Staff View
Operations scheduling with delivery deadlines in multi-echelon supply chains

Descriptive

TitleInfo
Title
Operations scheduling with delivery deadlines in multi-echelon supply chains
Name (type = personal)
NamePart (type = family)
Wang
NamePart (type = given)
Gang
NamePart (type = date)
1980-
DisplayForm
Gang Wang
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Lei
NamePart (type = given)
Lei
DisplayForm
Lei Lei
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Zhao
NamePart (type = given)
Yao
DisplayForm
Yao Zhao
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Yeniyurt
NamePart (type = given)
Sengun
DisplayForm
Sengun Yeniyurt
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Miller
NamePart (type = given)
Tan C
DisplayForm
Tan C Miller
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - Newark
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-10
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract
We study the operations scheduling problem with delivery deadlines over capacitated multi-echelon shipping networks. Our main results consist of new mathematical models, structural analysis, and solution methodologies for this type of operations scheduling problems, which are in general computationally difficult due to their inherent combinatorial nature. Part I of the dissertation investigates three polynomial-time solvable cases, including case 1) identical order sizes; case 2) designated suppliers; and case 3) divisible order sizes. For the first case, we prove that the original problem can be decomposed into two sub-problems: the transportation problem and a specially structured mixed integer programming model that is totally unimodular. For the second case, we show that the original problem can be solved by the Minimal Spanning Tree algorithm that runs in polynomial time. The third case is shown to be solvable in polynomial time by extending the literature results for a special case of the well- known bin packing problem. Part II of this dissertation analyzes the structure properties of the network scheduling problem with a single processing center (PC) between the suppliers and customers. A dynamic programming-based search algorithm that correctly identifies the optimal subset of customer orders to be fulfilled under each given utilization level of the PC capacity is proposed. We also prove that the resulting search algorithm converges to the optimal solution within pseudo-polynomial time. Part III of the dissertation focuses on the methodology of solving the general operations scheduling problems with customer delivery deadlines. We propose a linear programming relaxation-based algorithm. With this algorithm, a given network scheduling problem is solved through an iterative process. During each iteration, a threshold parameter is used to select the relaxed linear variables to be binary variables for the next iteration, while a subset of binary variables is still relaxed to bounded linear variables. The iteration continues until the values of all the binary variables are determined. This partial relaxation allows us to avoid dealing with the generalized knapsack problem, a difficult NP-hard problem, in the solution process.
Abstract (type = abstract)
Subject (authority = RUETD)
Topic
Management
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4272
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
ix, 108 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Gang Wang
Subject (authority = ETD-LCSH)
Topic
Production scheduling
Subject (authority = ETD-LCSH)
Topic
Shipment of goods
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000066591
RelatedItem (type = host)
TitleInfo
Title
Graduate School - Newark Electronic Theses and Dissertations
Identifier (type = local)
rucore10002600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3WQ02M9
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Wang
GivenName
Gang
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-09-23 23:21:57
AssociatedEntity
Name
Gang Wang
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - Newark
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

FileSize (UNIT = bytes)
2035712
OperatingSystem (VERSION = 5.1)
windows xp
ContentModel
ETD
MimeType (TYPE = file)
application/pdf
MimeType (TYPE = container)
application/x-tar
FileSize (UNIT = bytes)
2037760
Checksum (METHOD = SHA1)
22d79f88ff359ba9491bb38f00c9d2288291c7b8
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024