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ABSTRACT OF THE DISSERTATION

On some singular Sturm-Liouville equations and a Hardy

type inequality

by HERNAN CASTRO

Dissertation Director:

Haim Brezis

The main body of this dissertation can be divided into two separate topics. The first
topic deals with a Hardy type inequality for functions belonging to the Sobolev space
Wén’l(Q), where m > 2 and Q is a smooth bounded domain in RY, N > 1. We show

that for such functions u € Wéﬂ’l(Q), one has

Hu(x
o < ym—i— k) H < Cllullymaay

where j, k are non-negative integers such that 1 <k <m—1and 1 <j+ k <m, and
d(x) is a smooth positive function which coincides with dist (x, 0Q2) near 9.

The second topic deals with the study of the singular Sturm-Liouville operator
Lou = —(z%*u'), where a > 0. We develop a linear theory for such operator by
introducing suitable weighted Sobolev spaces and prove existence and uniqueness for
equations of the form L,u+u = f € L? under both homogeneous and non-homogeneous
boundary data at the origin. In addition, the spectrum of the operator L, is fully de-
scribed.

Finally, we prove existence, non-existence and uniqueness results for positive solu-

tions of the non-linear singular Sturm-Liouville equation Lou = Au 4+ u?, u(1) = 0,

where a > 0, p > 1 and A € R are parameters.
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Preface

This dissertation is a compilation of research papers written by the author during
the course of his Ph.D.. Chapters 1, 3 and 4 were written jointly with H. Wang (see
[28, 29, 30]), Chapter 2 was written jointly with J. Déavila and H. Wang (see [26, 27]),
and Chapter 5 was written solely by the author and it has not been published elsewhere.
Only minor modifications have been made to the papers already published, mostly to
make the style and notation uniform. All the references have been regrouped, instead

of presenting them at the end of each chapter.
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Chapter 1
A Hardy type inequality for 1W™!(0, 1) functions!

(joint work with H. Wang)

1.1 Introduction

It is well known (see [43]) that if u € W1P(0,1) and u(0) = 0 then the so called

Hardy inequality holds for p > 1, that is

/1 < <pz>p/1|u’(x)ypdx. (1.1)
0 0

The constant =5 is optimal for this inequality and it blows up as p goes to 1. This

u(@) |*

x

behavior is confirmed by the fact that no such inequality can be proven when p =1, as

we can consider (see e.g. |[11]) the non-negative function on (0,1) defined by

1

v(z) = T gz’ (1.2)

A simple computation shows that this function belongs to W11(0, 1), u(0) = 0, but

u(x)
x
When we turn to functions u € W2P(0,1), p > 1, w1th U O) = 4/(0) = 0, there

is not integrable.

u(z) o' (x
are three natural quantities to consider: %, (z) =
T x

u'(x) and u(z) _ u'(r) 1

x 2

p > 1, it is clear that both /tu (t)dt belong to LP(0,1).

0

!/ !/

Thus (M> € LP(0,1). If p =1 one can no longer assert that ig), u(z)
x x x

belong

!This chapter has already been published in Calc. Var. Partial Differential Equations 39 (2010),
no. 3-4, 525-531.



/
to L1(0,1), but surprisingly <> € L'(0,1). This reflects a “magic” cancellation of
x

/ !
the non-integrable terms in the difference (W> _ (z) — @

T T 2

The same phenomenon remains valid when we keep increasing the number of deriva-

tives, and this is the main result of this chapter.

Definition 1.1. We say that u has the property (P,,) if

we W™ (0,1) and u(0) = Du(0) = ... = D™ u(0) =0,

where D'y denotes the i-th derivative of w.

Theorem 1.1. If u has the property (P,,) and j, k are non-negative integers, then

_ . Diu(z)
(i) If k> 1 and 1 < j+k < m then ok has the property (Py) and
Diu(x) (k—1)!
D* A <~ D™ : 1.
H <xm—]—k> L10) ~(m—j— 1)! | U||L1(0,1) (1.3)
The constant being the best possible.
(1) There exists w having the property (Pp,) such that
DI
ﬂlfff) ¢ LY0,1) forallje{0,1,...,m—1}. (1.4)
T

Remark 1.1. For functions u € W2P(0,1), p > 1, with u(0) = «/(0) = 0, a slightly

stronger result holds, namely, when we estimate the LP norms of the three quantities

u(@) W@ <U<;>> we obtain

2’ oz

u'(x)

xT

ulz)
x2

< ap Hu
P

"I

/l’

<M Hu (1.5)

p

p’ p’

S/BpHU”‘p’ and H(@)
p

where ay, 8, and ~, are the best possible constants. It is easy to see that o, — 0o and
Bp — oo when p approaches 1. However, a similar “magic” cancellation appears and -,

remains bounded as p goes to 1. A proof of this latter fact is presented in Section 1.3.



1.2 Proof of the Theorem

We begin with the following observation.

Lemma 1.2 (Representation formula). If u has property (Py,), then
() = — /x D™u(s)(x — s)™ 1ds
u(z) = (1)1 u :
0

Proof. We proceed by induction. The case m = 1 is immediate since u € WH1(0,1) if

and only if u is absolutely continuous. Now notice that
x
D™y (x) = /Dmu(s)ds,
0
if we use the induction hypothesis, we obtain

_ [ ] u z — )™ 2ds
u(m)—(m_2)!0/ O/D (t)dt | ( )" 4ds.

The proof is completed after using Fubini’s Theorem. O
Based on the function defined by (1.2), we have

Lemma 1.3. There exists a function w having property (Pp,), such that

D" ule) D' Pule) | Dule) wle) g ;1 o)

x ’ 22

Proof. In order to construct the function w, consider the function v defined in (1.2). As

(z)

v
we said, v is a non-negative function on (0, 1), it has the property (P;), but —= does
T

not belong to L1(0,1). Define w(z) as

T

(ml_Q)! /U(S)(IE — 5)™2ds,

0

w(zx) =

so w solves the equation D™ lw(x) = v(x), with initial condition w(0) = Dw(0) =

... = D™ 2(0) = 0. Notice that w has the property (P,,), D*w(x) >0, D*w(1) < oo



and

Dmfk
tim 2700 _ g,
s—0 Sk_l

forall k =1,...,m — 1. We now show that w satisfies (1.6). Notice that

1
—|—oo:/v(x)dx
T
0
1

_ [,

X

m=2y(x) . . . .
thus / ——5 —dx = +oo. Similarly, if we keep integrating by parts we conclude
x

0
that
D™ Jw(x)
zJ

L1(0,1)

We can proceed to prove the theorem

Proof of Theorem 1.1. The second part was proven in Lemma 1.3, so we will only prove
the first part. Since the result is immediate when j +k = m, in the following we always
assume that j + k <m — 1.

DY
To prove that u(x)
xm—Jj—k

has the property (Py), we proceed by induction. For k =1

DI
and any 7 =0,...,m—1, mEL](fZ has the property (P;) because
x
DJ
ﬂ = (m —j — D)!D™ 1y (0) = 0.
xm—i—1 J—

Now assume the result holds for some k. Notice that if j +k 4+ 1 <m — 1 then

Diu(x) Ditly(x) _ Diu(x)
D <xmjk1> i syl Ul Rl ey o



the right-hand side of which has property (Pj) by the induction assumption. Thus we
Diu(z)

conclude that D < m_j_k_1> has the property (Px), completing the induction step.
x

Now we prove the estimate (1.3). Notice that

' <fnii(fl)c> = Zki (f) D7 tu(a) DF (xm_lj_k> : (1.7)

1=0

and that

Dk <1> _(epidmegmiz DY L (1.8)

am—i—k (m—j—k—1)lgm-i—i

Using the representation formula for u from Lemma 1.2, we obtain

P —— RPN S
By combining (L7), (L8) and (L9) we obtain
(28§ e e
- /Dm x_s)ij(;(;;) (;8)"(_1)“)0@
- P ()
T /Dm 1—%““(2)’“‘1%%-

Therefore,

[l (222

1
m k—1 k-1
/|Dm /1— a () %dm ds
x



1
T m—j k-1~
1 1
< /|Dmu(s) /(1 _pymeikt ity ) g
0 s
1 1
e Ty ey AT N
0
= m |D UHLl(o,l) .

The optimality of the constant is guaranteed by the optimality of Hoélder’s inequality.

The proof of the theorem is now completed. ]

In view of the above results it is natural to ask whether a similar estimate holds in

higher dimension. More precisely we raise

Open Problem 1.1. 2 Assume © is a smooth bounded domain in RY with N > 2. Let
u(z) be in W02’1(Q). For x € €, denote by 6(z) = d(z, 0f2), the distance from z to the

boundary of Q. Let d(z) be a positive smooth function in Q such that d(x) = §(z) near

0. Is it true that ()

€ WhH(Q)? If so, can one obtain the corresponding Hardy-type

(o(22)

estimate

dr < CHDQUHLl(Q)’

for some constant C?

The difficulty arises when one considers, for example, N = 2 and the domain 2 =

R2 = {(z1,22) : 72 > 0,21 € R}. Theorem 1.1 implies that for u € C°([0,1] x [0,1])

J - (22)

Q
However we do not know if the following is true,
/ 0 (u(z1,32)
81‘1 i)
Q

?Chapter 2 contains the solution to this problem. See also [26].

one has

dridxs.

82u(x1,x2)
d.’L'ld.fL'Q S C/ ’ax%
Q

dridzy < C||D%u| 11 -




1.3 W™P functions

We begin by proving the result stated in Remark 1.1. Notice that for u € W2?(0, 1)

satisfying w(0) = «/(0) = 0, we can write

<“f)>, — :Elz/msu"(s)ds.
0

For p > 1, we can apply Hoélder’s inequality and Fubini’s theorem to obtain,

Iy

D 1 E/ x
TP
dzx < /xzp/sp}u"(s)}p dsdz
0 0
1 1

1
:/sﬂu”(s)’p /aﬂ’“dx ds

0 s

1
1
= /‘u"(s)‘p(l — sP)ds
p
0
1

1
< = " Pd?
_p/‘u(s)‘ s

where p/ and p are given by % + 1% = 1. Hence

)

1
Thus, if we define +, as in (1.5), we have proven that v, < p 7, that is +, remains

<p73 ],
p

bounded as p goes to 1.

As one might expect, an analogous to Theorem 1.1 can be proven for WP functions.

The result reads as follows:

Theorem 1.4. If u belongs to W™P(0,1), p > 1 and satisfies u(0) = Du(0) = ...

D™ 1u(0) = 0. Then fork>1and 1< j+k <m,

o (242)

1
< Bkplm —j—k—-1)+1)r
L?(0,1) o (m —j—k- 1)!

10" ull o1y, (1.10)




1
where B(a,b) = /t“_l(l — )7 denotes Euler’s Beta function.
0

Proof. From the proof of Theorem 1.1, we have

Diu(z) m—j—k=1 s g\k=1 g
k _ m _ = — —
(a:m_j_k) C(m—j—k—1) /D 1 ) <x> a:QdS'

After applying Holder’s inequality, Fubini’s theorem and a change of variables one

obtains that

[l (222)

= B(pk,p(m —j—k—1)+1) <(m—jik‘—1)!> .




Chapter 2

A Hardy type inequality for 1W)"'(Q) functions'

(joint work with J. Davila and H. Wang)

2.1 Introduction

In [28] (see Chapter 1), the following one dimensional Hardy type inequality was
proven (see [28, Theorem 1.2]): Suppose that u € W21(0, 1) satisfies u(0) = u'(0) = 0,

=0 and
0

)

As explained in [28], this inequality is somehow unexpected because one can con-
' (x)

X

then ul@) € Wh1(0,1) with ulz)
T x

<

LoD H“”HLI(O,l) : (2.1)

struct a function u € W?21(0,1) such that u(0) = u/(0) = 0 and that neither

belong to L1(0,1); however, as (2.1) shows, for such function u, the difference

nor
x2

W(2)  u(z) (u(x

/
5 )> is in fact an L' function, reflecting a “magical” cancellation of
x x x

the non-integrable terms.

With estimate (2.1) already proven, it was natural to raise the following question:
Assume ( is a smooth bounded domain in R with N > 2 and let u be in WOQ’l(Q).
For x € Q, denote by §(z) = dist (z, 02) the distance from x to the boundary of €2, and
let d : Q — (0,400) be a smooth function such that d(z) = 6(z) near 99Q. Is it true

u(x)

that ——= € Wol’l(Q)? If so, can one obtain the corresponding Hardy-type estimate

d(x)

/'D (%) ' de < C[Dullpsiq)
Q

!The contents of this chapter have been accepted for publication at J. Eur. Math. Soc.; part of the
results were announced in: C. R. Math. Acad. Sci. Paris 349 (2011), no. 13-14, 765-767.
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for some constant C?
The purpose of this work is to give a positive answer to the above question. In fact,

this is a special case of the following:

Theorem 2.1. Let Q be a bounded domain in RN with smooth boundary 0. Given
x € Q, we denote by 6(x) the distance from x to the boundary 0. Let d : Q2 — (0, +00)
be a smooth function such that d(x) = 0(x) near 0. Suppose m > 2 and let j, k be

non-negative integers such that 1 <k < m—1and 1 < j+k < m. Then for every

m,1 8]U(x) k1 .
u e WO (Q), we ha/'Ue W S WO (Q) ’Z,U’Lth
Hu(x
o ( ym—i- k) H <C HuHWm,l(Q) ) (2.2)

where 0" denotes any partial differential operator of order | and C > 0 is a constant

depending only on Q and m.

The rest of this chapter is organized into three sections: In Section 2.2 we introduce
the notation used throughout this work and give some preliminary results. In order to
present the main ideas used to prove Theorem 2.1, we begin in Section 2.3 with the
proof of Theorem 2.1 for the special case m = 2, then in Section 2.4 we provide the

proof of Theorem 2.1 for the general case m > 2.

2.2 Notation and preliminaries

Throughout this work, we denote by Rf = {(yl, o yN—1,yN) ERN :oyn > O}
the upper half-space, and B (zg) := {x eERYN : |z —x0| < r}, also, when zop = 0, we
write BY := BN(0).

Let Q be a bounded domain in RY with smooth boundary 9Q. Given z € Q, we

denote by d(x) the distance from x to the boundary 0€2, that is
d(z) :=dist (z,0Q) = inf {|x —y| : y € 0N}.

For € > 0, the tubular neighborhood of 92 in €2 is the set Q. := {x € Q : §(z) < e}.
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The following is a well known result (see e.g. [42, Lemma 14.16]) and it shows that J is

smooth in some neighborhood of 9€2.

Lemma 2.2. Let Q and § : Q — (0,00) be as above. Then there exists g > 0 only
depending on Y, such that d|q. : ey — (0,00) is smooth. Moreover, for every x € Q,

there exists a unique y, € 02 so that

T =Yg+ 5(33)’/89(%6)7

where vy denotes the unit inward normal vector field associated to OS).

Since 0f2 is smooth, for fixed Ty € 012, there exists a neighborhood V(Zg) C 9012, a
radius 7 > 0 and a map

: BN 5 V(i) (2.3)

which defines a smooth diffeomorphism. Define

Ni(Zo) ={zr €Qc : yu €V(T0)}, (2.4)

where gg and 3, are as in Lemma 2.2. We denote by ® : BN ! x (—gg,g0) — R the

map defined as

O, 1) = () + yn - voa (7)), (2.5)
where § = (y1,...,yn—1), and we write
N(Z0) =@ (BN ™! x (—e0,¢20)) - (2.6)

About the map ® we have the following:

Lemma 2.3. The map ®|gnv—1,, ) s a diffeomorphism and

(0,50

N (&) = @ (B! % (0,e0)) -

Proof. This is a direct corollary of the definition of ® through ®, and Lemma 2.2.
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Remark 2.1. The map <I>\BN_1X(O o) gives a local coordinate chart which straightens
the boundary near Zy. This type of coordinates are sometimes called flow coordinates

(see e.g. [13] and [49]).

From now on, C' > 0 will always denote a constant only depending on €2 and possibly

the integer m > 2. The following is a direct, but very useful, corollary.

Corollary 2.4. Let f € LY(N;(%0)) and ® be given by (2.5). Then

o/ 7rf<¢><g,yN>>|dyngs | lrwiazc [ 0/ F(@ G, yw)| dyn

BN-1 0 N (Zo) BN—t

Proof. Since @‘BN—lx(O o) 18 a diffeomorphism, we know that for all (7,yn) € BN~1 x
(0,£0) we have

1
= < [det DB(G, yw)| < C.

The result then follows from the change of variables formula. O

The following lemma provides us with a partition of unity in R, constructed from
the neighborhoods N (Zo). Consider the open cover of 9Q given by {V(Z) : & € 9Q},
where V(z) C 9 is defined in (2.3). By the compactness of 0f, there exists points

M
{Z1,..., 2y} C 09, so that Q0 = |J V(#;). Notice that by the definition of N (Zp)
=1

M

in (2.6) we also have that |J A(#;) is an open cover of 9Q in RY. The following is a
=1

classical result (see e.g. [11, Lemma 9.3] and [1, Theorem 3.15]).

Lemma 2.5 (partition of unity). There ewist functions pg, p1,...,py € C°(RYN) such

that
M
(i) 0<p <1 foralll=0,1,...,M and 3" p;(z) =1 for all z € RV,
=0
(i1) suppp; C N (&), for alll =1,..., M,

(iii) polg € CF°().

In order to simplify the notation, we will denote by ' any partial differential operator
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of order I where [ is a positive integer?. Also, 0; will denote the partial derivative with

respect to the i-th variable, and 8%- = 0; 0 0;.

Remark 2.2. We conclude this section by showing that, to prove Theorem 2.1, it is
enough to prove estimate (2.2) for smooth functions with compact support. Suppose
u € Wgn’l(Q), then there exists a sequence {un} C Cg°(€2), so that |lu — up||yym.1 gy — 0

as n — oo. In particular, after maybe extracting a sub-sequence, one can assume that
Ou, — v ae. in Q, for all 0 <1 < m.

Since d is smooth, the above implies that for a.e x € Qand all j >0, 1 <k <m—1

and 1 <j4+k<m:

8k<d(8ju(:c) )_ O Rula) a’f( 1 )

x)m—j—k d(x)m—j—k: d(x)m—j—k

. 8j+kun(:p) ; i 1

= gy TP (@)d (CWM)
) My ()

_ k

= lim 0 (d ) .

n—00 (m)m_j_k

Therefore, Fatou’s Lemma applies and we obtain

Once (2.2) has been proven for u, € C§°(12), we get

b (a5)

and thus we can conclude that

P (z)

< liminf
L1 (Q) n—o0

1)

<C ||Un||wm,1(g)a
LY(Q)

L1(Q)
%In general, one would say: “For a given multi-index o = (a1, ..., an), we denote by 6% the partial
differential operator of order | = |a| = a1 + -+ + an”. Since we only care about the order of the

operator, it makes sense to abuse the notation and identify o with its order |a| = 1.
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Huy,
Finally estimate (2.2) together with the fact that d()U(;C)k € C5°(2) and the density
x)m—I—
Y
of C£°(Q) in W (Q) gives that _Oule) wEL(Q).

d(z)ym—i—k
2.3 The case m =2

We begin this section by proving estimate (2.2) in Theorem 2.1 for Q = Rf, m =2,
j=0and k=1.

Lemma 2.6. Suppose that u € CSO(IRf). Then for alli=1,...,N

()

Proof. Consider first the case ¢ = N. This is similar to (2.1), but for the sake of

<2 HUHW21 RY) -
LY(RY) ()

completeness, we will provide the proof. Notice that we can write

5 N 1 YN 82

oyn YN Oy

hence by integrating the above we obtain

//‘ ( ny))’dyNdy< // /' 2uy, ‘tdtdyNdy
oyn YN 3/N Ay

9 1
= / / o .2 (yvt) / 2 dythdy
YN Yn
RN-1 t
2 | T1 i
/ / 502 @0 t/gdywdtdy
YN Yn
RN-1 t
9?2 .
= / / e u(y,t)|dtdy,
RN-1 0 yN
hence
9 (u(y) &u(y)
/layfv<yzv>‘dy</’ 3y W 27
RY RY
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1|0
When 1 <i < N —1, we need to estimate / — ‘8u (y)' dy. To do so, consider the
YN | 0Y;
RY Z
change of variables y = ¥(x), where
U(xy, .y Xy s N) = (X1, 0o, Ty + TNy, TN). (2.8)

Notice that det DW(x) = 1, hence

1 |ou(y) / 1 ‘Gu

— dy = — U(x))|dx.
/ yn | Oy Y TN 8.%( @)
RY RY

Observe that if we let v(z) = u(¥(z)), we can write

1 ou 0 v(x 0 (uly
—(¥(z)) = ( ( )> - ( ( )> : (2.9)
TN Oy; orn \ N Oyn \ N / |y—w (o)
Applying estimate (2.7) to u and v yields
/1‘au(wc)) dxg/ 8<v(9«“>>‘d$+/ 5(“@)) dz
TN |0y Orn \ N IYn \ N J lymw(a)
RY RY RY
= o (50l [ (50|
0T N TN oyn YN
RY RY
2 2
S/ 01)(2m) dm+/ ﬁugy)‘dy'
oy, oyy
RY RY
Finally, notice that
0? 0? 0? 0?
TN YN ly=w(a) YiOYN ly=w(x) Yi ly=w()
Thus, after reversing the change of variables when needed, we obtain
1 |Ou(y) / 1 |ou
dy= [ — |=—(V d
/ o | oy |7 TN 8.%( ()| dr
RY RY
0%u(y)
<o o ][ 25
/ Iy ‘ Oy 0yn s oy?

Jr
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< 2||ullyzagy) -

O

Recall (see Section 2.2) that for every Iy € 0f2, there exist the neighborhood
Ni(Zo) C Q given by (2.4) and the diffeomorphism ® : BY~! x (0,59) — N (Z0)

given by (2.5). Moreover, we know that §(z) is smooth over N, (Zp). Hence we have

Lemma 2.7. Let T € 002 and Ny (Zo) be given by (2.4), and suppose u € C§° (N4 (Zo)).
Then for alli=1,... N

p (52)

Proof. We first use Corollary 2.4 and obtain
u(x)
[ o ()l <
+(Zo
Let v(g,yn) = w(®(g,yn)). We claim that
u(x)
o (56)

We will prove (2.11) at the end, so that we can conclude the argument. Since v €

< CHU”W21 No(F0))
LIV (30)) D

dyng.

(1)

r=®(F,yN)

€0

/]

BN-1 0

€0

N
i<y [ f
=1

BN-1 0

YN

d; <”(ny>> ’ dyndij. (2.11)

r=2(§,yN)

Ce(BN1 % (0,20)) C C§°(RY), we can apply Lemma 2.6 and obtain

/]

BN-1

U(?L?JN) ~
8j ( U ) ‘ dyNdy S C HUHWQ»l(Bivflx(O,so)) .

Notice that by the chain rule and the fact that ® is a diffeomorphism, we get that

forall1 <4, <N

} ny <C Z‘ )| = ¢yyw‘+2‘apu M= ‘1>ny)‘ )
p,g=1 p=1
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so we with the aid of Corollary 2.4, we can write

€0

ol (310,00 < € / /(Z\ﬁiq%@(g,ymHZ\@p%@(g,yN)O dyndj
p

B£\771 0 p.q

<c / (Zyagqu<x)\+2|apu(x)|> da

N+(530) p’q

< Cllully2a v, (o)) -

To conclude, we need to prove (2.11). To do so, notice that u(z) = v(®~!(x)), and

§(x) = ¢(®~Y(x)), where (7, yn) = yn. Thus, by using the chain rule we obtain

()] B )

r=®(Fyn) =1 c(v)

- 0:(27);(2(7, yn)),

y=(9,yN)

and since ® is a diffeomorphism, we obtain

o (5) (i)

Estimate (2.11) then follows by integrating the above inequality. O

z=®(j,yN) y=(9,yN)

N
<C>
j=1

We end this section with the proof of the main result when m = 2.

Proof of Theorem 2.1 when m = 2. When j = 1 and k = 1 the estimate (2.2) is trivial.

Taking into account Remark 2.2, we only need to prove

o (52

for u € C(Q) and i = 1,2,...,N. To do so, we use the partition of unity given by
M

Lemma 2.5 to write u(x) = > w(x) on Q where w(z) := p(z)u(z), I =0,1,..., M.
1=0

Now, without loss of generality, we can assume that d(z) = J(z) for all z € Q,, and

< Clully21 (o (2.12)
LY(Q)

that d(x) > C > 0 for all x € supppp N Q. Notice that in supppg N 2, we have

Uug —— . Uug
d € Cm(supppo N Q)v with HFH <C HUOHI/VLl(suppoﬂQ) :

WL (supp poNQ2)
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To take care of the boundary part, notice that u; € C§°(NL (%)) for I = 1,..., M, so

Lemma 2.7 applies and we obtain

‘ o (?(%))

To conclude, notice that & (Zg;) - é 0; (?8) + 0 (?((;))) on Q and that

lpi(x)], [0ipi(x)| and ‘8],01( )’ are uniformly bounded for all [ = 0,1, ..., M, therefore

Z’ (ZE;) (Ig((f))) s Ha (ﬁ%))

M
<C (Z ||ul”W2 LNE(3y)) + HUOHW1 1 supppoﬂ9)>
M

SCHUIHWQ»IN 5 ,fOI'alel,...,M.
LYW () )

)

iSH

L1 (supppoN?)

( [ellyyza Wi (@) T lullps, 1(Supppoﬁﬂ)>

<C HUHWQJ(Q) )
thus completing the proof. d

2.4 The general case m > 2

To prove the general case, we need to generalize Lemma 2.6 in the following way

Lemma 2.8. Suppose u € Cgo(Rf). Then for allm>1 andi=1,..., N we have

u(y)
0;
()

Proof. The case m = 1 is a trivial statement, whereas m = 2 is exactly what we proved

< CJullygma gy,
LY(RY)

in Lemma 2.6. So from now on we suppose m > 3. We first notice that when i = N,
the result follows from the proof of |28, Theorem 1.2] when j = 0 and k£ = 1. We refer
the reader to [28] for the details.

When 1 <i < N — 1, we can proceed as in the proof of Lemma 2.6. Define v(z) =

u(¥(z)) where ¥ is given by (2.8). Notice that when m > 3, instead of equation (2.9)
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we have

1 du _ 9 (o)) 9 [ uy)
e @(W(m)) = Prn (fz@_l> Dun (yﬁ*)

and instead of (2.10) we have

0"v(x) _ i (m) " u(y)
8:3% =0 l aylm*layév

y="(z)

y=Y(z)

Hence the estimate is reduced to the already proven result for ¢ = N. We omit the

details. O
We also have the analog of Lemma 2.7.

Lemma 2.9. Let &g € 0Q and N1 (Zo) as in Lemma 2.7. Let u € C§°(N1(Z¢)). Then

forallm>1andi=1,..., N we have

o (sm)

Proof. The proof involves only minor modifications from the proof of Lemma 2.7, which

< Clullyyma i, o)) -
LU, (o)) (N+(20))

we provide in the next few lines. Corollary 2.4 gives
€0
u(z) u(z)
Oi| =———||de < C 0i | ==
/ <6<x>m—1> w<c [ <6<x>m—1>
N BN 0
It U(g’ yN) = U((I)(ﬂ, yN))a then

/]

BN-1 0

dyndy.

r=(F,yN)

dyndy.

7’ N (v(zz,yN))
J J yﬁ—l

Just as for (2.11), estimate (2.13) follows from the fact that ® is a smooth diffeomor-

x:q)(gvyl\f) 1

N
dyndy < CZ /
jleNf

(2.13)

phism. Since v € C§°(BN "1 x (0,£0)) C C§°(RY ), we can apply Lemma 2.8 and obtain

9; (U%yiv)>
YN

€0

/]

BN-1 0

dyndy < C ”UHWTYL,l(Bﬁ\”lx(O,so)) :
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Notice that by the chain rule and the fact that ® is a smooth diffeomorphism, we get
0" 0(G, )| < C Y [0 ul@) gz
<m

where the left hand side is a fixed m-th order partial derivative, and in the right hand
side the summation contains all partial differential operators of order I < m. Again

with the aid of Corollary 2.4, we can write

HUHWWI(BiV*lX(OyEO)) = CZ /
N—

<

€0
/(‘8lu’x=®(g,y1\;)’> dyndy
0

1

SC’Z / ‘8lu(m)‘daz

=T (o)

< Cllullyym.a v, o)) -

And of course we have

Lemma 2.10. Suppose u € C§°(Q?). Then for allm >1 andi=1,...,N we have

We omit the proof of the above lemma, because it is almost a line by line copy of

ai (U(m)> H S C u m,1 .
5($)m_1 L) H HW ()

the proof of the estimate (2.12) in Section 2.3 using the partition of unity. We are now

ready to prove Theorem 2.1.

Proof Theorem 2.1. For any fixed integer m > 3, just as what we did for the case m = 2,

it is enough to prove the estimate (2.2) for u € C§°(Q2). Notice that since

H@juHWm,j)l(Q) < ullymiqy for all 0 < j <m,
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it is enough to show

< Cllullwmiq) (2.14)
LY(Q)

P ()

for u € C°(R2) and 1 < k < m — 1. We proceed by induction in k. The case k = 1

corresponds exactly to Lemma 2.10. If one assumes the result for k, then we have to

estimate for i =1,..., N

Using the induction hypothesis for m = m — 1 yields

on the other hand, by using the induction hypothesis and the fact that d is smooth in

=
oF [ — =2 < C'||05ul] yyrm— <C dron s
<d(x>(m—1)—k L) = H uHW LyQ) = H’U,”W 1(Q)

Q, we obtain

w(x)0;d(x
9 ()|, S C 1) S € il oy

Therefore

oo (e )

thus concluding the proof. O

<cC HuHWmvl(Q)v
L)
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Chapter 3

A singular Sturm-Liouville equation under homogeneous

boundary conditions!

(joint work with H. Wang)

3.1 Introduction

This chapter concerns the following Sturm-Liouville equation

—(2**(2)) + u(x) = f(z) on (0,1],
(3.1)

where « is a positive real number and f € L?(0,1) is given. In this work we will study
the existence, uniqueness and regularity of solutions of equation (3.1), under suitable
homogeneous boundary data. We also discuss spectral properties of the differential
operator Lu := — (x2au’)/ + u.

The classical ODE theory says that if for instance the right hand side f is a con-
tinuous function on (0,1], then the solution set of equation (3.1) is a one parameter
family of C?(0,1]-functions. As we already mentioned, the first goal of this work is to
select “distinguished” elements of that family by prescribing (weighted) homogeneous
boundary conditions at the origin. In [30] (see Chapter 4), we will study equation (3.1)
under non-homogeneous boundary conditions at the origin.

When 0 < a < %, we have both a Dirichlet and a (weighted) Neumann problem.
When a > %, we only have a “Canonical” solution obtained by prescribing either a

(weighted) Dirichlet or a (weighted) Neumann condition; as we are going to explain in

!This chapter has already been published in J. Funct. Anal. 261 (2011), no. 6, 1542-1590.
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Remark 3.19, the two boundary conditions yield the same solution.

