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ABSTRACT OF THE DISSERTATION

Inter-glider Underwater Communication and Coordination for Ocean
Monitoring and Coastal Tactical Surveillance

by Baozhi Chen

Dissertation Director: Professor Dario Pompili

In order to achieve efficient and cost-effective sensing of the vast under-sampled 3D aquatic vol-

ume, intelligent adaptive sampling strategies involving teams of Autonomous Underwater Vehicles

(AUVs) endowed with underwater wireless communication capabilities become essential. These

autonomous vehicles should coordinate and steer through the region of interest, and cooperatively

sense and transmit multimedia data to onshore stations for real-time data processing and analy-

sis. Because of the propagation limitations of Radio Frequency (RF) and optical waves, the typical

wireless physical-layer communication technology in underwater networks, for distances above a

hundred of meters, relies on acoustic waves.

Due to the stringent constraints of the underwater acoustic channels, as of today existing works

on underwater acoustic communications are mostly focused on enabling delay-tolerant low-bandwidth

applications tailored for measuring only scalar physical phenomena. Hence, it is necessary to design

solutions for reliable, high data-rate multimedia underwater acoustic communications and to seam-

lessly integrate the control and communication of AUVs. In this dissertation, I propose solutions to

improve the performance of inter-vehicle acoustic communication and coordination among AUVs.

In particular, these solutions are based on underwater gliders and can be extended to other classes

of AUVs following predictable trajectories.
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Due to the inaccessibility of Global Positioning System (GPS) signal underwater, location es-

timates of a node may be inaccurate. Inaccuracies in models for deriving position estimates, self-

localization errors, and drifting due to ocean currents, however, cause uncertainty when estimating

an AUV’s position. In this dissertation, I first propose a statistical model to estimate an AUV’s

position and its associated position uncertainty. Then, the position uncertainty under the influence

of ocean currents is further predicted using the Unscented Kalman Filter. Based on this model, in

order to optimize the inter-vehicle communications, I propose a delay-tolerant networking solution

exploiting the predictability of AUV trajectories and the directional radiation pattern of transducers,

a reliable geocasting solution for AUVs with high position uncertainty, and an under-ice localization

solution that can minimize localization uncertainty and communication overhead.

Based on these underwater communication techniques, I also propose efficient team-formation

and -steering algorithms for underwater gliders in order to take measurements in space and time

from the under-sampled vast ocean. Team formation and steering algorithms relying on underwater

acoustic communications are proposed to enable glider swarming that is robust against ocean cur-

rents and acoustic channel impairments. These algorithms use real underwater acoustic modems and

are combined with realistic underwater communication models. Additionally, novel bio-inspired

underwater acoustic communication techniques are also proposed to improve the coordination per-

formance.

I also designed and implemented an underwater network emulator using WHOI Micro-Modems,

and the performance of the proposed solutions is evaluated using this emulator as well as software

simulations. Communication protocols were also implemented on acoustic modems and tested in

ocean experiments.
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1

Chapter 1

Introduction

Recently UnderWater Acoustic Sensor Networks (UW-ASNs) [2], which consist of underwater sen-

sors and vehicles, have been deployed to carry out collaborative monitoring tasks such as oceano-

graphic data collection, disaster prevention, and navigation. To ensure sufficient coverage of the

vast undersampled 3D aquatic volume, Autonomous Underwater Vehicles (AUVs) with underwater

sensing and wireless communication capabilities become essential. These AUVs, which are divided

into two main classes – propeller-less/buoyancy-driven (e.g., gliders) and Propeller-Driven Vehicles

(PDVs) – rely on local intelligence with minimal onshore operator dependence. These AUVs should

coordinate and steer through the region of interest, and cooperatively sense and transmit multimedia

data to onshore stations for real-time data processing and analysis.

Because of the propagation limitations of Radio Frequency (RF) and optical waves, i.e., high

medium absorption and scattering, respectively, the typical wireless physical-layer communication

technology in underwater networks, for distances above a hundred of meters, relies on acoustic

waves. Yet, several unique characteristics of the underwater acoustic medium such as frequency-

dependent transmission loss, colored ambient noise, multipath, Doppler frequency spread, very high

propagation delay, and variable and distance-dependent channel bandwidth make reliable, high-data

rate multimedia communications an extremely challenging research problem. For these reasons, as

of today existing works on acoustic communications are mostly focused on enabling delay-tolerant

low-bandwidth applications tailored for measuring only scalar physical phenomena.

Besides the need for control and coordination, position information is paramount in mobile un-

derwater sensor networks as the data collected has to be associated with the 3D location in order to

be spatially reconstructed onshore. In terrestrial sensor networks, the position of a node can gener-

ally be characterized by a single point because localization error can be very small by using Global

Positioning System (GPS), which however does not work underwater. In contrast, inaccuracies
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in models for position estimation, self-localization errors, and drifting due to ocean currents will

significantly increase the uncertainty in position of an underwater vehicle. Hence, using a determin-

istic point is not enough to characterize the position of an AUV. Furthermore, such a deterministic

approach underwater may lead to problems such as errors in inter-vehicle communications using

geographical routing, vehicle collisions, loss of synchronization, and mission failures [3].

In order to address the problems due to position uncertainty, in this work I introduce a probability

region to characterize stochastically a node’s position. Depending on the view of the different nodes,

two forms of position uncertainty are needed, i.e., internal uncertainty, the position uncertainty as-

sociated with a particular entity/node (such as an AUV) as seen by itself, and external uncertainty,

the position uncertainty associated with a particular entity/node as seen by others. These two no-

tions introduce a shift in AUV localization: from a deterministic to a probabilistic view. This shift

can then be leveraged to improve the performance of solutions for problems in a variety of research

areas. For example, in UW-ASNs, using the external-uncertainty notion, geographical routing errors

can be decreased and a node can estimate better the transmission power to guarantee the Signal-to-

Noise Ratio (SNR) for correct data reception by taking into account not only channel impairments

but also position uncertainty. The notion of external uncertainty can also be used in underwater

robotics to minimize the risk of vehicle collisions, in underwater localization to decrease the posi-

tion uncertainty by selecting a proper subset of nodes to be used as “anchors” (i.e., reference nodes

to estimate position). Last, but not least, in task allocation, i.e., the problem of selecting a subset

of AUVs to accomplish reliably the mission under specific requirements, this notion can be used

to improve the performance of multicasting the mission details to AUVs within a certain region.

