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ABSTRACT OF THE DISSERTATION

Simple models of complex systems

by John Barton

Dissertation Director: Professor Joel L. Lebowitz

When the complete description of a complex system of interest is out of reach, simple

models which are more amenable to theoretical approach can give a qualitative un-

derstanding. In addition, the techniques and ideas developed in investigating simple

model systems form a foundation for research on complex phenomena. In this thesis,

composed of two parts, we study some representative models from statistical mechanics.

In the first part we explore the ABC model, which describes three species of particles

with asymmetric interactions. In the second part we consider the inverse Ising problem,

using experimental data to infer an effective Ising model.
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son, and Eduardo Sontag, from whom I have learned much and am still learning. My

thanks to the many scholars with whom I have enjoyed interesting discussions, and in

particular to Thierry Bodineau, Pablo Hurtado, and Tobias Kuna.

Finally, I am grateful for the support and companionship of many friends and family

over my years here at Rutgers. In particular I would like to thank my wife Chioun for

constant encouragement.

iii



Dedication

To my parents, who have supported every step of the journey.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. The grand canonical ABC model . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. The ABC model in the canonical ensemble . . . . . . . . . . . . . . . . . 6

2.3. Dynamics of the grand canonical ABC model . . . . . . . . . . . . . . . 10

2.4. The phase diagram of the GCABC model . . . . . . . . . . . . . . . . . 15

2.5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. A generalized ABC model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Scaling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3. General properties of solutions of the ELE . . . . . . . . . . . . . . . . . 32

3.4. The case rα = vα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5. Special cases when rα 6= vα . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. The inverse Ising problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2. Selective cluster expansion algorithm . . . . . . . . . . . . . . . . . . . . 51

v



4.3. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4. Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A. Appendices for Chapter 2 . . . . . . . . . . . . . . . . . . . . 86

A.1. Proof of Theorem 2.4.1(b) . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2. Reflection asymmetric interactions in a simple case . . . . . . . . . . . . 92

Appendix B. Appendices for Chapter 3 . . . . . . . . . . . . . . . . . . . . 95

B.1. Properties of the microscopic system . . . . . . . . . . . . . . . . . . . . 95

B.2. The Lotka-Volterra family of centers and ABC-like systems of ODEs . . 98

B.3. Restriction on the type of solutions for rα 6= vα, with vα in region I . . . 99

Appendix C. Appendices for Chapter 4 . . . . . . . . . . . . . . . . . . . . 101

C.1. Proof of maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.2. Statistical effects of finite sampling . . . . . . . . . . . . . . . . . . . . . 102

C.3. Gaussian approximation for the inverse Ising problem . . . . . . . . . . 104

vi



List of Tables

4.1. Convergence of the Selective Cluster Expansion on retinal data. In cases

where the algorithm did not easily converge, bounds on the minimum or

maximum quantities necessary to obtain a good fit to the data are given,

determined by the lowest value of the threshold considered. . . . . . . . 66

4.2. Convergence of the Selective Cluster Expansion on cortical data. In cases

where the algorithm did not easily converge, bounds on the minimum or

maximum quantities necessary to obtain a good fit to the data are given,

determined by the lowest value of the threshold considered. . . . . . . . 68

vii



List of Figures

1.1. A section of a one-dimensional lattice for the ASEP, illustrating nearest

neighbor hopping dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Typical profiles in a large system. The dotted curves are time-averaged

occupation numbers in a constrained ring of size N = 1800 at inverse

temperature β = 10.152. The solid curves are the corresponding elliptic

functions obtained from the exact solution of [5] at temperature β = 30.456. 14

2.2. Curves Γβ in the rA-rB plane along which F (r) achieves its minimum

value, for β1 = 3.75, β2 = 4.25, and β3 = 6.05 (β̂c = 2π/
√

3 ' 3.63). . . . 20

3.1. Different regions of the parameter space of the vα, plotted in the vA-vB

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2. Plots of ρA (solid), ρB (dashed), and ρC (dotted) and their corresponding

trajectories in the ρA-ρB plane. See description under Region I, Case 1. 33

3.3. Plots of ρA (solid), ρB (dashed), and ρC (dotted) and their corresponding

trajectories in the ρA-ρB plane. See description under Regions II and III. 35

viii



4.1. Raster plot of spike train data from recordings of neuron populations: in

the retina in dark conditions (N = 60 cells) and with a random flickering

stimulus (N = 51 cells), data by M. Meister; in the retina with a natural

movie stimulus (N = 40 cells), data by M. Berry; in the prefrontal cortex

of a rat (N = 37 cells), data by A. Peyrache and F. Battaglia; in the

medial prefrontal cortex of a rat (N = 117 cells), data by G. Buzsáki
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Chapter 1

Introduction

Broadly speaking, the goal of statistical mechanics is to derive the macroscopic proper-

ties of a system given the microscopic rules governing its evolution. This goal has been

largely accomplished in equilibrium statistical mechanics, where rules for constructing

appropriate statistical ensembles provide a means of computing, formally if not practi-

cally, the macroscopic properties of a system in equilibrium. However, little is known

in general about the statistics of systems out of equilibrium.

Simplified model systems whose macroscopic behavior can be determined explicitly

from microscopic laws are thus of great interest. The techniques and intuition developed

in studying such models can then be applied to help understand more complex systems,

both in and out of equilibrium. Simple phenomenological models may also be helpful

in qualitatively understanding the macroscopic collective behavior of complex systems

which are difficult to approach directly.

An example is the asymmetric simple exclusion process (ASEP) [20] (see also related

reviews [10, 21]), a prototypical model exhibiting a nonequilibrium steady state and

one closely related to the ABC model presented in this thesis. The ASEP consists of

particles and holes (empty sites) on a one-dimensional lattice. Particles hop to the left

X
p q

Figure 1.1: A section of a one-dimensional lattice for the ASEP, illustrating nearest neighbor

hopping dynamics.
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and right with stochastic rates p and q, respectively, subject to hard core exlusion (see

Fig. 1.1). Work on the ASEP and closely related models has spanned several decades,

and a rigorous description of its macroscopic properties has required the development

of novel analytical techniques [2, 22, 23]. The ASEP has also been used as a model for

such diverse subjects as traffic flow [53] and the motion of molecular motors in cells

[34], as well as in the study of biopolymers [41].

In this thesis we summarize investigations and applications of several statistical

mechanical models. The first two Chapters deal with the properties of the ABC model,

a dynamical model of three particle species on a one-dimensional lattice which perform

nearest neighbor exchanges with spatially asymmetric exchange rates. As the dynamics

of the standard ABC model only consists of particle exchanges, the number of particles

of each species is conserved. If the boundary conditions of the lattice are taken to be

closed, or if the boundary conditions are periodic but the number of particles of each

species is equal, then the stationary measure is an equilibrium Gibbs measure with a

long-range Hamiltonian, despite the strictly local dynamics. However, the ABC model

displays novel behavior not found in standard equilibrium systems with short range

interactions. These include a finite temperature phase transition in one dimension

leading to phase separation, with particles of the same type gathered together in large

domains.

The first Chapter details collaborative work with Joel Lebowitz and Eugene Speer,

where we consider a grand canonical version of the ABC model [7]. Background and

results for the canonical ABC model are also discussed in Section 2.2. We add chemical

potentials to the standard ABC model Hamiltonian and allow the number of particles

of each species to fluctuate. In this case we find that, as for the canonical ensemble,

the grand canonical ensemble is the stationary measure satisfying detailed balance for

a natural dynamics. We obtain the full phase diagram of the model, finding a phase

transition when the chemical potentials are all equal at a temperature different from

that of the canonical model, thus demonstrating inequivalence of ensembles.

In the second Chapter, based on collaborative work with Eugene Speer and Joel

Lebowitz, we consider a generalized version of the canonical ABC model with external
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fields applied to the particles [7]. With this modification the interactions need not be

invariant under cyclic permutation of the particle species as in the standard ABC model.

Here we made heavy use of conserved quantities to probe the analytical structure of

this generalized model when direct solution of the nonlinear Euler-Lagrange equations

for the particle densities proved difficult. Our main result, which we are able to prove

rigorously in special cases but conjecture to hold in general, is the description of the

phase plane including a second order phase transition for certain values of the average

particle densities and external fields, analogous to that of the standard ABC model.

We have also found connections between our model and certain unresolved questions

about the generalized Lotka-Volterra family of ODEs, which includes the well-known

Lotka-Volterra predator-prey equations.

The final Chapter outlines work in progress on the inverse Ising problem, undertaken

jointly with Remi Monasson, Simona Cocco, Joel Lebowitz, and Eugene Speer [6]. In

contrast with the “forward” Ising problem, the description of the collective behavior

of some Ising spins based upon their interactions, the inverse Ising problem involves

using a set of observables – in this case the single-spin magnetizations and pairwise

correlations – to infer the interaction structure. The inverse Ising problem thus belongs

to the general category of inverse problems, whose goal is to use measurements of a

system to infer the parameters which characterize its behavior [63].

Inverse problems in general present some mathematical difficulties which are not

present in the corresponding forward problem. Often the inverse problem is ill-posed,

that is, a solution may not exist, or solutions may not be unique or stable under small

changes in the observed data. A problem whose solution changes greatly in response

to small perturbations in the data is also referred to as ill-conditioned.

In recent years effective Ising models have proved useful for describing several biolog-

ical phenomena of interest, including the activity of networks of neurons [15, 24, 56, 59]

and elements of protein structure and protein-protein interactions [60, 67]. These effec-

tive Ising models must be inferred from data, bringing into focus the need for efficient

solutions of the inverse Ising problem. Standard methods of solution such as Boltzmann

learning, which involves iterative Monte Carlo simulations followed by small updates
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to the interaction parameters [1], or perturbative expansions [51, 54, 58] can be slow,

or suffer from limited ranges of applicability.

In Chapter 4, we describe an efficient method of solution of the inverse Ising problem,

originally developed by Cocco and Monasson [16, 17], referred to as the Selective Cluster

Expansion (SCE) algorithm. Here we describe joint efforts to improve the algorithm,

and demonstrate its viability by analyzing real data from multielectrode recordings of

networks of neurons.
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Chapter 2

The grand canonical ABC model

2.1 Introduction

In this chapter we study the phase diagram of the three species ABC model on an

interval as a function of the chemical potentials and the temperature. The system is

defined microscopically on a lattice of N sites in which each site is occupied by either

an A, a B, or a C particle. The energy is of mean field type, with an interaction which

has cyclic symmetry in the particle types but is reflection asymmetric:

EN (ζ) =
1

N

N−1∑
i=1

N∑
j=i+1

[ηC(i)ηB(j) + ηA(i)ηC(j) + ηB(i)ηA(j)]. (2.1)

Here the configuration ζ of the model is an N -tuple (ζ1, . . . , ζN ), with ζi = A, B, or

C, and ηα(i), α = A,B,C, is a random variable which specifies whether a particle of

species α is present at site i: ηα(i) = 1 if ζi = α and ηα(i) = 0 otherwise, so that always∑
α ηi(α) = 1.

We remark that we may also regard the model as a reflection asymmetric mean field

three state Potts model. The asymmetry of the interaction gives this model system

very different behavior from that of the usual symmetric mean field model [61]. Similar

but short-range (in fact, nearest neighbor) reflection asymmetric interactions occur

in chiral clock models [3, 29, 46]; see Remark 2.5.1 below. A simple comparison of

reflection symmetric and asymmetric nearest neighbor interactions in one dimension is

given in Appendix A.2.

The equilibrium probability of a configuration ζ is given by the grand canonical

Gibbs measure

µβ,λ(ζ) = Ξ−1 exp[−βEN (ζ) +
∑
α

λαNα(ζ)], (2.2)
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where β is the inverse temperature, λA, λB, and λC are β times the chemical potentials,

Nα =
∑N

i=1 ηα(i) with
∑

αNα = N , and Ξ is the usual grand canonical partition

function. We prove here that in the scaling limit (N → ∞, i/N → x ∈ [0, 1]) the

equilibrium density profiles ρ(x) are unique and spatially nonuniform when the λα’s

are not all the same. When λA = λB = λC the densities are spatially uniform above a

critical temperature T̂c = β̂−1
c , with β̂c = 2π/

√
3; below T̂c the profiles have a natural

extension to periodic functions with a period three times the length of the system.

One may compare the behavior described above with that of the same system in the

canonical ensemble, in which the Nα are taken as fixed. The results are quite different,

that is, we have inequivalence of ensembles (see [13, 43] for recent reviews). We give in

Section 2 a brief history of the ABC model with fixed particle number and a summary

of results for that system. In Section 3 we describe a stochastic evolution satisfying

detailed balance with respect to the measures µβ,λ(ζ), and in Section 4 we establish the

phase diagram. Section 5 gives a discussion of some related models and problems.

A different generalization of the ABC model to a system with fluctuating particle

numbers is discussed in [39, 40]. In that model vacancies are permitted and it is the

total number of particles which fluctuates, while the differences Nα−Nγ are conserved.

The model is formulated on a ring and is initially specified by dynamical rates, but it

is observed that in the case when all the Nα are equal, the case considered in detail, it

may be equivalently described by a grand canonical equilibrium model on the ring or

on the interval. A striking feature is the existence of a first-order phase transition, at

low temperatures, from a low-density to high-density state.

2.2 The ABC model in the canonical ensemble

The ABC model was introduced by Evans et al. [33] (see also [5, 9, 11, 14, 26, 32] and

[37, 38] for a related model) as a one dimensional system consisting of three species

of particles, labeled A,B,C, on a ring containing N lattice sites; we will typically let

α = A, B, or C denote a particle type, and make the convention that α + 1, α + 2,

. . . denote the particle types which are successors to α in the cyclic order ABC. The
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system evolves by nearest neighbor exchanges with asymmetric rates: if sites i and i+1

are occupied by particles of different types α and γ, respectively, then the exchange

αγ → γ α occurs at rate q < 1 if γ = α+ 1 and at rate 1 if γ = α− 1. That is,

AB
q


1
BA,

BC
q


1
CB,

CA
q


1
AC.

The total numbers Nα of particles of each species are conserved and satisfy
∑

αNα = N .

In the limit N → ∞ with Nα/N → rα, where rα > 0 for all α, the system segregates

into pure A, B, and C regions, with rotationally invariant distribution of the phase

boundaries.

We remark that for a general choice of the Nα the steady state of the ABC model

on the ring is nonequilibrium. In order for detailed balance to hold, the forward and

reverse transition rates along a closed loop in the configuration space must be equal.

The rate for a given particle, say an A, to make one loop around the ring and return to

its starting point is qNB when traveling to the right, and qNC in the reverse direction.

Hence the detailed balance condition is violated if the number of particles of each species

is not equal.

In the weakly asymmetric version of the system introduced by Clincy et al. [14], in

which q = e−β/N , the stationary state for the equal density case NA = NB = NC is

a Gibbs measure of the form exp{−βEN}, so that the parameter β = T−1 plays the

role of an inverse temperature. The energy EN is given by (2.1), and the condition

NA = NB = NC ensures that this is translation invariant, despite the appearance of a

preferred starting site for the summations.

Ayyer et. al. [5] studied the weakly asymmetric system on an interval, that is, again

on a one-dimensional lattice of N sites but now with zero flux boundary conditions, so

that a particle at site i = 1 (respectively i = N) can only jump to the right (respectively

left). For this system the steady state is always Gibbsian, given by exp{−βEN} with

EN as in (2.1), whatever the values of NA, NB, and NC . When NA = NB = NC the

steady state of the system thus agrees with that on the ring, so that the invariance
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under rotations on the ring then implies a rather surprising “rotation” invariance of

the Gibbs state on the interval. We describe the results of [5] in some detail, since the

work of the current chapter depends heavily on them.

To identify typical coarse-grained density profiles at large N , [5] considers the scaling

limit

N →∞, i/N → x, x ∈ [0, 1]. (2.3)

For this limit there exists a Helmholtz free energy functional β−1F({n}) of the density

profile n(x) = (nA(x), nB(x), nC(x)). F is the difference of contributions from the

energy and entropy:

F({n}) = βE({n})− S({n}), (2.4)

where E ({n}) and S ({n}) are the limiting values of the energy and entropy per site:

E ({n}) =

∫ 1

0
dx

∫ 1

x
dz
∑
α

nα(x)nα+2(z), (2.5)

S({n}) = −
∫ 1

0
dx
∑
α

nα(x) lnnα(x). (2.6)

We will write F = F (β) when we need to indicate explicitly the β dependence. Only

the canonical ensemble was considered in [5], so that for some fixed positive mean

densities rA, rB, rC satisfying rA + rB + rC = 1 the profiles n(x) in (2.4)–(2.6) satisfy

the conditions

0 ≤ nα(x) ≤ 1,
∑
α

nα(x) = 1, and

∫ 1

0
nα(x)dx = rα. (2.7)

The typical profiles in the scaling limit are those which minimize F ; it was shown in

[5] that such minimizers always exist and satisfy the ELE derived from F . To obtain

the ELE one defines

Fα(x) =
δF

δnα(x)

= log nα(x) + β

∫ x

0
[nα+1(z)− nα+2(z)] dz + 1 + βrα+2 (2.8)

to be the variational derivative taken as if the profiles nA(x), nB(x), and nC(x) were

independent; the constraints (2.7) then imply that at a stationary point of F both
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FA − FC and FB − FC are constant. After simple manipulations (see also Section 2.4

below) this yields the ELE satisfied by the typical profiles ρ(x):

dρα
dx

= βρα(ρα−1 − ρα+1), α = A,B,C. (2.9)

These are to be solved subject to (2.7) (written in terms of ρ rather than n).

It follows from (2.9) that all relevant solutions satisfy

∏
α

ρα(x) = K (2.10)

for some constant K with 0 < K ≤ 1/27. This may be seen directly, for example, by

computing

d

dx

∑
α

log ρα = 0. (2.11)

Now employing (2.7) and (2.10), we have that

(ρA − ρC)2 = (ρA + ρC)2 − 4ρAρB (2.12)

= (1− ρB)2 − 4K/ρB. (2.13)

This expression leads to a differential equation for ρB(x) (and, with similar manipula-

tions, for the other particle densities as well) which is independent of the other density

profiles. For K = 1/27 the solutions are constant, with value 1/3; for K < 1/27 they

have the form

ρα(x) = yK(2β(x− 1/2) + tα), 0 ≤ x ≤ 1, (2.14)

with yK(t) a solution, periodic with period τK , of the equation

1

2
y′

2
+

1

2
Ky − 1

8
y2(1− y)2 = 0; (2.15)

here t = 2βx + constant. yK is uniquely specified by requiring that it take on its

minimum value at the points t = nτK , n ∈ Z. The phase shifts tα in (2.14) satisfy

tA = tB + τK/3 and tC = tB − τK/3. (2.16)

Remark 2.2.1. Equation (2.15) describes a particle of unit mass and zero energy os-

cillating in a potential UK(y) = Ky/2 − y2(1 − y)2/8. The constant solution y = 1/3
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appears for K = 1/27. For K < 1/27, yK(t) is an even function which is strictly increas-

ing on the interval [0, τK/2]; it was shown in [5] that τK is a strictly decreasing function

of K. Because the potential is quartic in y the solution is an elliptic function. Further

properties of the function yK are summarized in Proposition A.1.1 of Appendix A.1.

Equation (2.14) indicates that nonconstant solutions of the ELE are obtained by

viewing yK(t), and its translates by one-third and two-thirds of a period, in some

“window” of length 2β. If one is given β and r = (rA, rB, rC) then one must determine

K and one of the phase shifts, say tB, so that

rα =
1

2β

∫ β

−β
yK(t+ tα) dt, α = A,B,C. (2.17)

The solutions which minimize F were completely determined in [5]. In stating the result,

we use the following terminology: a solution is of type n if (n− 1)τK < 2β ≤ nτK , that

is, if the window contains more than n− 1 and at most n periods of the function yK .

Theorem 2.2.2. Suppose that rA, rB, and rC are strictly positive. Then:

(a) If rA = rB = rC = 1/3 then for the equations (2.9) with (2.7) there exist (i) the

constant solution, (ii) for β > nβc = 2πn
√

3, n = 1, 2, . . ., a family of solutions, of

period τK = 2β/n and hence of type n, differing by translation, and (iii) no other

solutions. The minimizers of the free energy are, for β ≤ βc, the (unique) constant

solution and, for β > βc, any type 1 solution.

(b) For values of r other than (1/3, 1/3, 1/3) there exists for all β a unique type 1

solution of these equations which is a minimizer of the free energy.

(c) At zero temperature (β →∞) the system segregates into either three or four blocks,

each containing particles of only one type.

2.3 Dynamics of the grand canonical ABC model

We now turn to consideration of the ABC model on the interval when the number of

particles can fluctuate; we will abbreviate this as the GCABC model. In Section 1 the

corresponding grand canonical measure µβ,λ (see (2.2)) was presented in the equilibrium



11

setting as a Gibbs measure obtained from the energy function (2.1) and chemical poten-

tials β−1λα. Just as for the canonical Gibbs measure, however, one may alternatively

view this as the stationary measure for some dynamics; we describe two possibilities

here.

