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ABSTRACT OF THE THESIS 

 

EVALUATION OF PASSIVE RFID SYSTEM IN A DYNAMIC WORK ENVIRONMENT 

 

By SHRINIWAS AYYER 

 

Thesis Director: 

Professor Ivan Marsic 

 

 

RFID has been one of the most widely used sensing technologies. Due to its ease of 

integration, low cost and minimal system intervention required, a lot of domains are 

deploying RFID for their applications. A major market of RFID technology applications has 

been the inventory and tracking application. The data obtained from RFID, however, also 

contains high level of information in it, which can be used and exploited for sensing 

applications like localization, motion detection, activity recognition, etc. Despite, the 

widespread use of RFID, there are some technical shortcomings and lack of a system design 

approach which hinders the performance of RFID systems in dynamic and critical settings. 

Our goal is to introduce the Passive RFID technology in a dynamic work environment like the 

Trauma Resuscitation Bay as part of a context-aware system to support activity recognition. 

Mobility of an object is closely related to its usage and hence the activity being performed. 
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Detecting mobility of an object using passive RFID technology is the first step towards 

activity recognition. 

 

The deployment of the RFID system and the placement of the antennas play a crucial role in 

the performance of their sensing application. In this work, we have devised a method to 

determine the effectiveness of an RFID equipment setup. We have analyzed different RFID 

setups and we discuss the metrics used to determine their effectiveness. We conducted 

experiments with different scenarios to collect the data and evaluated the performance of a 

setup in each scenario. The results obtained helped us to correlate the RFID setup with its 

detection performance. We also ran a classification algorithm on the data collected and 

evaluated the object motion detection accuracy for all the set ups. Our work provides a 

ground rule for the RFID set up requirements to be considered for detection applications 

and also provides insights into the features that can be used for state classification of 

objects using the RFID data. 
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Chapter 1: Introduction 

1.1 Motivation 

A lot of technological advancements have been made in the fields of voice recognition, 

gesture recognition, emotion detection opening up a lot of prospective areas of research for 

improving the safety and quality of patient care. Among these, radio-frequency based 

identification is most promising given its unobtrusiveness and easy integration into the 

healthcare systems. Other advantages of RFID over other sensing technologies include low 

cost, no line of sight requirements, minimal human intervention. Initial attempts to deploy 

information systems to aid trauma teams have been promising, but have shown limited 

usability. 

RFID technology is widely used in inventory tracking, access control systems, vehicle 

identification, ticketing, etc. All these application domains focus on item level tracking 

where the main aim is to detect the object. In a healthcare domain, item level detection will 

not be of any significant use if the state of the object or the location of an object is not 

known. Developing a context aware system in a trauma room requires state identifications 

like mobility detection of objects, usage detection and also the information regarding the 

location of the object. All these things will contribute to determine the current activity being 

conducted in the trauma room. Unlike item level tracking where a signal from a particular 

tag is enough to identify the presence of the object, all these identifications require high 

level information from the RFID data being extracted at the reader, rather than just 

identifying the tag as present or not present.  
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Introduction of these identification techniques with Passive RFID technology in a dynamic 

and time critical environment like the trauma resuscitation room is very challenging due to 

several reasons. Firstly, trauma rooms are crowded with many people moving around 

causing a lot of interference. Secondly, there are many medical objects in use at the same 

time reducing the detecting capabilities of the readers. Thirdly, the position of the tag on 

the object matters since if the tag gets covered during usage, then the reader will not be 

able to detect it. Fourth, medical tools are made of different materials and some object 

contains liquids affecting the radio signals. Fifth, certain objects come with a plastic packing 

and hence the tags can only be placed on the plastic cover. Once the cover is removed, the 

object can no longer be tracked. Lastly, due to the shape of certain medical objects e.g. 

stethoscope, it becomes difficult to place the tag properly on the object so that it emits 

sufficient radio signal back and is getting detected. 

Thus, with a lot of potential for the RFID technology in the field of healthcare, there is not 

enough work done to develop a set of rules, guidelines to follow to deploy an RFID system in 

the healthcare domain and get satisfactory results. Our aim is to introduce the passive RFID 

technology in a trauma resuscitation bay as a part of a future context-aware system to track 

the activities of a trauma room [6]. 
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1.2 Contribution of the thesis 

RFID technology can be used for inferring high level information, such as motion, location or 

activity. However passive RFID technology is affected by external interferences as well as a 

lot of other factors like multipath propagation, inter tag collision, human interference, etc. 

The Received Signal Strength Indicator (RSSI) can be very noisy even when both the tags and 

readers are stationary. Hence, for reliability, generally multiple readers or multiple antennas 

with a single reader are used. Currently, number and placement of antennas, as well as tags, 

is determined based on heuristics, which aims to maximize the read rate or the accuracy. A 

lot of work has been done previously [1, 2, 3] on the read rates obtained from an RFID set 

up and is focused on improving the coverage area/read range for a given system. No work is 

done so far on optimizing the RFID setup considering the motion detection or activity 

detection application using an RFID system. Read rates are not that intuitive and for motion 

detection or activity recognition, we need to extract high level features from the received 

signal. 

It is important to note that RFID is a unique sensing technique which uses the wireless link 

to communicate the information. Hence it differs from other sensors in being sensitive to 

tag orientation, antenna orientation, antenna placement and other setup parameters. In 

our thesis, we develop a setup evaluation method based on distribution distance, and apply 

our method to human activity recognition in a dynamic medical setting, an example of 

which is trauma resuscitation. Our thesis explains the techniques to follow and the metrics 

to consider for RFID set up evaluation in an application domain where state recognition is 

used. 
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Our long term goal of the project being activity recognition in a trauma resuscitation room, 

we simulated a trauma bay in our research lab and conducted motion detection and 

location change experiments. We developed an algorithm for classification and evaluated 

the accuracy for different set ups, and by changing different parameters. In our work, we 

also explore the problem of long-range object motion detection using passive RFID. Our 

work focuses on dynamic settings suffering interference caused by humans and multiple 

tags. We observed that, the change in signal due to actual tag motion and the variations in 

signal due to external interferences are separated and distinguishable using statistical 

methods.  

We extract descriptive features from the received signal at the reader and classify them 

using machine learning techniques. In our thesis, we have reported the experimental results 

obtained with several statistical features and classifiers. 

Thus, the contribution of our thesis is twofold - First, we perform experimental verification 

and evaluation of RFID setups to determine the most optimum set up for the domain of 

object state classification. Second, we perform classification of the object state for the 

different RFID setups and analyze the results. 
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Chapter 2: RFID Technology 

2.1 Introduction 

Radio Frequency Identification (RFID) is the use of an object (typically referred to as an RFID 

tag) applied to or incorporated into a product, animal, or person for the purpose of 

identification and tracking using radio waves. RFID simply extracts the data present in the 

memory chip and makes it available for further processing. 

A basic RFID system consists of three components: 

a) An antenna or coil 

b) A transceiver (with decoder) 

c) A transponder (RF tag) electronically programmed with unique information more often a 

serial number unique for that tag. 

There are many different types of RFID systems available in the market. These are 

categorized according to their frequency ranges. Some of the most commonly used RFID kits 

are as follows: 

1) Low-frequency (30 KHz to 500 KHz) 

2) Mid-Frequency (900 KHz to 1500MHz) 

3) High Frequency (2.4GHz to 2.5GHz) 

These frequency ranges mostly tell the RF ranges of the tags from low frequency tags 

ranging from 3m to 5m, mid-frequency ranging from 5m to 17m and high frequency ranging 

up to 200m. 

With RFID, the electromagnetic or electrostatic coupling in the RF (radio frequency) portion 

of the electromagnetic spectrum is used to transmit signals. An RFID system consists of an 

antenna and a transceiver, which reads the radio frequency and transfers the information to 
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a processing device (reader) and a transponder or RF tag, which contains the RF circuitry 

and information to be transmitted. The antenna provides the means for the integrated 

circuit to transmit its information to the reader that converts the radio waves reflected back 

from the RFID tag into digital information that can be passed on to computers that can 

analyze data. 

There are three types of RFID technology: 

1) Active RFID Technology - Active RFID tags are typically larger and more expensive to 

produce, since they require a power source. Active RFID tags broadcast their signal 

to the reader, and are typically more reliable and accurate than passive RFID tags. 

Since active RFID tags have a stronger signal, they are more adept for environments 

that make it hard to transmit other types of tags, such as under water, or from 

farther away. 