3.1.1 The case 0 < o < 3.
We first consider the Dirichlet problem.

Theorem 3.1 (Existence for Dirichlet Problem). Given 0 < o < 1 and f € L?(0,1),

there exists a function u € H?2 (0,1] satisfying (3.1) together with the following proper-

loc

ties:

(1) lim u(z)=0.

=07t
(it) w € C1 72200, 1] with ullgo1-20 < C|[fll2-
(ii1) z**u' € H(0,1) with 22| ;1 < C||fl 2.
(iv) x?*tu € HY(0,1) with H:cQa_luHHl <Cfll2-
(v) 2?*u € H*(0,1) with ||2*Yul|,, < C|f]l 2.
Here the constant C only depends on o.

Before stating the uniqueness result, we would like to give a few remarks of about

this Theorem.

Remark 3.1. There exists a function f € C§°(0,1) such that near the origin the solution

given by Theorem 3.1 can be expanded in the following way
w(x) = a1z’ 7" + apa® T + aga® 0 - (3.2)

where a1 # 0. See Section 3.3.1 for the proof.

Remark 3.2. Theorem 3.1 only says (x2%u’) = 22" + 2a2?* '/ is in L?(0,1). A
natural question is whether each term on the right-hand side belongs to L?(0,1). The
answer is that, in general, neither of them is in L?(0,1); in fact, they are not even

in L'(0,1). One can see this phenomenon in equation (3.2), where we have that

p2 1/ (2) ~ 2?2 (z) ~ 271 ¢ L1(0,1).



24

Remark 3.3. Part (iii) in Theorem 3.1 implies that u € WP(0,1) for all 1 < p < 5=
with ||/||;, < C|f|l 2, where C is a constant only depending on «. However, one
cannot expect that u € Wl’%(o, 1) even if f € C§°(0,1), as the power series expansion

(3.2) shows that u/ ~ 272% near the origin.

Remark 3.4. Concerning the assertions in Theorem 3.1, we have the following implica-
tions: (i) and (iii) = (iv); (iv) = (ii); (iii) and (iv) = (v). Those implications can be
found in the proof of Theorem 3.1.

Remark 3.5. The assertions in Theorem 3.1 are optimal in the following sense: there
exists f € L?(0,1) such that u ¢ C%?[0,1], ¥8 > 1 — 2a; and one can find another
f € L*(0,1) such that x29 1y ¢ H?(0,1), 2%’ ¢ H*(0,1), and z%*u ¢ H3(0,1). See
Section 3.3.1 for the counterexamples.

Remark 3.6. Theorem 3.1 tells us that both 22w/ and z**~!u belong to H'(0,1), so

in particular they are continuous up to the origin. It is natural to examine their values

at the origin and how they are related to the right-hand side f € L?(0,1). We actually

have .
Jim o0 (@) = [ f@)gta)da, (3.3
0
and )
Jim o (o) = - [ fa)glads (3.4)
0

where the function ¢ is the solution of

—(2**¢'(x)) + g(x) =0 on (0,1],

lim g(x) =1.

z—0t

See Section 3.3.1 for the proof of this Remark. The existence and regularity of such
function g is the main topic of [30] (see Chapter 4). The uniqueness of such g comes

from Theorem 3.2 below.

Theorem 3.2 (Uniqueness for the Dirichlet problem). Let 0 < a < % Assume that
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u € H(0,1] satisfies

Then u = 0.

In order to simplify the terminology, we denote by up the unique solution to (3.1)
given by Theorem 3.1. Next we consider the regularity property of the solution up when

the right-hand side f has a better regularity.

Theorem 3.3. Let 0 < a < 5 and f € Wl’i(o,l). Let up be the solution to (3.1)

given by Theorem 3.1. Then x> ‘up € W2P(0,1) for all 1 < p < i with

2% upllyzp < C I lwrs s

where C' is a constant only depending on p and «.
Remark 3.7. One cannot expect that 222 lup € WQ’i(O, 1) even if f € C§°(0,1), as
the power series expansion (3.2) shows that (22 lup(x))” ~ 272% near the origin.

Remark 3.8. When o > %, we cannot prescribe the Dirichlet boundary condition

lim u(z) = 0. Actually, for o > 3, there is no HZ (0, 1]-solution of

z—0t loc

u(1l) =0, (3.6)

li =0,
)

for either f =1 or some f € C§°(0,1). See Section 3.3.1 for the proof.
Next we consider the case 0 < a < % together with a weighted Neumann condition.

Theorem 3.4 (Existence for Neumann Problem). Given 0 < o < % and f € L?(0,1),
there exists a function u € HZQOC(O, 1] satisfying (3.1) together with the following proper-

ties:
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(i) we H'(0,1) with |lulln < C[Ifll-

(i1) mli}]r(r)lJr x%‘_%u’(aﬁ) =0.

(i) 2> ' € L%(0,1) and z**u” € L?(0,1), with
2 o+ (™| o < CUANe

In particular, z**u’ € H(0,1).
Here the constant C' only depends on a.
Remark 3.9. Notice the difference between Dirichlet and Neumann with respect to prop-

erty (iii) of Theorem 3.4. See Remark 3.2.

Remark 3.10. The boundary behavior lim+ x2a_%u’(ac) = 0 is optimal in the following
z—0

sense: for any 0 < x < %, define

Ky(z)= sup ’x%‘_%u’(av)‘.
Ifll2=1

Then 0 < § < K,(z) < 2, for some constant § only depending on «. See Section 3.3.2

for the proof.

Remark 3.11. Theorem 3.4 implies that u € C°[0,1], so it is natural to consider the

dependence on f of the quantity lim w(z). One has
xT

—0t

z—0t

1
lim u(z) = / F(@)h(z)dz, (3.7)
0

where h is the solution of

(W () + h(z) =0 on (0,1],
lim 2?“h/(x) = 1.
z—0t+

In particular, equation (3.7) implies that the quantity lim+ u(z) is not necessarily 0.
z—0
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See Section 3.3.2 for the proof of this Remark. The existence and regularity of h is part

of [30], but the uniqueness of h comes from Theorem 3.5 below.

Theorem 3.5 (Uniqueness for the Neumann Problem). Let 0 < v < 5. Assume that

u € H (0,1] satisfies

Then u = 0.

We denote by uy the unique solution of (3.1) given by Theorem 3.4. We now state

the following regularity result.

Theorem 3.6. Let 0 < o < 3 and f € L*(0,1). Let un be the solution of (3.1) given

by Theorem 3.4.

(i) If f € Wl’i((), 1), then uy € W2P(0,1) for all 1 < p < i with
HUNHW2,p(0,1) < C|lfllwre -

(ii) If f € W2 (0,1), then 220~y € W2P(0,1) for all 1 < p < 5=, with

Hmza_IUEVHme(o,l) <C HfHW% .

Here the constant C depends only on p and «.

Remark 3.12. One cannot expect that uy € W2’i(0,1) nor 2221/, € W2’i(0, 1).
Actually, there exists an f € C§°(0,1) such that, uy ¢ Wz’i((), 1) and 2?1, ¢
WQ’i(O, 1). See Section 3.3.2 for the proof.

We now turn to the case o > % It is convenient to divide this case into three

sub-cases. As we already pointed out, we only have a “Canonical” solution obtained by

prescribing either a (weighted) Dirichlet or a (weighted) Neumann condition.
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3.1.2 The case % <a< %

Theorem 3.7 (Existence for the “Canonical” Problem). Given 3 < a < 3 and f €

L%(0,1), there exists u € H?,(0,1] satisfying (3.1) together with the following properties:

(i) u e CO3720 yith Hu||001%72a < C|fll;2- In particular,

1
li 1-1 T2 =0.
Ii}r& ( nz) 2 u(x)

(i1) xli}rélJr xQO‘_%u’(:U) =0.

(i) 2"’ € L%(0,1) and z**u” € L?(0,1), with
[l o + [l o < CIf g

In particular, z**u’ € H'(0,1).
Here the constant C depends only on .

Remark 3.13. The same conclusions as in Remark 3.9-3.11 still hold for the solution

given by Theorem 3.7.

Theorem 3.8 (Uniqueness for the “Canonical” Problem). Let % < a< %. Assume

u € H}.(0,1] satisfies

If in addition one of the following conditions is satisfied

; 1 2a0,,/ :0
(i) Jim aou(x) =0,

(i) lim (1 — lnm)f1 u(z) =0 when a = %,
x—07F
(1) u € Lﬁ(o, 1) when & < a < 3,

(1v) xli}rélJr 22 lu(z) = 0 when 1 < a < 2,
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then ©w = 0.

Again, to simplify the terminology, we call the unique solution of (3.1) given by
Theorem 3.7 the “Canonical” solution and denote it by uc. We now state the following

regularity result.

Theorem 3.9. Let o = %, k be an positive integer, and f € H*(0,1). Let uc be the
solution to (3.1) given by Theorem 3.7. Then uc € H*T1(0,1) and zuc € H*2(0,1)
with

[uc | e+ + llzuc || grve < C | fll e
where C' is a constant depending only on k.

Remark 3.14. A variant of Theorem 3.9 is already known. For instance in [35], the
authors study the Legendre operator Lu = — ((1 —m2)u’)/ in the interval (—1,1),
and they prove that the operator A = L + I defines an isomorphism from D¥(A) :=
{fue HY(-1,1) : (1-2%)u(z) € H*2(~1,1)} to H*(—1,1) for all k € N.

Theorem 3.10. Let 1 < a < 32 and f € Wl’ﬁ(o, 1). Let uc be the solution to (3.1)
given by Theorem 3.7. Then both uc € WP(0,1) and x** tuy, € WHP(0,1) for all

1<p< 2a1_1 with

2a0—1, 1

HUCHWLP + Hl‘ uCHWI,p <C HfHWLP )

where C' is a constant depending only on p and «.

Remark 3.15. One cannot expect that uc € Wl’ﬁ(O, 1) nor 2% lul, € leﬁ(o, 1).
Actually, there exists an f € C§°(0,1) such that uc ¢ Wl’ﬁ(O, 1) and 22 lul, ¢

Wl’ﬁ(o, 1). See Section 3.3.2 for the proof.

3.1.3 The case 3 <a <1

Theorem 3.11 (Existence for the “Canonical” Problem). Given % <a<landf €
L%(0,1), there ezists a function u € HE, (0, 1] satisfying (3.1) together with the following

properties:
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(i) u € LP(0,1) with ||ul, < C|f|l 2, where p is any number in [1,00) if a = 3,

andp:4a273 if%<a<1.

. _1 : . a3 :
(i1) xli)%h(l—hLT) 2u(z) =0 ifa=3; xlg}ﬁﬁ 2u(z) =04f 2 <a <1

(113) zli}rng x%‘_%u’(a@) = 0.

(iv) x?%~ 1/ € L?(0,1) and x**u" € L*(0,1), with
22 o+ (]| o < CUAN e

In particular, z**u’ € H'(0,1).
Here the constant C' depends only on a.

Remark 3.16. The boundary behavior in assertion (ii) of Theorem 3.11 is optimal in the

following sense: for any 0 < z < % and % < «a < 1, define

1 3
sup ’(1—lnx)_éu(x) , Whena:Z,

=~ Il 2=t
Ko@) = s 3
sup ‘J:Qa*?u(x) , when — < a < 1.
£l 2 <1 4

Then 0 < § < I?a(x) < C, for some constants § and C only depending on a.. See Section

3.3.2 for the proof.

Remark 3.17. The same conclusions as in Remark 3.9 and 3.10 hold for the solution

given by Theorem 3.11.

Theorem 3.12 (Uniqueness for the “Canonical” Problem). Let % < a < 1. Assume

that w € HE (0,1] satisfies

If in addition one of the following conditions is satisfied

: i 2a,,/ — 0’
(3) lim o*u'(z)
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(i1) xli%l+ 2 ty(z) =0,

(i4i) u € L7-1(0, 1),
then u = 0.

We still call the unique solution of (3.1) given by Theorem 3.11 the “Canonical”
solution and denote it by uco. Concerning the regularity of uc for % < a < 1 we have

the following

Theorem 3.13. Let 3 < a <1and f € Wl’Tl—l(O, 1). Let uc be the solution to (3.1)
given by Theorem 3.11. Then both uc € WHP(0,1) and 2**~tul, € WP(0,1) for all
1<p< ﬁ with

2a0—1, 1

HUC’HWLP + H$ uCHWLp <C HfHWl,p )

where C' is a constant depending only on p and «.

Remark 3.18. The same conclusion as in Remark 3.15 holds here.

3.1.4 The case o >1

Theorem 3.14 (Existence for the “Canonical” Problem). Given a > 1 and f € L?(0,1),

there exists a function u € Hfoc

(0,1] satisfying (3.1) together with the following proper-

ties:
(i) ue L*(0,1) with |ull g2 < £z

9 I o3u(z) = 0.
(i1) Jim u(z)

3o
i) lim 25w/ (z) =0,
(113) Jim zzy (x)

(i) z%u' € L*(0,1) and z**u” € L?*(0,1) with ||z%u/| 2 + HJ:QO‘U”HLQ < C|fllz2;

where C is a constant depending only on «. In particular, z**u' € H'(0,1).
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Theorem 3.15 (Uniqueness for the “Canonical” Problem). Let o > 1. Assume that

u e H?

loc

(0, 1] satisfies

If in addition one of the following conditions is satisfied

v
(i) lim+x3+2 5u’(an) =0 when a =1,
z—0

v
(1) lim+x1+2 5u(:c) =0 when a =1,
z—0

(111) lim 2% e Ta u'(x) =0 when a > 1,

z—07F
-«
(iv) lim+ z%e Ta u(z) =0 when a > 1,
z—0

(v) we L'(0,1),
then ©w = 0.

As before, we call the solution of (3.1) given by Theorem 3.14 the “Canonical”

solution and still denote it by uc.

Remark 3.19. For a > %, the existence results (Theorem 3.7, 3.11, 3.14) and the unique-
ness results (Theorem 3.8, 3.12, 3.15) guarantee that the weighted Dirichlet and Neu-

mann conditions yield the same “Canonical” solution uc.

3.1.5 Connection with the variational formulation

Next we give a variational characterization of the unique solutions up, uy and uc

given by Theorem 3.1, 3.4, 3.7, 3.11, 3.14. We begin by defining the underlying space
X*={ue H,(0,1):ue L*0,1) and z°v' € L*(0,1)}, a > 0. (3.9)

For u, v € X“ define
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and

I(u) = a(u,u).

The space X* becomes a Hilbert space under the inner product a(-,-). See Section 3.A
for a detailed analysis of the space X“.
Notice that the elements of X are continuous away from 0 (in fact they are in

H} (0,1]), so the following is a well-defined (closed) subspace

Xy ={ue X*: u(l)=0}. (3.10)

1

Also, as it is shown in the Section 3.A, when 0 < a < 3, the functions in X are

continuous at the origin, making
XG0 ={u € X§ : u(0) =0} (3.11)

a well defined subspace.
Let 0 < a < % and f € L?(0,1). Then the Dirichlet solution up given by Theo-

rem 3.1 is characterized by the following property:

1 1
1 1
up € X§p, and min < —I(v) — /f(ac)v(ac)d:r = —I(up) — /f(:r)uD(x)dac, (3.12)
vexs, | 2 2
0 0
while the Neumann solution uy given by Theorem 3.4 is characterized by:
veXy | 2

uy € X§, and min 1[(?})—/f(x)v(x)dx —;I(uN)—/f(a;)uN(a:)dx. (3.13)
0 0

Let a > % and f € L?(0,1). Then the “Canonical” solution uc given by Theorem 3.7,

3.11, or 3.14 is characterized by the following property:

veX{

1 1
o € X¢, and min %I(v)— / F@)o(@)de S — %I(uc)— / F@)uo(z)de. (3.14)
0 0
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The variational formulations (3.12), (3.13) and (3.14) will be established at the beginning

of Section 3.3, which is the starting point for the proofs of all the existence results.

3.1.6 The spectrum

Now we proceed to state the spectral properties of the differential operator Lu :=
— (mQO‘u’ ), +u. We can define two bounded operators associated with it: when 0 < o <
%, we define the Dirichlet operator Tp,
Tp:L?(0,1) — L?(0,1
(0,1) (0,1) (3.15)
[ —Tpf =up,
where up is characterized by (3.12). We also define, for any o > 0, the following

“Neumann-Canonical” operator T,

T, : L?(0,1) — L?(0,1)

1
uy if0<a< =, (3.16)
f ” Taf = 2

uc 1 o —
C _27

where uy and uc are characterized by (3.13) and (3.14) respectively. By Theorem 3.35
in the Section 3.A, we know that Tp is a compact operator for any 0 < a < % while Ty,
is compact if and only if o < 1.

In what follows, for given v € R, the function J,: (0,00) — R denotes the
Bessel function of the first kind of parameter v. We use the positive increasing se-
quence {Jjuk}re; to denote all the positive zeros of the function J, (see e.g. [67] for a
comprehensive treatment of Bessel functions). The results about the spectrum of the

operators Tp and T, read as:

Theorem 3.16 (Spectrum of the Dirichlet Operator). For(0 < a < %, define vy = %:gg,

and let pyr =14 (1 — oz)QjEOk. Then

o(Tp) = 00 e = A

k=1
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For any k € N, the functions defined by

1_ . —
ul/ok’(z) =x aJVo(]Vokxl a)

is the eigenfunction of Tp corresponding to the eigenvalue A, . Moreover, for fizved

0<ax< % and k sufficiently large, we have

for =1+ (1 — @) [(g (1/0 - ;) +7rk>2 - <u3 - i) +0 (;) : (3.17)

Theorem 3.17 (Spectrum of the “Neumann-Canonical” Operator). Assume o > 0 and

let Ty, be the operator defined above.

(i) For 0 < a <1, define v = gfgclw and let pyr =1+ (1 — a)?j2,. Then

o(Ta) = {0} U {Ayk _ }OO

Huk ) =1

For any k € N, the functions defined by

N

l—a)

k() == 227, (Jurx

1s the eigenfunction of T, corresponding to the eigenvalue A . Moreover, for fized

0 < a <1 andk sufficiently large, we have

™ 1 2 1 1
_— —_— — J— 2 —_— — J—
<2 (V 2) +7Tk:) <1/ 4> +0 (k) . (3.18)
(ii) For o =1, the operator T\ has no eigenvalues, and the spectrum is exactly o(T)) =
4
[0.5]-

(113) For o > 1, the operator T,, has no eigenvalues, and the spectrum is exactly o(T,) =

Muk:1+(1*a)2

0,1].

Recall that the discrete spectrum of an operator T is defined as

04(T) ={A€o(T): T — A is a Fredholm operator},
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and the essential spectrum is defined as

0e(T) = o(T)\og(T).

We have the following corollary about the essential spectrum.

Corollary 3.18 (Essential Spectrum of the “Neumann-Canonical” Operator). Assume

that o > 0 and let T, be the operator defined above.
(i) For0 < a <1, o.(Ty) ={0}.
(ii) For a =1, o.(T1) = [0, 3].

(i1i) For a > 1, o.(T,) = [0, 1].

Remark 3.20. This corollary follows immediately from the fact (see e.g. [37, Theorem
[X.1.6]) that, for any self-adjoint operator T" on a Hilbert space, o4(T") consists of the
isolated eigenvalues with finite multiplicity. In fact, for Corollary 3.18 to hold, it suffices
to prove that o4(T) C EV(T), where EV(T) is the set of all the eigenvalues. We present

in Section 3.4.1.2 a simple proof of this inclusion.

As the reader can see in Theorem 3.17, when a < 1 the spectrum of the operator
T, is a discrete set and when o = 1 the spectrum of T7 becomes a closed interval, so
a natural question is whether o(7},) converges to o(71) as & — 17 in some sense. The

answer is positive as the reader can check in the following
Theorem 3.19. Let o < 1. For the spectrum o(Ty), we have
(i) o(Ts) C o(Ty) for all 3 < a < 1.

(1) For every X\ € o(Ty), there exists a sequence o, — 1~ and a sequence of eigen-

values Ay, € 0(Ty,,) such that A\, — A as m — oo.

Remark 3.21. Notice that in particular o(T,) — o(71) in the Hausdorff metric sense,
that is

dH(U(Ta)va(Tl)) - O’ asa — 17,
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where d(X,Y) = max {sup,c x infyey |2 — y|,sup ey infrex |z — y|} is the Hausdorff
metric (see e.g. [52, Chapter 7]).

Remark 3.22. When « < 1, the spectrum of T, has been investigated by C. Stuart [63].
In fact, he considered the more general differential operator Nu = —(A(z)u’)" under the
conditions u(1) = 0 and lim A(z)u'(z) = 0, with

z—0t

A e C%0,1]); A(x) >0,Vz € (0,1] and lim Alz)

a—0+ X2

=1 (3.19)

Notice that if A(x) = 22®, we have the equality T, = (N + I)~!, where the inverse is
taken in the space L2(0,1). When a < 1, C. Stuart proves that o(/N) consists of isolated
eigenvalues; this is deduced from a compactness argument. When o = 1, C. Stuart
proves that max o, ((N + I)_l) = %. On the other hand, C. Stuart has constructed an
elegant example of function A satisfying (3.19) with o = 1 such that (N + I)~! admits
an eigenvalue in the interval (3, 1]. Moreover, G. Vuillaume (in his thesis [66] under C.
Stuart) used a variant of this example to get an arbitrary number of eigenvalues in the

interval (%,1]. However, we still have
Open Problem 3.1. If A satisfies (3.19) for a = 1, is it true that o.(N+I)~!) = [0, 2]?

Similarly, when a > 1, one can still consider the operator Nu = —(A(z)u’) under

the conditions u(1) = 0 and lim+ A(x)u/(z) = 0, where A satisfies (3.19), and the
z—0

operator (N +1)~!, where the inverse is taken in the space L?(0, 1), is still well-defined.

By the same argument as in the case A(x) = 2?® (Theorem 3.17 (iii)) we know that

o ((N+1)~1) c [0,1]. However, we still have
Open Problem 3.2. Assume that A satisfies (3.19) for o > 1.
(i) Is it true that o((N + 1)~!) = [0,1]?
(ii) Is it true that maxo.((IN + I)~1) = 1, or more precisely o.((N + I)~1) = [0,1]?

The rest of this chapter is organized as the following. We begin by proving the
uniqueness results in Section 3.2. We then prove the existence and regularity results in

Section 3.3. The analysis of the spectrum of the operators Tp and T, is performed in



38

Section 3.4. Finally we present in Section 3.A some properties about weighted Sobolev

spaces used throughout this work.

3.2 Proofs of all the uniqueness results

In this section we will provide the proofs of the uniqueness results stated in the

Introduction.

Proof of Theorem 8.2. Since u € C°(0,1] with lim wu(z) = 0, we have that u € C°[0, 1].

z—0t
1

Notice that, for any 0 < z < 1, we can write z2%u’(2) = /(1) /u(s)ds, which implies

T

that 22“u/ € C[0,1]. Then we can multiply the equation (3.5) by u and integrate by
parts over [g,1], and with the help of the boundary condition we obtain
1

1
/J:Qau’(x)2dx + /u(a:)2dx = 22 (z)u(z)|l = 0, as e — 0T
3

£

Therefore, u = 0. O

Proof of Theorem 3.5. We first claim that u € C°[0, 1]. Since u € C(0, 1] and because

lim 22/ (z) = 0, there exists C' > 0 such that —Cz72* < /(z) < Ca~2%, which
z—0

implies that —Ca!72® < u(z) < Ca'72% hence u € L>(0,1) because 0 < o < 3.
x
1
Write v/'(z) = —~ [ u(s)ds and deduce that v € L>(0,1), thus u € W*(0,1). In
T

0
particular u € C°[0, 1].
Then we can multiply the equation (3.8) by u and integrate by parts over [e, 1], and

with the help of the boundary condition we obtain

1 1
/x2au'(x)2dx + /u(m)Qdaj = 2 (z)u(z)|l = 0, as e — 0T
3

£

Therefore, u = 0. O

Proof of (i) of Theorem 3.8 and (i) of Theorem 3.12. As in the proof of Theorem 3.5,

it is enough to show that u € C°[0,1]. As before, the boundary condition implies
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that u(z) ~ 21729 which gives u € Lé(O, 1). To prove that u € C°[0,1], we first
x

1
write 2271/ (z) = = /u(s)ds. Let po :== 1 > 1. Since u € L?(0,1), one can apply
x

2a1/

0
Hardy’s inequality and obtain ||z | s < Cllullpy - Since u(1) = 0, this implies

that u € X_%O‘_l’po (0,1). By Theorem 3.34, we have two alternatives

e u € L90,1) for all ¢ < oo when o <

win

o u € LP1(0,1) where p; := 51— > pg when 2 < o < 1.

If the first case happens and u € L7(0,1) for all ¢ < oo, then we apply Hardy’s inequality
and obtain u € X%a_l’q(o,l) for all ¢ < oo, which embeds into C°[0,1] for ¢ large
enough. If the second alternative occurs and we apply Hardy’s inequality once more,
we conclude that u € Xza 171(0,1). Therefore, either u € L%(0,1) for all ¢ < co when
a < % oru € LP2(0,1) where pp = =1 when 3 < o < 1. By repeating this argument

finitely many times we can conclude that u € C°[0, 1]. O

Proof of (ii) of Theorem 3.8. Let o = % and suppose that u € HZ (0, 1] satisfies

—(@**u/(2))" +u(z) =0 on (0,1],

lim u@)

——=0.
z—0+ 1 —In(x)

Notice that u € C(0,1] together with lim (1 — Inz)"lu(x) = 0 and the integrability

z—0t

of Inz, gives u € L'(0,1). Define w(z) = u(z)(1 —Inx)~!. It is enough to show that

w = 0. Notice that w solves

(x(1 —Inz)w' (z)) = (1 — Inz)w(z) + w'(x) on (0,1),

w(1) =0, (3.20)

We integrate equation (3.20) to obtain

2(1 - Inz)w'(z /111115 dx:u’(l)/lu(s)ds.
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Since u € L'(0,1), the above computation shows that x(1 — Inz)w'(z) € C[0,1]. Now

we multiply (3.20) by w and we integrate by parts over [e, 1] to obtain

1 1
1
/a:(l —Inz)w'(z)*dx + /(1 —Inz)w?(x)dr = (1 — Inz)w'(z)w(z)|l - iwz(aﬁ)]; — 0,
15 3
as € — 07, proving that w = 0. O

At this point we would like to mention that the proof of (iii) of Theorem 3.8 and

(iii) of Theorem 3.12 will be postponed to Proposition 3.23 of Section 3.3.2.

Proof of (iv) of Theorem 3.8 and (ii) of Theorem 3.12. Let 1 < o < 1 and suppose

that u € H? (0, 1] satisfies

lim 22 tu(x) = 0.
z—07F

Notice that u € C(0, 1] together with lim+ 222 1y(z) = 0 and the integrability of x!=2¢
z—0
for a < 1, gives u € L'(0,1). Define w(z) = 22* tu(x). We will show that w = 0.

Notice that w satisfies
w(1) =0, (3.21)

Integrate (3.21) to obtain

1 1
rw' (z) = w'(1) — /SlQO‘w(s)ds =/(1) — /u(s)ds,

T

from which we conclude zw'(z) € C[0,1]. Finally, multiply (3.21) by w and integrate
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by parts over [¢, 1] to obtain

1 1
1
/xw’(x)de + /wl_Qo‘w(:L‘)Qd:U = zw'(z)w(z)|! — (a - 2) w?(e)
S €
Letting ¢ — 07 and we conclude that w = 0. O

Proof of Theorem 3.15. Assume that (i) holds. Suppose that u € HZ (0,1] satisfies

—(2**/(z)) + u(x) =0 on (0,1],

v
lim 22 5u’(:1:) =0.
z—0*t

s
Let v(z) = z 3 5u(ar:) Then v € H7 (0,1] and it satisfies

—(zv/(x)) + V50 () =0 on (0,1],
v(1) =0, (3.22)
. , 1+5
xll)%l+ (:cv (x) — 5 v(x)) =0,

from which we obtain that zv’ — #v € C[0,1] and xv' — v/5v € H'(0,1). Therefore

v € C[0,1]. Multiply (3.22) by v and integrate over [¢, 1] to obtain

1
/xv'(x)Qd:L' + %vz(e) = (xv’(x) ! +2\/gv(m)> v(z)|]l =0, ase =0T,

£

Therefore v is constant and thus v(z) = v(1) = 0.

Assume that (ii) holds. Suppose that u € H?

loc

(0, 1] satisfies

—(2®u'(z)) + u(x) =0 on (0,1],
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v
Let w(x) = z 2 5u(;r) Then w € H?(0,1] and it satisfies

—(zw'(z)) + V5w () =0 on (0,1],

w(l) =0, (3.23)

Therefore zw’ + /5w € H'(0,1), w € C[0,1], and xw’ € C[0,1]. Multiply (3.23) by w

and integrate over [g,1] to obtain

1

/acw’(x)QdﬂC = zw'(x)w(r)|: —

£

V5
2

(z)|} =0, ase — 0.

Therefore w is constant, so w(z) = w(1) = 0.

Assume that (iii) holds. Suppose that u € H? (0,1] satisfies

—(z%*/ (x)) +u(xr) =0 on (0,1],

u(1l) =0,
3a l—a
lim 22 e T-a u'(z) = 0.
xz—0t+
Ll
Define g(z) = e T-o u(z). Then g € HZ (0,1] and it satisfies

— (g (x)) + (x“g(x)) + 2%¢'(x) =0 on (0,1],
g(1) =0,

lim <z37ag'($) — x%g(x)) =0.

z—0t
Multiply the above by g and integrate over [e, 1] to obtain

1
/ 2200 (2)?de = 22 (2)g() [} — 2°g(2)|}
J (3.24)

= (2% ¢'(@) — 2% g(x)) oE ()]
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We now study the function h(z) := 22 g(z). We have

Hence we can write

ha) = [14+ Sao] e <3O‘ _ 1) /sgﬁ—zg(s)ds (@)~ o)

We claim that there exists a sequence €, — 0 so that

1
lim /332&29(3)ds < 00.
n—oo
En

Otherwise, assume that lim+ f; SSTQ_Qg(s)ds = +o00. Then
e—0

l—«
lim z%eTa u(z) = lim h(z) = £oo.
z—0t+ z—0t

This forces lim+ u(x) = £o0o, so L’Hopi tal’s rule applies to u and one obtains that
x—0

3a Ll ,
. o z'T® . z2el-au(x)
lim z2e = u(r) = lim —p—-——+ =0,
z—0F z—0t —gr —1

which is a contradiction. Therefore lim+ h(ey) exists for some sequence &, — 0. Fi-
en—0

1
nally, use that sequence &, — 07 in (3.24) to obtain that /ang'(m)de = 0, which
0

gives ¢ is constant, that is g(x) = g(1) = 0.
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Assume that (iv) holds. Suppose that u € H? (0, 1] satisfies

—(2**/(z)) + u(x) =0 on (0,1],

o ziT®
lim z2e 1= u(x) = 0.
z—0t+

et

Let p(z) = eTa u(x), then w satisfies

— (P (x)) + (x“p(x)) + z*p'(x) =0 on (0,1],
p(1) =0, (3.25)

lim 22 p(z) = 0.

z—0t

We claim that lim xsTap'(x) exists, thus implying that x%ap’(x) belongs to C[0,1].

z—07F
Define ¢q(z) = x%ap’(x), then using (3.25) we obtain that, for 0 < z < 1,

d(x) = =5 % (@) + aa p(a) + 209 (a).