Finally, it can be used to improve the quality of 3D data reconstruction as the vehicle deviation from

the original mission path can be estimated and factored in during data processing/visualization.

To enable these applications, nodes need to be able to estimate the external uncertainty of other

nodes. To do this, they need to first estimate their internal uncertainty and then broadcast it to other

neighbors. Due to the communication delays (including propagation delay and transmission delay)

and information loss, this received uncertainty information is a delayed version of a node’s internal

uncertainty and is used as the base for the neighbors to estimate the sender’s uncertainty (i.e., exter-

nal uncertainty). As a result, these two forms of uncertainty are generally different. I first propose a

statistical model to estimate an AUV’s position and its associated internal uncertainty. Then based



3

on this internal uncertainty estimate, external uncertainty is predicted using Unscented Kalman Fil-

ter where the influence of ocean currents is taken into account. Based on this model, to improve

the performance of the inter-vehicle communications, I propose: 1) a delay-tolerant networking so-

lution exploiting the predicable AUV trajectories and directional radiation pattern of transducers,

2) a reliable geocasting solution (i.e., the transmission of data packets to nodes located in a certain

geographic region) for AUVs with high position uncertainty, and 3) an under-ice localization so-

lution (where position error becomes more severe due to the increased difficulty in accessing GPS

as well as that in deploying localization infrastructure) that can minimize localization uncertainty

and communication overhead. Respectively, these solutions can satisfy the following need to facil-

itate the coordination of multiple AUVs: 1) the need to optimize acoustic communications among

AUVs, 2) the need to send query or commands to these AUVs, e.g., multicasting to AUVs located

in a specified region; and 3) the need to minimize localization uncertainty, e.g., for the under-ice

environment where deployment of localization infrastructure is difficult.

Using these underwater communication techniques, I also propose efficient team formation and

steering algorithms for underwater gliders. In order to take measurements in space and time from

the under-sampled vast ocean, these vehicles need to form a team in a specific formation (team

formation), steer through the 3D region of interest (team steering), and take application-dependent

measurements such as temperature and salinity. I propose team formation and steering algorithms

relying on underwater acoustic communications in order to enable glider swarming that is robust

against ocean currents and acoustic channel impairments (e.g., high propagation and transmission

delay, and low communication reliability). The proposed team formation and team steering algo-

rithms use real underwater acoustic modems and are combined with realistic underwater commu-

nication models. Additionally, I designed novel bio-inspired underwater acoustic communication

techniques to improve the coordination performance. This reduces the need for localization packets

and thus saves communication overhead.

In the rest of this chapter, I first introduce the basics on underwater acoustic communications and

AUVs, and then I outline the structure of the dissertation, which includes the summary of existing

works and our contribution, introduction of two novel position uncertainty concepts, an overview of

the proposed inter-vehicle communication solutions, and team formation and steering algorithms.
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1.1 Underwater Acoustic Communications

1

5

Horizontal Distance (x104 m)

2
3

4

Shadow zones

Figure 1.1: Shadow zone scenario.

Communications between nodes in UW-ASNs rely on underwater acoustic communication tech-

nology. Models have been proposed for the propagation of acoustic waves underwater. The Urick

model is a coarse approximation for underwater acoustic wave propagation, whose transmission

loss TL(l, f) [dB] can be model as,

TL(l, f) = κ · 10 log10(l) + α(f) · l, (1.1)

where l is the distance between the transmitter and receiver and f is the carrier frequency. Spreading

factor κ is taken to be 1.5 for practical spreading, and α(f) [dB/m] represents an absorption coef-

ficient that increases with f [4]. In (1.1), the first term accounts for geometric spreading1, which

is the spreading of sound energy caused by the expansion of the wavefronts. It increases with the

propagation distance and is independent of frequency.

In reality, sound propagation speed varies with water temperature, salinity, and pressure, which

causes wave paths to bend. Acoustic waves are also reflected from the surface and bottom. Such

uneven propagation of waves results in convergence (or shadow) zones which may receive much

less (or more) transmission loss than that predicted by the Urick model. Details regarding to the

1There are two kinds of geometric spreading: spherical (omni-directional point source, spreading coefficient κ = 2),
and cylindrical (horizontal radiation only, spreading coefficient κ = 1). In-between cases show a spreading coefficient χ
in the interval (1, 2), depending on water depth and link length.
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explanation of these phenomena can be found in [5].

Due to these phenomena, the Urick model is not sufficient to describe the underwater channel

for simulation purposes. The Bellhop model is based on ray/beam tracing, which can model these

phenomena more accurately. This model can estimate the transmission loss by two-dimensional

acoustic ray tracing for a given sound speed depth profile or a given sound speed field, in ocean

waveguides with flat or variable absorbing boundaries. Transmission loss is calculated by solving

differential ray equations, and a numerical solution is provided by HLS Research [6]. Because the

Bellhop model requires more information about the environment than an underwater vehicle will

have, it is only used to simulate the acoustic environment for testing.

An example plotted using the Bellhop model is shown in Fig. 1.1, where the left figure is the

transmission loss of node 1 located at the origin and the right figure is the sound speed profile used to

derive the transmission loss (the y-axis is the depth with the same range as the left figure). Suppose

that node 1 at the origin wants to send a packet to node 5 in this example. This transmission will

fail since node 5 is in the shadow zone and therefore cannot receive acoustic waves.

We adopt the empirical ambient noise model presented in [4], where a ‘V’ structure of the power

spectrum density (psd) is shown. The ambient noise power is obtained by integrating the empirical

psd over the frequency band in use. Note that in underwater acoustics, power (or source level) is

usually expressed using decibel (dB) scale, relative to the reference pressure level in underwater

acoustics 1µPa, i.e., the power (or source intensity) induced by 1µPa pressure. The conversion

expression for the source level SL re µPa at the distance of 1 m of a compact source of P watts

is shown in [5] as SL = 170.77 + 10 log10 P . Note that here P is the transmit or receive acous-

tic power at the transducer. The conversion between the sound source level and electrical energy

depends on the characteristics of the underwater transducer. At a frequency, the ability to convert

electrical voltage or current into sound pressure level depends on the so-called Transmit Voltage Re-

sponse (TVR) or the Transmit Current Response (TCR) - defined as the ratio of sound pressure level

measured at 1 meter and the voltage or current applied to the transducer, while the ability to convert

the sound pressure level into electrical voltage depends on the receive sensitivity of the hydrophone

(or transducer), i.e., Free Field Voltage Sensitivity (FFVS) - the ratio of output open circuit voltage

and the free-field sound pressure level at the hydrophone (or transducer), alternatively called as the

Open Circuit Voltage Sensitivity (OCVS).
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Figure 1.2: A SLOCUM glider (Courtesy of WHOI).