2) Passive RFID Technology - Passive RFID tags, on the other hand, do not have internal 

power supplies and rely on the RFID reader to transmit data. A small electrical 

current is received through radio waves by the RFID antenna, and power the CMOS 

just enough to transmit a response. Passive RFID tags are more suited for 

warehousing environments where there is not a lot of interference, and relatively 

short distances (typically ranging anywhere from a few inches to a few yards). Since 

there is no internal power supply, passive RFID tags are much smaller and cheaper 

to produce.  
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3) Semi-Passive RFID Technology - Semi-passive RFID tags are similar to active RFID 

tags in that semi-passive RFID tags have an internal power supply, but they do not 

broadcast a signal until the RFID reader transmits one first. 

2.2 RFID Technology: Advantages and Challenges 

RFID is one of the most widely used sensing technologies. In our work, we are using the 

passive RFID technology in the trauma room for detecting usage because of some of its 

advantages. 

 Compared to the widely used barcode system, RFID does not require line of sight 

link with the reader. 

 Passive RFID tags are cheaper and can be easily deployed on any object. 

 Unlike, computer vision, RFID tags are easily re-programmable and hence no 

permanent data is maintained. 

 RFID technology enables faster and easier detection of multiple tags simultaneously. 

 It does not require focused passing of sensors over the scanners, thus minimizing 

human interference. 

Due to its passive nature, it also has certain disadvantages compared to other sensors: 

 It is sensitive to the environment in which it is deployed. External factors such as 

metallic cabinets, human intervention cause a lot of interference in the signal. 

 It is also affected by the material of the object on which it is tagged; we need special 

tags for metals and liquid containers. 
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 It has a limited read range due to its backscatter mechanism. Due to the absence of 

an external power source, it cannot be detected over long distances. 

2.3 RFID Equipment and Environmental Setting 

We are performing our experiments in a lab room which is partially filled with furniture like 

metal cabinets, wooden desks ad separators, which caused multipath fading and distortion 

of RF signal. We have tried to simulate a setting similar to the trauma bay [Figure 2.1] in the 

lab room, with a patient bed in the center, side furniture and free space. A tagged object 

was interacted near the patient bed and this area was our focus of attention throughout the 

experiments. We performed two distinct set of experiments: Set one - with respect to the 

RFID setup evaluation. Set two - with respect to the motion detection classification analysis.  

We have used off the shelf RFID equipment from Alien [4]: an RFID reader (ALR-9900), 

circularly polarized antennas (ALR – 9611 – CR) and passive tags (Squiggle ALN-9540). The 

number of antennas and the antenna setup varied according to the experimenting sets. 

Regardless of the number of tags used in any experiment, the reader scanned for multiple 

tags in the environment, rather than a fast search for the single tag. The readers were 

operated in a dense reader mode (DRM), which prevents interference among readers, to 

obtain results scalable to larger deployments with multiple readers. Also, DRM yields the 

best performance when tag-to-reader distance is greater than 1.5 meters. Radio signal was 

emitted in a round robin fashion through one antenna at a time (for 0.5 seconds). The 

reader emitted 1 watt of RF power. The number of readers used in an experiment depended 

upon the number of antennas used in the experimental set up. Only three antennas were 
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connected to a reader. So for experiments dealing with more than three antennas, two 

readers were used. 

The experiments were conducted in a closed lab (Figure 2.1) which had multiple sources of 

interferences like desks, glass cabinets, metal cabinets etc. A wooden cart was used as a 

patient bed on which the RFID tagged object was placed during the experiments. 

 

 

 

 

 

 

 

 

 

            Figure 2.1: Experimental Lab Setup – Top View 
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Table 2.1: RFID Reader Specifications 

Name  Alien Multi-Port General purpose RFID Reader 

Model Number ALR 9900 

Architecture Point-to-multipoint reader network, mono-static antenna 

Operating Frequency 902.75 MHZ – 927.25 MHZ 

Hopping Channels 50 

Channel Spacing 500 KHZ 

Channel Dwell Time  < 0.4s 

RF Transmitter < 30 dBm at the end of 6 m LMR-195 cable 

Modulation method Phase Reversal – Amplitude Shift Keying (ASK) 

20 dB Modulation 

Bandwidth 

< 100 KHZ 

RF Receiver 2 channels 

Power Consumption 30 watts 

Communications Interface RS-232 (DB-9 F), TCP/IP (RJ-45) 

Inputs/Outputs 4 coax antenna, 4 inputs/8 outputs (optically isolated), RS-232 com port, 

LAN, power 

Dimensions 8* x 7* x 1.6* 

Weight Approximately 1 kg 

Operating Temperature -20
o
C to + 50

o
C 

LED indicators Power, Link, Active, Ant0-3, CPU, Read, Sniff, Fault(Red) 

Software Support APIs, sample code, executable demo app(Alien Gateway) 

Protocol Support Comply with EPC Class 1 Gen 2 and 18000 -6C 

Compliance Certifications FCC Part 15;FCCID;P65ALR9900IOC:4370A-ALR9900 
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Figure 2.2: Alien ALR 9900 RFID Reader 

 

Table 2.2: RFID Reader External Circular Polarized Antenna Specifications 

Model ALR-9611-CR and ALR-9611-CL 

3 dB Beamwidth E plane: 65
o
 , H plane: 65

o
 

Frequency 902-928 MHZ 

Gain (dB) 6.0 dBiL (maximum) 

Polarization Circular 

RF connector 6 m LMR-195 with reverse polarity 

VSWR 1.5:1 

Dimensions 8.5 x 10.5 x 1.65 (inches) 

Weight .57 kg 
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Figure 2.3: Alien ALR 9611 CR Antenna 

Table 2.3: Passive RFID Tag Specifications 

IOC/IEC 18000-6C 

EPCglobal Class 1 Gen 2 

Integrated Circuit Alien Higgs-3 

EPCglobal Certificate 950110126000001084 

Operating Frequency 840-960 MHz 

EPC Size 96-480 Bits 

User Memory 512 Bits 

TID 32 Bits 

Unique TID 64 Bits 

Access Password 32 Bits 

Kill Password 32 Bits 
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Figure 2.4: The squiggle passive RFID Tag 
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Chapter 3: Evaluation of RFID Equipment Set Up 

3.1 Introduction 

The RSSI data obtained from the reader contains a lot of high level information which can be 

used for inferring the state of the object. The RSSI or read rate can be very noisy even when 

both the reader and antenna are static. For reliability, multiple antennas and tags must be used. 

Currently, there is no specific protocol or guideline that could be used for the RFID system 

design from a state recognition point of view. The RFID system usually gets deployed in a 

manner that maximizes the coverage area and guarantees a respectable read rate [2, 3]. Read 

rates are not always indicative for inference of high-level information. Accuracy, on the other 

hand, depends on the methods used for data processing such as features and classifiers 

selected. Current practice is placing antennas in a regular grid based on intuitions without 

performing controlled experiments, optionally performing preliminary experiments to find the 

best placement. Or using different styles and discussing their usefulness after performing all 

experiments.  

Although optimum placement problem arises for other sensors as well, passive RFID has two 

properties that make the problem different: 1) Sensing components 2) Sensitivity. Most sensors 

(e.g., accelerometers, temperature sensors and humidity sensors) have a single component for 

sensing. Wireless communication is used only for transmitting to or receiving data from other 

devices, such as a data processing unit. In case of RFID (as well as Wi-Fi), both sensing and data 

transmission is performed via the wireless communication signal. Therefore the sensing system 

consists of two components: sensors on objects (tags) and readers (base stations). The 

deployment strategy must consider both components, possibly in conjunction. 
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Second, RFID is very sensitive to orientation and interference due to human occlusion and 

movement. The received signal strength changes with the change in orientation of the tag 

placed on the object. This might result in false positives or missed reads. RSSI (Received Signal 

Strength Indicator) is also affected by the presence of human in the environment.  Both these 

factors are quite common to occur in a trauma resuscitation room. 

In this chapter, we will explain about the setup evaluation method we developed based on 

distribution distance, and apply our method to human activity recognition in a dynamic medical 

setting, an example of which is trauma resuscitation. First, we list the requirements for antenna 

and tag deployments in a trauma resuscitation setting. Next we define our criteria for evaluating 

the goodness of placement, along with the other two criteria: read rate and accuracy.  Then, we 

discuss the results obtained from our experimentation and the defined metrics used. 

There are two main components in an RFID set up which determine the performance of the set 

up – Antenna Placement and Tag Placement. Antenna placement refers to the positioning of the 

antenna in the system so as to transmit and receive the signals. Improper positioning of 

antennas might lead to reduced coverage area, overlapping of antenna regions, missed 

readings. Tag placement refers to the positioning of tag on the object. Since the positioning of 

the tag on the object depends upon the object itself, we experimented with several different 

medical objects with different tag positions on them. 

