124 56002.3 0.134966 56202.3 0.36% 996.6266 74831.91 1.133713 75408.15 0.77%

16 46.59066 59486.79 0.123041 59686.79 0.34% 956.1321 86609.29 1.745104 89261.41 3.06%

17 84.28092 85337.96 0.192802 85537.96 0.23% 969.5148 51932.74 0.303633 54225.89 4.42%

18 41.97382 91427.61 0.16417 94753.13 3.64% 975.493 57435.2 1.218493 58840.46 2.45%

19 38.62945 68517.56 0.182638 69368.49 1.24% 996.2512 43710.27 1.368731 44038.58 0.75%

20 48.39136 83611.3 0.189043 83906.26 0.35% 949.439 55221.25 0.249945 56036.31 1.48%

21 82.4149 69467 0.155493 75067.95 8.06% 987.551 84723.92 1.191401 85707.18 1.16%

22 81.16085 38474.08 0.116904 40185.82 4.44% 969.52 71719.83 1.119511 72900.77 1.65%

23 52.75776 43569.82 0.149121 45059.54 3.41% 975.499 31936.93 1.958757 32324.84 1.21%

- 82 -

24 53.25934 38656.7 0.186645 38945.38 0.74% 996.252 40254.61 0.302481 41553.55 3.23%

25 50.70062 39594.8 0.200867 40026.74 1.09% 949.4418 66303.05 1.414855 69421.61 4.70%

26 53.42963 37069.15 0.161137 38604.06 4.14% 987.5526 70780.64 1.101095 73282.58 3.53%

27 62.5951 48484.27 0.150547 49948.37 3.01% 969.5232 37504.92 0.180399 38173.66 1.78%

28 83.73083 48175.6 0.135759 48411.2 0.48% 975.5045 49129.94 1.068582 49951.8 1.67%

29 53.6129 27836.77 0.131728 28349.51 1.84% 996.2548 84581.5 1.099659 86339.37 2.08%

30 76.50614 25348.08 0.193083 26236.8 3.50% 949.4462 55109.6 1.927121 55662.65 1.00%

Table A.4 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5)

Run

σ/μ=10% σ/μ=15%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.2212 43288.44 0.0328 43288.44 0.00% 0.2972 42142.04 0.0458 43228.91 2.58%

2 0.2480 38034 0.0250 38164.3 0.34% 0.3630 76217.36 0.0311 78502.67 3.00%

3 0.3655 313330 0.0681 318330 1.60% 0.2175 57366.89 0.0290 59986.83 4.57%

4 0.3823 44330.3 0.0636 44330.6 0.00% 0.2690 33565.37 0.0403 33782.14 0.65%

5 0.3132 515000 0.0391 515210 0.04% 0.2852 29991.6 0.0332 31475.72 4.95%

6 0.3243 4005100 0.0208 4006012 0.02% 0.2141 54635.49 0.0291 54725.64 0.17%

7 0.2701 96060 0.0169 100240.3 4.35% 0.3486 29835.38 0.0137 31338.72 5.04%

8 0.2282 200000 0.0608 200128 0.06% 0.2104 68039.24 0.0300 69007.24 1.42%

9 0.2922 43330 0.0680 43330 0.00% 0.2950 65773.55 0.0488 66674.21 1.37%

10 0.3112 87860 0.0787 87860 0.00% 0.2814 42953.16 0.0445 44980.26 4.72%

11 0.3340 93910 0.0318 93940.3 0.03% 0.2886 80090.79 0.0442 82784.69 3.36%

12 0.3155 46012 0.0422 47140.3 2.45% 0.3432 51494.02 0.0330 53053.42 3.03%

13 0.2630 30025 0.0196 30046 0.07% 0.2807 33735.31 0.0428 33746.25 0.03%

14 0.2434 15678 0.0156 16012.3 2.13% 0.3437 36451.03 0.0475 37213.76 2.09%

15 0.2611 111499.1 0.0132 116129.9 4.15% 0.2723 84898.31 0.0131 85428.39 0.62%

16 0.3290 45412 0.0124 47430 4.44% 0.3047 90159 0.0349 94298.67 4.59%

17 0.2986 200000 0.0409 200128 0.06% 0.3846 70672.35 0.0492 70943.88 0.38%

18 0.3294 43330 0.0223 43330 0.00% 0.2724 97228.59 0.0480 98225.76 1.03%

19 0.3042 57860 0.0362 60160 3.98% 0.4609 70489.77 0.0413 71795.43 1.85%

20 0.2312 82012 0.0146 83210 1.46% 0.2289 87293.38 0.0225 88697.35 1.61%

21 0.2813 42036.8 0.0718 43684.13 3.92% 0.2241 82511.99 0.0306 84885.94 2.88%

- 83 -

22 0.3609 3839426 0.0752 3846321 0.18% 0.4412 94142.13 0.0342 95761.78 1.72%

23 0.3109 3890217 0.0725 3995997 2.72% 0.3963 66808 0.0146 67995.24 1.78%

24 0.3666 1867479 0.0429 1899340 1.71% 0.3538 52462.59 0.0362 53046 1.11%

25 0.3000 3181271 0.0543 3182994 0.05% 0.2498 52964.02 0.0440 54328.19 2.58%

26 0.3407 1308196 0.0661 1350550 3.24% 0.2304 62529.31 0.0227 63278.28 1.20%

27 0.3025 540466.4 0.0337 540596.6 0.02% 0.4282 38321.22 0.0288 38741.72 1.10%

28 0.3351 1338248 0.0396 1374613 2.72% 0.2691 42790.44 0.0302 43600.51 1.89%

29 0.3119 2827348 0.0413 2937205 3.89% 0.2953 40059.18 0.0235 40884.43 2.06%

30 0.3593 1116051 0.0665 1130332 1.28% 0.3423 60423.06 0.0278 61013.81 0.98%

Table A.5 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5) (Con’t)

Run

σ/μ=20% σ/μ=25%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.3959 69181.16 0.0400 69381.16 0.29% 0.2006 66375.44 0.0399 66875.44 0.75%