1.2 Autonomous Underwater Vehicles

Autonomous Underwater Vehicles (AUVs) are programmable robots that, depending on their de-

sign, can drift, drive, or glide through the water without the real-time control by human operators.

Generally, AUVs are equipped with onboard computers and sensors, which allow them to sense

the underwater environment and collect the underwater data as they move through the water, and

make decisions on their own. For example, they can change their navigation trajectories or mission

profiles based on the collected environmental data. To enable some level of manual control, they

are generally equipped with satellite modems or underwater acoustic modems so that they can com-

municate with operators on shore or on boad periodically or continuously. For localization, they are

generally equipped with GPS devices so that they can get the global location when surfaced, while

they rely on underwater positioning algorithms or systems such as dead reckoning and long baseline

navigation systems when submerged.

AUVs allow oceanographic researchers to study underwater environments that are typically im-

possible or difficult to reach. Moreover, they can stay underwater and continuously collect envi-

ronmental data for a long period of time (up to months). Therefore they are widely believed to be

a revolutionary oceanographic technology. Ever since their appearance, hundreds of AUVs have

been designed. These vehicles range in size from portable lightweight AUVs to vehicles of over

10 meters in length. Small vehicles generally require low logistics while large vehicles have large

sensor payload capacity and long operation period.

Most AUVs today are powered by rechargeable batteries (e.g., lithium ion, lithium polymer,

nickel metal hydride), which enable propellers or thrusters to move them through the water, and
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power up onboard sensors. To extend the battery life, energy harvesting solutions have been pro-

posed to use renewable energy sources such as solar, thermal and kinetic (e.g., wave) energy [7, 8].

Depending on the power source and the mission, AUVs can operate over hours, days or even months

before recharging the battery.

Typically, AUVs can move at speeds ranging from 0.2 to 4.0 m/s. To enable high accuracy nav-

igation, they rely on underwater acoustic positioning systems such as long baseline, short baseline

systems. The Long Baseline (LBL) system require transponders deployed at fixed positions on the

sea floor. When a surface reference such as a ship is available, the Ultra-Short Baseline (USBL)

or Short Baseline (SBL) positioning system is used to estimate the AUV position using acoustic

range measurements. When operating completely autonomously, an AUV will surface and take its

own GPS fix. Between GPS fixes, an Inertial Navigation System (INS) onboard - which is gener-

ally expensive equipment - can be used to measure the acceleration while the vehicle speed can be

measured using Doppler velocity technology, and the depth (vertical position) is measured using a

pressure sensor. To reduce the cost incurred by the INS system, an alternative is to use the Dead

Reckoning (DR) method between GPS fixes, as adopted by the SLOCUM underwater glider today.

AUVs are typically equipped with sensors to measure the chemical and physical properties

of the underwater environment. These include the Conductivity, Temperature, Depth (CTD) sen-

sors, Acoustic Doppler Current Profiler (ADCP) (used to measure the ocean current speed), mag-

netometers, side-scan and other sonars, image and video cameras, pH and dissolved oxygen sensor,

radiometer, and spectrophotometer for harmful algal blooms. To support the navigation and local-

ization of the vehicles, GPS, magnetic compass, tilt sensor, and altimeter are also installed.

Acoustic, radio frequency, and satellite communication modems installed on the AUV offer

the capability to monitor and control the vehicle remotely (e.g., onshore or on boat). Moreover,

these communication technologies make it possible to acquire and process the high-resolution, high

quality, and heterogeneous sensor data in near real time for advanced ocean exploration. Recent

advance in electronics, computer and communication technologies has make it possible to develop

more and more capable and affordable AUVs to explore the ocean. Consequently these vehicles are

expected to be widely used for advanced ocean monitoring and coastal tactical surveillance in the

near future.
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AUVs can be divided into two main classes: Propeller Driven Vehicles (PDVs) and buoyancy-

driven gliders. PDVs are one class of AUVs that are driven by propeller(s). As the propulsion

system consumes a lot of energy, the lifespan and operation coverage are limited due to the limited

battery capacity. In general, PDVs have a life span ranging from several hours to a few days and

can traverse distances of several hundred kilometers. The main benefit of using PDVs is that they

can cover long distance in a short time (due to the high speed brought by the propulsion system). In

addition, they generally have high maneuverability as the onboard computer can change the course

or turn in time.

On the other hand, gliders are another class of AUVs that are not driven by propeller. For

propulsion, they change their buoyancy in a small amount using a pump and rely on wings to

convert vertical velocity into horizontal motion as they rise and fall through the ocean, forming a

sawtooth trajectory. As a result, in contrast to PDVs, gliders spend very small amount of energy in

propulsion and hence they can operate over long periods of time (weeks or months), even though

they are not as fast as PDVs. They travel at a fairly constant horizontal speed, typically 0.25 m/s

[2]. The impressive operation time and energy efficiency of these gliders make them a popular

choice for oceanographic researchers. Quite a few gliders have been produced and then used for

scientific research. These include the SLOCUM glider (which uses electric buoyancy engine) and

SLOCUM Thermal glider (propelled by extracting heat from the oceans thermal stratification) by

Webb Research, the Seaglider (whose drag is higher at low speeds and lower at high speed than

SLOCUM) by University of Washington, and the Spray glider (designed for efficient deep-water

performance) by Scripps Institution of Oceanography. The pitch angle of the vehicle is controllable

by movable internal ballast (usually battery packs), and steering is accomplished either with a rudder

(as in SLOCUM) or by moving internal ballast to control roll (as in Spray and Seaglider). Buoyancy

is adjusted either by using a piston to flood/evacuate a compartment with seawater (SLOCUM) or

by moving oil in/out of an external bladder (Seaglider, Spray, and SLOCUM Thermal). Gliders

control their heading toward their predefined waypoints using a magnetic compass and may surface

periodically to acquire their location using GPS and communicate with the operators using a radio

frequency or satellite connection.
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Figure 1.3: Underwater acoustic modems by different manufacturers.