Thus to evaluate an RFID equipment setup, we performed two types of experiments – antenna 

experiments and tag experiments.  
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3.2  Criteria for evaluating the goodness of a setup 

In this section, we describe our criteria for evaluating the goodness of deployment and discuss 

their relation. Since, we performed two kinds of experiments in analyzing the optimum RFID 

setup; we need to use the appropriate criterion for evaluating each experiment type. 

 3.2.1 Read Rate 

Read rate has been defined in different ways in the literature depending on the use case. Our 

goal of object-use detection requires a substantial amount of data from each tag to obtain 

reliable results. Accordingly, we define read rate as the number of responses obtained from a 

tag per unit of time. Read rate is simple to calculate and provides the basic high-level 

information about the goodness of deployment. Most of the prior work [1, 2, 3] has evaluated 

their RFID system performance in terms of read rate.   

 3.2.2 Distribution Distance 

The RFID system deployment strategy usually focuses on the read rates of the tags. High 

read rates are desirable and good, but they are not good indicators of usage. An object 

standing still near to the reader will give good read rates compared to an object in use but 

at a distance away from the reader. Hence we need to study the RSSI pattern obtained from 

the signals to infer their usage. Distribution distance is one such feature which helps to 

determine the usage by detecting the change in the pattern. Distribution distance is nothing 

but the difference between the distributions of two signals. When an object is in use, the 

RSSI pattern received at the reader is more fluctuating and varies a lot. Hence, the standard 

deviation of the signal is higher when the object is in use. Thus the RFID setup should be 



17 
 

 
 

such that it complements the standard deviation when the object is in use. For example – 

Suppose there are two available set ups A and B. We conduct an experiment in both the set 

ups where a tagged object is not in use for the first 10 seconds and then used for the next 

10 seconds. Now, we calculate the standard deviation of the data collected in the entire 20 

seconds for both the set ups - stdA and stdB. We need to select the set up which is more 

sensitive to the tag activity i.e. with higher standard deviation. If stdA > stdB, then set up A 

will be the set up of our choice. Thus usage is very closely related to the standard deviation 

of the signals which in turn is related to the distribution distances of the signals. Higher the 

distribution distance, farther apart the signal patterns are, greater is the standard deviation. 

In other words, distribution distance helps us to determine the sensitivity of an RFID set up 

to location changes, motion, and usage of the tagged objects. 

We calculate the distance between two RSSI patterns as follows: Let Xp is the RSSI sequence 

generated when the tag is in one state (e.g., standing still), and Xq is the RSSI sequence 

generated when the tag is in another state (e.g., in motion). We assume Xp and Xq are 

generated by normal probability distributions P and Q, respectively, which are modeling 

object’s state of motion. Mahalanobis distance is one such tool which is most commonly 

used for calculating the difference between two distributions.  

Mahalanobis Distance: Mahalanobis distance is a measure of similarity between a vector 

and a set of vectors characterizing a distribution. Unlike the Euclidean distance, it takes the 

correlations between variables into account and it is scale invariant (does not change when 

variables are multiplied with a common factor). Formally, Mahalanobis distance of a 
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multivariate vector p to a multivariate distribution Q with mean µ and covariance S is 

calculated as: 

)()(),( 1    pSpQpd T

M

                            (1) 

To find the distance between distributions P and Q, we define the following distance metric, 

which favors high inter-distribution distance and low intra-distribution distance: 

                                                           (2) 

Where        is defined as the average distance of samples in P to samples in Q: 

       
 

 
 



n

i

im Qpd
1

),(                                             (3) 

The Mahalanobis distance metric is closely related to separability of classes in a 

classification problem: as the average inter-class distance increases and the average intra-

class distance decreases, i.e. classes are more separable, classification performance is 

expected to improve. We used mahalanobis distance as a distribution distance metric 

because of its advantages: 

 It automatically accounts for the scaling of the coordinate axes 

 It corrects for correlation between the different features  

 It can provide curved as well as linear decision boundaries 

Compared to read rate, distribution distance better characterizes the distinguish ability of 

object states for different RFID equipment setups. However it is a more complex measure 
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that requires selecting a distance metric and making assumptions on the data (e.g., normal 

distribution), both of which may bias the judgment on the goodness of an RFID setup.  

3.2.3 Use Detection Accuracy 

Use detection accuracy represents the similarity between the hypothesis about object use 

and the ground truth; therefore it is the direct measure to evaluate the goodness of a setup. 

Several metrics can be used to measure the similarity between the hypothesis and the 

ground truth, such as precision, F-score or classification accuracy [5]. In this work, we focus 

on two cues indicating object use: coarse-level location and motion status. We formulate 

both coarse-level localization and motion detection problems as classification problems and 

calculate the classification accuracy as follows: 

         
                             

                          
                 (4) 

Calculating the accuracy requires building a recognition system, which includes feature 

extraction, model training and classification steps. It measures the setup goodness in the 

context of the end application; however, unlike read rate, which can be measured directly, 

measuring accuracy requires building the entire end application system. Also, the overall 

results may be biased by the selection of recognition system components. 

3.3 Experimentation Methodology 

Experiment – It basically means the collection of data performing multiple runs of the RFID 

reading for a given environmental set up and tag set up. Each run of an experiment lasted 

20 seconds and 5 runs were performed for each experiment. So we had 100 seconds of 
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data for each experiment. This might look small amount but our main aim was to 

determine the best RFID set-up that could be used for efficient mobility detection 

assuming the mobility detection algorithm has already been equipped. 

Since the target audience of our mobility detection project was healthcare domain, we 

wanted to simulate the environment of a typical surgery room in our lab. We used two 

wooden carts to act as the patient beds and also surgical equipments were our object of 

use. Our methodology can be broadly classified into two types: 

1) Antenna Experiments 

2) Tag Experiments 

Both the types of experiments had several settings under them which will be explained in 

detail later. The above classification of the experiments is based on the RFID equipment 

itself which includes the antennae and the tags. We also performed experiments from the 

usability point of view. Location estimation and mobility being the two most important 

applications of RFID, we performed each experiment for both location change of the object 

as well as the mobility. 

 Location change – These experiments basically meant changing the location of the 

object after a specified time in an experimental run (figure 3.1). Since each run we 

performed lasted 20 seconds, we changed the location of the object after 10 

seconds. We performed this by using two wooden carts separated by a distance of 

2m. The object was kept on one cart for 10 seconds and moved to the other cart 



21 
 

 
 

after 10 seconds. This perspective was used to simulate the scenario where the 

objects are being moved from one place to the other during its use.  

 

Figure 3.1: Location Change Experiment 

 Mobility – Mobility experiments were performed by using the objects and moving 

them around after they have been stationary for a while (figure 3.2). The objects 

were stationary for the first 10 seconds of the run and after that they moved around 

(in close vicinity of the cart on which it was initially kept). This simulated the practice 

when a person uses particular equipment which was kept on storage or on the table 

for a while. 

 

Figure 3.2:  Motion Experiments 

The object that was used for these experiments is a rectangular cardboard box that is 

closed from all the sides. The dimensions of the box would be ~ 7 in * 3 in* 3 in. The lab is a 

closed lab and has many interfering sources like the walls, separators and metallic cabinet.  

3.4  Antenna Placement 

The trauma bay consists of specific zones in which the objects are concentrated and used 

(figure 3.3). It is very important to have proper coverage in these zones. In this section, we 

Object at Cart A 

(first 10 seconds) 

Object at Cart B 

(next 10 seconds) 

Object standing still at 
Cart A 

(first 10 seconds) 

Object in motion at Cart 
A 

(next 10 seconds) 
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list the requirements to be met for antenna placement. Next we show the different 

antenna setups we experimented. Finally we discuss the results obtained for these setups 

using the distribution distances and also talk about the optimum setup that is preferred for 

our application. 

3.4.1 Antenna Placement Requirements 

We analyzed the trauma resuscitation setting focusing on the spatial distribution of objects 

and identified five main zones where objects are usually located:  patient-bed zone, right 

and left zones, and foot and head zones (Figure 3.3). Objects are often stored, or left idle, 

in left, right, head and foot zones. Objects cross inter-zone areas when they are relocated 

for use in the patient-bed zone. Based on our analysis of a typical trauma setup [6], we 

have come up with the following requirements for the antenna placement: 

 

Figure 3.3: Trauma Bay Zones 
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 For an optimal antenna placement, each zone must be under coverage of at 

least one antenna. Remaining areas outside the zones need not be covered 

because non-uniform object concentration of the trauma bay allows for non-

uniform antenna coverage. 

 Antennas must be placed such that their reception is minimally affected by the 

object’s orientation.  

 The interference due to human presence and movement should be minimal. 

 The antennas should not hinder providers’ movements and task performance. 

 The number of deployed antennas should be minimized to reduce the cost of 

the equipment and the interference between antennas, and to meet the 

esthetical requirements. 