In the first dynamics we consider there are particle exchanges between adjacent sites,

with the same rates as for the canonical dynamics. To allow the number of particles

to fluctuate, however, we introduce two new possible transitions. First, if the particle

at site i = 1 is of type α then with a rate equal to Ce−λα the entire configuration is

translated by one site to the left, the particle at site i = 1 disappears, and a particle

of species α + 1 is created at site i = N . Second, with a rate equal to Ce−λα+1 the

reverse transition occurs. Here C is a constant which we shall in the future take equal

to 1. This dynamics satisfies the detailed balance condition with respect to the Gibbs

measure (2.2): if a transition ζ → ζ ′ arises from an exchange of particles the argument is

as for the canonical model [5], while if it comes from a transition of the new type, say in

the “forward” direction as described above, then EN (ζ) = EN (ζ ′) but Nα decreases by 1

and Nα+1 increases by 1, and the detailed balance condition e−λανβ(ζ) = e−λα+1νβ(ζ ′)

follows.

Remark 2.3.1. One may also obtain this dynamics by considering a ring of N sites,

with each site occupied by an A, B, or C particle and with a marker located on one

of the bonds between adjacent sites. Adjacent particles exchange across any unmarked

bond with the usual ABC rates, while the marker may move one bond to its left or right,

and in doing so it changes the species of the particle it passes: with —× and — denoting

a marked and unmarked bond, respectively, the transition —× α — → — (α + 1) —×

occurs with a rate equal to e−λα and the reverse transition with a rate equal to e−λα+1 .

If one then obtains a configuration on the interval from a ring configuration by letting

the marked bond identify the boundaries of the interval—effectively by cutting the ring

at the marked bond—one sees easily that the inherited dynamics on the interval is

precisely the dynamics discussed above. A slight variation of this idea was mentioned

in [5].
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We define the second dynamics only for the case in which all the λα are equal.

We obtain it by first defining a dynamics for the constrained ring: a ring of 3N sites

populated by A, B, and C particles but with a restriction to configurations (ξi)
3N
i=1

which satisfy

ξi+N = ξi + 1 (2.18)

(addition on the site index is modulo 3N); that is, if an A particle is on site i then there

must be a B particle at site i+N and a C particle at site i+ 2N , etc. The dynamics

for the constrained ring is given by a modification of the usual rules of the canonical

ABC model on a ring: exchanges occur simultaneously across three equally spaced,

unmarked bonds in the usual ABC manner, with rate 1 for the favored exchanges and

rate q = e−β/N for the unfavored ones.

We consider now any fixed block of N consecutive sites on the constrained ring and

ask for the induced dynamics on configurations in this block. Two types of transitions

occur: nearest-neighbor exchanges at standard ABC rates for a system of size N and

inverse temperature β (i.e., rates 1 and q = e−β/N ) and a transition corresponding to an

exchange on the constrained ring across the boundaries of the block. To understand the

latter, suppose the configuration within the block has the form (α+ 2) ζ (α+ 1), with ζ

any configuration on N − 2 sites; then (2.18) implies that the particles immediately to

the left and right of the block are of type α, and a transition from (α+ 2) ζ (α+ 1) to

α ζ α occurs at rate 1. The reverse transition occurs at rate q, and no such transition

occurs when the block configuration is (α + 2) ζ α. Then using λA = λB = λC one

checks, just as for the dynamics considered above, that if one identifies the block with

an interval of N sites then this dynamics satisfies the detailed balance condition with

respect to the grand canonical Gibbs measure (2.2).

On the constrained ring there are equal numbers of A, B, and C particles, from

(2.18), so that the energy E3N (that is, the energy given by (2.1) with N replaced by

3N throughout), and thus the restriction of the Gibbs measure Z−1 exp{−βE3N} to

particle configurations satisfying (2.18), is well defined and independent of the starting

point of the summations [33]. Moreover, this is the invariant measure for the constrained

ring dynamics defined above, as one again checks by verifying detailed balance. With
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the discussion above this shows that the restriction of Z−1 exp{−βE3N} to the block

of N sites is the Gibbs measure (2.2). One may also verify this from the fact that if ξ

is a constrained ring configuration and ζ the portion of that configuration within the

block then

E3N (ξ) = EN (ζ) +N/3. (2.19)

Thus we can study the GCABC with λA = λB = λC by studying directly the con-

strained ring.

2.3.1 The scaling limit for the constrained ring

To identify typical coarse-grained density profiles at large N on the constrained ring we

consider the scaling limit (2.3) with N replaced by 3N (N →∞ with i/3N → x ∈ [0, 1])

and find the appropriate free energy functional. The scaling limit of the energy per site

is still given by (2.5), but because the full microscopic configuration under the constraint

(2.18) is determined by the configuration of the first N sites the entropy per unit site

is only 1/3 of (2.6). This leads to a free energy functional

βE({n})− 1

3
S({n}) =

1

3
F (3β)({n}). (2.20)

Here E({n}) and S({n}) are as in (2.5) and (2.6) and n is a constrained density profile,

that is, one which satisfies the continuum equivalent of (2.18):

nα(x) = nα+1(x+ 1/3), (2.21)

where the addition x + 1/3 is taken modulo 1. F (3β) is the free energy functional at

temperature 3β of the (unconstrained) canonical system on an interval, as defined in

(2.6); equivalently, because there are equal numbers of particles of each species, this is

the free energy functional on a ring [5].

Typical (coarse-grained) profiles at inverse temperature β on the constrained ring,

for large N , correspond then to continuum density profiles ρ(x) which satisfy the con-

straint (2.21) and minimize the free energy over all such constrained profiles. It follows

from (2.14) and (2.16), however, that the typical profiles (minimizers) for the canon-

ical free energy, which are a priori unconstrained, do in fact satisfy (2.21). Thus by
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Figure 2.1: Typical profiles in a large system. The dotted curves are time-averaged occupation

numbers in a constrained ring of size N = 1800 at inverse temperature β = 10.152. The

solid curves are the corresponding elliptic functions obtained from the exact solution of [5] at

temperature β = 30.456.

(2.20) the typical profiles for the constrained ring are the same as the typical profiles of

an unconstrained system on the ring at inverse temperature 3β. This is illustrated in

Figure 2.1, where we plot time-averaged profiles from Monte-Carlo simulations of the

constrained ring at β = 10.152 and the exact solution [5] for the unconstrained ring at

β = 30.456, showing close agreement. (We can use time averaging rather than spatial

coarse graining for this comparison because the time scale for the profile to drift around

the ring is much larger than the simulation time scale.)

It follows from this discussion that when the chemical potentials are equal the criti-

cal temperature β̂c for the grand canonical ensemble on an interval, which is represented

by the part of the constrained ring between two markers, is β̂c = βc/3. Typical configu-

rations are constant if β < β̂c and for β > β̂c are a portion of the typical profile for the

canonical system at inverse temperature 3β; the latter is periodic and in the GCABC

system we see a randomly-selected one-third of a period (for example, at β = 10.152,

one third of the profile shown in Figure 2.1), rescaled to length one. These properties

are confirmed in Section 2.4 by direct analysis of the grand canonical system in the

scaling limit.
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2.4 The phase diagram of the GCABC model

In this section we discuss the GCABC model directly in the scaling limit (2.3). From

(2.2) we see that the new free energy functional F̂({n})
(
= F̂β,λ({n})

)
, which is the

negative of the pressure multiplied by β, is obtained by adding chemical potential terms

to the free energy functional of the canonical model:

F̂({n}) = F({n})−
∑
α

λα

∫ 1

0
dxnα(x), (2.22)

with F given by (2.4). The profiles now are constrained only by

0 ≤ nα(x) ≤ 1 and
∑
α

nα(x) = 1. (2.23)

We will always normalize the chemical potentials so that
∑

α λα = 0. This choice is

arbitrary, since adding the same constant to each λα just shifts the free energy by a

constant; our choice is convenient in most cases, although with this normalization we

cannot conveniently consider the limit in which just one of the λα becomes infinite.

Just as for the canonical model [5] it can be shown on general grounds that for every

β, λ the free energy functional has at least one minimizing profile ρ(x) which belongs

to the interior of the constraint region, i.e., satisfies 0 < ρα(x) < 1 for all α, x (and of

course
∑

α ρα(x) = 1 for all x). From this it follows that ρ(x) will satisfy

δ

δρA(x)

[
F̂({ρ})

∣∣∣
ρC=1−ρA−ρB

]
= (FA(x)− λA)− (FC(x)− λC) = 0, (2.24)

δ

δρB(x)

[
F̂({ρ})

∣∣∣
ρC=1−ρA−ρB

]
= (FB(x)− λB)− (FC(x)− λC) = 0, (2.25)

with Fα(x) as in (2.8), so that Fα(x) − λα is independent of α. But one finds from

(2.8) that
∑

α ρα∂Fα(x)/∂x = 0, so that

Fα(x)− λα = C (2.26)

for some C independent of x and α. Differentiating (2.26) leads again to (2.9):

dρα
dx

= βρα(ρα−1 − ρα+1), α = A,B,C. (2.27)

Moreover, (2.26) implies that Fα(0) − λα = Fα+1(1) − λα+1, which with (2.8) yields

the boundary condition

ρα(0)e−λα = ρα+1(1)e−λα+1 , α = A,B,C. (2.28)
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Note that (2.28) is consistent with the (first) dynamics described in Section 2.3.

Equations (2.27) and (2.28) may be taken as the ELE of the model (it is easy to

verify that these imply (2.26)). Solutions of (2.27) are, by the analysis of [5], of the

form (2.14), with phase shifts satisfying (2.16). It remains only to consider the effect

of the boundary condition (2.28).

Let us begin by considering the case λA = λB = λC , in which (2.28) becomes

ρα(0) = ρα+1(1). Certainly the constant profile with ρα(x) = 1/3 for all α, x satisfies

this condition and hence is a solution for all β. From (2.16) we see that a nonconstant

solution (2.14) will satisfy this condition if and only if

yK(tα − β) = yK(tα + β − τK/3), α = A,B,C. (2.29)

The properties of yK mentioned in Remark 2.2.1 imply that (2.29) can hold if and

only if (tα − β) ± (tα + β − τK/3) is an integer multiple of τK . The choice of the

positive sign here leads to no solutions consistent with (2.16); the negative sign gives

2β = (3n − 2)τK/3 for n = 1, 2, 3, . . .. Since the minimal period of solutions of (2.9)

is 2βc = 4π
√

3, a nonconstant solution of (2.9) and (2.28) can exist only if β > βc/3;

thus as in Section 2.3 we find that β̂c = βc/3 is the critical inverse temperature for the

GCABC model. There is no constraint on the tα other than (2.16), so that there is a

one-parameter family of solutions differing by translation.

Following the usage of [5] it is natural to refer to the solutions just discussed for which

2β = (3n−2)τK/3 as being of type n. We will, again as in [5], extend this classification

to the case of general λ: a solution (2.14) of (2.27) and (2.28) will be said to be of type

1 if 2β ≤ τK/3 and of type n, n = 2, 3, . . ., if (3n− 5)τK/3 < 2β ≤ (3n− 2)τK/3. With

this terminology we can state our main result.

Theorem 2.4.1. (a) If λA = λB = λC then for the equations (2.27) and (2.28) there

exist (i) the constant solution, (ii) for β > (n−2/3)βc = 2π(n−2/3)
√

3, n = 1, 2, 3, . . .,

a family of solutions of type n, differing by translation, and (iii) no other solutions. The

minimizers of the free energy functional F̂ are, for β ≤ βc/3, the (unique) constant

solution and, for β > βc, any type 1 solution.

(b) If not all λα are equal then there exists for all β a unique minimizer of the free energy
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functional F̂ ; moreover, this minimizer is a type 1 solution of (2.27) and (2.28).

We give the proof of part (a) of this theorem here; the more technical proof of (b)

is presented in Appendix A.1.

Proof of Theorem 2.4.1(a): The discussion at the beginning of this section establishes

the first statement of the theorem; it remains to show that the type 1 solution, when it

exists, minimizes the free energy. We do so by reducing this problem to the correspond-

ing one for the canonical ensemble; the argument is similar to the consideration of the

constrained ring system in Section 2.3. For any profile n(x) = (nA(x), nB(x), nC(x))

(where it is understood that 0 ≤ nα(x) ≤ 1 and
∑

α nα(x) = 1) define the tripled profile

Θ({n}) by

(Θ({n}))α(x) =


nα(3x), if 0 ≤ x < 1/3,

nα−1(3x− 1), if 1/3 ≤ x < 2/3,

nα−2(3x− 2), if 2/3 ≤ x < 1.

(2.30)

The profiles which have the form Θ({n}) for some n are precisely those satisfying (2.21);

in particular, each Θ({n}) gives equal mean densities to the three species.

Now a simple computation shows that for any profile {nα(x)},

F (β)({n}) = F (3β)({Θ({n})})− β/3. (2.31)

(Note that this free energy differs by an overall factor, plus an additive constant, from

that of (2.20); the difference arises because here we started from the energy and entropy

per site on the interval of size N , and in (2.20) from the energy and entropy per site

on the ring of size 3N .) Thus the problem of finding the minimizer(s) of F̂ (β,0)({n}) =

F (β)({n}) over all profiles n is equivalent to finding the minimizer(s) of F (3β)({n})

over all profiles satisfying (2.21). On the other hand, the minimizers of F (3β) over all

equal-density profiles are given in Theorem 2.2.2(a): the constant solution if 3β ≤ βc

and the solution of (minimal) period 6β if 3β > βc (this is the type 1 solution for the

canonical model). Because these are either constant or periodic, they satisfy (2.21) and

hence are also the minimizers over all such profiles. But these minimizers are precisely

the images under Θ of the profiles identified as minimizers in Theorem 2.4.1(a).
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Remark 2.4.2. In the argument above the essential role of the tripling map Θ is to

convert the problem of minimizing F̂ with respect to arbitrary variations in the profiles

to the previously solved problem of minimizing under variations which preserve the

condition
∫ 1

0 dxnα(x) = 1/3. Other conclusions may be obtained similarly; we mention

briefly two examples.

(a) It was shown in [5] that, for β < (2/3
√

3)βc and any r = (rA, rB, rC), F({n}) is

convex as a functional of profiles satisfying (2.7). Via Θ this implies that F̂({n}) is,

for β < (2/3
√

3)β̂c, convex as a function of profiles satisfying (2.23).

(b) The two point correlation functions on the interval are related to those on the

constrained ring by

〈n(x)n(y)〉interval = 〈n(x/3)n(y/3)〉ring. (2.32)

The latter (denoted below simply as 〈·〉) may be computed in the high temperature

phase by a calculation parallel to that of [11]. On the constrained ring a perturbation

nα(x) = 1/3+aα cos(2πmx)+bα sin(2πmx) of the constant solution satisfies (2.21) and∑
α nα(x) = 1 if and only if m = 3k + j for j = 1 or 2, and

aα+1 = −1

2
aα + (−1)j

√
3

2
bα, bα+1 = −1

2
bα − (−1)j

√
3

2
aα. (2.33)

One may thus treat aA and bA as the independent parameters. The probability of the

profile {nα(x)} is exp{−3NF (3β)({n})}, and to quadratic order in the perturbation,

F (3β)({n}) ' constant +
9

8πm

[
2πm+ (−1)j

√
3β
] (
a2
A + b2A

)
. (2.34)

Thus

〈a2
A〉 = 〈b2A〉 =

4πm

27N(2πm+ (−1)j
√

3β)
, 〈aAbA〉 = 0. (2.35)

Summing over all the fluctuations, i.e., over m, we obtain

〈nα(x)nα(y)〉c =
4π

27N

∞∑
k=0

2∑
j=1

m cos[2πm(x− y)]

2πm+ (−1)j
√

3β

∣∣∣∣∣
m=3k+j

. (2.36)

All connected two-point functions 〈nα(x)nγ(y)〉c may be obtained on the constrained

ring from (2.36) via (2.21), and then on the interval using (2.32). Note that (2.36)

diverges as β ↗ β̂c.
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2.4.1 The canonical free energy F (r)

The free energy in the canonical model, for mean densities rA, rB, rC satisfying rA +

rB + rC = 1, is given by

F (r) = F (rA, rB, rC) = min
{n(x)}

F({n(x)}), (2.37)

with the minimum taken over all profiles n(x) satisfying the constraints (2.7). The

grand canonical free energy may then be computed in two ways:

F̂ (λ) = inf
{n(x)}

F̂({n}) (2.38)

= inf∑
α rα=1rα≥0

{
F (r)−

∑
α

λαrα

}
, (2.39)

where the infimum in (2.38) is over all profiles. We can obtain information on the

structure of F (r) from the above results for the minimization problem (2.38), together

with the trivial remarks that a unique minimum for (2.38) implies a unique minimum

for (2.39) and that such a unique minimum implies that the surface y = F (r) lies above

the plane y = F̂ (λ) +
∑

α λαrα and touches it at a single point.

In particular, the fact that when β ≤ β̂c there is for all λ a unique minimizer

for (2.38) implies that for such β the function F (r) is convex. When β > β̂c the

minimizer for (2.38) is unique except in the case λA = λB = λC = 0, when the

plane mentioned above is horizontal. In that case the minimum occurs at points lying

above a certain simple closed curve Γ (= Γβ) in the plane
∑

α rα = 1, with the point

rA = rB = rC = 1/3 in its interior; sample curves are shown in Figure 2.2. Γ may be

parametrized as r∗(t), 0 ≤ t ≤ τK , where K is the parameter in the type 1 solution of

Theorem 2.4.1(a) and

r∗α(t) =
3

τK

∫ τK/6

−τK/6
yK(s+ tα + t) ds. (2.40)

(The fact that this curve is simple follows, for example, from Proposition A.1.1(d).)

The three-fold symmetry then implies that the surface y = F (r) has a “tricorn” shape.

In particular, the dependence of the mean densities on the chemical potentials is

given by

rα(λ) =
∂

∂λα
F̂ (λ). (2.41)
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Figure 2.2: Curves Γβ in the rA-rB plane along which F (r) achieves its minimum value, for

β1 = 3.75, β2 = 4.25, and β3 = 6.05 (β̂c = 2π/
√

3 ' 3.63).

Remark 2.4.3. It follows from (2.39) that the dependence of the mean densities on

the chemical potentials is given by

rα(λ) =
∂

∂λα
F̂ (λ). (2.42)

The minimizing profile for a particular value of λ will be the canonical profile at the

value of r determined by (2.42). As discussed in [5] this will be a fraction of a full period

of some non-constant period solution of the ELE; see Figure 2.1 above and Figure 4 of

[5].

2.5 Concluding remarks

It is natural to compare the phase diagram obtained here for the one dimensional

reflection asymmetric ABC model with that of the corresponding symmetric model,

that is, the mean field three state Potts model (see [61],[42]). We will define the latter

by replacing the sum over j > i in (2.1) by a sum over all j 6= i and dividing by 2; this

yields

E∗N (ζ) =
1

2N
[NANC +NCNB +NBNA] =

1

4N
[N2 − (N2

A +N2
B +N2

C)]. (2.43)

The energy (2.43) is related to that of the standard mean field Potts model [42] by a

choice of energy scale and a shift of the ground state energy. It is, as is usual for mean
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field models, independent of dimension and geometry. There is thus no spatial structure

in the system and the canonical measure just gives equal weights to all configurations.

The canonical free energy functional with prescribed values of rα =
∫ 1

0 nα(x) dx is

F∗({n}) =
β

2
[rArC + rBrA + rCrB]− S({n}), (2.44)

with S ({n}) still given by (2.6). For all β the minimizers of F∗ are the constant

density profiles ρα(x) = rα, and there are no phase transitions of any kind in the

canonical system. The corresponding minimum value

F ∗(r) =
β

2

∑
α

rαrα+2 −
∑
α

rα log rα =
β

4

∑
α

r2
α +

β

4
−
∑
α

rα log rα (2.45)

of F∗({n}) is in fact just the value of F({n}) evaluated at these constant profiles (this

follows from our choice of the factor 1/2 in (2.43)), and hence is an upper bound for

the free energy F (r) of (2.37).

The situation is quite different for the grand canonical ensemble. Here the analogue

of (2.38) is

F̂ ∗(λ) = inf
r

{
F ∗(r)−

∑
α

λαrα

}
(2.46)

The analysis of F ∗(λ) leads to a phase diagram completely different from that of the

reflection asymmetric grand canonical model considered in Sections 3 and 4 above

[61]. In particular, (2.46) exhibits a first order phase transition for λA = λB = λC at

β∗c = 8 log 2. For β < β∗c the minimizer is rA = rB = rC = 1/3; for β > β∗c there are

three minimizers, each rich in one of the three species, and at β = β∗c all four of these

states are minimizers.