1.3 Underwater Acoustic Modems

As of today, many acoustic modems - such as those designed and manufactured by companies like

LinkQuest, Teledyne Benthos, DSPComm- are commercially available to provide communication

capabilities in different underwater environments. These modems uses communication techniques

such as Frequency-Shift Keying (FSK), Phase-Shift Keying (PSK), Direct Sequence Spread Spec-

trum (DSSS) and Orthogonal Frequency-Division Multiplexing (OFDM), offering data rates up to

38.4 kbps over different communication ranges, i.e., short range (up to about 500 m), medium

range (up to about 4000 m), and long range (up to about 10000 m) in different underwater environ-

ments (shallow water or deep water) for different communication link setups (vertical or horizontal

communication link). Figure 1.3 shows some modems produced by these manufacturers.

These modems have been used in different underwater communication networks. However, they

are generally big in size, which is not suitable for underwater vehicles such as the SLOCUM glider.

Due to the size constraint, the popular choice for underwater gliders today is the Micro-Modem

produced by Woods Hole Oceanography Institution (WHOI), as shown in Fig. 1.4. The WHOI

Micro-Modem is currently the state-of-the-art modem used on the SLOCUM glider. It is compact

in size (including the transducer), offering data rates from 80 to 5300 bps with communication
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Figure 1.4: WHOI Micro-Modem connected to different transducers.

range of up to a few kilometers. Such feature makes it an appropriate choice for AUVs like under-

water gliders. Our proposed solutions are mainly based on the WHOI Micro-Modem yet they are

extensible to other acoustic modems.

1.4 Overview of the Dissertation

Existing research works on UW-ASNs, focus either on problems from the perspective of communi-

cations and networks [2], or on problems from the robotics perspective. On one hand, researchers

aim at improving the performance of underwater communications and networks without consid-

ering the impact on the control of underwater vehicles. On the other hand, robotic researchers

aim at improving the control of underwater vehicles without considering the physical constraints of

underwater communications. Few researchers worked on problems that jointly consider the commu-

nication and coordination among a team of underwater vehicles. Existing works either rely on using

the satellite communications to control a team of vehicles where real-time control is impossible for

submerged vehicles [9], or on controlling the team assuming ideal acoustic communications (i.e.,

relying on ideal graph theory models). Moreover, these works generally assume ideal underwater

localization, which may not be true when localization infrastructure is unavailable and the vehicles

drift due to the influence of ocean currents. To address these problems, in this dissertation, we first

propose a solution to model and predict position uncertainty for underwater vehicles. Then based

on this position uncertainty model, novel solutions are proposed to improve the performance of

communication and coordination among mobile AUVs. The contribution of the proposed solutions,

in summary, is that they are designed to improve the communication and coordination performance
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for AUVs with high position uncertainty (e.g., due to influence of ocean currents).

In the rest of this section, an overview of the proposed solutions for inter-vehicle communi-

cations and coordinations is given. We first distinguish position uncertainty into two classes, and

propose a statistical model to estimate and predict the position uncertainty of AUVs, which can

be applied to underwater gliders and AUVs whose trajectories are predictable. Then we propose

inter-vehicle communication solutions for AUVs, which include an optimization framework for

delay-tolerant traffic, a reliable geocasting solution (i.e., the transmission of data packets to nodes

located in a certain geographic region) for AUVs with high position uncertainty, and an under-ice

localization solution (where position error becomes more severe due to the increased difficulty in

accessing GPS as well as that in deploying localization infrastructure) that can minimize localiza-

tion uncertainty and communication overhead. These communication solutions are then applied

to facilitate the coordination among AUVs. Specifically, the localization solution can be used to

improve the localization performance of AUVs where localization infrastructure is not available;

the geocasting solution can be used to send queries or commands to AUVs within a specified 3D

region; while the optimization communication framework for delay-tolerant traffic can be used for

energy-efficient communications among AUVs.

Based on these underwater communication techniques, we also propose efficient team forma-

tion and steering algorithms for underwater gliders. In order to take measurements in space and time

from the under-sampled vast ocean, these vehicles need to form a team in a specific formation (team

formation), steer through the 3D region of interest (team steering), and take application-dependent

measurements such as temperature and salinity. We propose team formation and steering algo-

rithms relying on underwater acoustic communications in order to enable glider swarming that is

robust against ocean currents and acoustic channel impairments (e.g., high propagation and trans-

mission delay, and low communication reliability). The proposed team formation and team steering

algorithms use real underwater acoustic modems and are combined with realistic underwater com-

munication models. Additionally, we design novel bio-inspired underwater acoustic communication

techniques to improve the coordination performance. This reduces the need for localization packets

and thus saves communication overhead.

We summarize our proposed solutions and their contributions as the following.

1) Statistical Modeling and Prediction of the AUV Position: To address the problems due to
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position uncertainty, in this work we introduce a probability region to characterize stochastically a

node’s position. Depending on the view of the different nodes, two forms of position uncertainty are

needed, i.e., internal and external uncertainty, the position uncertainty associated with a particular

entity/node (such as an AUV) as seen by itself, and as seen by others, respectively. To estimate

the external uncertainty, in this work we first propose a statistical approach to model the internal

uncertainty of AUVs whose trajectories are predictable. Based on the estimated internal uncertainty,

we then propose a solution using the Unscented Kalman Filter (UKF) to predict the external uncer-

tainty. Note that our solution is not a localization algorithm. Rather, we provide a way to estimate

the uncertainty that is associated with one localization technique and leverage this information for

performance improvement.

Specifically, the contributions of this work include: 1) the distinction between two forms of

position uncertainty (internal and external, depending on the view of the different nodes); 2) a

statistical algorithm to characterize the internal uncertainty of a general AUV (including underwater

gliders) whose trajectory is predictable; 3) a solution to predict the external uncertainty based on

UKF; 4) an algorithm to dynamically adjust update interval in order to minimize overhead for

position information; and 5) guidelines on how to apply the estimated external-uncertainty regions

in communication and distributed robotic solutions for performance improvement.

2) An inter-vehicle communication optimization framework for delay-tolerant traffic: Based

on the estimated external uncertainty, we propose QUO VADIS2, a QoS-aware underwater optimization

framework for inter-vehicle communication using acoustic directional transducers. QUO VADIS is

a cross-layer optimization framework for delay-tolerant UW-ASNs that jointly considers the end-

to-end (e2e) delay requirements and constraints of underwater acoustic communication modems,

including transducer directivity, power control, packet length, modulation, and coding schemes.