Based on these requirements, we have come up with 5 different antenna setups which are 

discussed in the following section. 

3.4.2 Antenna Setup Experiments 

1) Experimental Setup 

During trauma resuscitation, medical objects appear either on patient-bed or in one of the 

storage places (left, right, head and foot zones). We created a prototype environmental 

setting in our laboratory including only two zones: the patient-bed zone (usage area, Z1 in 

Figure 3.4) and the left zone (storage area, Z2 in Figure 3.4). Each zone contained a 0.9 m 

tall cart. The carts were separated between 0.8-2.3 m away from each other, depending on 
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the experimental scenario. A cardboard rectangular box was tagged with an RFID tag and 

handled by the experimenter as the target object. 

 

Figure 3.4: Top view of five different antenna setups – Z2 represents the patient-bed zone and Z1 represents the left 

storage zone. Ceiling-mounted antennas are shown with circles; angled antennas are shown with triangles. 

 

Set Up 1: One ceiling mounted antenna placed between the two carts 

As seen in the figure 3.4, this particular setting employs one ceiling mounted antenna 

placed at the center of the two carts at a height of 2.7m above the cart. The antenna field 

around each cart is identical not accounting for the interference due to other sources 

nearby the carts. The area covered by this antenna was determined based on the antenna 

radiation pattern provided by the vendor. We made a conic beam approximation (a cone 

with its vertex on the transmitting antenna and its axis along the transmission direction) for 

the directional radiation pattern of the antenna. The 3 dB beam width (65 degrees), also 

specified by the vendor (Table 2.2), was used as the aperture angle of the cone. The 

resulting coverage area for an antenna was a circle with a radius of 1.5 m at the height of 

carts (distance of 1.8 m from the antenna). The coverage area of the antenna in this setup 

included both storage and usage zones, meeting the coverage requirement (Req. #1).  
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Set Up 2: Two Ceiling mounted antennas placed one directly above each cart 

This setting uses two ceiling mounted antennae one above each cart. The distance between 

the two antennas is approximately the same as the distance between the two carts (figure 

3.4).  

Set Up 3: Two ceiling antennas perpendicular to the carts 

There are two ceiling mounted antennae placed perpendicular to the line joining the 

centers of the two carts. The distance between the two antennae is approximately equal to 

the distance between the two carts which is around 2m (figure 3.4). 

To increase the diversity of signals received from a tag, as well as to account for the 

variability in object and tag orientation (Req. #2), we mounted the new antennas to 

sidewalls such that they transmit through a different (ideally perpendicular) direction with 

respect to the existing antennas (ceiling-mounted). Assuming an average human height of 

1.7 m, we positioned the new antennas at a height of 2 m to reduce interference due to 

human presence (Req. #3), and to minimize the obstruction of equipment on providers’ 

activities (Req. #4). To cover the experimental area, we also slanted the antennas to make 

60˚ to the floor. 

Set Up 4: Two antennae per zone 

There is one ceiling mounted antenna and one side antenna for each cart. Placing of 

multiple antennas for each zone basically helps in addressing different tag orientations. The 

antennae in a zone should transmit in different directions. Set up 4 is a modification of set 

up 2 with two additional side antennae (figure 3.4). 
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Set Up 5: Three antennae per zone 

There is one ceiling antenna right above the cart and additional two side antennae. The two 

side antennae are placed in such a way that they are radiating in perpendicular directions. 

Thus this set up involves a total of 6 antennae and accounts more for different tag 

orientations. However, interference between the antennae will also be high in this case due 

to the close proximity of the antennae (figure 3.4). 

 

2)  Experimental Scenarios 

In a dynamic environment like the trauma bay, there are a lot of scenarios which can affect 

the performance of a given antenna setup [6]. On the basis of the antenna placement 

requirements and our study of the trauma bay [6], we tested each setup with a list of 

possible scenarios. 

The scenarios simulated the environmental characteristics of trauma resuscitation that may 

affect propagation of RFID radio signals. 

Scenario #1: Stationary environment: This is the baseline scenario without any 

environmental factors introduced. 

Scenario #2: Deviations in zone locations: Although coarse-level zone locations in the 

trauma bay are fixed (e.g., cabinets and counter along the walls, patient bed in the center of 

the room), the patient bed and carts may slightly move during the resuscitation. Also, the 

height of the patient bed is adjustable. To simulate these deviations in zone locations, we 

moved the zones (i.e. carts) in the following directions: 
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2-a) Z1 and Z2 moved 0.6 m to north (distance between the zones remained constant). 

2-b) Z1 moved 0.6 m to north; Z2 moved 0.6 m to south (distance between zones increased 

to about 2.3 m). 

2-c) Z1 moved 0.6 m to east; Z2 moved 0.6 m to west (distance between zones decreased to 

0.8 m).  

Scenario #3: Changes in object orientation: Object’s tag in the default object orientation 

was facing the ceiling. However, objects, and hence tags, are not always oriented in the 

same way because users orient the objects randomly during use. To simulate random 

orientations, we placed the object in two additional orientations: 

3-a) Tag faced north 

3-b) Tag faced west 

Scenario #4: Changes in providers’ mobility: Providers’ movement in the environment was 

simulated as follows: 

4-a) Two people walked around zones 

4-b) Five people walked around zones. 

3)  Evaluation Metrics 

To evaluate the efficiency of an antenna setup in a particular scenario, we used the metrics 

of read rate, distribution distance and accuracy. Because each experiment was repeated for 

five times, we report the average values. 
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Our first metric, read rate (per second), was calculated by dividing the total number of 

readouts by 20, which is the duration (in seconds) of a recording. As the second metric, we 

calculated the distribution distance between the first 10s and the next 10s of an RSSI 

recording session, using Mahalanobis distances (Equation 1). For setups including multiple 

antennas, a vector of RSSI values was formed, where each dimension represented RSSI 

value of an antenna. When an antenna totally lost reception, we generated Gaussian 

distributed values with low mean to fill the missing values. 

For location change experiments, we also performed binary classification to predict whether 

the object is located in Z1 or Z2 and calculated the accuracy, our third metric (Equation 5). 

We followed a sliding-window based strategy to map the RSSI data to a set of features. Our 

feature set consisted of the mean RSSI received from each antenna. At each time instant, 

the data in the current time interval is processed to obtain the corresponding feature 

vector. Next, each feature is assigned one of the labels (Z1 or Z2) using a classifier. We 

experimented with different window sizes and classifiers such as Decision Trees, Random 

Forests and Support Vector Machines. The results reported in this section are obtained 

using the classifier Decision Tree with a window length of 5s and a slide length of 1s. 

We performed binary classification also for motion state change experiments to predict 

whether the object is standing still or in motion. We followed the same sliding-window 

based methodology as in the location change experiments except the feature set. Standard 

deviation was used as the feature in motion state change experiments. 

As seen from the above discussion, we have used two different features for location change 

classification and motion detection – mean RSSI and standard deviation respectively. This is 
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because, the location change event happens quite quickly and the object remains stationary 

before and after the location change event. Hence, there are not a lot of variations in the 

RSSI pattern. Hence standard deviation will not be a good metric. Mean RSSI however 

depends upon the location of the object with respect to the antennae. When the location of 

the object changes, the mean RSSI also changes with it. Hence mean RSSI is used as a 

feature for location change experiments. Motion on the other hand results in a lot of 

variations in the RSSI patterns of the tag. If an object is in motion, its standard deviation 

increases and is a good indicator of the motion event. Hence standard deviation is used as a 

metric for motion detection experiments. 

3.5 Antenna Placement Results 

In this section, we discuss the results obtained from our experimentation and also analyze 

it. The results are displaced under two sub-sections – Location Change Experiment Results 

and Motion Detection Experiment Results. Both the subsections consists of three parts each 

– Read Rates, Distribution Distance (Mahalanobis) and Classification Accuracy. 

3.5.1 Location Change Experiment Results 
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Table 3.1: Location Change Experiment Read Rate Values 

Scenarios Set Up # 

  1 2 3 4 5 

1 Ideal 621 528 534 591 545 

2-a Zone deviation: Z1 and Z2 moved 0.6 m 

to north 554 588 412 425 584 

2-b Zone deviation: Z1 0.6 m north, Z2 0.6 

m south 610 591 384 338 537 

2-c Zone deviation: Z1 0.6 m east, Z2 0.6 m 

west 623 614 598 542 576 

3-a Different orientation: tag faces north 536 473 431 506 524 

3-b Different orientation: tag faces west 564 587 545 601 575 

4-a Human movement : two people 609 552 535 606 582 

4-b Human movement: five people 611 512 467 392 562 

Averag

e 

 

 

591 

555.6

25 

488.2

5 

500.

125 560.625 

 

We observed slight changes in read rates obtained under different setups (figure 3.5). 