A direct computation shows that, for 0 < x < 1,

1 1
/q'(s)ds = % <32a - 1> /x32a_2p(s)ds + %xa_lx%p(x) — 222 p(x).

x

Since z2p(z) € C[0, 1], we obtain that :L‘%_2p(l‘) € LY(0,1), which implies that

is continuous and that the lim g¢(x) exists. We now multiply (3.25) by p(z) and inte-

z—0t

grate by parts to obtain

o

1
3a a
/‘ﬂ”%p’(%)2 = a2 p(z)z2p(z)ly = 0.
0
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Thus proving that p(x) is constant, i.e. p(z) = p(1) = 0.

Finally assume that (v) holds. Define k(z) = x2®u/(x). Notice that since u €
1

LY(0,1) N HZ.(0,1], from the equation we obtain that k(z) = u'(1) — /u(s)ds, S0

x

k(z) € CY[0,1]. We claim that k(0) = 0. Otherwise, near the origin u/(z) ~ z72% and
u(x) ~ 2'72% which contradicts u € L'(0,1). Therefore, lim+ 220/ () = 0. We are
z—0

now in the case where (i) or (iii) applies, so we can conclude that u = 0. O

3.3 Proofs of all the existence and the regularity results

Our proof of the existence results will mostly use functional analysis tools. We take
the weighted Sobolev space X“ defined in (3.9) and its subspaces X, and X§ defined
by (3.11) and (3.10). As we can see from Section 3.A, X® equipped with the inner

product given by

1
/ 20/ ()0 (2) + ulz)o(x)) da,
0

is a Hilbert space. X, and X are well defined closed subspaces. We define two notions
of weak solutions as follows: given 0 < o < § and f € L?(0,1) we say u is a weak solution

of the first type of (3.1) if u € X, satisfies

1 1 1
/x2au’(a:)v’(a?)dac + /u(a:) /f x)dx, for all v € X{; (3.26)
0 0 0

and given a > 0 and f € L?(0,1) we say that u is a weak solution of the second type of

(3.1) if u € X§ satisfies

1 1 1
/m2au’(x)vl($)dx+ /u(:v) /f x)dx, for all v € X§. (3.27)
0 0 0

The existence of both solutions are guaranteed by Riesz Theorem. Actually, (3.26) is
equivalent to (3.12), while (3.27) is equivalent to (3.13) or (3.14) (see e.g. [11, Theorem
5.6]). As we will see later, the weak solution of the first type is exactly the solution up

mentioned in the Introduction, whereas the weak solution of the second type corresponds
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to either uy when 0 < a < % or uc when o > %

3.3.1 The Dirichlet problem

Proof of Theorem 3.1. We will actually prove that the solution of (3.26) is the solution
we are looking for in Theorem 3.1. Notice that by taking v € C§°(0,1) in (3.26) we
obtain that w(x) := 2%/ (z) € H'(0,1) with (2?%/ (7))’ = u(z) — f(z) and ||| ;2 <
2| f|l 2. Also since u € X, we have that «(0) = u(1) = 0.

Now we write

T

u(z) = /u’(s)ds =—

0

1
1 -2«

2 I 12 zu'(x)
/(s u'(s)) s ds + 190
0

where we have used that lim su/(s) = lim s?*u/(s)-s'72* = 0 for all @ < 3. It implies
s—0t s—0t

that

ZCQa’U,/(.’IJ) 2a—1

x
201 x 2 I 1-2
x4 u(x) = T 20 —i—2 _1/(30‘1/(5)) s *%ds,
0

and
x

(xZaflu(:L,))’ _ x2a2/ (82aul(8))/8172ad8.

0

From here, since a < %, we obtain

’(zza*lu(x))/

so Hardy’s inequality gives

H (ac%‘_lu),

i 22 @]

BETIE P

Therefore, xZ"‘_luHHl < C||fll2, where C' is a constant depending only on a. Com-
bining this result and the fact that 22%u’ € H'(0,1), we conclude that z2%u € H?(0,1).
Also notice that u € C%'72%[0,1] is a direct consequence of z?*~lu € C[0,1] N

C1(0,1]. The proof is finished. O
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Proof of Remark 3.1. Take f € C§°(0,1). We know that u(x) = A¢i(z) + Boa(z) +
F(z) where ¢1(z) and ¢o(x) are two linearly independent solutions of the equation

—(2?*d/(x)) + u(x) = 0 and

T x

F(a) = 01(a) [ f(s)6a(6)ds — énla) [ F(s)on()ds.

0 0

Moreover, one can see that ¢;(x) = azéfafi (mll_—_;) where f;(z)’s are two linearly inde-

pendent solutions of the Bessel equation

2
2¢"(2) + 24 (2) — | 22+ <i :Z) #(z) = 0.

By the properties of the Bessel function (see e.g. |67, Chapter III]), we know that near

the origin,
o1(x) = a1zt 72 p a3 pagad T+ for 0 < a < ok
and
b2(z) = by + box® 2 4 bt 4 b0 1 for0<a< 1.
Also,
1
$1(0) =0, ¢2(0) # 0, ¢1(1) #0, for 0 < a < 5
lim_[1(z)] = o0, lm ga(z) = by, fora > 5
im )| =00, lim ) = or o > —,
0+ ! ’ z—07t 2 b -2
and

lim 229¢)(z) # 0, lim 2**¢h(z) =0, ¢o(1) #0, for 0 < a < 1.
z—0t r—07t
near the origin. Therefore, when imposing the boundary condi-

I ake f such

Notice that F(z) =0
, we obtain u(x) = A¢1(z) + F(x) with A = Ta)

tions u(0) = u(l) =

that
1

F(1) = / F(5)[Ba(s)br(1) — du(s)da(1)]ds % 0.
0
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Then u(z) ~ ¢1(x) near the origin and we get the desired power series expansion. [

Proof of Remark 3.3. From the proof of Theorem 3.1, we conclude that w € C°[0,1]

with ||w||o < 2] f|| 2. From here we have
/(@)] = (@) < w] a2
Thus, for 1 <p < i,

HU,HLP < wl| o Hx_QaHLz)(oJ) < C(a,p) Ifll,-

O]

Proof of Remark 38.5. 1f we take f(x) := —(2%%u/(x)) +u(x), where u(x) = 21 72%(z—1),
we will see that v ¢ C%P[0,1], VB > 1 — 2a. When u(z) = azgﬁa(a} — 1), we will see
that 229 1y ¢ H?(0,1), 22’ ¢ H?(0,1), and z%*u ¢ H3(0,1). O

Proof of Remark 3.6. From [30] we know that the function g exists and 2?%¢/(x) €

L*>°(0,1). Therefore, integration by parts gives

1 1
/&umex:/—wmwmwmm+uwM@Mx=nme'm»
0 0

z—0t

And the L’Hopital’s rule immediately implies that

1
lim 2% lu(z) = lim
z—0t z—0+ 1 — 2«

1
s (@) = oo [ F@gta)da.
0

Before we prove Theorem 3.3, we need the following lemma.

Lemma 3.20. Let 0 < o < 5 and ko € N. Assume u € WtP(0.1) for some p > 1.

loc

If lim+ u(xz) = 0 and lim+ J:k_Qaj;,%l (szo‘u/(s)) =0 for oll 1 < k < kg, then for
z—0 z—0
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0<z<1
d* e [ pon d
s (z** () = 2**~ 1/3 *20‘@ (s (s)) ds, for all 1 <k < ko
0
Moreover
A" st ' d* 5
— (2 <Cll— (z*%u ,
| @ <o )]

where C' is a constant depending only on p, a and k.

Proof. When kg =1 we can write

20—1 / 201 r 2, 1 s'—2e ,d
(z u(z)) = |z /s u'(s) <1 —2a> s
0

200—1 2a,,/
B . / (szo‘u'(s))/sldads + r e\ (z)
0

2 1 -2«
x
— x2a2/ (s2au'(s))/ st (s,
0

The rest of the proof is a straightforward induction argument. We omit the details. The
norm bound is obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality

when p > 1. [

Proof of Theorem 8.5. Notice that lim x?72“ (sQau’(s))/:O since both v and f are

z—0t
continuous. With the aid of Lemma 3.20 for kg = 2 we can write

x x
(1’20171"&(%))” _ $2a3/822a (SQO(UI)” ds — x2a3/822a (U(S) . f(S))/ ds
0 0
The result is obtained by using the estimate in Lemma 3.20. O

Proof of Remark 3.8. We use the same notation as in the proof of Remark 3.1. We
know that u(z) = A¢i(x) + Bea(x) + F(z) where ¢1(x) and ¢2(x) are two linearly
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independent solutions of the equation —(x?%/(x))’ + u(x) = 0 and
Fz)=1,if f=1,

or
T T

F(z) = é1(2) / £(5)6a(s)ds — é(x) / F(5)é1(s)ds, if f € C5(0,1).

0 0

In either case we have F' € C|0, 1]. We also know that

T [61(2)] = o0, lim 6a(s) = by, for a >

N | —

Therefore, if one wants a continuous function at the origin, one must have A = 0. Then

u(z) = Boa(z) + F(x). We see now that the conditions u(1) = 0 and lim wu(xz) =0 are

x—0t

incompatible. O

3.3.2 The Neumann problem and the “Canonical” problem

Proof of Theorems 5.4, 8.7, 3.11. For 0 < a < 1, let u € X§ solving

1 1 1
/:UQO‘u'( ' (x )d:v+/u /f x)dz, for all v € X§.
0 0 0

First notice that

lull 2 + [0 || o < 11£1] 2

Also, if we take v € C5°(0, 1), then 22/ € H'(0,1) with (z?*u/(z)) = u(z) — f(x).
We now proceed to prove that w(z) := 2%/ (z) vanishes at = 0. Take v € C?[0, 1]

with v(1) = 0 as a test function and integrate by parts to obtain

1
/ ? (z)) + u(z) — f(2)) v(z)dr = lim 2**u/(z)v().
0

z—0t

The claim is obtained by taking any such v with v(0) = 1.

The above shows that w(z) := z?*u/(x) € H'(0,1) with w(0) = 0. Then, notice
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that for any function w € H'(0,1) with w(0) = 0 one can write

1
T T 2

w@)| = | [ w@)ds] <ot | [wpar)
0

0

thus

Also, Hardy’s inequality implies that % € L?(0,1) with ||2]|,, < 2]jw'||,>. Now
recall that w'(z) = (2%*/'(2))" = u(z) — f(2), so [w'llp> < llullpz + [1fll L2 < 201 £l
Hence we have the estimate |22 /||, < 4| f|.>

In order to prove me ”H

2au//(x) — (x2au/(x))/ _ 2041:20‘_11/(.%).

< C||fll 2, one only need to apply the above estimates

and notice that =

By Theorem 3.34, property (i) of Theorems 3.4, 3.7, 3.11 is a direct consequence of

the fact that u € Xga_l.

Finally we establish the property (ii) of Theorem 3.11. For o = %, first notice that
1

; /.I u=(x u-(x
/x 1 —ln:l: de < _O/x (il(bl(wlltn(x; N 1:2(12( 1)nx) + x2(12(1r)133)2> dz

0

thus

1
/ —————dr <2 /lu(sc)méu'(ac)dx . (3.28)
) xl—lnx ) 2(1—Inzx)

Now Hélder’s inequality gives (1 —In x)_laf%u(x) € L?(0,1). Therefore
(1- lnm)_1u2(m))/ = (1 —Inz) 2z u?(2z) +2(1 — lnx)_lx_%u(:v)m%u'(m) e L'(0,1),

1
S0 lim+ (1 —Inx) 2 u(z) exists. If the limit is non-zero, then near the origin one has
z—0

(1—In x)_laféu(:z) ~ (1—In a:)%afé ¢ L?(0,1), which is a contradiction. For 3 < a <
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1, notice that

1 1

1
24 3u2 () = — / (th3u2 (1)) dt = —(4a — 3) / tho= 42 (t)dt — 2 / 439/ (H)u(t)dt.

x x

Since we know z2*~1u’ € L?(0,1), Theorem 3.33 implies that #2“~2y € L?(0, 1), hence

lim+ $2a—§u(x) exists. If the limit is non-zero, then near the origin u(z) ~ z2—2 ¢
z—0

2
L7=3(0,1), which is a contradiction. O

Proof of Remark 3.10 for all 0 < o < 1. First notice that

2203y f/ ds.

x?a—%uf(x)’ <2l i K(z) <2

On the other hand, for fixed 0 < z < %, define

Therefore,

1
72 H0<t<zx

ft) =
0 ifr<t<l
Then ||f|,= = 1. Consider first the case when 3 < o < 1. From Theorem 3.11 we

obtain that u € Xga_l, which embeds into LP0 for py = ﬁ > 2. Thus one obtains

1 1_1
that ﬁ/u(s)ds < 2 »o. Then

| V

%\

1\2 7
/ ))ds >1—;102 P021— 3 .
0

1_1
Therefore K () > 84 for 6, :=1— (1)27 70, Notice that when 0 < a < 3, then u € L?
2 1

for all p > 1, so the above argument remains valid. The proof is now finished. O
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Proof of Remark 3.11 for all o < % To prove (3.7), first notice that, from [30], the func-

tion h exists and 23 h € L*>(0,1). Therefore, integration by parts gives

z—0t

1 1
[ f@hia)de = [ (@ @) ha) + u@h(@)ds = lin ).
0 0

In order to prove the further regularity results we need the following

Lemma 3.21. Let o > 0 be a real number and kg > 0 be an integer. Assume u €

Wko+2,p(0 1) fO’/’ some p > > 1 and lim $k d* (xQO‘u/( )) =0 fO’r‘ all 0 < k < kJQ. Then

toc z—07t dak
forO<z <1
dk 2a0—1 / k dk+1 2 /
o— (6%
s (z = 5 / dsk+1 u'(s))ds, forall 0 <k < ko.
0
Moreover
dk ( 200—1 /) < C dk+1 ( 2a /)
— (x U %
dxk o ||daRtT I

where C' is a constant depending only on p, a and k.

Proof. If kg = 0 then the statement is obvious. When kg = 1, the condition
2,/ /
z (z°*u (x)) — 0

gives
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The rest of the proof is a straightforward induction argument. We omit the details.
The norm bound is obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality

when p > 1. O

Proof of Theorem 3.6. Assume that f € Wl’i(o, 1). First notice that for 1 < p < QL
we have v/ € LP since x2%u' € H'(0,1). Also notice that z(z?**u/(x)) = z(u — f) = 0

since both u and f are continuous. We use Lemma 3.21 for kg = 1 to conclude

@2 < Ol = = 1Y < C Ul

2a u” 2a—1u/ o

where C'is a constant only depending on p and . Recall that x =u—2azx

f € WhP(0,1). It implies
[ (2)] = [ | 272 < C| fllyrp 272,

where C' is a constant only depending on p and «. The above inequality gives that
u € W?P(0,1) forall 1 < p < ﬁ, with the corresponding estimate.

Assume now f € WZﬁ(()’ 1). We first notice that z (anu’(a;))// =22 (u—f) =
2%/ (2)2? 72 — 22 f'(x) — 0 as & — 0T since f € C'[0,1]. This allows us to apply
Lemma 3.21 and obtain

T

1 1
(an*lu'(:z:))”: x3/82 (SQQUI /” 3/ ))//dS.
0

0

Lemma 3.21 also gives the desired estimate. O

Proof of Remark 3.12, 83.15, 8.18. 1t is enough to prove the following claim: there exists

f € C§°(0,1) such that the solution u can be expanded near the origin as
w(z) = by 4 box? 2% 4 byat ¥ 4 pyab0> 4 ... (3.29)

where by # 0, by # 0.

We use the same notation as the proof of Remark 3.1. Take f € C5°(0,1). We know



55

that u(x) = A¢1(x) + Boa(x) + F(x) where ¢1(z) and ¢2(x) are two linear independent

solutions of the equation —(x?%/(z))" + u(x) = 0 and

T

F(z) = ¢ (x) / £(s)n()ds — da(a) [ F(s)6x(s)ds
0

0

Moreover,

lim 22%¢)(z) # 0, xliré1+ 2@l (x) =0, ¢a(1) #0, for 0 < a < 1.

z—0t

Notice that F'(z) = 0 near the origin. Therefore, the boundary conditions

lim z2*u'(z) = u(1) =0

z—0t
imply that we have u(z) = Béz(z) + F(x) with B = _qu(l)) Take f such that
1
/f (1) — ¢1(s)92(1)]ds # 0.
0

Then u(z) ~ ¢a(x) near the origin and we get the desired power series expansion. [

Proof of Theorem 8.9. When k = 0 we have already established that u € X° = H'(0,1).
Also, we have that zu” € L?, so (zu)” = (u+ zu/) = 2u' + zu”, that is zu € H?(0,1).
When k = 1, notice that z (zu/(x)) = z(u— f) — 0 since both f and u are in

H'(0,1). we use Lemma 3.21 to write

u”(:v):::Q/s(su " 12/ (5))' ds.
0

We conclude that u” € L?(0,1) using Lemma 3.21. The rest of the proof is a straight-

forward induction argument using Lemma 3.21. We omit the details. O

Lemma 3.22. Suppose 0 < a < 1 and let f € L>=(0,1). If u is the solution of (3.27),
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then u € C°[0,1] and 221/ € L>(0,1) with
lull oo + [|2* 7 || oo < ClIFll o0

where C is a constant depending only on «.

Proof. To prove z?* 1y € L°(0,1), it is enough to show that u € L°(0,1) with
lull oo < ClIfll - Indeed, if this is the case, by (3.27) we obtain that z?*u’ €

Whee(0,1) with lim 22%u/(x) = 0. By Hardy’s inequality, we obtain that

z—0t

2% | oo < Caa [ £l oo -

Now we proceed to prove that u € C°[0,1]. First notice that if o < 2 then u €
C°[0,1] by Theorem 3.7. So we only need to study what happens when % <a<l.

Suppose % < a < 1. Since u € X?*! we can use Theorem 3.34 to say that
u € LP(0,1) for pg = 25, 80 g := f —u € LP(0,1). From (3.27) we obtain that
(mzo‘u’(x))/ = g(z), therefore x?%u' € W1P0(0,1). Since pp > 1 and xl_i>%1+ 2%/ (x) = 0,
we are allowed to use Hardy’s inequality and obtain that x?*~'v’ € LP°(0,1). Using
Theorem 3.34 once more gives that either u € C°[0,1] if o < %, in which case we are

done, or uw € LP1(0,1) for p; := %7 if % < a < 1. If we are in the latter case, we

8a
repeat the argument. This process stops in finite time since a < 1, thus proving that

u € C[0,1]. O

Proof of Theorems 3.10 and 3.13. We begin by recalling from Lemma 3.22 that if f €
L>(0,1) then 2z?* !/ € L>(0,1), so |[u/(z)| < ||/ (z)||, - #'72*. This readily
implies u € W1P(0,1). Now just as in the proof of Theorem 3.6 we can use Lemma 3.21
and write

T x

@ @) = [ s o) ds = o [ stu(s) - f5))ds.

0 0
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Notice that |zu/(z)] < ||z~ 1/ 2=2a From here we obtain

[P
@ @) < O (|22 | o 72+ [ F]] ) -

The conclusion then follows by integration. O

Proof of Remark 8.16. First notice that, from the proof of (ii) of Theorem 3.11, when

3

a:Z,

‘(1 —lnx)_% u(m)‘ < C‘

1
24/()| , <CIfle

and when % <a<l,

‘5620“%(95)‘ < Ca [z (@) (o < Call £l 2 -

That is, Ky(x) < C,. On the other hand, we can write

1

u(z) = / ﬁia /t (u(s) — f(s))dsdt
0

T
1

1 17 £t
ST (U o O
0

o | et - syt - i [uta— [ 5

When o = %, for fixed 0 < z < %, take

0 if0<t<u,
f(t) =

t_%(—lnm)_% itz <t<l.

Then || f||;2 = 1. Since u € LP(0,1) for all p < 0o, we can say that, there exists M, > 0

independent of x such that

1 1
/(u(t) f(t))dtﬂil/u(t)dt/tgit)ldt < M,
0 T
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Then

Rulz) > 1 (—lnx)% M, .
T 2a -1 (1—1113:)% (1—1na;)%

When 2 < a < 1, for fixed 0 < z < 1, take

72 fo<t <z,
ft) =

0 fx<t<l.

Then || f||;2 = 1. Since v € LP°(0,1) for py = ﬁ > 2, we can say that, there exists

M, > 0 and 7, > 0 such that

1 T 1
_3 1 o3 u(t
2273 /(u(t) — f(t)dt — ﬁ/u(t)dt z? Q/tQ‘E_)ldt < Myxe
0 0 T
Then

~ 1

Kq(z) > 5 ] (1 — Myz7).
a —_—

Now, for % <« < 1, take g4 > 0 such that I?a(x) > i forall0<ax <eq Ifeqg << %,
we take f(t) = —2(3 — 2a)t + 3(4 — 2a)t* 4+ 372 — 172 hence u(t) = 3720 — ¢172,

Notice that 0 < || f]| ;2 < 10, so we obtain

~ xr2 —x2 Ea — €&
K > > >0
o(#) 2 —5— 2~ ’
5 3
foralle, <z < % The result follows when we take d, := min {}1, T } O

Proof of Theorem 3.14. Let u be the solution of (3.27). By definition of u, we have
that u € L?(0,1) and 2%u’ € L?(0,1). As in the proof of Theorem 3.4, we have that u

satisfies (3.1), w(z) = 22/ (x) € H'(0,1), w(0) = 0 and for any function v in X§,

1' 2a0, 1 — 0.
Jim, u' (z)v(x)
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Take v(z) = 2%/ (z) — u/(1). Since o > 1, we have
%z (x)) = w'(z) — azx® tz™d/ (z) € L*(0,1),

which means that v € X§. Thus we obtain

lim+ 3330‘1/2(56) =0.
z—0

To prove that lim x%u(:c) = 0, we first claim that lim x%u(x) exists. To do this,

z—0t z—0t

1
we write z%u?(x) = — /(SQUQ(S)),dS. Notice that
x

(z%u*(x)) = az® 1 u?(z) + 20/ (z)u(z) € L1(0,1).

Therefore .
lim z%u?(z) = —/(SQUQ(S))/dS.
z—0t
0
Now, we can conclude that lim z2wu(z) = 0. Otherwise, u(z) ~ 2~ 2 ¢ L2(0,1). O

z—07t
Before we finish this section, we present a proposition which will be used when
dealing with the spectral analysis of the operator T,. Also, this proposition gives the

postponed proof of (iii) of Theorem 3.8 and (iii) of Theorem 3.12.

Proposition 3.23. Given % < a <1and f € L*0,1), suppose that u € HE (0,1]
solves
— (@ (2)) + u(z) = f(x) on (0,1),
u(1) =0, (3.30)

u € LTl—l(O7 1).

Then u is the weak solution obtained from (3.27).

Proof. We claim that z%u/ € L2(0,1). To do this, define w(z) = 22*u/(z). Then

w € HY0,1). If w(0) # 0, then without loss of generality one can assume that there
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exists § > 0 such that 0 < My < w(z) < Ms for all = € [0,0]. Therefore,

1) 6 é
M1 M2

T x x

It implies that
Mi(Inéd —Inz) < u(d) —u(z) < My(Ind — Inx), Vz € (0,4],

when o = %, and

My 1 1 My 1 1
200 — 1 <x2a—l B 62a—1> < U(5) - U($) < 20 — 1 (I‘Qa—l - 5204—1) ) Vr € (076]7

1
when o > 1. In either situation, we reach a contradiction with v € L?-1(0,1). There-

fore, w(0) = 0, so Hardy’s inequality gives

1 1
ZUQ X ’LU2 A
o= [ < [ <
0

2
0

Since w € H'(0,1) satisfies w(0) = 0, we conclude that, in the same way as in the

proof of Theorem 3.7, that lim xféw(x) = 0. Now, integrate (3.30) against any test

z—07F

function v € X§ on the interval [, 1] and obtain

/anu’(x)v’(x)dm—i—ahu’(s)v(e) —i—/lu(:c)v(:c)dx = /f(x)v(x)dm

£

Since % < a <1, we write

g2/ (e)v(e) = [EQQ_%’LU(F:)} [sﬁv(e)] .

The estimate (3.47) tells us that

x%v(:v)’ < Cq |Jv|l,,, s0 we can send e — 0T and obtain

(3.27) as desired. O
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3.4 Analysis of the spectrum

3.4.1 The Operator T,

In this section we study the spectrum of the operator T,. We divide this section into
three parts. In subsection 3.4.1.1 we study the eigenvalue problem of T, for all a > 0.
In subsection 3.4.1.2 we explore the rest of the spectrum of T, for the non-compact case

a > 1. Finally, in subsection 3.4.1.3, we give the proof of Theorem 3.19.

3.4.1.1 The Eigenvalue problem for all a > 0

In this subsection, we focus on finding the eigenvalues and eigenfunctions of Tj.
That is, we seek (u,\) € L?(0,1) x R such that v # 0 and T,u = Au. By definition of

T,, in Section 3.1.6, we have A # 0 and the pair (u, \) satisfies

> =

1 1 1
/anul(l’)’Ul(I)dl‘-l-/u(I)U(I)dCE = /u(a:)v(a:)daz7 Vv e X§. (3.31)
0 0 0

From here we see right away that if A > 1 or A < 0, then Lax-Milgram Theorem applies
and equation (3.31) has only the trivial solution. Also, a direct computation shows that
u = 0 is the only solution when A = 1. This implies that all the eigenvalues belong to
the interval (0,1). So we will analyze (3.31) only for 0 < A < 1.

As the existence and uniqueness results show, it amounts to study the following

ODE for p := % > 1,
— (2% (2)) + u(z) = pu(z) on (0,1), (3.32)
under certain boundary behaviors. To solve (3.32), we will use Bessel’s equation
v f" () +yf' (y) + (v* = v*) fly) =0 on (0,00). (3.33)

Indeed, we have the following

Lemma 3.24. For a # 1 and any 8 > 0, let f, be any solution of (3.33) with parameter



V= (33‘3) and define u(x) = x%_afl,(ﬁxl_a). Then u solves

_( 2/

224/ (2)) = B(a — 1)%u(z).
Proof. Notice that by definition

1 1

W(@) = (5 = a)e 2L (B ) + B - a)ar > f (B ),

and thus 22%u/(z) = (4

5 a)x_%+afy(ﬁxl_a) +5(1— a)x%fé(ﬂxl_a). A direct compu
tation shows that

2
) B+ o - D)

+ (o — 1% f (B ).

Using (3.33) evaluated at y = So!~ gives

(v? = 2P £, (B =0) = Bt (B0 + Bt TSy (B2t TY). (3.34)

Multiply (3.34) by («a — 1)2x0‘_% and obtain

(1 (o — 1)23:0‘_3

— B(a =122 ) f,(Ba' ) = B2(a — 1)Pa O f)(Ba' )

+ Bl —1)% 5 fL(Bz" ).

Thus we obtain, by our choice of v,

62
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— —B%(a — 1)%u(a).

The proof is now completed. O

We will need a few known facts about Bessel functions, which we summarize in the

following Lemmas (for the proofs see e.g. |67, Chapter III]).

Lemma 3.25. For non-integer v, the general solution to equation (3.33) can be written

as

fulx) = C1J,(x) + Cod (). (3.35)

The function J,(z) is called the Bessel function of the first kind of order v. This function

has the following power series expansion

401555 (3) * st ()

A similar expression can be obtained for J!(x) by differentiating J,(x).

Lemma 3.26. For non-negative integer v, the general solution to equation (3.33) can
be writlen as

fulz) = Cirdy(z) + CoY,(x). (3.36)

The function J,(x) is the same as the one from Lemma 3.25, and the function Y, (z) is
called the Bessel function of second kind which satisfies the following asymptotics: for
0<x<<l,

2 () +9] #fv=0,

N &) M P}

n
where v := lim (Z T— ln(n)) is Euler’s constant.
k=1

Remark 3.23. We have been using the notation f(z) ~ g(z). This notation means that

there exists constants ¢, co > 0 such that

crlg(@)] < [f(@)] < ezlg()]-
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Remark 3.24. Suppose that o # 1, and let 8 = ¥£=1. Then Lemma 3.24, 3.25 and 3.26

lo—1]"

guarantee that the general solution of (3.32) is given by

(@) Cl:r%_aJ,,(B:rl*a) + CQJ:%_O‘J_V(BJUPO‘) if v is not an integer,
u(z) =

Clg;%*ajy(ﬁxl—a) + C’g:c%*aY,,(ﬁxl_a) if v is an non-negative integer.
(3.37)

Now the problem has been reduced to select the eigenfunctions from the above family.

We first study the eigenvalue problem for the compact case 0 < a < 1.

Proof of (i) of Theorem 3.17. We first consider the case when 0 < o < % In this case

_1
notice that v = Of_; is negative and non-integer. From theorems 3.4 and 3.5, and

equations (3.31), (3.32) and (3.37), we have that the eigenfunction is of the form

u(z) = C’lx%*aj,,(ﬁxlf‘l) + ng%*aJ_l,(Bwlfa)

with f = Y=L lim 22*¢/(z) = 0 and w(1) = 0. Then Lemma 3.25 gives that

L
—v(1_
2/ (z) ~ 02%. so the boundary condition Ili)%l+ 2y’ (x) = 0 forces Cy

to vanish. Therefore u(x) = Clm%_aj,,(ﬁmlfa). Now, the condition u(1) = 0 forces /3
to satisfy J,(B8) = 0, that is 5 must be a positive root of the the Bessel function .J,, for

v=-—2

a— L
11—«

Therefore, we conclude that if we let j,i be the k-th positive root of J,(z), then

upk(z) = x%_ajy(jykxl_a), k=1,2,...

are the eigenfunctions and the corresponding eigenvalues are given by

1
1+ (1— )22’

Aok = k=1,2,....

Next, we investigate the case when % < a < 1. In this case, v =

2a—1

5-9q 18 non-

negative and could be integer or non-integer. Using Lemma 3.25 and 3.26, we obtain
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the asymptotics of the general solution near the origin,

;

F(Sﬁ;u + 51,%121”):51_20‘ if @ > 1, and v is not an integer,
u(x) ~ F(Sﬁ;? - 2”1;(,,”7302x1_20‘ if a0 > %, and v is an integer,
C18” 2C : 1
\ r(uﬁ)zv + 2 I(Bvz) +9] ifa=3.

Now Proposition 3.23 says that it is enough to impose u € Lﬁ(o, 1) which forces
Cy = 0 and u(x) = C’lxéfoﬂ]y(ﬁxl_a). Moreover, the condition u(1) = 0 forces /8

to satisfy J,(8) = 0, that is S must be a positive root of the Bessel function J,, for

UV =

As before we conclude that
upk(x) = x%_O‘Jy(jykxl_o‘), k=1,2,...

are the eigenfunctions and the corresponding eigenvalues are given by

1
L+ (1— )22’

Aok = k=1,2,....

