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ABSTRACT OF THE DISSERTATION

Risk-Averse Control of Undiscounted Transient Markov

Models

by Ozlem Cavus

Dissertation Director: Dr. Andrzej Ruszczyński

The classical optimal control problems for discrete-time, transient Markov processes are

infinite horizon, undiscounted expected total cost or reward models. Some examples

of these models are optimal stopping problems and stochastic shortest or longest path

problems, which may have applications in health-care, finance, and maintenance. How-

ever, such expected value models implicitly assume the decision maker is risk-neutral,

so they may not be appropriate for several real-life problems.

In this study, we use Markov risk measures to formulate a risk-averse version of the

optimal control problem for transient Markov processes with general state and compact

control spaces. We derive risk-averse dynamic programming equations and show that

they have a unique solution which is also the optimal value of the Markov control

problem. Furthermore, it is shown that a randomized policy may be strictly better

than deterministic policies, when risk measures are employed.

We suggest two algorithms, value iteration and policy iteration methods, for solving

the dynamic programming equations and show their convergence. In general, each

policy evaluation step of the policy iteration algorithm requires solving a system of

nonsmooth equations. We use a version of nonsmooth Newton method to solve these

equations and show its global convergence.
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We further consider a risk-averse finite horizon Markov control problem under ran-

domized policies and derive a value iteration method for its solution.

Finally, we work on asset selling, organ transplant, and credit card examples to

illustrate the theory for infinite horizon problem, and present numerical results.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The optimal control problem for transient Markov processes is a classical problem in Op-

erations Research (see Veinott [56], Pliska [44], Bertsekas and Tsitsiklis [6], Hernandez-

Lerma and Lasserre [19], and the references therein). The research is focused on the

expected total undiscounted cost model for stationary, infinite horizon Markov decision

processes, with increased state and control space generality. Some specific examples

of such models are stochastic shortest path problems (Bertsekas and Tsitsiklis [6]) and

optimal stopping problems (cf. Çinlar [10], Dynkin and Yushkevich [13, 14], Puterman

[45]).

In this study, we develop and solve a risk-averse model of this problem. In the

literature, to our best knowledge, the studies for risk-averse models for transient Markov

processes are based on the arrival probability criteria (see, e.g., Ohtsubo [37], [38]) and

utility functions (see Howard and Matheson [21], Denardo and Rothblum [12], Patek

[42]).

Howard and Matheson [21] use exponential utility function to incorporate risk to

Markov decision processes with finite state and control spaces. They consider both

finite and undiscounted infinite horizon problems where the decision maker can be

either risk-averse or risk-seeking. Under the assumption that Markov chain is both

irreducible and acyclic, they suggest a policy iteration algorithm to find the optimal

solution of the infinite horizon problem and show its convergence. Later, Jaquette [22]

works on a discounted, risk-averse version of the infinite horizon formulation proposed

by Howard and Matheson [21], and shows that the optimal policy may not be stationary

if discount factor is used. A risk-averse or risk-seeking version of the optimal stopping
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problem is suggested by Denardo and Rothblum [12] using exponential utility function.

They consider an undiscounted, transient Markov decision process under finite state

and control spaces and assume that there exists a terminal state which is absorbing

and cost-free. They derive a pair of dual linear programming formulations to find the

optimal solution of the problem and provide the conditions of optimality. Patek [42]

extends the work of Denardo and Rothblum [12] by relaxing their assumption of finite

control space to a compact space but just considers a risk-averse problem with positive

costs. Deriving the dynamic programming equations, value and policy iterations are

suggested to solve them and the convergence of these algorithms are proved.

Another approach to include risk in Markov decision processes is to use the arrival

probability criterion which minimizes (maximizes) the probability that total undis-

counted cost (reward) is larger than a given threshold value. Yu et. al. [57] consider an

absorbing Markov process with finite state and control spaces. The absorbing states are

not cost-free and there exist one-time terminal rewards, therefore, this problem is not

completely related to one that we work on. Ohtsubo [37] works on a similar problem

where the absorbing state is cost-free and costs are nonnegative. The dynamic program-

ming equations are derived and it is shown that the optimal value of this problem can

be found by solving these equations by a value iteration method. Later, Ohtsubo [38]

focuses on a similar problem with nonnegative rewards and proposes a policy iteration

method in addition to value iteration.

Some other studies related to our work are by Levitt and Ben-Israel [31], Mannor

and Tsitsiklis [33], [34]. These studies use the mean-variance risk measure to model risk

in finite horizon Markov processes. Mannor and Tsikliklis [34] state that randomized

policies may be better than deterministic policies but show this just using a constrained

example and do not provide a general proof.

Different from the studies so far, we use the recent theory of dynamic risk measures

(see Scandolo [52], Ruszczyński and Shapiro [49, 51], Cheridito, Delbaen and Kupper

[8], Artzner et. al. [3], Klöppel and Schweizer [28], Pflug and Römisch [43], and the

references therein) to develop and solve a new risk-averse formulation of the stochastic

optimal control problem for transient Markov processes. Our results complement and
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extend the results of Ruszczyński [48], where finite horizon undiscounted and infinite

horizon discounted models with deterministic policies are considered. In our presenta-

tion, we closely follow the notation and development of [48].

Some applications of these problems concerned with expected performance criteria

are given in the survey paper by White [58] and the references therein. However,

in many practical problems, the expected values may not be appropriate to measure

performance, because they implicitly assume that the decision maker is risk-neutral.

Below, we provide examples of such real-life problems which were modeled before as a

discrete-time Markov decision process with expected value as the objective function.

Alagoz et. al. [1] suggest a discounted, infinite horizon, and absorbing Markov

decision process model to find the optimal time of liver transplant for a risk-neutral

patient under the assumption that the liver is transferred from a living donor. However,

referring to Chew and Ho [9], they state that the risk-neutrality of the patient is not a

realistic assumption. In that study, the patient can be in one of the states “transplant,”

“death,” and intermediate states corresponding to increasing sickness. The decisions

are either to wait or to transplant. The “death” and “transplant” states are absorbing

states with zero reward. Therefore, the undiscounted version of the model reduces to a

stochastic longest path problem.

A stochastic shortest path problem can be used to find the optimal replacement

time of a system. Kurt and Kharoufe [30] propose a discounted, infinite horizon Markov

decision process model to solve a similar problem for a system under Markovian deterio-

ration and Markovian environment. They assume that the system returns to the “new”

state after it is replaced at a given cost. The state space depends on the environment

and deterioration levels of the system. The decisions are either to replace the system

at a replacement cost or to maintain it at a maintenance cost. Furthermore, we can

consider another control “do nothing,” to leave the system in operation without any

maintenance or replacement at zero cost. They state that their problem can also be

equivalently formulated as a stochastic shortest path problem with some probability of

making a transition from each state to a zero-cost absorbing state. However, managers

are not risk-neutral in real life and this needs to be considered in such replacement
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problems (see Tapiero and Venezia [55]).

So and Thomas [54] employ a discrete time Markov decision process to model prof-

itability of credit cards. The objective is to find a policy which maximizes the expected

total discounted profit of the creditor. The state space depends on the customer’s

riskiness and the credit limit bands. Additionally, there are absorbing states which

represent account closure and different classes of default. The decisions are either to

increase the credit limit or keep it unchanged. If zero reward is collected at some of

the absorbing states (e.g. account closure), then the undiscounted version of the model

reduces to a stochastic longest path problem. However, creditors are assumed to be

risk-neutral in these expected value models, which may not be a realistic assumption.

Our theory of risk-averse control problems for transient models applies to these and

many other models.

1.1.1 Outline of the Dissertation

In the remaining sections of this chapter, we quickly review some basic concepts of

controlled Markov models and dynamic risk measures. In chapter 2, we adapt and

extend the theory of Markov risk measures suggested by Ruszczyński [48]. We then

introduce and analyze the concept of a multikernel, which is essential for our theory.

Chapter 3 is devoted to the analysis of a finite horizon model with randomized policies.

The main model with infinite horizon and dynamic risk measures is analyzed and solved

in chapter 4. In that chapter, we further compare randomized and deterministic polices,

and give a condition where it is enough to consider just deterministic policies. In

chapter 5, we suggest value and policy iteration methods for the solution of infinite

horizon problem and show their convergence. Another solution approach, which we call

as mathematical programming approach, is analyzed in chapter 6. Finally, chapter 7

illustrates our results on risk-averse versions of an optimal stopping problem of Karlin

[26], of the organ transplant problem of Alagoz et al. [1], and of the credit card problem

by So and Thomas [54].

Chapters 1, 2, 3, 4, and Sections 7.1 and 7.2 are based on the study [7] which is

currently under review. Chapters 5 and 6, and Section 7.3 first appear here.



5

1.2 Controlled Markov Processes

In this section, we review the main concepts of controlled Markov models and we

introduce relevant notation (for details, see [17, 18, 19]). Let X be a state space, and

U a control space. We assume that X and U are Polish spaces, equipped with their

Borel σ-algebras. A control set is a measurable multifunction U : X ⇒ U ; for each

state x ∈ X the set U(x) ⊆ U is a nonempty set of possible controls at x. A controlled

transition kernel Q is a measurable mapping from the graph of U to the set P(X ) of

probability measures on X (equipped with the topology of weak convergence).

The cost of transition from x to y, when control u is applied, is represented by

c(x, u, y), where c : X × U × X → R. Only u ∈ U(x) and those y ∈ X to which tran-

sition is possible matter here, but it is convenient to consider the function c(·, ·, ·) as

defined on the product space.

A controlled Markov process is represented by a state space X , a control space U ,

control sets Ut, controlled transition kernels Qt, and cost functions ct, t = 1, 2, . . .. It is

called a stationary controlled Markov process if there exist a control set U , transition

kernel Q, and cost function c such that Ut = U , Qt = Q, and ct = c for all t = 1, 2, 3, . . ..

For t = 1, 2, . . . we define the space of state and control histories up to time t as

Ht = graph(U)t ×X . Each history is a sequence ht = (x1, u1, . . . , xt−1, ut−1, xt) ∈ Ht.

We denote by P(U) the set of probability measures on the set U . Likewise, P(U(x))

is the set of probability measures on U(x). A randomized policy is a sequence of

measurable functions πt : Ht → P(U), t = 1, 2, . . . , such that πt(ht) ∈ P(U(xt)) for all

ht ∈ Ht. In words, the distribution of the control ut is supported on a subset of the

set of feasible controls U(xt). A Markov policy is a sequence of measurable functions

πt : X → P(U), t = 1, 2, . . . , such that πt(x) ∈ P(U(x)) for all x ∈ X . The function

πt(·) is called the decision rule at time t. A Markov policy is stationary if there exists

a function π : X → P(U) such that πt(x) = π(x), for all t = 1, 2, . . . and all x ∈ X .

Such a policy and the corresponding decision rule are called deterministic, if for every

x ∈ X there exists u(x) ∈ U(x) such that the measure π(x) is supported on {u(x)}.

For a stationary decision rule π, we write Qπ to denote the corresponding transition
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kernel.

We focus on transient Markov models. We assume that there exists some absorbing

state xA ∈ X , such that Q
(
{xA}

∣∣xA, u
)

= 1 and c(xA, u, xA) = 0 for all u ∈ U(xA).

Thus, after the absorbing state is reached, no further costs are incurred.1 To analyze

such Markov models, it is convenient to consider the effective state space X̃ = X \{xA},

and the effective controlled substochastic kernel Q̃ whose arguments are restricted to

X̃ and whose values are nonnegative measures on X̃ , so that Q̃
(
B
∣∣x, u) = Q

(
B
∣∣x, u),

for all Borel sets B ⊂ X̃ , all x ∈ X̃ , and all u ∈ U(x). Moreover, we assume that the

following Pliska condition [44] is satisfied: a weight function w : X → [1,∞) and a

constant K exist, such that for every Markov decision rule π we have

∞∑
j=1

∥∥∥(Q̃π)j∥∥∥
w
≤ K. (1.1)

In the condition above, the norm ‖A‖w of a substochastic kernel A is defined as follows:

‖A‖w = sup
x∈X̃

1

w(x)

∫
X̃
w(y) A(dy|x). (1.2)

It is the standard operator norm in the space Bw(X̃ ,B(X̃ )) of measurable functions

v : X̃ → R for which

‖v‖w = sup
x∈X̃

v(x)

w(x)
<∞.

Hernadez-Lerma and Lasserre [19] extensively discuss the role of weighted norms in

dynamic programming models.

Our point of departure is the expected total cost problem, which is to find a policy

Π = {πt}∞t=1 so as to minimize the expected cost until absorption:

min
Π

E

[ ∞∑
t=1

c(xt, ut, xt+1)

]
. (1.3)

Under standard assumptions, the problem has a solution in form of a stationary Markov

policy. Moreover, it is sufficient to restrict the considerations to deterministic policies.

1The case of a larger class of absorbing states easily reduces to the case of one absorbing state.
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The optimal value can be found by solving the following dynamic programming equa-

tions (cf. Pliska [44] and Hernandez-Lerma and Lasserre [19]):

v(x) = inf
u∈U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u), x ∈ X̃,

v(xA) = 0.

Here, the functions v(x), x ∈ X are called value functions and the minimizer π̂(x), x ∈

X :

π̂(x) ∈ arginf
u∈U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u), x ∈ X̃,

defines an optimal stationary Markov policy Π̂ = {π̂, π̂, . . .}.

Our aim is to introduce risk aversion to problem (1.3), and to replace the expected

value operator by a dynamic risk measure. We shall show that the Pliska condition

(1.1) is not sufficient in this case, and that properties of risk measures must be taken

into account when considering transient models. We shall also show that in the risk-

averse case randomized policies can be optimal, and that it is essential to consider

general transition cost c(xt, ut, xt+1), which in problem (1.3) could easily be reduced to

functions depending only on (xt, ut). We do not assume that the costs are nonnegative,

and thus our approach applies also, among others, to stochastic longest path problems

and optimal stopping problems with positive rewards.

1.3 Dynamic Risk Measures

Suppose T is a fixed time horizon. Each policy Π = {π1, π2, . . . } results in a cost

sequence Zt = c(xt−1, ut−1, xt), t = 2, . . . , T + 1. We define the spaces Zt of Ft-

measurable random variables on Ω, t = 1, . . . , T . In this study, we focus on the case

when Zt = Lp(Ω,Ft, P ), for some p ∈ [1,∞]. The reader is referred to Shapiro et. al.

[53] and Ruszczyński [48] for details.

To evaluate risk of this cost sequence we use a dynamic time-consistent risk measure.

Before giving the definition of that concept, we will provide some preliminaries.

It is convenient to introduce vector spaces Zt,θ = Zt × Zt+1 × · · · × Zθ, where
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1 ≤ t ≤ θ ≤ T + 1 and the conditional risk measures ρt,θ : Zt,θ → Zt defined as follows:

ρt,θ(Zt, . . . , Zθ) = Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρθ−1(Zθ) · · ·

))
. (1.4)

Here, ρt : Zt+1 → Zt, t = 1, . . . , T , are one-step conditional risk measures assumed

to satisfy the following conditions:

A1. Convexity : ρt(αZ+(1−α)W ) ≤ αρt(Z)+(1−α)ρt(W ), ∀ α ∈ (0, 1), Z,W ∈ Zt+1;

A2. Monotonicity : If Z ≤W then ρt(Z) ≤ ρt(W ), ∀ Z,W ∈ Zt+1;

A3. Predictable Translation Equivariance: ρt(Z + W ) = Z + ρt(W ), ∀ Z ∈ Zt, W ∈

Zt+1;

A4. Positive Homogeneity : ρt(βZ) = βρt(Z), ∀ Z ∈ Zt+1, β ≥ 0.

Some examples of one-step conditional risk measures satisfying above properties are

first-order mean-semideviation (see, Ogryczak and Ruszczyński [39, 40], and Ruszczyński

and Shapiro [50, Example 4.2], [51, Example 6.1]) and Conditional Average Value at

Risk (see, inter alia, Ogryczak and Ruszczyński [41, Sec. 4], Pflug and Römisch [43,

Sec. 2.2.3, 3.3.4], Rockafellar and Uryasev [46], Ruszczyński and Shapiro [50, Example

4.3], [51, Example 6.2]).

Example 1.3.1 The first-order mean–semideviation risk measure is defined by the

function:

ρt(Zt+1) = E[Zt+1|Ft] + κE
[(
Zt+1 −E[Zt+1|Ft]

)
+
|Ft
]
,

where κ ∈ [0, 1].