2 0.3476 61800.23 0.0120 62000.23 0.32% 0.2585 83111.1 0.0491 83311.1 0.24%

3 0.1602 54274.71 0.0355 54474.71 0.37% 0.3168 65166.21 0.0221 65732.07 0.87%

4 0.2561 31362.84 0.0157 33787.18 7.73% 0.3036 88562.55 0.0397 88762.55 0.23%

5 0.3870 53254.87 0.0250 55565.94 4.34% 0.2608 52003.16 0.0173 52203.16 0.38%

6 0.2813 94881.67 0.0256 95081.67 0.21% 0.3712 36867.71 0.0239 37067.71 0.54%

7 0.3602 85187.70 0.0337 85387.70 0.23% 0.3314 87510.23 0.0241 92524.84 5.73%

8 0.1574 34082.32 0.0256 35762.07 4.93% 0.2884 47279.06 0.0477 50103.8 5.97%

9 0.3135 64299.89 0.0331 65669.30 2.13% 0.3046 41764.19 0.0345 43073.52 3.14%

10 0.2361 39308.16 0.0114 40938.69 4.15% 0.2786 31185.2 0.0326 33213.34 6.50%

11 0.3619 79870.48 0.0237 80070.48 0.25% 0.2262 57412.3 0.0150 57612.3 0.35%

12 0.2619 76832.62 0.0331 77000.66 0.22% 0.3277 89867.58 0.0189 90067.58 0.22%

13 0.1859 37417.39 0.0284 37617.39 0.53% 0.3811 50358.59 0.0326 53835.04 6.90%

14 0.3856 34376.24 0.0279 34767.49 1.14% 0.3947 78178.1 0.0179 79298.05 1.43%

15 0.3788 81630.41 0.0237 81830.41 0.25% 0.3020 31006.27 0.0330 32988.69 6.39%

16 0.2362 62471.72 0.0138 62671.72 0.32% 0.2616 58027.1 0.0576 58227.1 0.34%

17 0.3852 65387.23 0.0209 65587.23 0.31% 0.3971 63589.94 0.0387 63789.94 0.31%

18 0.3691 86455.78 0.0289 86655.78 0.23% 0.2636 41292.95 0.0108 42328.1 2.51%

19 0.2002 64336.49 0.0327 68379.03 6.28% 0.2024 69704.43 0.0235 69904.43 0.29%

- 84 -

20 0.3054 47339.38 0.0469 50148.47 5.93% 0.1350 59092.55 0.0458 59292.55 0.34%

21 0.3538 43843.12 0.0144 44909.96 2.43% 0.3357 90007.21 0.0216 90207.21 0.22%

22 0.3328 78015.10 0.0440 83307.03 6.78% 0.3876 65456.06 0.0452 69667.12 6.43%

23 0.3593 59323.59 0.0278 61471.45 3.62% 0.3683 44442.55 0.0390 46858.77 5.44%

24 0.1664 50114.53 0.0155 50928.63 1.62% 0.1702 56230.6 0.0241 56878.13 1.15%

25 0.2817 91063.66 0.0119 92062.79 1.10% 0.1607 87273.67 0.0356 88030.55 0.87%

26 0.2787 59544.47 0.0338 61044.50 2.52% 0.3446 40761.28 0.0419 42742.92 4.86%

27 0.3509 72800.86 0.0251 74476.24 2.30% 0.3498 50831.3 0.0522 53404.29 5.06%

28 0.3312 46189.75 0.0136 47581.02 3.01% 0.3261 40576.42 0.0163 42337.54 4.34%

29 0.1690 85532.53 0.0197 88415.16 3.37% 0.1405 70191.03 0.0144 71994.86 2.57%

30 0.2660 59502.63 0.0121 59837.51 0.56% 0.1855 72209.89 0.0118 75743.89 4.89%

Table A.6 LW algorithm v.s. CPLEX on σ/ μ (S=5 N=3 J=5) (Con’t)

Run

σ/μ=30% σ/μ=40%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.2423 83208.56 0.0285 83408.56 0.24% 0.6173 84709.66 0.0295 85642.56 1.10%

2 0.2720 75872.2 0.0173 76072.2 0.26% 0.3517 81124.45 0.0267 81408.9 0.35%

3 0.3962 74839.54 0.0438 75717.62 1.17% 0.2442 69251.75 0.0436 69680.7 0.62%

4 0.2816 92133.84 0.0427 92333.84 0.22% 0.4727 83442 0.0329 84775.95 1.60%

5 0.3711 45875.16 0.0200 45982.05 0.23% 0.5227 64559.55 0.0257 64824.17 0.41%

6 0.4406 46699.1 0.0110 48364.5 3.57% 0.3834 41605.5 0.0212 42640.01 2.49%

7 0.2233 70556 0.0160 72325.13 2.51% 0.2436 49056.6 0.0398 49831.41 1.58%

8 0.2103 75219.64 0.0219 75608.87 0.52% 0.6107 78431.19 0.0390 79502.24 1.37%

9 0.2399 77573.75 0.0341 77684.01 0.14% 0.5682 49436.81 0.0248 49839.5 0.81%

10 0.3681 54783.35 0.0184 57289.99 4.58% 0.3032 56602.09 0.0385 58356.64 3.10%

11 0.3256 38881.69 0.0215 40855.43 5.08% 0.3642 56448.17 0.0420 58383.55 3.43%

12 0.6237 41423.29 0.0206 42983.25 3.77% 0.4984 40946.3 0.0354 41443.01 1.21%

13 0.2839 77199.55 0.0185 79874.31 3.46% 0.4641 73159.54 0.0380 73651.37 0.67%

14 0.2999 49750.17 0.0379 50367.66 1.24% 0.3730 47888.53 0.0346 48372.98 1.01%

15 0.3037 44467.61 0.0255 45749.5 2.88% 0.3412 64137.48 0.0390 64603.59 0.73%

16 0.2526 33823.36 0.0151 34580.41 2.24% 0.3780 43146.05 0.0351 43967.64 1.90%

17 0.3287 50502.1 0.0373 50702.1 0.40% 0.4949 63960.48 0.0276 65933.69 3.09%

- 85 -

18 0.2638 56745.56 0.0423 57684.85 1.66% 0.4280 51831.79 0.0187 52187.95 0.69%

19 0.3695 75740.61 0.0118 78425.43 3.54% 0.3788 83350.06 0.0121 85850.35 3.00%

20 0.3988 39374.89 0.0204 40009.69 1.61% 0.3219 59502.6 0.0206 59852.5 0.59%

21 0.3152 84192.14 0.0194 86412.72 2.64% 0.4812 36135.53 0.0139 36325.47 0.53%

22 0.4950 80774.29 0.0371 82849.22 2.57% 0.4074 71938.34 0.0233 72478.64 0.75%

23 0.4348 63969.14 0.0128 64537.79 0.89% 0.4181 43896.8 0.0343 44786.74 2.03%

24 0.4406 52006.07 0.0175 53054.35 2.02% 0.3219 56833.21 0.0359 58188.26 2.38%

25 0.2945 41470.56 0.0376 41607.56 0.33% 0.3691 54810.7 0.0269 55244.68 0.79%

26 0.2939 45983.21 0.0143 46414.61 0.94% 0.3424 60160.25 0.0190 61445.97 2.14%

27 0.2607 35951.3 0.0231 36272.32 0.89% 0.2655 43331.63 0.0262 44453.36 2.59%

28 0.4487 71449.98 0.0345 73402.26 2.73% 0.4847 63535.99 0.0328 65588.91 3.23%

29 0.5162 49198.64 0.0326 51021.38 3.70% 0.4717 52964.01 0.0338 54193.38 2.32%

30 0.4383 60474.91 0.0347 62227.86 2.90% 0.4383 60474.91 0.0347 61893.46 2.35%

Table A.7 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10)

Run

σ/μ=10% σ/μ=15%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 9.7650 96844.72 0.1023 96999.95 0.16% 9.0731 48242.04 0.1028 50105.72 3.86%

2 8.7963 92429.84 0.1201 93093.65 0.72% 7.2849 74941.7 0.1388 74992.53 0.07%

3 7.0408 88009.71 0.0983 90468.62 2.79% 9.0122 66019.4 0.1162 67801.73 2.70%

4 7.9707 101626.1 0.0921 102466.2 0.83% 8.5117 76700.54 0.1234 80999.31 5.60%

5 10.9751 58902.19 0.1286 58997.93 0.16% 9.4692 38675.97 0.1192 38877.92 0.52%

6 5.9306 61809.02 0.1164 63547.48 2.81% 10.6345 60006.62 0.0924 62310.81 3.84%

7 10.9883 48968.49 0.1353 50396.28 2.92% 10.1467 102610.1 0.0932 102614 0.00%

8 10.3885 86966.76 0.1106 86976.14 0.01% 8.7027 92210.36 0.1127 92808.54 0.65%

9 6.9773 96119.26 0.1027 96273.17 0.16% 7.3211 40132.03 0.1347 40269.74 0.34%

10 6.1298 38992.73 0.1038 39112.47 0.31% 7.0592 71868.28 0.1256 73067.19 1.67%

11 9.5596 81428.61 0.0956 81948.92 0.64% 10.5661 44797.44 0.1376 45060.61 0.59%

12 6.3215 104612.2 0.1261 104921.3 0.30% 6.7698 86867.43 0.1162 89117.45 2.59%

13 7.5464 97575.03 0.1340 98462.38 0.91% 11.1953 82261.24 0.1054 85782.69 4.28%

14 9.2162 91715.57 0.1231 93011.28 1.41% 9.7080 42850.56 0.0905 43445.24 1.39%

15 10.0379 78544.56 0.1201 79317.35 0.98% 9.0514 38994.82 0.1127 40121.43 2.89%

- 86 -

16 11.1239 77739.56 0.1125 79916.7 2.80% 10.8354 64783.85 0.1273 66953.5 3.35%

17 10.1191 69243.89 0.1143 71166.53 2.78% 11.2975 63499.95 0.1377 66617.8 4.91%

18 6.6453 69442.67 0.1339 69859.12 0.60% 6.5552 71965.63 0.1159 72213.16 0.34%

19 8.9968 60618.24 0.1117 63081.36 4.06% 5.8274 90505.85 0.1106 92184.26 1.85%

20 11.0084 81409.6 0.1113 82196.69 0.97% 9.1511 68855.73 0.1290 71307.78 3.56%

21 10.6846 95850.45 0.0936 98189.1 2.44% 10.2380 50318.72 0.1116 52918.06 5.17%

22 10.1061 74353.14 0.1282 77073.11 3.66% 7.8527 95603.77 0.1211 97305.64 1.78%

23 9.0895 67800.59 0.1251 68409.75 0.90% 8.1900 59443.88 0.1304 61528.12 3.51%

24 9.6704 87843.34 0.0964 91143.69 3.76% 7.5958 97707.85 0.0985 100210.6 2.56%

25 6.9492 75238.43 0.1270 75651.85 0.55% 7.4359 75296.67 0.1347 78969.45 4.88%

26 7.2758 55383.49 0.1192 55594.53 0.38% 8.7284 48354.19 0.0930 50565.53 4.57%

27 7.8645 103318.7 0.1075 106350.2 2.93% 6.3476 52168.26 0.1187 52420.36 0.48%

28 7.5188 103000 0.0944 105654.5 2.58% 8.8243 42617.09 0.1201 44413.17 4.21%

29 6.7462 50319.05 0.1222 52345.61 4.03% 9.8213 42178.71 0.1238 42584.6 0.96%

30 7.6990 97296.28 0.1132 99387.54 2.15% 5.8333 53098.88 0.1242 55749.94 4.99%

Table A.8 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10) (Con’t)