Finally, the asymptotic behavior of j,; as k — oo is well understood (see e.g. |67,

Chapter XV]). We have

m 1 4% -1 1
we=rn+ 3 (v-3) - : +0(5): (3.38)
) s s o) R

Using (3.38), we obtain that

o |
N\
<
|
N |
~
+
3
5
~__

no
|
/N
AN
no
|
>~ =
~_

o =1+ (1 —a)? !(W

O]

Next we consider the case a = 1. In this case, the equation (3.37) is not the general

solution for (3.32). However, as the reader can easily verify, the general solution for
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(3.32) when a =1 is given by

_14 5 _1_ 5
Cix 2 VI TH L Cyp 2 Vi H foru<g,

u(z) = Clx’% + C’g:c*% Inz for pu = %, (3.39)

Clx_% oS ( “w— %lnx) + ng_% sin( “w— %lnx) for p > g.
With equation (3.39) in our hands, we can prove the following:

Proposition 3.27. If a =1, then T, has no eigenvalues.

Proof. For the general solution given by (3.39), we impose u(1) = 0, and obtain that

any non-trivial solution has the form:

(1. [5_ e
Cx 27Vi “<1—x2 4 “) foru<%,

wz) = Crtlng for p = %7

C’x_%sin( u—%lnx) for pn > 2,

for some C' # 0. From here we see right away that if yu > g then u ¢ L?(0,1). And

when p < %, we obtain that

1 1
. 1\ 2
/u2(w‘)dm: CQ/x_HQV‘l_” (1 — 2’ 4_“> dx.
0

0

Let y = 2V i_“, so this integral becomes

/ / 1\* C? %1
2 _ 2 —
/u (a:)da:-C/(l—y) dy > 4/y2dy—+oo.
0 0 0

This says that when o = 1, there are no eigenvalues and eigenfunctions. O

Finally we investigate the case a > 1. To investigate the eigenvalue problem in this

case, we need the following fact about the Bessel’s equation.
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Lemma 3.28. Assume that f,(t) is a non-trivial solution of Bessel’s equation
I + L (8) + (2 = ) [ () = 0. (3.40)

Then [[°tf2(t)dt = oo, Vs > 0,Yv > 0.

Proof. We first define the function g, (t) = f,(bt), for some b # 1. Then g,(t) satisfies
the ODE

t2g,(t) + g, (1) + (b*t* — v?)gu (1) = 0. (3.41)

From equation (3.40) and (3.41), we have

() (0)gu(t) = fo()gy () + (£, (E)gu(t) — o (t)g,(£)) + (1 = b°) fu(t)gu (t) = O,

or

t(f (8 (t) = fo(D)gn(t) + (FL(D)gu(t) = fu(t)g,(£) + t(1 = b) fu()gu(t) = 0,

i.e.
d

dat [t(fz//(t>gu(t> - fl,(t)gl/,(t))] +t(1 - bQ)fl,(t)gl,(t) =0.

Integrating the above equation we obtain

N
/ (s = YD) = SN

S

 sU()g0(5) — Fo(s)ab(s))
b2 —1
_ NN (BN) — bN £, (N) £ (bN)
b2 —1
$11()1,(bs) — bsf (s).f3 (bs)
b2 —1

£ A- B.



68

We then pass the limit as b — 1. Notice that

N f(N)fv(bN) = bN f,(N) f (bN)

lim A = lim

b—1 b—1 b2 —1
o NN £LON) — N (NJJLBN) = BN £, (N) £1(bN)
b—1 2b
_ NN)SN) = NA(N)FN) = N2f (N) ()
2
= L (N?J2(N) + N2£2(N) = 2 R2(N))
and
SIS (bs) — b () (bs)
b—1 b—1 b2 —1
= 3 (PF2) + 2 F2s) — 2 F2(s))
Therefore
N
[kt = 5 (N F20) + N EN) = R N) = 5 (126 + 813 — 1)

s

Sending N — oo, we deduce from the asymptotic behavior of the Bessel’s function that
o0

/tff(t)dt = oo. O

S

Proposition 3.29. If a > 1, then T, has no eigenvalues.

Proof. We argue by contradiction. Suppose A = % is an eigenvalue and u € L%(0,1) is
the corresponding eigenfunction, then > 1 and the pair (u, \) satisfies (3.32). Lemma
3.24 says that u(z) = x%_af,,(ﬁxlfa) where § = 7@“:11 and f,(t) is a non-trivial solution
of

£ (t) + tf,(8) + (2 = v*) £ () = 0.

11—«

Applying the change of variable Sz =t and Lemma 3.28 gives

1 1
/uQ(x)dx = /:L’l_QafE(ﬁxl_o‘)dx
0 0
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oo 1—2a+ 11

1 t 11—« 1—a 9

= [ (= 2(t)dt

w1/ (5) ©)

B

1 7075 2(t)dt
= = X0

/82<a _ 1) v bl

B
which is a contradiction. ]

3.4.1.2 The rest of the spectrum for the case o > 1

We have found the eigenvalues of T, for all « > 0. Next we study the rest of
the spectrum for the non-compact case a > 1. It amounts to study the surjectivity
of the operator T, — Al in L?(0,1), that is, given f € L?(0,1), we want determine
whether there exists h € L?(0,1) such that (T'— A\)h = f. Since |[To| < 1, T, is a
positive operator, and Ty, is not surjective, we can assume that 0 < A < 1. By letting
u = Ah + f, the existence of the function h € L?(0,1) is equivalent to the existence of

the function u € L?(0, 1) satisfying

By the definition of T, in Section 3.1.6, the above equation can be written as

0/1 (””2&“’(5”)”'(15) + (1 - i) u(z)v(z ) dx = iO/lf z)dz, Vv € X§. (3.42)

Since we proved that there are no eigenvalues when a > 1, a real number A is in the
spectrum of the operator T, if and only if there exists a function f € L?(0,1) such
that (3.42) is not solvable. To study the solvability of (3.42) we introduce the following

bilinear form,

0/1 20 () () dz + (1 - ;) 0/1 u(w)o(z)dz, (3.43)

and we first study the coercivity of aj(u,v).
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Lemma 3.30. If A > %, then a1 (u,v) is coercive in Xg.

Proof. We use Theorem 3.33 and obtain

Thus if A > %, this bilinear form is coercive. O
Now we can prove the next
Proposition 3.31. For o = 1, the spectrum of the operator Ty is exactly o(T1) = [O, %}

Proof. The coercivity of aj(u,v) gives immediately that o(77) C [0,2]. To prove the
reverse inclusion, we first claim that (77 — A\)u = —\ is not solvable when 0 < A < %.

Otherwise, by equation (3.42), there would exist pu = % and u € L?(0,1) such that

—(a®(2)) + (1 = pu(z) =1 on (0,1),

(3.44)
u(l) = 0.
Equation (3.44) can be solved explicitly as
1

T2 [C—(C’qt%)ln:c}Jr% for p =2,

u(:z:) _ 1—p 1—p 4

Cu:r_% sin (A# + /= glnx) + ﬁ for u > g,

2 1 -

where C), = a g) , sind, = oz and C could be any real number. So we
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have that

2 fgm(C—<C+ﬁ>y)2dy for p =

N[}

-

I—p

L2o.1) C, ono sin? (A4, +y) dy for pu >

[N[e

Notice that the right hand side above is +o0 independently of C, thus proving that
u ¢ L?(0,1). Therefore (T3 — A\)h = —A is not solvable in L?(0,1) for 0 < A < 2. Also

0 € o(T1), because T} is not surjective. This gives [0, %] C o(T1) as claimed. O
Proposition 3.32. For a > 1, the spectrum of the operator T, is exactly o(T,) = [0, 1].

Proof. As we already know, o(T,) C [0,1]. So let us prove the converse. We first claim
that the equation (7, — A\)u = —\ is not solvable for 0 < A < 1. As before, this amounts

to solve

—(@ (@) + (1 - pule) = 1,

where ;1 = §. Lemma 3.24 implies that u(z) = x%*afl,(ﬁxl_o‘) + 1 where g = ¥=1

a—1

and f,(t) is a non-trivial solution of

1)+ ) + (=) (1) = 0.

By Lemma 3.28 we conclude that ||ul|, = 0o. So (T, — A\)h = —A is not solvable when
A€ (0,1).
When A\ = 1, take f(x) = —)\xsfé, where € > 0 is to be determined, and try to solve

(T, — I)u = f, which is equivalent to solve

The general solution of this ODE is given by

1 3 1
u(z) = pate20 4 op=20tl _ 0 — )
(=) (3+e)(3+e—20) G+ +¢e-20)

We choose 0 < & < 2av—2 so that 3 +—2a < —3. Therefore, |lull, = oo independently
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of C, thus (T, — I)u = f is not solvable. Hence (0,1] C o(Ty). Also 0 € o(Ty); thus

the result is proven. O

Proof of Corollary 3.18. To prove (i), it is enough to notice that when 0 < a < 1 the
operator T, is compact and R(T,) is not closed.

To prove (ii) and (iii), by the definition of essential spectrum and the fact that T, has
no eigenvalue when o > 1, it is enough to show that o4(7,) C EV(1y,), where EV (T,) is
the set of the eigenvalues. Actually, for A € 04(T,), we claim that dim N (T, — \I) # 0.

Suppose the contrary, then dim N (7, — AI) = 0, and one obtains that
R(T, — M)t = N(T — \I) = N(T,, — \I) = {0}.

Since T, —AI is Fredholm, it means that R(T,—AI) is closed and therefore R(To—AI) =
L?(0,1). That leads to the bijectivity of T, — AI, which contradicts with A € 04(T,). O

3.4.1.3 The proof of Theorem 3.19

Proof. To prove (i), it is equivalent to prove that p,; > g forall k =1,2,... and v > %

Indeed, since v > %, we have the following inequality (see [39]) for all k =1,2,...

s +l<:7r 1> +7r—1
vVt ——=>v
Jvk 9 9 = 9 y
SO
(1 Vi = 1 . >1+ T™—3 >1
Ik =50y 1y =2 T i) T 2

Thus s = 1+ (1 a)22, > 5.

To prove (ii), from [39] we obtain that for fixed z > 0, we have

lim 2% — i(z), (3.45)

v—oo U

where i(x) := secf and 6 is the unique solution in (0,%) of tanf — § = 7wx. Using this
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fact, and the definition of v, we can write

1 2 ]k 2
=1+ (=it =1+ (a-5) (2

14

Define v, = % (or equivalently, a = 1 — m), then (3.45) implies that

e T (am - ;>2i2(93) (1+0(1)),

where o(1) is a quantity that goes to 0 as m — oo. So for fixed z > 0 we find that

(notice that m — oo implies v, — oo, which necessarily implies that «,, — 17)

1 1
Am 1= —

- ——— =: A(2).
o Ty I = @

It is clear from the definition of i(z), that i(x) is injective and that i((0,+00)) =
(1,+00), which gives that A(z) is injective and A((0,+00)) = (0, 7). So we only need to
take care of the endpoints, that is 0 and %. Firstly, consider j,1, the first root of J,(x).
It is known that (see e.g. [67, Chapter XV])

ji = v+ O3) as v — oc.

Consider puy = ftm1 = 1+ (o — %)2 (14 o0(1)), where a, =1 — m, and o(1) goes

to 0 as m — oo. This implies that
4 _
A — = as q,, — 17,

To conclude the proof of (ii), recall that T, is compact for all « <180 0 € 0(T,). O

Proof of Remark 3.21. Notice that part (i) in Theorem 3.19 gives

sup inf |z —y| =0,
zeo(Ty) ¥eo(T1) ’ ’



74

for all % < a < 1. Therefore, it is enough to prove

lim sup inf |z—y|=0.
a=1" geq(Ty) y€o(Ta)

Indeed, the compactness of o(77) implies that, for any € > 0, there exists {z;}}', €

o(T) such that

sup inf |z—y| < max d(z;,0(Ta)) + E

zeo(Ty) Y€ (Ta) i=1,...m 2
Then part (ii) in Theorem 3.19 gives the existence of a. < 1 such that d(z;,0(T,)) < §
foralla, < a<landalli=1,...,n. O

3.4.2 The operator 1)

Proof of Theorem 3.16. In order to find all the eigenvalues and eigenfunctions, we need

the non-trivial solutions of
—(a*/ (2))' + u(x) = pu(z) on (0,1),
u(0) =u(1) = 0.

Let vy = ;:gg, which is positive and never an integer. Equation (3.37) gives us its

general solution

u(z) = Clm%_o‘Jl,O (Bx'™) + CQx%_O‘J_,,O (Bz'™),

where 8 = Y£=1  The asymptotic of J,, when 0 < z << 1 yields

( ) ClkVO 1—2a CQ2VO
™ Dl + 120 ” koD (1 — 1)

so imposing u(0) = 0 forces Cy = 0. i.e. u(z) = Cla:%_ajyo(ﬁxl_"‘). Then u(1) = 0

forces [ to satisfy J,,(8) = 0, that is § must be a positive root of the Bessel function

P

Jyp, for vg = 3—.
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Therefore, we conclude that
1_ . _
uVok(x) =2 aJllo(.]Vok’xl a)’ k=1,2,...

are the eigenfunctions and the corresponding eigenvalues are given by

1
L+ (1 - )22,

Aok = k=1,2,....

The behavior of i, is then obtained from the asymptotic of j, ; just as we did in

the study of the operators T,. We omit the details. O

3.A Weighted Sobolev spaces

For a > 0 and 1 < p < oo define
loc

XP(0,1) = {u e WLP(0,1) : ue LP(0,1), 2% € LP(0, 1)} .

Notice that the functions in X*P(0, 1) are continuous away from 0. It makes sense to

define the following subspace
X0P(0,1) = {ue X“P(0,1) : u(l) =0}.

When p = 2, we simplify the notation and write X® := X%2(0,1) and X§ := X%’z(O, 1).

The space X*P(0,1) is equipped with the norm

lullap = llullpeo,1) + H‘rau/HLP(O,l) ’

or sometimes, if 1 < p < oo, with the equivalent norm

1
(H“Hip(o,l) + Hxau/HiP(O,l)) i
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The space X is equipped with the scalar product

1
(u,v)q = / (2% (z)V'(z) + u(z)v(z)) da,
0
and with the associated norm

1
lulle = (el + 27072 0y)

One can easily check that, for & > 0 and 1 < p < oo, the space X*P(0,1) is a Banach
space and X77(0,1) is a closed subspace. When 1 < p < oo the space is reflexive.
Moreover, the space X is a Hilbert space.

Weighted Sobolev spaces have been studied in more generality (see e.g. [45]). How-
ever, since our situation is more specific, we briefly discuss some properties which are

relevant for our study.

Theorem 3.33. For1 < p < oo, let B be any real number such that ﬁ—l—% > 0. Assume

that w € W,5P(0,1] and u(1) = 0. Then

, (3.46)

|+
Lp

B+1, 1
Lp = Cp’ﬁ Hx Y

where Cp g = lfﬁ Jor 1 <p < oo and Cxp = % In particular, for 1 < p < oo and

0<a<i,lul,,: =z defines an equivalent norm for X3 (0,1).

Proof. We first assume 1 < p < co and write

1 1

/xpﬁ |u(z)|P de = —/x <xp/8 \u(x)\p>,dx — ePPHL ()P

€ €
1

< —/1: (:cpﬁ |u(x)|p)/daz

€
1

1
=98 [ 2 @) do —p [P a2 ule)u () da,

3
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Applying Holder’s inequality, we obtain

1 1
-1
(1+pB) /xp,b’ lu(z)|P da < p/xpﬁ u(z)[? 2 |/ ()] do < pnguH’; Hx6+1ul
P

3 3

r’

Then equation (3.46) is derived for 1 < p < oo and Cp 3 = When p = oo, it is

1 +p/3

understood that % =0 and 8 > 0, so we pass the limit for p — oo in equation (3.46)

and obtain

ol < 5 =

O]

Theorem 3.34. For 0 < a < 1, 1 < p < oo, the space X*“P(0,1) is continuously

embedded into
(i) C™ i 0,1] if0<a<1-1andp#1,

(i) L9(0,1) for allq < oo ifa=1—1

p?
(iii) Liw1(0,1) if 1 = <a <1 and p # co.

y
Proof. For all 0 < x < y < 1, we write |u(y) — u(x)| < / |s*u/(s)| s~*ds. By applying

x
Hoélder’s inequality we obtain

r¢ ifp=1,

P

‘y_:%f;gl_z%l 1f1<p<ooandoz7é1—f

-1
lu(y) —u(z)| < Cayp HSQU/HLp lny — lnx\pT ifl<p<ooanda=1-— %

1—-a l—a‘

{y - if p=ocand a # 1,

Iny — Inz| if p=o0and a = 1.

(3.47)
Then assertions (i) and (ii) of Theorem 3.34 follow directly from equation (3.47).

Next, we prove the assertion (iii) with u € X{”(0,1). That is, for 1 < p < oo,
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1- % <a<landue VVli’f(O, 1] with u(1) = 0, we claim

1 (0%
H || = p+l # (a) 21—0& HQTO[U/HLP . (348)

If o = 1, estimate (3.48) is a special case of (3.46). We now prove (3.48) for p = 1 and

0 < a < 1. Notice that, from equation (3.46),

Iz ull oo < [} (2%u)]|
< a2 + [l

< 2] -

Therefore,
1 1
1 1 1 9 1
/|u(x)|ad:n:—/ac|u(:1:)|a (@) ()dz — lim = |u(z)|*
[0 r—0t
0 0
1
< - l-a E—lH
< La s o= ot
1 1 1—a =
< -2 et W3-
That is
1 [0
lull, 1 < (a> 217 |||, - (3.49)

Finally we assume 1 < p < oo and 1 — % < a < 1, we proceed as in the proof of
the Sobolev-Gagliardo-Nirenberg inequality. That is, applying the inequality (3.49) to

u(z) = |v(x)|”, for some vy > 1 to be chosen, it gives

1
1 (0%
/]v o da <fy(a> 210‘/]1)(@\7_1 |/ (2)| 2“da.
0

Using Hélder inequality yields

1 (0%
3 1\“ (y=1)
Jr@iEas) <o (2) 2o, | [ @i
0

—
—
|
=
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Let 2 =2 (;:11). That is v = ﬁ > 1 and the above inequality gives the desired
result.

Finally, the assertion (iii) in the general case follows immediately from (3.48), be-

cause ||ull;, < Jlu—u(1)||, + |u(1)], while u — u(1) € X37(0,1) and
[u()] < (27 + 1) [Jull,,, -

O]

We would like to point out that, by the assertion (i) in Theorem 3.34, we can define,

for1<p§ooand0<a<1—%,

XoeP(0,1) = {u e X*P(0,1) : u(0) =u(1l) =0}.

Remark 3.25. Notice that the inequalities (3.46) and (3.48) are particular cases of the
inequalities proved by Caffarelli, Kohn and Nirenberg. For further reading on this topic

we refer to their paper [19].

Theorem 3.35. Let 1 < p < oco. Then X*P(0,1) is compactly embedded into LP(0,1)

for all o < 1. On the other hand, the embedding is not compact when o > 1.

Proof. We first prove that, for 1 < p < oo and 0 < a < 1, the space X{7(0,1) is
compactly embedded into LP(0,1). Let F be the unit ball in X§*(0,1). It suffices to
prove that F is totally bounded in LP(0,1). Notice that, by equation (3.47), Ve > 0,

there exists a positive integer m, such that
HUHLP(O,%) <eg, Yu e F.
Define ¢(x) € C*°(R) with 0 < ¢ < 1 such that

0 ifx<1,
¢(x) =

1 ifz>2,
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and take ¢,,(z) = ¢(mz). Now ¢, F is bounded in W1P(0, 1), and therefore is totally
bounded in LP(0,1). Hence we may cover ¢,,F by a finite number of balls of radius
in LP(0,1), say

¢mF C | JB(gi.¢), gi € LP(0,1).

We claim that |J B(g;, 3¢) covers F. Indeed, given u € F there exists some i such that
i

[ému = gill Lp0,1) < €

Therefore,

lu — giHLP(O,l) < lgmu — gi”LP(O,l) + [l — ¢mUHLp(0,1)
<e+2 HUHLP((),%)

< 3e.

Hence we conclude that F is totally bounded in LP(0, 1).
To prove the compact embedding for X*P(0,1) with 1 < p < oo and 0 < a < 1,

notice that for any sequence {v,} C X%P(0,1) with [v,[l,, < 1. One can define

un(z) = vy () — vp(1) € X3P(0,1). Then
lwallay = 2%l o = [lz%0n ]l o < 1.

What we just proved shows that there exists u € LP(0, 1) such that, up to a sub-sequence,
un — u in LP. Notice in addition that |v,(1)] < (2P% + 1) [|v][,,, < 2P* + 1, thus there
exists M € IR such that, after maybe extracting a further sub-sequence, v,(1) — M.
Then it is clear that v, (x) — u(z) + M in LP.

We now prove the embedding is not compact when 1 < p < oo and a > 1. To do so,

define the sequence of functions

1
onle) = (nx(l —lnx)HrlL) ’

=
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and

() = v () — (1>;’ V> 2.

n

1
Clearly [[vpll1pq) = 1 and 1 — (Hr < lunllpo1) < 2. Also qu;lHLp(oJ) < %. It
means that {u,(z)}%2, is a bounded sequence in X{7(0,1) for o > 1. However, it has
no convergent sub-sequence in LP(0,1) since up — 0 a.e. and |unl| (g 1) is uniformly
bounded below.

If p=ocand 0 < a < 1, take u € X**°(0,1) and equation (3.47) implies that
u(z) — u(y)| < Cu [|z*v|| o |2 =y
Therefore, the embedding is compact by the Arzela-Ascoli theorem. To prove that the

embedding is not compact for p = oo and a > 1, define the sequence of functions

Inz
—-— ifl<az<l,
n

Pn(z) = Inn
1 if0<z<i.

We can see that ¢, is a bounded sequence in X*>°(0,1) for o > 1. However it has no

convergent sub-sequence in L>(0, 1) since ¢,, — 0 a.e but ||¢, ||, = 1. O

We conclude this section with the following density result, which is not used in

throughout this work but is of independent interest.
Theorem 3.36. Assume 1 < p < co.

(1)) Ifp#1land 0 < a < 1— %, we have that C*°([0,1]) is dense in X*P(0,1) and
that C§°(0,1) is dense in Xg"(0,1).

(i) Ifa>0and a>1-— %, we have that C3°(0,1] is dense in X*P(0,1).

Proof. For any 1 < p < 0o, @ >0 and u € X*P(0, 1), we first claim that there exists a

sequence {e, > 0} with lim &, = 0 such that:
n—oo

e cither |u(ey,)| < C uniformly in n, or
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o |u(eyn)| < Ju(z)| for all n and 0 < z < &y.

Indeed, if |u(z)| is unbounded along every sequence converging to 0, we would have

lim+ |u(x)| = 400, in which case we can define &,, > 0 to be such that
z—0

u(en)| = min [u(z)].
0<x<=

-_-n

thus completing the argument. In the rest of this proof, for any u € X*P(0, 1), sequence
{en} is chosen to have the above property.

We first prove (i). Assume 1 <p<ocand 0 <a <1-— %. To prove that C*°(]0, 1])
is dense in X*P(0,1), it suffices to show that WP(0,1) is dense in X*P(0,1). Take
u € X*P(0,1). Define

ulen) if0<z<e,,

un(z) =

u(z) ife,<ax<1.
Then one can easily check that u, € W%P(0,1) and that u, — u in X%P(0,1) by
the dominated convergence theorem. To prove that C§°(0,1) is dense in X;P(0,1), it
suffices to show that Wy(0,1) is dense in X557 (0,1), to do so, we adapt a technique
by H. Brezis (see the proof of Theorem 8.12 in [11, p. 218]): Take G € C*(RR) such that
|G()] < [t] and

0 if |t] <1,
tif |t > 2.

For u € X;7(0,1), define u,, = G(nu). Then one can easily check that u, € Cy(0,1)N
X*P(0,1) C Wol’p((), 1) and that u, — w in X*P(0,1) by the dominated convergence
theorem.

To prove the assertion (ii), we notice that it is enough to prove that C3°(0,1) is
dense in X{”(0,1). Indeed, for any u € X*P(0,1), define ¢(z) € C§°(0,1] such that
|p(z)| <1 with
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Define v(z) := u(z) — ¢(x)u(l), then v € X37(0,1). If we can approximate v by
vy, € C§°(0,1), then uy,(z) = vy (z) + ¢(x)u(l) belongs to C§°(0, 1] and it approximates
win X37(0,1). Solet @ > 1 — % and 1 < p < oo, to prove that C§°(0,1) is dense in
X%P(0,1), it suffices to show that W,(0,1) is dense in X$P(0,1). To do so, for fixed

u e X37(0,1), define
u(sn)x

€n

if0<x<ep,
un(z) =

u(x) ife, <z <1
Then u,, € Wol’p(O, 1) and on the interval (0,e,) we have either |u,(z)| < |u(z)| and
lul, (z)| < m(x—x”, or |up(z)] < C and |u),(x)] < % where C is independent of n. In both

Yu(z) € LP by Theorem 3.33, one can conclude that

cases, since @ > 1 — ]lu and %~
Up — u in X*P(0,1) by the dominated convergence theorem.
Fora=1-— % and 1 < p < 00, again, it suffices to prove that Wol’p(O, 1) is dense in

X3%(0,1). For fixed u € X37(0,1), define

u(en)(1 —Iney)
1—Inx

if0<ax<egy,

u(x) ife, <z <1

One can easily check that u, € C[0,1] N X*P(0,1) and u,(0) = un(1l) = 0. On the

interval (0,e,), we have either |u,(x)| < |u(z)| and |ul,(z)] < x(|1u_(3ﬁ)llx), or |u,| < C

and [u(z)| < o

%M) where C' is independent of n. Notice that by using the same

trick used in estimate (3.28), one can show that x_%(l —Inx)~tu € LP(0,1) for any
u € X,lo_%’p((),l) with 1 < p < oo. Therefore, one can conclude that u, — u in
X*P(0,1).

The above shows that that {u € C[0,1] N X*P(0,1) : u(0) = u(1) = 0} is dense in
X3%(0,1). Finally, notice that by using the same argument used to prove (i), we obtain
that W,7(0,1) is dense in {u € C[0,1] N X*P(0,1) : u(0) = u(1) = 0}, thus concluding

the proof. O
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Chapter 4

A singular Sturm-Liouville equation under

non-homogeneous boundary conditions!

(joint work with H. Wang)

4.1 Introduction

In [29] (see Chapter 3) we studied the following Sturm-Liouville equation

—(z**/(z))' + u(x) = f(z) on (0,1),
(4.1)

where a is a positive real number and f € L?(0,1) is given. In that paper, we proved
existence, along with regularity and spectral properties for (4.1) by prescribing certain
(weighted) homogeneous Dirichlet and Neumann boundary conditions at the origin. In
order to conclude that the boundary conditions we used in [29] are the only appropriate
boundary conditions, we investigate the existence of solutions for equation (4.1) under
the corresponding (weighted) non-homogeneous boundary conditions at the origin.
Without loss of generality, we always assume that f = 0 throughout this chapter.

Consider the following (weighted) non-homogeneous Neumann problem,

— (2 (z)) + u(z) =0 on (0,1),

lim 4o () (2) = 1,

z—0t

!This chapter has already been published in Differential Integral Equations 25 (2012), no. 1-2, 85-92.
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where
x2 fo<a<l,
Ya(T) = .9;‘3+2\/3 ifa=1, (4.3)
3a 1_1—04
r2el-o ifa>1,

and the following (weighted) non-homogeneous Dirichlet problem,

—(z%/ (x)) + u(x) =0 on (0,1),

u(1) =0, (4.4)

z—0+t

where

1 if0<a<g,

_ . 1
(1-Inz)™' ifa=3,

Pa(x) = { g20-1 if% <a<l, (4.5)
:r:1+2\/g if =1,
o mlf(x
r2e I-a if > 1.

We have the following existence results for Eqns. (4.2) and (4.4):

Theorem 4.1. Given « > 0, there exists a solution uw € C*(0,1] to the Neumann

problem (4.2).

Theorem 4.2. Given o > 0, there exists a solution w € C*(0,1] to the Dirichlet

problem (4.4).

Remark 4.1. The solutions given by theorems 4.1 and 4.2 are unique. This has already
been proven in [29].

Remark 4.2. As one will see in the proof, when o > %, the solution of (4.4) is a constant

multiple of the solution of (4.2) and the constant only depends on a. Therefore, when
a > %, the boundary regularity of the solutions to both problems is automatically

determined by the weight function ¢, given by (4.5).
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1-2a _ 1

1-2a
for equation (4.2) and @ = u+(x2—1) for equation (4.4)), both problems can be rewritten

Remark 4.3. When 0 < a < %, by introducing a new unknown (e.g. @ = u —

into the corresponding homogeneous problems with a right-hand side f € L?(0,1),
and therefore the existence, uniqueness and regularity results from [29] readily apply.
However, in this case, we still provide a proof of independent interest for the Neumann

problem via the Fredholm Alternative.

4.2 Proof of the Theorems

Proof of Theorem 4.1 when 0 < a < 1.
Let 0 <a<landl<p< é We introduce the following functional framework.
Recall the following functional space defined in [29],

X2P(0,1) = {u € WLP(0,1) + we LP(0,1), 2% € LP(0,1), u(1) = 0} ,

C

equipped with the (equivalent) norm [ul, , = [lz*u/[|, ([29, Theorem A.1]). Define
E = X37(0,1) and F = X%’p,((), 1) and notice that since 1 < p < oo, both E and F
are reflexive Banach spaces.

For w € F and v € F, we define B : £ —— F* by

1
B(u)v = /$2au/(ib‘)vl(3})d£€.
0

We claim that B is an isomorphism. Clearly B is a linear bounded map with || B(u)|| p« <
|u||;, so we only need to prove its invertibility.

To prove the surjectivity of B, consider the adjoint operator B* : F — FE*
given by B*(v)u = B(u)v. It suffices to show that (see e.g. [11, Theorem 2.20])
ol < 1B)]

g+ Indeed, let g be any function in LP(0,1) with [|g[[, = 1, and
1

consider ug(x) = —/sag(s)ds. Notice that z%uj(r) = g and u(l) = 0, thus

x
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lugll z = Hxau’ng = ||g[[, = 1. Therefore uy € E and by definition we have

1B™ ]

g = B (0)uy

= B(ug)v

Since the above inequality holds for all g € LP(0,1) with [|g[[, = 1, taking supremum
over all such g yields |[v]|p = [[z*V'||, < [|B*v|| g+ as claimed.

To prove the injectivity of B, notice that B(u) = 0 is equivalent to
1
/x2au'(x)v’(x)dx =0
0

for all v € F. Taking v € C§°(0,1) C F implies that 2%*u/(z) = C for some constant
C'. Furthermore, by taking v € C*°[0,1] with v(0) = 1 and v(1) = 0 gives that C = 0.
Hence u is constant and it must be zero.

Next, we define K : E —— F* by

1
K(u)v = /u(x)v(x)da:
0

Clearly this is a bounded linear map, with ||K(u)||z < C'||u||5. Also since the embed-
ding E < LP(0,1) is compact when a < 1 (|29, Theorem A.3]), we obtain that K is a
compact operator.