Example 1.3.2 The Conditional Average Value at Risk is calculated by the function:

ρt(Zt+1) = inf
η∈Zt

{
η +

1

α
E
[
(Zt+1 − η)+|Ft

]}
,

with α being in the interval [αmin, αmax] ⊂ (0, 1).

Immediately from the definition of conditional risk measure (1.4) and using the

properties of one-step conditional risk measures, we obtain the following properties of

ρt,θ : Zt,θ → Zt.
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Lemma 1.3.3 If the one-step conditional risk measures ρτ , τ = t, . . . , θ − 1, satisfy

conditions (A1)–(A4), then

(i) ρt,θ(αZ + (1− α)W ) ≤ αρt,θ(Z) + (1− α)ρt,θ(W ), ∀ α ∈ (0, 1), Z,W ∈ Zt,θ;

(ii) If Z �W then ρt,θ(Z) ≤ ρt,θ(W ), ∀ Z,W ∈ Zt,θ;

(iii) ρt,θ(βZ) = βρt,θ(Z), ∀ Z ∈ Zt+1, β ≥ 0;

(iv) ρt,θ(Zt, . . . , Zθ−1, 0) = ρt,θ−1(Zt, . . . , Zθ−1).

The operations of addition and multiplication by a scalar are defined in Zt,θ in the

usual way. We can also define the partial order relation � in a natural way:

(Zt, . . . , Zθ) � (Wt, . . . ,Wθ) ⇐⇒ Zτ ≤Wτ , a.s., τ = t, . . . , θ.

A sequence {ρt,T }Tt=1 of conditional risk measures ρt,T : Zt,T → Zt is called a

dynamic risk measure. In this study, we assume that dynamic risk measures have

time-consistency property. Here, we repeat the definition of time-consistency from [48].

Definition 1.3.4 [48, Definition 3] Suppose a dynamic risk measure {ρt,T }Tt=1 satisfies

the following conditions

Zk = Wk, k = τ, . . . , θ − 1 and ρθ,T (Zθ, . . . , ZT ) ≤ ρθ,T (Wθ, . . . ,WT ),

for all 1 ≤ τ < θ ≤ T and all Z,W ∈ Zτ,T . Then it is time-consistent if

ρτ,T (Zτ , . . . , ZT ) ≤ ρτ,T (Wτ , . . . ,WT ).

In this study, we use the following form of a time-consistent dynamic measure of

risk:

JT (Π,x1) = ρ1

(
c(x1, u1, x2) + ρ2

(
c(x2, u2, x3) + · · ·

+ ρT−1

(
c(xT−1, uT−1, xT ) + ρT (c(xT , uT , xT+1))

)
· · ·
))

.

(1.5)

Ruszczyński [48, sec. 3] derives the nested formulation (1.5) and conditions (A2) and

(A3) from general properties of monotonicity and time-consistency of dynamic measures

of risk. Conditions (A1) and (A4) are added to model the diversification effect and scale-

invariance of the preferences, similarly to the axioms of coherent measures of risk of [2]

(see (B1)–(B4) in chapter 2).



10

Chapter 2

Markov Risk Measures

2.1 Markov Risk Measures for Randomized Policies

As indicated in [48], the fundamental difficulty of formulation (1.5) is that at time t the

value of ρt(·) is Ft-measurable and is allowed to depend on the entire history ht of the

process. In order to overcome this difficulty, in [48, sec. 4] a new construction of a one-

step conditional measure of risk is introduced. Its arguments are functions on the state

space X , rather than on the probability space Ω. This entails additional complication,

because in a controlled Markov process the probability measure on the state space is not

fixed, but depends on decisions u. We adapt this construction to the case of controlled

Markov models with randomized policies. In this case, it is convenient to consider

functions on the product space U × X equipped with its product Borel σ-algebra B.

Suppose the current state is x and we use a randomized control λ. We define Qx

as the mapping u→ Q(·|x, u). The randomized control λ, together with the transition

kernel Q defines a probability measure λ ◦Qx on the product space U × X as follows:

[λ ◦Qx](Bu ×By) =

∫
Bu

Q(By|x, u) λ(du), Bu ∈ B(U), By ∈ B(X ). (2.1)

The measure is extended to other sets in B in a usual way. In the case of countable

state and control spaces,
[
λ ◦Qx

]
(u, y) is the probability that control u will be used at

x and the next state will be y.

The cost incurred at the current stage is given by the function cx on the product

space U × X defined as follows:

cx(u, y) = c(x, u, y), u ∈ U , y ∈ X . (2.2)

Let V = Lp(U × X ,B, P0), where p ∈ [1,∞] and P0 is some reference probability

measure on U × X . It is convenient to think of the dual space V ′ as the space of
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signed measures m on (U ×X ,B), which are absolutely continuous with respect to P0,

with densities (Radon–Nikodym derivatives) lying in the space Lq(U ×X ,B, P0), where

1/p + 1/q = 1. In the case of finite state and control spaces P0 may be the uniform

measure; in other cases P0 should be chosen in such a way that the measures λ ◦ Qx

are elements of V ′. The measure P0 does not play any other role in our considerations.

We consider the set of probability measures in V ′:

M =
{
m ∈ V ′ : m(U × X ) = 1, m ≥ 0

}
.

We also assume that the spaces V and V ′ are endowed with topologies that make them

paired topological vector spaces with the bilinear form

〈ϕ,m〉 =

∫
U×X

ϕ(u, y) m(du× dy), ϕ ∈ V, m ∈ V ′. (2.3)

The space V ′ (and thusM) will be endowed with the weak∗ topology. For p ∈ [1,∞) we

may endow V with the strong (norm) topology, or with the weak topology. For p =∞,

the space V will be endowed with is weak topology defined by the form (2.3), that is,

the weak∗ topology on L∞(X ,B, P0).

Definition 2.1.1 A measurable function σ : V × X × M → R is a risk transition

mapping if for every x ∈ X and every m ∈ M, the function ϕ 7→ σ(ϕ, x,m) is a

coherent measure of risk on V.

Recall that σ(·) is a coherent measure of risk on V (we skip the other two arguments

for brevity), if

B1. σ(αϕ+ (1− α)ψ) ≤ ασ(ϕ) + (1− α)σ(ψ), ∀ α ∈ (0, 1), ϕ, ψ ∈ V;

B2. If ϕ ≤ ψ then σ(ϕ) ≤ σ(ψ), ∀ ϕ,ψ ∈ V;

B3. σ(a+ ϕ) = a+ σ(ϕ), ∀ ϕ ∈ V, a ∈ R;

B4. σ(βϕ) = βσ(ϕ), ∀ ϕ ∈ V, β ≥ 0.

Example 2.1.2 Consider the first-order mean–semideviation risk measure of Example

1.3.1, but with the state and the underlying probability measure as its arguments. We
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define

σ(ϕ, x,m) = 〈ϕ,m〉+ κ(x)
〈
(ϕ− 〈ϕ,m〉)+,m

〉
, (2.4)

with some measurable function κ : X → [0, 1]. We can verify directly that conditions

(B1)–(B4) are satisfied.

Example 2.1.3 Another important example is the Conditional Average Value at Risk

(see, Example 1.3.2), which has the following risk transition counterpart:

σ(ϕ, x,m) = inf
η∈R

{
η +

1

α(x)

〈
(ϕ− η)+,m

〉}
.

Here α : X → [αmin, αmax] ⊂ (0, 1) is measurable. Again, the conditions (B1)–(B4) can

be verified directly.

We shall use the property of law invariance of a risk transition mapping. For a

function ϕ ∈ V and a probability measure µ ∈ M we can define the distribution

function Fµϕ : R→ [0, 1] as follows

Fµϕ (η) = µ
{

(u, y) ∈ U × X : ϕ(u, y) ≤ η
}
.

Definition 2.1.4 A risk transition mapping σ : V × X ×M → R is law invariant, if

for all ϕ,ψ ∈ V and all µ, ν ∈ M such that Fµϕ ≡ F νψ , we have σ(ϕ, x, µ) = σ(ψ, x, ν)

for all x ∈ X .

The concept of law invariance corresponds to a similar concept for coherent measures of

risk, but here we additionally need to take into account the variability of the probability

measure. The risk transition mappings of Examples 2.1.2 and 2.1.3 are law invariant.

While we shall not directly use law invariance in our main theoretical considerations,

it greatly simplifies the analysis of specific problems, as illustrated in section 7.1.

Risk transition mappings allow for convenient formulation of risk-averse preferences

for controlled Markov processes, where the cost is evaluated by formula (1.5). Consider a

controlled Markov process {xt} with some Markov policy Π = {π1, π2, . . . }. For a fixed

time t and a measurable function g : X ×U ×X → R the value of Zt+1 = g(xt, ut, xt+1)

is a random variable. We assume that g is w-bounded, that is,∣∣g(x, u, y)
∣∣ ≤ C(w(x) + w(y)

)
, ∀ x ∈ X , u ∈ U(x), y ∈ X ,
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for some constant C > 0 and for the weight function w : X → [1,∞), w ∈ V. Then

Zt+1 is an element of Zt+1. Let ρt : Zt+1 → Zt be a conditional risk measure satisfying

(A1)–(A4). By definition, ρt
(
g(xt, ut, xt+1)

)
is an element of Zt, that is, it is an Ft-

measurable function on (Ω,F). In the definition below, we restrict it to depend on

the past only via the current state xt. We write gx : U × X → R for the function

gx(u, y) = g(x, u, y), πx for the measure π(·|x), and Qx for the mapping u→ Q(·|x, u).

Definition 2.1.5 A one-step conditional risk measure ρt : Zt+1 → Zt is a Markov

risk measure with respect to the controlled Markov process {xt}, if there exists a risk

transition mapping σt : V × X × M → R such that for all w-bounded measurable

functions g : X ×U ×X → R and for all feasible decision rules π : X → P(U) we have

ρt
(
g(xt, ut, xt+1)

)
= σt

(
gxt , xt, πxt ◦Qxt

)
, a.s. (2.5)

Observe that the right hand side of formula (2.5) is parametrized by xt, and thus it

defines a special Ft-measurable function of ω, whose dependence on the past is carried

only via the state xt.

Remark 2.1.6 If c(xt, ut, xt+1) ≡ d(xt, xt+1), or if randomized policies are not al-

lowed, then it is sufficient to start from a probability measure P0 on X and define

V = Lp(X ,B(X ), P0), V ′ - the set of measures on (X ,B(X )) having densities with

respect to P0 in Lq(X ,B(X ), P0), and M = {m ∈ V ′ : m(X ) = 1, m ≥ 0}, exactly as

in [48].

Remark 2.1.7 If, additionally, the stage-wise costs have the form c(xt, ut, xt+1, ξt),

where ξt, t = 1, 2, . . . , are some random variables distributed in a Polish space Ξ

according to a measure which is absolutely continuous with respect to some fixed Pξ,

but may depend on xt and ut, then we need to consider larger spaces of arguments of
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a risk transition mapping:

V = Lp(U × X ×Ξ,B(U × X ×Ξ), P0 × Pξ),

V ′ = Lq(U × X ×Ξ,B(U × X ×Ξ), P0 × Pξ),

M =

m ∈ V ′ :
∫

U×X×Ξ

m(u, x, ξ)P0(du dx dξ) = 1, m ≥ 0

 .

All our considerations remain valid, just the notation complicates.

2.2 Stochastic Multikernels

In order to analyze Markov measures of risk, we need to introduce the concept of a

multikernel.

Definition 2.2.1 A multikernel is a measurable multifunction M from X to the space

rca(X ,B(X )) of regular measures on (X ,B(X)). It is stochastic, if its values are sets

of probability measures. It is substochastic, if 0 ≤ M(B|x) ≤ 1 for all M ∈ M(x),

B ∈ B(X ), and x ∈ X . It is convex ( closed), if for all x ∈ X its value M(x) is a

convex ( closed) set.

The concept of a multikernel is thus a multivalued generalization of the concept of

a kernel. A measurable selector of a stochastic multikernel M is a stochastic kernel M

such that M(x) ∈M(x) for all x ∈ X . We symbolically write M lM to indicate that

M is a measurable selector of M.

Recall that a composition M1 ◦M2 of (sub-) stochastic kernels M1 and M2 is given

by the formula:[
M1 ◦M2

](
B
∣∣x) =

∫
X
M2(B|y) M1(dy|x), B ∈ B(X ), x ∈ X . (2.6)

It is also a (sub-) stochastic kernel. Multikernels, in particular substochastic multiker-

nels, can be composed in a similar fashion.

Definition 2.2.2 If Mi : X ⇒ rca(X ,B(X )), i = 1, 2 are substochastic multikernels,

then their composition M1 ◦M2 is defined as follows:[
M1 ◦M2

](
B
∣∣x) =

{[
M1 ◦M2]

(
B
∣∣x) : Mi lMi, i = 1, 2

}
.
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It follows from Definition 2.2.2, that a composition of (sub-) stochastic multikernels is

a (sub-) stochastic multikernel. We may compose a substochastic multikernel M with

itself several times, to obtain its “power”:

(M)k = M ◦M . . . ◦M︸ ︷︷ ︸
k times

.

The norm of a substochastic multikernel M : X̃ ⇒ rca(X̃ ,B(X̃ )) is defined as

follows:

‖M‖w = sup
MlM

‖M‖w,

where the norm ‖M‖w is given by (1.2).

The concept of a multikernel and the composition operation arise in a natural way

in the context of Markov risk measures. If σ(·, ·, ·) is a Markov risk measure, then the

function σ(·, x,m) is lower semicontinuous for all x ∈ X and m ∈ M (see Ruszczyński

and Shapiro [50, Proposition 3.1]). Then it follows from [50, Theorem 2.2] that for

every x ∈ X and m ∈ M a closed convex set A(x,m) ⊂ M exists, such that for all

ϕ ∈ V we have

σ(ϕ, x,m) = max
µ∈A(x,m)

〈ϕ, µ〉. (2.7)

In fact, we also have

A(x,m) = ∂ϕσ(0, x,m). (2.8)

In many cases, the multifunction A : X ×M⇒M can be described analytically.

Example 2.2.3 For the mean-semideviation model of Example 2.1.2, following the

derivations of Ruszczyński and Shapiro [50, Example 4.2], we have

A(x,m) =
{
µ ∈M : ∃

(
h ∈ L∞(U×X ,B, P0)

) dµ
dm

= 1+h−〈h,m〉, ‖h‖∞ ≤ κ(x), h ≥ 0
}
.

(2.9)

Similar formulas can be derived for higher order measures.

Example 2.2.4 For the Conditional Average Value at Risk of Example 2.1.3, following

the derivations of Ruszczyński and Shapiro [50, Example 4.3], we obtain

A(x,m) =

{
µ ∈M :

dµ

dm
≤ 1

α(x)

}
. (2.10)
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Consider the formula (2.5) and suppose that g(xt, ut, xt+1) = v(xt+1) for some

measurable w-bounded function v : X → R. Using the representation (2.7) we can

write it as follows:

ρt
(
v(xt+1)

)
= max

µ∈A(xt,πxt◦Qxt )
〈v, µ〉, a.s. (2.11)

In the formula above, the last bilinear form is an integral over U × X . The function

v(·) depends on x only, and thus it is sufficient to consider the marginal measures

µ̄(B) = µ(U ×B), B ∈ B(X ). (2.12)

Denote by L the linear operator mapping each µ ∈ V ′ to the corresponding marginal

measure µ̄ on (X ,B(X )), as defined in (2.12). For every x we can define the set of

probability measures:

Mπ
x =

{
Lµ : µ ∈ A(x, πx ◦Qx)

}
, x ∈ X . (2.13)

The multifunction Mπ : X ⇒ P(X ), assigning the set Mπ
x to each x ∈ X , is a closed

convex stochastic multikernel. We call it a risk multikernel, associated with the risk

transition mapping σ(·, ·, ·), the controlled kernel Q, and the policy π. Its measurable

selectors Mπ lMπ are transition kernels.

It follows that formula (2.11) can be rewritten as follows:

ρt
(
v(xt+1)

)
= max

M∈Mπ
xt

∫
X
v(y) M(dy). (2.14)

In the risk-neutral case we have

ρt
(
v(xt+1)

)
= E

[
v(xt+1)

∣∣xt] =

∫
U

∫
X
v(y) Q(dy|xt, u) π(du|xt) =

∫
X
v(y) Qπxt(dy),

with the transition kernel Qπ associated with the policy π given by Qπx = L[πx ◦ Qx].

The comparison of the last two displayed equations reveals that in the risk-neutral case

we have

Mπ
x =

{
Qπx
}
, x ∈ X , (2.15)

that is, the risk multikernel Mπ is single-valued, and its only selector is the kernel Qπ.