2.5.1 Higher dimensions

As was already noted and is well known, the standard mean field models with symmetric

interactions do not depend on the dimension or topology of the spatial structure of the

system considered. This is clearly not the case for models with reflection asymmetric

interactions, such as the one-dimensional ABC model considered here. We comment

now on various possible generalizations of such reflection asymmetric mean field models

to higher dimensions. A generalization of the ABC model from the ring to to the torus
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in two or more dimensions was considered in [31]; in that case the ABC dynamics were

generalized to higher dimensions but the resulting model is not an equilibrium system,

in contrast to the models considered below.

We take for simplicity the dimension to be two and the lattice to be an N × N

square in Z2. Let us consider first a situation in which the mean field interactions are

symmetric in the vertical direction but of the form (2.1) in the horizontal direction.

This yields an energy of the form

Ẽ(ζ) =
1

N2

N∑
k,l

N−1∑
i=1

N∑
j=i+1

∑
α

ηα(i, k)ηα+2(j, l) (2.47)

=

N−1∑
i=1

N∑
j=i+1

∑
α

η̃α(i)η̃α+2(j), (2.48)

where

η̃α(i) =
1

N

N∑
k=1

ηα(i, k). (2.49)

The energy functional Ẽ obtained from (2.48) in the scaling limit is identical to that

given in (2.5) with nα(x) replaced by ñα(x) =
∫ 1

0 n(x, y) dy. The entropy term (compare

(2.6)),

−S̃ =
∑
α

∫ 1

0

∫ 1

0
nα(x, y) log nα(x, y) dx dy, (2.50)

is clearly minimized, subject to a specified {ñα(x)}, by setting nα(x, y) = ñα(x), and

so density profiles which minimize βẼ − S̃ depend only on x and are the same as for

the one dimensional case, both for the canonical and grand canonical ensembles.

Remark 2.5.1. The two-dimensional chiral clock model [3, 29, 46] also contains interactions—

in that case, nearest-neighbor ones—which are reflection symmetric in the vertical di-

rection but not in the horizontal one. When the parameter ∆ (in the notation of [46])

has value 1/2 the energy, up to an additive constant and a rescaling, is

N−1∑
i=1

N∑
k=1

∑
α

ηα(i, k)ηα+2(i+ 1, k)−
N∑
i=1

N−1∑
k=1

∑
α

ηα(i, k)ηα(i, k + 1), (2.51)

so that the interactions in the horizontal direction have a form reminiscent of (2.1).

A second possibility is to take the reflection asymmetry to be the same in the x and
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y directions. In this case (2.1) takes the form

EN2(ζ) =
1

N2

∑
α

N−1∑
i,k=1

N∑
j=i+1l=k+1

ηα(i, k)ηα+2(j, l). (2.52)

The analysis of this model seems considerably more complicated and we will attempt

no discussion here.
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Chapter 3

A generalized ABC model

3.1 Introduction

The standard ABC model on an interval was considered in [5], and reviewed briefly

in Chapter 2. It is an equilibrium system on a 1D lattice of N sites with closed

boundary conditions. Each site is occupied by one of three types of particles, denoted

by A, B, and C, which interact via a cyclic mean field type pair potential which is

however not spatially reflection symmetric. In this chapter we generalize this model

by introducing an additional interaction in which each of the particle types moves in

a separate background potential that depends linearly on position, breaking the cyclic

symmetry in the standard ABC model. The equilibrium state of the standard ABC

model may also be obtained as the steady state for certain nearest neighbor exchange

dynamics [5, 32, 33], and the generalized model considered here may be obtained by a

modification of the exchange rates; see Appendix B.1 for details.

To define the model we introduce the occupation variables ηα(i), with ηα(i) = 1 (0)

if site i is (is not) occupied by a particle of type α. As each site is occupied by exactly

one particle, ∑
α

ηα(i) = 1. (3.1)

The energy of a configuration η is defined to be

E(η) =
1

N

∑
α

N∑
i=1

 N∑
j=1

Θ(j − i)ηα(i)ηα+2(j) + i ξα ηα(i)

, (3.2)

Here α+1 corresponds to the species following α in the ABC cyclic order, Θ(j−i) = 1 (0)

for j > i (j ≤ i), and the ξα may be thought of as constant background electric fields,

with ξα acting on particles of type α. We will consider the model in the canonical
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ensemble, with specified particle numbers of each type

N∑
i=1

ηα(i) = Nα,
∑
α

Nα = N. (3.3)

The canonical Gibbs measure for this system is then given by

µβ(η;Nα) =
1

Z
e−βE(η), (3.4)

with Z the usual canonical partition function. We will assume Nα > 0 for all α

throughout; if one of the particle species is absent, the model simply reduces to the

weakly asymmetric simple exclusion process (WASEP) [10, 52].

Note that if one adds the same constant to each of the ξα then the energy (3.2) is

only changed by an overall constant. We may therefore set
∑

α ξα = 0, without loss of

generality. We will refer to the case where ξA = ξB = ξC = 0 as the “standard” ABC

model. This is the model considered in [5].

The energy (3.2) may also be written in a different form, in which the contribution

of the external fields is expressed through a modified mean field interaction. Using (3.1)

and (3.3) we have

N∑
i=1

i ηα(i) = −
N∑
i=1

N∑
j=1

Θ(j − i)ηα(i) (ηα+1(j) + ηα+2(j))

+ Nα

(
N − Nα

2
+

1

2

)
.

(3.5)

Substituting (3.5) in (3.2) and rearranging sums, we obtain

E(η) =
1

N

∑
α

(
N∑
i=1

N∑
j=1

Θ(j − i) 3 vα+1 ηα(i) ηα+2(j)

+ ξα
Nα

2
(N +Nα+2 −Nα+1 + 1)

)
,

(3.6)

where the vα are given by

vα =
1

3

(
1 + ξα+1 − ξα+2

)
, (3.7)

so that ∑
α

vα = 1. (3.8)
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Figure 3.1: Different regions of the parameter space of the vα, plotted in the vA-vB plane.

The term
∑

α ξαNα (N +Nα+2 −Nα+1 + 1) /2 is independent of the configuration, and

may be ignored in the canonical ensemble with the Nα fixed.

It will be convenient to consider the fundamental parameters of the model, in addi-

tion to the particle numbers Nα of each species, to be the vα rather than the fields ξα,

as the vα are more directly related to the physical behavior of the model. We divide the

space of these parameters into three regions; see Figure 3.1, plotted in terms of vA and

vB, as these fix vC by (3.8). In region I, vα > 0 for all α. In regions II and III, vα < 0

for one or two values of α, respectively. In the standard model vA = vB = vC = 1/3.

We see from (3.6) that each of the vα determines the energetically preferred align-

ment of the two other particle species α ± 1. Effectively there is a contribution of

3 vα/N to the energy every time any pair of particles of species α + 1 and α + 2 are

not cyclically aligned, that is, whenever a particle of type α + 2 precedes one of type

α + 1. If for example vA > 0, a pair of B and C particles will have a lower energy

arranged as B · · ·C than as C · · ·B. If vA < 0 the preferred arrangement is reversed,

and the configuration C · · ·B will have a lower energy than the usual cyclic ordering

B · · ·C. This determines the ground states of the system, when β → ∞, as described

in Appendix B.1.



27

Background

The standard ABC model was introduced by Evans et al [32, 33] and in the form we

use by Clincy et al [14]. This model was originally considered on the ring, i.e. with the

boundary conditions periodic rather than closed, by specifying a dynamics consisting

of asymmetric nearest neighbor exchanges between particles of different species. The

stationary state of this dynamical system on the ring is generally not an equilibrium

one. Its properties have been studied extensively in [32] and in [8, 9, 11, 26, 39]. In the

special case that the number of particles of each species is the same the stationary state

of the model defined on the ring is a canonical Gibbs measure with the energy given by

(3.6), with vα = 1/3 for all α. The stationary state of the dynamical model defined on

the interval, or equivalently on a ring with exchanges across one bond blocked, is always

the canonical Gibbs measure regardless of the number of particles of each species and

is identical to that on the ring for equal Nα.

The equilibrium properties of the standard ABC model on the interval were obtained

exactly in [5], see also [7]. In particular it was shown there that (in the thermodynamic

limit) the system has a unique state (density profiles) whenever the average densities

Nα/N = rα are not all equal to 1/3, i.e. rα 6= vα for some α. When rα = 1/3 the

system undergoes a second order transition at β = βc = 2π
√

3 from a uniform density

profile to a periodic profile [11]. There are thus for β > βc a continuum of phases

(density profiles) specified by a rotation angle θ. The results we derive here for the case

when the vα are not all equal to 1/3 are more restricted. They suggest however that

the phase diagram for general vα is qualitatively similar to that of the standard ABC

model, with a phase transition only at rα = vα.

The outline of the rest of the chapter is as follows. In Section 3.2 we discuss general

properties of the macroscopic system in the scaling limit. Section 3.3 describes basic

properties of the solutions of the Euler-Lagrange equations. Special cases are considered

in Sections 3.4 and 3.5 for different values of the parameters. In Appendix B.1 we

discuss properties of the microscopic model specified by (3.2). Appendix B.2 discusses

the connection between the generalized ABC model and the Lotka-Volterra family of

ODE systems, and in Appendix B.3 we discuss some restrictions on solutions of the
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Euler-Lagrange equations for the case rα 6= vα for some α, with the vα in region I.

3.2 Scaling limit

The main goal of this chapter is to study the phase diagram of the equilibrium system

with energy (3.2) when N becomes macroscopic. For this we consider the scaling limit

in which

N →∞, Nα/N → rα, i/N → x ∈ [0, 1], (3.9)

so that rα is the average density of the particle species α. In this limit the state of

the system is described by density profiles ρα(x), α = A,B,C, where ρα(x) represents

the density of particles of type α at a position x. These density profiles satisfy the

constraints

0 ≤ ρα(x) ≤ 1,

∫ 1

0
dx ρα(x) = rα,

∑
α

ρα(x) = 1. (3.10)

The free energy (multiplied by β) F({ρ}) associated to the canonical ensemble

measure (3.4), see [5, 8], is given by

F({ρ}) = βE({ρ})− S({ρ}) (3.11)

where E({ρ}) and S({ρ}) are the energy per site and entropy per site in the scaling

limit:

E({ρ}) =
∑
α

∫ 1

0
dx

(∫ 1

0
dy Θ(y − x)ρα(x)ρα+2(y) + x ξα ρα(x)

)
(3.12)

S({ρ}) = −
∑
α

∫ 1

0
dx ρα(x) log ρα(x). (3.13)

As in the microscopic case, we can use the constraints (3.10) to rewrite the free energy

in a form analogous to (3.6),

F({ρ}) = β
∑
α

∫ 1

0
dx

∫ 1

0
dy Θ(y − x) 3 vα+1 ρα(x)ρα+2(y)

+
∑
α

∫ 1

0
dx ρα(x) log ρα(x) + F,

(3.14)

where the constant F =
∑

α ξαrα(1 + rα+2 − rα+1)/2 is independent of the profiles

ρα(x).
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The functional F({ρ}) is the large deviation functional giving probabilities in the

N → ∞ limit [5, 8, 14]; that is, the probability of the profile ρα(x) is proportional to

exp (−NF({ρ})). The typical equilibrium density profiles for the macroscopic model

are thus those that minimize the free energy. There will be a coexistence of phases

when the minimizer is not unique. To study this we have to consider solutions of the

Euler-Lagrange equations (ELE) associated to the stationary points of (3.11).

Let Fα(x) = δF/δρα(x) be the variational derivative of F taken as though all of

the ρα are independent. Applying the constraints (3.10) leads to the ELE

FA −FC = constant, FB −FC = constant, (3.15)

where the Fα from (3.14) are

Fα(x) = 1 + log ρα(x) + 3βvα+1rα+2

−3β

∫ x

0
dy (vα+1ρα+2(y)− vα+2ρα+1(y)).

(3.16)

It is easy to show that these Fα satisfy

∑
α

ρα(x)
∂Fα
∂x

(x) = 0, (3.17)

which with (3.15) implies that Fα(x) is constant for all α. Then from (3.16) the ELE

are given by

ρα(x) = ρα(0) exp

(
3β

∫ x

0
dy (vα+1ρα+2(y)− vα+2ρα+1(y))

)
, (3.18)

which may be evaluated at x = 1 to yield the boundary conditions

ρα(1) = ρα(0) e3β(vα+1rα+2−vα+2rα+1). (3.19)

Equivalently, one may also write the ELE in differential form as

dρα
dx

= 3βρα (vα+1ρα+2 − vα+2ρα+1) . (3.20)

The ELE are to be solved subject to (3.10).

Examining the ELE (3.20) one finds that there exist two constants of the motion,

∑
α

ρα(x) = 1, (3.21)
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and

K =
∏
α

ρvαα (x). (3.22)

To study solutions of the ELE we eliminate ρC using (3.21), so that the solutions give

trajectories in the ρA-ρB plane, and more specifically in the triangle

ρA, ρB ≥ 0, ρA + ρB ≤ 1. (3.23)

Any such trajectory lies within a level set of K; as we will see below, when the vα

lie in region I such a level set is either the single point ρα = vα or a simple closed

curve encircling this point. When the vα lie in regions II and III the level curve is an

open curve joining two vertices of the triangle. A solution of the ELE satisfying the

boundary conditions (3.19), or equivalently the constraint
∫ 1

0 ρα(x) dx = rα, is obtained

by choosing first a value of K and then a portion of the trajectory labeled by K which

is traversed in time one. See Figures 3.2 and 3.3 for typical level sets and trajectories.

In the special case where rα = vα the macroscopic free energy is rotation invariant

(see Appendix B.1 for details on the analogous result for the microscopic system). To

verify this we consider rotated profiles

ρ̃α(x) =


ρα(x− z) if x ≥ z

ρα(x+ (1− z)) if x ≤ z
. (3.24)

The entropy is clearly unchanged by the rotation, S({ρ̃}) = S({ρ}), while the difference

in energy, computed from (3.14), is

E({ρ̃})− E({ρ}) = 3
∑
α

∫ 1

1−z
dx

∫ 1−z

0
dy vα+1 (ρα(x)ρα+2(y)− ρα(y)ρα+2(x))

= 3
∑
α

∫ 1

1−z
dx vα+1 (ρα(x) rα+2 − rα ρα+2(x)) = 0, (3.25)

where we have used rα = vα and
∫ 1

0 dx ρα(x) = rα. As we shall see this case, which

generalizes the rα = 1/3 case in the standard ABC model, plays a special role in the

phase diagram.

It was proven in [5, Section 10] for the standard ABC model that solutions of the

ELE always exist, and that the minimizer of the free energy must be given by one of the

solutions. The same result holds for the generalized ABC model, with no modification of



31

the proof required. The fundamental question is then whether or not there is a unique

minimizer. This question was answered completely for the standard ABC model in

[5], and we believe that the direct generalization of the behavior in that case should

hold for the general model. We state this here as a conjecture, although it is partially

established in [5] and in the remainder of this chapter; the statement depends upon a

critical temperature Tc = β−1
c , where

βc =
2π

3
√
vAvBvC

. (3.26)

Conjecture 3.2.1. Solutions of the ELE. (a) If the vα lie in region I and rα = vα

for α = A,B,C then there exist (i) the constant solution ρα(x) = vα, 0 ≤ x ≤ 1, (ii) for

β > nβc, n = 1, 2, . . ., a unique solution corresponding to a trajectory which traverses

one of the level sets of K exactly n times, which we refer to as a type n solution, and

(iii) no other solutions. The minimizer of the free energy is, for β ≤ βc, the (unique)

constant solution and, for β > βc, the type 1 solution. At βc there is a second order

phase transition from the homogeneous phase to the phase segregated, heterogeneous

phase.

(b) For values of the vα and rα other than those discussed in (a) there exists for every

β a unique solution minimizing the free energy.

Statement (a.i) here is a trivial observation, and the existence portion of (a.ii) will

be established in Section 3.4. Beyond this, as we will discuss below, we can prove all or

part of this conjecture for some special values of the parameters besides the standard

case, vα = 1/3 for all α, for which the conjecture has been proven in full. In particular

we can prove uniqueness of the solution of the ELE when β < 4π/3. This follows

from the result in [5] that for such β the standard ABC model free energy functional is

globally convex on the space of density functions satisfying (3.10). As the addition of

external fields only adds terms that are linear in the particle densities to the standard

ABC free energy (see (3.12)), the second variation of (3.11) with respect to the density

functions is the same as that of the standard model. Thus for β < 4π/3 the free energy

for the generalized ABC model with external fields is also globally convex, implying

that there is a unique solution of the ELE, which must be the minimizer of the free
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energy. For rα = vα this is just the constant solution ρα(x) = vα, 0 ≤ x ≤ 1. For

other values of the rα there is for β < 4π/3 a unique segment of a unique K = K(β; r)

trajectory which minimizes F .

For β ≥ 4π/3 and rα = vα (so that the vα are in region I), we have the following

additional results:

(i) Conjecture 3.2.1(a) is proven when, for some α, vα = 1/2 and vα+1 = vα+2 = 1/4,

and checked numerically in other cases.

(ii) The constant solution is linearly stable for β ≤ βc and unstable for β > βc.

(iii) Nonconstant minimizers are always of type 1.

(iv) For small enough K, or equivalently, for large enough β, the type 1 solution is

unique for every β.

When rα 6= vα for some α we prove uniqueness for the cases when one of the vα is zero

and the other two have opposite signs, and when one of the vα is one.

In the next section we describe general properties of the solutions of the ELE. The

case rα = vα (with the vα in region I) is discussed in detail in Section 3.4, while the

special cases when rα 6= vα are considered in Section 3.5.

3.3 General properties of solutions of the ELE

The trajectories of the densities ρα(x) that are solutions of the ELE may be obtained

by studying the level sets of the constant of the motion K (3.22), as described in

Section 3.2. To do this let us define a line in the ρA-ρB plane passing through the point

(vA, vB) by setting

ρB = vB +m (ρA − vA) , (3.27)

with m an arbitrary constant. The change in logK as ρA is varied along the line (3.27)

can be manipulated using (3.10) to yield

d logK

dρA
=

(
vA
ρA
− vC
ρC

)
+m

(
vB
ρB
− vC
ρC

)
=

[
1 +

ρA
ρC

(
m2 + 2m+ 1

)
+
ρA
ρB
m2

](
vA
ρA
− 1

)
. (3.28)
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Figure 3.2: Plots of ρA (solid), ρB (dashed), and ρC (dotted) and their corresponding trajec-

tories in the ρA-ρB plane. See description under Region I, Case 1.

Thus K is monotone increasing for ρA < vA and decreasing for ρA > vA. A similar result

holds for ρB and vB. The shape of the level sets of K, and thus also the trajectories

of the densities, depends upon which region the vα lie in; compare Figures 3.2 and 3.3.

We now give more details.

Region I

It follows from (3.28) that in region I K achieves its maximum value at the center

point (vA, vB), where

K
∣∣
ρα=vα

= Kmax =
∏
α

vvαα , (3.29)

and decreases monotonically as one moves along any straight line in the (ρA, ρB) plane

starting from the center. K approaches its minimum value, Kmin = 0, on the boundaries

of the triangle (3.23) where one or more of the particle densities goes to zero. As K

is continuous in ρA, ρB inside the triangle, this implies that the level sets of K in this

case consist of a single point at the center (vA, vB) and closed curves surrounding the

center point.

As the level curves of K are closed, nonconstant solutions ρα(x) of the ELE must

be portions of periodic functions of x. When the period τ is greater (less) than 1,

this corresponds to the trajectory of the densities making less (more) than one full

rotation around the center point. We will refer to solutions with n− 1 < 1/τ ≤ n, for
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n an integer, as type n solutions. For example, a solution that does not make one full

rotation would be labeled as type 1, while a solution making exactly three rotations

around the center would be labeled as type 3. This is consistent with the terminology

used in Conjecture 3.2.1(a). The constant solution of the ELE is not assigned a type.

Trajectories of the particle densities satisfying the ELE for a given set of vα depend

upon the choice of the rα. For the vα in region I there are two cases to consider: (1)

rα = vα for all α, (2) rα 6= vα for some α.

Case 1: rα = vα. In this case the model is rotation invariant, and one has ρα(1) = ρα(0)

for all α. Here both constant and nonconstant solutions of the ELE are possible. The

constant solution is given by ρα(x) = vα, 0 ≤ x ≤ 1, as noted above. As ρα(1) = ρα(0),

see (3.19), nonconstant solutions must have an integer number of periods in the interval

x ∈ [0, 1], corresponding to the number of times the trajectory orbits the center. Note

that as one moves along the interval in x that the maxima (and minima) of the particle

densities proceed in cyclic order, that is, after species α reaches its maximum (minimum)

density, the next species to achieve its maximum (minimum) density is α+ 1.

Example numerical solutions of the ELE in this case and their corresponding tra-

jectories with vA = 1/2, vB = 1/3, vC = 1/6, and rα = vα for all α, are shown in

Figure 3.2. In this plot the inverse temperatures β1 = 13, β2 = 15, and β3 = 20, all

larger than βc, which has value 4π for this choice of the vα. The trajectories lie along

lines of constant K, with K1 ≈ .349, K2 ≈ .291, and K3 ≈ .189 for the solutions at β1,

β2, and β3 respectively. Arrows indicate the flow along the trajectory as x increases,

and the point (vA, vB) is marked by a dot. For this case Kmax ≈ .364.