Finally, consider the operator A : & — F* defined by A := B + K. Then, the
Fredholm Alternative theorem (see e.g. [11, Theorem 6.6]) applies to the map A :
E +— E defined by A:= B oA =1Id+ B ! o K and we obtain

R(A) = R(A) = N(A*)*+ = N(4*)*.
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We claim that N(A*) = {0}. Indeed, A*v = 0 is equivalent to

/lx%‘u'(m)v’(x)dx + /lu(:v)v(:v)dx =0,
0 0

for all u € E. By taking u € C§°(0,1) we obtain that (z?*v'(z))’ = v(x). Taking u in
C*[0, 1] with (1) = 0 and «(0) = 1 implies that lim,_,o+ 22*v’(x) = 0. Since v € F we
have that v(1) = 0. That is, v satisfies equation (4.1) with the homogeneous Neumann
boundary condition as studied in [29]. Hence the uniqueness result applies and we
obtain v = 0. This proves that N(A*) = {0}, which implies R(A) = F**. Therefore the
equation Au = ¢ is uniquely solvable in E for all ¢ € F™*.

Using the above framework, take ¢(v) = —v(0), Vo € F. Since 1 < p < é, we can
apply [29, Theorem A.2], and obtain that the space F' is continuously embedded into
C[0,1], so g € F*. Then a direct computation shows that the solution u € F of Au= ¢

is in fact in C°°(0, 1] and it satisfies (4.2). O

Proof of Theorem 4.1 when o = 1.

. e
One can directly check that u(z) = — 25 solves

—(z%/ (z)) +u(z) =0 on (0,1),

Proof of Theorem 4.1 when o > 1.
Define?

tpl—o

1
I(z) = 2!« /(1 — tQ)ﬁeﬁdt
-1

and

3a—2 @ 30[_2
A=—(a—1)%22% DT .
(@=1) <2a—2>

%A variant of this function can be found in [67, p. 79].



We claim that

—(z®T(z)) + I(x) =0
Pl
lim x%eﬁf(:ﬁ) = A.
z—01
Indeed,
! 1—
I'(z) = (1 —2a):v_2a/(1 t )2(06 e e dt — g1
-1
and
(I‘2QI,(£L‘))/

1 «

—(2 - 3a) t(l—t2)2<a De'o=T dt + 2~

1
)
1
(- 1):3—@_/1 (1 - 2y=ntt)
1
/
1
(a — 1)z /1 (1—-t3)(1—1t%)
1

e

! gl

e a—1 dt

1 @
pl=2 [ 21 @) me et dt

21— l‘l_a

2(a l)e a—1

o

a—1

11—«

£2(1 — $2)Te D e a1 dt

I(x).

n (0,1],

pl—a

tH(1— $2) T De a1 dt,

g

1 «

£2(1 — t2) T e a1 dt

1
a\/
-1

dt

Applying the dominated convergence theorem gives, as z — 0T,

3a Il—a

r2el-a ['(1)
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0
=(1-2a)z% Ya - 1)33:3 / (=2r — (. — 1)r2xo‘_1)2<aa*1) e"dr

_ozl—a

a—1

0
—(a— 1)z o - 1)3373 / r(—=2r — (a— 1)7"2.104_1)%67”(”’

_ogl—a

a—1

0
go-2 2, a—1\ 5=y 7
— (= 1)22=2 / (=2r — (o — 1)rex® )21 dr

_ozl—a
a—1
0
—2 [e]3
— (a—1)2a 2 /(—27’)2(0‘_1)€Td7"
z—0t+
—00
=A.
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From [29], we know that there exists a unique solution w € C'*°(0, 1] for the homo-

geneous equation

@l @) + ) = 1 on 0,1),

3a le
lim 22 eT-o w'(x) = 0.
z—0t

Therefore, by linearity, u(z) = w(x) + (I(m)A%I(I)) € C*°(0,1] solves (4.2) for a > 1.

Proof of Theorem 4.2 when 0 < a < %

From [29] we know that there is a unique function w € C*°(0, 1] solving

—(z%w' (2)) + w(x) = —2(2a + 1)2%* + (22 — 1) on (0,1),

Then by linearity, u(x) = w(z) — (2% — 1) solves

O
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We know from Theorem 4.1 that there exists w € C*(0, 1] solving the Neumann

problem
—(z**w'(z)) +w(x) =0 on (0,1),
w(l) =0,
lim 22%w'(z) = 1
xz—0t
Define

We claim u solves
—(z%**/ (x)) +u(x) =0 on (0,1),

lim 22 lu(z) = 1.
z—07F

Indeed, from (4.6) we know that there exists 0 < g9 < 1 so that

3
<w'(z) < 5,2 V0<zx<eg.

2:1;204

Since % < a < 1, by integrating the above inequality, we obtain that

li = i = 0.
Jim u(z)] = lim |w(z)| = oo

Therefore L’Hépital’s rule applies, and we obtain that

2c,,/
1
lim 22 ly(z) = lim v () =1, when - <a <1,
=0T z—0+t 1 -2« 2

and
lim u(@) = — lim xu/(z) =1, when a = —.
z—0t 1 —1Inzx z—0+ 2

(4.6)
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Proof of Theorem 4.2 when o = 1.

. 1vE —14vE
One can directly check that u(x) =z 7 — 275 solves

— (2% (x)) +u(z) =0 on (0,1),

Proof of Theorem 4.2 when o > 1.

We know from Theorem 4.1 that there exists w € C°°(0,1] solving the Neumann

problem
—(z%*w'(z)) +w(x) =0 on (0,1),
w(l) =0,
3a¢ zl”¢
lim 272 eT-=w'(z) = 1.
z—0t
Define u(z) = —w(x). We claim that w solves
—(z*/ (x)) 4 u(x) =0 on (0,1),
u(1) =0,
a T
lim z2e o u(z) =1
xz—07F
30 pl—a
Indeed, from the boundary condition lim+ x2 e -ow (x) =1 we know that
z—0
li =1l =
Jim Ju(z)] = lmjw(z)] = oo,

therefore L'Hopital’s rule applies, and we obtain that

3 Ll

. o zl7® . z2elau(x)
lim zze =0 u(r) = lim —Fp—F——
z—0t z—0+t —5560‘7 —1

=1
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Chapter 5

Bifurcation analysis of a singular non-linear

Sturm-Liouville equation!

5.1 Introduction

We are interested in the problem of existence of a function u satisfying the non-linear

singular Sturm-Liouville equation

—(2*) = u+uP in (0,1),

w>0 in (0,1), (5.1)

where @ > 0, p > 1 and X\ € R are parameters. By a solution to equation (5.1) we mean
a function u belonging to C2(0, 1] which solves equation (5.1). This will become relevant
when proving non-existence results, as no a priori assumption about the behavior of u

near the origin is being made.

As the reader will see later, it is convenient to divide the exposition into five cases:

(A) O<O¢<%forp>17

(B) %§a<1for1<p<g;zol‘,
(C) 3 <a<1forp=322

<a<1forp>‘3;—ch,and

~
o
pa—
N[ —

(E) a>1 for any p > 1.

'This chapter is based on two unpublished articles written by the author: [24] and [25]
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The exponent
_3—2a+1_ 2
C 2a-—1 C 2a-—1

(5.2)

plays an important role, as it is critical in the sense that the weighted Sobolev space

(introduced in [29])
X§ = X2(0,1) = {fu € HL.(0,1) : u, 2% € L*(0,1), u(1) =0}

is embedded into L7(0,1) if and only if ¢ < 2, (this follows from the Caffarelli-Kohn-
Nirenberg (CKN) inequality [19]; see also [29, Appendix| for the treatment of this par-
ticular case).

In cases (A), (B) and (C) our approach to prove existence results for equation (5.1)

will be to minimize the energy functional

I o(u) = /’:1: | d:E—A/|u )|? da (5.3)
over the manifold
M = M, = X810 {u € P70, 1) : flull,,, = 1} .

The solutions obtained by this method turn out to be bounded solutions and they

bifurcate to the left of the first eigenvalue of the linear problem

—(2**¢') = Xp in (0,1),
¢(1) =0, (5.4)

lim x2*¢/(x) = 0.

z—0t

We refer the reader to [29, Theorem 1.17] for a complete analysis of the spectrum of

the linear operator L, := —(x2%¢')’, but in particular, the first eigenvalue of equation
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(5.4), hereafter denoted by A1, can be characterized by

1 « 1 «
R @Pde et ) de

A1 = = .
eeXs [He(@)Pde [ o)) da

Further details about A1 and o1 will be given later in Section 5.2.
The above is in sharp contrast with the case @ > 1, as the operator £, has only
essential spectrum (no eigenvalues) and bifurcation becomes a delicate issue, in fact, we

prove that no positive solutions exist in this case.

5.1.1 Thecase 0 < a< %

In this case the embedding X§ < LP*1(0,1) is compact for all p > 1, hence a
standard variational method allows us to prove the existence of a minimizer for I , in

M and as a consequence the following

Theorem 5.1 (Existence and uniqueness for the Neumann problem). Suppose 0 < o <

% and p > 1, then for every A < A\ there exists a unique solution u to equation (5.1)
satisfying the following properties:
(i) u € C[0,1], with u(0) > 0,
(ii) x?* 1’ € C[0,1], in particular v € C1[0,1] and u'(0) = 0,
(iii) x> € C0,1].
As we mentioned earlier, bifurcation only occurs to the left of i, and this is the

content of the following

Theorem 5.2 (Non-existence for the Neumann problem). Suppose 0 < o < %, p>1

and that A > \1. Then equation (5.1) has no solution satisfying lim+ 2’ (x) < 0.
z—0

Observe that the above non-existence theorem requires the additional assumption

lim x2*u/(z) < 0.
z—07t

The reason behind this extra assumption comes from the fact that equation (5.1) has

(continuous) solutions satisfying lim+ 22/ (2) > 0 if A > A1. This phenomenon occurs
z—0
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because, when 0 < a < %, one can minimize the energy functional I, ) over My, the

sub-manifold of M defined by
Mo i= Mapo = Xgo 0 {u € D7H0,1) 5 ullpy = 1},

where X§, = {u € X§ : u(0) =0} is a well defined (closed) subspace of X§ for each
D<ac< % (see |29, Appendix] for further details about this space). This allows us to

prove a second existence theorem: For 0 < a < %, let A1 o be the first eigenvalue of

—(3:20‘4,0’)’ =A¢ in (0,1),

p(1) =0, (5.6)

which can be characterized by

o 2
o ol @ P e fy e o) de
eX5 fy le@)Pde [y lpro(e) de

A1 = (5.7)

We have the following

Theorem 5.3 (Existence and uniqueness for the Dirichlet problem). Suppose 0 < o < %
and p > 1, then for every A < A\ there exists a unique solution u to equation (5.1)

satisfying the following properties:
(1) u € C[0,1], with u(0) = 0,
(ii) 21y € C[0,1], and

(iii) z**u’ € Co,1].

Remark 5.1. Observe that property (iii) in Theorem 5.3 above only says that 2%/ €

C1[0,1]. This does not mean that each term in (z2%u/ (7)) = 22" () +2ax?* 1/ (z) is

continuous. This can be seen even for the linear equation (5.6), as for the eigenfunction

1,0 one has that wmflcp’l?o(w) ~ ! and $2a4p/1/70($) ~ x~1 near the origin, but due to

some cancellation of the non-integrable term, one can obtain that z**¢} , € C'[0,1].
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Remark 5.2. It turns out that Ajg > A forall 0 < a < % This implies that when

A < A1 we have at least two distinct (continuous) solutions to equation (5.1): one
satisfying u(0) > 0 - the solution given by Theorem 5.1 - and another solution satisfying
u(0) = 0 - the solution given by Theorem 5.3 (see Figure 5.2 below). However, we
strongly believe that these solutions can be embedded into a continuum of bounded

solutions. This will be the subject of a forthcoming work.

As a counterpart we have the following non-existence result, which does not require

any assumptions on the behavior of the solution near the origin.

Theorem 5.4. Suppose 0 < a < %, p > 1 and that A\ > X1 o. Then equation (5.1) has

no positive solution.

5.1.2 The case % <a<l.

As explained earlier, in this range of a’s the embedding X§ < LPT1(0,1) is compact
3—2a
2c0—17

_ 32« 3—2«
P =557 and p > 5757,

3—2a
20—17

if and only if? p < 80 it is convenient to divide the results into three cases p <

5.1.2.1 The sub-critical case 1 < p < g;zolz

The embedding X§ < LPT1(0,1) is compact, so we can use a standard variational

method to prove

Theorem 5.5 (Existence and uniqueness for the sub-critical “Canonical” problem).

3—2a
2a0—17

Suppose % <a<landl<p< then for all A < A1 there exists a unique solution

u to equation (5.1) satisfying the following properties:
(i) u e Cl0,1], with u(0) > 0,
(ii) z**~ ' € C[0,1], in particular lim x?*u/(z) =0, and
z—0F

(i) x**u" € C0,1].

Bifurcation also occurs to the left of A; in this case, and this is proved in the following

*When o = 1 we are using the notation 3=2% = +oo.
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Theorem 5.6. Suppose % <a<l1,p>1andthat \ > \i. Then equation (5.1) has

no solution.

Remark 5.3. Unlike Theorem 5.2, no a prior:i behavior of u near the origin is required
in the above result. The reason behind this is that when o > % one can show that all

C?(0, 1]-solutions of equation (5.1) satisfy lim+ 22/ (2) < 0 (see Corollary 5.18).

z—0 -

3—2«a
2c0—1°

5.1.2.2 The critical case p =

In order to prove existence in this case, we still look for minimizers of Iy , over the
manifold M. The difficulty in doing so comes from the fact that X§ < L?(0,1) is not
compact and as a consequence the standard variational approach does not work. To
overcome this issue, we will follow the approach taken by Brezis and Nirenberg in [14]

and we will show that it is enough to prove that for suitable A’s

.an o i fI - <)8

1/\/[ )\7 < 1/\/[[] 07 ( )
T})(jo SO,]lOlice l}la‘

Sa = ‘I].f]“oé 59

{N4 ) ( )

: : . 2 2
corresponds to the best constant in the CKN inequality Sa [|ull724(0.1) < l2%/[[7201)-
The key ingredient in proving (5.8) is to evaluate I , at functions of the form u.(z) =
1-2«
¢(x)U:(z), where ¢ is a suitable chosen cut-off function and U.(z) = (e + 2?7 2®) 220

corresponds to the basic extremal profile for

Sa U1 20000 < 12U 720,00 -

More details about S, and its extremal functions will be given in section 5.2 below.

Theorem 5.7 (Existence and uniqueness for the critical “Canonical” problem). Suppose

% <a<1 andthat p= ga—%{ Then there exists A} € [0, A1), such that if X € (A}, A1),

then equation (5.1) has a unique solution satisfying:

(1) u € C[0,1], with u(0) > 0,
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(i) x?*~ 1’ € C[0,1], in particular lim x?*u/(z) =0, and
z—0t

(i) z*u" € C0,1].

Remark 5.4. The number A}, can be defined by

el 3
N, il <a<?

0 if2<acx<l,

where A}, > 0 is a continuous function of « for all % <a< %. The number A}, can be

explicitly computed by

1) 1—a. it 2 1) 1—a, 2
A= inf jﬁ}x ¢($H2dx = j§|x waﬂxﬂzdx. (5.10)
veXo™® Jo letg(@)da [y |t 2o (@) d

We will show that A\, — 0 thus making A} a continuous function of «, and that
a—37
|AY — A — 0 (see Figure 5.1). Further properties of A}, and 1), will be given later
1

a—;
in section 5.2.

o -
e

T
1
2

Figure 5.1: A\; and A}, when % <a< %.

On the other hand, we have the following non existence result

Theorem 5.8. Suppose % <a<l p= 2;3"1‘ and that A < A},. Then equation (5.1)

has no solution.
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3—2a
2a—1"

5.1.2.3 The super-critical case p >

3—2a
2a—1

When p >

we can no longer use the previous approach to prove existence of
positive solutions. The reason is that the space X§ is not even embedded into LP1(0, 1).
Instead we have available the global bifurcation result of Rabinowitz [57, Theorem 1.3]
which tells us that there exists a branch of bounded positive solutions (A, u) emanating
from (A1,0) and going to infinity in R x C[0, 1], but no further information is obtained
from this abstract result of Rabinowitz.

One thing that can be easily seen is that the branch emanating from A; must be

bounded below in its A-component, and this is the content of the following

Theorem 5.9. Suppose % < a<1 and that p > g;z‘f Suppose A < j\a,p, where

then equation (5.1) has no solution.

Remark 5.5. Tf one defines Ay, = inf {A > 0: Eq. (5.1) has a solution}, then Theorem
5.9 shows that ;\a,p < 5\0471,, however, numerical computations indicate two things: that

the inequality is strict, i.e., Aop < Aap (see Figure 5.5 below), and that for every

Aap < A < Ap at least one solution to (5.1) exists. This lead us to raise

Open Problem 5.1. Is it true that for /A\%p one has that for each /A\a,p <A< N\
there exists a solution u) to (5.1)?7 More precisely, we believe that for A = 5\0671, a unique
solution exists, and that there exists € > 0 small enough such that for S\a’p <A< Sxa,p—l—e,

exactly two solutions exist.

5.1.3 The case oo > 1

Before presenting the main result for this case, it is important to emphasize the
distinction between a@ < 1 and o > 1. As seen in [29], the main difference that can
be observed between these two cases is that the spectrum of the linear operator L,
under the homogeneous boundary conditions given in equation (5.4) consists only of

isolated eigenvalues when o < 1, but, because of the lack of compactness of the operator
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T, = (L4)~!, the spectrum becomes a continuum when a > 1, in fact, the spectrum
has no eigenvalues in this situation.

As we have established, the solutions obtained when 0 < « < 1 are solutions that
bifurcate from the first eigenvalue of the operator L£,. This phenomenon is in concor-
dance with results about global bifurcation from isolated points in the spectrum (see
for instance [34, 57]). However, when a > 1, the spectrum of £, is purely essential and

has no isolated points: o(L1) = 0c(L1) = [},00) and 0(Ls) = 0e(La) = [0,00) when

1
a > 1; and the results mentioned above do not apply.

Besides the lack of compactness and the lack of isolated eigenvalues of the operator
L, one has that for every p > 1 we are dealing with what can be considered a super-
critical equation. All these conditions seem to be very restrictive and as a result we

obtain that there are no positive solutions, as the following theorem shows.

Theorem 5.10 (Non-existence when «« > 1). Let o > 1, p > 1 and X be real constants,

then equation (5.1) has no solution.

Remark 5.6. In fact one can show a much stronger result, as our proof of Theorem 5.10

allows us to show that the equation

—(@®u) =M+ [uPtu in (0,1),

u has finitely many zeros,

has no solution for any a > 1, A € R and p > 1.

It is worth mentioning that Theorem 5.10 is in sharp contrast with the work done by

Berestycki and Esteban in [10]. In that article, the authors study the model equation

—2?u(z) = Mu+uP  in (0,1),

uw>0 in (0,1),

which can be regarded as a simplified version of the Wheeler-DeWitt equation. In [10],
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the authors prove, among other things, that the above equation has uncountably many
solutions when 0 < A\ < %. Their result put alongside Theorem 5.10 shows that the first
order term —2xu/(x) plays a crucial role in the existence question.

Even though we did not use general tools from bifurcation theory, it is important
to remark that bifurcation from the essential spectrum is a topic that has been studied
greatly in the past. One of the founders of the research in this area is C. Stuart who
started studying such phenomenon in the '70s. The interested reader might want to
check the nice papers written by Stuart himself [60, 61] and the references therein.
We also refer to the series of papers published by Stuart and Vuillaume [62, 64, 65]
where bifurcation from the essential spectrum of a non-linear Sturm-Liouville equation

is studied.

5.1.4 Connection with an elliptic equation in the ball

The results from Theorems 5.5 and 5.7 suggest that equation (5.1) is closely related

to the elliptic equation

—Av =X v+v" in B(0,R) c RY,
v>0 in B(0, R), (5.11)

v=20 on 0B(0, R),

where A € R, p > 1, R > 0 and B(0, R) denotes the ball centered at the origin with

radius R. In their celebrated work [14], Brezis and Nirenberg proved, among other

things, that for the critical exponent p = %, the dimension plays an important role

in the existence/non-existence question. They showed that when N > 4 a solution to
equation (5.11) is guaranteed to exist if and only if> 0 < A < Aj(—=A); but when N = 3,
they proved that existence only occurs if A* < XA < A\j(—=A), where A* = 2X;(=A) > 0.

The phenomenon described above is exactly the same as the one occurring for equa-

3—2a

a1, as if % < «a < 1, existence only occurs when 0 < A < A1, and

tion (5.1) when p =

3The number A\;(—A) denotes the first eigenvalue of —A in B(0, R) under Dirichlet boundary con-
dition.
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if % <a< %, solutions only exist when A} < A < A1, with A\¥ > 0. An explanation for
this connection can be seen by means of a change of variables. Recall that by the result
of Gidas, Ni and Nirenberg [41], all solutions to (5.11) are radially symmetric, hence
v(r) = v(|z|) satisfies the ODE

N -1
—v" — v/ = v+vP in (0,R),
,
v >0 in (0, R), (5.12)
v(R) = 0.

Now, for 0 < a < 1, let u be a solution to equation (5.1) and consider r = (1—a)~to!=®.

Define w(r) = u(x), then a direct computation shows that w is a solution to

Ny —1 .
—w'" — w = w+wP in (0, R,),
r
w >0 in (0, Ra), (5.13)
w(Ry) =0,

where N, = (1—a)~! and R, = (1 —a)~!. Hence, when N, is an integer (that is when
o= %, %, %, ...) the ODE satisfied by w is exactly equation (5.12).

The literature about equation (5.12) is extensive. For instance, regarding the exis-

NA+2

tence of solutions to (5.11) in the sub-critical case (p > 1 when N = 1,2 and p < 375

when N > 3), we can mention the works of Berestycki [9], Castro and Lazer [23], de
Figueiredo, Lions and Nussbaum [36], Esteban [40] and Lions [47] among others. Most
of these results are quite general as they apply to general bounded domains and a large
class of non-linearities with sub-critical growth. However, it is apparent to us that the
case of non-integer dimension for equation (5.12) has not been covered in the literature,
and the results from Theorems 5.1, 5.3 and 5.5 seem to close that gap in this case. In
particular, when 1 < N < 2 we have the existence of at least two bounded solutions
satisfying equation (5.12), one of them satisfies v(0) > 0 and v'(r) ~ r for r ~ 0 and
the other satisfies v(0) = 0 and v'(r) ~ '~ for r ~ 0: notice that since 1 < N < 2,
this second solution has a singular derivative at 0 (see Figures 5.2 and 5.3).

For the critical case, N > 3 and p = %, the behavior of the branch of solutions
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lualloo llualloo

T 1

2 0 A 2 0 AL,0

(a) Neumann: a = % and p = 4. (b) Dirichlet: a = % and p = 4.

R

2 0 X1 ALO
(c) Diagrams 5.2a and 5.2b together.

3—2a
2a—1"

Figure 5.2: Bifurcation diagrams when 0 < a < % and p <

emanating from A;(—A) has been fully understood in the case of the ball. We have
already mentioned the result of Brezis and Nirenberg [14], and the interested reader
might want to check the works of Atkinson and Peletier [3, 4], Bandle and Benguria [5],
Bandle and Peletier |6], Benguria, Frank and Loss [7], Brezis and Peletier [15, 16], Cao
and Li [21], Capozzi, Fortunato and Palmieri [22|, Cerami, Fortunato and Struwe [32]
and Cerami, Solimini and Struwe [33], Mancini and Sandeep [48] for further reference on
related problems. However, to our knowledge, the fact that the bifurcation picture when
N = 3 is different from the case NV > 4 has not been fully generalized to cover the case
of non integer dimension N in equation (5.11). In [56], Pucci and Serrin suggest that

the non-existence part of their result should hold for any dimension, but an improved
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2 0 2 0
(a) a =1 and p = 6. (b) a =2 and p = 3.

Figure 5.3: Bifurcation diagrams when % <a<landp< 3-2a

2a0—1"

version of the identity shown in [55] was required to support their claim; nonetheless, if

one formally extends the identity from [55] to cover non-integer dimensions, the result

that one obtains is not sharp. Theorem 5.7 provides a sharp answer to both the existence

and non-existence questions in any dimension N > 2. In fact, our result implies that the

sharp lower bound for which solutions to equation (5.11) exist is given by a continuous

function A* = A*(IN) which is identically 0 for all N > 4, positive when 2 < N < 4 and

IA*(N) — A (—A)| = 0 as N — 2% (see Figures 5.1 and 5.4).

luall oo lluxlloo
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and p =

Figure 5.4: Bifurcation diagrams when % <a<landp= 22372&

a—1"
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For the super-critical case, N > 3 and p > %, Rabinowitz 58], Brezis and Niren-
berg [14] and Pucci and Serrin [55] proved that there exists a constant Ay, > 0 such
that equation (5.12) has no solution when A < /_\N7p. Their proofs are general enough to
work on any bounded domain 2, but the case of a ball was not considered separately
and as a consequence non-integer dimensions were not studied. To our knowledge this
gap has not been closed, and Theorem 5.9 provides a proof of that, in fact, 5\N7p >0
is defined for all N > 2 and all p supercritical. However, as mentioned earlier, we
strongly believe that his lower bound is not sharp (recall Open Problem 5.1; see Figure
5.5 below).

On the other hand in terms of the existence question, a complete understanding of
the branch of solutions emanating from A;(—A) has not been fully developed in the
super-critical case. Among the interesting results that can be found in the literature,
it is worth mentioning the work of Budd and Norbury [17], who, for N = 3 and p > 5,
describe the behavior of the branch for large values of |[v|| ., and show that the branch
oscillates about a unique value A* > 0, which is also the asymptotic value of the branch.
They also characterize A* as the unique A for which a singular H& solution to equation
(5.12) exists ([17, Lemma 4.1]). Later, Merle and Peletier [50] showed that such A* > 0
can be found for every (not necessarily integer) dimension N > 2, and Zhong and Zhao
[70] fully generalized the result of Budd and Norbury for any dimension 2 < N < 6 and
only partially in the case N > 6. Other interesting results about the super-critical case
can be found in the works of Budd and Peletier [18] and of Merle, Peletier and Serrin
[51].

NH2

In terms of uniqueness, the results in [17] and [70] imply that for N > 2 and p > 55

uniqueness in not necessarily true (see Figure 5.5). On the other hand, if N = 2 and
p>lorif N>3and1<p< %, uniqueness of bounded solutions to equation (5.11)
was shown in the collective works of Adimurthi and Yadava [2], Kwong and Li [46],
Ni and Nussbaum [53], Srikanth [59], Yadava |68] and Zhang [69]. However, the case
2 < N < 3 was not considered in those proofs. Also, since Theorems 5.1, 5.3, 5.5 and
5.7 give existence to solutions to (5.12) for each N > 1 and p sub-critical and critical,

a proof of uniqueness in all these cases must be provided.
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Figure 5.5: Bifurcation diagrams when % <a<landp> g;z‘i‘
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We would like to emphasize that our proofs do not rely in the change of variables
introduced before, instead we work directly with equation (5.1). This approach allows
us to study the cases 0 < o < 1 (or N > 1 if one thinks of equation (5.12)) all at
once, and most importantly, it allows us to go beyond the o = 1 barrier (notice that
the change of variables does not work for & = 1). When « > 1 one could still use the
change of variables, but the nature of equation (5.13) would change, as the coefficient
Ny — 1 becomes negative and the domain becomes the unbounded interval (—oo, Ry).
By avoiding the use of the change of variables we were able to prove that equation (5.1)
has no solutions when o > 1, regardless of X\ and p > 1 with no major effort (Theorem
5.10). Also, by treating equation (5.1) directly, we shed some light into what might
happen for more general degenerate elliptic operators in higher dimensions.

The rest of this chapter is divided as follows: in section 5.2 we introduce some
preliminary results needed to prove the existence/non-existence part of our theorems.
Section 5.3 deals with the proof of Theorems 5.1, 5.2, 5.5 and 5.6. Next in section 5.4
we prove Theorems 5.7 and 5.8. In section 5.5 we handle the super critical case and
prove Theorem 5.9. Next in section 5.6 we prove the non-existence result for a > 1, and
in section 5.7 we prove Theorems 5.3 and 5.4. Later in section 5.8 we begin to explore
the uniqueness question to then prove the uniqueness part of our theorems in sections

5.9 and 5.10.

5.2 Preliminaries

5.2.1 Eigenvalues and Eigenfunctions

We begin this section by giving some properties of A1 and o1 defined at (5.5). Notice
that y; := (\)~! corresponds to the first eigenvalue of the operator T, : L?(0,1) —

L?(0,1) defined by T, f = u, where u is the unique solution of

1 1
/a:zau’(a:)v'(x)da: = /f(x)v(x)dm, for all v € X"
0 0
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The operator T,, := T, 4+ I was studied in [29], where it was shown that T}, is compact
if and only if @ < 1, and in that case the eigenvalues and eigenfunctions of T, are
completely determined (see [29, Theorem 1.17]). From that result it is easily deduced
that when 0 < o < 1,

A= (1—a)?52, (5.14)

where j,1 is the first positive zero of J, : (0,+00) — R, the Bessel function of the first
kind of order v (see [67] for a complete treatment of Bessel functions and its properties),

and v is defined in terms of a by

vi= . (5.15)
The corresponding eigenspace is generated by ¢i(z) := m%_o‘Jy(jylxl_o‘), and about
this function we have
Lemma 5.11. For 0 < a < 1, and A\ and 1 as above we have that o1 satisfies

—(2*¢/) = Ap in (0,1),

¢(1) =0, (5.16)

lim x2*¢/(x) =0,

z—0t

together with the following properties:
(i) p1 € C%*722[0,1],

(ii) a1 € Co, 1],

(iii) %y € C[0,1], and

(v) 1 >0 1in[0,1).

Proof. The fact that ¢1(x) = xéfaJy(jylxl_a) solves equation (5.16) follows from |29,

Theorem 1.17]. We have the following series expansion of J,(y) near the origin

> —1)ym T\ 2m—+v
o) :W;)m!r(gn—i-)V—i- 1) <§> ’ (5.17)



110

which can be found for instance in [67, p. 40], from here we deduce that

orla) = 3 = CO__(31) " amit-a
m'(m+1+wv) \ 2 ’

m=0

The regularity properties are readily deduced from this series expansion. Finally, the
positivity of 1 can be obtained from the explicit formula and the fact that A\; is given

by (5.14). We omit the details. O

On the other hand, when 0 < a < %, one can also define Ao and ¢ as in
(5.7). In this case p10 := (A1,0) ! corresponds to the first eigenvalue of the operator

Tup: L*(0,1) — L?(0,1) defined by Tnof = u, where u is the unique solution of
1 1
/asmu'(x)v'(m)dx = /f(:v)v(:c)dx, for all v € Xg.
0 0

The operator Ty o = Ta,() + I was also studied in [29], and it was shown that T, is
compact for all 0 < a < %, and that the eigenvalues and eigenfunctions of T, ¢ are fully

determined (see [29, Theorem 1.16]). From that result we obtain that for 0 < a < 3,
Mo = (1—a)22,, (5.18)
where as before j,,1 denotes the first positive zero of .J,,,, the Bessel function of the first

kind of order vy, and 1y is defined in terms of « by

1 -2«
= . 1
140 9 _ 20( (5 9)

1

Notice that —5 < v < 0 < 1y < 1

5, where v is the value used to define A;. From
this observation one can see that A\ < A1 for all 0 < a < % Now the corresponding
eigenspace is generated by ¢ o(x) := x%_aJyo (juo121~), and about this function we

have
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Lemma 5.12. For0 < a < %, and Ao and @1 as above. Then 10 satisfies

—(9320‘90')/ = Aop in(0,1),
¢(1) =0, (5.20)

lim ¢(z) =0,

z—0t

together with the following properties:
(i) p10 € CH172900,1],
(ir) o1 € CH0,1],
(iii) x**¢) o € C10,1], and
() @10 >0 in (0,1).