In the risk-averse case, the risk multikernel Mπ is a closed convex-valued multifunction,

whose measurable selectors are transition kernels. It is evident that properties of this
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multifunction are germane for our analysis. We return to this issue in section 4.1, where

we calculate some examples of transition multikernels.

Remark 2.2.5 If m ∈ A(x,m) for all x ∈ X and m ∈M, then it follows from equation

(2.13) that Qπ is a measurable selector of Mπ. Moreover, it follows from (2.7) that for

any function ϕ ∈ V we have

ρt
(
ϕ(ut, xt+1)

)
≥
∫
U×X

ϕ(u, y)
[
Qxt ◦ πxt

]
(du× dy) = E

[
ϕ(ut, xt+1)

∣∣xt].
It follows that the dynamic risk measure (1.5) is bounded from below by the expected

value of the total cost.

The condition m ∈ A(x,m) is satisfied by the measures of risk in Examples 2.2.3 and

2.2.4.

Interestingly, uncertain transition matrices were used by Nilim and El Ghaoui in

[36] to increase robustness of control rules for Markov models. In our theory, controlled

multikernels (generalization of such matrices), arise in a natural way in the analysis of

risk-averse preferences.

Let us quickly recall continuity properties of the multifunctions involved in the

construction of a Markov risk measure.

Proposition 2.2.6 Suppose ϕ ∈ V and x ∈ X . If the controlled kernel u 7→ Q(·|x, u)

is continuous, and the multifunction m 7→ A(ϕ, x,m) is lower semicontinuous, then the

function λ 7→ σ(ϕ, x, λ ◦Qx) is weakly∗ lower semicontinuous on P
(
U(x)

)
.

Proof For a continuous Q, the multifunction λ 7→ A(x, λ ◦ Qx) inherits the con-

tinuity properties of A. The function µ 7→ 〈ϕ, µ〉 is continuous on M (in the weak∗

topology). The assertion of the theorem follows now from the dual representation (2.7)

by [4, Theorem 1.4.16], whose proof remains valid in our setting as well. �

Some comments on the assumptions of Proposition 2.2.6 are in order. The continuity

of the kernel Q is a standard condition in the theory of risk-neutral Markov control

processes (see, e.g., [18]). If the risk transition mapping σ(·, ·, ·) is continuous, then its

subdifferential (2.8) is upper semicontinuous. However, in Proposition 2.2.6 we assume
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lower semicontinuity of the mapping m 7→ ∂ϕσ(0, x,m), which is not trivial and should

be verified for each case. For example, the subdifferentials derived in Examples 2.2.3

and 2.2.4 are continuous with respect to m.
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Chapter 3

Finite Horizon Problem

In this chapter, we consider a finite horizon model with randomized policies, which

generalizes the model suggested by Ruszczyński [48] for deterministic policies. We

derive the dynamic programming equations and prove that optimal solution of the

problem can be found by iteratively solving these equations.

3.1 Dynamic Programming Equations for Finite Horizon Problems

We consider the Markov model at times 1, 2, . . . , T + 1 under general policies Π =

{π1, π2, . . . , πT }.

For the finite horizon problem, it is not necessary to assume that the Markov process

is stationary. Therefore, we will use time-dependent control sets Ut, transition kernels

Qt, cost functions ct, and multifunctions At, t = 1, . . . , T . Additionally, the assumption

that the process is transient is not needed. We assume that the cost at the last stage

is given by a function vT+1(xT+1).

Consider the problem

min
Π

JT (Π,x1), (3.1)

where JT (Π,x1) is defined by formula (1.5), with Markov conditional risk measures ρt,

t = 1, . . . , T specified by risk transition mappings σt(·, ·, ·):

JT (Π,x1) = ρ1

(
c1(x1, u1, x2) + ρ2

(
c2(x2, u2, x3) + · · ·+ ρT

(
cT (xT , uT , xT+1)

+ vT+1(xT+1)
)
· · ·
))

. (3.2)

In the following theorem, we show that, similar to the risk-neutral case, the optimal

solution of problem (3.1) can be found by solving appropriate dynamic programming
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equations. A similar theorem is proved by Ruszczyński [48, Thm. 2] for deterministic

policies.

Theorem 3.1.1 If the following conditions are satisfied:

(i) The transition kernels Qt(x, ·) are continuous for every x ∈ X and t = 1, . . . , T ;

(ii) The conditional risk measures ρt, t = 1, . . . , T are Markovian and the multifunc-

tions At(x, ·) are lower semicontinuous for every x ∈ X ;

(iii) The functions ct(·, ·, ·), t = 1, . . . , T are w-bounded, measurable, and lower semi-

continuous with respect to the second argument;

(iv) The sets Ut(x), t = 1, . . . , T are compact for every x ∈ X ;

(v) The function vT+1(·) is w-bounded and measurable;

then problem (3.1) has an optimal solution and its optimal value v1(x) can be found by

solving following dynamic programming equations:

vt(x) = min
λt∈P(Ut(x))

σt
(
ct(x, ·, ·) + vt+1, x, λt ◦Qt(x, ·)

)
, x ∈ X , t = T, . . . , 1. (3.3)

Furthermore, there exists an optimal Markov policy Π̂ = {π̂1, . . . , π̂T } which satisfies

the equations:

π̂t(x) ∈ argmin
λt∈P(Ut(x))

σt
(
ct(x, ·, ·) + vt+1, x, λt ◦Qt(x, ·)

)
, x ∈ X , t = T, . . . , 1. (3.4)

Conversely, every solution of equations (3.3)–(3.4) defines an optimal Markov policy

Π̂.

Proof Our proof is similar to the proof of Ruszczyński [48, Thm. 2], but with

adjustments due to the use of randomized strategies. Therefore, here, we just provide

its short outline.

Since the conditional risk measures ρt, t = 1, . . . , T are Markovian, we can apply

the monotonicity condition (B2) and obtain the following forms which are equivalent

to problem (3.1):

min
π1,...,πT

{
ρ1

(
c1(x1, u1, x2) + · · ·+ ρT

(
cT (xT , uT , xT+1) + vT+1(xT+1)

)
· · ·
)}

=

min
π1,...,πT−1

{
ρ1

(
c1(x1, u1, x2) + · · ·+ min

πT
ρT
(
cT (xT , uT , xT+1) + vT+1(xT+1)

)
· · ·
)}

.
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Since ρT is a Markov risk measure, the innermost optimization problem can be written

as follows:

min
λT∈P(UT (xT ))

σT
(
cT (xT , ·, ·) + vT+1, xT , λT ◦QT (xT , ·)

)
. (3.5)

which is equivalent to (3.3) for t = T . Furthermore, its solution is found by solving

(3.4) for t = T .

The function λT 7→ σT
(
cT (xT , ·, ·)+vT+1, xT , λT ◦QT (xT , ·)

)
is lower semicontinuous

by Proposition 2.2.6. As the set of λT ∈ P(U) such that λT (UT (xT )) = 1 is weakly∗

compact, the optimal randomized decision rule πT (x), which is the minimizer in (3.5),

exists.

After that, the horizon T + 1 is decreased to T , and the final cost becomes vT (xT ).

The theorem is proved by continuing in this way for T, T − 1, . . . , 1. �

Iteration of (3.3) gives that the value functions vt(·) are the optimal values of the

following subproblems formulated for a fixed xt = x:

vt(x) = min
πt,...,πT

ρt

(
ct(xt, ut, xt+1) + ρt+1

(
ct+1(xt+1, ut+1, xt+2) + · · ·+ ρT

(
cT (xT , uT , xT+1)

+ vT+1(xT+1)
)
· · ·
))
.

It follows from Theorem 3.1.1 that the optimal solution of the finite horizon problem

(3.1) can be calculated by iteratively solving the equations (3.3)–(3.4) for T, T−1, . . . , 1.
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Chapter 4

Infinite Horizon Problem

4.1 Evaluation of Stationary Markov Policies in Infinite Horizon Prob-

lems

Consider a policy Π = {π1, π2, . . . } and define the cost until absorption as follows:

J∞(Π,x1) = lim
T→∞

JT (Π,x1), (4.1)

where each JT (Π,x1) is defined by the formula

JT (Π,x1) = ρ1

(
c(x1, u1, x2) + ρ2

(
c(x2, u2, x3) + · · ·+ ρT

(
c(xT , uT , xT+1)

)
· · ·
))

= ρ1,T+1

(
0, c(x1, u1, x2), c(x2, u2, x3), . . . , c(xT , uT , xT+1)

)
,

(4.2)

with Markov conditional risk measures ρt, t = 1, . . . , T , sharing the same risk transition

mapping σ(·, ·, ·). We assume all conditions of Theorem 3.1.1 with stationary transition

kernel Q, cost function c, control sets U , and multifunction A . We still have to index

each conditional risk measure by time, because by definition it acts from the space Zt+1

to the space Zt.

The first question to answer is when this cost is finite. This question is nontrivial,

because even for uniformly bounded costs Zt = c(xt−1, ut−1, xt), t = 2, 3, . . . , and for a

transient finite-state Markov chain, the limit in (4.1) may be infinite, as the following

example demonstrates.

Example 4.1.1 Consider a transient Markov chain with two states and with the fol-

lowing transition probabilities: Q11 = Q12 = 1
2 , Q22 = 1. Only one control is possible

in each state, the cost of each transition from state 1 is equal to 1, and the cost of the

transition from 2 to 2 is 0. Clearly, the time until absorption is a geometric random
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variable with parameter 1
2 . Let x1 = 1. If the limit (4.1) is finite, then (skipping the

dependence on Π) we have

J∞(1) = lim
T→∞

JT (1) = lim
T→∞

ρ1

(
1 + JT−1(x2)

)
= ρ1

(
1 + J∞(x2)

)
.

In the last equation we used the continuity of ρ1(·). Clearly, J∞(2) = 0.

Suppose that we are using the Average Value at Risk from Example 2.1.3, with

0 < α ≤ 1
2 , to define ρ1(·). Using standard identities for the Average Value at Risk

(see, e.g., [53, Thm. 6.2]), we obtain

J∞(1) = inf
η∈R

{
η +

1

α
E
[(

1 + J∞(x2)− η
)

+

]}
= 1 + inf

η∈R

{
η +

1

α
E
[(
J∞(x2)− η

)
+

]}
= 1 +

1

α

∫ 1

1−α
F−1(β) dβ,

(4.3)

where F (·) is the distribution function of J∞(x2). As all β-quantiles of J∞(x2) for

β ≥ 1
2 are equal to J∞(1), the last equation yields

J∞(1) = 1 + J∞(1),

a contradiction. It follows that a composition of average values at risk has no finite

limit, if 0 < α ≤ 1
2 .

On the other hand, if 1
2 < α < 1, then

F−1(β) =


J∞(2) = 0 if 1− α ≤ β < 1

2 ,

J∞(1) if 1
2 ≤ β ≤ 1.

Formula (4.3) then yields

J∞(1) = 1 +
1

2α
J∞(1).

This equation has a solution J∞(1) = 2α/(2α− 1).

If we use the mean-semideviation model of Example 2.1.2, we obtain

J∞(1) = E
[
1 + J∞(x2)

]
+ κE

[(
1 + J∞(x2)−E

[
1 + J∞(x2)

])
+

]
= 1 +

1

2
J∞(1) + κ

1

2

(
J∞(1)− 1

2
J∞(1)

)
= 1 +

2 + κ

4
J∞(1).

Thus J∞(1) = 4/(2 − κ), which is finite for all κ ∈ [0, 1], which are all values of κ for

which the model defines a coherent measure of risk.
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It follows that deeper properties of the measures of risk and their interplay with

the transition kernel need to be investigated to answer the question about finiteness of

the dynamic measure of risk in this case. We propose a condition that generalizes the

Pliska condition (1.1) to the risk-averse case.

Recall that with every risk transition mapping σ(·, ·, ·), every controlled kernel Q,

and every decision rule π, a multikernel Mπ is associated, as defined in (2.13). Similar

to the expected value case, it is convenient to consider the effective state space X̃ = X \

{xA}, and the effective substochastic multikernel M̃π whose arguments are restricted to

X̃ and whose values are convex sets of nonnegative measures on X̃ , so that M̃
(
B
∣∣x, u) =

M
(
B
∣∣x, u), for all Borel sets B ⊂ X̃ , and all M ∈ M̃π.

Definition 4.1.2 We call the Markov model with a risk transition mapping σ(·, ·, ·)

and with a stationary Markov policy {π, π, . . . } risk-transient if a weight function w :

X → [1,∞), w ∈ V, and a constant K exist such

∞∑
j=1

∥∥∥(M̃π
)j∥∥∥

w
≤ K. (4.4)

If the estimate (4.4) is uniform for all Markov policies, the model is called uniformly

risk-transient.

In the special case of a risk-neutral model, Definition 4.1.2 reduces to the Pliska condi-

tion (1.1), owing to the equation (2.15).

Example 4.1.3 Consider the simple transient chain of Example 4.1.1 with the Average

Value at Risk from Examples 2.1.3 and 2.2.4, where 0 < α ≤ 1. From (2.10) we obtain

A(x,m) =
{

(µ1, µ2) : 0 ≤ µj ≤
mj

α
, j = 1, 2; µ1 + µ2 = 1

}
.

As only one control is possible, formula (2.13) simplifies to

Mi =
{

(µ1, µ2) : 0 ≤ µj ≤
Qij
α
, j = 1, 2; µ1 + µ2 = 1}, i = 1, 2.

The effective state space is just X̃ = {1}, and we conclude that the effective multikernel

has the form

M̃1 =
[
0,min

(
1,

1

2α

)]
.
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For 0 < α ≤ 1
2 we can select M̃ = 1 ∈ M̃1 to show that 1 ∈

(
M̃1

)j
for all j, and

thus condition (4.4) is not satisfied. On the other hand, if 1
2 < α ≤ 1, then for every

M̃ ∈ M̃1 we have 0 ≤ M̃ < 1, and condition (4.4) is satisfied.

Consider now the mean-semideviation model of Examples 2.1.2 and 2.2.3. From

(2.9) we obtain

A(x,m) =
{

(µ1, µ2) : µj = mj (1 + hj − (h1m1 + h2m2)) , 0 ≤ hj ≤ κ, j = 1, 2
}
,

Mi =
{

(µ1, µ2) : µj = Qij (1 + hj − (h1Qi1 + h2Qi2)) , 0 ≤ hj ≤ κ, j = 1, 2
}
, i = 1, 2.

Calculating the lowest and the largest possible values of µ1 we conclude that

M̃1 =
[1

2

(
1− κ

2

)
,
1

2

(
1 +

κ

2

)]
.

For every κ ∈ [0, 1], Definition 4.1.2 is satisfied.

We start our analysis from an estimate of the risk in a finite horizon model of a

final cost given by a certain function v(xT ), where T is the horizon, and v : X → R is

a measurable function with ‖v‖w <∞ for the weight function w : X → [1,∞), w ∈ V,

and with v(xA) = 0. In the lemma below, we consider x1 ∈ X as a parameter of the

problem, and thus ρ1,T

(
0, . . . , 0, v(xT )

)
is a function of x1.

Lemma 4.1.4 Suppose a stationary policy Π = {π, π, . . . } is applied to a controlled

Markov model with a Markov risk transition mapping σ(·, ·, ·). If the model is risk-

transient, then there exists a function v̄1 : X → R, ‖v̄1‖w < ∞, such that for all

x1 ∈ X , and all T ≥ 1

ρ1,T

(
0, . . . , 0, v(xT )

)
≤ v̄1(x1), (4.5)

and ∥∥v̄1

∥∥
w
≤
∥∥∥(M̃π

)T−1
∥∥∥
w
·
∥∥v∥∥

w
, (4.6)

where M̃π is the substochastic risk multikernel implied by π and σ.

Proof By construction,

ρ1,T

(
0, . . . , 0, v(xT )

)
= ρ1

(
ρ2

(
· · · ρT−1

(
v(xT )

)
· · ·
))
.
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Applying (2.14), we obtain

ρT−1

(
v(xT )

)
= max

mT−1∈Mπ
xT−1

∫
X

v(y) mT−1(dy). (4.7)

It is a function of xT−1, which we denote as vT−1(xT−1). Since ‖v‖w <∞ and w ∈ V,

then v ∈ V. As the sets Mπ
x are weakly∗ compact, the maximum in (4.7) is achieved.

Moreover, ∥∥vT−1

∥∥
w
≤
∥∥M̃π

∥∥
w
·
∥∥v∥∥

w
<∞.