Case 2: rα 6= vα. Here there is no rotation invariance and the densities at opposite

ends of the interval are not the same, ρα(1) 6= ρα(0) for some α, see (3.19). In this case

only nonconstant solutions of the ELE are possible at finite temperatures, i.e. forβ > 0.

These solutions will be portions of the periodic solutions described in Case 1. In contrast

to the rα = vα case, however, solutions of type n do not exist for arbitrarily large values

of n; there is some cutoff nmax ≥ 2, which depends on the difference between the rα

and the vα, above which type n solutions, n ≥ nmax, do not exist. This is because

the average value of each density ρα around one full orbit of the center is vα, so as n
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Figure 3.3: Plots of ρA (solid), ρB (dashed), and ρC (dotted) and their corresponding trajec-

tories in the ρA-ρB plane. See description under Regions II and III.

becomes large the average density for the full profile rα is steadily driven towards vα.

See Appendix B.3 for more details.

Regions II and III

When the vα lie in regions II and III, the point (vA, vB) lies outside the triangle

(3.23). Thus by (3.28) the level sets of K inside the triangle cannot be closed curves, as

when the vα are in region I. Let us consider the value of K along one of the boundaries

of the triangle, where ρα = 0 for some α. If vα is less than zero, K will be infinite along

this boundary. If vα is zero K will be finite, and if vα is larger than zero K will be

zero. On the vertices where two boundaries meet, with K equal to zero along one and

infinite along the other, the value of K at the vertex is not well defined, depending on

the way in which the limit is taken. Thus when the vα lie in regions II and III, lines of

constant K for K finite and nonzero will be curves terminating on the vertices of the

triangle where boundaries along which K is infinite and zero meet. When the vα lie on

the boundaries between different regions, e.g. for the special values of the vα considered

in Section 3.5, the level sets of K will be curves with ends terminating on either the

edges or the vertices of the triangle. Solutions of the ELE are therefore nonconstant at

finite temperatures and are not periodic.

Additionally, one may easily see by considering the ELE (3.20) that when one or two



36

of the vα are negative, the density of one particle species will monotonically increase in x,

and another species will monotonically decrease. If for example vA < 0 while vB, vC > 0,

ρB will be monotonically increasing and ρC will be monotonically decreasing. Note that

if the vα lie in region II, as x increases from 0 to 1 the maxima and minima of the particle

densities proceed in cyclic order, as for region I systems, but when the vα lie in region

III the order is reversed. That is, in region III a maximum (minimum) density of species

α is followed by a maximum (minimum) of species α+ 2.

Example numerical solutions and the corresponding trajectory of the densities with

vA = 4/5, vB = 2/3, vC = −7/15, rA = rB = rC = 1/3, are plotted in Figure 3.3.

In this figure β1 = 1, β2 = 3, and β3 = 5. The trajectories lie along lines of constant

K, with K1 ≈ .306, K2 ≈ .167, and K3 ≈ .066 for the solutions at β1, β2, and β3

respectively. Portions of the level curves not traversed by the solutions are marked

with dashed lines. Arrows indicate the flow along the trajectory, and the point (vA, vB)

is marked by a dot.

3.4 The case rα = vα

If rα = vα for all α (so that we are necessarily in region I) then as already noted

the constant solution ρα(x) = vα, 0 ≤ x ≤ 1, is always a solution of the ELE, and

other solutions are given by traversing, exactly n times for a type n solution, one of

the simple closed curves which is a level set of K. We show in Section 3.4.2 that the

constant solution cannot minimize the free energy when β > βc, and in Section 3.4.3

that no type n solution with n ≥ 2 can minimize the free energy. Thus the existence of

a unique minimizer as described in Conjecture 3.2.1(a) would be established if we could

show that no non-constant solution can exist for β < βc and that for β > βc there is a

unique type 1 solution, exactly what is proven in [5] for vα = 1/3 for all α.

Now under a change of scale t = βx the ELE (3.20) become

dρα
dt

= 3ρα (vα+1ρα+2 − vα+2ρα+1) , (3.30)

and type 1 solutions of (3.20) correspond to solutions of (3.30) which have period β,

the inverse of the temperature. The period τ(K) of the solution of (3.30) is easily seen
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to be a continuous function of K for 0 < K ≤ Kmax; a perturbative calculation as

in [5] shows that limK↗Kmax τ(K) = βc as K and we establish in Section 3.4.4 that

limK↘0 τ(K) =∞. The existence portion of Conjecture 3.2.1(a.ii) follows immediately

from these observations. If one could show that the period of the solution of (3.30) is

a monotonically decreasing function of K for 0 < K ≤ Kmax then uniqueness would

be established. However, (3.30) is for arbitrary vα a generic member of the general-

ized Lotka-Volterra family of quadratic centers [66] (for details on the correspondence

between (3.30) and a standard parametrization of the Lotka-Volterra family, see Ap-

pendix B.2), and monotonicity of the period as a function of orbit size is for this family

an open question [66]. In terms of the parameters used in (3.30), monotonicity was

established in [5] when all vα are 1/3, and below we establish monotonicity when, for

some α, vα = 1/2 and vα+1 = vα+2 = 1/4. Finally, monotonicity at sufficiently low

temperature (or equivalently, small K) follows, for any vα, from the correspondence

established in Appendix B.2 and the results of [66].

3.4.1 vα = 1/2, vα+1 = vα+2 = 1/4

When the vα lie in region I and two of them are equal, say vA = vB = γ with 0 < γ <

1/2, one may find explicitly an autonomous evolution equation for the third. We begin

with the expression

K = ρA(x)γρB(x)γρC(x)1−2γ , (3.31)

which together with (3.10) may be used to obtain the densities ρA and ρB in terms of

ρC :

ρA(x) =
1

2

(
1− ρC(x)±

√
(1− ρC(x))2 − 4K1/γρC(x)−λ

)
, (3.32)

ρB(x) =
1

2

(
1− ρC(x)∓

√
(1− ρC(x))2 − 4K1/γρC(x)−λ

)
. (3.33)

where λ = (1− 2γ)/γ. With (3.32) the reparameterized ELE (3.30) for ρC is

ρ′C(t) = 3γρC(t) (ρB(t)− ρA(t))

= 3γρC(t)

(
±
√

(1− ρC(t))2 − 4K1/γρC(x)−λ
)
. (3.34)
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Squaring (3.34) we have

9γ2

2
ρ′C(t)2 + UK(ρC(t)) = 0, (3.35)

with

UK(ρ) =
9

32

(
4K1/γρC(x)2−λ − ρ2 (1− ρ)2

)
. (3.36)

This is the equation for a zero energy particle of mass 1 confined in a potential well.

The zeros of the potential correspond to the turning points for the particle,

With γ = 1/4 and thus λ = 2 the potential becomes quartic. The zeros of UK are

then

1

2
± ρ0, ρ0 =

√
1

4
− 2K2. (3.37)

Note that in this case Kmax = 1/2
√

2, so 0 < ρ0 < 1/2. The period τ(K) of the type 1

solution ρ(t) may now be directly calculated, yielding

τ(K) =

∫ 1/2+ρ0

1/2−ρ0
dρ

2√
−2UK(ρ)

=
16/3√

1/2− ρ2
0 − ρ0

F

π
2
,− 4ρ0

√
1/2− ρ2

0(√
1/2− ρ2

0 − ρ0

)2

 . (3.38)

Here F (π/2, ·) is the complete elliptic integral the first kind. The period (3.38) is

a monotonically decreasing function of K, with (as expected) limK↗Kmax (τ(K)) =

8
√

2π/4 = βc and limK↘0 τ(K) = ∞. Thus for all β > βc there is a unique value of

K for which τ(K) = β and hence a unique type 1 solution of the ELE, and there is no

type 1 solution for β < βc.

3.4.2 Linear stability of the constant solution for β < βc

We will now consider the linear stability of the constant solution ρα(x) = vα, 0 ≤ x ≤ 1.

Let us define two bounded continuous functions φA(x), φB(x), satisfying∫ 1

0
dx φA(x) =

∫ 1

0
dx φB(x) = 0, (3.39)

and perturb the constant solution as

(ρA, ρB, ρC)→ (vA + ε φA, vB + ε φB, vC − ε (φA + φB)) (3.40)
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for some fixed ε very small. Under this perturbation all the terms in the free energy

linear in ε cancel. The order ε2 contribution to the entropy is

1

2

∫ 1

0
dx

[
1

rA
φ2
A(x) +

1

rB
φ2
B(x) +

1

rC
(φA(x) + φB(x))2

]
. (3.41)

The energy due to interaction with the external fields is linear in the densities, so the

ε2 term for the energy is due entirely to the asymmetric mean field ABC interaction,

β

∫ 1

0
dx

∫ 1

0
dy Θ(y − x)

[
− φA(x)(φA(y) + φB(y)) + φB(x)φA(y)

−(φA(x) + φB(x))φB(y)

]
= 3β

∫ 1

0
dx

∫ 1

0
dy Θ(y − x)φB(x)φA(y).

(3.42)

Now expanding φA(x) and φB(x) in a Fourier series as

φA(x) =

∞∑
n=1

(an sin (2πnx) + bn cos (2πnx)), (3.43)

φB(x) =
∞∑
n=1

(cn sin (2πnx) + dn cos (2πnx)), (3.44)

we see that the second variation of the free energy functional around the constant

solution is given by

∞∑
n=1

[
vA + vC
vAvC

(a2
n + b2n) +

vB + vC
vBvC

(c2
n + d2

n)

+
2

vC
(ancn + bndn)− 3β

πn
(bncn − andn)

]
.

(3.45)

If we write un = (an, bn, cn, dn), the second variation can be expressed in matrix form

as
∑∞

n=1 unM uTn/ (vAvBvC), where

M =



vB(1− vB) 0 vAvB 3β/(2πn)

0 vB(1− vB) −3β/(2πn) vAvB

vAvB 3β/(2πn) vA(1− vA) 0

3β/(2πn) vAvB 0 vA(1− vA)


. (3.46)

The eigenvalues of M are

λ± =
1

2

[
vA(1− vA) + vB(1− vB)

±

√√√√(vA(1− vA) + vB(1− vB))2 − 4

(
vAvBvC −

(
3β

2πn

)2
)]

,

(3.47)



40

each with degeneracy 2. Thus for β ≤ βc = 2π/(3
√
vAvBvC) the matrix M is positive

definite, so the second variation of the free energy around the constant solution is also

positive and the constant solution is a local minimum. At lower temperatures, β > βc,

the smallest eigenvalue λ− becomes negative, so in this regime the constant solution

can no longer be the minimizer of the free energy.

3.4.3 Solutions of type n ≥ 2

In this section we will show that solutions of the ELE for rα = vα with two or more full

periods in x ∈ [0, 1] can never minimize the free energy.

Consider a set of profiles {ρ}, not necessarily solutions of the ELE but satisfying

the constraints (3.10). Then for any integer n ≥ 2 we define the set of profiles {ρ̂n} by

ρ̂n,α(x) = ρα(nx− j) for
j

n
≤ x ≤ j + 1

n
, j = 0, ..., n− 1. (3.48)

That is, we obtain the ρ̂n,α by shrinking the ρα horizontally by a factor of n and

repeating these reduced profiles n times in the interval [0, 1]. We claim then that

S({ρ̂n}) = S({ρ}), (3.49)

E({ρ̂n}) =
1

n
E({ρ}) +

(
1− 1

n

)
E({r}), (3.50)

where E({r}) =
∑

α vαvα+2/2 is the energy of the constant solution ρα(x) = vα.

The proof proceeds by direct calculation. First let us consider the entropy of the

new profiles,

S({ρ̂n}) = −
∑
α

n−1∑
j=0

∫ (j+1)/n

j/n
dx ρ̂n,α(x) log ρ̂n,α(x)

= −
∑
α

n−1∑
j=0

1

n

∫ 1

0
dx̃ ρα(x̃) log ρα(x̃) = S({ρ}). (3.51)

Here we have used a change of variables with x = (x̃ + j)/n. The calculation of the
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energy proceeds similarly. Using the same change of variables

E({ρ̂n}) =
∑
α

{
n−1∑
j,k=0

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ Θ

(
ỹ + k − x̃− j

n

)
ρα(x̃)ρα+2(ỹ)

+
n−1∑
j=0

1

n

∫ 1

0
dx̃ ξα

x̃+ j

n
ρα(x̃)

}

=
∑
α

{
n−1∑
j=0

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ Θ(ỹ − x̃) ρα(x̃)ρα+2(ỹ)

+
∑

0≤j<k≤n−1

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ ρα(x̃)ρα+2(ỹ) +

1

n

∫ 1

0
dx̃ x̃ ξαρα(x̃)

}

=
1

n
E({ρ}) +

(
1− 1

n

)
E({r}), (3.52)

as there are n(n − 1)/2 pairs of indices with 0 ≤ j < k ≤ n − 1, and
∑

α ξαrα = 0, as

rα = vα implies ξα = rα+2 − rα+1.

Now there are two cases to consider. If E({ρ}) < E({r}), then by (3.52) E({ρ̂n}) >

E({ρ}), thus the original profiles ρα have a lower free energy and the ρ̂n,α cannot be

minimizers. If instead E({ρ}) ≥ E({r}), then E({ρ̂n}) > E({r}) as well, and as long as

ρα is not the constant solution S({r}) > S({ρ̂n}). Then F({r}) < F({ρ̂n}), so again

the ρ̂n,α are not minimizers. A type n solution of the ELE at an inverse temperature β

is of the form ρ̂n,α, where ρα is a type 1 solution at an inverse temperature β/n. Thus

no type n solution for n ≥ 2 can minimize the free energy.

3.4.4 K-β relation

It follows from the result of Section 3.4.3 that when rα = vα a minimizer of the free

energy must be either the constant solution of the ELE or a type 1 solution. Let K(β)

denote the value of K for the minimizer at temperature β; if several minimizers exist

then we choose one of them arbitrarily to define K(β). Of course, if K(β) < Kmax then

τ(K(β)) = β. If τ(K) is monotonic then K(β) will be the inverse of the function τ(K)

and must be continuous, since τ(K) is, but we cannot show this and thus cannot rule

out the possibility that K(β) may be discontinuous. However, we do show here that

K(β) must be monotonic decreasing.
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We begin with the integral form (3.18) of the ELE:

log ρα(x) = log ρα(0) + 3β

∫ x

0
dy (vα+1ρα+2(y)− vα+2ρα+1(y)). (3.53)

Substituting this into the entropy (3.13) and using
∫ 1

0 ρα(x) dx = rα gives∑
α

rα log ρα(0) = −3β
∑
α

∫ 1

0
dx

∫ x

0
dy ρα(x) (vα+1ρα+2(y)− vα+2ρα+1(y))

− S({ρ})

= 6β
∑
α

∫ 1

0
dx

∫ 1

0
dy Θ(y − x)vα+1ρα(x)ρα+2(y)

− S({ρ})− 3β
∑
α

vαrα+1rα+2

= 2βE({ρ})− S({ρ})− 2βE({r}), (3.54)

where E({r}) = 3
∑

α vαrα+1rα+2/2+F (see (3.14)) is the energy of the constant profile

ρα(x) = rα (which is not a solution of the ELE unless rα = vα). (3.54) is a general

relation which holds for all profiles {ρ} satisfying the ELE, i.e. for all stationary points

of F({ρ}), whether or not rα = vα.

Now suppose that rα = vα for all α. Then if {ρ} = {ρ(β)} is the minimizing solution

of the ELE corresponding to K(β), (3.54) becomes

logK(β) = 2βE({ρ(β)})− S({ρ(β)})− 2βE({r}), (3.55)

where now E({r}) = E({ρ(0)}) = 9vAvBvC/2 + F . For β2 > β1 we subtract the corre-

sponding equations (3.55) and rearrange terms to obtain

log
K(β2)

K(β1)
= 2
(
Fβ2({ρ(β2)})−Fβ2({ρ(β1)})

)
+
(
S({ρ(β2)})− S({ρ(β1)})

)
+ 2(β2 − β1)

(
E({ρ(β1)})− E({ρ(0)})

)
. (3.56)

where we have indicated the explicit β dependence in (3.11) by writing Fβ. But it follows

from simple general thermodynamic arguments that both S({ρ(β)}) and E({ρ(β)}) are

monotonic decreasing functions of β, and since ρ(β2) minimizes Fβ2 all three terms on

the right side of (3.56) are nonpositive. This establishes the monotonicity of K(β).

One may also see that when β is large, K(β) must be small. For from (3.55) we

have

logK(β)

β
= 2

(
E({ρ(β)})− E({r})

)
+ β−1S({ρ(β)}); (3.57)
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since the energy and entropy are bounded functions and E({ρ(β)}) is decreasing in β

the right hand side of (3.57) approaches a finite value as β ↗ ∞. In fact, one can

show that limβ↗∞ E({ρ(β)}) is the ground state energy per particle 3vAvBvC + F (see

Appendix B.1), so that asymptotically logK(β) ∼ −(3/2)vAvBvCβ.

3.5 Special cases when rα 6= vα

For certain values of the rα and vα when rα 6= vα, we are able to prove Conjec-

ture 3.2.1(b). There are two such special cases. In the first case, one of the vα is

zero and vα±1 have opposite signs (i.e., one of vα±1 must be greater than one). In this

case, the vα lie in fact on the boundary between regions II and III. In the second case

one of the vα is one. We will present the proof of Conjecture 3.2.1(b) for these cases in

the sections below.

3.5.1 vα = 0, vα±1 > 1

For definiteness let us take vC = 0, vB > 1. On the orbit with conserved quantity K

we have ρA(x)vAρB(x)1−vA = K and so

ρA(x) = K1/vAρB(x)γ , ρB(x) = K−1/(vA−1)ρA(x)1/γ , (3.58)

where γ = (vA − 1)/vA satisfies γ > 1. Thus the profiles satisfy

ρ′A = 3βρA(vBρC) = 3β(1− vA)ρA(1− ρA −K1/(1−vA)ρ
1/γ
A ) ≡ fK(ρA), (3.59)

ρ′B = 3βρB(−vAρC) = −3βvAρB(1− ρB −K1/vAργB) ≡ gK(ρB). (3.60)

Note that if K∗ > K then

fK(ρ) > fK∗(ρ) > 0 and gK∗(ρ) > gK(ρ) > 0. (3.61)

Now consider two profiles ρα(x) and ρ∗α(x) satisfying the ELE which have differ-

ent starting values: (ρA(0), ρB(0)) 6= (ρ∗A(0), ρ∗B(0)); we claim that the corresponding

averages are not equal: (rA, rB) 6= (r∗A, r
∗
B). We denote the corresponding conserved

quantities by K and K∗ and consider several cases.
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Case 1: K = K∗. Without loss of generality we take ρ∗A(0) > ρA(0) and hence

by (3.58) also ρ∗B(0) > ρB(0). Since ρα(x) and ρ∗α(x), α = A,B, satisfy the same

differential equation which by (3.61) has a strictly negative right hand side we have

ρα(x) > ρ∗α(x) for all x and so

r∗A > rA and r∗B > rB. (3.62)

Case 2: ρ∗A(0) = ρA(0). Now without loss of generality we may take K∗ > K and so by

(3.58) we have ρ∗B(0) > ρB(0). Thus by (3.60) and (3.61) we have that ρ∗B(x) > ρB(x),

and by (3.59) and (3.61) that ρA(x) > ρ∗A(x) for 0 < x ≤ 1, and so

r∗A < rA and r∗B > rB. (3.63)

The general case: Since we have dealt with the possibility K∗ = K in Case 1 we may

take K∗ > K. The case ρ∗A(0) = ρA(0) has been considered in Case 2. If ρ∗A(0) > ρA(0)

we introduce a profile ρ∗∗α with ρ∗∗A (0) = ρ∗A(0) and K∗∗ = K; then by Cases 1 and 2 we

have

r∗B > r∗∗B > rB. (3.64)

If instead ρ∗A(0) < ρA(0) we argue similarly, introducing a profile ρ∗∗α with ρ∗∗A (0) =

ρA(0) and K∗∗ = K∗, obtaining

rA > r∗∗A > r∗A. (3.65)

Thus the solution of the ELE must be unique.

The vC = 0, vB < 0, vA = 1 − vB > 1 case may be argued very similarly, but

making use of comparisons between the values of the densities at the end of the interval

ρα(1) rather than the initial values ρα(0), α = A,B. Otherwise the argument proceeds

identically to the case above, so we will omit the full derivation here.