Run

σ/μ=20% σ/μ=25%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 7.1980 12220.29 0.1324 12538.5 2.60% 5.4011 76135.24 0.1255 76708.8 0.75%

2 7.4761 12674.76 0.1216 13047.17 2.94% 9.9540 66618.93 0.1327 69959.11 5.01%

3 8.5161 11441.66 0.1027 11585.74 1.26% 7.7244 61112.49 0.1307 61858.44 1.22%

4 9.7738 9884.89 0.1232 10089.68 2.07% 9.1228 35954.47 0.1149 37737.79 4.96%

5 7.4282 13972.39 0.1298 14475.24 3.60% 8.2833 57792.72 0.1119 62823.55 8.70%

6 10.5333 10774.91 0.1135 10851.54 0.71% 9.7913 102266.1 0.1322 109581.9 7.15%

7 6.7981 10922.16 0.0826 11107.78 1.70% 9.0897 89196.93 0.1131 92353.84 3.54%

8 6.8199 9767.769 0.1349 10120.1 3.61% 8.7687 40144.07 0.1363 40960.86 2.03%

9 8.8784 11354.25 0.1196 12150.98 7.02% 10.3164 71991.66 0.1278 72091.71 0.14%

10 8.6769 13265.67 0.1198 13785.89 3.92% 7.7509 45281.58 0.1227 48061.09 6.14%

11 7.7307 13350.58 0.0978 13415.94 0.49% 6.2090 85775.14 0.1181 87500.74 2.01%

12 6.4183 10457.43 0.0887 10467.65 0.10% 8.8265 81490.83 0.1004 81591.05 0.12%

13 7.9290 10844.46 0.1161 11074.31 2.12% 6.7080 44194.28 0.0926 44798.86 1.37%

- 87 -

14 5.7874 11154.1 0.1114 11250.4 0.86% 7.2156 40660.14 0.1172 40996.73 0.83%

15 11.2461 13218.85 0.1263 13458.86 1.82% 8.1724 88351.23 0.1100 89489.49 1.29%

16 11.1783 11062.18 0.0989 11683.19 5.61% 10.5777 66799.94 0.1228 66829.6 0.04%

17 6.5740 13709.16 0.0869 14569.52 6.28% 11.0136 76444.93 0.1177 78744.53 3.01%

18 5.8807 9355.62 0.1073 10008.25 6.98% 7.1890 92671.31 0.1148 93685.42 1.09%

19 6.3101 10381.34 0.1153 10678.67 2.86% 10.9081 68213.05 0.1386 73839.61 8.25%

20 9.2900 10283.26 0.1167 10489.7 2.01% 7.5476 55196.11 0.1349 55341.27 0.26%

21 7.9079 11708.94 0.1009 11878.85 1.45% 11.2760 71756.39 0.0965 76156.4 6.13%

22 7.8907 11033.2 0.0969 11097.78 0.59% 10.0723 76889.86 0.1214 81870.5 6.48%

23 6.4820 13924.93 0.1245 14554.7 4.52% 9.0638 59492.53 0.1135 63788.08 7.22%

24 9.3607 10339.79 0.1260 10883.57 5.26% 10.2679 60315.79 0.1283 65278.41 8.23%

25 7.1776 10617.62 0.1279 11317.61 6.59% 7.1263 42491.01 0.1218 45357.01 6.74%

26 10.6331 10551.78 0.1107 10856.54 2.89% 9.7691 82714.72 0.1100 89040.13 7.65%

27 6.8550 11351.85 0.0867 11671.03 2.81% 8.4375 64088.39 0.1315 68280.81 6.54%

28 9.1504 12777.95 0.1129 13478.16 5.48% 6.6777 50964.4 0.1190 54811.72 7.55%

29 7.5063 11430.18 0.0936 11538.93 0.95% 7.4307 52578.88 0.1365 55311.71 5.20%

30 7.4962 9463.022 0.0885 9913.546 4.76% 7.5029 64330.16 0.1222 65039.04 1.10%

Table A.9 LW algorithm v.s. CPLEX on σ/ μ (S=8 N=5 J=10) (Con’t)

Run

σ/μ=30% σ/μ=40%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 8.9593 78634.76 0.1029 78834.76 0.25% 8.6560 74215.24 0.0991 75479.91 1.70%

2 9.6595 84586.61 0.0902 90786.61 7.33% 6.2614 38898.96 0.1303 40100.03 3.09%

3 7.5833 72478.49 0.1195 74599.09 2.93% 7.8360 68715.14 0.1133 72171.49 5.03%

4 6.9254 86351.55 0.1240 86551.55 0.23% 8.7764 68765.22 0.0990 72871.97 5.97%

5 9.8215 74201.07 0.1089 76401.07 2.96% 8.0081 52789.48 0.0991 56760.98 7.52%

6 7.6449 85413.61 0.1266 85613.61 0.23% 9.4252 72110.84 0.1009 75194.05 4.28%

7 10.1300 59448.86 0.1305 62142.56 4.53% 7.2210 70756.91 0.1130 76261.66 7.78%

8 7.4278 65169.57 0.1181 69169.97 6.14% 8.2360 35528.88 0.1330 38318.29 7.85%

9 6.4082 56785.11 0.1092 58792.84 3.54% 9.0569 43847.86 0.1051 45337.39 3.40%

10 10.2925 31968.31 0.1378 33401.12 4.48% 10.1238 51310.15 0.0916 51916.43 1.18%

11 9.1730 65002.77 0.1198 70845.78 8.99% 6.9359 48071.40 0.1122 50183.58 4.39%

- 88 -

12 10.4194 84590.96 0.1255 84790.96 0.24% 10.8380 47351.39 0.1008 50809.58 7.30%

13 8.4442 33545.47 0.1271 34507.35 2.87% 10.6574 87195.98 0.1175 92836.04 6.47%

14 9.7021 69531.63 0.0923 69731.63 0.29% 10.7519 57138.21 0.0989 61441.78 7.53%

15 7.6424 33676.32 0.0995 36110.10 7.23% 6.5338 47234.57 0.1163 49015.56 3.77%

16 6.2993 36239.60 0.1380 38280.22 5.63% 8.3618 63767.82 0.1072 69321.72 8.71%

17 7.7984 77379.46 0.1193 77579.46 0.26% 6.7002 82372.97 0.1324 87820.36 6.61%

18 9.7031 90739.67 0.1015 90939.67 0.22% 5.8512 42622.39 0.1030 45914.34 7.72%

19 7.2688 50759.19 0.1010 51947.88 2.34% 8.0289 44921.65 0.1126 47009.31 4.65%

20 5.7905 84999.71 0.1188 88199.71 3.76% 10.8702 52791.47 0.0935 56275.90 6.60%

21 11.1747 82290.86 0.1183 82987.27 0.85% 7.6854 45745.99 0.1107 47914.82 4.74%

22 10.7082 50585.33 0.0910 50988.77 0.80% 8.3812 78668.67 0.0971 81914.37 4.13%

23 9.3161 51226.39 0.1245 51738.33 1.00% 8.5918 63959.92 0.1258 66221.47 3.54%

24 7.9332 39880.18 0.0950 41453.01 3.94% 9.8756 41801.44 0.0983 43345.37 3.69%

25 10.1766 60578.11 0.1125 65882.78 8.76% 9.0792 54367.30 0.1319 54981.83 1.13%

26 8.4946 74260.20 0.1092 74547.04 0.39% 7.4907 78077.41 0.1205 80937.92 3.66%

27 6.5037 87527.35 0.1350 95343.90 8.93% 9.8244 68976.93 0.1244 71977.44 4.35%

28 10.3259 80172.69 0.1299 85263.35 6.35% 9.5564 74739.98 0.1253 75803.20 1.42%

29 7.9416 40525.68 0.1200 42101.84 3.89% 6.7210 41662.86 0.1333 42421.58 1.82%

30 6.4336 42649.82 0.1370 42869.78 0.52% 6.4336 42649.82 0.1370 43472.04 1.93%

Table A.10 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5)