One step earlier, in a similar way we obtain

ρT−2

(
ρT−1

(
v(xT )

))
= max

mT−2∈Mπ
xT−2

∫
X

vT−1(y) mT−2(dy)

= max
mT−2∈Mπ

xT−2

∫
X

max
mT−1∈Mπ

y

∫
X

v(z) mT−1(dz) mT−2(dy).

The maximizers m̂T−1 ∈Mπ
y under the integral can be chosen in such a way that they

form a measurable selector MT−1l Mπ (see, e.g., [47, Thm. 14.37]. On the other hand,

no measurable selector can do better than the pointwise maximizers. We can, therefore,

interchange the operations of maximization and integration and conclude that

ρT−2

(
ρT−1

(
v(xT )

))
= max

mT−2∈Mπ
xT−2

max
MT−1lMπ

∫
X

∫
X

v(z) MT−1(dz|y) mT−2(dy).

Similarly, the outer maximizer may be represented as a value of a certain measurable

selector of Mπ at xT−2. Denoting the value of the above expression by vT−2(xT−2), we

obtain

vT−2(x) = max
MT−2lMπ

max
MT−1lMπ

∫
X

∫
X

v(z) MT−1(dz|y) MT−2(dy|x).

Changing the order of integration we observe that the double integral above can be

represented as an integral with respect to a composition of the kernels MT−2 and MT−1

(cf. formula (2.6)). We obtain

vT−2(x) = max
MT−2lMπ

max
MT−1lMπ

∫
X

v(z) [MT−2 ◦MT−1

](
dz
∣∣x)

≤ max
Ml(Mπ )2

∫
X

v(z) M
(
dz
∣∣x) = v̄T−2(x).



27

The last inequality follows from the fact that MT−2 ◦ MT−1 l
(
Mπ

)2
. Therefore,

vT−2 ≤ v̄T−2, where ∥∥v̄T−2

∥∥
w
≤
∥∥∥(M̃π

)2∥∥∥
w
·
∥∥v∥∥

w
<∞.

Continuing in this way, we conclude that

ρ1

(
ρ2

(
· · · ρT−1

(
v(xT )

)
· · ·
))
≤ max

Ml(Mπ )T−1

∫
X

v(z) M
(
dz
∣∣x1

)
= max

M̃l(M̃π )T−1

∫
X̃

v(z) M̃
(
dz
∣∣x1

)
.

Denoting the right-hand side by v̄1(x1), we obtain the estimates (4.5)–(4.6). �

We can now provide sufficient conditions for the finiteness of the limit (4.1).

Theorem 4.1.5 Suppose a stationary policy Π = {π, π, . . . } is applied to a the con-

trolled Markov model with a Markov risk transition mapping σ(·, ·, ·). If the model is

risk-transient for the policy Π and the cost function c(·, ·, ·) is w-bounded, then the

limit (4.1) is finite and
∥∥J∞(Π, ·)

∥∥
w
< ∞. If the model is uniformly risk-transient,

then
∥∥J∞(Π, ·)

∥∥
w

is uniformly bounded.

Proof By Lemma 1.3.3, each conditional risk measure ρ1,T (·) is convex and posi-

tively homogeneous, and thus subadditive. For any 1 < T1 < T2 we obtain the following

estimate of (4.2):

JT2−1(Π,x1) = ρ1,T2(0, Z2, . . . , ZT2)

≤ ρ1,T2(0, Z2, . . . , ZT1 , 0, . . . , 0) +

T2−1∑
j=T1

ρ1,T2(0, . . . , 0, Zj+1, 0, . . . , 0)

= ρ1,T1(0, Z2, . . . , ZT1) +

T2−1∑
j=T1

ρ1,j+1(0, . . . , 0, Zj+1).

(4.8)

By assumption, Zj+1 ≤ C
(
w̄(xj) + w̄(xj+1)

)
, where w̄(x) = w(x) if x ∈ X̃ , and

w̄(xA) = 0. Owing to the monotonicity and positive homogeneity of the conditional

risk mappings

ρ1,j+1(0, . . . , 0, Zj+1) ≤ Cρ1

(
ρ2

(
· · · ρj−1

(
ρj
(
w̄(xj) + w̄(xj+1)

))
· · ·
))

= Cρ1

(
ρ2

(
· · · ρj−1

(
w̄(xj) + ρj

(
w̄(xj+1)

))
· · ·
))

≤ Cρ1

(
ρ2

(
· · · ρj−1

(
w̄(xj)

)
· · ·
))

+ Cρ1

(
ρ2

(
· · · ρj

(
w̄(xj+1)

)
· · ·
))
.
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In the middle equation we used the fact that w̄(xj) is Fj-measurable, and in the last

inequality – the subadditivity of the risk measures. Since
∥∥w̄∥∥

w
= 1, Lemma 4.1.4

implies that

ρ1

(
ρ2

(
· · · ρj

(
w̄(xj+1)

)
· · ·
))
≤ v̄j(x1)

with ∥∥v̄j∥∥w ≤ ∥∥∥(M̃π
)j∥∥∥

w
. (4.9)

Substitution to (4.8) yields the estimate

ρ1,T2(0, Z2, . . . , ZT2) ≤ ρ1,T1(0, Z2, . . . , ZT1) + 2C

T2∑
j=T1−1

v̄j(x1). (4.10)

Consider now the sequence of costs Z1, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2 , in which we flip

the sign of the costs Zt+1 = c(xt, ut, xt+1) for t ≥ T1. As |Zt+1| are bounded by

C
(
w̄(xt) + w̄(xt+1)

)
, the estimate (4.10) applies to the new sequence. We obtain

ρ1,T2(0, Z2, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2) ≤ ρ1,T1(0, Z2, . . . , ZT1) + 2C

T2∑
j=T1−1

v̄j(x1).

(4.11)

By convexity and positive homogeneity of ρ1,T2(·),

2ρ1,T1(0, Z2, . . . , ZT1) ≤ ρ1,T2(0, Z2, . . . , ZT1 , ZT1+1, . . . , ZT2)

+ ρ1,T2(0, Z2, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2).

Substituting the estimate (4.11), we deduce that

ρ1,T2(0, Z2, . . . , ZT2) ≥ ρ1,T1(0, Z2, . . . , ZT1)− 2C

T2∑
j=T1−1

v̄j(x1).

This combined with (4.10) yields

∣∣JT2−1(Π,x1)− JT1−1(Π,x1)
∣∣ ≤ 2C

T2∑
j=T1−1

v̄j(x1).

In view of (4.9), we conclude that

∥∥JT2−1(Π, ·)− JT1−1(Π, ·)
∥∥
w
≤ 2C

T2∑
j=T1−1

∥∥∥(M̃π
)j∥∥∥

w
. (4.12)

By Definition 4.1.2, the right hand side of the last displayed inequality converges to 0,

when T1, T2 → ∞, T1 < T2. Hence, the sequence of functions JT (Π, ·), T = 1, 2, . . .
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is convergent to some limit J∞(Π, ·). Moreover,
∥∥J∞(Π, ·)

∥∥
w
< ∞. If the model is

uniformly risk-transient, then the estimate (4.12) is same for all Markov policies Π,

and thus
∥∥J∞(Π, ·)

∥∥
w

is uniformly bounded. �

Remark 4.1.6 It is clear from the proof of Theorem 4.1.5, that

J∞(Π,x1) = lim
T→∞

ρ1,T

(
0, Z2, . . . , ZT + f(xT )

)
, (4.13)

for any measurable function f : X → R, with
∥∥f∥∥

w
< ∞, because c(xT−1, ut, xT ) +

f(xT ) is still w-bounded.

This analysis allows us to derive dynamic programming equations for the infinite

horizon problem, in the case of a fixed Markov policy.

Theorem 4.1.7 Suppose a controlled Markov model with a Markov risk transition

mapping σ(·, ·, ·) is risk-transient for the stationary Markov policy Π = {π, π, . . . }, with

some weight function w(·). Then a measurable function v : X → R, with ‖v‖w < ∞,

satisfies the equations

v(x) = σ
(
cx + v, x, π(x) ◦Qx

)
, x ∈ X̃ , (4.14)

v(xA) = 0, (4.15)

if and only if v(x) = J∞(Π,x) for all x ∈ X .

Proof Denote Zt = c(xt−1, ut−1, xt). Suppose a measurable function v(·) satisfies

the dynamic programming equations (4.14)–(4.15). Since ‖v‖w < ∞ and w ∈ V, then

also v ∈ V. By assumption, c(·, ·, ·) is w-bounded, and thus cx(·, ·) ∈ V. Consequently,

the right-hand side of (4.14) is well-defined. By iteration of (4.14), we obtain for all

x1 ∈ X the following equation:

v(x1) = ρ1

(
c(x1, u1, x2) +ρ2

(
c(x2, u2, x3) + · · ·+ρT

(
c(xT , uT , xT+1) +v(xT+1)

)
· · ·
))

.

Denote Zt = c(xt−1, ut−1, xt). Using monotonicity and subadditivity of the conditional

risk measures we deduce that:

ρ1,T+1

(
0, Z2, . . . , ZT+1+v(xT+1)

)
≤ ρ1,T+1

(
0, Z2, . . . , ZT+1

)
+ρ1,T+1

(
0, 0, . . . , v(xT+1)

)
.

(4.16)
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By Lemma 4.1.4,

v(x1) = ρ1,T+1

(
0, Z2, . . . , ZT+1 +v(xT+1)

)
≤ ρ1,T+1

(
0, Z2, . . . , ZT+1))+dT (x1), (4.17)

with ∥∥dT∥∥w ≤ ∥∥∥(M̃π
)T−1

∥∥∥
w
·
∥∥v∥∥

w
. (4.18)

By convexity of ρ1,T+1(·),

2ρ1,T+1

(
0, Z2, . . . , ZT+1

)
≤ ρ1,T+1

(
0, Z2, . . . , ZT+1 + v(xT+1)

)
+ ρ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
= v(x1) + ρ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
. (4.19)

Similar to (4.16)–(4.17),

ρ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
≤ ρ1,T+1

(
0, Z2, . . . , ZT+1

)
+ dT (x1).

Substituting into (4.19) we obtain

v(x1) ≥ ρ1,T+1

(
0, Z2, . . . , ZT+1))− dT (x1).

Combining this estimate with (4.17) and using (4.18) we conclude that

∥∥v(·)− JT (Π, ·)
∥∥
w
≤
∥∥dT∥∥w → 0, as T →∞.

Thus v(·) ≡ J∞(Π, ·), as postulated.

To prove the converse implication we can use the fact that all conditional risk

measures ρt(·) share the same risk transition mapping to rewrite (4.2) as follows:

JT (Π,x1) = ρ1

(
c(x1, u1, x2) + JT−1(Π,x2)

)
.

The function ρ1(·), as a finite-valued coherent measure of risk on a Banach lattice, is

continuous (see [50, Prop. 3.1]). Since
∥∥JT (Π, ·) − J∞(Π, ·)

∥∥
w
→ 0, as T → ∞, then

the sequence
{
JT (Π, ·)

}
is also convergent in the space V. Therefore,

lim
T→∞

JT (Π,x1) = ρ1

(
c(x1, u1, x2) + lim

T→∞
JT−1(Π,x2)

)
.

This is identical with equation (4.14) with v(·) ≡ J∞(Π, ·). Equation (4.15) is obvious.

�
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4.2 Dynamic Programming Equations for Infinite Horizon Problems

We shall now focus on the optimal value function

J∗(x) = inf
Π∈ΠRM

J∞(Π,x), x ∈ X , (4.20)

where ΠRM is the set of all stationary Markov policies.

Theorem 4.2.1 Assume that the following conditions are satisfied:

(i) For every x ∈ X the transition kernel Q(x, ·) is continuous;

(ii) The conditional risk measures ρt, t = 1, . . . , T , are Markov and such that for every

x ∈ X the multifunction A(x, ·) is lower semicontinuous;

(iii) The function c(·, ·, ·) is w-bounded and lower semicontinuous with respect to the

second argument;

(iv) For every x ∈ X the set U(x) is compact;

(v) The model is uniformly risk-transient.

Then a function v : X → R, with ‖v‖w <∞, satisfies the equations

v(x) = inf
λ∈P(U(x))

σ
(
cx + v, x, λ ◦Qx

)
, x ∈ X̃, (4.21)

v(xA) = 0, (4.22)

if and only if v(x) = J∗(x) for all x ∈ X . Moreover, the minimizer π∗(x), x ∈ X , on

the right hand side of (4.21) exists and defines an optimal randomized Markov policy

Π∗ = {π∗, π∗, . . . }.

Proof Suppose J∗(·) is given by (4.20). The set of policies of the form {λ, π, π, . . . }

is larger than ΠRM, and thus

J∗(x1) ≥ inf
λ∈P(U(x1))

Π∈ΠRM

ρ1

(
c(x1, u1, x2) + J∞(Π,x2)

)
.

By the monotonicity of ρ1(·) we can move the infimum operator inside:

J∗(x1) ≥ inf
λ∈P(U(x1))

ρ1

(
c(x1, u1, x2) + inf

Π∈ΠRM
J∞(Π,x2)

)
= inf

λ∈P(U(x1))
ρ1

(
c(x1, u1, x2) + J∗(x2)

)
.
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As the model is uniformly risk-transient,
∥∥J∗∥∥

w
< ∞, and the right-hand side is well-

defined. Thus J∗(·) satisfies the inequality

J∗(x) ≥ inf
λ∈P(U(x))

σ
(
cx + J∗, x, λ ◦Qx

)
, x ∈ X . (4.23)

The mapping λ 7→ σ
(
cx + J∗, x, λ ◦Qx

)
is continuous for all x, and the set of λ ∈ P(U)

such that λ(U(x)) = 1 is weakly∗ compact. Therefore, there exists a minimizer π∗(x)

on the right hand side of (4.23). Hence,

J∗(x) ≥ σ
(
cx + J∗, x, π∗(x) ◦Qx

)
, x ∈ X .

Iterating this inequality we conclude that J∗(x1) is bounded below by

J∗(x1) ≥ ρ1,T

(
0, Z2, . . . , ZT + J∗(xT )

)
, (4.24)

with the sequence of controls and states resulting from the stationary Markov policy

Π∗ = {π∗, π∗, . . . }. Owing to Remark 4.1.6, we can pass to the limit on the right-hand

side and obtain the inequality:

J∗(x1) ≥ J∞(Π∗, x1), x1 ∈ X .

It follows that Π∗ is the optimal stationary Markov policy, and thus J∗(·) = J∞(Π∗, ·).

By Theorem 4.1.7, relation (4.23) is an equation, which proves (4.21)–(4.22).

To prove the converse implication, suppose v(·) satisfies (4.21)–(4.22) and ‖v‖w <

∞. By the continuity of the mapping λ 7→ σ
(
cx + v, x, λ ◦Qx

)
and weak∗ compactness

of the set of λ ∈ P(U) such that λ(U(x)) = 1, there exists a randomized control π̂(·),

which is a minimizer on the right hand side of (4.21). We obtain the equation

v(x) = σ
(
cx + v, x, π̂(x) ◦Qx

)
, x ∈ X .

By Theorem 4.1.7,

v(x) = J∞(Π̂, x) ≥ J∗(x), x ∈ X , (4.25)

where Π̂ = {π̂, π̂, . . . }. On the other hand, it follows from (4.21) that for the optimal

policy Π∗ = {π∗, π∗, . . . } we have

v(x) ≤ σ
(
cx + v, x, π∗(x) ◦Qx

)
, x ∈ X . (4.26)
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The risk transition mapping σ is nondecreasing with respect to the first argument.

Therefore, iterating inequality (4.26) we obtain an inequality corresponding to (4.24):

v(x1) ≤ ρ1,T

(
0, Z2, . . . , ZT + v(xT )

)
,

Passing to the limit with T →∞ and applying Remark 4.1.6, we conclude that

v(x) ≤ J∞(Π∗, x) = J∗(x), x ∈ X .

The last estimate together with (4.25) implies that v(·) ≡ J∗(·) and that both stationary

policies Π∗ and Π̂ are optimal. �

We can now address the case of general non-stationary policies. For a policy Λ =

{λ1, λ2, . . . } we define

J∞(Λ, x1) = lim inf
T→∞

JT (Λ, x1)

and

Ĵ(x1) = inf
Λ
J∞(Λ, x1).