Proof. The fact that ¢ o(x) = x%_O‘JUO (Juo171 %) solves equation (5.20) follows from

[29, Theorem 1.16]. Using the series expansion for J,,(y) given in (5.17) we deduce that

120 o (=)™ oo\ (1-a)
iow Jvol e
pro(r) == mZ::O m!T(m + 1+ ) < 2 > ’ ‘

The regularity properties and the positivity of 10 can be obtained from the explicit

formula and the definition of A1 . We omit the details. [

As announced in the introduction, we need to study A} and 1, defined by (5.10).

We have the following

Lemma 5.13. Let 3 < a < 3 and define N}, as in (5.10), then the infimum is achieved

by a function ¢, € X(%*a which satisfies the following equation

—(.%'2_2a¢/)/ — )\21,2—4o¢w in (O, 1)’
¥(1) =0, (5.21)
lim 2?72%)(2) = 0.

z—0t

1—a)

Moreover, \f, = j2 (1 —a)?, and ¥q(z) = :L'O‘_%J,,,(j,l,lx , where j_,1 denotes the
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first positive zero of J_,, and v is defined by (5.15). About 1, we have the following

properties
(i) Yo € C¥*72[0, 1],
(ii) ), € C[0,1], and
(113) o > 0 in [0,1).

Proof. First notice that the embedding Xé_a into {w c L} (0,1): HxlfQO‘z/JHLQ < oo}

loc

is compact (this follows from [29, Theorem A.2], because X, % < C’O"%%[O, 1] cc

CY[0,1]). With that in mind, it is easy to see that the infimum defining \* is achieved
by a function v, which must satisfy equation (5.21). Now, a direct computation shows

that if f solves Bessel’s equation

V' yf + =) f =0,

2a—1
22

with parameter v =

then xa_%f <\1/_§x10‘> solves
_($272a¢/)/ _ )\Zx2f4aw.

Since % <a< %, we have that 0 < v < 1, hence the general solution to Bessel’s equation
is given by

fly) = Adu(y) + BJ-,(y),

where J,(y) is defined in (5.17). The above implies that 1), is given by

Ya(x) = 273 | AJ, (mxl‘l) +BJ_, (@xlO‘)]

l1—a

for some constants A, B. The series expansion (5.17) tells us that in order to meet the

boundary condition z2~2%/, () — 0 one has to set A = 0. The condition ¢,(1) =0
z—0

implies that
Ao = (1 - a)szulv

(67

where j_,1 is the first positive zero of J_,. Without loss of generality, we fix the
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solution to be the one with B = 1. The regularity properties are obtained from the

series expansion (deduced from (5.17))

N (—1)™ J-1 N (1)
¢a($’)—mzom!p(m+1—u)< 2 > ) ’

we omit the details. The positivity is readily obtained from the definition of A}, and .
About A}, notice that j,; depends continuously on v (in fact the dependence is
analytic as one can see in [38| or in [67, p. 507]), then A} depends continuously on «;

also, from [54] we deduce that

AL =2(1—a)(3 —4a) + O ((3 — 4a)?),

therefore A}, — 0 as a — %7. Also, since j_,1 < 7,1 for all 0 < v < 1 we deduce that

A}, < A1. Finally, notice that when o — %+ one has v — 0T, hence it is easily seen that

A1 — A% — 0. This proves the conclusion of Remark 5.4 O
a—3

5.2.2 Best Constants and extremals
Another topic that needs to be addressed before proving our results concerns the
best constant and extremals for (5.9), or in general for inequalities of the form

Cllull 20 0,0y < 2% || 120,01

where a > 0. Let X§(0,a) be the set of functions u € H} (0,a] such that u,z%u €
L?(0,a) and u(a) = 0 (when 3 < o < 1, one could also define this space as the closure

of C§°(0,a) under the norm ||z“u’||,, this follows from [29, Theorem A.4]). Define

|z (z)]? da
Sa(a) == 1nf Jo —.

ueXy ( [ = dx) %0

Concerning S, (a) we have the following

Lemma 5.14. Let 3 <a <1, a >0 and Sq(a) as above. Then Sq(a) = Sa(1) for all
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a > 0; the infimum in the definition of So(a) is not achieved unless a = +o0o, in which

case the basic extremal profile is given by

12«

U(x)=C (1 + x2_2a) 2-2a

or after scaling, for every e > 0 by

12«

Ue(z) = C: (e 4 2°72%) 272, (5.22)
where C' and C. are normalization constants. Moreover, we have that

00 29 2-2 1 2 22
—2a (1 4 —2a)\ T 1-a 1 (77)
So = a1 VAV Ty S

(fooo (1+ y2*2a)—ﬁ dy) 2a—1

where I' denotes the Gamma function.

Proof. To see that S(a) = S(1), notice that the quotient ||x°‘u’\|§/|]u\|§a is invariant
under the scaling u,(z) = u(az). To prove that the infimum is not achieved when
0 < a < +00, notice that it is enough to prove it for a = 1, and in that case the proof
will be done later when proving Theorem 5.8 (also check [20, Section 4] where a different
approach is taken).

To prove that the infimum is achieved when a = 400, we use a result from [31,
Section 7.1], where the authors study best constants and extremals for the Caffarelli-

Kohn-Nirenberg inequalities

/‘x_bu(x)‘pdm ! < C(a,b)/‘m_“u'(x)Ide,
R

R

for a < —%, a-+ % <b<a+1landp= W. Using their result it is easily deduced

that the extremals are of the form (5.22). Finally, (5.23) is just a direct evaluation of

||$aU’||§ / ||U||§a using the definition of the Gamma function. We omit the details. [
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5.2.3 A Pohozaev type identity

The purpose of this section is to establish a family of Pohozaev type identities

satisfied by all solutions of

—(2®u) =M+ [P u i (0,1),

0 (5.24)
u(l) =0.

To do this, for each 5 € R, let us define the “energy” functional
By (w)(@) = 22100 ()2 + —- B () P+ + 5xﬁ+1u(x)2
i T2 p+1 2

+ % (200 — 1 — B) 22HBy/ (z)u(z) — g (20 — 1 = B) a2 HBu(z)?  (5.25)

and prove the following

Lemma 5.15. Let a > 0, p > 1 and B, A € R. Let u be a solution of equation (5.24),
then, for every x € (0,1) one has

%u’(l)z = E,\ﬁ(u)(:l:)-i-)\(l—a-%-ﬁ)/18Bu2+ <(ﬁ+ 1) (25;;31)) — a> jsﬂ |u[P!
+ g (8% — (2a — 1)?) /132“—2+5u2.

x
Proof. Multiply equation (5.24) by s%u(s) and integrate over (z,1) to obtain

1 1

1
/\/sﬁu2 +/sﬁ\u|p+1 = /s2au/(35u)’+x2°‘+5u’(x)u(x)
x

x T

1 1
:B/82a+ﬂ+1u/u+/82a+ﬂu/2+x2a+ﬂul(l,)u(x)
T T
1

1
= @atp-1) / S22 4 / S 4 2 (w)u(w)
X

xT

o §x2a—1+ﬁu<x)2’
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hence

1

1 1 1
/$2a+ﬁu/2 _ )\/u2 +/‘u|p+1 + §(2a—|—ﬁ _ 1)/82a—2+ﬁu2 _$2a+6u/(x)u($)
T T T

xT

- §x2a_1+6u(x)2. (5.26)

Now multiplying equation (5.24) by s?+14/(s) and integrating over (z,1) gives

1 1 1
)\/sB“uu’—I—/.SBJF1 lulP~ ! = /s%‘u’(sﬁﬂu’)’—s2°‘+1+5u'(s)2 '
X X

T
x

L = Is.

After integrating by parts, we obtain that

1

1
A 1 A 1

I = —5(5 + 1)/sﬁu2 — gi—l/sﬁ Pt — §xﬂ+lu(:ﬂ)2 ~ oI 1x5+1 lu(z) [P

x

x

and that

1 1
Iy = (5+1)/52a+ﬂul2+/82a+ﬂ+1uluﬂ_S2a+1+ﬂul(s)2

T T
1

1
—(B+1) /82a+ﬁu/2 . w /82a+[3u/2 B 132““*51/(3)2
X

1

T

1

2

x
T

1
1 1 1
=3 (B+1- 20z)/52a+5u’2 — 5u’(l)2 + §x20+1+ﬁu/(x)2'

T

Combining the results of I; and I yields

1 1 1
1(5 +1 - 2a)/82a+6u’2 = —g(ﬁ + 1)/56u2 _ b+l /85 |u|ple — %xﬂHu(az)Q

2 p+1
xT
_ L @)t 4 Sy = Larensy a2 sam)
p+1 2 2 -

The result is then obtained from (5.26) and (5.27). O
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Remark 5.7. For simplicity we have stated and proved the result if the equation is
satisfied in the interval (0, 1), however, the result remains valid if we replace the interval

(0,1) by any interval of the form (0,a), a > 0, that is: Suppose u solves

—(2®u) = A+ [ulf " in (0,a),

thenforall0 <z < a

;M@f:lﬁﬂWM@+Aﬂ—a+ﬁX7§%z+<w+l)Qﬁiﬁw)—a>jgmmml

T T
a

(B2 - (2a— 1)2) /520‘_2+Bu2.

T

=~

_|_

5.2.4 Some regularity results

We continue with some regularity results for v € C?(0, 1] solving

—(z%u) = Au+uP in (0,1),
w>0 in (0,1), (5.28)

u(1l) = 0.

Lemma 5.16. Let o > %, and suppose u € C?(0,1], u(z) >0 for all 0 < z < 1. Then

there exists a sequence 0 < x, < % such that

:c,%o‘u’(xn) <

S |-

Proof. By contradiction, assume there exists 7 > 0 such that x2®u/(z) > r for all

0 < x < r, then after integrating, we obtain that for all x < r

u(r) > u(z) + S (a:1*2a — 7“1*20‘) > CLaxl2e,
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when a > %, and that
u(r) >u(z)+rnr—rlnz > —-C,Inz,

when o = %, for some constant C, > 0. By letting x — 07, we obtain that that

u(r) = +oo0, contradicting the fact that v € C?(0,1]. O

Lemma 5.17. Let a > %, p > 1 and A\ € R. Suppose u solves equation (5.28), then
u € LP(0,1).

Proof. Integrate equation (5.28) over [z, 1], where z, is taken from lemma 5.16 to

obtain

1
o

)\/u—I—/up—— )+ 220 () < —/(1) +

If A > 0, by taking the limit as n — oo we obtain

1 1
)\/u—l—/up§—
0 0
1

hence u € LP(0,1). If A < 0, notice that for all 0 < z < 1 we have fxlu < (fxl u”)p,

therefore
1 1 1 1 .
/\/up +/up§)\/u+/u -,
n
n €T
thus L _
1 » 1 b
/up A+ /up < —/(1),
0 0
and since p > 1, we deduce from here that fol uP must be bounded. O

Corollary 5.18. Let a,p, \ and u be as in lemma 5.17. Then L = lim x?%/(x) exists

z—0t

and L <0.
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Proof. Notice that by integrating equation (5.28) one obtains

1 1
2 (z) = o' (1) + )\/u(s)ds + /u(s)pds,
x x
but since u € LP(0,1), the right hand side converges, so L = lim+ 22y () exists.
z—0
Finally, using x,, from lemma 5.16 one gets L < 0. U

Corollary 5.19. Let a > %, AeR,p> ﬁ and suppose u solves equation (5.28).

Then L = lim z%*u/(z) = 0.

z—0t

Proof. Suppose there exists § > 0 such that z2%u/(x) < —6 for all z < §. Integrating
this inequality yields

u(x) > 0

> ﬁ (1,1—20[ o 61—2@) 2 C(le_Qa,
a —

thus u(z)? > Csz(1=2*)P but since p > 5.7 we obtain that (1—2a)p < —1, a contradic-
tion with the fact that u € LP(0,1). Hence there is a sequence such that 2%/ (z,,) > —21,

so L > 0; but we already knew that L < 0. O

Corollary 5.20. Let o, p and X as in lemma 5.17. Suppose u solves equation (5.28).

Then 22 1u = O(logz) if « = § and 2 lu = O(1) if a > 5.

Proof. Since z%u'(z) = O(1), the result follows from integration. We omit the details.

O]

The next lemma shows that positive solutions are monotone near the origin when p

is large enough.

Lemma 5.21. Lei o > %,)\ €ER, p>2,—1 and u be a solution to equation (5.28).

Then there exists 0 < & < 1 such that u'(z) # 0 for all 0 < z < Z.

Proof. If u = 0 there is nothing to prove, so we assume that u £ 0. We start by proving

that there exists 0 < zp < 1 such that for all x < x, either u/(z) # 0 or v’(z) <0 .
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The proof of this is by contradiction, so we assume that there exists a sequence x, — 0

such that u/(z,) = 0 and that u”(z,,) > 0. From the equation we then obtain that
Mu(z) + u(xn )P = 2% (2,) — 202 1/ () < 0.

Thus, if A > 0 we obtain that u(z1) = u/(z1) = 0, this and the existence and uniqueness
theorem for ODEs imply that v = 0, a contradiction. On the other hand if A < 0, the
above inequality implies that u(z,) < (—)\)717%1 for all n > 1. The Pohozaev identity

from lemma 5.15 with f = 0 and € = x,, gives that

S0/ (12 = Exo(u)(za) = A(1 - a) / u? + (; —ot pil> / wr,

Tn In

but, since A < 0 and p > 2, — 1 we obtain that the right hand side is non-positive, hence
1
5“’(1)2 < By o(u)(zn).

But

as x, goes to 0, since u'(zy) = 0 and u(z,) = O(1), thus proving that «/(1) = 0 (and
as a consequence, u = 0), also a contradiction. So we have the existence of such zg.
The above proves that all critical points less than x( are local maxima, so the only
possibility is that there is at most one of them (if there were two local maxima, there
must be a local minima in between). This shows that u/(z) # 0 for all z near the

origin. O

Lemma 5.22. Lei o > %, p > 24— 1 and A € R. Suppose u solves equation (5.28).

Assume in addition that there ewists € > 0 such that x=*uP € L*(0,1). Then for any



121

’y<min{2a—1—%,1—%} one has

(i) 7 7uP € LY(0,1),

(i) z2*~277u € L1(0,1) and lim 2?*~1"7u(x) =0,
z—0t

(iii) x>~/ € L1(0,1) and lim z%*7/(z) = 0.
z—0*t

Proof. We begin the proof with a claim: there exists a sequence 0 < d,, < % such that

s2o=1=1y(5,) <

SR

Indeed, if we assume the contrary, then there would exist 7 > 0 such that z2*~1=7u(x) >

r for all < r, that implies that

x—eu(x)p > Tpx(1+’y—2a)p—57

but since v < 2a — 1 — % then z(1t7=20)p—¢ > =1 this contradicts the assumption
r~fuP € L.

Now, for §,, as above, define

™7 i x>,

5, ifx <4,.

Notice that 1, € H'(0,1) for all n. Let z > 0 and multiply equation (5.1) by 7, and

integrate by parts over [z, 1] to obtain

1 1 1

/nn(s)u(s)pds = —u/(1) + 2%/ (x)n, (x) + / s/ (s)n) (s)ds — )\/nn(s)u(s)ds.

(5.29)
First, from corollary 5.19 we know that lim z?%u/(z)n,(z) = 6, lim 2>%u/(x) = 0,
z—0t z—0t

also

/lnn(S)U(S)ds < /ls‘WU(S)ds,
T 0
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but

and since y < 1 — %

1+<—7+5) <p> >0,
p) \p—1

so the second integral is finite, and as a consequence, = 7u € L'(0,1). Therefore

1 1
lim [ nn(s)u(s)Pds < —u'(1) + || /57u(s)ds + lim [ s**/(s)n),(s)ds.
0

z—0t z—0t
x x

Let us study that last term of the right hand side. Suppose x < d,

1

1
/sQau'(s)ng(s)ds =— /sza_l_vu'(s)ds

on

=y(2a —1—7) [ s2*72Tu(s)ds + v62* 17 Tu(s,)

<y(2a—1—7) [ s2272u(s)ds + 7
n

o T~

Notice that,

p—1

1 1 % 1 -
/SQO‘QVU(S)dS < /ssu(s)pds /s<2a_2_”’+p) (%) 7
0 0

0

but since v < 2a0 — 1 — %, we obtain that 1 + (204 —-2—7+ %) (%) > 0, so the
second integral is finite and one concludes that

1
1 P
1

/1 200/ ()0, ()ds < C / su(s)Pds | +0 () .

n
0
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Putting the above estimates together yield

1 1
1
/nn s)Pds < —u'(1) +C /s_eu(s)pds +0 (n) .
0 0

so by letting n — oo, we conclude that

1 1 7
/s Tu(s)Pds < —u/(1) +C /ssu(s)pds
0 0
This proves (i).
Now we prove (iii). Using (5.29) one obtains
1 1 1
/SQau'(s)ng(s)ds ='(1) -l—/nn(s)u(s)pds—l-)\/n (s)u(s)ds — 6, Tz%*/ (z),

but, for fixed n, the right hand side converges as x — 0 to

1

-1-/177” pds~l—)\/ n(s)u(s)ds,
0

0

which converges as n — oo to u/(1) 4+ [y s Vu(s)Pds + )\fol s~ 7u(s)ds, this shows that

the left hand side also converges, thus

n—oo x—>0+

1
—W/SQO‘_I_WU'(S)ds = lim lim [ s**/(s)n,(s)ds
0

1

1
—I—/s Tu(s pds—l—)\/s_Vu(s)ds
0

0

where we have used lemma, 5.21 to say that du(s) := s2*~1=7u/(s)ds defines a signed

measure, and hence monotone convergence applies. To prove that lim x?*~7/(z) = 0,
z—0t
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multiply equation (5.1) by s~ and integrate by parts over [z, 1] to obtain

1 1 1
22/ () =o' (1) + /s_“’u(s)pds + )\/s_vu(s)ds + 7/520‘_1_7u'(s)ds,

T x T

but we proved that the right hand side converges, and it converges to 0.
To prove (ii), notice that we already proved z2*~2=7u(x) € L*(0,1) and that by (iii)

the right hand side of

1 1
w21y (z) = /szalyu'(s)ds —(2a—1-— 'y)/sza?'yu(s)ds
xT xT
converges; also, since li_>m 62717y (6,) = 0, then lim+ 21"y (z) = 0. O]
n—00 z—0

We conclude this section by improving lemma 5.17 and Corollaries 5.20, 5.18. Recall
that those results deal with the fact that v € L” and the behavior of 2?*«/ and x2* u

near the origin. We claim that when p > 2, — 1, we have

Lemma 5.23. Let o > 1

5, p > max {2, — 1,1} and A € R. Let u be a solution of

equation (5.1), then u € X§(0,1) N LP*1(0,1), and

1
IRt s -0
(i) lim a7 Tu(z) =0,

T o+l (z) = 0,
(i1) Jim = zu/(z)

Proof of Lemma 5.23. Lemma 5.17 gives that u € LP(0, 1), so we can apply lemma 5.22
for g = 0 and obtain that for v < 79 = min {204 -1- %, 1-— ;1)}, (i), (ii) and (iii) in
lemma 5.22 hold. By choosing €; < 2a—1— % but arbitrarily close to it, we can repeat

the argument one more time, and obtain that (i), (ii) and (iii) in lemma 5.22 hold for

enmmm{(m ) (o) (- D)

Continuing in this fashion we obtain that (i), (ii) and (iii) in lemma 5.22 hold for all

1\ - 1 1\ « 1
v < Yp = min (2a—l—> .,(1—) —
! p) =V p Zpﬂ

=0

all

such that
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for any n € IN. Hence, if we define

. . I\ »p
Yoo .—nh_%oyn—mln{<2a—l—p> p—l’l}’

then (i), (ii) and (iii) from lemma 5.22 hold for all v < Y.

First we deal with the case 2 <a<landp+1>2, we obtain that

2
2a—1°

2700—(2a—1):]3i1((204—1>(p+1)—2) > 0,

so, we can find 7 < 7o such that 2y — (2a — 1) = 0. Using this 7 in (ii) gives that
lim z7u(z) = lim 2?*~1=7y(x) = 0. In particular, since u € C2(0, 1], this shows that
z—07t z—07F

27u € C°[0,1], and we can write

1 1 1
/u PHds = / s)PsTu(s)ds < Hs7u||oo/s_'yu(s)pds < 400,
0 0 0
sou € LPYL(0,1).
To prove that v € X§, fix N > 1 and define uy(z) = max {u(z), N}. Multiply

equation (5.28) by uy and integrate by parts to obtain

1 1
/20" )\/u +/u YPun(z)de,
0 0

where we have used corollary 5.19 to say that ligl 2%/ (x)un (z) = 0 and that up (1) =
0. Since u € LPT1(0,1), the right hand side converges to )\fol u? + fol uPTt < +o0 as
N — +o00, this shows that u € X

Now, notice that by our initial choice of v, we have that J:O‘Jr%u’(:c) =22/ (2) = 0

as  — 07. Similarly mo‘_%u(m) = p22 7 ly(x) — 0as z — 0. To prove that

1
xru(z) — 0, multiply equation (5.1) by zu/(x) and integrate by parts over [z,1] to
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obtain

1 1
1 1 1 A
e 1xu(x)p+1 = —u/(1)2 + <a — 2> /szo‘u’(s)st 51:20‘“1/(3:)2 -3 /u(s)st
1 h A
S p+lg. 2 2
P u(s)P"ds 2:1:u(x) ,

T

notice that every term in the right hand side converges when z — 0%, then so must

zu(x)PL. Also, the limit lim zu(z)P*! = 0, because otherwise, u(z)P*! ~ 27! near

z—0t
the origin, contradicting the fact that w € LPT1(0,1).
We now consider the case « > 1 and p > 1. Notice that as in the previous case,
it is enough to prove v € LPT!(0,1), and to do so, it is again enough to prove that

x77uP € L1(0,1) and that z7u € C[0, 1] for some 7. Observe that by lemma 5.22, for

v <1, 27 %P € L'(0,1); by Holder inequality

for all ﬁ < % < v < 1. Now notice that

1 1
/:L’Vu’(x)dx = —fy/:v”lu(:c) —cTu(e).
€ 3
On one hand, by monotone convergence, we have that f; 2 (x)dr — fol 2 (x)dz
as ¢ — 0%, and on the other hand, for v > ﬁ there exists a sequence &, — 0T
such that eju(e,) — 0 (otherwise we would contradict the fact that = u? € L(0,1)).
Therefore, along €, we have that —y f; 27 () — eVule) — —y fol 27" tu(z)dz, so by

the uniqueness of the limit

1 1
/x”u/(:z:)dx = —v/xw_lu(x)dx,
0 0

and as a consequence, z7u(z) — 0 as x — 01, in particular 7u € C[0, 1] for all such

7. Now proceeding as in the previous case, we conclude that u € LPT1(0,1), u € X,
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zu(z)P+! = 2720/ (z) = o(1) as  — 0%, we omit the details. O

Remark 5.8. Although the case p = 2,—1 is not considered in lemma 5.23, we can repeat
the idea of the proof above and obtain a slightly weaker result: if u solves equation (5.1)

for p = 2, — 1, then for all § > 0 we have
(i) 2uPtt e LY(0,1),
(i) u e X"‘+2 nd
(i) 2! ou(z)Pt! = 2212430/ (2) = o(1) as = — 0.

Notice that the above properties imply that u € L?(0,1). This allows us to write for

p = 2, — 1 that

dExo(u)(z)
dx

= A1 —a)u(x)? € L'(0,1),
from where it follows that E) o(u)(z) € C[0, 1] and that xa_%u(x) = :UCH_%UI(I') =0(1)
as x — 0F.

Remark 5.9. With obvious modifications, all the results in this section remain valid for

solutions of
—(2%u) = M+ uP in (0,a),

u>0 in (0,a),

where a > 0.

5.3 The sub-critical case

5.3.1 Proof of Theorems 5.1 and 5.5

Let
S)\,a ;= inf I)Ha(’u). (530)

ve

First, notice that since

fo |z%v \ dx

A<M <Z
fo\v |dz

, for all v € X,
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we have that 0 < Sy, < oo. With this in mind, we claim that S), is achieved
by some v € X§ \ {0}. Indeed, let v, € X§ be a minimizing sequence such that

fol lon (2)[PT! da = 1, that is

n—oo

1 1
She = lim /}xo‘v;(m)‘de—/\/]vn(x)F dx.
0 0

The above implies there is a constant C' > 0, such that

1

/ ‘xo‘v;(:ﬂ)|2daz <C.

0

Indeed, for A > 0 and all n large we can write
1 1
/ |xav;(az)‘2dm < (Sya+1)+ )\/ |Un(ac)\2da:
0 0
1
A o,/ 2
< (S)\,a + 1) + )\/‘l’ Un(x” d.%',
! 0
therefore

1
—1
/‘l’avg(l‘)‘Q de < (Sk,a +1) (1 — ;\) .
1
0

And for A < 0 we immediately obtain that

1
/ ’xav;(a:)}2dx < Sxa+ 1L
0

Hence, the sequence vy, is uniformly bounded in X§. Now, since the embedding X§ —
LP*1(0,1) is compact (the proof of [29, Theorem A.3] can be copied line by line to
obtain this compactness, or one could use [45, Theorem 7.13]), we can assume, after

extracting a sub-sequence, that there exists v € X§ such that
e v, — v strongly in LPT!,

e v, — v strongly in L?, and
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e v, — v weakly in X,

thus implying that

1 1 1 1
/ ‘arav'(x)fdx - )\/ lv(z)|? da < liminf/ ‘xo‘v;(x){Qda; - )\/ o (2)|? dz = Sy -
n—oo
0 0 0 0
Hence S, is achieved by v # 0, which one can assume to be non-negative as one

can replace v by |v|. Now it is easy to see that v is a solution of

—(z?*) = M+ P in (0,1),

lim 22%/(x) =0,
z—0t
1
where 1 = o\ > 0 is a suitable Lagrange multiplier. If one lets u(x) = pr-Tv(z) then

u i8 a non trivial non-negative solution of

—(z**) = Au+uP in (0,1),

lim 22%/(z) = 0.
z—07t

To prove the regularity properties, notice that from the equation and the fact that
20
u € X§ < L%, we have (:L'Qo‘u’)’ € L», and since lilrn+ %/ (x) = 0, we can write,
z—0

using Hardy’s Inequality,

T

1 2o
wQaflu/ — /(SQOéu/(S))/dS c L v
x
0

) 20—1,%
that is, u € X, P

0,1). With the aid of [29, Theorem A.2| and a bootstrap argu-
ment, we obtain the regularity properties claimed. We omit the details.
To prove that w > 0 in (0,1), let Z := {z € [0,1) : u(s) > 0, Vs > x}. Since u # 0

we have that zg := supZ < 1. If g = 0 we are done, otherwise 0 < zg < 1 and

u'(zg) = 0 (it is an interior minimum), but by the definition of xq, u(s) > 0 for all
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s € (xp,1). Since the equation is elliptic in (zg, 1), Hopf’s lemma applies and we obtain

u'(zo) > 0, a contradiction.

5.3.2 Proof of Theorems 5.2 and 5.6

Suppose we have a solution and multiply equation (5.1) by o1 and integrate by parts

over [e, 1] to obtain

1 1
(=) [u@)er@de + [ u@Pe(eds = 0o ) - £ Eule)
€ €
If @ < 3, then we are assuming that e2%u/() < o(1) and as a consequence we obtain
that eu(e) = o(1) as e — 0.
If a > %, we do not have the assumption near the origin but we have Corollaries
5.18 and 5.20, which allows us to write e2%u/(g) < o(1) and eu(e) = o(1).

Therefore in all cases we can write, with the aid of lemma 5.11

1 1
(A=) /u(m)gpl(w)dx + /u(x)pgol(a:)dx < o(l), foralle >0

£ £

but since A > A1, ¢1 > 0 and u > 0, we reach a contradiction when we send ¢ to 0T.

O]

5.4 The critical case: p =2, —1

We begin this section with the key ingredient in proving Theorem 5.7. As announced
in the introduction, we will follow the approach taken by Brezis and Nirenberg in [14]
and we will prove that Sy o defined at (5.30) is achieved by some function v € M. In

order to do so, we will prove that it is enough to show that

S)\,Oé < Sou
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where S, is defined in (5.9).
Lemma 5.24. Suppose A > 0. If S\ o < Sq, then Sy o is achieved.

Proof. Let v, € X§ be a minimizing sequence for S o, i.e.,
o, |2 2
205 = Alonllz = Sxa +0(1); [[vnllysr = 1.

As we did in the proof Theorem 5.5, we deduce that v, is uniformly bounded in X, so

without loss of generality, one can assume that there exists v € X§ such that

v, = v in X§,
72
v, — v in L7,

v, — v a.e. in (0,1).

Also we have that |[v]| ,,; < 1. Following [14], let w,, = v, —v. It is not difficult to see

p+1

that w, — 0 in X, and certainly we have w, — 0 a.e. in (0,1). Now, notice that

1
a_vlenj\f/l/‘x )}2dm§/‘xav;(m)‘2dx,
0

hence, Sy > So — A ”’UH%, and since Sy o < So and A > 0 one deduces that

Sa — 8
lolly > === > 0.

Using that w, — 0 one obtains
leenll3 = (2[5 + la®wi ]l + o(1),

which implies

Sna = |[aV ||+ Ja%wl |2 = A o]l + o(1). (5.31)
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Also, Theorem 1 from Brezis and Lieb [12] gives

+1 +1 +1
lv+wallpiy = llvllprs + lwallpry +o(1),

sol< HUH?,H + HwnH]%+1 + o(1) and as a consequence

1
1< |lol2, + - 2wl || + o(1). (5.32)

To conclude the proof, we identify two cases:
o If Sy o <0: from (5.31) we deduce
oo/ ll3 = Aol < [l [l3 + [la®wf 3 = A3

= S)\,oz + 0(1>

2
< Sxal[ullygs +o(1).

o If Sy o > 0: multiply (5.32) by S\ to obtain

S)\,a
Sa

Sna < Sxa )2y + 22 [|2w), |5 + o(1),

hence

S
oo = Mol < Sl + (532 = 1) a3+ ot1)
(0%

2
< Sxa [vllpyr +o(D).