Run

r=100% r=110%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.3447 79938.25 0.0209 83617.64 4.60% 0.2716 106879.2 0.0197 110336.9 3.24%

2 0.3135 72026.74 0.0241 75566.44 4.91% 0.3239 67000.36 0.0260 68964.33 2.93%

3 0.2916 56788.91 0.0357 57784.93 1.75% 0.3264 101416.6 0.0282 105398.7 3.93%

4 0.3053 66869.93 0.0312 69315.85 3.66% 0.2303 80086.56 0.0179 80751.75 0.83%

5 0.3500 79325.36 0.0260 79741.91 0.53% 0.3039 55632.45 0.0229 57116.02 2.67%

6 0.2931 62385.61 0.0345 66107.95 5.97% 0.2872 58344.79 0.0173 60921.46 4.42%

7 0.2433 81310.07 0.0333 82262.51 1.17% 0.3116 86557.3 0.0366 89747.29 3.69%

8 0.2963 67205.72 0.0242 69258.31 3.05% 0.3460 73908.28 0.0213 74626.48 0.97%

9 0.2415 61129.86 0.0317 63106.31 3.23% 0.3064 73516.09 0.0319 74506.51 1.35%

- 89 -

10 0.2370 77267.5 0.0350 79639.19 3.07% 0.3261 87433.21 0.0350 89986.93 2.92%

11 0.3472 76680.22 0.0314 79124.89 3.19% 0.3155 87343.47 0.0334 90940.65 4.12%

12 0.3450 73681.01 0.0161 77929.68 5.77% 0.3230 104904.3 0.0115 105451.9 0.52%

13 0.3141 83914.96 0.0111 84731.38 0.97% 0.2441 100991.5 0.0183 105755.9 4.72%

14 0.3331 71952.04 0.0292 72405.66 0.63% 0.3279 94281.01 0.0345 97300.5 3.20%

15 0.3195 69761.85 0.0360 70168.3 0.58% 0.2984 94707.31 0.0309 98145.75 3.63%

16 0.3059 92033.59 0.0100 93612.51 1.72% 0.2853 76653.52 0.0350 80283.53 4.74%

17 0.3092 78381.17 0.0120 82378.74 5.10% 0.2718 106903.5 0.0104 111257.6 4.07%

18 0.2622 75376.34 0.0190 77257.78 2.50% 0.2897 96324.57 0.0302 97910.61 1.65%

19 0.2329 89947.87 0.0174 93388.85 3.83% 0.2960 55327.41 0.0141 57186.19 3.36%

20 0.3283 97842.86 0.0279 101874.1 4.12% 0.2890 100081.2 0.0173 103298.6 3.21%

21 0.3071 105074.9 0.0164 106445.1 1.30% 0.3061 88725.72 0.0338 92979.79 4.79%

22 0.2979 68365.62 0.0166 70382.66 2.95% 0.3163 58814.06 0.0186 61154.13 3.98%

23 0.2732 86864.43 0.0327 90425.56 4.10% 0.2487 65249.49 0.0167 68004.66 4.22%

24 0.2554 68486.25 0.0158 71805.9 4.85% 0.2468 102898.6 0.0240 105046.4 2.09%

25 0.3035 92406.17 0.0352 96093.26 3.99% 0.2606 65771.29 0.0259 68904.55 4.76%

26 0.3090 69123.4 0.0275 72263.34 4.54% 0.2779 101993.2 0.0255 106680.3 4.60%

27 0.2728 102024 0.0159 104714.6 2.64% 0.2770 81271.34 0.0267 82882.87 1.98%

28 0.2851 61218.53 0.0154 63839.19 4.28% 0.3246 104722.2 0.0234 107693.4 2.84%

29 0.2996 70342.25 0.0315 71580.84 1.76% 0.2453 71908.8 0.0157 74180.74 3.16%

30 0.3118 82680.57 0.0142 85296.22 3.16% 0.2633 93123.19 0.0212 94407.46 1.38%

Table A.11 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5) (Con’t)

Run

r=120% r=130%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.3197 64481.62 0.0212 64481.62 0.00% 0.3152 59655.18 0.0281 62000.05 3.93%

2 0.2563 51114.38 0.0250 51410.23 0.58% 0.3153 52558.77 0.0328 53239.92 1.30%

3 0.2419 69148.89 0.0139 71793.34 3.82% 0.3420 67028.91 0.0247 69782.88 4.11%

4 0.2679 81433.71 0.0320 84230.79 3.43% 0.2832 72293.26 0.0131 75511.21 4.45%

5 0.3344 68290.2 0.0196 71358.67 4.49% 0.2442 64805.71 0.0359 66454.29 2.54%

6 0.2865 74492.28 0.0181 75744.56 1.68% 0.2472 77865.66 0.0352 80812.31 3.78%

7 0.3271 60719.21 0.0336 61842.74 1.85% 0.3177 62033.08 0.0367 64276.97 3.62%

- 90 -

8 0.2572 65889.75 0.0372 68414.64 3.83% 0.2912 62292.49 0.0219 64092.66 2.89%

9 0.2614 75453.51 0.0147 77019.88 2.08% 0.2874 64344.89 0.0297 65543.21 1.86%

10 0.3101 70618.9 0.0348 72995.9 3.37% 0.2832 50640.09 0.0245 51002.91 0.72%

11 0.2370 59690.44 0.0185 59690.44 0.00% 0.3010 72539.15 0.0200 74037.56 2.07%

12 0.2574 58501.31 0.0261 60474.87 3.37% 0.3279 58212.71 0.0212 58212.71 0.00%

13 0.2648 53144.65 0.0318 55177.73 3.83% 0.2573 59305.5 0.0140 59622.29 0.53%

14 0.3168 56519.65 0.0332 57340.8 1.45% 0.2971 53276.96 0.0139 54743.74 2.75%

15 0.3114 53074.66 0.0247 54643.84 2.96% 0.2989 64927.38 0.0243 67350.85 3.73%

16 0.2700 60166.34 0.0182 61645.32 2.46% 0.2509 63834.84 0.0255 66013.69 3.41%

17 0.3335 79345.98 0.0178 82299.52 3.72% 0.3205 56012.21 0.0172 58483.52 4.41%

18 0.3459 72178.95 0.0140 73493.98 1.82% 0.2430 69459.72 0.0232 69459.72 0.00%

19 0.3106 56385.51 0.0352 58849.08 4.37% 0.3229 68582.59 0.0163 70581.37 2.91%

20 0.3463 86290.1 0.0339 88700.85 2.79% 0.2908 53074.04 0.0257 54956.93 3.55%

21 0.3121 65985.38 0.0251 66390.68 0.61% 0.3468 67841.78 0.0370 70480.09 3.89%

22 0.3097 53811.6 0.0260 56077.61 4.21% 0.2561 75117.36 0.0343 78453.33 4.44%

23 0.3386 73661.28 0.0191 75294.63 2.22% 0.2478 75331.98 0.0309 78526.91 4.24%

24 0.3107 69430.11 0.0248 69833.69 0.58% 0.3310 67701.76 0.0219 69613.69 2.82%

25 0.2982 72276.88 0.0217 74817.13 3.51% 0.2922 59555.42 0.0350 61392.75 3.09%

26 0.2701 78781.73 0.0199 79378.16 0.76% 0.2781 55023.37 0.0311 57314.43 4.16%

27 0.3163 75941.21 0.0328 78789.62 3.75% 0.3325 68127.53 0.0335 69899.22 2.60%

28 0.2603 54844.22 0.0177 56783.01 3.54% 0.3371 58257.34 0.0279 58626.7 0.63%

29 0.2594 74656.32 0.0259 74759.73 0.14% 0.3079 69241.43 0.0176 70308.58 1.54%

30 0.2704 79095.02 0.0268 81798.22 3.42% 0.3345 59502.32 0.0340 59960.72 0.77%

Table A.12 LW algorithm v.s. CPLEX on R (S=5 N=3 J=5) (Con’t)

Run

r=140% r=150%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 0.2733 40577.75 0.0202 40577.75 0.00% 0.2799 55295.57 0.0275 56443.11 2.08%