Theorem 4.2.2 Assume that the conditions of Theorem 4.2.1 are satisfied, together

with the following assumption: there exists a constant C such that J∞(Λ, x) ≥ −Cw(x)

for all x ∈ X and for all policies Λ. Then a function v : X → R, with ‖v‖w < ∞,

satisfies the equations (4.21)–(4.22) if and only if v(x) = Ĵ(x) for all x ∈ X . Moreover,

the minimizer π∗(x), x ∈ X , on the right hand side of (4.21) exists and defines an

optimal policy Π∗ = {π∗, π∗, . . . }.

Proof As for stationary Markov policies Π we have
∥∥J∞(Π, ·)

∥∥
w
<∞, in view of

the additional assumption we have
∥∥Ĵ∥∥

w
<∞. Denote Λ1 = {λ2, λ3, . . . }. Due to the
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monotonicity and continuity of ρ1(·), we have the chain of relations

Ĵ(x1) = inf
λ1,λ2,...

lim inf
T→∞

ρ1

(
c(x1, u1, x2) + JT−1(Λ1, x2)

)
≥ inf

λ1,λ2,...
lim inf
T→∞

ρ1

(
c(x1, u1, x2) + inf

τ≥T−1
Jτ (Λ1, x2)

)
= inf

λ1,λ2,...
lim
T→∞

ρ1

(
c(x1, u1, x2) + inf

τ≥T−1
Jτ (Λ1, x2)

)
= inf

λ1,λ2,...
ρ1

(
c(x1, u1, x2) + lim inf

T→∞
JT−1(Λ1, x2)

)
= inf

λ1,λ2,...
ρ1

(
c(x1, u1, x2) + J∞(Λ1, x2)

)
,

Owing to the monotonicity of ρ1(·), we can move the minimization with respect to Λ1

inside the argument, to obtain

Ĵ(x1) ≥ inf
λ1

ρ1

(
c(x1, u1, x2) + inf

Λ1
J∞(Λ1, x2)

)
= inf

λ1

ρ1

(
c(x1, u1, x2) + Ĵ(x2)

)
.

Thus Ĵ(·) satisfies an inequality analogous to (4.23):

Ĵ(x) ≥ inf
λ∈P(U(x))

σ
(
cx + Ĵ , x, λ ◦Qx

)
, x ∈ X . (4.27)

We can now repeat the argument from the proof of Theorem 4.2.1. Denoting by λ̂ the

minimizer above, iterating inequality (4.27), and passing to the limit we conclude that

Ĵ(x) ≥ J∞(Λ̂, x), x ∈ X ,

where Λ̂ = {λ̂, λ̂, . . . } is a stationary Markov policy. Therefore, optimization with

respect to stationary Markov policies is sufficient, and the result follows from Theorem

4.2.1. �

Our additional technical assumption that J∞(Λ, x) ≥ −Cw(x) is obviously true for

nonnegative costs c(·, ·, ·). More generally, it is true in the case when the cost function

is w-bounded, the model is transient, and µ ∈ A(x, µ), for all x ∈ X and µ ∈ M.

Indeed, by virtue of Remark 2.2.5, the dynamic risk measure is bounded from below by

the expected value of the cost, which is finite in this case.

4.3 Randomized versus Deterministic Control

Observe that the mapping λ 7→ σ
(
cx + v, x, λ ◦Qx

)
, which plays the key role in the dy-

namic programming equation (4.21), is nonlinear, in general, as opposed to the expected
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value model, where

σ
(
cx + v, x, λ ◦Qx

)
=

∫
U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u) λ(du|x).

In the expected value case, it is sufficient to consider only the extreme points of the set

P
(
U(x)

)
, which are the measures assigning unit mass to one of the controls u ∈ U(x):

inf
λ∈P(U(x))

∫
U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u) λ(du|x)

= inf
u∈U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u).

In the risk averse case this simplification is not justified and a randomized policy may

be strictly better than any deterministic policy. Of course, we may always restrict the

set of possible decision rules to deterministic rules, and solve the corresponding version

of the dynamic equation (4.21):

v(x) = min
λ∈Pδ(U(x))

σ
(
cx + v, x, λ ◦Qx

)
, x ∈ X , (4.28)

where Pδ(U(x)) denotes the set of Dirac measures supported at U(x). For a fixed x ∈ X

and a Dirac measure λ = δu, the function cx + v = c(x, u) + v(y) is only a function

of the next state y ∈ X , and the measure λ ◦Qx is the measure Q(·|x, u) on the state

space X . We can, therefore, rewrite (4.28) in a simpler form

v(x) = min
u∈U(x)

{
c(x, u) + σ

(
v, x,Q(·|x, u)

)}
, x ∈ X , (4.29)

where (with a slight abuse of notation) σ : Lp(X ,B(X ), Px)×X×Lq(X ,B(X ), Px)→ R,

and σ(·, ·, ·) is a coherent measure of risk with respect to its first argument. In equation

(4.29) we also used the translation property of coherent measures of risk. This is

almost exactly the form of the dynamic programming equation which is derived in [48]

for discounted problems, but with the discount factor α = 1.

A question arises whether it is possible to identify cases in which deterministic

policies are sufficient. It turns out that we can prove this for Conditional Average

Value at Risk of Example 2.1.3:

σ(ϕ, x, µ) = inf
η∈R

{
η +

1

α(x)

∫
U(x)×X

(ϕ(u, y)− η)+ µ(du× dy)

}
. (4.30)
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Lemma 4.3.1 If the risk transition mapping has the form (4.30) then the dynamic

programming equations (4.21) have a solution in deterministic decision rules.

Proof Interchanging the integration and the infimum in the definition of Condi-

tional Average Value at Risk, we obtain a lower bound

σ(ϕ, x, λ ◦Qx) = inf
η∈R

{
η +

1

α(x)

∫
U(x)

∫
X

(ϕ(u, y)− η)+ Q(dy|x, u) λ(du|x)

}

= inf
η∈R

∫
U(x)

∫
X

(
η +

1

α(x)
(ϕ(u, y)− η)+

)
Q(dy|x, u) λ(du|x)

≥
∫

U(x)

inf
η∈R

∫
X

(
η +

1

α(x)
(ϕ(u, y)− η)+

)
Q(dy|x, u) λ(du|x).

The above inequality becomes an equation for every Dirac measure λ. On the right-

hand side of (4.21) we have

inf
λ∈P(U(x))

σ(cx + v, x, λ ◦Qx)

≥ inf
λ∈P(U(x))

∫
U(x)

inf
η∈R

∫
X

(
η +

1

α(x)

(
c(x, u, y) + v(y)− η

)
+

)
Q(dy|x, u) λ(du|x).

As the right hand side achieves its minimum over λ ∈ P(U(x)) at a Dirac measure

concentrated at an extreme point of U(x), and both sides coincide in this case, the

minimum of the left hand side is also achieved at such measure. Consequently, for

risk transition mappings of Conditional Average Value at Risk, deterministic Markov

policies are optimal. �
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Chapter 5

Value and Policy Iteration Methods for Infinite Horizon

Problem

In this chapter, we suggest two iterative methods to solve the dynamic programming

equations (4.21) and (4.22): risk-averse value iteration and risk-averse policy iteration.

The solution of (4.22) is obvious, therefore we mainly aim to solve (4.21) using these

methods. Throughout this chapter, we closely follow the notation and construction of

[48].

The suggested methods are similar to the classical value iteration [5] and policy

iteration methods [20] for the expected value case. However, the risk-averse policy

iteration method is more complicated than the corresponding risk-neutral one since

it requires solving a system of nonsmooth equations (reduces to a system of linear

equations in the risk-neutral case) in order to evaluate the current policy. To solve

these equations, we adopt and modify the specialized nonsmooth Newton method of

Ruszczyński [48] proposed for risk-averse infinite horizon discounted models.

In the following two sections, we explain the methods and prove their convergence.

We further show the global convergence of the Newton method.

Throughout this chapter, we assume that the infimum in equation (4.21) exists,

therefore, it can be replaced with minimum.

5.1 Risk-Averse Value Iteration Method

In order to find the unique solution v∗ of the dynamic programming equations (4.21)

and (4.22), we adopt and extend the classical value iteration method of Bellman [5]. A

similar method is also suggested in [48] for the dynamic programming equations corre-

sponding to risk-averse infinite horizon discounted models with deterministic policies.
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Let vk be a certain approximation of v∗, then from equations (4.21) and (4.22), we

obtain the following iterative method:

vk+1(x) = min
λ∈P(U(x))

σ
(
cx + vk, x, λ ◦Qx

)
, x ∈ X̃ , k = 0, 1, 2, . . . ,

vk+1(xA) = 0, k = 0, 1, 2, . . . .

We provide the steps of this method in Algorithm 1.

Algorithm 1 Risk-Averse Value Iteration

1: procedure ValueIteration(v0)
2: k ← 0
3: repeat
4: k ← k + 1
5: vk(x)← min

λ∈P(U(x))
σ
(
cx + vk−1, x, λ ◦Qx

)
, x ∈ X̃

6: vk(xA)← 0
7: until vk = vk−1

8: π∗(x)← argmin
λ∈P(U(x))

σ
(
cx + vk, x, λ ◦Qx

)
, x ∈ X̃

9: return vk, π∗

10: end procedure

The algorithm stops when the value functions do not change. However, in practice,

approximate satisfaction of this stopping condition is required.

We will now focus on the convergence of the value iteration method. Let us define

the operators D : V → V and Dπ : V → V as follows:

[Dv](x) = min
λ∈P(U(x))

σ(cx + v, x, λ ◦Qx), x ∈ X̃ , (5.1)

[Dπv](x) = σ(cx + v, x, πx ◦Qx), x ∈ X̃ , (5.2)

where πx ∈ P(U(x)). To prove the convergence, we first provide the following two

lemmas similar to Lemma 1 and Lemma 3 in [48].

Lemma 5.1.1 For any ϕ and ψ in V such that ϕ ≥ ψ, we have the relations

Dπϕ ≥ Dπψ and Dϕ ≥ Dψ.

Proof The proof is similar to the proof of Lemma 1 in [48], which we will provide

here for completeness. From the dual representation (2.7), we have

[Dπv](x) = max
µ∈A(x,πx◦Qx)

〈cx + v, µ〉. (5.3)
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Since the elements of sets A(x, πx ◦Qx) are just probability measures, Dπϕ ≥ Dπψ for

ϕ ≥ ψ.

Suppose that the minimum in (5.1) is attained at πϕ and πψ for ϕ and ψ, respectively.

Then, we get

Dϕ = Dπϕϕ ≥ Dπϕψ ≥ Dπψψ = Dψ.

�

Lemma 5.1.2 Suppose that the controlled Markov model is uniformly risk-transient

with c(·, ·, ·) and ϕ(·) being w-bounded

(i) if ϕ ≤ Dϕ, then ϕ ≤ J∗;

(ii) if ϕ ≥ Dϕ, then ϕ ≥ J∗.

Proof We will follow the proof of Lemma 3 in [48] with some adjustments.

(i) If ϕ ≤ Dϕ, then for any π such that π(x) ∈ P(U(x)), x ∈ X , we have

ϕ ≤ Dϕ ≤ Dπϕ. (5.4)

If we apply the operator Dπ to relation (5.4), then from the monotonicity property

stated in Lemma 5.1.1, we obtain the following relation

ϕ ≤ Dϕ ≤ Dπϕ ≤ DπDϕ ≤ [Dπ]2ϕ.

Proceeding in this way, we get

ϕ ≤ [Dπ]Tϕ, T = 1, 2, . . . .

Let the Markov policy Π = {π, π, . . .} result in the cost sequence Zt = c(xt−1, ut−1, xt),

t = 2, 3, . . .. From the equality (5.2), it is clear that the right hand side of the last

displayed inequality is equivalent to (3.2) with vT+1 = ϕ and Π = {π, π, . . . , π}. Then,

we get

ϕ(x1) ≤
[
[Dπ]Tϕ

]
(x1) = ρ1,T+1

(
0, Z2, . . . , ZT+1 + ϕ(xT+1)

)
.

Passing to the limit with T →∞ and using Remark 4.1.6, we conclude that

ϕ(x) ≤ J∞(Π, x), x ∈ X .
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Since above inequality is correct for any stationary Markov policy Π = {π, π, . . .}, then

ϕ ≤ J∗.

(ii) If ϕ ≥ Dϕ, then there exists a π such that π(x) ∈ P(U(x)), x ∈ X giving that

ϕ ≥ Dπϕ = Dϕ. (5.5)

If we apply the operator Dπ to the above relation, then from the monotonicity property

of the operator Dπ, we get

ϕ ≥ [Dπ]Tϕ, T = 1, 2, . . .

Similar to the proof of part (i)

ϕ(x1) ≥
[
[Dπ]Tϕ

]
(x1) = ρ1,T+1

(
0, Z2, . . . , ZT+1 + ϕ(xT+1)

)
. (5.6)

If we pass to the limit with T →∞ in (5.6), again from Remark 4.1.6, we obtain

ϕ(x) ≥ J∞(Π, x) ≥ J∗(x), x ∈ X .

�

Theorem 5.1.3 Suppose the conditions of Theorem 4.2.2 are satisfied:

(i) if c(x, u, y) ≥ 0 for all x, y ∈ X and u ∈ U(x), then for v0 = 0, the sequence

{vk} obtained by the value iteration method is nondecreasing and convergent to the

unique solution v∗ of (4.21) and (4.22).

(ii) if c(x, u, y) ≤ 0 for all x, y ∈ X and u ∈ U(x), then for v0 = 0, the sequence {vk}

is nonincreasing and converges to v∗.

Proof (i) Owing to the monotonicity property (B2) and the fact that c(x, u, y) ≥ 0,

v0 ≤ Dv0 for v0 = 0. From Lemma 5.1.1 and Lemma 5.1.2, we obtain

v∗ ≥ vk+1 ≥ vk, k = 0, 1, 2, . . . .

We have a nondecreasing and bounded sequence which is thus convergent to some limit

v∞. Since the operator D is continuous, letting k → ∞ in the equation vk+1 = Dvk,

we obtain v∞ = Dv∞. This implies that v∞ = v∗, the sequence {vk} converges to v∗.
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(ii) Similarly, if c(x, u, y) ≤ 0, then v0 ≥ Dv0 for v0 = 0 and the sequence {vk} is

nonincreasing:

vk ≥ vk+1 ≥ v∗, k = 0, 1, 2, . . . .

Using the same argument in the proof of (i), we deduce that v∞ = v∗. �

5.2 Risk-Averse Policy Iteration Method

As an alternative way for solving the dynamic programming equations (4.21) and (4.22),

we suggest the risk-averse policy iteration method which is analogous to the classical

policy iteration method of Howard [20]. A similar approach is proposed in [48] for dis-

counted infinite horizon problems with the feasible set being restricted to deterministic

policies.

The steps of our method are explained in Algorithm 2.

Algorithm 2 Risk-Averse Policy Iteration

1: procedure PolicyIteration(π0)
2: k ← 0
3: repeat
4: Policy Evaluation Step:
5: v(xA)← 0
6: Solve v(x) = σ(cx + v, x, πkx ◦Qx), x ∈ X̃ for v
7: vk ← v
8: Policy Improvement Step:
9: v̄(xA)← 0

10: v̄(x)← min
λ∈P(U(x))

σ
(
cx + vk, x, λ ◦Qx

)
, x ∈ X̃

11: for x ∈ X̃ do
12: if v̄(x) < vk(x) then
13: πk+1

x ← argmin
λ∈P(U(x))

σ
(
cx + vk, x, λ ◦Qx

)
14: else
15: πk+1

x ← πkx
16: end if
17: end for
18: k ← k + 1
19: until v̄ = vk−1

20: return v̄, πk

21: end procedure

For a stationary policy Πk = {πk, πk, . . .}, the policy evaluation step solves the
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following system of equations to find J∞(Πk, x) = vk(x), x ∈ X :

v(x) = σ(cx + v, x, πkx ◦Qx), x ∈ X̃ , (5.7)

v(xA) = 0. (5.8)

Then the policy improvement step finds a new decision rule πk+1(.) if it provides an

improvement in the value function:

πk+1
x ← argmin

λ∈P(U(x))
σ
(
cx + vk, x, λ ◦Qx

)
, x ∈ X̃ , (5.9)

and these steps are repeated until the value function does not change. In practice, an

approximate satisfaction of the stopping condition is required.

Let the operators D and Dπ be defined as (5.1) and (5.2), respectively. Then (5.7)

can be equivalently written as

vk = Dπkv
k. (5.10)

Similarly, (5.9) is equivalent to

Dπk+1vk = Dvk. (5.11)

Theorem 5.2.1 Suppose the conditions of Theorem 4.2.2 are satisfied. Then for any

π0 such that π0(x) ∈ P(U(x)), x ∈ X , the sequence {vk} obtained by the policy iteration

method is nonincreasing and convergent to the unique solution v∗ of (4.21) and (4.22).