Highest read rates were obtained in Setup #1, with an average of 30 readings per second. In 

Setups #2 and #3, both antennas were connected to the same RFID reader and scanned the 

experimental area in a round robin fashion. The reader also spent time when switching 
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between the antennas, which caused reduction in interrogation time and hence the read 

rate (Setup #2: 23 readings/sec, Setup #3: 24 readings/sec). Including two readers and 

antennas with different vantage points increased the read rate only slightly (Setups #4 and 

#5: 25 readings/sec). However read rate in Setup #5 was more consistent in different 

scenarios, which indicates its robustness to environmental changes.  

 

Figure 3.5: Read Rate Values for Location Change Experiments 

When multiple tags are present in the experimental area, read rates sharply decrease (e.g., 

6 readings/sec in Setup #2). Setup #5 was also advantageous in this scenario allowing read 

rates up to 13 readings/second. 
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Table 3.2: Location Change Experiments Mahalanobis Distance 

Scenarios Set Up # 

  1 2 3 4 5 

1 Ideal 8.6 140.1 13.2 187 182.1 

2-a Zone deviation: Z1 and Z2 moved 0.6 m 

to north 8.9 18.1 21.4 37.5 94.4 

2-b Zone deviation: Z1 0.6 m north, Z2 0.6 m 

south 2.7 22.8 48.8 80.8 80.1 

2-c Zone deviation: Z1 0.6 m east, Z2 0.6 m 

west 4.9 18.5 8.1 23.7 88.7 

3-a Different orientation: tag faces north 0.2 107.9 1.3 181 411.1 

3-b Different orientation: tag faces west 22.2 41.1 2.3 57.3 76.1 

4-a Human movement : two people 0.5 71.2 0.8 53.7 165.5 

4-b Human movement: five people 1.4 52.1 3 87 175.8 

Average 

 

 6.17

5 55.8 

12.36

25 88.5 

200.84

55 

 

The Mahalanobis distance showed an increasing pattern with the increasing number of 

antennas (table 3.2 and figure 3.6). Comparing Setups #2 and #3, both of which included 

two antennas, Setup #2 provided higher distance, and in turn better separability for 

statistical classification algorithms. Setup #5 provided the highest distribution distance 

values, followed by Setups #4 and #2.  
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Figure 3.6: Mahalanobis Distance Values for Location Change Experiments 

Based on this result, we believe it is required to place at least one ceiling-mounted, floor-

facing antenna per zone. Adding more antennas increased the sensitivity of radio signals to 

different object states however it is also contrary to the cost and esthetic requirements. 

Table 3.3: Classification Accuracy for Location Change Experiments 

Scenarios Set Up # 

  1 2 3 4 5 

1 Ideal 48 100 85 88 97.5 

2-a Zone deviation: Z1 and Z2 moved 0.6 m 

to north 95 90 57.5 93 90 

2-b Zone deviation: Z1 0.6 m north, Z2 0.6 88 95 72.5 90 85 
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m south 

2-c Zone deviation: Z1 0.6 m east, Z2 0.6 m 

west 85 95 67.5 83 72.5 

3-a Different orientation: tag faces north 50 85 50 95 82.5 

3-b Different orientation: tag faces west 100 100 53 98 92.5 

4-a Human movement : two people 60 97.5 68 97.5 90 

4-b Human movement: five people 42.5 92.5 80 90 97.5 

 

Setups #2, #4 and #5 provided the best zone-based localization accuracy for all scenarios 

(table 3.3). Unlike the distribution distance results, where Setups #4 and #5 significantly 

outperformed Setup #2, all three setups yielded very close zone-based localization scores.  

 

Figure 3.7: Classification Accuracy Values for Location Change Experiments 
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By plotting the distribution distances and the corresponding classification accuracies, we 

identified a logarithmic relationship. These results justify the importance of the ceiling-

mounted antenna, placed as in Setup #2. The additional antennas may provide gain in 

challenging conditions. 

3.5.2 Motion Change Experiment Results 

Results of motion state experiments in terms of read rate, Mahalanobis distance and 

motion detection accuracy are depicted in the following tables.  

Table 3.4: Motion Detection Experiments Read Rate Values 

Scenarios Set Up # 

  1 2 3 4 5 

1 Ideal 

275 459.6 

538.

6 589 523 

2-a Zone deviation: Z1 and Z2 moved 0.6 m 

to north 249.8 376 

406.

4 593 546.6 

2-b Zone deviation: Z1 0.6 m north, Z2 0.6 m 

south 314.2 508.8 555 537.4 473.4 

3-a Different orientation: tag faces north 

216 483.4 

321.

6 531.6 486.4 

3-b Different orientation: tag faces west 277.4 539.2 491 427.6 480 

4-a Human movement : two people 278.8 524 526 588.8 508.2 

Average  

268.53 

481.8

3 

473.

1 

544.5

6 502.93 
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The read rate values for the motion detection experiments are quite close for all the set ups 

except set up 1 (figure 3.8). Set up 1 has only 1 antenna, due to the orientation changes in 

the object during the motion, it is not being read correctly by a single antenna.  

 

Figure 3.8: Average Read Rates for Motion Detection Experiments 

Setups #4 and #5 performed best in terms of distribution distance. 

Table 3.5: Motion Detection Experiments Mahalanobis Distances 

Scenarios Set Up # 
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1 Ideal 19.4 25.9 22.3 32.4 21.2 
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2-b Zone deviation: Z1 0.6 m north, Z2 0.6 m 
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3-a Different orientation: tag faces north 2.8 5 5.2 16.1 12.9 
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3-b Different orientation: tag faces west 

9.6 21.7 12.4 26.1 39.5 

4-a Human movement : two people 

5.3 27.6 8.7 28.6 54.6 

Average  

7.9 20.1 10 20.6 27.7 

 

As seen in the table above, set up 2 and 4 have a close value for the average mahalanobis 

distance while set up 5 has outperformed all other set ups. 

 

         Figure 3.9: Mahalanobis Distance values for motion detection experiments 
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The classification accuracies for the motion detection experiments are as shown below 

(table 3.6 and figure 3.10). Unlike, the location change experiments where the object 

changes its location during the experiments, the motion detection experiments have been 

performed at the same cart by randomly using the object. Hence lesser variations are 

expected in the RSSI patterns obtained from the tagged object. This is evident from the low 

mahalanobis distance values. Since standard deviation was the feature used for the motion 

detection experiments, we expected the classification accuracies to be less than that 

obtained for the location change experiments, which is justified in the results obtained. 

Table 3.6: Classification Accuracies for Motion Detection Experiments 

Scenarios Set Up # 

  1 2 3 4 5 

1 Ideal 92.5 87.5 90 70 82.5 

2-a Zone deviation: Z1 and Z2 moved 0.6 m 

to north 42.5 90 65 75 65 

2-b Zone deviation: Z1 0.6 m north, Z2 0.6 m 

south 75 60 80 90 77.5 

3-a Different orientation: tag faces north 65 75 87.5 100 85 

3-b Different orientation: tag faces west 92.5 92.5 87.5 87.5 92.5 

4-a Human movement : two people 67.5 82.5 87.5 85 72.5 

Average  72.5 81.25 82.9 84.58 80 
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Figure 3.10: Classification Accuracies for Motion Detection Experiments 

However we observed lower distance values for motion state, which also caused the motion 

detection scores (table 3.6 and figure 3.10) to be lower than zone-based localization scores 

(table 3.3 and figure 3.7). We conclude that location changes cause larger deviations in the 

RSSI, which makes them easier to detect compared movements at the same location. 

From the results, it quite clear that, the distribution distances as well the classification 

accuracies favor set ups 2 and 5. Set up 2 serves as a more optimum choice since it uses 

only two antennas but with set up 5 the coverage would be more dense and enabling an 

enhanced feature set ( feature formation and classification algorithm is explained in the 

next chapter). We chose set up 2 and 5 as the two most optimum set ups and did some 

further experimentation with them. We added new scenarios which simulate a trauma 

room more closely and evaluated the performance of set ups 2 and 5. These new scenarios 
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made the testing environment more challenging with regards to interference and multipath 

propagation. The additional scenarios added are as follows: 

 Scenario 2-d): Carts Z1 and Z2 were lowered by 0.3 m each (distances between a 

cart and the antennas increased). 

 Scenario #5: Multiple tags in the environment: To simulate the presence of 

multiple objects in the environment, in addition to the target tagged object we 

placed four tags on Cart Z1 (representing two objects in storage) and six tags on cart 

Z2 (representing three objects on patient-bed). Tags were scattered uniformly on 

the carts, with an average separation of 8 cm. 

 Scenario #6: Multiple tags and people movement: Scenarios #4b and #5 were 

combined to observe the joint effect of multiple tags and providers’ movement in 

the environment. 