2 0.2994 41094.25 0.0288 42520.51 3.47% 0.3355 69202.28 0.0367 71731.66 3.66%

3 0.2522 60122.97 0.0142 62054.84 3.21% 0.3375 64471.44 0.0235 65977.67 2.34%

4 0.3250 46090.65 0.0167 47083.08 2.15% 0.2714 52846.16 0.0288 54168.85 2.50%

5 0.3450 50598.92 0.0312 50598.92 0.00% 0.3012 55741.37 0.0354 56809.01 1.92%

- 91 -

6 0.3244 55533.48 0.0335 57345.44 3.26% 0.3453 50732.28 0.0138 51717.69 1.94%

7 0.2312 57301.81 0.0385 58277.2 1.70% 0.3446 64344.46 0.0141 64407.85 0.10%

8 0.3440 59476.97 0.0333 60940.86 2.46% 0.3078 59206.95 0.0229 61305.54 3.54%

9 0.3327 50493.73 0.0349 52405.11 3.79% 0.3329 54532.80 0.0369 55032.91 0.92%

10 0.2394 55659.51 0.0379 57621.78 3.53% 0.3175 57532.05 0.0233 58550.78 1.77%

11 0.2637 54706.5 0.0275 54706.5 0.00% 0.2986 67375.51 0.0276 69211.31 2.72%

12 0.3317 66476.49 0.0341 68667.46 3.30% 0.2450 62844.90 0.0242 62998.43 0.24%

13 0.2397 43638.69 0.0200 44008.95 0.85% 0.3341 69337.82 0.0151 71420.48 3.00%

14 0.3187 67075.55 0.0124 68284.7 1.80% 0.2721 47442.88 0.0128 47871.31 0.90%

15 0.3463 69891.57 0.0352 69891.57 0.00% 0.3025 48088.70 0.0255 48412.83 0.67%

16 0.2810 59874.84 0.0223 61685.61 3.02% 0.2800 57138.74 0.0260 57433.61 0.52%

17 0.2697 64724.41 0.0130 64724.41 0.00% 0.3009 64826.28 0.0227 66506.31 2.59%

18 0.3425 58935.52 0.0356 58935.52 0.00% 0.3229 52866.47 0.0316 54096.03 2.33%

19 0.3232 61093.33 0.0164 62313.99 2.00% 0.2791 60144.23 0.0279 61494.31 2.24%

20 0.2668 45980.74 0.0170 46778.64 1.74% 0.3246 64106.04 0.0171 66163.67 3.21%

21 0.3116 63792.29 0.0369 65659.76 2.93% 0.2704 61408.79 0.0321 62883.41 2.40%

22 0.2684 52838.55 0.0363 53171.17 0.63% 0.2662 61564.62 0.0172 62448.17 1.44%

23 0.3136 62816.41 0.0160 64208.15 2.22% 0.3165 52318.90 0.0247 54079.12 3.36%

24 0.2975 58518.25 0.0187 59875.16 2.32% 0.3157 65195.48 0.0338 66019.44 1.26%

25 0.2331 47066.28 0.0162 47821.48 1.60% 0.3224 61481.10 0.0169 62135.18 1.06%

26 0.3282 46965.65 0.0361 48091.01 2.40% 0.3049 50571.94 0.0293 51131.72 1.11%

27 0.2983 65303.67 0.0336 67371 3.17% 0.3131 57177.55 0.0321 58064.84 1.55%

28 0.3149 53748.59 0.0343 55233.94 2.76% 0.3119 56958.98 0.0222 57852.44 1.57%

29 0.2978 61023.87 0.0282 63079.11 3.37% 0.2973 60089.33 0.0263 60800.79 1.18%

30 0.2972 56100.95 0.0217 56567.83 0.83% 0.2972 56100.95 0.0217 57142.07 1.86%

 Table A.13 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10)

Run

r=100% r=110%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 5.4223 93202.33 0.0907 94271.92 1.15% 7.6404 71989.34 0.1064 72234.84 0.34%

2 6.3311 64386.39 0.1024 65794.58 2.19% 10.8790 60479.77 0.1317 62045.72 2.59%

3 7.8818 80264.59 0.1298 83936.35 4.57% 10.2878 55895.23 0.1282 58195.66 4.12%

- 92 -

4 6.7382 80295.06 0.1095 81537.53 1.55% 8.6231 43531.21 0.1251 45735.32 5.06%

5 6.3416 82339.35 0.1248 83893.39 1.89% 10.1527 50972.17 0.1168 52471.60 2.94%

6 5.3823 63107.61 0.1003 65399.47 3.63% 6.5199 73041.63 0.1368 73041.63 0.00%

7 7.9897 69312.92 0.1160 72568.57 4.70% 9.3818 50579.30 0.1216 51449.09 1.72%

8 6.5842 86805.00 0.1269 87414.73 0.70% 11.2716 79859.52 0.0965 80985.29 1.41%

9 10.8430 60051.07 0.0970 60375.46 0.54% 8.8891 82086.98 0.1146 82483.99 0.48%

10 7.7207 65804.77 0.1333 69143.61 5.07% 6.7522 86848.30 0.1332 87331.90 0.56%

11 7.9023 78000.65 0.0927 81440.39 4.41% 7.3371 44098.32 0.1208 44098.32 0.00%

12 5.9765 90061.38 0.1317 91444.53 1.54% 9.5766 56559.79 0.1359 58006.47 2.56%

13 10.5310 90581.97 0.0897 91021.71 0.49% 10.4135 61814.77 0.1039 64783.73 4.80%

14 9.2592 76596.30 0.0900 77049.80 0.59% 8.5754 63998.02 0.0968 67440.33 5.38%

15 6.2927 57861.66 0.1135 58060.34 0.34% 10.8716 74581.71 0.1360 75050.21 0.63%

16 5.5287 54711.96 0.1248 56533.50 3.33% 8.1067 44571.62 0.1385 44883.74 0.70%

17 9.3768 84070.55 0.1200 84913.61 1.00% 6.5730 50783.76 0.1052 52963.47 4.29%

18 7.0402 80501.64 0.1214 82256.18 2.18% 7.1678 80531.96 0.1322 84830.47 5.34%

19 7.3406 88522.49 0.0987 88826.24 0.34% 7.7416 75942.78 0.1107 77695.62 2.31%

20 5.2942 67887.62 0.0943 68021.75 0.20% 7.9875 89834.39 0.1020 92012.44 2.42%

21 8.3174 95877.63 0.1168 96512.78 0.66% 8.7228 52829.93 0.1373 55100.23 4.30%

22 8.3190 84539.53 0.1067 87797.32 3.85% 10.8400 89702.18 0.1249 91952.22 2.51%

23 6.3793 77687.74 0.0944 79544.67 2.39% 9.6811 67123.91 0.1195 69882.22 4.11%

24 8.3303 65271.41 0.1032 68557.55 5.03% 10.9366 43655.20 0.1188 44666.82 2.32%

25 7.8808 74529.76 0.1041 75732.32 1.61% 10.9633 43744.83 0.1136 45105.41 3.11%

26 8.4810 80606.31 0.1274 81041.43 0.54% 7.7798 67668.23 0.1357 68317.28 0.96%

27 9.2453 91218.45 0.0995 95453.83 4.64% 7.9454 88904.16 0.1281 92620.30 4.18%

28 7.3968 69408.14 0.1071 71012.63 2.31% 7.2561 85007.20 0.1204 89571.77 5.37%

29 5.3688 86696.44 0.1091 88629.89 2.23% 7.9620 44621.07 0.1304 46954.31 5.23%

30 6.2847 83447.69 0.1249 86856.52 4.08% 7.2607 60923.19 0.1083 64168.66 5.33%

Table A.14 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10) (Con’t)

Run

r=120% r=130%

Cplex LW
%Gap

Cplex LW
%Gap

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 5.5792 47803.44 0.1026 47916.77 0.24% 6.0061 54371.77 0.0991 54971.64 1.10%