3.5.2 vα = 1

When one of the vα = 1 it is possible to solve the ELE exactly. Let us assume vA = 1

and vB, vC are not zero, a trivial case, so the vα lie in region II. The ELE for ρA and
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ρB become

dρA
dx

= 3βvB ρA(ρB + ρC)

= 3βvB ρA(1− ρA), (3.66)

dρB
dx

= 3βρB(vC ρA − ρC)

= −3β ρB(1− ρB) + 3β(1− vB)ρA ρB. (3.67)

The equation for ρA may easily be solved to obtain

ρA(x) =
1

1 + cA e−3βvB x
, (3.68)

where cA = 1/ρA(0)− 1. Using (3.68) one may then solve for the density ρB,

ρB(x) = cA

(
cA + e3βvB x

) 1−vB
vB

1

(1 + cA)1/vB + cA cB e3βvB x
, (3.69)

with the constant

cB = (1 + cA)1/vB

(
1

(1 + cA)ρB(0)
− 1

cA

)
To show that the solution is unique, we must demonstrate that there is only one

choice of the initial values ρα(0) which will yield a particular set of average densities rα

at a given β. This may be seen directly from the density profiles (3.68), (3.69), which

depend simply on cA and cB. It is easy to see that

dρA(x)

dcA
< 0,

dρB(x)

dcB
< 0, (3.70)

and as dcA/dρA(0) < 0, dcB/dρB(0) < 0, we have

drA
dρA(0)

> 0,
drB

dρB(0)
> 0. (3.71)

Thus there is a unique solution of the ELE, given by (3.68), (3.69), for all β. The

average density of the profiles is given by

rA =
1

3βvB
log

ecA + e3βvB

1 + ecA
, (3.72)

rB = 1− 1

3β
log

(
ecA + e3βvB

)1/vB + e3β+cA cB

(1 + ecA)1/vB + ecA cB
, (3.73)

rC = 1− rA − rB. (3.74)

In principle one may invert equations (3.72), (3.73) to write the solutions in terms of

the average densities rA and rB rather than ρA(0) and ρB(0).
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Chapter 4

The inverse Ising problem

4.1 Introduction

In this chapter we investigate the problem of inferring the interactions between a set of

Ising spins given their correlations. As a first step in describing this so-called inverse

Ising problem, we review the standard or “forward” Ising problem, i.e. the computation

of Ising model observables (correlations, etc.) given the form of the interactions.

Here we are interested in the Ising model consisting of a finite number N of binary

random variables or spins ηi, labeled from 1 to N , which take values ηi ∈ {0, 1}.

The spins interact via a set of local fields or chemical potentials {hi} and pairwise

couplings {Jij}. For convenience we refer to the set of all the fields and couplings as

J = {{hi}, {Jij}}. The Hamiltonian is then

HJ(η) = −
∑
i

hiηi −
∑
j>i

Jijηiηj , (4.1)

where

η = {η1, η2, . . . , ηN} (4.2)

specifies the configuration of the system. Equilibrium properties of the Ising spin system

are described by the Gibbs measure

µJ(η) =
e−HJ(η)

Z
, (4.3)

which specifies the probability of each configuration η. Here Z is the partition function,

a normalizing factor obtained by summing the numerator of (4.3) over the set of all

configurations. In (4.3) and throughout this chapter we choose units such that kBT = 1;

the temperature will not play a role in our discussion.
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In principle, we can compute any equilibrium observable of interest by taking an

average with respect to the Gibbs measure, or via simulation. This is the forward Ising

problem. In particular, we will be interested in the correlations

pi ≡ 〈ηi〉J =
∑
η

ηi
e−HJ(η)

Z
, pij ≡ 〈ηiηj〉J =

∑
η

ηiηj
e−HJ(η)

Z
. (4.4)

As with the couplings and fields, we refer to the set of all one- and two-point correlations

as p = {{pi}, {pij}} for convenience. Practically speaking, for a large system it becomes

impossible to explicitly compute quantities such as (4.4). In this case, Monte Carlo

simulations are helpful. One first introduces dynamics, such as spin flips with rates

given by the popular Metropolis algorithm, chosen such that the steady state of the

dynamics is given by the Gibbs measure. Averages of observables taken over a long

simulation will then yield the same results as averages over (4.3).

The inverse Ising problem consists of inverting the map from interactions to observ-

ables given by (4.3). In other words, given a set correlations (or other observables),

we must find the Ising model which reproduces the correlations. This problem arises,

for example, if we would like to use the Ising model as a phenomenological model to

describe the behavior of some experimental system. To fit an Ising model to data, we

must solve the inverse problem.

As a simple phenomenological model for complex systems, the Ising model has

several attractive characteristics. First, the Ising model with local fields and pairwise

couplings (4.1) is the maximum entropy model which is capable of reproducing a set

of observed one- and two-point correlations (4.4). It has been argued for statistical

inference problems that, in the absence of information which would lead us to select

a particular model, the maximum entropy model consistent with the data should be

favored, because it is the least constrained model which successfully describes the system

[30]. This is a natural choice; the probability distribution which maximizes the entropy

of a closed system is the equilibrium distribution.

Additionally, in the study of complex systems, one common goal is to understand

how the collective behavior of a complex network of heterogeneous components, which

may be quantified in terms of correlations between the components, emerges from the



48

structure of their interactions. This includes, for example, making a distinction between

a correlation caused by direct interaction between components and one that is a result

of network effects. The Ising model provides a simple, natural framework for examining

such questions [16].

Indeed, the Ising model has proved useful for studying the correlated firing patterns

of networks of neurons [15, 24, 56, 59], as well as the structure of proteins and protein-

protein interactions [60, 67]. In each case, the Ising model has been employed as a

simplified model of a vastly more complicated system, whose real dynamics would be

difficult or impossible to model directly. While we present the analysis of data obtained

from real neuronal networks, we will not be concerned with the physical interpretation

of the Ising model applied to any particular experimental system. Rather, we focus on

the method of solution.

The inverse Ising problem can be stated as follows. Let us assume that the system

which we would like to investigate consists of N components, each of which may be

in one of two different states. Experimental data takes the form of a sequence of B

measurements of the configuration η(k), k = 1, . . . , B. From this data we define the

empirical measure

µex(η) =
1

B

B∑
k=1

δ(η, η(k)), (4.5)

where δ is the Kronecker delta function. Using (4.5) we find the emperical correlations,

p∗i =
1

B

B∑
k=1

η
(k)
i , p∗ij =

1

B

B∑
k=1

η
(k)
i η

(k)
j . (4.6)

The inverse problem is solved when we obtain the set of fields {h∗i } and couplings {J∗ij}

for which

pi = 〈ηi〉J∗ = p∗i , pij = 〈ηiηj〉J∗ = p∗ij . (4.7)

Unlike the forward problem, a direct approach to the solution is not immediately clear.

Maximum likelihood estimation, a fundamental method of statistical inference, pro-

vides one method of solution of the inverse problem. The approach is as follows. Using

the general Ising model with pairwise interactions, we compute via (4.3) the probability

or likelihood of observing the collection of experimental data {η(k)} as a function of the
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interactions J:

L({η(k)}|J) =

B∏
k=1

e−HJ(η(k))

Z
. (4.8)

For convenience, we compute the logarithm of the likelihood, divided by the number of

data points B,

L̂({η(k)}|J) = − logZ +
∑
i

p∗ihi +
∑
j>i

p∗ijJij . (4.9)

The couplings and fields J which maximize the likelihood (or equivalently, the average

log-likelihood (4.9)) then satisfy

∂L̂
∂hi

= 〈ηi〉J − p∗i = 0,
∂L̂
∂Jij

= 〈ηiηj〉J − p∗ij = 0. (4.10)

Thus we see that the J = J∗ which maximize the likelihood of the experimental data, if

they exist and are finite, also reproduce the experimentally measured one- and two-point

correlations.

Equivalently, one can think of the average log-likelihood (4.9) as the negative of the

cross-entropy S∗ between the empirical measure and that of the Ising model (4.3) [17],

S∗({η(k)},J) = −
∑
η

µex(η) logµex(η) +DKL(µex||µJ)

= logZ −
∑
i

p∗ihi −
∑
j>i

p∗ijJij ,

(4.11)

where DKL(µex||µJ) is the Kullback-Leibler divergence between µex and µJ,

DKL(µex||µJ) = −
∑
η

µex(η) log
µJ(η)

µex(η)
. (4.12)

The Kullback-Leibler divergence is a measure of distance between two probability mea-

sures. Hence the maximum likelihood solution J∗ also minimizes the “distance” between

the empirical measure and (4.3), as measured by the KL divergence. Note that, because

the one- and two-point correlations of the Ising model with interactions J∗ match those

obtained from data, as shown in (4.10), the cross-entropy S∗ (4.11) is equivalent to the

standard entropy of the Ising model when J = J∗.

Do the interactions J∗ maximizing (4.9) exist, and if so, are they unique? A set

of arbitrarily specified correlations may not be realizable (i.e. there may not exist any
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probability measure which yields the specified correlations). See [18, 35, 36] for a dis-

cussion of this problem. Since we assume that the correlations come from an empirical

measure (4.5), they are realizable, but it may not be obvious that local fields and pair-

wise couplings are enough to specify the desired correlations. To establish existence and

uniqueness of the solution, consider the matrix of second derivatives of the cross-entropy

χ =

 ∂2S∗

∂hi∂hi′
∂2S∗

∂hi∂Jk′l′

∂2S∗

∂hi′∂Jkl
∂2S∗

∂Jkl∂Jk′l′


=

 〈ηi ηi′〉J − 〈ηi〉J〈ηi′〉J 〈ηi ηk′ ηl′〉J − 〈ηi〉J〈ηk′ ηl′〉J

〈ηi′ ηk ηl〉J − 〈ηi′〉J〈ηk ηl〉J 〈ηk ηl ηk′ ηl′〉J − 〈ηk ηl〉J〈ηk′ ηl′〉J

 .

(4.13)

In the typical language of the Ising model, (4.13) is the susceptibility matrix, which

gives the response of each one- and two-point correlation pi and pkl to an infinitesimal

change in one of the fields hi′ or couplings Jk′l′ . The matrix χ is the covariance matrix

for the set of single spin variables ηi and pairs ηiηj , thus it is nonnegative. If χ has zero

modes, a small regularization term

γ

2

∑
i

h2
i +

∑
j>i

J2
ij

 (4.14)

can be added to (4.11) to ensure that the Hessian (4.13) is positive definite [17]. With

such an addition the cross-entropy is strictly convex, which establishes the existence

and uniqueness of the solution to the (regularized) inverse problem.

Minimization of (4.11) provides a method by which the desired J∗ may be obtained.

However, this equation has no analytical solution for more than a couple of spins, and,

because the number of terms in the partition function scales exponentially with the

system size, direct numerical minimization is precluded for large systems with N & 20.

Typical methods of solving the inference problem include the Boltzmann learning

method, which involves iterative Monte Carlo simulations followed by small updates

to the interaction parameters [1]. This method can be very slow for large systems,

though recent advances have notably improved the speed [12, 27, 65]. Other methods

such as iterative scaling algorithms [47, 62], pseudo-likelihood approximation [4, 50],

various perturbative expansions [15, 51, 54, 58] and mean field (or Gaussian model)
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approximations [28] have also been developed which attempt to solve the Inverse Ising

problem in certain limits. Such approximations are often computationally simple, but

suffer from a limited range of validity.

In this Chapter we review a statistical mechanical approach to the inverse Ising

problem [16, 17] based on a selective cluster expansion which improves upon mean field

methods. Moreover it avoids overfitting the data by selecting only clusters with sig-

nificant contributions to the inverse problem, minimizing the impact of finite sampling

noise. The outline is as follows. In Section 4.2 we present the selective cluster expansion

(SCE) algorithm, developed by Cocco and Monasson, which gives an approximate so-

lution to the inverse Ising problem. Section 4.3 details some algorithmic and numerical

improvements of the cluster algorithm, which have collectively allowed for the appli-

cation of this algorithm to much larger data sets, and have improved the speed of the

algorithm significantly. Numerical tests of the algorithm on real data from recordings

of neuronal networks are detailed in Section 4.4.

4.2 Selective cluster expansion algorithm

When an exact computation of the partition function is out of reach, and interactions are

strong such that high temperature expansions are not helpful, an accurate estimate of

the interactions which solve the inverse Ising problem can be obtained through cluster

expansions. Cluster expansions have a rich history in statistical mechanics, e.g. the

virial expansion in the theory of liquids or cluster variational methods [48].

The recently proposed selective cluster expansion algorithm of Cocco and Monasson

[16, 17] makes use of an assumption about the properties of the inverse of the suscepti-

bility matrix, χ−1, to efficiently generate an approximate solution to the inverse Ising

inference problem. The inverse susceptibility gives the response of the inferred inter-

actions to a small change in the correlations p∗. χ−1 is typically much sparser and

shorter range than χ (see for example results for the Ising model with nearest-neighbor

interactions, reported in [17]), implying that most interactions inferred from a given set

of data depend strongly on only a small set of correlations. Thus an estimate of the
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interactions for the entire system can be constructed by solving the inference problem

on small subsets (clusters) of spins and combining the results. The SCE gives such

an estimate by recursively solving the inverse Ising problem on small clusters of spins,

selecting the clusters which give significant information about the underlying interac-

tion graph according to their contribution to the entropy S of the inferred Ising model,

and building from these a new set of clusters to analyze. At the end of this cluster

expansion procedure, an estimate of the entropy and of the interactions for the full

system is produced based on the values inferred on each cluster.

We note that the assumption that χ−1 is sparse and short-ranged does not necessar-

ily hold in all cases. However, in applications to real data this is precisely the case which

we are most interested in, as the inferred network of interactions will be stable under

small changes in the experimental measurements. If, on the other hand, the inverse

susceptibility matrix is dense with many large entries, even small perturbations such

as the inclusion or exclusion of a single spin in the system could significantly affect the

inferred interactions. As typical experiments involve observations of only small subsets

of a much larger system, global sensitivity to small changes of the components of the

system would render the inferred Ising model physically meaningless, even if the inverse

problem is technically well-posed [17].

Let SΓ denote the entropy of the Ising model defined just on a subset Γ = {i1, i2, . . .}

of the full set of spins, which reproduces the one- and two-point correlations obtained

from data for this subset. The entropy S of the inferred Ising model on the full system

of N spins can then be expanded formally as a sum of individual contributions from

each of the 2N − 1 nonempty subsets,

S =
∑

Γ

∆SΓ, ∆SΓ = SΓ −
∑
Γ′⊂Γ

∆SΓ′ . (4.15)

The cluster entropy ∆SΓ, defined recursively in (4.15), measures the contribution of the

cluster Γ to the total entropy. It is calculated by substracting the cluster entropies of all

subsets of Γ from SΓ. Each cluster entropy depends only upon the correlations between

the spins in that cluster, and for small clusters it is easy to compute numerically.

The contribution of each cluster to the interactions, which we denote ∆JΓ, is defined
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analogously and computed at the same time as the cluster entropy. The elements of

JΓ are the couplings and fields which minimize the cross entropy S∗ restricted to the

cluster Γ.

As an example, the entropy of a single-spin cluster is, using (4.15) with N = 1,

∆S
(1)
(i) (p∗i ) ≡ S

(1)
(i) = −p∗i log p∗i − (1− p∗i ) log(1− p∗i ). (4.16)

The contribution to the field of a single-spin cluster is

∆h
(1)
i ≡ h

(1)
i = −

∂S
(1)
(i)

∂p∗i
= log

(
p∗i

1− p∗i

)
. (4.17)

The entropy of a two spin subsystem {i, j} is

S
(2)
(i,j)(p

∗
i , p
∗
j , p
∗
ij) =− p∗ij log p∗ij − (p∗i − p∗ij) log (p∗i − p∗ij)

− (p∗j − p∗ij) log (p∗j − p∗ij)

− (1− p∗i − p∗j + p∗ij) log (1− p∗i − p∗j + p∗ij)

(4.18)

Using again (4.15) with N = 2, we obtain ∆S(i,j) = S(i,j) − ∆S(i) − ∆S(j), which

measures the loss in entropy when imposing the constraint 〈ηi ηj〉 = p∗ij to a system of

two spins with fixed magnetizations, 〈ηi〉 = p∗i , 〈ηj〉 = p∗j . The contribution to the field

of the two spin cluster is

∆h
(2)
i = log

(
p∗i − p∗ij

1− p∗i − p∗j + p∗ij

)
−∆h

(1)
i , (4.19)

and the contribution to the coupling is

∆J
(2)
ij ≡ J

(2)
ij

= log p∗ij − log (p∗i − p∗ij)− log (p∗j − p∗ij) + log (1− p∗i − p∗j + p∗ij) .

(4.20)

It is difficult to write the entropy analytically for clusters of more than two spins, but

SΓ can be computed numerically as the minimum of the cross-entropy (4.11). This

involves calculating Z, a sum over an exponential number of spin configurations. In

practice this limits the size of the clusters which we can consider to those with . 20

spins.

A recursive use of (4.15) allows us to obtain ∆SΓ for larger and larger clusters Γ (see

also the pseudocode of Algorithm 1). It is important to note that the form of ∆SΓ is
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such that the sum of the cluster entropies of a cluster Γ and all of its subsets is just the

total entropy of the cluster, SΓ. The analogous result also holds for ∆J. This means in

particular that by construction the sum over all clusters for the full system of N spins

yields the exact entropy S and interactions J.

It is also posible to perform the expansion of (4.15) in S−S0, where S0 is a “reference

entropy” approximating S which we expand around. As with S, the reference entropy

S0 should be computable on all subsets of the system, and should depend only on the

one- and two-point correlations of the spins in the subsets. Again, by the construction

rule (4.15) and independent of the functional form of S0, summing over all the clusters

will give back the exact value of S−S0 for the full system. We will show in applications

to neural data (see Section 4.4) that it can be useful to consider an expansion S − SG

rather than S alone, using a Gaussian approximation as a reference entropy S0. In

some cases the expansion of S − SG converges much faster than the expansion of S

alone. We describe the Gaussian approximation in more detail in Appendix C.3.

The cluster entropy measures a cluster’s contribution to the total entropy, which

could not be gained from its sub-clusters taken separately. Intuitively, we expect that

clusters with small |∆SΓ| contribute little new information about the underlying in-

teraction graph which is not revealed by any of their subsets. For example, it is easy

to see from the form of ∆S for a two-spin cluster that, if the spins are independent,

the cluster entropy will be zero as the entropy of the pair of spins is simply equal to

the sum of the single spin entropies. It has also been shown [16, 17] that small cluster

entropies have a universal distribution, reflecting fluctuations in the experimentally ob-

served correlations due to finite sampling (see Appendix C.2). Cluster entropies that

are nonzero due to real interactions between the constituent spins also tend to decrease

in magnitude as the cluster size becomes large, decaying exponentially in the size of the

shortest closed interaction path between the spins in the cluster. In the SCE therefore

all clusters which have |∆SΓ| smaller than a fixed threshold T are discarded. Selecting

only those clusters which have cluster entropies larger than a chosen threshold helps to

avoid the overfitting of noisy data.

Clearly, it is not possible to compute all of the 2N−1 cluster entropies, corresponding
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to all the nonempty subsets of the full set of spins, even for rather small systems. To

make the algorithm computationally feasible we must have a method for truncating the

cluster expansion. This is implemented in the SCE by a recursive construction rule

for the clusters included in the expansion (see the pseudocode of Algorithm 2). We

begin with the computation of the cluster entropies for all N clusters of size k = 1.

The contribution of each cluster to the interactions is also recorded for later use. Each

subsequent step follows the same pattern. First, clusters with |∆SΓ| < T are removed.

We then include in the next step of the expansion all clusters which are unions of two

of the remaining clusters of size k, Γ′ = Γ1 ∪ Γ2, such that the new cluster Γ′ contains

k + 1 spins.

The expansion naturally terminates when no more new clusters can be formed. This

approach prevents a combinatorial explosion of the number of clusters considered in the

expansion. It is also consistent with the idea of exploring paths of strong interactions

in the interaction graph, as new clusters are built up from smaller clusters which have

already been found to have significant interactions and which share many spins in

common. Final estimates for the entropy and the interactions are obtained by adding

up all of the ∆SΓ and ∆JΓ.

4.2.1 Pseudocode of the cluster algorithm

In this section we present pseudocodes useful for the practical implementation of the

inference algorithm, following [16].

The principal routine of the cluster algorithm is the iterative computation of the

cluster entropy, given in Algorithm 1. When the routine to compute the entropies

of various clusters is called several times a substantial speed-up can be achieved by

memorizing the entropies ∆SΓ of every cluster. In Section 4.3 we will discuss how to

calculate the subset entropy SΓ in more detail.

The core of the inference algorithm is the recursive building-up and selection of new

clusters, described in Algorithm 2. The threshold T , which establishes which clusters

will be kept in the expansion, is a parameter which is fixed in each run of the selective

cluster algorithm. The choice of the optimal threshold T ∗ is discussed in Section 4.2.2.
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Algorithm 1 Computation of cluster-entropy ∆SΓ

Require: Γ (of size K), p∗, routine to calculate S and S0

∆SΓ ← SΓ − S0,Γ

for SIZE = K − 1 to 1 do

for every Γ′ with SIZE spins in Γ do

∆SΓ ← ∆SΓ −∆SΓ′

end for

end for

Output: ∆SΓ

4.2.2 Convergence and choice of the optimal threshold T ∗

In the following we describe the practical procedure for applying the inference algorithm

to a set of data.