The results of the additional experiments for set up 2 and 5 are shown in table 9 and 10 

below: 
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Table 3.7: Location Change Experiment Results - Additional Scenarios 

Scenario Set Up 2 Set Up 5 

Read 

Rate 

Mahalanobis 

Distance 

Classification 

Accuracy 

Read 

Rate 

Mahalanobis 

Distance 

Classification 

Accuracy 

2-

d 

Zone 

deviation: Z1 

and Z2 

lowered by 

0.3 m 

562 2.8 92.5 462 114.9 92.5 

5 Multiple tags 

(6tags on Z1, 

4 tags on Z2.  

128 90.4 95.3 258 523.6 80 

6 Human 

motion (5 

people)+ 

multiple tags. 

122 48.8 87.5 255 297 82.5 

 

The scenario 2-d was included to see the effect of the cart movement in vertical direction 

on the performance of the system. As seen from the results, it does not affect the 

classification accuracy since the vertical displacement of the carts does not result in any 

interference with the signal. Scenarios 5 and 6 more closely resemble the trauma bay which 

consists of multiple tagged objects at a time and multiple people moving around in the 

room. As seen from the results, set up 5 gives better read rates and mahalanobis distance 

whereas set up 2 gives better classification accuracy. It is important to note that when there 
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are multiple antennas in the room, the coverage area might be highly affected with lesser 

number of antennae. Hence the read rates as well as the mahalanobis distance are less for 

set up 2. Thus set up 5 is a more preferred set up in case of such an environment. 

Table 3.8: Motion Detection Experiment Results - Additional Scenarios 

Scenario Set Up 2 Set Up 5 

Read 

Rate 

Mahalanobis 

Distance 

Classification 

Accuracy 

Read 

Rate 

Mahalanobis 

Distance 

Classification 

Accuracy 

2-

c 

Zone 

deviation: Z1 

and Z2 

lowered by 

0.3 m 

690.8 7.3 82.5 554.8 25 80 

5 Multiple tags 

(6tags on Z1, 

4 tags on Z2.  

139.8 18.9 87.5 247.2 37 87.5 

6 Human 

motion (5 

people)+ 

multiple tags. 

127.8 12.8 85 263.6 12.1 65 

 

As seen from the table above, the overall performance of set up 5 is better than set up 2 

considering the read rates, mahalanobis distance and the classification accuracy. Even 

though we see that the classification accuracy of set up 2 is slightly better than that of set 

up 5, set up 5 provides better coverage and separability of classes.  
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3.6 Tag Placement 

In this section we address the tag placement problem. The tag placement problem arises 

due to the different size, shapes and material of the object on which the tag is placed. This 

study was done more to understand the effects of the object's characteristics on the tag 

rather than evaluating the performance of the set up itself. The orientation and the 

placement of the tag on an object affect the read rates. If the read rate remains constant no 

matter how we place the tag on the object, then the antenna experiments would be enough 

to evaluate the system. This section provides an insight into the do's and don'ts to be taken 

care of while placing a tag on an object. Previously, work has been done to evaluate the 

characteristics of a passive UHF RFID tag on a general basis [7, 8]. We are studying the tag 

placement requirements with respect to a dynamic medical set up. In a trauma bay, a lot of 

medical objects are in use and these objects have different shapes, sizes and are made up of 

different material. Hence it is important to understand the tag placement requirements and 

challenges faced. 

3.6.1 Tag Placement Requirements 

To maximize the object detection rates in a dynamic medical setting, a tag deployment 

strategy should meet the following requirements.  

1) Each object (or a bundle of objects, such as kits) should have at least one tag.  

2) Tags must be placed such that they are visible to the antennas regardless of the 

orientation of the object.  
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3) When tagging metallic objects and liquid containers, either special tag must be used, or 

the contact between the object and the tag must be minimized.  

4) Tag shape should be preserved as much as possible when attaching it so that its antenna 

can function optimally. 

5) Tags should be placed on object surfaces that are not in contact with providers’ hands or 

body. This is however an interesting requirement, since activity recognition can also be 

inferred when there is some contact made with the tag. 

6) Tag should be placed such that the objects are still comfortable for use. 

7) Number of deployed tags must be minimized to reduce costs and potential message 

collisions during tag-reader communication, as well as meeting the esthetical requirements.  

 

Figure 3.11: Objects used for tag placement experiments - (a) a fluid bag, tag attached along length (b) a 
stethoscope, tags attached along width with complete folding (c) a foley catheter kit, three tags attached (d) a cervical 
collar, tags attached in tandem. 
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3.6.2 Experimental Evaluation 

1) Experimental Setup 

To evaluate our strategies for tag placement, we performed experiments in our two-zone 

setting, consisting of a storage zone and the patient bed zone. Each experiment was 

repeated under antenna setups #2 and #5, which demonstrated the best performances in 

antenna placement experiments. We also created a combination of setups #2 and #5 by 

scanning the storage zone (Z1) with a ceiling-mounted antenna and the patient-bed zone 

(Z2) with one ceiling-mounted antenna and two slanted antennas. We experimented with 

different medical objects, which represented the different material, size and shape of the 

objects in the trauma bay (figure 3.11). 

2) Experimental Scenarios 

We group our experiments based on the different dimensions of tag selection: 

Scenario #1: Tag type selection and placement based on material: A major limitation of 

passive RFID technology is its poor performance on metallic objects and liquid containers. 

Although off-the-shelf special tags are available for metals, they are not appropriate for 

disposable objects due to high costs. When tagging the metallic items and liquid containers 

with regular tags, the overlap between the tag and the object should be minimized for 

better performance. For example, tags can be attached to the edge of the object, provided 

that it does not interfere with provider’s activities. We evaluated this approach by tagging a 

liquid container in the following ways: (1) The tag was attached along its length (2) The tag 

was attached along its width. 
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Scenario #2: Determining the number of tags: Although a single tag may be sufficient to 

detect and identify an object, multiple tags can be used for more reliable detection. 

Multiple tagging is especially useful when one of the tags is subject to low detection rates 

due to irregularity of object shape, orientation changes or occlusion (by hand, body or 

another object). We experimented with two objects to analyze the read rates when multiple 

tags are attached: (1) a Foley catheter kit, which has a regular box-like shape and (2) a 

stethoscope, which has a thin, cylindrical surface.  

The Foley Catheter kit and the stethoscope are shown in figure 3.11. This scenario was 

studied basically to see the effects of multiple tagging on the read rates.  

Scenario #3: Tag placement based on object shape: Most objects in the trauma bay have 

irregular shapes, requiring different strategies for placing RFID tags. For example, objects 

with cylindrical surface may require folding the RFID tag, which may impair the radio signal 

reception. In this experiment, we assess the effect of tag folding on read rates. We 

performed our experiments with a stethoscope, which has a thin cylindrical surface and 

requires significant bending of the tag when completely wrapped. We experimented with 

four folding levels and styles: (1) tag attached along its width without folding (2) tag 

attached along its width with minor folding (3) tag attached along its width with complete 

folding and (4) tag attached along its length with complete folding. 

Scenario #4: Tandem Tagging: Objects are being contacted when in-use. To exploit this 

contact cue for object use detection, we propose attaching two tags to an object in tandem: 

one at a location where the tag will be covered by hand or body when in-use, and one at a 

location where it will always be exposed to RF signal. When the object is not in-use, we 
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expect strong radio signal from both tags; when the object is in-use, the tag being contacted 

by a care provider or the patient will emit weaker signal, or no signal at all. Applicability of 

tandem tagging is limited to objects with a sufficient duration of contact. Due to the 

dynamic nature of trauma resuscitation, signals from tags may be lost briefly during 

accidental contacts or occlusions. Distinguishing these accidental contacts from purposeful 

but brief contacts is almost impossible. Therefore we apply tandem tagging and evaluate its 

effectiveness only on the objects characterized with relatively longer contacts. 

We evaluated the efficiency of this approach using two different objects: a collar and a 

stethoscope. Each object was first tagged randomly, then using the proposed strategy. The 

object stood still during first 10 seconds of a recording session and used during the second 

10 seconds of a recording session (collar placed on human neck, stethoscope used for 

listening to breath sounds). 

3)  Evaluation Metrics 

We used the read rate (number of readings collected from an object per second) as the 

evaluation metric in Scenarios #1, #2 and #3. Because Scenario #4 is directly related to 

object-use, we used the metrics of distribution distance as well. 
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3.7 Tag Placement Results 

3.7.1 Tagging Liquid Containers (Scenario #1) 

Table 3.9: Tag Placement Results - Material of the Object 

Scenario Set Up – Read Rate Values 

2 5 Hybrid  

1-a Material – Tag attached along long 
edge 

290 206 294 

1-b Material – Tag attached long short 
edge 

413.2 553.2 415.4 
 

 

Figure 3.12: Read Rate curve for tags attached on a liquid container. 
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Our experiments with a liquid container showed that, attaching the tag along its shorter 

edge further minimized the object-tag overlap, and yielded higher read rates (table 3.9 and 

figure 3.12).  