Specifically, the proposed framework uses the external-uncertainty region estimates of the gliders

and forwards delay-tolerant traffic with large maximum e2e delay, which includes Class I (delay-

tolerant, loss-tolerant) traffic and Class II (delay-tolerant, loss-sensitive) traffic [10]. Moreover, our

cross-layer communication framework exploits the frequency-dependent radiation pattern of under-

water acoustic transducers. By decreasing the frequency band, transducers can change their “direc-

tivity” turning from being almost omnidirectional (with a gain of ≈ 0 dBi) – which is a desirable

2“Quo vadis?” is a Latin phrase meaning “Where are you going?”.
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feature to support neighbor discovery and multicasting, geocasting, anycasting, and broadcasting) –

to directional (with gains up to 10 dBi) – which is useful for long-haul unicast transmissions.

The contributions of this work are as follows: 1) We propose a distributed communication frame-

work for delay-tolerant applications where AUVs can conserve energy by waiting for a ‘good’

network topology configuration, e.g., a favorable alignment, before starting to communicate. 2)

We exploit the frequency-dependent directivity of the acoustic transducer that is originally used

as omnidirectional transducer at one frequency to optimize network performance. 3) We propose

a cross-layer optimization framework that jointly considers the constraints of underwater acoustic

modems and the trajectory of the AUV for energy minimization.

3) A reliable geocasting solution for UW-ASNs: In this work, based on different degrees of

neighbor information, we propose two versions of an underwater geocasting solution whose objec-

tive is to reach the highest number of nodes within a pre-defined directional 3D region in a given

amount of time when the positions of the nodes are uncertain. Based on the external uncertainty

estimates, packets are forwarded along the path that can reach the nodes in the region along the spec-

ified direction in minimal time while maximizing link reliability. Moreover, packet transmissions

are scheduled in an optimal manner in order to avoid collisions and save the number of transmis-

sions.

To the best of our knowledge, our approach is the first geocasting solution for UW-ASNs that

accounts for position uncertainty. Specifically, our contribution includes the design and implemen-

tation of: (1) prioritization and scheduling mechanisms to maximize the link reliability while mini-

mizing the time for geocasting; (2) a mechanism to save the number of transmissions by partitioning

neighbor nodes into two sets – forwarding nodes and non-forwarding nodes – so that retransmis-

sions can be minimized; and (3) a distributed solution that can be used for existing underwater

acoustic modems using random-access MAC protocols (e.g., Benthos, WHOI). Note that our so-

lution relies only on the use of timers (without requiring synchronization among nodes), and only

local neighbor information is used for packet scheduling and forwarding.

4) An under-ice/underwater localization solution for minimization of position uncertainty:

Existing localization schemes underwater generally rely on the deployment of transponders or nodes

with underwater communication capabilities as reference points, which requires either much de-

ployment effort or much communication overhead. Moreover, these schemes are not able to estimate
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the uncertainty associated with the calculated position, which is high in under-ice environments, and

thus are not able to minimize position uncertainty.

To address this problem, we propose a solution that uses only a subset of AUVs without relying

on localization infrastructure. Specifically, a position uncertainty model in [11] is introduced to

characterize an AUV’s position. This model is extended to estimate the uncertainty associated with

the standard distance-based localization technique, resulting in the distance-based localization with

uncertainty estimate (DISLU). We further propose a Doppler-based technique with uncertainty esti-

mation capability, which is called Doppler-based localization with uncertainty estimate (DOPLU).

DISLU relies on packets (i.e., communication overhead) to measure the inter-vehicle distances (i.e.,

ranging), which, in conjunction with positions of reference nodes (in general other AUVs), are uti-

lized to estimate the position. On the other hand, DOPLU, which measures Doppler shifts from

ongoing communications and then uses these measurements to calculate velocities for localization,

removes the need for ranging packets. As DOPLU only relies on relative measurements, it may

not be able to fix displacement errors introduced by the rotation or position translation of the AUV

group. In this case, DISLU is executed to bound such localization errors. Considering these trade-

offs, using the uncertainty model, the localization error and communication overhead of DISLU and

DOPLU can be jointly considered and algorithms are devised to minimize the localization uncer-

tainty and communication overhead while satisfying localization error requirement.

Our solution offers a way to estimate the degree of uncertainty associated with a localization

technique and based on this estimation it further minimizes both position uncertainty and commu-

nication overhead. The contributions of this work include: 1) a probability model to estimate the

position uncertainty associated with localization techniques; 2) an algorithm to minimize localiza-

tion uncertainty by selecting an appropriate subset of reference nodes; 3) an algorithm to optimize

the localization interval in order to further minimize the localization overhead; and 4) a Doppler-

based localization technique that can exploit ongoing communications for localization.

5) A team formation and steering solution for AUVs: existing solutions such as [12–15]

have been proposed by underwater robotics researchers to steer a team of autonomous vehicles

along a specified path and thus performing a mission such as adaptive sampling. For many of these

solutions, inter-vehicle communications are assumed to be ideal (i.e., no packet loss, no delay, etc.)

or are based on ideal graph theory models. Therefore, it is not clear how well they perform using
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real underwater communications. There are also some solutions such as [9] that rely on terrestrial

communication techniques (e.g., satellite communications) to exchange inter-vehicle information.

In this case, these vehicles have to surface, thus wasting more energy and time (not to mention the

risk that – as it has happened – the vehicle is stolen by pirates or damaged by vandals).

To overcome the limitation of using theoretical communication models and relying on radio

communication techniques, we introduce innovative coordination algorithms using underwater com-

munication techniques to support swarming of a realistically limited number of underwater gliders

(less than ten). Specifically, we propose: 1) a team formation algorithm to move the gliders into

the specified geometry in minimal time and without collisions, and 2) an attraction and repulsion

swarming algorithm to steer gliders while maintaining the formation. Underwater acoustic com-

munication techniques are combined with these algorithms in order to improve the performance of

vehicle coordination. For team formation, a packet type that performs well for long-range commu-

nications is used. For team steering, the relative locations of AUVs are estimated from the Doppler

shifts extracted from ongoing opportunistic inter-vehicle communications.