If we wish to use an inferred Ising model to make predictions, it is best to take

into account the estimated statistical fluctuations of the empirical correlations so as to

avoid overfitting (i.e. fitting the model to greater precision than is justified by the data),

rather than generating as close a fit as possible to the empirical correlations p∗. It is

generally observed that models which are adjusted to fit experimental data too closely

give poorer predictions of the experimental system’s future behavior (for an excellent

discussion, see [28, Chapter 7]). As such, when applying the SCE algorithm to data we

search for an “optimal” value of the threshold, which we denote T ∗, where the difference

between the correlations of the inferred Ising model and the empirical correlations is of

the same order as the expected fluctuations of the empirical correlations due to finite

sampling, see Appendix C.2.

Because we do not know a priori the optimal value of the threshold T ∗ we run the

algorithm at different values of the threshold following the iterative heuristic below:

• Start with a large value of the threshold T , typically T = 1, at which only single-

spin clusters are selected.

• Infer the fields and the couplings at that threshold.
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Algorithm 2 Selective Cluster Expansion

Require: N , T , S0, routine to calculate ∆SΓ from p∗

LIST ← ∅ {All selected clusters}

SIZE ← 1

LIST(1) ← (1) ∪ (2) ∪ . . . ∪ (N) {Clusters of SIZE=1}

repeat {Building-up of clusters with one more spin}

LIST ← LIST ∪ LIST(SIZE) {Store current clusters}

LIST(SIZE+1) ← ∅

for every pair Γ1,Γ2 ∈ LIST(SIZE) do

ΓI ← Γ1 ∩ Γ2 {Spins belonging to Γ1 and to Γ2}

ΓU ← Γ1 ∪ Γ2 {Spins belonging to Γ1 or to Γ2}

if ΓI contains (SIZE-1) spins and |∆SΓU | > T then

LIST(SIZE+1)← LIST(SIZE+1) ∪ ΓU {add ΓU to list of selected clusters}

end if

end for

SIZE ← SIZE+1

until LIST(SIZE) = ∅

S ← S0, J ← − d
dp∗S0 {Calculation of S, J}

for Γ ∈ LIST do

S ← S + ∆SΓ, J← J− d
dp∗∆SΓ

end for

Output: S, J and LIST of clusters
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• If the number of selected clusters has changed with respect to the previous value

of the threshold, run a Monte Carlo simulation of the inferred Ising model to

check the reconstruction of the correlations. From the Monte Carlo simulation we

obtain reconstructed correlations prec and calculate the relative errors on the re-

constructed averages and connected correlations crec
ij = prec

ij −prec
i prec

j with respect

to their statistical fluctuations due to finite sampling,

εp =

(
1

N

∑
i

(prec
i − p∗i )2

(δp∗i )
2

) 1
2

, εc =

 2

N (N − 1)

∑
i<j

(crec
ij − c∗ij)2

(δc∗ij)
2

 1
2

. (4.21)

The denominators in (4.21) measure the typical fluctuations of the data expected

at thermal equilibrium, see (C.13), (C.16), and

δc∗ij ≈ δp∗ij + p∗i δp
∗
j + p∗jδp

∗
i . (4.22)

• Iterate this procedure by lowering the threshold T and stopping when the errors

εp ' 1, εc ' 1. The corresponding value of the threshold is the optimal threshold

T ∗.

Note that T ∗ is chosen as the first value of the threshold such that εp ' 1, εc ' 1

in order to reconstruct the data with the simplest possible network of interactions.

Decreasing the threshold more than is necessary to fit the one- and two-point correla-

tions is undesirable not only because the complicated structure of interactions due to

overfitting will not necessarily correspond well with the underlying interaction network,

but also because progressively lower values of the threshold increase the computational

difficulty of the inference problem. We note however that there is no risk of overfitting

data which has been perfectly sampled. In this case, as there is no sampling noise, one

is justified in fitting the model to the data as tightly as is practically possible.

4.3 Numerical methods

In this section we review some of the computational challenges of the algorithm and

numerical methods for running the algorithm efficiently.
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The primary computational bottleneck of the selective cluster expansion algorithm

is the repeated solution of the inverse Ising problem and the computation of the entropy

on each K-spin cluster in the expansion, which is used to calculate the cluster entropy

(see Algorithm 1).

For each cluster Γ the partition function of the K-spin system restricted to Γ,

ZΓ(J) =
∑

{ηi=0,1; i∈Γ}

exp

∑
i∈Γ

hi ηi +
∑

j>i; i,j∈Γ

Jij ηi ηj

 , (4.23)

can be computed in time ∝ 2K . Then one has to find the most likely set of {Jij} and

{hi} for each cluster given the experimental data, that is, we must solve the convex

optimization problem

min
J

S∗Γ(p∗,J) = logZΓ(J)−
∑
i∈Γ

hi p
∗
i −

∑
j>i; i,j∈Γ

Jij p
∗
ij

 . (4.24)

No analytical solution exists for clusters of more than a few spins. As a single run

of the cluster expansion algorithm may include thousands or even millions of clusters,

it is critically important that the optimization problem (4.24) be solved as quickly as

possible.

Given a starting value for the J, we employ a hybrid approach which combines

the standard optimization techniques of gradient descent and Newton’s method to step

progressively closer to the minimum. Gradient descent steps are chosen along the

direction of steepest descent, while Newton’s method specifies a step direction towards

the minimum of a local quadratic approximation of S∗. When far from the minimum,

we use gradient descent for its computational simplicity and numerical stability. Once

the J are determined to be close to the values which solve (4.24), we switch to Newton’s

method, which requires more computational resources but has a much better rate of

convergence near the minimum [44].

A careful choice of the initial conditions is also essential for obtaining a fast solution

with minimal computational effort. We begin the optimization problem with an initial

guess for J based upon the assumption that the couplings and fields minimizing S∗ will

be similar to those that were found for smaller clusters containing the same sites. That
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is, we assume

∆JΓ ≈ 0, (4.25)

which implies

JΓ ≈
∑
Γ′⊂Γ

∆JΓ′ . (4.26)

In many cases the initial guess (4.26) works very well, and the optimization routine

may find the minimum with just a single step. Just including this choice for the initial

interactions can cut the total running time of the algorithm in half.

As described in Section 4.1, we may regularize the interactions J, and in partic-

ular the couplings {Jij}, by adding a penalty term to S∗ for each coupling which is

nonzero. Regularization is useful for controlling large couplings that arise from noise

or undersampling of the experimental system, as well as ensuring the convexity of the

susceptibility χ, so that the inference problem has a unique solution at a finite value of

the couplings. Common choices of the penalty are based on the L1-norm

γ
∑
j>i

|Jij | (4.27)

or the L2-norm

γ
∑
j>i

J2
ij . (4.28)

Such terms are natural in the context of Bayesian inference. The addition of (4.27)

to S∗ is equivalent to assuming a Laplacian prior distribution for the couplings, while

the L2-norm penalty (4.28) corresponds to a Gaussian prior. In this framework the

regularization strength γ is proportional to 1/B, so that in the limit of perfect sampling

the regularization strength goes to zero.

Use of the L1-norm penalty makes the optimization problem more difficult, as the

function to be minimized is no longer smooth. In particular, in this case the gradient

of S∗ is undefined when any of the couplings Jij = 0. To overcome the lack of differen-

tiability of S∗ we use a modified version of the projected scaled sub-gradient method of

[55]. This method makes use of the sub-gradient, a generalization of the gradient which

is well-defined even when some couplings are zero. It also allows couplings to be set

exactly to zero during the step process, unlike a typical gradient descent or Newton’s
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Figure 4.1: Raster plot of spike train data from recordings of neuron populations: in the retina

in dark conditions (N = 60 cells) and with a random flickering stimulus (N = 51 cells), data by

M. Meister; in the retina with a natural movie stimulus (N = 40 cells), data by M. Berry; in the

prefrontal cortex of a rat (N = 37 cells), data by A. Peyrache and F. Battaglia; in the medial

prefrontal cortex of a rat (N = 117 cells), data by G. Buzsáki and S. Fujisawa. Recordings last

for 30 minutes – 1 hour, here we plot only 1 s of the recording. One can translate the continuous

time data in the raster plot into binary patterns of activity by arranging the time interval into

bins of size ∆t and recording whether or not each neuron spikes within each time bin. The

probability pi that a neuron i spikes in a time window of size ∆t is the number of windows

in which the neuron i is active divided by the total number of time windows. The probability

pij that two neurons i, j are active in the same time window is given by the number of time

windows in which both the neurons are active divided by the total number of time windows.

method step. Despite these additional complexities the optimization problem including

the L1-norm penalty can be solved with similar speed and accuracy as in the L2-norm

regularized or unregularized case.

4.4 Applications to real data

As an example of potential applications of the Selective Cluster Expansion algorithm

(SCE) we have re-analyzed, following [15], several sets of real data from multielectrode

recordings of collections of neurons. We examine in vitro recordings of salamander

retinal ganglion cells:

• A 4450 second recording of 51 ganglion cells in a retina illuminated with randomly
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flickering bright squares [57]. The recording is made with a multielectrode array

on a surface of about 1 mm2, and approximately 20% of the ganglion cells on that

surface are recorded.

• A 2000 second recording of the spontaneous activity of 60 cells of the same retina

as above observed in total darkness, of which 32 cells are common to the recording

with randomly flickering stimulus [57].

• A recording of 40 cells in a salamander retina presented with a 120 second natural

movie repeated 20 times. This recording is much denser; approximately 90% of

the ganglion cells on the analyzed surface are recorded [56].

We also study several in vivo recordings of neurons in the medial prefrontal cortex of a

rat during a working memory task:

• A 1500 second recording of 37 cells with tetrodes, each consisting of of four elec-

trodes, which record both superficial and deep layers of the medial prefrontal

cortex [49].

• A 2800 second recording of 117 cells with silicon probes which record both super-

ficial and deep layers of the medial prefrontal cortex [25].

Fig. 4.1 shows the neural activity in the first second of recordings of the different

data sets. The data presented here is in the form of spike trains – a list of all of the

times at which a particular neuron fired – for each neuron observed in the experiment.

To translate this continuous-time data into a binary form, consistent with the Ising

model, we first divide the total time interval of a recording of the activity into small

time bins of size ∆t. The activity is then represented by set of binary variables η
(k)
i ,

where k = 1, . . . , B labels the time bin and i = 1, . . . , N is a label which refers to a

particular neuron. In the data we consider N spans a few decades (30 to 120). If in bin

k neuron i has spiked at least once then we set η
(k)
i = 1, otherwise η

(k)
i = 0. Empirical

correlations are then computed as described in Section 4.1.

Spiking frequencies and pairwise correlations (i.e. one- and two-point correlations)

for a fixed time window are shown in Fig. 4.4 and Fig. 4.5, along with fits from the
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inferred Ising model. We observe from these figures that in cortical data the frequency

of the activity is higher, and in particular some cells spike very rapidly. The retinal

recordings are stationary in the sense that that the spiking frequencies and pairwise

correlations of the data do not change over time, at least on the time scale of 120 seconds

in the recording with a natural movie stimulus. The cortical data sets, however, are

nonstationary. In particular some cells are active only in part of the recording of the

117 cells in medial prefrontal cortex. Note that in the analysis we present here data

are considered to be stationary and the time dependence is not explicitly taken into

account.

For each data set, the values of the correlation indices

CIij =
p∗ij
p∗i p

∗
j

(4.29)

give some indication of the strength of the interactions between the spins. Neglecting

all other spins in the system, the approximation

J
(2)
ij = logCIij = log

p∗ij
p∗i p

∗
j

(4.30)

is close to the real coupling J∗ij , assuming that network effects are minor and that the

coupling is weak. Histograms of the correlation indices for pairs of spins in each data set

are presented in Figs. 4.8 and 4.9, along with the best inferred value of the couplings.

Here one can see that the correlation indices for the N = 37 Cortical data set (CA) are

particularly small, implying that the interactions are weak and the inference problem

is easier. When the correlation indices are large the magnitude of the couplings will

be also be larger. In this case the convergence of the SCE and the optimal expansion

variable (i.e. S − SG or S with no reference entropy) will depend on the structure of

the interactions. We explore this point in more detail below.

4.4.1 Performance of the algorithm for retinal data

We show the behavior of the reconstruction errors εp and εc as a function of the threshold

T on the retinal data in Fig. 4.2 for the expansion of S−SG. Results on the convergence

of the algorithm and on the value of the inferred entropy are summarized in Table 4.1
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for the different procedures tested, including expansions without the reference entropy.

These results include the value of the optimal threshold T ∗, as well as size of the largest

cluster in the expansion Kmax, the total number of clusters processed Ntot, the total

number of clusters selected at Nsel, and the inferred value of the entropy S, all evaluated

at T ∗.

As shown in the figures and in the table a Gaussian approximation reference entropy

SG is helpful for the inference problem when the SCE is applied to retinal data. The

threshold T ∗ is lower for the expansion of S alone, implying an increase in the number

of processed clusters and a larger value for Kmax. For the flickering stimulus (Fl)

the procedure without reference entropy did not converge even at a low value of the

threshold. Here small couplings, which would have been obtained through the Gaussian

couplings in the expansion of S − SG, are important for the proper reconstruction of

the correlations. Decreasing the threshold enough to fit many small couplings drives

the SCE algorithm to consider very large clusters (Kmax = 17 at the smallest value of

T tested), which slows the algorithm considerably.

We have also studied the inference problem on subsets of the full data sets described

above. As shown in the right column of Fig. 4.2, the value of the theshold T ∗ and the

maximum cluster size Kmax for large subsets of spins are of the same order of magnitude

as for the full set. Moreover the number of clusters selected increases approximately

linearly with the system size. This property was related in [16, 17] to the locality of the

coupling-susceptibility χ−1, and was shown to hold on artificial data of unidimensional

and bidimensional Ising models.

4.4.2 Performance of the algorithm for cortical data

As expected from the small values of the correlation indices the SCE applied to the

cortical recording of N = 37 neurons (CA) works very well for expansions both with

and without the Gaussian reference entropy. Indeed, the expansion converges already

at just Kmax = 2 with the reference entropy, and Kmax = 4 without it. For the cortical

recording of N = 117 cells we have tested the performance of the algorithm with time

bins of size ∆t = 5 ms (C5) and ∆t = 20 ms (CB). In both cases the convergence of
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Figure 4.2: Performance of the SCE of S − SG with L2 norm regularization on retinal data

as a function of the threshold T . The reconstruction errors εp (solid) and εc (dashed) (4.21)

are computed from Monte Carlo simulations. The value ε = 1 is indicated by a red dotted line,

and the selected optimal threshold T ∗ is marked in each plot with an arrow. Fl : flickering

stimulus, left whole set of 51 cells, right subset of 32 cells; Da : dark, left whole set of 60 cells,

right subset of 32 cells; Nm : natural movie stimulus, left whole set of 40 cells, right subset of

20 cells.
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Retinal data

Fl 51 Fl 32 Da 60 Da 32 Nm 40 Nm 20

S − SG

L2 norm

T ∗ 9.8× 10−6 6.5× 10−6 3.5× 10−6 6.0× 10−6 5.6× 10−6 3.7× 10−5

Kmax 6 7 11 8 9 5

Ntot 1.1× 104 4700 7.6× 104 9200 6.8× 104 930

Nsel 1450 840 1.0× 104 1700 1.0× 104 190

S − SG

L1 norm

T ∗ 6.2× 10−6 6.7× 10−6 5.0× 10−6 8.2× 10−6 6.6× 10−6 3.5× 10−5

Kmax 7 7 9 8 9 5

Ntot 1.5× 104 4500 5.1× 104 7300 5.8× 104 940

Nsel 2000 830 7500 1400 8500 190

S

L1 norm

T ∗ < 6.0× 10−7 1.2× 10−6 2.7× 10−6 6.1× 10−6 1.1× 10−6 6.4× 10−6

Kmax > 17 9 11 9 15 7

Ntot > 3.0× 105 3.8× 104 3.1× 105 2.6× 104 1.7× 106 5900

Nsel > 3.2× 104 6400 3.3× 104 4100 2.4× 105 1300

Same for

all

S 3.5 2.2 4.6 2.5 3.7 1.9

Table 4.1: Convergence of the Selective Cluster Expansion on retinal data. In cases where the

algorithm did not easily converge, bounds on the minimum or maximum quantities necessary

to obtain a good fit to the data are given, determined by the lowest value of the threshold

considered.
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Figure 4.3: Performance of the SCE of S with L1 norm regularization on cortical data as

a function of the threshold T . The reconstruction errors εp (solid) and εc (dashed) (4.21) are

computed from Monte Carlo simulations. The value ε = 1 is indicated by a red dotted line, and

the selected optimal threshold T ∗ is marked in each plot with an arrow. CA : cortex recording

of 37 cells; CB : cortex recording of 117 cells analyzed with a time bin of 20 ms; C5 : cortex

recording of 117 cells analyzed with a time bin of 5 ms.
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Cortical data

CA 37 CA 20 CB 117 CB 30 C5 117 C5 30

S − SG

L2 norm

T ∗ 7.8× 10−6 7.8× 10−6 < 8.0× 10−8 1.0× 10−5 < 5.0× 10−8 5.3× 10−6

Kmax 2 3 > 11 4 > 8 3

Ntot 910 230 > 5.6× 105 940 > 2.1× 105 570

Nsel 91 32 > 2.3× 104 110 > 5.4× 104 64

S − SG

L1 norm

T ∗ 7.8× 10−6 7.8× 10−6 < 8.0× 10−8 9.9× 10−6 < 5.0× 10−8 7.8× 10−6

Kmax 3 3 > 10 4 > 8 3

Ntot 920 230 > 5.4× 105 920 > 2.0× 105 530

Nsel 93 32 > 2.2× 104 110 > 5.2× 104 55

S

L1 norm

T ∗ 3.4× 10−5 5.7× 10−5 2.5× 10−7 2.9× 10−5 2.0× 10−5 4.8× 10−6

Kmax 4 3 10 4 4 3

Ntot 1300 270 4.4× 106 5000 1.6× 104 1200

Nsel 140 40 1.7× 105 580 630 140

Same for

all

S 6.6 3.8 14.7 3.3 5.9 1.2

Table 4.2: Convergence of the Selective Cluster Expansion on cortical data. In cases where the

algorithm did not easily converge, bounds on the minimum or maximum quantities necessary

to obtain a good fit to the data are given, determined by the lowest value of the threshold

considered.

the algorithm was faster in without the reference entropy (see Table 4.2). Expansions

of S − SG converged very slowly, and the relative errors εp, εc did not approach one at

a threshold T ≈ 10−7.

The poor performance of the expansion of S −SG for cortical data, and the success

of the expansion in S alone, is in stark contrast with the analysis of retinal recordings.

This phenomenon is related to the fact that the interaction network which is capable of

fitting the cortical data is relatively dilute and with a few large couplings, for which the

Gaussian result is a poor approximation. The presence of a reference entropy makes

reconstructing the empirical correlations more difficult in this case, as the inferred

interaction network is then fully connected (even if many of these couplings are small).
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Figure 4.4: Spiking frequencies preci and connected correlations crecij for retinal data sets cal-

culated from a Monte Carlo simulation of the inferred Ising model (vertical) versus the experi-

mental values p∗i , c
∗
ij (horizontal). The error bars are given by the statistical fluctuations δp∗i ,

δc∗ij .

4.4.3 Reconstruction of the one- and two-point correlations

The spiking probabilities and connected correlations obtained from Monte Carlo simu-

lations with the inferred parameters at T ∗ are close to those obtained from experiments,

as shown in Fig. 4.4 and Fig. 4.5. Indeed the conditions εc ' 1, εp ' 1 specify that the

difference between the inferred and empirical correlations is approximately the same as

the statistical uncertainty of the empirical correlations due to sampling a finite number

of configurations. We find that the reconstruction of the p∗ is equally good for all

different choices of the reference entropy and regularization, provided of course that

they reach a threshold T ∗ at which εc, εp ' 1.
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Figure 4.6: Reconstructed three-cell connected correlations crecijk (vertical), and probability

P rec(k) that k cells spike in the same time bin (black), versus the experimental ones c∗ijk

(horizontal) and P ∗(k) (red) from retina recordings. The reconstructed values are obtained

from a Monte Carlo simulation of the inferred Ising model at T ∗.