- 93 -

2 10.0433 43425.44 0.1208 45434.86 4.63% 10.2039 102352.4 0.1365 106517.2 4.07%

3 10.7245 51871.21 0.0995 53092.76 2.35% 10.0157 65758.19 0.1329 68089.81 3.55%

4 8.4129 54579.15 0.1231 55154.35 1.05% 7.1035 60624.42 0.1015 62077.16 2.40%

5 7.5421 68994.45 0.1075 73070.68 5.91% 8.2233 90070.72 0.0997 91155.09 1.20%

6 7.2714 59446.10 0.1110 62113.77 4.49% 7.9659 81183.54 0.0959 83580.58 2.95%

7 10.8334 47344.05 0.1182 49150.73 3.82% 5.5075 76697.34 0.1219 76993.91 0.39%

8 5.5677 56483.61 0.0903 56483.61 0.00% 11.0019 87322.71 0.1016 90751.51 3.93%

9 10.3908 48157.23 0.1214 49262.72 2.30% 10.0501 97864.02 0.1381 99805.78 1.98%

10 9.0832 44433.58 0.1288 44433.58 0.00% 9.9497 62963.32 0.1049 65373.95 3.83%

11 5.4228 61373.57 0.0896 63223.84 3.01% 10.8536 92262.26 0.0957 93314.75 1.14%

12 10.0205 71263.56 0.1244 73773.53 3.52% 6.6297 60949.78 0.1103 63355.42 3.95%

13 6.8806 73678.70 0.0934 75841.67 2.94% 7.2729 69305.67 0.1271 69495.05 0.27%

14 6.7059 49815.12 0.0943 51486.66 3.36% 7.2793 58626.94 0.0991 58967.98 0.58%

15 10.5372 48776.95 0.1344 49124.31 0.71% 7.8773 48867.1 0.1234 50438.11 3.21%

16 6.8270 61956.30 0.1191 61956.30 0.00% 7.3418 66951.45 0.0914 69108.37 3.22%

17 7.7505 52742.73 0.1337 53155.18 0.78% 7.6291 101996.8 0.1103 106251.8 4.17%

18 9.0073 78297.20 0.0991 81742.82 4.40% 10.4828 100198.1 0.1094 102506.6 2.30%

19 10.8820 78132.57 0.1300 80293.68 2.77% 5.6585 85427.06 0.1330 86666.38 1.45%

20 9.7868 77786.86 0.1209 78627.02 1.08% 8.8266 71791.18 0.0925 72139.76 0.49%

21 8.6284 54885.39 0.1310 57301.67 4.40% 6.7515 77777.72 0.1075 81132.74 4.31%

22 7.4731 48253.96 0.1027 50507.83 4.67% 6.7889 51187.13 0.1114 52165.82 1.91%

23 8.1448 66186.70 0.1269 67347.53 1.75% 6.0911 49326.33 0.1063 49868.19 1.10%

24 5.4426 69571.89 0.0952 72703.39 4.50% 7.1717 90075.03 0.1190 91767.75 1.88%

25 7.2243 57579.64 0.1248 59218.26 2.85% 7.9658 99008.62 0.0920 100207.6 1.21%

26 6.3678 55980.76 0.1038 57010.59 1.84% 8.4940 84112.14 0.1063 84376.75 0.31%

27 6.5678 50335.30 0.0937 52479.27 4.26% 6.9148 69620.89 0.1227 70610.16 1.42%

28 9.4919 44641.86 0.1292 45100.74 1.03% 8.5309 74719.26 0.0988 75119.81 0.54%

29 8.6033 54961.34 0.1293 55377.20 0.76% 8.7792 70362.35 0.1230 71865.63 2.14%

30 9.5907 52345.61 0.1231 54140.51 3.43% 7.5945 93432.34 0.1238 96944.87 3.76%

Table A.15 LW algorithm v.s. CPLEX on R (S=8 N=5 J=10) (Con’t)

Run
r=140% r=150%

Cplex LW %Gap Cplex LW %Gap

- 94 -

CPU G* CPU G
LW

 CPU G* CPU G
LW

1 11.1322 42703.2 0.0987 42703.2 0.00% 9.7973 65332.09 0.0990 67269.03 2.96%

2 9.5657 46612.38 0.0908 47176.22 1.21% 9.4702 75744.36 0.1347 75769.87 0.03%

3 11.2615 64234.31 0.1218 66232.4 3.11% 9.0770 43927.14 0.0929 44696.62 1.75%

4 7.5291 58681.52 0.1348 60095.38 2.41% 10.7988 71569.28 0.1014 72415.56 1.18%

5 10.9059 63407.06 0.1104 63407.06 0.00% 6.9601 76482.45 0.1219 77294.90 1.06%

6 10.5929 58921.74 0.1226 61177.29 3.83% 8.5941 45140.93 0.1094 45300.95 0.35%

7 7.4667 44008.71 0.1123 44691.88 1.55% 8.0653 73665.67 0.0967 75305.18 2.23%

8 5.6908 62817.75 0.0961 65106.9 3.64% 5.8192 78425.32 0.1095 80788.58 3.01%

9 6.0216 64578.95 0.0925 64578.95 0.00% 7.3246 61458.39 0.1334 63321.85 3.03%

10 9.9973 51333.38 0.0979 52263.19 1.81% 7.8505 69604.38 0.1025 69610.42 0.01%

11 5.7125 79019.71 0.1237 79104.63 0.11% 7.3338 51750.12 0.1327 53067.42 2.55%

12 9.0093 64635.13 0.1274 64851.96 0.34% 8.0814 53932.99 0.1279 54641.52 1.31%

13 6.7093 44894.62 0.1062 44894.62 0.00% 8.1542 46695.37 0.1261 46834.22 0.30%

14 10.0643 41395.19 0.0933 42566.08 2.83% 9.3432 62497.73 0.1270 64508.08 3.22%

15 7.8615 56845.84 0.1275 56845.84 0.00% 6.4941 51510.10 0.1247 51575.97 0.13%

16 5.8667 62533.67 0.1266 62533.67 0.00% 6.8607 62117.29 0.1112 64322.40 3.55%

17 10.5356 56077.16 0.1029 58010.27 3.45% 9.1847 44924.74 0.1068 45400.47 1.06%

18 10.4475 47840.45 0.1235 49555.87 3.59% 7.1596 66736.73 0.1323 68040.77 1.95%

19 10.1706 54543.92 0.1047 54543.92 0.00% 8.5197 73043.42 0.1267 74030.62 1.35%

20 6.8930 58623.42 0.1340 60704.32 3.55% 8.7745 51240.30 0.1113 52409.93 2.28%

21 6.9267 42443.99 0.1343 42551.16 0.25% 7.8774 69182.33 0.1260 71332.53 3.11%

22 9.7120 44003.53 0.1068 45048.49 2.37% 6.9536 62853.65 0.1293 63496.52 1.02%

23 8.2690 52875.29 0.1346 53342.44 0.88% 6.7307 61150.59 0.1252 62783.25 2.67%

24 7.1051 72603.9 0.1041 72894.99 0.40% 10.1853 61314.34 0.1154 63273.00 3.19%

25 10.4622 66859.12 0.1335 67672.95 1.22% 10.2966 66263.57 0.1084 67225.24 1.45%

26 8.0846 61682.91 0.1026 63745.64 3.34% 8.1839 69033.65 0.1115 70396.76 1.97%

27 8.4670 55913.37 0.1045 56956.03 1.86% 8.2142 56930.67 0.1089 57477.23 0.96%

28 9.0375 68344.86 0.1125 69902.67 2.28% 6.3464 66088.17 0.1110 66901.30 1.23%

29 6.3382 58799.21 0.0998 60569.3 3.01% 7.3429 69576.60 0.1053 71660.89 3.00%

30 10.1803 74147.57 0.1070 74790.84 0.87% 10.1803 74147.57 0.1070 74978.00 1.12%

- 95 -

Appendix B CPLEX code for Algorithm LW

InputDataReader.java

// --

// File: examples/src/InputDataReader.java

// Version 10.1

// --

// Copyright (C) 2001-2006 by ILOG.

// All Rights Reserved.

// Permission is expressly granted to use this example in the

// course of developing applications that use ILOG products.

// --

//

// This is a helper class used by several examples to read input data files

// containing arrays in the format [x1, x2, ..., x3]. Up to two-dimensional

// arrays are supported.

//

package com.dragon.scm;

import java.io.*;

import java.util.*;

public class InputDataReader {

 public static class InputDataReaderException extends Exception {

 InputDataReaderException(String file) {

 super("'" + file + "' contains bad data format");

 }

 }

 StreamTokenizer _tokenizer;

 Reader _reader;

 String _fileName;

 public InputDataReader(String fileName) throws IOException {

 _reader = new FileReader(fileName);

 _fileName = fileName;

 _tokenizer = new StreamTokenizer(_reader);

 // State the '"', '\'' as white spaces.

 _tokenizer.whitespaceChars('"', '"');

 _tokenizer.whitespaceChars('\'', '\'');

 // State the '[', ']' as normal characters.