The contribution of our solution is the following: 1) Our team formation and team steering al-

gorithms use real underwater acoustic modems and are combined with more realistic underwater

communication models. Therefore our solution is closely integrated with realistic underwater com-

munications. 2) We design novel underwater acoustic communication techniques to improve the

performance of inter-vehicle communications. For example, reliable short FSK-modulated pack-

ets are used for long-range communication during team formation. 3) We propose a hybrid team

steering scheme based on the Doppler shifts extracted from ongoing opportunistic inter-vehicle

communications. These Doppler shifts are then used to estimate the relative locations of the AUVs,

which are then fed back for distributed steering control.

The structure of this dissertation is outlined here as the following. In Chapter 2, we review

the existing solutions for UW-ASNs, especially for geographic routing, underwater delay-tolerant

networks, geocasting, and underwater localization. We also review and discuss the existing work in

team coordination algorithms for AUVs. The difference between our solution and existing solutions

will be presented and discussed.

In Chapter 3, we introduce the distinction between two forms of position uncertainty and how

we model the position uncertainty using statistical methods - first for underwater gliders and then
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for general types of AUVs whose trajectories are predictable. Then based on this uncertainty model,

we propose an energy consumption minimization framework that can serve two-classes of delay-

tolerant traffic. The proposed framework also uses acoustic directional transducers to reduce the

computation and communication overhead for inter-vehicle data transmission. We then propose an

efficient geocasting solution that can reliably forward packets to AUVs within a specified region. An

under-ice/underwater localization solution is also proposed to minimize the localization uncertainty

underwater, especially for scenarios where localization infrastructure is unavailable. We further

propose a team formation and steering solution for underwater gliders using underwater acoustic

modems, which is robust against acoustic channel impairments and ocean currents. Details of the

proposed solutions are presented and discussed.

In Chapter 4, we first propose a novel underwater communication emulator for performance

evaluation. This emulator is then used to evaluate the solutions we proposed for inter-vehicle com-

munications and coordination. We first evaluate the accuracy of our statistical model in estimating

the position uncertainty. It is shown that our inter-vehicle optimization framework is effective in

providing QoS services to the loss-sensitive and loss-tolerant traffic in delay-tolerant applications.

Performance of the inter-vehicle communication optimization framework is improved over some

well-known geographic routing and DTN approaches. The performance of the geocasting solution

and underwater localization solution are also compared against existing solutions. Our team for-

mation and steering algorithms are shown to be robust against acoustic channel impairments and

ocean currents. It is also shown that our coordination solution using acoustic communications is

performing better than existing solutions using only satellite communications.

In Chapter 5, we draw conclusions on our work. We proposed a statistical approach to model

an AUV’s position uncertainty. And based on this model, inter-vehicle communication solutions -

which include an energy-efficient optimization framework, reliable geocasting and position uncer-

tainty minimization underwater localization - and team coordination solution are proposed. Future

work includes implementation of these communication and coordination solutions on different types

of AUVs and evaluation of their performance, design of adaptive sampling solutions to efficiently

sample the ocean, and integration of the AUVs with static UW-ASNs and existing ocean observation

infrastructures.
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Chapter 2

Related Work

In this chapter, we review the related work of our dissertation, first the related approaches for geo-

graphic routing, delay-tolerant networks, geocasting, underwater localization, and then the related

solutions for team coordinations. An overview of communication solutions for different layers of

UW-ASNs has been provided in [2,16]. Here we focus on the work closely related to our solutions.

2.1 Geographic Routing Protocols

Geographic routing protocols rely on geographic position information for message forwarding,

which requires that each node can determine its own location and that the source is aware of the

location of the destination. Many geographical routing schemes, including some well-known ones

such as Most Forward within Radius (MFR) scheme [17], Greedy Routing Scheme (GRS) [18] and

Compass Routing Method (CRM) [19], have been proposed for terrestrial wireless networks. In

MFR, the message is forwarded to the neighbor that is closest to the destination, while in GRS a

node selects the neighbor whose projection on the segment from the source to destination is closest

to the destination. In the Compass Routing Method (CRM) [19], a message is forwarded to a neigh-

bor whose direction from the transmitter is the closest to the direction to the destination. In [20],

a scheme called Partial Topology Knowledge Forwarding (PTKF) is introduced, and is shown to

outperform other existing schemes in typical application scenarios. Based on the estimate using

local neighborhood information, PTKF forwards packet to the neighbor that has the minimal e2e

routing energy consumption. These solutions are proposed for terrestrial wireless networks. In UW-

ASNs, they may not work well since propagation of acoustic signals is quite different from that of

radio signals. Moreover, localization underwater is generally more difficult than in the terrestrial

environment.

In [21], a geographic routing protocol based on Dynamic Source Routing (DSR) with location
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awareness is proposed. It employs the range information to estimate local network topology, show-

ing improved network capacity over blind flooding and DSR protocols as node distance becomes

large. Focus Beam Routing (FBR) protocol [22] employs a directional beamforming technique with

the help of location information for packet forwarding. It is shown that FBR has energy consump-

tion performance close to Dijkstra’s algorithm while additional burden of dynamic route discovery

is minimal.

2.2 Delay-Tolerant Networking Approaches

Solutions for DTNs have been proposed for communications within extreme and performance-

challenged environments where continuous e2e connectivity does not hold most of the time [23,24].

Many approaches such as Resource Allocation Protocol for Intentional DTN (RAPID) routing [25],

Spray and Wait [26], and MaxProp [27], are solutions mainly for intermittently connected terrestrial

networks. RAPID [25] translates the e2e routing metric requirement such as minimizing average

delay, minimizing worst-case delay, and maximizing the number of packets delivered before a dead-

line into per-packet utilities. At a transfer opportunity, it replicates a packet that locally results in

the highest increase in utility. Spray and Wait [26] “sprays” a number of copies per packet into the

network, and then “waits” until one of these nodes meets the destination. In this way it balances

the tradeoff between the energy consumption incurred by flooding-based routing schemes and the

delay incurred by spraying only one copy per packet in one transmission. MaxProp [27] prioritizes

both the schedule of packets transmissions and the schedule of packets to be dropped, based on the

path likelihoods to peers estimated from historical data and complementary mechanisms including

acknowledgments, a head-start for new packets, and lists of previous intermediaries. It is shown

that MaxProp performs better than protocols that know the meeting schedule between peers. These

terrestrial DTN solutions may not achieve the optimal performance underwater as the characteristics

of underwater communications are not considered. Hence, in the rest of this section, we focus on

related solutions for UW-ASNs.