4.4.4 Reconstruction of three-cell correlations and multi-neuron firing

frequencies

We have verified that the three-cell connected correlations cijk and the multi-neuron

firing frequencies (i.e. the probability P (k) that k cells spike in the same bin) are also

quite well reproduced by the inferred Ising model, as shown in Figs. 4.6 and 4.7. Note

that for the cortical recording of 37 cells (CA) and of 117 cells analyzed with ∆t =

5 ms (C5) the connected three-cell correlations are in most cases so small that it is

difficult to separate them from the sampling noise. We have therefore also plotted the

correlations pijk, which is the probability that the three cells spike in the same time

bin, in Fig. 4.7. We emphasize that, unlike the reconstruction of the one- and two-point

correlations, there are no a priori reasons that the Ising model should also reconstruct

the higher moments of the experimental distribution, because it is not the true model
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mental ones p∗ijk, c∗ijk (horizontal) and P ∗(k) (red) from cortex recordings. The reconstructed

values are obtained from a Monte Carlo simulation of the inferred Ising model at T ∗.

which has generated the data, and these measurements are not used as constraints in

the inference. Nevertheless this model seems to reproduce fairly well the statistics of

the data, at least for the cijk and the P (k).

Intuitively the reason for such success could be simply due to the fact that the

number of effective configurations the system explores is 2S , which should be compared

with the number of parameters N (N + 1)/2 that we use to fit the distribution (see

discussion in [15]). In principle any model with a number of parameters similar to the

effective number of configurations could be equally good. For the data sets we have

analyzed with N ≤ 60, (see Tables 4.1 and 4.2) we have that N (N + 1)/2 > 2S . For

larger systems with more than one hundred cells, the exponential growth of 2S with

N , due to the fact that S ∝ N , will be difficult to compensate with the increase of

the number of parameters ∝ N2. For the recording of 117 cortical neurons with time

bins of size 5 ms we have S = 5.9 so 2S < N (N + 1)/2, but for 20 ms for we obtain

N (N + 1)/2 = 6900 while 2S = 2.6 × 104. Even here the reconstruction of the higher

moments is still quite good. This could indicate that the Ising model, which is the
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Figure 4.8: Histogram of couplings for retinal data, compared to the histogram of correlation

indices. Reliable couplings are marked in black, and unreliable couplings are marked in brown.

maximal entropy model, is really a good model for the neural activity.

4.4.5 Reliability of inferred couplings

Uncertainties in the inferred interactions δJij due to finite sampling can be computed

from (C.18) (see Appendix C.2 for a brief derivation). Fig. 4.8 and Fig. 4.9 show

the the histogram of couplings in which we distinguish reliable couplings, for which

|Jij |/δJij > 3, from unreliable couplings, which are compatible with zero within the

error bars. As expected, because of the sampling fluctuations there are many unreliable

couplings (particularly small couplings), but it is important to note that these may still

be necessary to accurately reproduce the correlations. Large reliable couplings generally

correspond to large correlation indices, but the converse is not necessarily true.

As shown in Fig. 4.8 correlation indices are large in the retinal data and many

couplings have large values, with magnitudes up to |Jij | ≈ 4. The histogram of couplings
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Figure 4.10: Left: two-spin couplings J (2) versus couplings, right: couplings inferred from a

subset of cells versus couplings inferred from the whole set. Reliable couplings are marked in

black, and unreliable couplings are marked in brown.

is similar for the different data sets. Fig. 4.9 shows that the correlation indices and

inferred couplings for the cortical data tend to be smaller. For both data sets there are

some large negative couplings, but these are mostly unreliable.

4.4.6 Network effects: comparison with correlation index and with

inferred couplings on a subset of data

We investigate the importance of the network effects in the inference by comparing

the couplings inferred via SCE with the two-spin couplings J
(2)
ij (4.30) given by the

logarithm of the correlation index, and by comparing the couplings obtained for a full

set of data to those obtained when only considering a subset of the whole system. As

shown in Fig. 4.10 for retinal data the inferred couplings are generally different from

two-spin couplings, indicating that network effects are important. Thus the structure of



76

-6 -4 -2 0 2
-4

-2

0

2

2-cell couplings J
ij

(2)
 vs couplings J

ij

-4 -2 0 2
-4

-2

0

2

Subset vs whole set couplings

-10 -8 -6 -4 -2 0 2 4
-6

-4

-2

0

2

4

J ij

(2
)

-8 -6 -4 -2 0 2 4
-8

-6

-4

-2

0

2

4

J ij

su
b

-6 -4 -2 0 2 4

J
ij

-6

-4

-2

0

2

4

-8 -6 -4 -2 0 2 4

J
ij

-8

-6

-4

-2

0

2

4

CA

CB

C5

Figure 4.11: Left: two-spin couplings J (2) versus couplings, right: couplings inferred from a

subset of cells versus couplings inferred from the whole set. Reliable couplings are marked in

black, and unreliable couplings are marked in brown.



77

the interactions is not a simple reflection structure of the structure of the correlations;

a procedure such as the SCE is necessary to disentangle couplings from correlations.

As shown in Fig. 4.10 (right) most of the couplings inferred for the subsets of

cells are similar to the ones inferred for the whole set, though some couplings may

change in magnitude. The fact that many couplings are similar implies that the inverse

susceptibility is local, and therefore each coupling can be inferred from the knowledge

of the correlations in a local “neighborhood.” Couplings only change if a spin in the

neighborhood is removed.

As shown in Fig. 4.11, the correlation indices and the couplings for the 37 cell cortical

recording (CA) are very are similar because not only is the interaction network sparse,

but also the correlation length is small. The couplings calcuated on a subset are also

similar to the ones for the whole set. For the cortical data of 117 cells with ∆t = 5 ms,

only some two spin clusters are enough to infer the couplings in the cluster expansion.

Neverthless it is important to select the right ones rather than simply including all the

two spin clusters in the inference procedure. The inclusion of all the two spin clusters

would yield a fully connected interaction graph, much denser than the observed network

of couplings, which does not reproduce the observed correlations. Typically the large

couplings J
(2)
ij correspond to real interactions, while the correlations leading to smaller

J
(2)
ij reflect network effects rather than direct interactions. In the cortical data overall

network effects are much less pronounced.

4.5 Discussion

In this Chapter we have presented the inverse Ising problem and described one method

of solution, the selective cluster expansion (SCE) of the entropy. We have also briefly

described numerical and algorithmic methods which improve upon the original imple-

mentation of the SCE algorithm [16, 17]. As demonstrated in Section 4.4, we are able

to infer an Ising model which accurately reproduces the correlations obtained from a

set of experimental data even when the size of the system is large (the maximum we

consider being N = 117 spins).
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Despite the success of the SCE algorithm, there are some limitations which slow

down the algorithm particularly in the case of large data sets and which could be

improved. First, when a large number of clusters are selected the construction rule

for new clusters becomes a time limiting step. This can happen, for example, when

considering very low values of the threshold, particularly in the expansion of S without

the reference entropy SG. Second, the necessity of using a Monte Carlo simulation

to test how well the correlations are reconstructed at each value of the threshold is a

drawback, making practical implementation of the algorithm more cumbersome. Some

theoretical arguments to estimate the optimal threshold or an approximation in the

direct problem could be used to speed up the algorithm, expecially when N is large,

and where the thermalization of Monte Carlo simulation can be slow. Future work on

the SCE method should attempt to address these issues, and to provide theoretical

guarantees for the convergence of the algorithm, which are currently lacking.

As shown in Section 4.4.4, there is evidence that the Ising model with pairwise inter-

actions is in fact able to reproduce features of the data beyond the one- and two-point

correlations, even though these features do not appear as constraints in the inference

problem. The reason why the maximum entropy approach is successful in this case, and

in related applications, is still an open question, and one that merits further research.
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Appendix A

Appendices for Chapter 2

A.1 Proof of Theorem 2.4.1(b)

We begin by giving an alternate form of the boundary conditions (2.28). With (2.14)

and (2.16) these become

λα − λα+1 = log
(
yK(tα − β)

)
− log

(
yK(tα + β − τK/3)

)
. (A.1)

From (2.9) and (2.14), (log yK(t))′ = [yK(t+ τK/3)− yK(t− τK/3)]/2, so that

λα − λα+1 =
1

2

∫ tα−β

tα+β−τK/3

[
yK

(
t+

τK
3

)
− yK

(
t− τK

3

)]
dt. (A.2)

The solution of (A.2) which also satisfies
∑

α λα = 0 is

λα =
1

2

∫ sα+(τK/6−β)

sα−(τK/6−β)

(
1

3
− yK(t)

)
dt, (A.3)

where sα = tα + τK/2. The form (A.3) is convenient when 2β ≤ τK/3; if 2β ≥ τK/3 we

may rewrite this as

λα =
1

2

∫ sα+(β−τK/6)

sα−(β−τK/6)

(
yK(t)− 1

3

)
dt. (A.4)

The representations (A.3) and (A.4) are useful because they translate the boundary

conditions for the grand canonical model into a form similar to the condition (2.17) in

the canonical model.

We need also to recall from [5] some further properties of the function yK(t) and its

definite integrals

Y (K, s, δ) =

∫ s+δ

s−δ
yK(t) dt and W (K, s, δ) =

∫ s+δ

s−δ
yK

(
t+

τK
3

)
dt. (A.5)

Note that from (2.17),

rα =
1

2β
Y (K, tα, β) (A.6)
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and that from (2.16),

λα =
δ

3
− 1

2
Y (K, sα, δ) =

δ

3
− 1

2
W (K, sα+1, δ), (A.7)

for δ = τK/6− β ≥ 0, while for δ′ = −δ > 0,

λα =
1

2
Y (K, sα, δ

′)− δ′

3
=

1

2
W (K, sα+1, δ

′)− δ′

3
. (A.8)

Proposition A.1.1. For 0 < K < 1/27:

(a) (i) yK(t) is even and τK-periodic (and hence also symmetric about t = τK/2), takes

its minimum value at t = 0, is strictly increasing on [0, τK/2], and takes its maximum

value at t = τK/2. Moreover, (ii) yK(t− τK/3) + yK(t) + yK(t+ τk/3) = 1 for all t.

(b) The minimum value a = a(K) = yK(0) of yK is an increasing function of K

satisfying 0 < a(K) < 1/3. The maximum value b = b(K) = yK(τK/2) is b = [2− a−
√

4a− 3a2]/2, and yK(τ/6) = (1− b)/2, yK(τ/3) = (1− a)/2.

(c) (i) For fixed K and δ, with 0 < δ < τK/2, the function Y (K, t, δ) shares with yK(t)

the properties listed in (a.i). Moreover, (ii)

Y (K, t− τK/3, δ) + Y (K, t, δ) + Y (K, t+ τk/3, δ) = 2δ. (A.9)

(d) For 0 < δ < τk/2, Y (K, 0, δ) is strictly decreasing, and W (K, τk/6, δ) strictly

increasing, in K.

Finally, for 0 < K2 < K1 < 1/27:

(e) (i) For any t0 the curves yK1(t0 +t) and yK2(t) intersect exactly once in the interval

0 ≤ t ≤ τK2/2, and (ii) yK2(t) < yK1(t) and yK2(τK2/2 − t) > yK1(τK1/2 − t) for

0 ≤ t ≤ τK1/6.

Proof. These results either appear in [5] or are immediate consequences of results ap-

pearing there. For (a) and (b) see Section 5.2 of [5] and in particular Remark 5.1(a);

for (c.i) see Remark 5.3(b). (c.ii) follows from (a.ii). The first statement of (d) follows

from the fact that Y (K, 0, δ) is continuous in K and, for 0 < δ < τk/2, approaches 2δ/3

as K ↗ 1/27 and 0 as K ↘ 0, together with Theorem 6.1 of [5] which, if one takes

there rA = rC , asserts that for given rB with 0 < rB < 1/3 there is at most one value of
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K satisfying (A.6). The second statement of (d) is verified similarly. Finally, (e.i) is a

special case of Lemma 6.2(a) of [5] and (e.ii) then follows from (e.i) and the inequalities

yK2(0) < yK1(0), yK2(τK1/6) < yK2(τK2/6) < yK1(τK1/6), yK2(τK2/2) > yK1(τK1/2),

and yK2(τK2/2− τK1/6) > yK2(τK2/3) > yK1(τK1/3), easily obtained from the proper-

ties given in (a) and (b).

We now turn to the proof of Theorem 2.4.1(b). We know (see the remarks at the

beginning of Section 2.4) that there is at least one minimizer and that every minimizer

satisfies the ELE (2.27), (2.28). Thus the conclusion of the theorem will follow from:

Lemma A.1.2. If λA, λB, and λC are not all equal then:

(a) No solution of (2.27), (2.28) of type n, n ≥ 2, can minimize F̂ .

(b) At most one solution of (2.27), (2.28) of type 1 exists.

Remark A.1.3. In proving Lemma A.1.2 we need not consider either the constant

solution of the ELE or nonconstant solutions for which 2β = (n−2)βc/3, both of which

satisfy (2.28) only when all the λα are equal. We may also suppose, without loss of

generality, that

λA ≤ λC ≤ λB, with λA < λC or λC < λB. (A.10)

If δ = τK/6 − β > 0 it then follows from (A.7) that Y (K, sB, δ) ≤ Y (K, sC , δ) ≤

Y (K, sA, δ) and then from Proposition A.1.1(c.i) (see Figure A.1, which displays graph-

ically the qualitative properties of Y (K, s, δ) implied there) that 0 ≤ sB ≤ τK/6,

so that τK/2 ≤ tB ≤ 2τK/3 and hence, from Proposition A.1.1(c.i) and (A.6), that

rA ≤ rC ≤ rB. If λA < λC then sB > 0, tB > τK/2, and rA < rC ; similarly rC < rB,

if λC < λB. Similarly, if τK/6 < β < τK/2 then (now using (A.8)) τK/2 ≤ sB ≤ 2τK/3

and rB ≤ rC ≤ rA, again with strict inequality for two of the λα implying the corre-

sponding inequality for the rα.

Proof of Lemma A.1.2(a): Consider some type n solution ρ(x), n ≥ 2, of (2.27),

(2.28); ρ(x) has the form (2.14) with 2β > τK/3. We need to find a profile ρ̃(x) with

F̂({ρ̃}) < F̂({ρ}). There are three subcases:
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Figure A.1: Plots showing qualitative features of Y (K, s, δ) (solid), Y (K, s+τK/3, δ) (dotted),

and Y (K, s− τK/3, δ) (dashed) for 0 < δ < τK/2, based on Proposition A.1.1(c.1).

Case (a.i) 2β > τK . In this case it was shown in [5] that there is a rearrangement ρ̃(x)

of ρ(x) with F({ρ̃}) < F({ρ}). This rearrangement does not change the mean densities

rα and hence also F̂({ρ̃}) < F̂({ρ}).

Case (a.ii) 2β = τK . In this case the solution ρ(x) has mean densities rα = 1/3, so

that
∑
λαrα = 0. From the description of the curve Γ in Section 2.4.1 it follows that for

some z > 0 there exists a minimizer ρ̃(x) of F̂ (β,0) with mean densities r̃α = 1/3 + zλα,

so that
∑
λαr̃α > 0. But then

F̂ (β,λ)({ρ}) = F̂ (β,0)({ρ}) > F̂ (β,0)({ρ̃}) > F̂ (β,λ)({ρ̃}). (A.11)

Case (a.iii) τK > 2β > τK/3. By Remark A.1.3, rB ≤ rC ≤ rA, with rB < rC if

λC < λB and rC < rA if λA < λC . Consider now the profile ρ̃ with ρ̃α(x) = ρα+1(x).

The canonical free energy functional satisfies F({ρ̃}) = F({ρ}) and so

F̂({ρ̃})− F̂({ρ}) =
∑
α

λαrα −
∑
α

λαrα+1

= (λA − λC)(rA − rB) + (λB − λC)(rB − rC) < 0. (A.12)

The next result, the key to the proof of Lemma A.1.2(b), gives certain monotonicity

properties of Y (K, s, δ) and W (K, s, δ).
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Lemma A.1.4. If K, s, and δ satisfy 0 < K < 1/27 and 0 ≤ s, δ ≤ τK/6, then:

(a) For fixed K and s the function 2δ/3−Y (K, s, δ) (respectively 2δ/3−W (K, s, δ)) is

strictly increasing (respectively strictly decreasing) in δ;

(b) For fixed K and δ the functions Y (K, s, δ) and W (K, s, δ) are strictly increasing in

s;

(c) For fixed s and δ the function Y (K, s, δ) (respectively W (K, s, δ)) is strictly increas-

ing (respectively strictly decreasing) in K.

Proof. (a) We rely throughout on Proposition A.1.1(a,b). From 0 ≤ s+ δ ≤ τK/3 and

−τK/6 ≤ s− δ ≤ τK/6 it follows that yK(s+ δ) ≤ (1− a)/2 and yK(s− δ) ≤ (1− b)/2.

Then from (A.5),

d

dδ

[
2δ

3
− Y (K, s, δ)

]
=

2

3
− yK(s+ δ)− yK(s− δ) ≥ a+ b

2
− 1

3
> 0, (A.13)

as is easily verified from b = [2 − a −
√

4a− 3a2]/2 with 0 < a < 1/3. To show that

(d/dδ)(2δ/3−W (K, s, δ)) < 0 it suffices similarly to verify that

z(K, s, δ) := yK

(
s+

τK
3

+ δ
)

+ yK

(
s+

τK
3
− δ
)
>

2

3
. (A.14)

Because yK is even and τK-periodic, z is invariant under (s, δ) → (s′, δ′) with s′ =

τK/6− δ, δ′ = τK/6− s, so that it suffices to verify (A.14) for s+ δ ≤ τK/6, and since

under this condition both terms in z(K, s, δ) are increasing in s it suffices to consider

s = 0. But because yK is even,

z(K, 0, δ) =
1

2

[
yK

(τK
3

+ δ
)

+ yK

(
−τK

3
+ δ
)

+yK

(
−τK

3
− δ
)

+ yK

(τK
3
− δ
)]

= 1− 1

2
[yK(δ) + yK(−δ)] ≥ 1 + b

2
> 2/3. (A.15)

(b) See Proposition A.1.1(c).

(c) The proofs for Y and of W are similar and we check only Y . Suppose that 0 <

K2 < K1 < 1/27 and that for some s∗ ∈ [0, τK1/6],

Y (K1, s∗, δ) ≤ Y (K2, s∗, δ). (A.16)
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Then certainly yK1(t∗) < yK2(t∗) for some t∗ ∈ [s∗ − δ, s∗ + δ], and since yK1(0) >

yK2(0), Proposition A.1.1(e.i) implies that yK1(t) ≤ yK2(t) for t ∈ [t∗, τK1/3]. Then for

s ∈ [s∗, τK1/6],

d

ds
[Y (K2, s, δ)− Y (K1, s, δ)]

= [yK1(s− δ)− yK2(s− δ)] + [yK2(s+ δ)− yK1(s+ δ)]

> 0, (A.17)

since both terms on the right had side are positive. But for 0 ≤ δ ≤ τK1/6,

W (K1, τK1/6, δ) < W (K2, τK2/6, δ), (A.18)

by Proposition A.1.1(e.ii), and so from Proposition A.1.1(a),

Y (K1, τK1/6, δ) =
1

2

∫ τK1
/6+δ

τK1
/6−δ

[
yK1

(
t− τK1

3

)
+ yK1(t)

]
dt

=
1

2

∫ τK1
/6+δ

τK1
/6−δ

[
1− yK1

(
t+

τK1

3

)]
dt

= δ − 1

2
W (K1, τK1/6, δ)

> δ − 1

2
W (K2, τK2/6, δ)

= Y (K2, τK2/6, δ)

> Y (K2, τK1/6, δ) (A.19)

since τK1 < τK2 (see Remark 2.2.1), contradicting (A.16) and (A.17).

Proof of Lemma A.1.2(b): For type 1 solutions we have from (A.7) that

λB =
δ

3
− 1

2
Y (K, sB, δ), λA =

δ

3
− 1

2
W (K, sB, δ), (A.20)

with δ = τK/6 − β > 0 and, by Remark A.1.3, 0 ≤ sB ≤ τK/6. Thus the existence

for some λ of two type 1 solutions would correspond to the existence of (K1, s1) and

(K2, s2) with 0 < K2 < K1 < 1/27 and 0 ≤ si ≤ τKi/6, i = 1, 2, such that 2δ1/3 −

Y (K1, s1, δ1) = 2δ2/3−Y (K2, s2, δ2) and 2δ1/3−W (K1, s1, δ1) = 2δ2/3−W (K2, s2, δ2),
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where δi = τKi/6− β for i = 1, 2. Then from Lemma A.1.4(a,c),

2δ2

3
− Y (K2, s2, δ2) =

2δ1

3
− Y (K1, s1, δ1)

<
2δ1

3
− Y (K2, s1, δ1)

<
2δ2

3
− Y (K2, s1, δ2), (A.21)

so that Lemma A.1.4(b) implies that s1 < s2. But also

2δ2

3
−W (K2, s2, δ2) =

2δ1

3
−W (K1, s1, δ1)

>
2δ1

3
−W (K2, s1, δ1)

>
2δ2

3
−W (K2, s1, δ2), (A.22)

implying that s1 > s2, a contradiction.

A.2 Reflection asymmetric interactions in a simple case

To give some idea of the importance of the asymmetry in the ABC model interactions,

we present in this section a short analysis of the model with nearest neighbor interactions

in one dimension.