Proof We will follow the proof of Theorem 6 in [48] with some adjustments due

to allowing randomized policies and not using a discount factor. Using the equations

(5.10) and (5.11), we obtain

Dπk+1vk = Dvk ≤ Dπkv
k = vk.

Applying the operator Dπk+1 to above relation, from the monotonicity property given

in Lemma 5.1.1, we deduce that

[Dπk+1 ]T vk ≤ Dπk+1vk = Dvk ≤ vk, T = 1, 2, . . . . (5.12)

Relation (5.12) can be equivalently written as

ρ1,T+1

(
0, Z2, . . . , ZT+1 + vk(xT+1)

)
≤ [Dvk](x1) ≤ vk(x1),
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where Zt = c(xt−1, ut−1, xt), t = 2, 3, . . . , T + 1 is the cost sequence resulting from the

policy Πk+1 = {πk+1, πk+1, . . . , πk+1}. Passing to the limit with T →∞, from Remark

4.1.6 and Theorem 4.1.7, we conclude that the sequence {vk} is nonincreasing:

vk+1(x) = J∞(Πk+1, x) ≤ [Dvk](x) ≤ vk(x), x ∈ X̃ , k = 0, 1, 2, . . . .

Since v∗(x) ≤ J∞(Πk+1, x), it is trivial that vk ≥ v∗. Let ϕk = Dπk+1vk, then the

relation (5.12) states that

ϕk = Dvk ≤ vk. (5.13)

As the operator D is continuous, passing to the limit with k →∞ in the relation (5.13),

we obtain

ϕ∞ = Dv∞ ≤ v∞. (5.14)

Following the argument stated above, we deduce that

vk+1 = lim
T→∞

[Dπk+1 ]T vk = lim
T→∞

[Dπk+1 ]T−1ϕk ≤ ϕk,

where the right hand side inequality comes from relation (5.12). Passing to the limit

with k → ∞, we get v∞ ≤ ϕ∞. Combining this with relation (5.14), we state that

ϕ∞ = v∞, the algorithm converges to a unique limit function. Furthermore, replacing

ϕ∞ with v∞ in (5.14), we get v∞ = v∗. �

5.2.1 Specialized Nonsmooth Newton Method

In the evaluation step of the policy iteration method, we have to solve a system of

nonlinear equations (5.7), which is nonsmooth for all risk mappings, except for the

expected value mapping. In order to solve this system of equations, we adopt the

specialized nonsmooth Newton method of Ruszczyński [48] which uses the idea of the

nonsmooth Newton method with linear auxiliary problems (see [27, Section 10.1] and

[29] for details).

To find the unique solution of (5.7) with v(xA) = 0, we will solve iteratively an

appropriate linear approximation of it. Using the dual representation (2.7), (5.7) can

be equivalently written as

v(x) = max
µ(x)∈A(x,πkx◦Qx)

〈cx + v, µ(x)〉, x ∈ X̃ . (5.15)
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Let vl be an approximate solution of (5.15) at iteration l of the nonsmooth Newton

method. Then, we find a kernel µl by solving

µl(x) ∈ argmax
µ(x)∈A(x,πkx◦Qx)

〈cx + vl, µ(x)〉, x ∈ X . (5.16)

The maximum in equation (5.16) is attained because the set A is bounded, convex,

and closed, and the function being maximized is linear. If plug in µl in (5.15), then we

obtain the following system of linear equations

v(x) = 〈cx + v, µl(x)〉, x ∈ X̃ , (5.17)

which suggests a computational recipe for solving (5.7) (see Algorithm 3).

Algorithm 3 Specialized Nonsmooth Newton Method

1: procedure NonsmoothNewtonMethod(v0)
2: l← 0
3: repeat
4: µl+1(x)← argmax

µ(x)∈A(x,πkx◦Qx)

〈cx + vl, µ(x)〉, x ∈ X

5: v(xA)← 0
6: Solve v(x) = 〈cx + v, µl(x)〉, x ∈ X̃ for v
7: vl+1 ← v
8: l← l + 1
9: until vl = vl−1

10: return vl
11: end procedure

We will show that the sequence {vl}, l = 1, 2, . . . obtained by this method converges

to the unique solution of (5.7). But, first of all, we need to provide some technical

results.

Let us define the operator Rl as follows:

[Rlv](x) = 〈cx + v, µl(x)〉.

It is clear that the equation (5.17) can be equivalently written as v(x) = [Rlv](x). We

will also use El to denote the expected value with respect to the substochastic kernel

µl.

Lemma 5.2.2 Equation (5.17) has a unique solution vl+1(x1) = El[
∑∞

t=1 cxt ]. And,

for any v0, [Rl]
T v0 converges to vl+1 as T →∞.
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Proof Following the proofs of Lemma 9.4.8 and Proposition 9.5.11 in [19], we will

show that (5.17) is satisfied if and only if v(x1) = El[
∑∞

t=1 cxt ]. Iterating (5.17), we

obtain

v(x1) = [RT
l v](x1) = El

[ T∑
t=1

cxt

]
+El[v(xT+1)]. (5.18)

From (2.13), we deduce that

El[v(xT+1)] =

∫
X̃
v(y)MT (dy|x1), (5.19)

where M(x) = Lµl(x). Definition 4.1.2 together with the norm definition of the stochas-

tic multikernel give that
∞∑
j=1

‖(M)j‖w ≤ K, (5.20)

which, trivially, implies that (M)j → 0 as j →∞.

If we pass to the limit with T →∞ in (5.18), then it follows from (5.19) and (5.20)

that El[v(xT+1)] → 0. Therefore, if (5.17) is satisfied, then v(x1) = El[
∑∞

t=1 cxt ]. To

show the other side, we can easily check that v(x1) = El[
∑∞

t=1 cxt ] satisfies the equation

(5.17), which can also be written as:

v(x1) = El[cx1 ] +El[v(x2)].

Above equation is equivalent to

v(x1) = El[cx1 ] +El

[
El

[ ∞∑
t=2

cxt |x1, u1, x2

]]
(5.21)

= El[cx1 ] +El

[ ∞∑
t=2

cxt

]
= El

[ ∞∑
t=1

cxt

]
.

Additionally, it follows from (5.18) that [Rl]
T v0 → vl+1 as T →∞. �

Theorem 5.2.3 For any initial v0, the sequence {vl} obtained by the Newton method

is nondecreasing and convergent to the unique solution v̂ of (5.7).

Proof The proof follows in a way similar to the proof of Theorem 7 in [48]. By

definition, we have

Rlv ≤ Dπkv. (5.22)
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The operator Rl is monotone owing to the fact that µl(x), x ∈ X are probability

measures. Therefore, if we apply the operator Rl to inequality (5.22), we obtain

[Rl]
T v ≤ [Dπk ]T v, T = 1, 2, . . . . (5.23)

Passing to the limit with T →∞, from Lemma (5.2.2), we deduce that the left hand

side of (5.23) converges to vl+1. Moreover, the right hand side converges to the unique

solution v̄ of (5.15). Therefore, we get that vl+1 ≤ v̄, the sequence {vl+1} is bounded

from above. We will show that it is also nondecreasing.

For every x, we have

vl(x) = 〈cx + vl, µl−1(x)〉 ≤ max
µ(x)∈A(x,πkx◦Qx)

〈cx + vl, µ(x)〉 = [Dπkvl](x) = [Rlvl](x).

If we apply Rl to above relation, owing to its monotonicity property, we obtain

vl ≤ Dπkvl ≤ [Rl]
T vl, T = 1, 2, . . . . (5.24)

Passing to the limit with T →∞, the right hand side converges to vl+1. Therefore, we

get

vl ≤ Dπkvl ≤ vl+1. (5.25)

The sequence {vl} is nondecreasing. Since it is also bounded from above, it has a limit.

Let v̂ = lim
l→∞

vl. If we pass to the limit with l →∞ in (5.25), we obtain v̂ = Dπk v̂, v̂ is

the unique solution of (5.7). �
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Chapter 6

Mathematical Programming Approach for Infinite

Horizon Problem

If the state and control spaces are finite, then, in addition to the iterative methods

described in Chapter 5, mathematical programming approach can also be used to solve

infinite horizon Markov decision problems. These models will be linear for the expected

value case (for details, see [11], [24], [25], [32], [45], and the references therein). However,

since the risk transition mapping
(
v, πx

)
→ σ(cx + v, x, πx ◦Qx) is nonlinear in general,

we expect to have nonlinear models for the risk-averse problems.

Throughout this chapter, we will assume that both the state and control spaces

are finite. In section 6.1, we will derive the mathematical formulation for the problem

with randomized policies, whereas in section 6.2, we will assume that the feasible set is

restricted to deterministic policies.

6.1 Randomized Policies

From the dynamic programming equation (4.21), we obtain that

v(x) ≤ σ
(
cx + v, x, πx ◦Qx

)
, x ∈ X̃, (6.1)

for any randomized decision rule π. Then, the unique solution v(·) = J∗(·) of the

equations (4.21) and (4.22) can be found by solving the following optimization problem:

(P1) max 〈1, v〉 (6.2)

s.t. v(x) ≤ σ
(
cx + v, x, πx ◦Qx

)
, x ∈ X̃, (6.3)

v(xA) = 0, (6.4)

〈1, πx〉 = 1, x ∈ X , (6.5)

πx ≥ 0, x ∈ X . (6.6)
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Here, 1 is a column vector with all entries being equal to 1, v and πx, x ∈ X are the

decision vectors. Throughout this chapter, we will assume that 〈·, ·〉 denotes the usual

scalar product. It follows from the dual representation (2.7) that the constraint (6.3)

can be replaced by the following inequality:

v(x) ≤ max
µ(x)∈A(x,πx◦Qx)

〈cx + v, µ(x)〉, x ∈ X̃, (6.7)

with A(x, πx ◦Qx) being a convex set for every x ∈ X and π(x) ∈ P(U(x)). Note that,

if µ∗(x) is the maximizer of the right hand side of (6.7), then we have

v(x) ≤ 〈cx + v, µ∗(x)〉, x ∈ X̃. (6.8)

Using this fact, Problem (P1) can be equivalently formulated as below:

(P2) max 〈1, v〉 (6.9)

s.t. v(x) ≤ 〈cx + v, µ(x)〉, x ∈ X̃, (6.10)

v(xA) = 0, (6.11)

〈1, πx〉 = 1, x ∈ X , (6.12)

πx ≥ 0, x ∈ X , (6.13)

µ(x) ∈ A(x, πx ◦Qx), x ∈ X̃. (6.14)

Constraint (6.10) is nonconvex. Furthermore, if πx is not fixed, then the setA(x, πx◦Qx)

will be nonconvex (see Example 6.1.1) for any x ∈ X , in general. Therefore, Problem

(P2) is nonconvex.

Example 6.1.1 Consider the first-order mean-semideviation risk measure of Examples

2.1.2 and 2.2.3. Using (2.9), for finite state and control spaces, we get

A(x, πx ◦Qx) =
{
g ∈M : g(x, u, y)

= πx(u)Q(x, u, y)
(
1 + h(x, u, y)−

∑
z

h(x, u, z)πx(u)Q(x, u, z)
)
,

0 ≤ h(x, u, y) ≤ κ(x), y ∈ X , u ∈ U(x)
}
. (6.15)

Let π1
x and h1(x, ., .) define µ1(x) such that µ1(x) ∈ A(x, π1

x ◦ Qx). Similarly, π2
x and

h2(x, ., .) give µ2(x) ∈ A(x, π2
x◦Qx). Taking a convex combination of (µ1(x), π1

x, h
1(x, ., .))
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and (µ2(x), π2
x, h

2(x, ., .)) with θ > 0, we obtain

(µ(x), πx, h(x, ., .)) = θ(µ1(x), π1
x, h

1(x, ., .)) + (1− θ)(µ2(x), π2
x, h

2(x, ., .)).

It can be easily checked that

µ(x, u, y) 6= πx(u)Q(x, u, y)
(
1 + h(x, u, y)−

∑
z

h(x, u, z)πx(u)Q(x, u, z)
)
.

This gives that µ(x) /∈ A(x, πx ◦ Qx), therefore, the set A(x, πx ◦ Qx) is not convex if

πx is not fixed.

6.2 Deterministic Policies

For deterministic policies, the dynamic programming equation (4.21) gets the form

v(x) = min
u∈U(x)

σ
(
cx + v, x,Q(x, u)

)
, x ∈ X̃. (6.16)

Following the arguments of previous section, we obtain the mathematical formulation

(P3).

(P3) max 〈1, v〉 (6.17)

s.t. v(x) ≤ 〈cx + v, µ(x, u)〉, x ∈ X̃, u ∈ U(x), (6.18)

v(xA) = 0, (6.19)

µ(x, u) ∈ A(x,Q(x, u)), x ∈ X̃, u ∈ U(x), (6.20)

with the set A(x,Q(x, u)) being convex for every x ∈ X̃ and u ∈ U(x). We will show

that for the first-order mean-semideviation (Example 2.1.2 and 2.2.3) and conditional

average value at risk (Example 2.1.3 and 2.2.4) measures, constraint (6.20) will be

linear.

Example 6.2.1 For the first-order mean-semideviation risk measure, it follows from

(2.9) that constraint (6.20) has the following linear form:

µ(x, u, y) = Q(x, u, y)(1 + h(x, u, y)− 〈h(x, u), Q(x, u)〉), x ∈ X̃, u ∈ U(x), y ∈ X ,

0 ≤ h(x, u, y) ≤ κ(x), x ∈ X̃, u ∈ U(x), y ∈ X ,

〈1, µ(x, u)〉 = 1, x ∈ X̃, u ∈ U(x).
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Example 6.2.2 For the conditional average value at risk measure, using (2.10), we

obtain the following linear form for (6.20):

0 ≤ µ(x, u) ≤ Q(x, u)

α(x)
, x ∈ X̃, u ∈ U(x),

〈1, µ(x, u)〉 = 1, x ∈ X̃, u ∈ U(x).
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Chapter 7

Illustrative Examples

In the following three sections, we illustrate our models and results on three simple

examples. We first consider the classical asset selling problem originating from Karlin

[26]. In this example, we restrict the feasible policies to be deterministic and derive

the structure of the optimal policy. The second example is a simple organ transplant

problem inspired from Alagoz et al. [1]. We show that, for a risk-averse patient, a

randomized policy may be better than a deterministic policy. Finally, we solve a credit

card example with pure policies, which is a simplified version of the problem studied

by So and Thomas [54].

7.1 Asset Selling Problem

In this section, we consider an asset selling problem where random offers Yt arrive in time

periods t = 1, 2, . . . . We assume that Yt are independent and identically distributed,

integrable random variables coming from a discrete distribution. In each time period,

we select one of the decisions “sell” corresponding to accepting the highest offer received

so far and quitting the process or “wait” corresponding to waiting in hope of a better

offer. A positive observation cost c is incurred in each period. Therefore, if the process

stops at a random time τ , then the total cost incurred will be Z = cτ −max0≤j≤τ Yj .

This problem is a simple and classical example of an optimal stopping problem (see,

e.g., Çinlar [10], Dynkin and Yushkevich [13, 14], and Puterman [45]).

Sticking to our notation, we introduce the state space X = {xA}∪{0, 1, 2, . . . }, where

xA is the absorbing state reached after the decision “sell,” and the other states represent

the highest offer received so far. The control space is U = {0, 1}, with 0 representing
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“wait” and 1 representing “sell.” The states evolve according to the equation

xt+1 =


max(xt, Yt+1) if ut = 0,

xA if ut = 1.

The above formula also defines the transition kernel Q:

Q(xt+1 ≤ a|xt, ut = 0) =


0 if a < xt,

P{Yt+1 ≤ a} if a ≥ xt.

Here P denotes the probability and a is some constant. If ut = 1, then the transition

will be to the absorbing state xA with probability one. And, the cost is

c(xt, ut) =


c if ut = 0,

−xt if ut = 1.

It is known that, the optimal solution of the expected value version of this problem is

obtained by solving the following equation:

c = E
[
(Y − x)+

]
. (7.1)

Let x̂ be the solution of (7.1), then the optimal policy is to accept the first offer that

is greater than or equal to x̂.

Using our theory, we will solve the risk-averse version of the problem. We will restrict

our consideration to deterministic policies and derive the structure of the optimal policy.