Either way, one obtains

2205 = Aloll3 < Sxa llvl2s

thus completing the proof. d
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5.4.1 Proof of Theorem 5.7

2—2a) 5:72

To prove this theorem we will evaluate I o at u-(z) = ¢(z) (¢ + z 23, where

¢ is to be chosen, and prove that I ,(v:) < S, when ¢ is small enough, which, with the
aid of lemma 5.24, allows us to conclude that S} , is achieved by some function v € X¢'.
The case%§a<1

Let ¢ : [0,1] — [0,1] be a smooth function such that ¢(z) = 1 for x € [0, 3] and

3
1-2a
¢(z) =0 for z € [2,1], and consider v.(z) = ¢(z) (e + 2>72¢) 272 In order to evaluate

2

o1 Firstly, notice that

I o(ve) one has to estimate Hx"‘véH;, ve||3 and |jve||

1

/ ’xavé(az)f dr = (2a — 1)*

0

—2
]},27201 (8 + x272a)m gf)Q(l’)dLU

O\w\w

+ [ 2% (e +22720) T ¢/ (2) P da

W=
Wl

+(1-2a) [ z(e+2*2%) = o(x)¢ (z)dz

wl=
BN

:Il+IQ+I3.

To estimate Iy, Io, I3, notice that for 8 > 0,7 > 0,0 < a < 1 and € > 0 we have

2 2
/mﬁ (e+2* ) Vda < /mﬁ_%(l_o‘)dfc = O(1). (5.33)
1 1
3 3

To estimate Iy, let =2 —2a, v = ﬁ and use (5.33) to obtain

=2
I = (2a—1)% [ 2272 (e + 277 2) 272 ¢*(2)dx

=2 =2
=(2a—1)? [ 2®7% (e +2* )22 dz 4+ O 2?72 (e +2°72) 7 dy

O\ww o\w\w
ww\w\m
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1
3
=2
= (2a — 1)? /;1:2_20“ (e +2°72%) 225 dz 4 O(1).
0

1
Using the change of variables z = £2-2ay in the above integral gives

oo
_2a —2
I = (2a — 1)%7 2 /y2_2a (14 ¢*72%) 22 dy + O(1).
0

For I and I3, since ||¢| ., [|¢'||,, < oo, one can apply (5.33) once again to obtain

12 + 13 = O(l)

1 00
—2a =2
/ |20, (z)|* dor = (20 — 1)2%e7 2 /y220‘ (1+4272) 725 dy + O(1).  (5.34)
0 0

On the other hand we compute

2

wl=

1
1—2a 1-2a
/ [ve(2)|? da = / (e +2°72%) T dz + / (e +2°72%) T2 ¢*(z)da
0 0 1
3
=Ji+ Jo.

To estimate .Jo, notice that

2 2

3
1-2a
/(5 + :UQ_QO‘) 1ma dx < /x2_4°‘dx =0(1).

Wl
w|—

To estimate J; we need to divide into two cases: % <a<land o= %. If % <a<l1

1
we use the change of variables x = €2-2ay and obtain

1-2«a

1 e

i 9_9 1-2a 3—4a : 99 T2
le/(s+z_°‘)1“ dr = g2-2a / (1+y‘a)1*“ dy

0 0
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/ (14 y*2%) = dy+O( ).
0

Ifa= %, the change of variables z = £%y gives

6_2

oo ot o)y ]

Wl

=~
Il
O\w\»—-

0 0
=2|lne| + O(1).
Therefore
; , 2 [Ine| 4+ O(1) if a =32,
/ pe@fPde =3 . (5.35)
, g2z [ (14y>72) T dy+0(1) if2<a<l

Finally, we need to estimate ||vg||p+1

Wl

2

1
2 __2
/|U€(:L‘)|2a21 dx:/(€+x2—206)_2—2a d$+/(€+x2—2a) 2 9%2a |¢($)|T2*1 dx
0 0

W=

= My + Ms.

For Ms, notice that

2
(e+a?2) 22 dp < [ 272z = O(1),

Wl

win
W=

win

1
and for Mj, the change of variables x = e2-2ay gives

o0

/ ((€ + x272a) 2-2a Jp = e 2-2a 2a / 1 + y2 2a T 22 dy + 0(1)
0 0

W=
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Thereafter
1 o]
_2
[ @i e = [ (o) = 4y oq) (5:30)
0 0

Now, putting together estimates (5.34), (5.35) and (5.36) gives

2 2
2 velly = Allvellz

Dl =7 .,
B (20— 1)2K; — XKy + O (5%) if > 2,
(2a —1)2K; —e|lne|AKs + O (e) ifa=3,
where
JPOU A U P Tedr U @)Pdy 1

}204—1 - (2a (20(— 1)2 o

[fooo (14 y22) s da

U (e ot ay)

and

1—2a
[ (14 22) T
Ky — < oo,
? 00 220\~ 535 7.0 e
fO (]_ + Y ) 2—2a dll}
- 2
Ry — < oo,
’ o0 9-20y 5% 4] 2 e
fO (]_ + Y ) 2—2a d.’]:'

Finally, since o > § (a = % resp.), for every A > 0 there exists ¢ > 0 sufficiently small

such that —e\Ky + O <52 2&) <0 (—e[Ine| AKy 4+ O(e) < 0 resp.), hence
S)\,oz S I)\,a(va) < Som

as claimed.

Thecase%<a<%

In this case, we choose ¢ = 1, the minimizer of A} given by lemma 5.13. As before
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1-2«
we need to evaluate Iy o (v:), where v.(z) = (e + 2?72*) 2722 1), (z). Notice that
1
=2
/ |20, ‘ dr = (2o — 1)? /x22a (e + 2% 72) 720 o2 (2)dx

0

1
20 220\ Toar | (]2
+ [ 2** (e +a ) e ’wa(:zﬂ dx

0

1
—2a
(1-2a) /3: 6—|—a:2 20‘ 2220 aho ()L, (z)dx
0

:Il+I2+I3.

We begin by estimating I3: We integrate by parts and use the fact that :n%@ba — 0

as x — 07 (see lemma 5.13), to obtain

1
—2a
I; = (1-20a) /m (e + 2%7%%) 7722 g ()0, () da
0
1
(2o —1) / E—i-fUQ 20‘ 1“7/) (z)dx
0
1
=2
— (2a _ 1)2 /1,2—204 (6 + x2—20¢) 2—2a ¢§(m)dw
0

=ea—-1) [ (e+ 562*20‘)_ﬁ Y2 (x)de — I.

o _

1
To conclude the estimate of I3 we need to rewrite fol (5 + x2*2°‘) =a 92 (x)dx. Observe

that
1 1
1 __1
/ (e +2®7%) "2 g (2)de = ¢ (0) / (e +a77%) T da
0 0

1
s [ e+ ar ) () - v20) d
0
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and then we notice that by lemma 5.13 we know that |¢?Z(z) — ! =0 (2?7%%), so
we can write
1 1
/ g+ 22 Toa (@bi( ) — wi(())) dx| < C/ (5 + 22 20‘) Ta 27200,
0 0
1
e 2—2a
1=2a 2—2a 2—2a
= e / (L4 y™7) Tmey™dy
0
(o]
= [y TR+ o)
0
The above means that
1
2— 2a == 3—da
13—51/1& (2a — 1) 5+x 1adx—I1+O(52—2a>
0 (5.37)

1-2a 2( 7 2— 2a = 3—da
=2 292(0)(20—1) [ (1+y 1ady_11+0(5272a>,
0

Now we estimate Is:

0

g2 ‘w;(m)f dx + 1.

1
[
1

1-2a

= /332_20‘ ‘wtlx(l’)F dx + / [(E + 2720 T g2 |x°‘w;(m)‘2 dx
0
1
/

To estimate I, we notice that by lemma 5.13, we have that 2%/, € C%1=20, 1], hence

it is enough to estimate

m2—401 dx

~

1
[, = /[(6—1—3@'2 2O‘) =
0
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20—1

Define f(t) := (te + 2®72*) ==, and notice that

’€+$2_2a‘21“;1 — 2172 = | f(1) — f(0)] < sup |f(1)].

t€[0,1]

3a—2
A direct computation shows that f(t) = %6 (ts + :cQ_QO‘) 1-a  Now, using the mono-

tonicity of f’(t), it is easy to see that for all ¢ € [0, 1] we have

pbo—t it % <a< %
[f'(®)] < Ceq1 if o =2 : (5.38)
3a—2
(42?21 f2<a<?

From (5.38) we deduce that

-1
=Ce{c 3 fooo y‘g (1 + y%> dx 4+ O(1) if a = %,

1-2«a

c2—2a fooo y2_4a (1 + y2_2a)_1 + 0(1) if % <a< %,
\
3—4a
::() (5272a>.

So we can conclude that

1

I = /xHa | (2) > dz + O (E%) . (5.39)
0
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Putting together (5.37) and (5.39) we deduce that
1 o0
Coa )
/’xavé(x)de — 5%1#2 2a — 1) / 1+y2 2a iy dy
0 0
1
+ e @ a0 (55,
0

Now, we estimate ||vc||3: Since 1, € L™, we use the same estimate obtained for Iy, to

write

Finally, we estimate ||v5||12)+1: the same idea used to estimate I3 gives

1

1
/ fve () P dr = / (e +2*2%) T [y ()P do
0

0
1

= [wa(O) / (%) T da
1
+ / (e +2°7%) [yz/;a )\P“—\%(O)\P“} dx
0

= |a(0 )|p+l/(6+x220‘)_11“ da:—l—O(s%)
0

— e [ (0) T / (14572 T dy - (1+0(e))

0
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Using the definition of A}, and 1, and the above estimates give

2 2
_ ez olfly = Afeells

I)\,Oc(UE) =
v- |2
= (20 — 1)K3 + 2730 (X5 — \) Ky + O(e)
where
00 ) 2—2a . FZ (2 12 ) 2—2a
Ka = 1 22« _fad _ —ax
3 /( +vy ) Y 2 %0 F(L) ,
0 11—«
and
00 1—2« 1
_ oy — on 9
Ky = [¢a(0)| /(1+y2 2T gy /‘xl 2 Yo (2)|” do < +o0
0 0
S,

Using lemma 5.23, one obtains that K3 =

: 1 3 : *
521 Now, since 5 < a < ¥, for given A > A

there exists ¢ > 0 such that £2-2a (A=A Ks+0() <0
SA,a < I/\,oa(vs) < Sa,

thus concluding the proof.
O

The next results show that the solution obtained in Theorem 5.7 is in fact continuous

up to the origin.

Lemma 5.25. Let % < a <1 and a(x) € LI(0,1), where ¢, = 2370_‘2, and suppose

u € L*(0,1) solves

u(1) =0, (5.40)

1' 20,/ — 0,
Jim, u'(z)u(x)

then u € L'(0,1) for all t > 2.
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Corollary 5.26. Let u be the solution given by Theorem 5.7, then u € C°[0,1]. More-

o, I

2=y’ and x*u" are also continuous up to the origin.

over x

Proof of Lemma 5.25. For a given positive integer n, define

0 if u(x) <0,

un(z) = u(z) if0<u(z)<n,

n if u(x) > n.

For fixed g > 0, let ¢(z) = u+(:z)u%/8(a:) Multiply equation (5.40) by ¢ and integrate

by parts to obtain

/ 20 ()2 () + 28 / 20 ()2 (u ()PP e = / () (u* () 2uP e

u>0 0<u<n u>0

On the other hand, we can write

(8% +26) / 220 ()2 (u+ (2)) P,

0<u<n

hence, with the aid of |29, Theorem A.2| one obtains for M > 1

2a

1
[ ot @i
0
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2
2a
2a

+Cop| [ lato) / it () 2
0

1

Now, fixing M = Mp sufficiently large so that C, s (fla\>M |a(x)|q“) < 1, gives

2

2a

1 1
/‘uﬂx)uﬁ(:r) < 2M0a75/u+(x)2u26(:v)dx.
0 0
By passing to the limit n — oo in the above inequality (notice that the constants do
not depend on n), we obtain

2
2a

1 1
[ @0 | <oncn, [
0 0

Similarly, one can prove the same inequality for =, thus obtaining

2
2a

1 1
/ (@)= | < 2mrc, 4 / ()22
0 0

The above inequality shows that if u € L2278, then u € L2(+P)_ Since u € L?, we can
start with 8y = 0 and obtain u € L?. So by letting By = 0 and Bi11 = & (1 + 8;) — 1,
we obtain that

u € LQCY(H’BZ‘)7 for all i > 0.

Notice that 5; = (270‘ — )Zé‘:o (%)j, and since 2, > 2 when a < 1, we obtain that

B; — 00, hence u € L! for all t > 1, as claimed. O

Proof of Corollary 5.26. Notice first that by construction the solution given by Theorem

5.7 satisfies equation (5.40), so lemma 5.25 applies, so u € L!(0,1) for any ¢ > 1. Now,
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we also now that lim z2%u/(z) = 0, so we can write
z—0t
1 x
s (@) = [ gl
x
0
where g(s) = —Au(s) — u(s)?. Since u € L' for all ¢, we obtain that g € L' for

all ¢, hence by Hardy’s inequality, we obtain that z?*~1u/(z) € L! for all t. This
means that u € Xgo‘_l’t, so |29, Theorem A.2| applies and we deduce that if ¢ is
sufficiently large, u € C°[0,1] (in fact one gets u € C%7[0,1] for all v < 2 — 2a).
So g above is also continuous, which in turn implies that xl_i)rél+ % fo‘r g(s)ds exists, so

22~ 1y/(x) must also be continuous. Finally the equation implies that 22%u”(x) =

—u(z) — u(z)P — 2ax? 1/ (x) € CY[0,1]. O

5.4.2 An equation in the half-line

In this section we will study the equation
— (2**w") = |w|P" w in (0, 00), (5.41)

where p =2, — 1 and % < a < 1. The motivation behind studying this equation comes

from the fact that if u solves
— (%) = M+ |[ulP " win (0,1), (5.42)
then, us(z) := 50‘_%u(5m) solves
—(22uf) = X% 2 us + |ug|P " us in (0,67,

So, equation (5.41) is the limiting equation as § — 0 (in a sense that will be made clear
later) for ug, and for § small enough us should be close to a solution w of equation (5.41).
If we are able to classify the solutions of equation (5.41), then we could understand how

u 18.
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Equation (5.41) is the equation satisfied by the critical points of

> |z (2))? da
Ja(W) = f[) 2

(S5 feo() = da) >

1-2a
in particular U(z) = C. (e + #*72%) 2722 the extremal family for the Caffarelli-Kohn-
Nirenberg inequality introduced in lemma 5.14 are solutions to equation (5.41). As we
will see, these are the only solutions that are bounded at the origin, and this is the

content of the following

Lemma 5.27. Let w € C?(0,00) be a solution of equation (5.41), then there are four

possibilities
(i) w="U. for some e >0,
g 1 . o
(1) w = Cx2~%, where C is a normalization constant,

(1i3) w = J;%_D‘f(—lnx), where f : [0,00) — (0,00) is a periodic smooth function,

which is bounded away from zero, or

(iv) w = :c%_ag(—lnx), where g : [0,00) — (—00,00) is a sign changing periodic

smooth function.

Proof. To prove this lemma, notice that if w solves equation (5.41), then v(y) =

e(%fa)yw(e*y) solves

1\2
v = (a — 2> v— P v inR. (5.43)
The solutions of equation (5.43) can be easily classified by means of the energy functional

2
BO)0) = 50 0P~ (o= 5) P+ b,

which is constant for every solution, as one can see by multiplying equation (5.43) by

v'. By looking at the phase plane, one obtains that for

1 1\? 2 |b|P !
A:__ i - 2_ - - —_— N
mln{2a (a 2) 2+ 1,a,b€1R <0,
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then
e If F(v) > 0, then v must be a sign changing periodic function,
e if E(v) =0, then v is a homoclinic orbit for the unstable point (0, 0),

o if A < E(v) <0, then v is a periodic function that is bounded away from zero,
and

2a—1

o if E(v) = A, then v = £ [2271] 51,

The homoclinic orbit is given (up to translation) by

Viy) = <2a4_ 1)”11 [Cosh <(p - 1)51204 — 1)y>}ﬁl

and a direct computation shows that U(z) = x%_O‘V(— Inz). This finishes the proof. [

Remark 5.10. As seen in the proof, the energy functional E(v) := %1}/2 —% (o — %)2 v+

zﬁ [u|P*! classifies the solutions of equation (5.43). Since it will be used later, let us

introduce the corresponding energy functional for w solution of equation (5.41) by

Eo(w)(z) = E(v)(y) = ~** ! ()% +

; w@P + (o= 3) o @uto)

(5.44)

p+1
where v(y) = e(%*o‘)yw(e_y) and y = —Inx. Notice that Ey(w) = Eyo(w), where
E) g(u) is defined in (5.25). Now we can say that if Ey(w) > 0, then w is unbounded,
with infinitely many sign changes near the origin. If Ey(w) = 0, then w is a bounded

function which is positive (or negative) near the origin, and if Ey(w) < 0, then w is an

unbounded function positive (or negative) near the origin.
Now, let us establish that if u solves equation (5.42), then us(x) = (50‘_%u(5x)

converges to a solution of equation (5.41), and this is the content of the following

Lemma 5.28. Suppose u € C?(0,1) solves equation (5.42). Suppose also that there

exists a constant C > 0 such that

1_

lu(x)] < Cz2~ and W/ (z)| < Ca™277, (5.45)



147

then there exists w € C%(0,00) solution of equation (5.41) and a sequence 5, — 0, such

that for all x >0
lim |ug, () —w(z)| + ‘ugn(x) — w'(x)‘ = 0.
On—0

Moreover, if

Ex(u)(x) = Bxo(u)(x) = a2/ ()? + 2au(z)’ + P+

; o fu(z)

p+1
+<a—;>ﬁ%a@m@,

one has that E = lim+ Ex(u)(z) exists and w is characterized by Ey(w) = E.
z—0

Remark 5.11. This type of lemma has already been proven by Benguria, Dolbeault and

Esteban in 8], where they classify, among other things, the solutions of
—Au=Xu+[uf"tu  in B(0,1),
u=20 on 0B(0,1),

where p = % is the critical Sobolev exponent.

Proof. Notice that by our assumption on the growth of v and ' and the definition of

us we have that

xa*%u(g(aj)‘ < C and

a:aJr%ug(a:)’ <C

uniformly on . Also from the equation, one has that

By means of Arzela-Ascoli theorem, one can find a function w € C(0, 00) and a sequence
§ — 07 such that us — w and uj§ — w' uniformly in compacts subsets of (0,c0). Also,
it is clear that w must solve equation (5.41), and as a consequence w € C?(0, 00).

What is left to prove is that £ = lin% E)\(u)(z) exists, is finite and that F = Ey(w).
r—r
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To see this, notice that by lemma 5.15 we have

dE(u)(x)

In = A1 — a)u(z)?,

where we have used 5 = 0 and p = 2, — 1. The above shows that E)(u)(x) is monotone
or constant (depending only on \), so the limit exists in the extended sense. To see that

|E| < oo, notice that by the growth condition u € L?(0,1), hence

l\.’)\»—l

1 1
|E| = |Ex(u)(1) 1—a/u ()+|/\|1—a/u )2da < oo.
0 0

Finally, notice that for z > 0 and § — 0% as before, E\(us)(z) — Eo(w)(z) and that
E)\(us)(z) = Ex(u)(dx) — E, so Ey(w) = E as claimed. O

The way we will use the above results is in the form of the following direct corollary

of lemmas 5.27 and 5.28

Corollary 5.29. Let u € C*(0,1) be as in lemma 5.28, and let E = lim E)(u)(x).

z—0t

Then

(i) If E > 0, then u is unbounded and has infinitely many sign changes near the

origin.
(1) If E =0, then u is bounded and has a finite number of zeros in (0,1).

(i1i) If E <0, then u is unbounded and has a finite number of zeros in (0,1).

5.4.3 Proof of Theorem 5.8

We want to prove that if A < A}, then no solution exists. To do this, recall the
definition of A},

0 if2<a<l

So we will first prove that no solution exists for all A < 0 and all % < a < 1, and then

we will prove that no solution exists when 0 < A < A} and 1 < a < 3.
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The case%<a<1 and )\ <0:
In this case, we will use lemma 5.15 with § = 0 and corollary 5.29 to show that if
u is a solution equation (5.1), then E)(u) > 0, hence v would have infinitely many sing

changes near the origin, reaching a contradiction. From lemma 5.15 we obtain

for every non-trivial solution. Now, by Remark 5.8 we have that
x %u(x) = J:O‘Jr%u’(x) =0(1)

near the origin, so one can apply corollary 5.29 to conclude.
The case%<a<% and 0 < A < \):

In order to prove this theorem, we need a better Pohozaev type identity that the
one given by lemma 5.15. However, we will still use corollary 5.29, and show that
Ex(u)(z) > a > 0 for all z ~ 0 (as we pointed out earlier, from Remark 5.8 one has
that every solution u of equation (5.1) satisfies (5.45)).

Suppose that we have a function ¢ : (0,1) — R satisfying
Y(z) € C%(0,1) N C[0,1] and zv'(x) € C°[0,1]. (5.46)

Multiply equation (5.1) by u(x)vy(z) and integrate over [, 1] to obtain

1 1 1
)\/u(x)zw(az)d:c+/u(1:)p+11/1(9:)dx = /anul(z) (u(z)y(z)) dx

1

— 2 (x)u(x)y(z)
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Since u(1) = 0, we obtain

/1;102“1/)(95)1/(95)2(195 = /lu(yc)2 [)\w(x) + % (x%‘w’(x)),} dx + /u(a:)p“w(x)dw

Suppose now that ¢ : (0,1) — R satisfies
¢ € CH0,1) and z1¢(z) € C[0,1]. (5.48)

Multiply equation (5.1) by u/(x)¢(z) and integrate over [g, 1] to obtain

L.HS=R.H.DS,
where
A / 1 ;
_ 2 2\/ p+1 /
LHS =) / (@) d(a)de + — [ (uap*!) o(e)da
and

1

£

1
R.H.S. = /x2o‘ul($) (u’(az)(;ﬁ(x)),dx — 2%/ (2)%¢(x)

For the right hand side one has

1 1 1
/wQau’(x) (u’(a:)qb(x))/da: = /xzo‘u’(x)2¢’(x)dx + % /x2a¢(x) (u’(m)z)/dm
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_ /1 ol ()2 [mQO‘gb/(x) -3 (:B2a¢)(x))/] da
1

+ %xzo‘u’(aﬂ)Q(b(x) .

&€

so we have

1
R.H.S. = /u/(:c)2 [m%‘(;ﬁ/(a:) — % (:cza(;ﬁ(x))/] dr — %u/(1)2¢(1) + %52aul(5)2¢(5).
: (5.49)

Whereas for the left hand side

1 1 1

LaS. == [u@Pe @ - [upt o e+ Sutero
F (@) () 1
p+1 . (5.50)
1 1
_ pi a2 ().

Putting together (5.49) and (5.50) give

/1 W@ [ (0) - 5 (@ 0lw) | do = 3102000 - § [u@Pe o

€
1

—_ lerl /U(ﬂ:)p+1¢/(g;)dx — 5*1¢(5) <;52a+1ul(5)2 + %gu(5)2 + pileu(g)pﬂ)

(5.51)

Finally, suppose there exist ¥ and ¢ satisfying (5.46) and (5.48) respectively, which also

satisfy the following system of ODEs

P9 (x) - 3 (1*0(x) 2 (a) =0,
1 (5.52)
>

M) + 3 (20 (@) + 20/ (x) = 0.



152

then from (5.47) and (5.51) we deduce

1
[ o) + o) do = 3P0 + i)

- 5V - 00 (e +

Loty 4 Ay + 5u(5)p+1>  (5.53)

In order to continue, we need to prove the existence of the functions ¢ and ¢ and

understand their behavior near 0, and this is content of the following

Lemma 5.30. Let % <a< % and 0 < X < \}. Define

o(x) :==xJ, ( VA :Ul_o‘> J_y ( VA ml_o‘) , (5.54)

1l -« 1—a

where v and J, are defined by (5.15) and (5.17) respectively. Let

o(x). (5.55)
Then 1, ¢ satisfy (5.46),(5.48) and (5.52), moreover we have that for p > 2, — 1

L,
P(x) + ﬁqﬁ () <0 forall0 <z <1, (5.56)

$(1) > 0. (5.57)
Also, there exist constants A > 0 and B € R, such that for x ~ 0

b(z) = Az + O(x372%)

W(x) = (; — a> A+ Bx*72 4 O(2* ).

We postpone the proof of this lemma for the end if this section. The proof of

Theorem 5.8 continues in the following way: using v, ¢ from lemma 5.30 in (5.53) gives

1
0> [utey [wu) )] de = u(1)%(0) — AR () + RE)
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where

R(e) = AE)\(u)(e) — e 1¢(e) (;gzaﬂu’(a)z + éEu(a)2 +

: o)

p+1

+ 2 ()u(e)Y(e) — %ahw’(a)u(s)Q.

If we can prove that R(e) = o(1) for every u solution of equation (5.1), then the above

inequality would imply

1

Ex(u)(e) > ﬂl/(l)%(l) —o(1),

so E = 52%1+ Ex(u)(g) > 55u/(1)%¢(1) > 0 for every solution, then by corollary 5.29 u
would have infinitely many sign changes. Hence equation (5.1) has no solution.

So everything reduces to prove that R(¢) = o(1), which follows directly from Re-
mark 5.8 and the expansions of ¢ and ¥ from lemma 5.30. We omit the details.

O

Proof of Lemma 5.30. A tedious but straightforward computation shows that ¢ and ¢,
defined by (5.54) and (5.55) respectively, indeed solve the system (5.52). From (5.54)

and a formula from [67, p. 147| we obtain that

Y (1" @m)y o
o= mZ::o AmmP2T(m+1+v)Iim+1—v)(1 - a)2m371+2 e, (5.58)

which readily gives (5.46) and (5.48). To prove (5.56), notice that we can write

B+ @) = (- at i) A

1 1

#-a) (34 7 ) U P + T -]

1

where y = %xl_"‘. Since 5 —a+ ﬁ < 0 for all p > 2, —1, it is enough to prove that

Ju(y)J—,(y) > 0 for y € (0,j_,1) (which is obviously true since j_,1 < j,1), and that

o) I, (y) + T, (y) T (y) < 0 for y € (0,5-.1).
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To do this, notice that using recurrence formulas from [67, p. 45] give

L) I, () + T, ()T (y) = = (L) J1—w(y) + T (1) 140 (y)) ,

but J_,(y) > 0 (because y < j_p1), J1-,(y) > 0 (because y < j_,1 < j1—p)1), Ju(y) >0
(because y < j_1 < jy1) and Ji1,(y) > 0 (because y < j_,1 < j(144)1), thus every

term inside the parentheses is positive. Observe that

vV v/ AF A
<L =g < —— =ju,
1—«a l—« 1

so J, (#) >0and J_, < VA ) > 0, which implies ¢(1) > 0, with equality if and only
i A = A%,
Finally, the expansions near the origin of ¢ and 9 follow directly from (5.58), we

just need to verify that A > 0, which is true since

1
A= T+ —2) 0-

5.5 The super-critical case: p > 2, — 1

Proof of Theorem 5.9. Suppose u solves equation (5.1), with the aid of lemmas 5.15

with =0 and 5.23 we obtain

but % —a+ ﬁ < 0, so the above gives

1 1
/u(m)p+1d:1: < a);(l_a)l/u(:v)?dx.
0 0
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Now, notice that

l\’}
'ﬁ
+
=

5.6 The case o > 1

Proof of Theorem 5.10. We again use lemmas 5.15 with § = 0 and 5.23 to obtain for

p>1

1 1
1 1
Ml—a /u )dx + ( —a+ p) /u(:(:)p+1da: = 51/(1)2 > 0.
0 0

1
1 1
(2 —a+ p—|—1> /U($)p+1dl’1} >0
0

which is impossible for p > 1, hence no solution exists if @ = 1 and A € R. On the

other hand, if &« > 1 and A > 0 we obtain

1 1
1
0>A1-a) /u dw+<—a+)/u(w)p+1dx>0,
0 0
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also impossible. Finally, if &« > 1 and A < 0, the above gives

1 1
—
/u p+1dx < 1 )1 /u
0 T 27 pyl 0

p

Now, multiply equation (5.1) by u, integrate by parts with the aid of Remark 5.8 to

obtain

1 1 1 1
1—
/mQau'(m)2d$ = )\/U(ZE)2CZ$ + /u(x)p+1dm <A <1 + (104)1> /u(m)Qdm,
0 0 0 “TET e/

but, since A < 0, p > 1 and a > 1 we obtain

A<1+a(1_a)1>: Ap—1) <0.

Therefore

impossible. O

5.7 The case 0 < a < 3

Proof of Theorem 5.3. The proof of the existence of a minimizer vg of
S = inf I .
ra = inf Tha(v)

is a line by line copy of the proof of Theorems 5.1 and 5.5, where the only change is

that instead of minimizing I, \ over M = X§ N {HUHP_H = 1}, we do it over Mgy =
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_1
XG5 N {”quH = 1}. Then if one defines ug(z) = S{ %, [vo(z)|, we obtain a solution of

—(@®) = u+uP  in (0,1),

u>0 in (0,1),

The regularity properties follow immediately from the fact that X§ — C]0, 1] for all

1
29

2291y € C[0,1]. The details are left to the reader. O

o < %, which implies that u € C[0,1] and as a consequence z?*u’ € C1[0,1] and

Proof of Theorem 5.4. To prove this theorem we assume we have a solution and we
multiply equation (5.1) by ¢1 0, the first eigenfunction of equation (5.6) and we integrate

by parts over [g, 1] to obtain

1 1
(A= Aro) /U(ﬂf)tm,o(:v)dz + /U(w)”sol,o(w)dw = 2/ (€)pr0(e) — 2¢f o (e)ule).

3 &€

To reach a contradiction, we need to understand what happens to the boundary terms.

Since A > A9 > 0, we obtain from equation (5.1) that
— (2% (x)) = M+ uPTL > 0.

If we integrate twice we get

u(z) < —'(1) (1‘“) ,

1 -2«

which implies, since a < 3, that 0 < u(z) < C = C(«/(1)) for all 0 < z < 1, thus
—A\C — CPH < (2224')" < 0, and we conclude that }xzau” is bounded. Therefore, since
©10(g) = o(1), we can write 2%/ ()1 0(e) = o(1) as e — 0F.

On the other hand, it can be seen from the definition of ¢ ¢ that x2ag0’170(a:) >0 for
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all x ~ 0, so we have 52%0’170(5)11(5) > 0. Therefore

1 1
(A= A10) /u(x)apl’o(x)dx + /u(x)pgplvo(a:)dx <o(1), foralle >0

& 3

but since A > A1, 91,0 > 0 and u > 0, we reach a contradiction when we send ¢ to 0.

O

5.8 Towards the uniqueness

The following is an important proposition which will allow us to simplify the proof

of the uniqueness part of our theorems. In what follows, whenever we say “p > 1 is

sub-critical” we will mean that: p > 1if 0 < a < % or 1l <p< ga_z‘i‘ if % <a<l.

Proposition 5.31. Let 0 < a <1, A € R and p > 1 be sub-critical. Suppose equation
(5.1) has two distinct solutions uy,us € C[0,1] N C?(0,1], such that uh(1) < uj(1) < 0.
Then there exists a third solution uz € C[0,1]NC?%(0,1] such that u4(1) < ub(1) and uy

and ugz intersect at most once in (0,1), i.e.
#{zx € (0,1): ui(z) =us(x)} < 1.