Several DTN solutions for UW-ASNs have been proposed in [28–31]. In [28], an energy-

efficient protocol is proposed for delay-tolerant data-retrieval applications. Efficient erasure codes

and Low Density Parity Check (LDPC) codes are also used to reduce Packet Error Rate (PER) in

the underwater environment. In [29], an adaptive routing algorithm exploiting message redundancy
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and resource reallocation is proposed so that ‘more important’ packets can obtain more resources

than other packets. Simulation results showed that this approach can provide differentiated packet

delivery according to application requirements and can achieve a good e2e performance trade-off

among delivery ratio, average e2e delay, and energy consumption. A Prediction Assisted Single-

copy Routing (PASR) scheme that can be instantiated for different mobility models is proposed

in [30]. An effective greedy algorithm is adopted to capture the features of network mobility pat-

terns and to provide guidance on how to use historical information. It is shown that the proposed

scheme is energy efficient and cognizant of the underlying mobility patterns.

In [31], an approach called Delay-tolerant Data Dolphin (DDD) is proposed to exploit the mo-

bility of a small number of capable collector nodes (namely dolphins) to harvest information sensed

by low power sensor devices while saving sensor battery power. DDD performs only one-hop trans-

missions to avoid energy-costly multi-hop relaying. Simulation results showed that limited numbers

of dolphins can achieve good data-collection requirements in most application scenarios. However,

data collection may take a long time as the nodes need to wait until a dolphin moves into the com-

munication ranges of these nodes.

Compared to the number of approaches using directional antennae for terrestrial wireless sen-

sor networks, solutions using directional transducers for UW-ASNs are very limited due to the

complexity of estimating position and direction of vehicles underwater. Moreover, these solutions

generally assume the transducers are ideally directional. That is, they assume the radiation energy

of the transducer is focused on some angle range with no leaking of radiation energy outside this

range. For example, such transducers are used for localization using directional beacons in [32]

and for directional packet forwarding in [33]. These solutions also use only one frequency. In this

work, rather than using the ideal transducer model, we consider the radiation patterns of existing

real-world transducers at different frequencies in order to minimize energy consumption.

A cross-layer optimization solution for UW-ASNs has been proposed in [10], where the interac-

tion between routing functions and underwater characteristics is exploited, resulting in improvement

in e2e network performance in terms of energy and throughput. A study on the interaction between

physical and Medium Access Control (MAC) layers is presented in [34], where a method is pro-

posed to estimate the battery lifetime and power cost for shallow-water UW-ASNs. In this way,

the energy consumption is equalized and the network lifetime is prolonged. A cross-layer approach



20

that improves energy consumption performance by jointly considering routing, MAC, and physical

layer functionalities is proposed in [22]. These solutions, however, do not consider uncertainty in

the AUV positions and are implemented and tested only by software simulation platforms. On the

contrary, we propose a practical uncertainty-aware cross-layer solution called QUO VADIS (see

Chapter 3.4) that incorporates the functionalities of the WHOI Micro-Modem [35] to minimize

energy consumption. Moreover, our solution is implemented on real hardware and tested in our

emulator integrating WHOI underwater acoustic modems.

2.3 Geocasting Algorithms

Compared to terrestrial wireless networks, where a number of geocasting protocols have been pro-

posed, geocasting for underwater sensor networks is a relatively unexplored area. Geocasting algo-

rithms designed for terrestrial networks do not work well in the underwater environment due to its

unique propagation characteristics. So far no geocasting solution has been tailored for underwater

sensor networks. In this section, we review the solutions for terrestrial networks and discuss why

they would fall short in the underwater environment.

Ko and Vaidya proposed two location-based multicast algorithms in [36], where only nodes

within the so-called forwarding zone are allowed to relay the packets to the geocasting region. In this

way, the number of nodes for forwarding packets is reduced, resulting in reduced delivery overhead.

Moreover, the authors proposed GeoTORA in [37], which is based on the Temporally-Ordered

Routing Algorithm (TORA) unicast routing protocol [38]. Flooding is incorporated into TORA, but

it is limited to nodes within a small region. This integration significantly reduce the overhead of

geocasting delivery, while maintaining high accuracy. These two solutions focus mainly on limiting

the traffic in a region and on selecting appropriate routes for geocasting without considering the

communication link properties. Hence, due to the communication impairments of the underwater

acoustic channel, they may not be able to achieve minimum geocasting delay.

Two geocasting algorithms are presented in [39] to forward packets to the neighbors that may

be closest to a possible location of the destination. These neighbors are determined using Voronoi

diagrams; the algorithm is further modified to ensure that the routes are loop free. Simulations

are performed for two basic scenarios, one for geocasting and reactive routing, and the other for

proactive routing; both showed to have high success rate and low flooding rate compared to other
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similar methods. They are both designed using graph theory and consider only the connectivity.

Three approaches of geocasting that can guarantee delivery are designed and discussed in [40],

two of which are face traversal schemes based on depth-first search of the face tree and traversal

of all faces that intersect the border of the geocasting region, respectively. In the entrance zone

multicasting-based approach, the monitoring center divides the entrance ring of a geocasting region

into zones of diameter equal to the transmission radius and then the problem is converted into the

problem of first multicasting packets to nodes at the center of each zone and then flooding from

these nodes. Improvements to all methods are made by applying neighbor or area dominating sets

and coverage, and converting nodes that are not selected to sleep mode.

A delivery guaranteed geocasting solution is proposed in [41], which finds a connected planar

subgraph of the network and then apply routing algorithms for planar graphs on this subgraph.

While the solution requires no duplication of packets or memory at the nodes, a packet is always

guaranteed to be delivered to its destinations, as confirmed through simulations. This solution is

also designed based on graph theory by considering only the connectivity.

An Obstacle-Free Single-destination Geocasting Protocol (OFSGP) is proposed for mobile ad

hoc networks in [42] to keep messages away from obstacles by creating a very small flooding region,

and an Obstacle-Free Multi-destination Geocasting Protocol (OFMGP) is proposed for relaying

messages from the source to all hosts located in multiple disconnected geographical regions, where

a shared path for different destinations is created so that the number of flooding packets can be

reduced as much as possible. Simulation results demonstrate that the proposed protocols transmit

the message from source host to one or more destination regions with low flooding overhead and

with a high success rate.