3.7.2 Determining the Number of Tags (Scenario #2) 

Table 3.10: Tag Placement Read Rate values for scenario 2 

Scenario Set Up Read Rate Values 

  2 5 Hybrid 

2-a FC – 1 tag 456.4 734.8 387.6 

2-b FC – 2 tags – 6 inch separation 492.4 961.8 562.8 

2-c FC – 3 tags – 3 inch separation 486 1111.2 682.8 

2-d FC – 2 tags – 2 inch separation 713.6 913.2 610.6 

2-e Stethoscope – 1 tag 88.8 306 253 

2-f Stethoscope – 2 tags 313 509.8 353 
 

 

Figure 3.13: Read Rate Graphs for Tag Placement Experiment - Multiple Tagging 
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Using multiple tags on an object improved read rates from both the Foley catheter and the 

stethoscope (table 3.10 and figure 3.13). We also observed that, as the distance between 

tags was increased, or the tags were placed at different orientations, read rates were 

improved. 

3.7.3 Effect of Tag Folding (Scenario #3) 

The tag folding (tag bending) experiments were conducted using the stethoscope. We 

evaluated two cases with tag folding – 1) when the stethoscope was in the storage area 2) 

when the stethoscope was around the person's neck. Since the doctors and nurses usually 

hang the stethoscope around the neck, we had to consider both the cases. 

Table 3.11: Tag Placement Read Rate values for Scenario 3 

Scenario Set Up 

Number Object 
Location 

Description 
2 5 Hybrid 

3-a Cart No bending 502 437.6 357 

3-b Cart Little bending –short edge 466 616.8 343.8 

3-c Cart Complete bending – short 
edge 491 573.8 399.8 

3-d Cart Complete bending –long 
edge 456 516.2 263 

3-e Neck No bending 177 244.2 330.8 

3-f Neck Little bending –short edge 171 285 217.6 

3-g Neck Complete bending – short 
edge 192 306 253.4 

3-h Neck Complete bending –long 
edge 163 235.2 205.4 
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Figure 3.14: Read Rate Graphs for Tag Placement Experiments – Tag Folding 

 

Tag bending caused a degradation pattern in read rates, except the complete bending 

experiment. Although complete bending reduced read rates obtained from ceiling-mounted 

antennas, reception from the slanted antennas was increased. Read rates were lower, and 

impairment of bending was more severe when the stethoscope was around neck (table 3.11 

and figure 3.14). 
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3.7.4 Effect of Tandem Tagging (Scenario #4) 

Table 3.12: Tag Placement Scenario 4 – Read Rate and Mahalanobis Distance Values 

Scenario Read Rate Values for Set 
Ups 

Mahalanobis Distance 
Values for Set Ups 

Number Object Type 2 5 Hybrid 2 5 Hybrid 

4-a Collar Two tags – 
Both exposed 302.6 752 579.6 12.1 111.2 133.7 

4-b Collar Two tags – 
One covered 373.2 542.6 512.2 16.5 90.8 223.3 

4-c Stethoscope Two tags – 
Both exposed 278.6 418.4 442.8 7.4 27.4 35 

4-d Stethoscope Two tags – 
One covered 313 509.8 353.4 8.9 40 11.2 

 

Because our aim is to infer the usage of objects, we used the distribution distance metric for 

evaluation. For both collar and stethoscope, proposed tagging strategy yielded higher 

distribution distance for setup 2 (table 3.12). As seen in the table above, setup 2 provided 

consistent results with both the stethoscope and the collar. Both the distribution distance as 

well as the read rates increased when one of the tags was covered.  

3.8 Summary 

We studied the antenna placement strategy and the tag placement rules in this chapter. The 

antenna set up results gave us a lot of insights into choosing an optimum antenna setup. We 

were able to study the effects of environmental conditions on the system performance and 

also the setups that perform well in challenging conditions. Our antenna setup study 

provides a guideline to be considered for evaluating an RFID system with respect to its 

setup. It also provides the tools that could be used to deploy an RFID system efficiently in a 

dynamic work environment. 
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The tag placement experiments were conducted to study the effects of the object on the 

performance of the tag. We discussed the read rates obtained from the tag by considering 

different aspects of the object. The tag placement results helped us to determine the tag 

placement strategy on the object considering the material, shape and size of the object. This 

study acts as a set of rules to be followed while tagging medical equipments. 
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Chapter 4: Object State Detection 

In a trauma room, there are two types of events which change the state of an object – 

location change and motion. Although the location change event involves the motion of the 

object as well, we will treat both these events separately on the basis of their event 

duration and the resulting changes in the signal. 

Mobility of a user, or an object, provides valuable information to build context aware 

applications. In a trauma bay, object motion detection can help in monitoring the medical 

equipment utilization. In this chapter, we explain the methodology used for long range 

motion detection of an object using passive RFID technology. We define object motion as 

any movement experienced by the object due to human interaction such as holding and 

releasing, using the object. Identification of the location change of an object can also be 

useful to infer the activities to be performed in a trauma room. For example, a location 

change of a collar from the storage area to the patient bed may indicate that the collar will 

be put around the neck of the patient in sometime. 

Both the object motion and object location change events result in fluctuations in the 

received signal strength as well as the read rates. These changes have different statistical 

characteristics compared to the fluctuations caused due to environmental factors such as 

human movement near the tag, nearby tag movement, etc. Our methodology for detecting 

the motion depends on processing the RSSI sequence to detect the fluctuations due to the 

tag motion. 
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We extract descriptive features from the received signal strength and classifying those using 

machine-learning techniques. In the previous chapter, we explained how set up 2 and set up 

5 are the optimum set ups for motion detection. In this chapter, we work with those set ups 

for studying the classification performance with different parameters. 

4.1 Data Collection 

We have used the same data collected for the set up experiments for studying the 

classification performance. The dataset comprises of two sets – 1) Location Change Data 

and 2) Motion Detection Data. Our total dataset for location change comprises of 200 

recordings, each recording being 20s long. Our total dataset for motion change comprises of 

150 recordings, each recording again being 20s long. The classification algorithm was run for 

the entire dataset of location change and motion, individually and the results were 

obtained. 

We ran the classification algorithm for the data collected with all the set ups using different 

classifiers and classification parameters. This gave us insights into the behavior of different 

classifiers and the effect of the parameters on the classification performance. In this work, 

we are focusing more on two state classification for both the location change and the 

motion experiments. The two states in case of the location change dataset are the two 

different locations itself. For motion detection dataset, the two states correspond to moving 

and not-moving states. 
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4.2 Classification Methodology 

Our classification approach was to first analyze the RSSI data obtained to study the 

distribution pattern under different settings. This helps to determine the best features that 

could be used for classification. The classification is a machine learning problem [9, 10] and 

we used the WEKA (Waikato Environment for Knowledge Analysis) Classification tool [11] as a 

reference for this purpose. We created a feature set and classified the dataset into two 

classes with different window lengths and slide lengths. The feature set for location change 

experiments consisted of Delta Mean of read rates and Standard Deviation for motion 

experiments. 

4.2.1 Classification Algorithm 

Let X denote the RSSI signal received from a tag: 

X =         
           

           (5) 

where       
  denotes a reading received at the k'th timestamp Tk by antenna Ak .  

The mobility status ut at time t (0 <t < tn ), with a classification rule h is given by: 

ut = h(X) such that ut = vt  (6) 

where vt  is the actual mobility status of the object at time t. RSSI readings from a distant 

time provide little or no information about the mobility at time t. So the input can be 

truncated to within a window around t without affecting the performance: 

ut = h(X) = h (        
   

   
 

 
         

 

 
 

         ) (7) 

where w represents the window size. Thus the length of the input signal data to the 

function depends upon the window size. The window size in turn also determines the 
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latency involved in the state classification. For example, a window of 3 seconds includes 

about 80 RSSI readings.  

 

Once we have the window of data, we extract the sufficient features from that data such as 

the standard deviation, delta mean of read rates, etc to form the feature set: 

  
  = d (        

   
   

 

 
         

 

 
 

         )  (8) 

where   
  is the kth feature coefficient at time t. Collectively all these coefficients form the 

feature vector. Thus the length of the feature vector is equal to the number of windows 

created which in turn depends upon the window size. 