To prove this proposition we need the following

Lemma 5.32. Let A € R, p > 1, B < 0, Suppose V € C'[0,00) is such that both
VIl oo 0,00) @ IV [ 11 (0,00) are finite. Let w be the unique solution of the initial value

problem

w” + Mw + |[wP w = V(y)w+ Bw' in (0,00),

w(0) = 0, (5.59)

Then w € W2°(0, 00) with

[wllyyzee < COP IV oo s [V ][ 10)-
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Remark 5.12. Notice that the constant which bounds |lwl|, ., does not depend on the

constant B < 0.

Proof of Lemma 5.32. Let

w' 2
Blw,y) = T2+ S+ el

By multiplying equation (5.59) by w’ we can easily see that

d

gy By = %V(y) (w()?)' + Bu'(v)*.

Now, let A = {y > 0 : max e[, w(s)> = w(y)?}. Notice that since w'(0) = 1, we have
that (0,¢) C A for small enough ¢ > 0, so A is not empty. For y € A we integrate the

above identity over (0,y) to obtain

!/

E(w,y) — E(w,0) V(s) (w(s)?)

DN | =

+ Bw'(s)z) ds,

I
/y VV(shu(s)ds + 3V (y)u(y) (5.60)
0

1
B (HV/HLl(o,oo) + ||VHL°°(O,OO)) w(y)?,

IN

N | =

IN

from where we deduce that

/ 2 1 :
L 3 P (Vs 1V im0 0

1
()" < E(w,0) = 5.

Since the level sets of the function h(z,y) = 3y* + $Rz? + ]ﬁ 2P are bounded for
all R € R, we obtain that |w(y)| < C for all y € A, where C' does not depend on y.

Therefore we deduce that
|w(y)| S C = C(Aapa ||VvHLC>o ) HV,HLl)

for all y > 0, because if this were not true, we could find a sequence such that w(y,)? —
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+00 and, after maybe extracting a sub-sequence, that y, € A, which we have shown to
be impossible.
Now that we know that w is bounded, we obtain from estimate (5.60) and equation

(5.59) that v’ and w” are also bounded. O
With lemma 5.32 in our pockets, we can now prove Proposition 5.31.

Proof of Proposition 5.31. To prove this proposition we will follow a proof by Kabeya

and Tanaka in [44, Appendix A]. Without lost of generality, we will assume that

#{x € (0,1) : ur(z) = uz(x)} > 2,

because otherwise we can simply take us = us.

First of all notice that if u solves —(22%u/)’ = Mu+ |u/P~ w in (0,1), then if one lets

2—2«a

1 < 0 and defines w(y) = e¥u(e™¥), then w solves

c=—

—w" 4+ Buw' + Aw = Ae”?729y + [wP" w in (0, 00),

where A = ¢(1 —2a — ¢) and B = 2a — 1 + 2¢. Observe that B < 0 whenever p > 1 is

sub-critical. Now, for m > 1, define w(y, m) as the unique solution of the initial value

problem
—w” + Bw' 4+ Aw = Ae” @72y 4 |wlP " w  in (0, 00),
(5.61)
w(0) = 0,w'(0) =m
For i = 1,2, let m; = —u}(1). Then by the uniqueness of the initial value problem

one has that w;(y) := w(y,m;) = e¥u;(e7) for i = 1,2. Define o;(m) as the j*

intersection between wi(y) and w(y, m), i.e. if one lets og(m) = 0, then

ojr1(m) =inf {y > o;(m) : wi(y) = w(y,m)}.

We claim that



(i) For m > my large enough there exists yp < oo such that w(y,m) solves

—w" 4+ Bw' 4+ Aw = Xe” @2y 4+ 4P in (0, y0),

w >0 in (0,yo),

and # {y € (0,0) : w1(y) = w(y,m)} = 1.
(ii) There exists mg € (mg,m) such that oa(m) — oo as m 7~ ms.

(iii) If one lets w3(y) := w(y, m3), then ws solves

—w" 4+ Buw' 4+ Aw = Ae”®729y 4 4P in (0, 00),

and # {y € (0,00) : w3(y) = wi1(y)} < 1.

Let us prove the claims:

Proof of (i). To prove this claim let @,,(y) = m®w(mby, m), where a = —

b= -1

== then a direct computation shows that w,, solves

B+ Moy, + |G [P W = Vi (4) 0 + BmP@',, in (0, 00),

2

p—1

161

and

where Vi, (y) = Am? — (e*(2*2a)mby - 1). Observe that for all m > 1 one has

[Vinlloo < [A[+2|A] and that [V, [| 119 «) = [Al; hence, since B < 0, we can use lemma

5.32 to say that w,,, @), and @, are bounded independently of m > 1. By means

of Arzela-Ascoli theorem we are able to find a function s, € C'[0,00) such that 1y,

converges to Wno in C} [0, 00). Now, it is easy to see that V;,(y) — 0 uniformly over
m—0o0
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compact sets in [0, 00), hence we must have that @Ws, is the unique solution of

B A Moo + [hoe|P s = 0 in (0, 00),

oo (0) = 0, . (0) = 1.
Multiply the above equation by @’ and integrate over [0,y] to obtain

1.
S Tbe () + Siso(y)® + ] (Do (y) P = <,

hence W« is periodic and one has that for gy := inf {y > 0 : Weo(y) = 0} then W (y) > 0
for y € (0,70) and W (Yo) = 0.

Finally, since w,, — W uniformly over compact sets, we have that for m large
enough the claim holds.
Proof of (it). Let m > mgy and denote wy(y) := w(y, ma). Notice that by the unique-
ness of the initial value problem at o;(m) one has that wh(co;j(m)) # w'(oj(m), m).
Hence, thanks to the implicit value theorem, one obtains that o;(m) varies continu-
ously when one varies m.

Now let [mg, m*) be the maximal interval where both 1 and o9 are finite. We claim
that if m € [mg, m*) then w(x,m) > 0 in (0,02(m)). Indeed, if w(y’,m’) < 0 for some
m’ € (mg, m*) and some y' € (0,02(m’)), we can define

mo = inf {m € [ma,m*): min w(y,m) < 0} .
ye(O’UQ(m)]

Since for m = mgy we have w(y, m) > 0 we obtain that mg € (mg, m’] and that

min  w(y,mg) = 0.
yG(O,UQ(mo)} (y O)

The above implies that there is some g € (0,00) such that w(g, mg) = w'(g, mp) = 0,
so by the uniqueness of the initial value problem at § one obtains w(y, my) = 0, which
is impossible since 0 < mo < Mmy.

Now, by claim (i), w(y, m) hits zero for some finite y, so we must have that m* < m,
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so the only possibility is that oo(m) — oo as m  m*. The claim is proved with
*

m3 =1m".

Proof of (i1i). Define ws(y) := w(y, m3). There are two cases to take into account:

o1(m) — oo, and o1(m) — o1 < oo.
m,/'‘m m,/'m

Notice that by the definition of o1(m) and the fact that m > m; for all m € [ma, ms),
we have that w;(y) < w(y,m) if y € (0,01(m)) and wi(y) > w(y,m) if y > (o1(m), 00).
If o1(m) m% o1 < 00, we obtain by passing to the limit that wq(y) > ws(y) for all
y > o1, hence ws is dominated at infinity by w, which decays exponentially (recall
that w;(y) = eYuy(e7Y) for ¢ < 0 and that by assumption u; € C[0,1]). Therefore ws
must also decay exponentially and therefore by dominated convergence we obtain that
ws is in fact the solution we are looking for (in this case there is a unique intersection
between w; and ws).

On the other hand, if o1(m) mﬁn* oo, we have that that for w;(y) < w(y, m) when
y € (0,01(m)), then W(y) = wi(y)w(y,m) — wi(y)w'(y,m) > 0 in y € (0,01(m)).

Indeed, notice that W satisfies
W'(y) + BW (y) = —wi(y)w(y,m) (wi(y)"~" —w(y,m)P~") >0 in (0,01(m)),

hence eBYW is an increasing function, but W (0) = 0, so W (y) > 0 for all y € (0, o1 (m)).

This implies that wi(y) is monotonically decreasing in (0, 01(m)). So 0 < M

w(y,m) wi (y, m)
lim wiy,m) = ™ and we have that w(y,m) < ﬂwl(y), therefore when we pass to
y—=0 Wy (y) m mi

the limit we obtain that

w3 (y) < ﬁwl(y), for all y > 0.
m1

The conclusion is the same as before, as the above implies that ws decays exponentially

at infinity (in this case there is no intersection between w; and ws). O

Next, we recall the Pohozaev type identity established in lemma 5.15. For each
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B € R, we have the “energy” functional

1 A
I \u(m)\pJr1 + —atﬁﬁJrlu(alc)2

1
Bxp(u)(@) = 5a** TP (@) + o 5

2
1
—5 (B+1—2a) 224 (z)u(x) + % (B+1—2a) 2 1 Py(x)? (5.62)
and the identity satisfied by all solutions to (5.1)

1
Eyp(u)(z) = %u/(l)2 - Ml—-—a+ ﬂ)/sﬁu(s)2ds

(enlie ) ) o

(/32 — (2a — 1)2) /82a2+5u(s)2d8. (5.63)

B =ttt (5.64)

Before explaining the reason why we select such 3, let us make an observation. Firstly,
we notice that for every 0 < a < 1, every A € R, every p > 1, every solution u of equation

(5.1) satisfying u, z2*~1u’ € C[0,1], and for 3 as above, then 8 € (a — 1,2a — 1) and

0 it 6>1-2aq,

lim E)g(u)(z) = Mu(oﬂ if =1-2aq,

r—0t 2

+00 if 6<1-—2aq,

Indeed, since 8 > —1, we obtain that terms of the form x'TPu9(x) = o(1) for all ¢ > 1

(this follows since u € C|0, 1]). Also
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and

$2a+1+5u'(m)2 =o0(1).

So the only term we need to worry about is the last one in the definition of E) g, that
is
g

=7 (B+1—2a) 22 HPy(x)? + o(1). (5.65)

By p(u)(z)

Now, since both u and 22*~!4/ are continuous in [0, 1], we have that u € C%2729[0, 1],
hence

u(z)? = u(0)* + O(a?2%),
SO we can write

B

=7 (B+1—2a) 227 1H54(0)2 + o(1), (5.66)

Exp(u)(x)

from where it is easily deduced that if 5 > 1 — 2a, the limit is 0; when 8 = 1 — 2a, then
the limit is %u(O)Q; and when 8 < 1 — 2q, the limit is +oco.
When 0 < @ < 5 and u solves equation (5.1) and satisfies u(0) = 0, we still have

that the terms of the form 2'™% |u(z)|? = o(1), so we have

By p(u)(z) = z1720FP %x4aul(a})2 + %(204 —1-B)z** 1/ (z)u(x)

™

+2(8 +1 = 20)z%2u(x)?| + o(1).

4
But now z2*~ !y and 22w’ belong to C[0, 1] (this follows from the fact that u € C|0, 1]

and the regularity properties of the operator —(x2%u/) given by [29, Lemma 3.1]), thus

we obtain

Baau)(w) = a2 | Joteul(@P 4 520 = 1- 9t (@)ula)

2 0

+§(ﬁ v1- 2a)x4a—2u(x)2(0] +o(1).

Notice that for all x > 0 small enough, one must have that «/(x) > 0, and since
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8 < 2a—1 < 0 we have that every term in parenthesis is positive, so for every such u
we have that

lim Ey(u)(z) = +o0.

z—0

The main motivation behind the choice of § comes from identity (5.63), as for
chosen as above, we obtain that the derivative of F) g(u)(z) with respect to x is a

multiple to u(x)?, that is

4 (B plu)(a)) = Glau(a)

where

Glx)=X1—-a+p)z" + g (8% — (2a — 1)?) 22727, (5.67)

This is the key ingredient that will allow us to adapt a technique by Kwong and Li [46]
to prove our result. In [46], the authors proved the uniqueness of positive solutions of

an equation of the form

by defining an energy function that had the property that its derivative is a multiple of
the square of the function, that is the main reason behind our choice of 5.

As we will see in the proof, it is necessary to impose some hypotheses over the func-
tion G in order to obtain the uniqueness: We suppose G € C(0,1) is either identically

0 or that that there exists ¢ € [0, 1] such that
G(z) > 0 for all z € (0,¢), and G(z) < 0 for all z € (¢, 1). (5.68)

Let us find out when the function G defined in (5.67) satisfies this hypothesis. Since

we are only concerned about the case p > 1 sub-critical, we will only consider g < 0.

It is easy to see that when 1 — 2a < 8 < 0 (or equivalently ;’;fol‘ <p< g;zcly), then

G(z) — +ooasx — 0T, and that depending on ), either G > 0in (0, 1) or G has exactly
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one zero in (0,1]. When 8 = 0 (that is when p = 3=22), then G(z) = A(1 — a + 3), so
sign (G) = sign ().

When 8 <1 — 2« (or equivalently, 1 < p < ggfcf, which only occurs when a < %),
there are two cases to take into account. When § = 1 — 2a, then sign (G) = sign ()).
And when o — 1 < 8 < 1 — 2a, then G(z) — —o0 as x — 0, so the only way to obtain

a ¢ satisfying (5.68) is that ¢ = 1 and G < 0 in (0, 1], which is satisfied when

B((2a —1)* - %)
As 41—a+p)
_ B((2a=1)*—p%)

It is easy to see that A\, g 1= ii—ath) is always a positive number which satisfies

Aa,8 \¢ 0 as p > 1 increases to the critical exponent (that is, p /* co when o < % and

p N ga_z‘i‘ when % < a < 1). Because of this behavior is that we will only use this

approach for A < 0, which we summarize in the following two lemmas.

Lemma 5.33. Suppose 0 < a < 1, A < 0 and that p > 1 is sub-critical. Let u
be a solution of (5.1) satisfying in addition that x> '/ € C[0,1], then there ewist

B =pB(a,p) € R and G € C(0,1) such that for Ey g(u)(z) defined in (5.62) we have

4 (Brsu)@) = Glju(r),

and G satisfies (5.68) for some c € [0,1]. Moreover we have the following expansion of
Eyp

)

B

=7 (B+1—2a) z?71HB4(0)2 4 o(1). (5.69)

Exp(u)(z)

Lemma 5.34. Suppose 0 < a < %, A <0 and that p > 1. Let u be a solution of

equation (5.1) such that w(0) = 0, then there exist § = [(a,p) € R and G € C(0,1)
such that for Ey g(u)(x) defined in (5.62) we have

4 (B plu)(a)) = Glayu(a)

and G satisfies (5.68) for some ¢ € [0,1]. Moreover we have the following expansion of
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2

By p(u)(z) = 21 720FP {1w4au’(;€)2‘0 + %(205 —-1- B)x‘la*lu’(x)u(x)lo

+§(5 F1- 2a)x4a—2u(x>2( } +o(1).

0

For A > 0, we will adapt a method by Adimurthi and Yadava [2] used in the study

of the uniqueness of radial solutions to the equation
—div(|Vu|" 2 Vu) = X u|™ 2 u + .

The idea used in [2] resembles the technique of Kwong and Li as they both use a
Pohozaev type identity to prove that a single intersection between two positive solutions
cannot occur.

With the above in mind, we define the new energy functional

\pH + iacu(a:)2 + szau/(a:)u(x), (5.70)

1
I D201, 0 (2
A(w)(@) = ST ()" + 5 o

: o fuf)

p+1

then a direct computation shows that for every solution u of equation (5.1) we have the

following identity
deA(u)(x) = < + 5 a> = (z)” + A <2 , ) u(z)”, (5.71)

so in the derivative of this new energy functional instead of having only a term involving
u(x)?, there is a second term involving u/(z)2. Observe that for every 0 < o < 1, A > 0,
and every p > 1 sub-critical we have that both # + % — a and A (% — 1%) are
non-negative constants which cannot be simultaneously 0.

It is easy to see that, for u solving equation (5.1) with the additional assumption

that x29~ %/ € C[0, 1], we can write

Ex\(u)(z) == %$2a+1u/(l‘)2 + pilxgo‘u’(x)u(m) +o(1),
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and since both u and 22~/ belong to C[0,1] we deduce

Ey\(u)(z) = %m4a_2u’(x)2x3_2a + ]i_lxh_lu'(w)u(x)x +0o(1) = 0(1).

In summary, we have proved

Lemma 5.35. Suppose 0 < o < 1, A > 0 and that p > 1 is sub-critical. Let Ey(u)(z)
be defined as in (5.70), then for every u solution of equation (5.1) satisfying x> 'u' €
C[0,1], there exists constants C1,Co > 0 not both simultaneously 0 such that for all

O0<exl1 1

1
E\(u)(1) — Ex(u)(e) = C4 /x2au'(m)2 + C'g/u(:p)Q, (5.72)

£

and that Ex\(u)(e) = o(1) as € approaches 0.

5.9 Proof of uniqueness in Theorems 5.1, 5.5 and 5.7

Proof. We will argue by contradiction and assume that u; and wy are two distinct
solutions of equation (5.1) satisfying z2* !/ € C[0,1]. We begin the proof with an

observation: Suppose u; < ug (respectively uq > us9) in (a,b) C (0,1), then the function
w(z) = 2™ (u}(x)uz(z) — ui(2)u)(z))

is increasing (respectively decreasing) in (a,b). Indeed, for x € (a,b) we have

w' = (22%u) ug + 2 u)ul — (2*uh) uy — 22Ul

= — (Aug +ul)ug + (Aug + ub) uy
(5.73)
= U1U2 (Up_l — Uzl)_l)

>0 (respectively < 0).

Having said that, notice that by Proposition 5.31 we can assume that u; and ug intersect
at most once in (0,1). Let us rule out first the case of no intersection, that is we can

assume that u; and ug are ordered, say u; < ug in (0,1). Multiply the equation of uy
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by uy and integrate by parts over (0,1) to obtain

1 1 1
/xzo‘u’l )\/ul dx—i—/ul Yus(z)dz,
0 0 0

where we have used that x2*u/}(x)uz(z) — 0 as * — 0. The same identity holds when

u1 and ug are interchanged. By subtracting the two identities we obtain

1
0= [ w@)unle) (@)™~ n @) ds >0,
0

impossible.
Finally we only need to rule out the case of a unique intersection, so suppose that

there is o € (0,1) such that u3 < ug in (0,0) and u; > ug in (0,1). For i = 1,2, define
/

) _ uz(l‘)

ri(x) = wi(z)’

We claim that r; and ro do not intersect in (0,1). Suppose the contrary, then

there exists p € (0,1) such that r1(p) = r2(p). If p > o, then for € (p,1) we have
u; > ug, so by (5.73) we obtain that w is decreasing in (p,1), but by assumption
w(p) = p**u1(p)uz(p) (ri(p) — ri(p)) = 0. On the other hand since u1(1) = uz(1) = 0,
we obtain that w(1) = 0, impossible. Similarly, if p < o, we obtain that w is increasing;
by assumption w(p) = 0 and since x?%u}(z)u;(z) — 0 for 4,5 = 1,2, we obtain that

w(0) = 0, also impossible. Hence r; never intersects ry, but since ri(o) > ro(0), we

must have () > rg(z) for all z € (0,1). From here we deduce that the function A s

<>>’ (=) "
w@

ug(x) ) ua(x) (r1(z) —r2(x)) > 0.

Now we distinguish two cases: A <0 and A > 0.

increasing, indeed, notice that <

The case A <0: From lemma 5.33 there exist § € R and a function G € C(0,1)

such that for any solution u of equation (5.1) satisfying 22~ 'u’ € C[0, 1] we have

2 (Brsw)(@) = Clayu(a)? (5.74)



171

and G satisfies (5.68) for some ¢ € [0, 1]. Define

u(e) if0<e<l,
uz(c)
!
1
y=3ml oy (5.75)
uy(1)
1 G =0.

U
By the monotonicity of — we deduce that
U2

up(z) < yug(x) for 0 < x < ¢ and uq(x) > yug(z) for c <z < 1.

Now, let 0 < e < 1 and integrate equation (5.74) over (e,1) where wu is replaced by uy,

to obtain

1
1
5u&(1)2 — By g(u1)(e) = /G(:C)ul(x)de.
&€
Do the same for ug, and multiply the result by v2 to obtain

1
2

T (1) = Exp(ua)(6) = [ Glayua(a)

£

Subtracting the two identities above yields

— (Bap(ur)(e) = vV Exp(u2)()) -

Notice that by the definition of 7 and (5.68), the integrand on the left hand side is always
non-positive (it is zero if and only if G = 0). Also notice that since ui(x) > yua(z) for

all ¢ < z < 1, we obtain that
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hence v} (1)? — 72ub(1)? > 0. Also with the aid of (5.66) we have that
By (1) () ~ 7B (1) (€) = & (84 1~ 20) 257 (g (0)2 — 72un(0)) + (1),

but since u1 (z) < yug(x) for all 0 < x < ¢, we obtain that u1(0)? < 42u2(0)?, and since

for all p > 1 sub-critical, 5(8 + 1 — 2a) > 0, we can deduce that

1
wmﬁ—%%m%+dns/mmwmﬁ—%wm%m,

£

which by letting € go to 0 gives

0<

N

1
QMW—f%m%s/amwmf—%wm%msm
0

since the last inequality is strict when G # 0 we obtain a contradiction. When G =
0, then by definition v = 1, and we obtain that u}(1) = ub(1), so u1 = ug, also a

contradiction.

The case A > 0: To handle this case we first notice that if u > 0 solves —(22%/) =

Au + uP, and li%1+ 2%/ (x) <0, then u/(x) < 0 for all z € (0,1). Indeed, since A\ > 0
T

and u > 0, from the equation we obtain that 2>¥u/ is strictly decreasing, hence for
0 < z < 1 we have 2%/ (z) < lim z?*u/(z) < 0.
z—0F

Recall that we already established that s increasing, so we have that ujus > ujuj,
U2

and since uhy < 0 for A > 0 we obtain that

1(z)

£
=
—
&

£

forall0 <z < 1.

/
1
Let 7 = lim 2@ _ u)
a—1- uz(x) uh(1)
uh (7)? < 2ub(x)?. Now, for given 0 < & < 1, subtract 4% times identity (5.72) for uy

, then the above implies that ui(z)? < F?uz(z)? and

from identity (5.72) for uq, and with the aid of lemma 5.35 we get, after sending € to 0,
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+ 02/ (u1 (ﬂlc)2 — ﬁuz(x)g) dx.
0
By definition of 4, the left hand side is identically 0. For the right hand side notice that
both integrands are negative functions, and since C1,Cy > 0 with one of them strictly

positive, we conclude that the right hand side must be negative, impossible. O

5.10 Proof of the uniqueness in Theorem 5.3

We divide the proof into two cases: A <0 and A >0

Proof when A < 0. The proof is by contradiction, that is we assume that we have two
distinct solutions uy, us of equation (5.1) satisfying u;(0) = 0, ¢ = 1,2. Proposition
5.31 still applies, so we can assume that u; and wug intersect at most once in (0, 1).
The case of no intersection is immediately ruled out as before because we still have
22U (2)ug(z) = o(1) = 2?*ub(x)uy(z) when z — 0T, so we only need to take care of
the case of a unique intersection. Suppose that there is o € (0,1) such that u; < ug in
(0,0) and u; > ug in (0,1). Also, a line by line copy of our previous argument allows
us to show that the function Z—; is increasing.

We continue as in the proof of the uniqueness of Theorems 5.1, 5.5 and 5.7, but

instead of using lemma 5.33, we will use lemma 5.34. So after defining v as in 5.75 and

using lemma 5.34 in the same way as we used lemma 5.33 before, gives

— (Exg(u1)(e) = v*Exp(u2)(e)) -

The main difference in the argument is the expansion of E) g(u)(e) for € > 0 small, in
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this case from lemma 5.34 we obtain that

(st (02| P unter?], )

N

By p(u1)(e) — Y2 Exg(un)(e) = ' -2t [

1

+5Ca—1-p) (£l @ (e)| - el Eun(E) )

0
— et (o] )] + o)

|

+§(ﬁ +1-2a) <£4a*2u(5)2‘0

but u(x) < yue(x) for all 0 < x < ¢ so by L’Hospital’s rule we have that

Also, since uj(z) > 0 for z > 0 small, we deduce that lim 2?%u}(x) < v lim z?*u}(z).

z—0t z—0t
From these observations we obtain that

S ()] < (e

sl u(e)| < 2t uh(eua(e)|

and that

which, since 8 < 2a — 1 < 0, imply that
By p(u1)(e) — 7*Ex 5(u2)(€) < o(1).
Therefore after sending € to 0, we obtain
1
(041 = 2?u5(12) < [ Glo) (1 (@)? ~ 1 Pualw)?) dn,
0

and we reach the same contradiction obtained in proof of the uniqueness in Theorems

5.1, 5.5 and 5.7. O

For the case A > 0 our previous ideas do not work. Instead we will use a shooting



175

argument together with an idea of Yadava [68] where the uniqueness of positive solutions

to

—Au =u? £uP

in an annulus is studied.

Recall that we are interested in the uniqueness of a solution to equation

—(z*u) = M +uP  in (0,1),

u>0 in (0,1),

where 0 < o < %, p > 1and A > 0. To simplify the exposition, we will use the following
1
change of variables: let v(y) = u(yT-22), then a direct computation shows that v is a

solution to
—" = h(y)f(v) in (0,1),

v >0 in (0,1), (5.76)
v(0) =v(1) =0,
where h(y) = %y% and f(v) = Av+ |[v[P~! v. Following [68], we introduce some

(1—2a)

notation and some properties of solutions to the equation
— " = h(y) f(v). (5.77)

Let F(v) = [y f(s)ds = v + ﬁ lu|P*! and define

A direct computation shows that if v solves equation (5.77), then

E'(y) := h(y) (F(o(y)) + fw@)v(y)) + yh' () F(v(y)). (5.78)
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Also, for A € R to be fixed, we let

galy) =y’ (y) + Av(y). (5.79)

A straightforward computation gives

ga = (1+ A" —yh(y)f(v)
and
—ga=hf(v)g+I(Aw), (5.80)

where

I(A,0) = ((2+ A)h(y) + yh'(y)) f(v) — Ah(y) f'(v)v.

We also need to introduce the linearized equation
—w" = h(y)f' (v)w. (5.81)

A useful identity obtained from equations (5.80) and (5.81) is that for any a < b,

b
[ Aty = [ - Aw's - (14 A+ yh() )] |

a

(5.82)

a

We also need the following identity satisfied by all solutions of equation (5.77): Let

a <y, then

- / [h(s) (2F (v(s)) + f(v(s))v(s)) + 2sh/(s)F(v(s))] ds. (5.83)
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Now, let v(y,m) be the unique solution of the initial value problem
(5.84)

and define r(m) as the first zero of v(y,m), i.e. r(m) := inf {y > 0:v(y,m) = 0}.
Notice that the uniqueness of the solution to equation (5.76) is guaranteed if we can
prove r(m) = 1 has at most one solution. To do this we will show that r(m) is monotone

for all m > 0, and this is the content of the following
Proposition 5.36. Given m > 0, then 7(m) # 0.

Remark 5.13. The 7(m) notation means derivative with respect to m.

The proof of this proposition requires the following

Lemma 5.37. For given m > 0, let v(y, m) be the unique solution of equation (5.77),
/

and let r(m) be as above. Then % <0 for all y < r(m).

Proof. We have that v(s) > 0 for all s < r(m). From identity (5.83) we have that for

a=0and 0 <y <r(m)

Y

v 0

() = 16/ = w0 - 7] | + 90 2 - 100

_/[h(y) (2F (v) + f(v)v) + 2yh/ (y) F(v)]
0

Y
= yh(y) 2F(v(y)) = f(v(y)v(y)] - / [h(y) (2F (v) + f(v)v) + 2yh (y) F (v)]
0

_ p—1 w (4P
=T eaprn? W

e [ (e (e 1) o) @

<0,

forallp>1,0<a<iandA>0. O
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Proof of Proposition 5.36. Suppose the contrary and let my > 0 be such that 7(mg) = 0.
By the definition of 7(m) we have that v(r(m), m) = 0. Differentiate this equation with
respect to m to obtain

w(r(m)) +v'(r(m), m)i(m) = 0,

where w(y) := w(y, m) is the unique solution of

Since 7(mg) = 0 we have that w(r(mg)) = 0. Let yg be the largest zero of w that is less
that r(myg), i.e. yo =sup{y € (0,r(mp)) : w(y) = 0}. A constant multiple of w (which

we denote the same) must solve

—w”" = h(y) f'(v(y, m))w,
w(0) =0, w(r(meg)) =0,

w'(r(mo)) = v'(r(mo), mo) < 0.
Now for A := (p—%)_(%m)’ consider g4 defined in (5.79). We claim that g4 has
exactly one zero in (0,7(m)) for all m > 0. Indeed, notice that solving ga(y) = 0 is

equivalent to solving

/
) _
v(y)
oy (y) . ‘ . oy
but from lemma 5.37, the quantity is monotonically decreasing, with lim “— =
v(y) y—0t v

_ 2—2a
(p—1)(1-20)

/
! < 0, we have a unique solution.
So let sp € (0,7(myp)) be the unique solution of ga(s) = 0.

land lim “— = —o0, and since —A =
y—r(m)”

Y
v
w
Claim yg < so: Notice that — is increasing in (yg,7(mg)), indeed, let 2 = w'v — v'w,
v
so it is enough to prove that z(y) > 0. Suppose that z(y) = 0 for some y € (yo, 7(mo)).

Since z(r(mg)) = 0 we obtain that

r(mo) r(mg) r(mo)

0=2(tma) ~ 2@ = [ 2= [ wo-vu= [ o) (10) - ) w.

<
<
<
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Since w > 0 in (yo,7(mo)), h(y) > 0 and since f(v) > f'(v)v for all v > 0 we obtain a
contradiction. Hence z(y) does not change sign, but since z(yg) = w'(yo)v(yo) > 0 we
obtain that z(y) > 0 for all y € (yo,7(mo)).

Now since w'(r(mgp)) < 0, w > 0 in (yo,r(mo)) and the fact that % is increasing we

deduce that w < v in (yg,7(mg)). From identity (5.82) we obtain that

r(mo)

/ I(A, v)w = r(mo)w (r(mo))? — ga(0)?’ (o),
Yo

but from the choice of A we have that, since h(y) > 0,

r(mo) r(mo)

/ I(A,v)w = A (i : ;Z) / h(y)ow

Yo Yo

but from (5.78) we deduce that

(i) (7 o < rmonf (o

hence

ga(yo)v' (yo) > 0,

and since v'(yo) > 0, we deduce that ga(yo) > 0. But ¢4(0) = (1 + A)u'(0,m) =
(I+A)m > 0,s0 ga(y) > 0 if and only if y < sp, hence yp < sp.
Now, let y1 = sup{y < yo : v(y) = 0}. By definition, v < 0 in (y1,y0), but from
identity (5.82) we obtain
Yo

/I(A, v)w = [w'ga — wgy)

1

" = w (yo)ga o),

Y1
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SO
220\ [
0 < mlaatn) = (50 ) [ ntwww <o,
—2a
Y1
hence we conclude that v(0) # 0, a contradiction. Therefore 7(m) # 0. O

Proof of the uniqueness in Theorem 5.3 when A > 0.
From Proposition 5.36, we deduce that r(m) is either monotonically increasing or
monotonically decreasing, hence r(m) = 1 has at most one solution. This proves the

theorem.
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