 _tokenizer.ordinaryChar('[');

 _tokenizer.ordinaryChar(']');

 _tokenizer.ordinaryChar(',');

 }

 protected void finalize() throws Throwable {

- 96 -

 _reader.close();

 }

 double readDouble() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken();

 if (ntType != StreamTokenizer.TT_NUMBER)

 throw new InputDataReaderException(_fileName);

 return _tokenizer.nval;

 }

 int readInt() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken();

 if (ntType != StreamTokenizer.TT_NUMBER)

 throw new InputDataReaderException(_fileName);

 return (new Double(_tokenizer.nval)).intValue();

 }

 String readString() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken();

 if (ntType != StreamTokenizer.TT_WORD)

 throw new InputDataReaderException(_fileName);

 return _tokenizer.sval;

 }

 double[] readDoubleArray() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == StreamTokenizer.TT_NUMBER) {

 values.add(new Double(_tokenizer.nval));

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

- 97 -

 // Fill the array.

 double[] res = new double[values.size()];

 for (int i = 0; i < values.size(); i++) {

 res[i] = ((Double) values.elementAt(i)).doubleValue();

 }

 return res;

 }

 double[][] readDoubleArrayArray() throws InputDataReaderException,

 IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == '[') {

 _tokenizer.pushBack();

 values.add(readDoubleArray());

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

 // Fill the array.

 double[][] res = new double[values.size()][];

 for (int i = 0; i < values.size(); i++)

 res[i] = (double[]) values.elementAt(i);

 return res;

 }

 int[] readIntArray() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == StreamTokenizer.TT_NUMBER) {

- 98 -

 values.add(new Double(_tokenizer.nval));

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

 // Fill the array.

 int[] res = new int[values.size()];

 for (int i = 0; i < values.size(); i++)

 res[i] = ((Double) values.elementAt(i)).intValue();

 return res;

 }

 int[][] readIntArrayArray() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == '[') {

 _tokenizer.pushBack();

 values.add(readIntArray());

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

 // Fill the array.

 int[][] res = new int[values.size()][];

 for (int i = 0; i < values.size(); i++)

 res[i] = (int[]) values.elementAt(i);

 return res;

- 99 -

 }

 String[] readStringArray() throws InputDataReaderException, IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == StreamTokenizer.TT_WORD) {

 values.add(_tokenizer.sval);

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

 // Fill the array.

 String[] res = new String[values.size()];

 for (int i = 0; i < values.size(); i++)

 res[i] = (String) values.elementAt(i);

 return res;

 }

 String[][] readStringArrayArray() throws InputDataReaderException,

 IOException {

 int ntType = _tokenizer.nextToken(); // Read the '['

 if (ntType != '[')

 throw new InputDataReaderException(_fileName);

 Vector values = new Vector();

 ntType = _tokenizer.nextToken();

 while (ntType == '[') {

 _tokenizer.pushBack();

 values.add(readStringArray());

 ntType = _tokenizer.nextToken();

 if (ntType == ',') {

 ntType = _tokenizer.nextToken();

 } else if (ntType != ']') {

 throw new InputDataReaderException(_fileName);

- 100 -

 }

 }

 if (ntType != ']')

 throw new InputDataReaderException(_fileName);

 // Fill the array.

 String[][] res = new String[values.size()][];

 for (int i = 0; i < values.size(); i++)

 res[i] = (String[]) values.elementAt(i);

 return res;

 }

}

AlgorithmLW.java

/**

 * Multi-modal transportation problem implemented by Cplex-java

 */

package com.dragon.scm;

import ilog.concert.IloException;

import ilog.concert.IloNumExpr;

import ilog.concert.IloNumVar;

import ilog.cplex.IloCplex;

/**

 * @author Gang Wang Date: 4/11/2012

 */

public class Algorithm {

 static double optimalValue;

 static double[][] solution;

 static double[][] assigDCCus;

 static double[][] assign;

 static double[][] supply;

 static class Data {

 int nSuppliers;// the number of suppliers

 int nDCs;// the number of distribution centers

 int nCustomers;// the number of customers asking for demand

 double[] capacitySupplier;// the capacity of each supplier

 double[] capacityDC;// the capacity of each distribution center

 double[] demandMeans;// the mean value of random demand

 double[] penaltyCost;// penalty cost incurred by the unsatisfied demand

 double[] deadlines;// the deadlines of receiving demands for customers

 double[] processingTimes;// the time of processing products at DC

- 101 -

 double[][] shipCostFromSupDC;// the shipping cost from supplier to

 // distribution center

 double[][] shipCostFromDCCustomer;// shipping cost from distribution

 // center to customer

 double[][] fixedCostFromDCCustomer;// fixed shipping cost from DC to

 // customer

 double[][] shippingTimeFromSupDC;// shipping time from supplier to DC

 double[][] shippingTimeFromDCCus;// shipping time from DC to customer

 double[] fixedCostDCs;

 /***

 * read data from file and construct the model parameters *

 * ***/

 Data(String filename) throws IloException, java.io.IOException,

 InputDataReader.InputDataReaderException {

 /***

 * Construct the object of InputDataReader. Here filename is the

 * file name and not path

 ***/

 InputDataReader reader = new InputDataReader(filename);

 capacitySupplier = reader.readDoubleArray();// value the capacities

 // of suppliers

 capacityDC = reader.readDoubleArray();// value the capacities of DCs

 demandMeans = reader.readDoubleArray();// value the mean values of

 // demands

 penaltyCost = reader.readDoubleArray();// value the penalty costs of

 // customers

 deadlines = reader.readDoubleArray();// value the deadlines of

 // customers

 processingTimes = reader.readDoubleArray();// value the processing

 // time of DCs

 // value the shipping costs from suppliers to DCs

 shipCostFromSupDC = reader.readDoubleArrayArray();

 // value the shipping cost from DCs to customers

 shipCostFromDCCustomer = reader.readDoubleArrayArray();

 // value the fixed costs from DCs to Customers

 fixedCostFromDCCustomer = reader.readDoubleArrayArray();

 // value the shipping time from Suppliers to DCs

 shippingTimeFromSupDC = reader.readDoubleArrayArray();

 // value the shipping time from DCs to Customers

 shippingTimeFromDCCus = reader.readDoubleArrayArray();

 fixedCostDCs = reader.readDoubleArray();

 nSuppliers = capacitySupplier.length;

 nDCs = capacityDC.length;

- 102 -

 nCustomers = demandMeans.length;

 }

 }

 static void knapsack(Data data, double[] shipCostToCus, int index) {

 double max1 = 0, max2 = 0;

 try {

 IloCplex cplex = new IloCplex();

 IloNumVar[] xCustomer = cplex.boolVarArray(data.nCustomers);

 IloNumVar[] assignment = xCustomer;

 /******** Define the arrays of IloNumExpr type *********/

 IloNumExpr[] exprCustomer1 = new IloNumExpr[data.nCustomers];

 IloNumExpr[] exprCustomer2 = new IloNumExpr[data.nCustomers];

 IloNumExpr[] summation = new IloNumExpr[2];

 /***/

 for (int i = 0; i < data.nCustomers - 1; i++) {

 if (Math.max(shipCostToCus[i], shipCostToCus[i + 1]) >= max1)

 max1 = Math.max(shipCostToCus[i], shipCostToCus[i + 1]);

 if (Math.max(data.penaltyCost[i], data.penaltyCost[i + 1]) >= max2)

 max2 = Math.max(data.penaltyCost[i],

 data.penaltyCost[i + 1]);

 }

 /** Add the second term in the objective function *******/

 for (int j = 0; j < data.nCustomers; j++) {

 exprCustomer1[j] = cplex.prod(max1 - shipCostToCus[j],

 assignment[j]);

 }

 summation[0] = cplex.sum(exprCustomer1);

 /**/

 /** Add the third term in the objective function *******/

 double[] penaltyCost = new double[data.nCustomers];

 double totalPenaltyCost = 0;

 for (int j = 0; j < data.nCustomers; j++) {

 penaltyCost[j] = (max2 - data.penaltyCost[j])

 * data.demandMeans[j] * (-1);

 totalPenaltyCost += penaltyCost[j] * (-1);

 }

 for (int j = 0; j < data.nCustomers; j++) {

 exprCustomer2[j] = cplex.prod(penaltyCost[j], assignment[j]);

 }

 summation[1] = cplex.sum(exprCustomer2);

 /**/

- 103 -

 // create the objective function

 cplex

 .addMaximize(cplex.sum(totalPenaltyCost, cplex

 .sum(summation)));

 // constraint 5

 IloNumExpr[] tempConstraint5 = new IloNumExpr[data.nCustomers];

 for (int j = 0; j < data.nCustomers; j++) {

 tempConstraint5[j] = cplex.prod(data.demandMeans[j],

 assignment[j]);

 }

 cplex.addLe(cplex.sum(tempConstraint5), data.capacityDC[index]