For this example, equation (4.29) takes the form:

v(x) = min
{
− x, c+ σ

(
v, x,Qx

)}
, x ∈ X̃ , (7.2)

where σ is a stationary risk transition mapping.

We assume that σ is law invariant (this concept is defined in Definition 2.1.4).

Notice that, the distribution of v with respect to the measure Qx is the same as the

distribution of v
(

max(x, Y )
)

under the measure PY of Y . Then from Definition 2.1.4,

we obtain

σ
(
v, x,Qx

)
= σ

(
v
(

max(x, Y )
)
, x, PY

)
.
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Suppose that the risk transition mapping σ does not depend on its second argument.

This means that our attitude to risk does not depend on the current state x. Then,

using the dual representation (2.7), we may rewrite the last equation as follows:

σ
(
v, x,Qx

)
= max

µ∈A
Eµ

[
v
(

max(x, Y )
)]
. (7.3)

Since σ is not dependent on x, the closed convex set of probability measures A is fixed

for any x ∈ X . From (7.3), equation (7.2) takes on the form

v(x) = min
{
− x, c+ max

µ∈A
Eµ

[
v
(

max(x, Y )
)]}

, x ∈ X̃ . (7.4)

Observe that v(x) ≤ −x and thus v
(

max(x, Y )
)
≤ −max(x, Y ). The last displayed

inequality combined with (7.4) implies that

v(x) ≤ min
{
−x, c+max

µ∈A
Eµ

[
−max(x, Y )

]}
= min

{
−x, c−min

µ∈A
Eµ

[
max(x, Y )

]}
, x ∈ X̃ .

If at state x, the optimal policy is to accept the offer x, then v(x) = −x. This gives

the following relation:

−x ≤ c+ max
µ∈A

Eµ

[
v
(
−max(x, Y )

)]
= c−min

µ∈A
Eµ

[
max(x, Y )

]
.

It is clear that max(x, Y ) = x+ (Y − x)+. After elementary simplifications, we obtain

min
µ∈A

Eµ

[
(Y − x)+

]
≤ c. (7.5)

This suggests the solution: accept any offer that is greater or equal to the solution x∗

of the equation

min
µ∈A

Eµ

[
(Y − x∗)+

]
= c; (7.6)

if x < x∗, then wait.

The corresponding value function will be:

v∗(x) = −max(x, x∗). (7.7)

Equation (7.4) can be verified by direct substitution. For x ≤ x∗, if we substitute (7.7)

in (7.4), we obtain

min

{
− x, c+ max

µ∈A
Eµ

[
−max

(
max(x, Y ), x∗

)]}
= min

{
− x, c−min

µ∈A
Eµ

[
(Y − x∗)+

]
− x∗

}
= −max(x, x∗) = −x∗.
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The second equality follows from equation (7.6). For x > x∗, in a similar way, using

the inequality (7.5), we get

min

{
− x, c+ max

µ∈A
Eµ

[
−max

(
max(x, Y ), x∗

)]}
= min

{
− x, c−min

µ∈A
Eµ

[
(Y − x)+

]
− x
}

= −x = −max(x, x∗).

Observe that the solution (7.6) of the risk-averse problem is closely related to the

solution (7.1) of the expected value problem. The only difference is that we have to

account for the least favorable distribution of the offers. Therefore, if PY ∈ A, then the

critical level x∗ ≤ x̂.

7.2 Organ Transplant Problem

In this section, we illustrate our theory on a risk-averse and simplified version of the

organ transplant problem discussed in Alagoz et. al. [1]. Similar to Alagoz et. al.

[1], we assume that the organ is transferred from a living-donor. However, we do not

consider different stages of sickness and combine them in one state denoted by S.

We consider the discrete-time, absorbing Markov chain depicted in Figure 7.1. State

S is the initial state and represents a patient in need of an organ transplant. State L

represents life after a successful transplant. State D is an absorbing state representing

death.

In state S, two controls (decisions) are possible for the patient: “Wait” (denoted by

W) or “Transplant” (denoted by T). Under the control W, the transitions from state S

are either to state D or back to state S. T results in a transition to states L or D. The

probability of death is lower for W than for T, but successful transplant may result in

a longer life. In other two states only one (formal) control is possible: “Continue”.

The rewards collected at each time step are months of life. In state S a reward equal

to 1 is collected, if the control is W; otherwise, the immediate reward is 0. In state L

the reward r(L) is collected, representing the sure equivalent of the random length of

life after transplant. In state D, the reward is zero.

Generally, in a cost minimization problem, the value of a dynamic measure of risk
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Figure 7.1: The organ transplant model.

(1.5) is the “fair” sure charge one would be willing to incur, instead of a random

sequence of costs. In our case, which will be a maximization problem, we shall work

with the negatives of the months of life as our “costs.” The value of the measure of

risk, therefore, can be interpreted as the negative of a sure life length which we consider

to be equivalent to the random life duration faced by the patient.

Let λ = (λW , λT) be the randomized policy in the state S and let Λ =
{
λ ∈ R2 :

λW + λT = 1, λ ≥ 0
}

. We use the first order mean–semideviation risk mapping of

Example 2.1.2. For κ = 1, the dynamic programming equation (4.21) at S takes on the

form

v(S) = min
λ∈Λ

{
λW

[
qS,S(W)

(
v(S)− 1

)
+ qS,D(W)

(
v(D)− 1

)]︸ ︷︷ ︸
expected value ψ . . .

+ λT

[
qS,L(T)v(L) + qS,D(T)v(D)

]︸ ︷︷ ︸
. . . expected value ψ

+ κ
(
λW

[
qS,S(W)

(
v(S)− 1− ψ

)
+

+ qS,D(W)
(
v(D)− 1− ψ

)
+

]︸ ︷︷ ︸
semideviation . . .

+ λT

[
qS,L(T)

(
v(L)− ψ

)
+

+ qS,D(T)
(
v(D)− ψ

)
+

])︸ ︷︷ ︸
. . . semideviation

}
.
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In the semideviation parts, we wrote ψ for the expectation of the value function in

the next state, which is given by the first underbraced expression, and which is also

dependent on λ. Of course, the above expression can be simplified, by using the fact

that v(L) < v(S) < v(D) = 0, but we prefer to leave it in the above form to illustrate

the way it has been developed.

7.2.1 The Survival Model

We will describe the way the deterministic equivalent length of life r(L) at state L

is calculated. The state L is in fact an aggregation of n states in a survival model

representing months of life after successful transplant, as depicted in Figure 7.2.

p1 p2 p3 pn 

1-p1 1-p2 1-p3 1-pn-1 

 

 

 

 

 

 

 

 

 

 

1 2 3 n .   .   .         

dead 

Figure 7.2: The survival model.

In state i = 1, . . . , n, the patient dies with probability pi and survives with proba-

bility 1 − pi. The probability pn = 1. The reward collected at each state i = 1, . . . , n

is equal to 1. In order to follow our notation, we define the cost c(·) = −r(·). For

illustration, we apply the mean–semideviation model of Example 2.1.2 with κ = 1.

The risk transition mapping has the form:

σ(ϕ, i, ν) = Eν [ϕ]︸ ︷︷ ︸
expected value

+κEν
[(
ϕ−Eν [ϕ]

)
+

]︸ ︷︷ ︸
semideviation

. (7.8)

Owing to the monotonicity property (B2), σ(ϕ, i, ν) ≤ 0, whenever ϕ(·) ≤ 0.

In (7.8), the measure ν is the transition kernel at the current state i, and the function
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ϕ(·) is the cost incurred at the current state and control plus the value function at the

next state. At each state i = 1, . . . , n − 1 two transitions are possible: to D with

probability pi and ϕ = −1, and to i+1 with probability 1−pi and ϕ = −1+vi+1(i+1).

At state i = n the transition to D occurs with probability 1, and ϕ = −1. Therefore,

vn(n) = −1.

The survival problem is a finite horizon problem, and thus we apply equation (3.3).

As there is no control to choose, the minimization operation is eliminated. The equation

has the form:

vi(i) = σ(ϕ, i,Qi), i = 1, . . . , n− 1,

with ϕ and Qi as explained above. By induction, vi(i) ≤ 0, for i = n− 1, n− 2, . . . , 1.

Let us calculate the mean and semideviation components of (7.8) at states i =

1, . . . , n− 1:

EQi [ϕ] = −pi + (1− pi)
(
− 1 + vi+1(i+ 1)) = −1 + (1− pi)vi+1(i+ 1),

EQi

[(
ϕ−EQi [ϕ]

)
+

]
= EQi

[(
ϕ+ 1− (1− pi)vi+1(i+ 1)

)
+

]
= pi

(
− 1 + 1− (1− pi)vi+1(i+ 1)

)
+

+ (1− pi)
(
− 1 + vi+1(i+ 1) + 1− (1− pi)vi+1(i+ 1)

)
+

= pi
(
− (1− pi)vi+1(i+ 1)

)
+

+ (1− pi)
(
pivi+1(i+ 1)

)
+

= −pi(1− pi)vi+1(i+ 1).

In the last equation we used the fact that vi+1(i + 1) ≤ 0. For i = 1, . . . , n − 1, the

dynamic programming equations (3.3) take on the form:

vi(i) = −1 + (1− pi)vi+1(i+ 1)︸ ︷︷ ︸
expected value

−κ pi(1− pi)vi+1(i+ 1)︸ ︷︷ ︸
semideviation

, i = n− 1, n− 2, . . . , 1.

The value v(1) is the negative of the deterministic equivalent length of life r(L). For

κ = 0 the above formulas give the negative of the expected length of life with new

organ.
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7.2.2 Numerical Illustration

In our calculations we used the transition data provided in Table 7.1. They have

been chosen for purely illustrative purposes and do not correspond to any real medical

situation.

Control S L D

W 0.99882 0 0.00118
T 0 0.90782 0.09218

Table 7.1: Transition probabilities from state S.

For the survival model, we used the distribution function, F (x), of lifetime of the

American population from Jasiulewicz [23]. It is a mixture of Weibull, lognormal, and

Gompertz distributions:

F (x) = w1

(
1−exp

(
−
(x
δ

)β))
+w2Φ

( log x−m
σ

)
+w3

(
1−exp

(
− b
α

(eαx−1)
))
, x ≥ 0.

The values of the parameters and weights, provided by Jasiulewicz [23], are given in

Table 7.2.

Distribution Parameters Weights

Weibull δ = 0.297, β = 0.225 w1 = 0.0170
Lognormal m = 3.11, σ = 0.218 w2 = 0.0092
Gompertz b = 0.0000812, α = 0.0844 w3 = 0.9737

Table 7.2: Values of parameters for F (x).

Then, we calculated the probability of dying at age k (in months) as follows:

pk =
F (k/12 + 1/24)− F (k/12− 1/24)

1− F (k/12− 1/24)
, k = 1, 2, . . . .

The maximum lifetime of the patient was taken to be 1200 months, and that the patient

after transplant has survival probabilities starting from k = 300. Therefore, n = 900 in

the survival model used for calculating r(L).

We compared two optimal control models for this problem. The first one was the

expected value model (κ = 0), which corresponds to the expected reward r(L) = 610.46.
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Standard dynamic programming equations were solved, and the optimal decision in

state S turned out to be W.

The second model was the risk-averse model using the mean–semideviation risk

transition mapping with κ = 1. This changed the reward at state L to 515.35. We

considered two versions of this model. In the first version, we restricted the feasible

policies to be deterministic. In this case, the optimal action in state S was T. In the

second version, we allowed randomized policies, as in our general model. Then the

optimal policy in state S was W with probability λW = 0.9873 and T with probability

λT = 0.0127.

How can we interpret these results? The optimal randomized policy results in a

random waiting time before transplanting the organ. This is due to the fact that

immediate transplant entails a significant probability of death, and a less risky policy

is to “dilute” this probability in a long waiting time. Such a result is not possible in an

expected value model, no matter what the data are. Because an optimal policy in an

expected value model is always a deterministic policy: either transplant immediately

or never.

7.3 Credit Card Problem

In this section, we work on a simplified and modified version of the credit card example

discussed by So and Thomas [54]. We use a discrete-time, absorbing Markov decision

chain illustrated in Figure 7.3.

The states of the system are denoted by (i, j), i = 1, 2, 3; j = l,m, h, where i

represents the type of the customer and j is the credit limit given. We consider three

customer types with “1” representing a customer who does not pay his/her debt in a

timely manner, type “3” representing a responsible customer, and type “2” a moderate

customer. There are three credit limits: “low” (denoted by l), “medium” (denoted by

m), and “high” (denoted by h). The state space includes two additional states “account

closure” (denoted by C) and “default” (denoted by D), both of which are absorbing

states.
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Figure 7.3: The credit card model.

Following So and Thomas [54], we do not consider decreasing the credit limit for any

of the states. Two controls are possible for states (i, l), i = 1, 2, 3, either to keep the

credit limit unchanged (represented by l) or increase it to medium limit (represented

by m). Similarly, for states (i,m), i = 1, 2, 3, the admissible controls are m and h.

The states (i,h), i = 1, 2, 3 have one possible control, to keep the credit limit at high

level (represented by h). There is only one formal control “Continue” for the absorbing

states C and D.

The decision to keep the credit limit unchanged results in a transition to the same

state, or to a state with a different customer type but same credit limit, or one of the

absorbing states C and D. For example, under the control m, the set of all possible

transitions from state (2,m) is {(1,m), (2,m), (3,m),C,D}. If it is decided to increase
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the credit limit, then with probability one, a transition is made to a new state with

the same customer type as the current state but with new credit limit. In other words,

if the credit limit is increased to h at state (2,m), then the transition will be to state

(2,h) with probability one.

The rewards are the profits obtained at each time step. We consider two different

profit values, the first one denoted by r(x, u), x ∈ X , u ∈ U(x) is the profit obtained

at state x under the control u, and the second one, d(x, y), x ∈ X , y ∈ X is the profit

collected under the transition from state x to state y. We assume that r(x, u) = 0, x ∈

{C,D}, u ∈ U(x) and d(C,C) = 0, d(D,D) = 0.

The objective is to maximize the one-time profit one would be willing to collect at

time zero instead of a random sequence of future profits. However, in order to stick to

our notation, we will work with the negative of profit values represented by measures of

risk, therefore, a minimization problem will be solved. We assume that feasible policies

are limited to deterministic ones and we use the first-order mean–semideviation (see

equation (2.4)) as the risk measure. Then, the dynamic programming equation (4.21)

takes on the form

v(x) = min
u∈U(x)

{∑
y∈X

(
v(y)− r(x, u)− d(x, y)

)
qx,y(u)︸ ︷︷ ︸

expected value ψ

+ κ
∑
z∈X

(
v(z)− r(x, u)− d(x, z)− ψ

)
+
qx,z(u)︸ ︷︷ ︸

semideviation

}
, x ∈ X̃, (7.9)

which can also equivalently be written as follows using the fact that
∑
y∈X

r(x, u)qx,y(u) =

r(x, u):

v(x) = min
u∈U(x)

{
− r(x, u) +

∑
y∈X

(
v(y)− d(x, y)

)
qx,y(u)︸ ︷︷ ︸

ψ

+ κ
∑
z∈X

(
v(z)− d(x, z)− ψ

)
+
qx,z(u)

}
, x ∈ X̃. (7.10)

We use both value and policy iteration methods to solve the dynamic programming

equation (7.10) with v(C) = 0 and v(D) = 0. As explained in section 5.1, value iteration

is just the iteration of equation (7.10).
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To find the unique solution of the nonsmooth equation system appearing in the

policy evaluation step of the policy iteration algorithm (see Algorithm 2), we apply

the Newton’s method of section 5.2.1. In order to calculate µl+1 at iteration l + 1 of

the Newton’s method (see step 4 of Algorithm 3), we solve the following optimization

problem for all x ∈ X :

max
µ,h

∑
y∈X

(
vl(y)− r

(
x, πk(x)

)
− d(x, y)

)
µ(x, y)

s.t. µ(x, y) = qx,y
(
πk(x)

)(
1 + h(x, y)−

∑
z∈X

h(x, z)qx,z
(
πk(x)

))
, y ∈ X ,∑

y∈X
µ(x, y) = 1,

h(x, y) ≤ κ, y ∈ X ,

µ(x, y), h(x, y) ≥ 0, y ∈ X ,

where πk(x) ∈ U(x), x ∈ X is the decision rule at iteration k of the policy iteration

algorithm. Then, vl+1 is calculated by solving the following system of linear equations

v(x) =
∑
y∈X

(
v(y)− r

(
x, πk(x)

)
− d(x, y)

)
µ(x, y), x ∈ X̃,

v(D) = 0,

v(C) = 0.