In machine learning applications, the classifier has to be first trained using the training set 

with pre-assigned labels [9, 10]. The training set used by us is the same data set that is used 

for testing. We created a labels vector for the each file and trained the classifier. A label 

indicates the state of the object during that interval. The labels file was created with a 1 

second interval. For example, consider an experiment Y being conducted which is 20 

seconds long and data is collected. Now during Y, the object was still for the first 10 seconds 

and was moving for the next 10 seconds. We will label the event stationary as 1 and the 

event moving as 2. So the labels file generated for the experiment Y will have 20 values, one 

for each second. The first 10 values in the labels file will be 1 and the last 10 values will be 2. 

Thus using the pre-defined labels file and the train data set, the classifier trains itself for the 

features used. 

The problem of estimating the mobility status can now be thought as learning a function g 

that maps the feature vector to the mobility status: 

ut = g ( ft ) such that ut = vt.   (9) 
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In machine learning the function g is known as the classifier, ut a predicted label and vt a 

true label. 

 

4.2.2 Classification Parameters 

 Window Length 

 Several issues must be considered when choosing the window size. A larger w is useful 

under noisy observations as it yields smoother estimates. However, short movements might 

be missed with a large w. The latency of the classifier is also proportional to w. The size of 

the window and the slide length determines the number of windows generated for that file 

which in turn determines the length of the feature set. The average duration of object use is 

20 seconds, implying shorter interactions. For detecting such interactions and 

generalization, we restricted the window size to 10 seconds. 

 Slide Length 

The slide length is nothing but the amount by which the window slides after each run. 

 Classifier 

We experimented with the following non-temporal classifiers: 

1. Support Vector Machines (SVM) 

2. Decision Trees (DT) 

3. Random Forests (RNF) 

The non temporal classifiers were built with the WEKA machine learning toolkit [11]. 

We also used temporal classification with the Hidden Markov Model (HMM). An HMM is a 

generative probabilistic model, which takes the temporal information into consideration. 

We built an HMM, where the actual motion states constitute the hidden state set (still or 
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moving) and the estimated states constitute the observation symbols set. Transition 

probabilities of the HMM were estimated from the training data. Observations were 

modeled as Gaussian mixtures with parameters estimated from the training data based on 

the Maximum Likelihood principle. 

 Features 

When an object is standing still, its RSSI pattern may exhibit only slight deviations due to 

multipath fading. Changing environmental conditions such as human movement or nearby 

tag movement may trigger stronger deviations. However, the most fluctuations observed in 

the tag data were during the tag motion itself. For state classification, our aim is to detect 

these fluctuations. We have used standard deviation and delta mean as the features to 

capture this change. Standard deviation was used for the motion detection experiments and 

is a measure of the variation in the signal in the specified window size. Delta mean was used 

as a feature for the location change experiments and it represents the amount of change in 

average RSSI between two successive windows. Delta mean is supposed to be high when a 

location change happens. 

 

4.3 Classification Results 

The classification method requires the train and test sets. The train and the test sets were 

determined based on the sessions because the readings in a session are correlated. Our 

evaluation metric is the classification accuracy. Performance score is determined using the 

average classification accuracy over all the sessions in a test set. We performed the 

experiments repeatedly with varying window lengths, slide lengths and classifiers to note 

the effect of each on the classification accuracy. We have calculated the classification 
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accuracy for all the antenna setups with varying window lengths and slide lengths as well as 

different classifiers. The results help us to see the effect of the parameters on the accuracy 

and are in correlation with the results from the previous chapter. 

We have used three non temporal classifiers namely Decision Tree, Support Vector 

Machines, and Random Forest for calculating the accuracies. Non-temporal classifiers are 

better in capturing the change in RSSI signal and distinguishing these from environmental 

effects. 

4.3.1 Location Change Experiments Results 

 Decision Tree Classification 

 

Figure 4.1: Location Change Classification Accuracy (in percentage): Decision Tree Classifier and varying window 

lengths and slide lengths. 

0 

20 

40 

60 

80 

100 

120 

Set Up 
1 

Set Up 
2 

Set Up 
3 

Set Up 
4 

Set Up 
5 

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
  

(i
n

 p
er

ce
n

ta
ge

) 

Location Change Classification 
Accuracy (in percentage) 

WinLen = 3s, Slide Len = 1s 

WinLen = 5s, Slide Len= 2s 

WinLen = 10s, SlideLen = 
10s 



61 
 

 
 

 Support Vector Machine Classification  

 

Figure 4.2: Location Change Classification Accuracy (in percentage): Support Vector Machine Classifier and varying 

window lengths and slide lengths. 

 

 Random Forest Classification  

 

Figure 4.3: Location Change Classification Accuracy (in percentage): Random Forest Classifier and varying window 

lengths and slide lengths. 
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4.3.2 Motion Detection Experiments Classification Results 

 Decision Tree Classifier Results 

 

Figure 4.4: Motion Detection Classification Accuracy (in percentage): Decision Tree Classifier and varying window 

lengths and slide lengths. 
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 Support Vector Machine Classifier Results 

 

Figure 4.5: Motion Detection Classification Accuracy (in percentage): Support Vector Machine Classifier and varying 

window lengths and slide lengths. 

 

 Random Forest Classifier Results 

 

Figure 4.6: Motion Detection Classification Accuracy (in percentage): Random Forest Classifier and varying window 

lengths and slide lengths. 
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As seen from the results above for both location change and motion experiments, set ups 2, 

4 and 5 give the best classification accuracies. For location change experiments, the third set 

of parameters (window length = 10s and slide length = 10s) yielded the best results. This is 

because the experiments were 20s long and the location change happened at the 10th 

second. So the two sub-intervals of the first 10s and the next 10s belong to two different 

locations and therefore have different RFID signal patters. Thus the results support the 

argument that better the separation of the classes, better is the classification accuracy. For 

motion experiments, however, smaller window lengths and slide lengths show good results. 

A short window yields fewer amounts of data, causing unreliable estimation of features. In 

this case, a simple DT can be used. 

4.4 Summary 

 

Figure 4.7: Mahalanobis Distance (average) versus Classification Accuracy - All five RFID set ups 
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The figure above shows the Mahalanobis distances versus the classification accuracy for all 

the setups for location change experiment. Our results show that the distribution distance 

values have a correlation with the performance of the RFID set up (as shown in the figure 

4.7). More the difference between the distributions of classes, better is the separation 

between the classes, more is the classification accuracy. The relationship between the 

distribution distance and the classification accuracy is logarithmic rather than being linear. 

Setup 2 performs better in terms of classification accuracy because of the presence of two 

overhead antennae directly above the zones. The feature set thus formed for setup 2 is 

much smaller and classification problem is simplistic. One more important point to note is 

that setup 3 has low classification accuracies compared to other setups in spite of having 

two overhead antennae. As seen in figure 3.4, setup 3 is a symmetric setup with respect to 

the location of the two carts. Hence the RSSI pattern obtained from both the locations is 

going to be similar. Hence setup 3 performs badly compared to other setups. Thus, it is 

important to create an asymmetric RFID setup as much as possible so that the RSSI patterns 

at different locations are not similar. 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

We have proposed a methodology to evaluate the performance of the RFID systems in a 

dynamic work environment. We have closely studied the trauma bay activities and have 

proposed five RFID set ups that can be deployed in a trauma bay. We have used the 

distribution distance to measure the separation of classes in the RSSI obtained from the 

readers.  

The results can be used as groundwork for future work on evaluating the RFID systems from 

a context aware application point of view. We also conducted experiments for the 

placement of tags on objects and studied different scenarios. The tag experiment results 

can act as a guideline to be followed for tagging the objects.  

We also ran our classification algorithm for all the proposed set ups using different 

classifiers and parameters. We have obtained satisfactory results for the classification 

accuracy. The results gave us insights into the use of classifiers and parameters to optimize 

the performance. 

 

5.2 Future Work 

The results obtained in our work are from the data collected in the research lab. We have 

also deployed the RFID set up at the Children's National Medical Center, Washington, and 

collected real data. The trauma bay was set up with the RFID system and the trauma team 

performed a number of activities. The real data can be explored for evaluating the 

performance of the RFID set up deployed. The data can be filtered and utilized to evaluate 

the RFID setup at the trauma bay in a similar manner as done in chapter 3. Also, the 
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classification algorithm can be run on this data. The results will give interesting insights into 

the performance of RFID systems in real world. We have used Mahalanobis distance as a 

metric in our work for distribution distance calculation. There are several other distance 

metrics like Euclidean distance, Earth Mover's Distance that can be used and the results can 

be compared. The feature set used for location change estimation was delta mean whereas 

for mobility experiments were standard deviation. Results can be obtained and compared 

using other features like combination of both delta mean and standard deviation, mean 

RSSI, etc. The application of RFID technology in the trauma bay looks promising and there is 

a lot of potential for research in this area. 
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