For the system with asymmetric nearest neighbor terms only, the microscopic energy

is given by

EN (ζ) =
∑
α

N∑
i=1

[
ηα(i)ηα+2(i+ 1) +

λα
2

(ηα(i) + ηα(i+ 1))

]
. (A.23)

We will take the convention that the sum of the chemical potentials is set to zero. We

can use a transfer matrix to write the partition function for the system as

ZN = tr
(
TN
)
,

with

T =


e−βλA e−β(λA+λB)/2 e−β(1−λB/2)

e−β(1+λA/2+λB/2) e−βλB eβλA/2

eβλB/2 e−β(1−λA/2) eβ(λA+λB)

 .
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At equal chemical potentials, the largest eigenvalue of T is λ+ = 2 + e−β, so the

macroscopic free energy per particle in this case is

F = lim
N→∞

− 1

βN
log(ZN ) = − 1

β
log(2 + e−β). (A.24)

Nearest neighbor correlation functions can also be evaluated using the transfer ma-

trix method. The AA nearest neighbor correlation function 〈ηA(i)ηA(i + 1)〉 is given

by

〈ηA(i)ηA(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATA

)
tr (TN )

=
1

3λ+
, (A.25)

where A is the matrix

A =


1 0 0

0 0 0

0 0 0

 . (A.26)

Similarly one may calculate

〈ηA(i)ηB(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATB

)
tr (TN )

=
1

3λ+
, (A.27)

〈ηA(i)ηC(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATC

)
tr (TN )

=
1

3(1 + 2eβ)
. (A.28)

These nearest neighbor correlation functions have very natural limits at high and low

temperatures,

lim
β→∞

〈ηA(i)ηA(i+ 1)〉 =
1

6
, lim

β→0
〈ηA(i)ηA(i+ 1)〉 =

1

9
, (A.29)

lim
β→∞

〈ηA(i)ηB(i+ 1)〉 =
1

6
, lim

β→0
〈ηA(i)ηB(i+ 1)〉 =

1

9
, (A.30)

lim
β→∞

〈ηA(i)ηC(i+ 1)〉 = 0, lim
β→0
〈ηA(i)ηC(i+ 1)〉 =

1

9
. (A.31)

At infinite temperature any arrangement of nearest neighbors is equally likely. At zero

temperature, nearest neighbors must be of the same species, or of different species

arranged in successive cyclic order: AA, AB, BB, BC, CC, or CA. Each pair is

equally likely.

As we will see presently, the asymmetry of the ABC interaction is necessary for the

formation of domains which proceed in cyclic order as A · · ·AB · · ·BC · · ·CA. Consider

the model of (A.23), but with the nearest neighbor interactions symmetrized,

EN (ζ) =
∑
α

N∑
i=1

[
ηα(i) (ηα+1(i+ 1) + ηα+2(i+ 1)) +

λα
2

(ηα(i) + ηα(i+ 1))

]
. (A.32)
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Using the conservation rule ηA(i)+ηB(i)+ηC(i) = 1, this energy can then be rewritten

as

EN (ζ) =
1

2

∑
α

N∑
i=1

[
1− ηα(i)ηα(i+ 1) +

λα
2

(ηα(i) + ηα(i+ 1))

]
. (A.33)

Taking the overall factor of e−3βN/2 outside, the transfer matrix for this system is

T =


eβ(1/2−λA) e−β(λA+λB)/2 eβλB/2

e−β(λA+λB)/2 eβ(1/2−λB) eβλA/2

eβλB/2 eβλA/2 eβ(1/2+λA+λB)

 . (A.34)

Its largest eigenvalue when all chemical potentials are zero is λ+ = 2 + eβ/2, with the

two other eigenvalues λ = eβ/2− 1 degenerate. Then the free energy per particle in the

N →∞ limit is

F = lim
N→∞

− 1

βN
log(ZN ) = 3/2− 1

β
log(2 + eβ/2). (A.35)

Nearest neighbor correlation functions can be calculated as above for the asymmetric

case. The result is

〈ηA(i)ηA(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATA

)
tr (TN )

=
1

3

(
1− 2

λ+

)
, (A.36)

〈ηA(i)ηB(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATB

)
tr (TN )

=
1

3λ+
, (A.37)

〈ηA(i)ηC(i+ 1)〉 = lim
N→∞

tr
(
TN−1ATC

)
tr (TN )

=
1

3λ+
. (A.38)

In the high temperature limit, we again recover equal probability for any configuration

of nearest neighbors. However in this case the correlations for nearest neighbor pairs

of differing species are the same, regardless of their ordering. As the temperature

goes towards zero, the correlations between nearest neighbor pairs of different species

AB and AC go to zero, so one would expect to find large domains of particles of a

single species. In contrast with the asymmetric case, there is no restriction on ordering

of domains; a domain wall of the form AC is just as likely in this model as an AB

boundary.
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Appendix B

Appendices for Chapter 3

B.1 Properties of the microscopic system

Many of the properties of the canonical measure µβ for the standard ABC model,

described in [5, Sections 1 and 2], hold with relatively minor changes for the generalized

model studied here. Below we discuss a few of the necessary modifications.

As in the standard ABC model, there is a certain nearest neighbor exchange dy-

namics which satisfies detailed balance with respect to the canonical Gibbs measure

µβ. In this dynamics a particle of type α at site i and a particle of type γ at site i+ 1

exchange places αγ → γ α with rate qαγ ,

qαγ =


e−3β vα+2/N if γ = α+ 1

1 if γ = α− 1

, (B.1)

where the vα are as in (3.7). When the ξα are not all zero (i.e. the vα are not all equal),

the system no longer has cyclic symmetry in the particle types.

In analogy with what happens in the standard ABC model when Nα = N/3 for all

α, we have here a rotation invariant energy when vαN = Nα for all α (this is clearly

only possible when the vα lie in region I). That is, if one imagines connecting site N to

site 1 and then rotating the configuration η, the rotation leaves E unchanged. A simple

way to check the rotation invariance is to consider moving a particle of type α from the

end of the interval at site N to site 1, and translating all the other particles from sites i

to i+1. The change in energy after this rotation is then 3 (vα+1Nα+2 − vα+2Nα+1) /N ,

which vanishes for vαN = Nα. Note that in this rotation invariant case the rates (B.1)
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for a particle of type α at a site i and a particle of type γ at i+ 1 to exchange become

qαγ =


e−3β Nα+2/N2

if γ = α+ 1

1 if γ = α− 1

, (B.2)

which satisfies the general condition on exchange rates derived in [32] for which detailed

balance may hold on the ring.

We remark that the energy in this rotation invariant case may be constructed in

a different way, beginning from the standard ABC model energy with ξα = 0. If one

wishes to write down an ABC-like energy that is explicitly rotation invariant, one way

to achieve this is to take the standard ABC energy and average over starting the sum

at each point of the lattice, i.e.

Ẽ(η) =
1

N

N∑
k=1

 1

N

∑
α

N+k∑
i=1+k

N+k∑
j=1+k

Θ(j − i)ηα(i)ηα+2(j)

, (B.3)

where one imagines the interval with periodic boundary conditions, such that site N+m

refers to site m. This gives

Ẽ(η) =
1

N

∑
α

N∑
i=1

N∑
j=1

(
Θ(j − i) +

i− j
N

)
ηα(i)ηα+2(j), (B.4)

where the interaction term depends upon the distance between sites i and j as well as

their order on the line. One may easily rearrange this expression to find

Ẽ(η) =
1

N

∑
α

N∑
i=1

N∑
j=1

Θ(j − i) 3
Nα+1

N
ηα(i) ηα+2(j), (B.5)

which is identical to (3.6) up to a constant when vαN = Nα.

Now let us consider the ground states of the model. As in the standard ABC

model, in the β → ∞ limit the particle species become phase separated, with the

ground states consisting of macroscopic domains of pure A, B, and C particles. The

arrangement of these domains may depend upon the vα as well as the number of each

particle species Nα. For values of vα in regions II and III, where one or two of the

vα is negative, the ground state is completely determined by requiring that all nearest

neighbor configurations be stable, i.e., that the energy may not be lowered by making

a nearest neighbor exchange. Consider the possible orderings of nearest neighbor pairs
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of different particle species: AB, AC, BA, BC, CA, CB. When the vα do not all have

the same sign, the energetically preferred alignment of two nearest neighbor particles

of different species will be cyclic for some pairs and anti-cyclic for others. Thus it

is not possible to have an arrangement of four or more domains where all nearest

neighbor pairs are preferably aligned. Generally, when the vα lie in region II (III), if

vγ < 0 (> 0), the ground state is given by three domains arranged in cyclic (anti-cyclic)

order, i.e. in a cyclic (anti-cyclic) permutation of ABC, with the domain of type γ

particles in the middle. For example, if vA < 0 while vB, vC > 0, the stable nearest

neighbor configurations are AB, CB, and CA, thus the ground state must consist of

three domains of particles cyclically arranged as CAB.

When the vα lie in region I, the ground states of the ABC model with external fields

are closely related to those of the standard ABC model. To show the correspondence,

let us consider a rescaling of the energy (3.6), Ẽ(η) = E(η)/(vA vB vC). The rescaled

energy of a sequence of domains, where the ith domain consists of kα,i particles of

type α (and no particles of any other type), is up to a constant factor formally iden-

tical to the standard ABC energy of the same sequence of domains, but with kα,i/vα

particles in each domain. Of course, kα,i/vα may not be an integer, which must be

taken into account when considering the degeneracy of ground states. One may how-

ever apply the same analysis as in [5] to determine the lowest energy configuration of

domains. This ground state energy is given, up to a constant factor (see (3.6)), by

min {vA rB rC , vB rC rA, vC rA rB}. One then finds that the ground state of the gen-

eralized ABC model, with vα in region I and Nα particles of type α, is arranged in

the same order and has the same symmetries as the ground state of the standard ABC

model with Nα/vα particles of type α. There are three different cases.

1. If one of the Nα/vα is larger than the other two then there exists a unique ground

state with three domains arranged in cyclic order, with the particles for which

Nα/vα is largest in the middle. For example if NA/vA > NB,C/vB,C , the ground

state arrangement of domains is CAB, with the particles of type A in the middle

domain.
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2. If two of the Nα/vα are equal and larger than the term for the third species, the

ground state is degenerate, consisting of three or four domains cyclically arranged

with the particles for which Nα/vα is smallest placed on the boundaries of the

interval. If for instance NB/vB = NC/vC > NA/vA, the ground state is NA + 1

degenerate, with the domains arranged as ABC, ABCA, or BCA; the type A

particles may appear on either the left or the right sides of the interval.

3. If all of the Nα/vα are equal, the ground state is N degenerate, consisting of

arbitrary rotations of the domains arranged in ABC cyclic order. In this case,

as discussed above, the energy of any configuration η is invariant under rotation.

B.2 The Lotka-Volterra family of centers and ABC-like systems of

ODEs

In this section we will demonstrate that the ABC model with external fields is a member

of the Lotka-Volterra family of ODE systems when 0 < vα < 1 for all α, i.e. when the

vα lie in region I.

First let us change variables from x to t = 3β
√
vA vB vC x, a slightly different rescal-

ing than that used in (3.30) which will be convenient in the work that follows. With

this change the ELE become

ρ̇α = ρα (uα+1 ρα+2 − uα+2 ρα+1) , (B.6)

where uα = vα/
√
vA vB vC ; the uα satisfy

uA + uB + uC = uAuBuC . (B.7)

After eliminating ρC via (3.21) and uC via uC = (uA + uB)/(uA uB − 1), we obtain the

equations

ρ̇A = ρA

[
uB (1− ρA)−

uA
(
1 + u2

B

)
uA uB − 1

ρB

]
,

ρ̇B = −ρB

[
uA (1− ρB)−

uB
(
1 + u2

A

)
uA uB − 1

ρA

]
.

(B.8)
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In this form uA and uB are arbitrary positive constants satisfying uA uB > 1, and the

stationary point is

vA =
uA uB − 1

uB (uA + uB)
, vB =

uA uB − 1

uA (uA + uB)
. (B.9)

We next shift the origin in the phase plane to the stationary point (B.9) and make

a linear change of variables:x
y

 = T

ρA − vA
ρB − vB

 , T =
1

uA uB − 1

uB (1 + u2
A

)
uA (uA uB − 1)

0 uA (uA + uB)

 . (B.10)

In these new variables the equations become

ẋ = −y − bx2 − cxy + by2,

ẏ = x+ xy,
(B.11)

where

b =
uA uB − 1

1 + u2
A

, c =
2uA + uB − u2

A uB
1 + u2

A

. (B.12)

This is the canonical form for the generalized Lotka-Volterra family of centers presented

in equation (1) of [66].

Given parameters b and c with b > 0 the equations (B.12) can be solved to find

uA =
−c+

√
c2 + 4b(b+ 1)

2b
, uB =

4b(b+ 1)

−c+
√
c2 + 4b(b+ 1)

− c. (B.13)

Clearly uA > 0 and one finds easily that uA uB > 1, so uB > 0. Thus the set of systems

(B.6) with uA, uB, uC > 0 corresponds exactly with the family of all generalized Lotka-

Volterra systems (B.11) with b > 0.

B.3 Restriction on the type of solutions for rα 6= vα, with vα in region

I

A naive estimate of the cutoff nmax, as described in Section 3.3, may be made in the

following way. Let us begin with a set of type 1 profiles, with average densities r̃α.

These profiles will be a portion of the type 1 solution for the rα = vα case, stretched

such that less than one full period of the ρα(x) fits inside the interval in x ∈ [0, 1]. We

will define the length of the profiles l, 0 < l < 1, to be the fraction of one full period of
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Figure B.1: Restriction on the existence of solutions of type n = 2 in the rα 6= vα case for

vA = 1/2, vB = 1/3, vC = 1/6, using (B.14). For values of (rA, rB) outside the bounded region,

only type 1 solutions are possible. For n > 2, the bounded region in which type n solutions are

possible would be smaller.

the ρα(x) inside the interval. From these type 1 profiles we may make a set of type n

profiles that satisfy the same boundary conditions as the original by rescaling x for the

ρα(x), such that the original type 1 profiles plus n − 1 full periods now appear in the

interval. Then the average value of the densities for the new type n profiles, rn,α, will

be given by

rn,α =
r̃α l + n vα
l + n

. (B.14)

As a type n solution of the ELE for rα 6= vα will be a profile of this form, if the l and

r̃α in (B.14) cannot be chosen such that the rn,α are equal to the specified rα, then this

implies that a type n solution does not exist for that case. In Figure B.1 we show an

example of the restriction imposed by this simple estimate.
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Appendix C

Appendices for Chapter 4

C.1 Proof of maximum entropy

The use of the Ising model is physically motivated by the fact that the Ising model

Gibbs measure (4.3) is the maximum entropy measure which satisfies the constraints

(4.7). We prove this statement here by showing a more general result, namely, the

maximum entropy distribution which satisfies a set of constraints∑
η

fα(η) = gα, α = 1, . . . , n, (C.1)

if it exists, is given by

µME(η) = e
∑
α λαfα(η), (C.2)

where λα is a real number which acts as a Lagrange multiplier.

As a first step we prove Gibbs’ inequality, in the method of [19], which states that

the Kullback-Leibler divergence (also referred to as the relative entropy) between two

probability measures DKL(µ||µ′) is nonnegative:

DKL(µ||µ′) = −
∑
η

µ(η) log
µ′(η)

µ(η)
≥ 0. (C.3)

We need only consider the subset of configurations {η |µ(η) > 0}, as terms with µ(η) = 0

in (C.3) are zero with the convention 0 log 0 = 0. As log x is concave, we have by Jensen’s

inequality

DKL(µ||µ′) ≥ − log
∑

η |µ(η)>0

µ(η)
µ′(η)

µ(η)
= − log

∑
η |µ(η)>0

µ′(η) ≥ 0, (C.4)

where equality only holds if µ′(η)/µ(η) is constant for all η. Thus we have proven

(C.3), assuming the probability measures are normalized such that the sum over all

configurations of the system is equal to one.
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Now we move to the proof that (C.2), if it exists, is the maximum entropy distri-

bution which satisfies the constraints (C.1). Let us assume that, in addition to the

maximum entropy measure (C.2), there exists another measure µ′ which also satisfies

the constraints (C.1), and has entropy that is greater than or equal to that of the

maximum entropy measure,

S(µ′) = −
∑
η

µ′(η) logµ′(η) ≥ S(µME) = −
∑
η

µME(η) logµME(η). (C.5)

By (C.3) we have that

−
∑
η

µ′(η) logµME(η) ≥ S(µ′). (C.6)

By the definition of (C.2)

logµME(η) =
∑
α

λαfα(η), (C.7)

thus

−
∑
η

µ′(η) logµME(η) = −
∑
η

∑
α

λαfα(η)µ′(η)

= −
∑
α

λαgα,

(C.8)

as we have assumed that µME and µ′ satisfy the same constraints. But then

−
∑
η

µME(η) logµME(η) = −
∑
α

λαgα, (C.9)

so

S(µ′)− S(µME) ≤ −
∑
η

µ′(η) logµME(η)− S(µME) = 0. (C.10)

As above, in order for equality to hold in (C.10) we must have µME(η) = µ′(η) for each

configuration η. This shows that S(µ′) cannot be larger than S(µME), and further,

equality only holds if µ′ = µME. Thus (C.2) is the maximum entropy distribution

which satisfies the constraints (C.1).

C.2 Statistical effects of finite sampling

Finite sampling of an experimental system introduces fluctuations which complicate

the inverse problem. In this Appendix we discuss the effects of finite sampling noise
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on the empirical one- and two-point correlations, and statistical errors on the inferred

couplings and fields.

We can estimate the size of the fluctuations we expect for the measured correlations

{p∗i }, {p∗ij} in the following way. Let us assume the spins are stochastic variables with

Gibbs average

〈ηi〉 = p∗i . (C.11)

Their variance is then

σi = 〈η2
i 〉 − 〈ηi〉2 = p∗i (1− p∗i ). (C.12)

Their average over B independent samples is also a stochastic variable with the same

average as above, but with the standard deviation

δp∗i =

√
p∗i (1− p∗i )

B
. (C.13)

Similarly the pair correlations are have the average value

〈ηi ηj〉 = p∗ij , (C.14)

and variance

σij = p∗ij(1− p∗ij), (C.15)

therefore their sampled average over B samples pij has a standard deviation

δp∗ij =

√
p∗ij(1− p∗ij)

B
. (C.16)

To derive an estimate for the statistical fluctuations of the fields and couplings, let

us again assume that data are generated from the Ising model (4.1) with fields {h∗i }

and couplings {J∗ij} which minimize the cross-entropy (4.11). As shown in Section 4.1

the likelihood of infering the interactions J is proportional to exp[−B S∗(p∗,J)]. When

B is very large this probability is tightly concentrated around the minimum of S∗,

that is, J∗. The difference between the inferred and the true fields and couplings is

encoded in the N(N+1)
2 -dimensional vector ∆J of components {{hi − h∗i }, {Jij − J∗ij}}.

The distribution of this vector is asymptotically Gaussian,

L(∆J) '
√

detχ

(2πB)N(N+1)/4
exp

(
−B

2
∆J† · χ ·∆J

)
. (C.17)



Statistical fluctuations of the fields and couplings are therefore characterized by the

standard deviations

δhi =

√
1

B
(χ−1)i,i , δJij =

√
1

B
(χ−1)ij,ij . (C.18)

C.3 Gaussian approximation for the inverse Ising problem

The main problem of the minimization of the cross-entropy S∗ (4.11) is the calculation

of the partition function Z which, if done exactly, requires the sum over all 2N possible

configurations of the system of N spins. Because this sum becomes prohibitive for

systems with more than ≈ 20 spins some approximate solution of the inverse problem

must be found.

One choice of approximation is to allow the Ising spins ηi take continuous values,

while maintaining the same one- and two-point correlations. The Ising model Hamil-

tonian (4.1) is then replaced by a Gaussian model of interacting pairs of spins, whose

entropy is given by the logarithm of the determinant of the covariance matrix. Adding

in the contribution from individual spins, we have

SG(p) = Sind({pi}) +
1

2
log detM(p), (C.19)

where

Sind({pi}) =
∑
i

[−pi log pi − (1− pi) log(1− pi)] (C.20)

is the entropy of independent spin variables with averages {pi}, and

Mij(p) =
pij − pipj√

pi(1− pi)pj(1− pj)
, (C.21)

which can be calculated in O(N3) time [45, 58], and is consistent with the so-called

TAP equations [64].

The derivatives of SG with respect to the {pij} and {pi} give the value of the

couplings and fields,

(JG)ij = −∂SG

∂pij
= − (M−1)ij√

pi(1− pi)pj(1− pj)
,

(hG)i = −∂SG

∂pi
=
∑
j(6=i)

(JG)ij

(
cij

pi − 1
2

pi(1− pi)
− pj

)
, (C.22)

where cij = pij − pipj is the connected correlation.
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