7.3.1 Numerical Illustration

For numerical illustration, we used the transition probabilities given in Table 7.3. State

and control dependent profit values r(x, u), x ∈ X , u ∈ U(x) are provided in Table 7.4

and the transition profits d(x, y), x ∈ X , u ∈ U(x) are given in Table 7.5. All data

used in this example are not real and do not correspond to a real case, but they are

determined on the basis of partial information provided by So and Thomas [54].

We solved two different problems for this example. In the first problem, we assumed

that the decision makers, namely creditors, are risk-neutral. Whereas, we considered

risk-averse decision makers for the second problem. Since, in general, the operator

D : V → V (see (5.1)) will be nonlinear, we did not allow randomized policies for the

risk-averse case of this example and limited feasible policies to deterministic ones.
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Limit State (1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h) C D
(1,l) 0.84 - - 0.120 - - 0.01 - - 0.001 0.029
(1,m) - - - - - - - - - - -
(1,h) - - - - - - - - - - -
(2,l) 0.040 - - 0.739 - - 0.200 - - 0.011 0.010

l (2,m) - - - - - - - - - - -
(2,h) - - - - - - - - - - -
(3,l) 0.004 - - 0.010 - - 0.963 - - 0.020 0.003
(3,m) - - - - - - - - - - -
(3,h) - - - - - - - - - - -
(1,l) - 1 - - - - - - - - -
(1,m) - 0.835 - - 0.100 - - 0.005 - 0.005 0.055
(1,h) - - - - - - - - - - -
(2,l) - - - - 1 - - - - - -

m (2,m) - 0.049 - - 0.860 - - 0.073 - 0.002 0.016
(2,h) - - - - - - - - - - -
(3,l) - - - - - - - 1 - - -
(3,m) - 0.006 - - 0.070 - - 0.914 - 0.004 0.006
(3,h) - - - - - - - - - - -
(1,l) - - - - - - - - - - -
(1,m) - - 1 - - - - - - - -
(1,h) - - 0.829 - - 0.060 - - 0.001 0.010 0.100
(2,l) - - - - - - - - - - -

h (2,m) - - - - - 1 - - - - -
(2,h) - - 0.055 - - 0.858 - - 0.060 0.001 0.026
(3,l) - - - - - - - - - - -
(3,m) - - - - - - - - 1 - -
(3,h) - - 0.009 - - 0.079 - - 0.900 0.002 0.010

Table 7.3: Transition probabilities.

The optimal policies and values of the expected value (risk-neutral) problem are

given in Table 7.6. Here, the optimal value function is the negative of the expected

total profit function earned under the optimal policy.

We modeled the risk-averse problem using the first-order mean–semideviation as

the risk measure and solved it with different κ values. Optimal policies and values have

been calculated using the iterative methods described in Chapter 5. The algorithms

were coded in MATLAB R2011b and MOSEK optimization toolbox for MATLAB [35]

was used to solve the optimization problem in Newton’s method.

The convergence of the value iteration method is proved in Theorem 5.1.3 for prob-

lems with all nonpositive or nonnegative cost values. In this example, the profit values

are not restricted to be all nonnegative or nonpositive, therefore, Theorem 5.1.3 does
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PPPPPPPPLimit
State

(1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)

l 270 - - 18 - - -10 - -
m 344 300 - 47 30 - 5 4 -
h - 2240 1920 - 650 560 - 90 80

Table 7.4: Profit values for state and control pairs.

State (1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h) C D
(1,l) - - - - - - - - - 40 -550
(1,m) - - - - - - - - - 100 -3700
(1,h) - - - - - - - - - 1000 -15000
(2,l) - - - - - - - - - 18 -400
(2,m) - - - - - - - - - 30 -2500
(2,h) - - - - - - - - - 500 -10000
(3,l) - - - - - - - - - 5 -250
(3,m) - - - - - - - - - 15 -1250
(3,h) - - - - - - - - - 300 -4500

Table 7.5: Transition profits.

not apply here. However, using Lemma 5.1.2, we can state that if at any iteration k of

the value iteration method, the value function vk satisfies the relation vk ≤ Dvk = vk+1,

then (using an argument similar to the proof of Theorem 5.1.3) the remaining sequence

obtained by the value iteration method will be nondecreasing and convergent to the

optimal value v∗. Similarly, if vk ≥ Dvk = vk+1, a nonincreasing remaining sequence

converging to v∗ is generated. For this example, the initial value function was set to

zero, v0 = 0, for the value iteration method. We observed that even when the sequence

was not monotone at initial iterations of the value iteration algorithm, it became mono-

tone very soon guaranteeing the convergence. The initial value function was also zero

for the Newton method and the initial policy used for the policy iteration method was

to keep the credit limit unchanged.

The optimal values and policies for the risk-averse problem are summarized in Tables

7.7 and 7.8.

Since the optimal solutions of both problems for the absorbing states C and D are

trivial, they are not provided in the tables. The optimal value is always zero for the

absorbing states and the formal control “Continue” is the optimal policy.
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State (1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)
Values v(·) -7407.60 -7063.60 -4823.60 -7179.09 -7132.09 -6482.09 -6262.99 -6257.99 -5910.98

Policies m h h m h h m m h

Table 7.6: Optimal values and policies for the expected value problem.

HH
HHHκ
State

(1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)

0.025 -7006.47 -6662.47 -4422.47 -6779.78 -6732.78 -6082.78 -5890.73 -5885.73 -5529.64
0.1 -6022.33 -5557.60 -3317.60 -5680.78 -5633.78 -4983.78 -4871.23 -4866.23 -4484.51
0.2 -4879.94 -4271.36 -2031.36 -4404.95 -4357.95 -3707.95 -3694.24 -3689.24 -3280.65
0.3 -3890.29 -3150.33 -910.33 -3298.83 -3251.83 -2601.83 -2684.25 -2679.25 -2246.70
0.4 -3025.84 -2166.80 73.20 -2331.68 -2284.68 -1634.68 -1814.65 -1809.65 -1351.35
0.5 -2263.92 -1296.49 943.51 -1477.88 -1430.88 -780.88 -1065.10 -1060.10 -568.84
0.6 -1583.41 -519.29 1720.71 -712.82 -665.82 -15.82 -419.64 -414.64 129.33
0.7 -973.84 178.30 2418.30 -25.64 21.36 671.36 137.76 142.76 753.34
0.8 -500.31 600.94 3047.74 493.20 641.34 1291.34 633.92 638.92 1311.99
0.9 -139.64 879.55 3618.58 878.60 1053.13 1853.64 1004.58 1009.58 1814.67
1 -2.70 989.73 4140.69 994.50 1145.21 2375.02 1095.70 1100.70 2299.66

Table 7.7: Optimal values, v(·), of the risk-averse problem for different κ’s.

When we work with the negative of profit values, the parameter κ of the first-order

mean–semideviation can be interpreted as a penalty parameter which penalizes the

upper deviations from mean. This means that the decision maker is less (more) risk-

averse if κ values are lower (higher). The risk-averse model is equivalent to the expected

value model for κ = 0.

From Table 7.8, it can be seen that for very small κ values, the optimal policy is

same both for risk-averse and risk-neutral problems, which is a trivial result of previous

assertion. Similarly, when κ gets smaller, optimal values get closer to the optimal values

of expected value problem (see Table 7.7).

The number of iterations needed by both value and policy iteration methods for

different κ values can be found in Table 7.9. For κ = 1, value iteration method required

1231 iterations, whereas, policy iteration method found the optimal solution in just

three iterations. The first iteration of the policy iteration method required six Newton

steps, second and third iterations required two and three Newton steps, respectively.

It can be seen that policy iteration found the optimal solution at most four steps and
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HH
HHHκ
State

(1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)

0.025 m h h m h h m m h
0.1 l h h m h h m m h
0.2 l h h m h h m m h
0.3 l h h m h h m m h
0.4 l h h m h h m m h
0.5 l h h m h h m m h
0.6 l h h m h h m m h
0.7 l h h m h h m m h
0.8 l m h l h h m m h
0.9 l m h l m h m m h
1 l m h l m h m m h

Table 7.8: Optimal policies of the risk-averse problem for different κ’s.

each step required at most six Newton iterations. However, the value iteration method

required much more steps, changing between 525 and 1354.

κ # of Value Iterations # of Policy Iterations # of Newton Iterations
0.025 869 3 4,3,3
0.1 797 4 3,3,2,3
0.2 746 4 3,3,2,2
0.3 689 4 4,2,2,2
0.4 658 4 4,2,2,2
0.5 661 4 4,2,2,2
0.6 761 3 4,3,3
0.7 893 3 4,2,3
0.8 525 3 4,3,2
0.9 1354 3 5,2,3
1 1231 3 6,2,3

Table 7.9: Number of iterations for the risk-averse problem.

Expected Total Profits for Risk-Averse Model

We calculated the expected total profits of each state under the optimal policies of the

risk-averse problem with different κ’s. This is equivalent to calculating

ϕ(x1) = E

[ ∞∑
t=1

c(xt, π(xt), xt+1)

]
, x1 ∈ X̃,

for a given stationary policy Π = {π, π, . . .}. The expected total profit function ϕ(x),

x ∈ X can be found by solving the following equation with ϕ(C) = 0 and ϕ(D) = 0 (cf.
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Hernández-Lerma and Lasserre [19, Lemma 9.4.8]):

ϕ(x) = r
(
x, π∗(x)

)
+
∑
y∈X

(
d(x, y) + ϕ(y)

)
qx,y(π

∗(x)), x ∈ X̃,

where Π∗ = {π∗, π∗, . . .} is the optimal policy of the risk-averse problem. The expected

total profits calculated using the above equation can be found in Table 7.10. For

κ = 0.025, the optimal policy of the risk-averse problem is same as the optimal policy of

the expected value model, therefore both models give the same expected total profits.

When, κ gets larger, the decision maker becomes more risk-averse and forgoes some

profit for more secure policies.

HH
HHHκ
State

(1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)

0.025 7407.60 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.1 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.2 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.3 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.4 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.5 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.6 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.7 7363.82 7063.60 4823.60 7179.09 7132.09 6482.09 6262.99 6257.99 5910.98
0.8 6250.72 5095.83 4823.60 5706.40 7132.09 6482.09 6125.71 6120.71 5910.98
0.9 2096.97 845.98 4823.60 648.85 408.31 6482.09 356.36 351.36 5910.98
1 2096.97 845.98 4823.60 648.85 408.31 6482.09 356.36 351.36 5910.98

Table 7.10: Expected total profits for the risk-averse problem for different κ’s.

In order to estimate the distribution of the total profit, we simulated the Markov

process under the optimal policies of the expected model and risk-averse model with

κ = 1. We used Microsoft Excel based simulation tool YASAI (Version 2.3 [16]) (see

[15]). The sample size was 32760 and the random number seed used was 10000. The

graphs of resulting cumulative distribution functions are provided in Figures 7.4 - 7.12.

The first order mean–semideviation of Example 2.1.2 is consistent with stochastic

orders. For coherent measures of risk, consistency with the first order stochastic dom-

inance follows from axiom (A2), under the condition that the probability space Ω is

nonatomic (see Shapiro, Dentcheva and Ruszczynski [53, sec. 6.3.3]). However, consis-

tency with the second order stochastic dominance is guaranteed without any additional

conditions (see Ogryczak and Ruszczyński [39, 40, 41], and Shapiro, Dentcheva and
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Ruszczynski [53, sec. 6.3.3]).

Due to consistency with stochastic orders, the first order mean–semideviation should

never prefer stochastically dominated outcomes, which can be observed from Figures

7.4 - 7.12. Total profit under the optimal policy of the risk-averse model with κ = 1

is not stochastically dominated by the total profit of the expected value (risk-neutral)

model.

For states with high credit limit, (·,h), the cumulative probability distributions

of the total profit are the same for both risk-averse and risk-neutral models. This is

because, there is only one possible control for these states, which is to keep the credit

limit unchanged, and possible transitions are to states with high credit limit, or to C

and D.
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Figure 7.4: Cumulative probability distribution functions of total profit at state (1, l).



69

0 

0.2 

0.4 

0.6 

0.8 

1 

-15000 5000 25000 45000 65000 85000 105000 125000 145000 

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 

Total Profit 

State (1,m) 

Risk-Neutral 

Risk-Averse 

Figure 7.5: Cumulative probability distribution functions of total profit at state (1,m).
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Figure 7.6: Cumulative probability distribution functions of total profit at state (1, h).
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Figure 7.7: Cumulative probability distribution functions of total profit at state (2, l).
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Figure 7.8: Cumulative probability distribution functions of total profit at state (2,m).
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Figure 7.9: Cumulative probability distribution functions of total profit at state (2, h).
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Figure 7.10: Cumulative probability distribution functions of total profit at state (3, l).



72

0 

0.2 

0.4 

0.6 

0.8 

1 

-15000 5000 25000 45000 65000 85000 105000 125000 145000 

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 

Total Profit  

State (3,m) 

Risk-Neutral 

Risk-Averse 

Figure 7.11: Cumulative probability distribution functions of total profit at state (3,m).
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Figure 7.12: Cumulative probability distribution functions of total profit at state (3, h).
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Chapter 8

Conclusion and Future Study

We adopted and extended the concept of Markov risk measures suggested by Ruszczyński

[48] to randomized policies and used it to develop a new risk-averse formulation for the

discrete-time, infinite horizon, undiscounted, transient Markov process. We showed

that, when risk measures are employed, there may not exist a finite optimal value func-

tion of the problem even the process is transient. Therefore, we defined a new concept

called risk-transient Markov model, which generalizes the Pliska condition (1.1).

We derived the risk-averse dynamic programming equations for risk-transient and

stationary Markov models with general state and compact control spaces. We showed

that the dynamic programming equations have a unique solution which is equivalent to

the optimal value function of the risk-averse Markov control problem and the optimal

policy can be found using these equations.

For expected value models, the optimal policy will always be deterministic, therefore,

it is enough to limit the consideration to deterministic policies. We showed that this

fact may not be valid when risk measures are employed and a randomized policy may

be optimal, in general. However, we proved that for Conditional Average Value at

Risk, similar to the expected value models, it is sufficient to consider just deterministic

policies.

We suggested risk-averse value and policy iteration methods to solve the dynamic

programming equations and proved the convergence of the methods to the unique so-

lution of these equations. For the expected value models, the classical policy iteration

method requires solving a system of linear equations, which turns into a system of

nonsmooth equations, in general, for the risk-averse models. We adopted the special-

ized nonsmooth Newton method of Ruszczyński [48] to solve this nonsmooth equation
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system and proved its global convergence for risk-transient Markov control models.

Assuming that the state and control spaces are finite, we proposed another method,

that we call mathematical programming approach, for solving the risk-averse control

problems for transient models. However, the formulation that we suggested is noncon-

vex, therefore, this approach is not promising compared to the iterative methods.

In order to explain the results of the study, we focused on three different examples

(asset selling, organ transplant, and credit card problems) which were adopted from

some problems existing in the literature. We derived the structure of the optimal policy

for the asset selling problem and showed that an optimal control-limit policy exists. The

results of the organ transplant example support our theory that randomized policies

may be optimal when risk measures are used. We compared the iterative methods on

the credit card example, where policy iteration method required much less iterations

than the value iteration.

As a future study, the rate of convergence of the proposed iterative methods can be

studied. When randomized policies are considered, policy and value iteration methods,

in general, require solving a nonlinear optimization problem for improving the current

policy and value, respectively. The corresponding problem can be solved by enumer-

ation if just deterministic policies are considered. However, this convenience is not

possible for randomized policies, therefore, a commercial solver or a solution algorithm

is required. In the future, efficient solution methods may be suggested for this nonlinear

optimization problem.
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[41] Ogryczak, W. and A. Ruszczyński, Dual stochastic dominance and related mean-
risk models, SIAM Journal on Optimization, 13(1), 60–78, 2002.

[42] Patek, S. D., On terminating Markov decision processes with a risk-averse objective
function, Automatica, 37(9), 1379–1386, 2001.

[43] Pflug, G. Ch. and W. Römisch, Modeling, Measuring and Managing Risk, World
Scientific, Singapore, 2007.

[44] Pliska, S. R., On the transient case for Markov decision chains with general state
spaces, in: Dynamic Programming and Its Applications, M. L. Puterman (Eds.),
Academic Press, New York, 1978, pp. 335–349.

[45] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, John Wiley & Sons, New York, 1994.

[46] R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distri-
butions, Journal of Banking and Finance, 26(7), 1443–1471, 2002.

[47] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
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