 / (1 + 0.98));

 if (cplex.solve()) {

 for (int j = 0; j < data.nDCs; j++) {

 assigDCCus[j] = cplex.getValues(assignment);

 }

 }

 cplex.end();

 } catch (IloException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 static void scheduling(Data data) {

 try {

 IloCplex cplex = new IloCplex();

 int nSuppliers = data.nSuppliers;

 int nDCs = data.nDCs;

 int nCustomers = data.nCustomers;

 IloNumVar[][] Assign = new IloNumVar[nSuppliers][nDCs];

 IloNumVar[][] Supply = new IloNumVar[nSuppliers][nDCs];

 for (int s = 0; s < nSuppliers; s++) {

 Assign[s] = cplex.boolVarArray(nDCs);

 Supply[s] = cplex.numVarArray(nDCs, 0, Double.MAX_VALUE);

 }

 /******** Define the arrays of IloNumExpr type *********/

 IloNumExpr[] exprSupplier = new IloNumExpr[nSuppliers];

 /***/

 /** Add the first term in the objective function *******/

 for (int i = 0; i < nSuppliers; i++) {

 exprSupplier[i] = cplex.scalProd(data.shipCostFromSupDC[i],

 Supply[i]);

 }

 /**/

- 104 -

 // create the objective function

 cplex.addMinimize(cplex.sum(exprSupplier));

 assigDCCus[2][1]=0;

 // constraint 1

 for (int i = 0; i < nSuppliers; i++) {

 cplex.addRange(0, cplex.sum(Supply[i]),

 data.capacitySupplier[i]);

 }

 for (int i = 0; i < nSuppliers; i++) {

 for (int j = 0; j < nDCs; j++) {

 cplex.addLe(Supply[i][j], cplex.prod(Assign[i][j],

 data.capacitySupplier[i]));

 cplex.addLe(cplex.prod(Assign[i][j], 1.0), Supply[i][j]);

 }

 }

 // Constraint 2: Flow balance constraints for DCs

 for (int n = 0; n < nDCs; n++) {

 double sum = 0;

 IloNumExpr[] epxrShip = new IloNumExpr[nSuppliers];

 for (int s = 0; s < nSuppliers; s++) {

 epxrShip[s] = cplex.prod(1.0, Supply[s][n]);

 }

 for (int j = 0; j < nCustomers; j++) {

 sum += data.demandMeans[j] * assigDCCus[n][j];

 }

 cplex.addEq(cplex.sum(epxrShip), sum);

 }

 // Constraint 4: Time window constraint for customers

 IloNumExpr[] epxrSupply = new IloNumExpr[nSuppliers];

 for (int n = 0; n < nDCs; n++) {

 for (int s = 0; s < nSuppliers; s++) {

 epxrSupply[s] = cplex.prod(

 data.shippingTimeFromSupDC[s][n],

Assign[s][n]);

 }

 for (int j = 0; j < nCustomers; j++) {

 if (assigDCCus[n][j] == 1.0)

 cplex

 .addLe(

 cplex.sum(cplex.max(epxrSupply),

 data.processingTimes[n]),

 (data.deadlines[j]

- data.shippingTimeFromDCCus[n][j])

 * assigDCCus[n][j]);

 }

- 105 -

 }

 if (cplex.solve()) {

 optimalValue += cplex.getObjValue();

 for (int i = 0; i < nSuppliers; i++) {

 // assign[i] = cplex.getValues(Assign[i]);

 supply[i] = cplex.getValues(Supply[i]);

 }

 }

 cplex.end();

 } catch (IloException ex) {

 System.out.println("Concert Error: " + ex);

 }

 }

 /**

 * @param args

 */

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 try {

 String filename = "gap.dat";

 Data data = new Data(filename);

 int nSuppliers = data.nSuppliers;

 int nDCs = data.nDCs;

 int nCustomers = data.nCustomers;

 double[][] shipCostFromDCCustomer = new double[nDCs][nCustomers];

 double[][] fixedCostFromDCCustomer = new double[nDCs][nCustomers];

 double[] demandMeans = new double[nCustomers];

 double[][] shipCostToCus = new double[nDCs][nCustomers];

 shipCostFromDCCustomer = data.shipCostFromDCCustomer;

 fixedCostFromDCCustomer = data.fixedCostFromDCCustomer;

 demandMeans = data.demandMeans;

 // optimal solution matrix

 assigDCCus = new double[nDCs][nCustomers];

 // show the assignment of customers to DCs and initialization

 int[] indicator = new int[data.nCustomers];

 for (int j = 0; j < indicator.length; j++) {

 indicator[j] = -1;

 }

 // build initial cost matrix

 for (int n = 0; n < nDCs; n++) {

 for (int j = 0; j < nCustomers; j++) {

 shipCostToCus[n][j] = shipCostFromDCCustomer[n][j]

- 106 -

 * demandMeans[j] +

fixedCostFromDCCustomer[n][j];

 }

 }

 // create cost matrix in recursion j

 // IloNumVar[][] assignment = new IloNumVar[nDCs][nCustomers];

 double[][] shipCostToCusTmp = new double[nDCs][nCustomers];

 shipCostToCusTmp = shipCostToCus;

 for (int n = 0; n < nDCs; n++) {

 for (int j = 0; j < nCustomers; j++) {

 if (indicator[j] != -1)

 shipCostToCus[n][j] = shipCostToCus[n][j]

 - shipCostToCus[n][indicator[j]];

 }

 knapsack(data, shipCostToCus[n], n);

 for (int j = 0; j < nCustomers; j++) {

 if ((new Double(1.0)).equals(assigDCCus[n][j]))

 indicator[j] = n;

 }

 }

 for (int j = 0; j < nCustomers; j++) {

 System.out.println(indicator[j]);

 }

 assigDCCus = new double[nDCs][nCustomers];

 for (int j = 0; j < nCustomers; j++) {

 if (indicator[j] != -1)

 assigDCCus[indicator[j]][j] = 1.0;

 }

 for (int n = 0; n < nDCs; n++) {

 for (int j = 0; j < nCustomers; j++) {

 optimalValue += shipCostToCusTmp[n][j] *

assigDCCus[n][j];

 }

 }

 for (int j = 0; j < nCustomers; j++) {

 double sum = 0;

 for (int n = 0; n < nDCs; n++) {

 sum += assigDCCus[n][j];

 }

 optimalValue += data.penaltyCost[j] * data.demandMeans[j]

 * (1 - sum);

 }

 // schedule the transportation between suppliers and DCs

 assign = new double[nSuppliers][nDCs];

- 107 -

 supply = new double[nSuppliers][nDCs];

 scheduling(data);

 System.out

 .println("--");

 System.out.println("Solution value = " + optimalValue);

 System.out

 .println("--");

 System.out

 .println("--------Assignment of DCs to Customers---------");

 for (int n = 0; n < nDCs; n++) {

 for (int j = 0; j < data.nCustomers; ++j)

 System.out.println("DC-Customer : (" + n + "," + j

 + ") assignment = " + assigDCCus[n][j]);

 }

 System.out

 .println("--------Assignment of Suppliers to DCs---------");

 for (int i = 0; i < nSuppliers; i++) {

 for (int j = 0; j < nDCs; ++j) {

 System.out.println("Supplier-DC : (" + i + "," + j

 + ") Shipping Quantity = " + assign[i][j]);

 }

 }

 System.out.println("--------Shipment of Suppliers to DCs---------");

 for (int i = 0; i < nSuppliers; i++) {

 for (int j = 0; j < nDCs; ++j) {

 System.out.println("Supplier-DC : (" + i + "," + j

 + ") Value = " + supply[i][j]);

 }

 }

 } catch (IloException ex) {

 System.out.println("Concert Error 1: " + ex);

 } catch (InputDataReader.InputDataReaderException ex) {

 System.out.println("Data Error: " + ex);

 } catch (java.io.IOException ex) {

 System.out.println("IO Error: " + ex);

 }

 }

}

- 108 -

Curriculum Vita

Gang Wang

1980 Born in June 29, Liaoning Province, China

1999 B.S. , Dalian University of Technology, China

2003-2005 M.S., Dalian University of Technology, China

2005-2008 Ph.D. Student, Dalian University of Technology, China

2008 Ph.D. in Operations Research, Dalian University of Technology, China

2007-2012 Ph.D. Student in Supply Chain Management, Rutgers University

2007-2011 Teaching Assistantship, Rutgers University

2011-2012 Dissertation Fellowship, Rutgers University

2012 Ph.D. in Supply Chain Management, Rutgers University