In [43], a Virtual Surrounding Face Geocasting (VSFG) algorithm is proposed to guarantee

message delivery while keeping the flooding overhead low. The network area is partitioned into

a set of faces, where a face is a continuous area enclosed by a sequence of edges. In VSFG,

all the faces intersecting with a geocasting region are merged into a unique Virtual Surrounding

Face (VSF) containing this geocasting region. By traversing all the boundary nodes of VSF and

performing restricted flooding within the geocasting region, all nodes are guaranteed to receive

the message. The proposed VSFG is evaluated through theoretical analysis and comprehensive

simulations showing up to 40% of reduction in the number of transmissions.



22

Geographic Multicast Routing (GMR) [44] is proposed to construct trees with minimal band-

width for wireless sensor networks. GMR selects the set of next hop neighbors that minimizes the

so-called cost over progress ratio, i.e., the ratio of the number of neighbors selected for relaying to

the overall reduction of the remaining distances to destinations. In this way the tradeoff between the

bandwidth of the multicast tree and the effectiveness of the data distribution is better handled. The

simulation results show that GMR achieves less cost of the trees and computation time in a number

of networking scenarios than the position based multicast protocol.

All these protocols are designed mainly based on ideal graph theory models that only considers

the connectivity. Link characteristics such as bandwidth, delay, and packet loss rate are not consid-

ered and hence the impact of link level constraints, which is not negligible in underwater acoustic

communications, is ignored. Consequently, their performance may not be optimal in the underwater

environment. In this work, we attempt to fill this gap and propose a geocasting solution by taking

the large propagation delay, low bandwidth, and high packet loss rate constraints into account.

2.4 Underwater Localization

Localization is essential for underwater vehicle navigation and UW-ASNs, where many localization

solutions, as summarized in [45] and [46], have been proposed. Due to space limitation, we just

review the work that is most related, i.e., localization in UW-ASNs using AUVs.

Short Baseline (SBL) and Long Baseline (LBL) systems [45] are standard ways to localize

vehicles underwater, where external transponder arrays are employed to aid localization. In SBL

systems, position estimate is determined by measuring the vehicle’s distance from three or more

transponders that are, for example, lowered over the side of the surface vessel. LBL systems are

similar to SBL, with the difference that an array of transponders is tethered on the ocean bed with

fixed locations.

In [47], a localization scheme called AUV Aided Localization (AAL) is proposed, where po-

sition estimation is done using a single AUV. In AAL, an AUV navigates a predefined trajectory,

broadcasts its position upon a node’s request, and fixes its own position at the surface. Each node

estimates the distances to the AUV while the AUV is at different locations, using the Round-Trip

Time (RTT) between itself and the AUV. Algorithms such as triangulation or bounding box can

then be used for position estimate. Another localization solution called Dive-N-Rise Localization
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(DNRL) is proposed for both static and mobile networks in [48]. DNRL is similar to AAL, with the

difference that ocean currents are considered and time synchronization is required between nodes.

In [49], an online algorithm for cooperative localization of submerged AUVs is designed, imple-

mented, and evaluated through experiments. This algorithm relies on a single surface vehicle called

Communication and Navigation Aid (CNA) for autonomous navigation. Using the CNA’s GPS po-

sitions and basic onboard measurements including velocity, heading and depth, this algorithms can

use filtering techniques such as Extended Kalman Filter (EKF) to bound the error and uncertainty

of the on-board position estimates of a low-cost AUV.

Among existing underwater localization techniques (which are generally not suitable for under-

ice environments), relatively few under-ice localization techniques have been proposed. Despite

these efforts, the technology remains expensive and out of reach for researchers. Current techniques

employed in the under-ice environment include combinations of either dead-reckoning using iner-

tial measurements, sea-floor acoustic transponder networks such as SBL or LBL, and/or a Doppler

Velocity Log (DVL) that can be either seafloor or ice relative [45]. These current approaches re-

quire external hardware, are cost prohibitive, and suffer from error propagation. For accurate dead

reckoning, highly accurate sensors are required because magnetic navigation systems are subject to

local magnetic field variations and gyros are subject to drift over time. Quality inertial navigation

sensors often cost more than $10,000 [45]. In contrast, our solution is much more economical as it

does not require these expensive sensors.

Two solutions for underwater collaborative localization using a probability framework are pro-

posed in [50] and [51], where a sum-product algorithm and a Markov process that are based on

the so-called factor graph are used to model the joint distribution of multiple nodes. Both solu-

tions require the global information of the nodes that are involved in localization, which leads to

high computation complexity and communication overhead. Our solution offers another probability

framework that leverages the self-estimated uncertainty distribution for estimation of other nodes.

Therefore, global information is not required, resulting in reduced computation complexity and

communication overhead.
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2.5 Team Coordination Algorithms

Cooperation of a team of AUVs to efficiently complete underwater missions such as adaptive sam-

pling [9, 52] has attracted many researchers. For example, a solution was proposed for cooperative

control of multiple vehicles based on virtual bodies and artificial potentials [9]. However, the con-

trol is achieved through satellite communication, which is not available underwater. Periodically,

these AUVs have to surface to update their GPS location and mission plan. The control of the AUVs

is not in real time, therefore team formation and steering error due to unpredictable events such as

variations of ocean currents cannot be fixed in real time.

In [13], research work in the European Union Project GREX, which focuses on the coordination

and control of cooperating heterogeneous Autonomous Marine Vehicles (AMVs) in uncertain envi-

ronments, is summarized. A general architecture for cooperative AMV control in the presence of

time-varying communication topologies and communication losses is proposed. The simulation re-

sults with the networked marine system simulator and the real sea-experiment results are presented

and show the efficacy of the algorithms developed for cooperative motion control. Some theoretical

and practical implementation issues have, however, been raised.

A leader-follower approach is proposed in [15] for multi-AUV coordination using underwater

communications. Specifically, two control algorithms are designed for two scenarios using two

AUVs. The effectiveness of both algorithms are verified only in simulations.

In [14], a solution is proposed to address the problem of steering a group of vehicles along given

spatial paths while holding a desired geometrical formation pattern (i.e., the path following prob-

lem). The solution is built on Lyapunov-based techniques and addresses explicitly the constraints

imposed by the topology of the inter-vehicle communications network. By decoupling the path-

following and coordinated control system, the dynamics of each AUV can be dealt with by each

vehicle controller locally at the path-following control level, while coordination can be achieved

using a decentralized control law whereby the exchange of data among the vehicles is kept at a

minimum. The effectiveness of the proposed solution is verified by simulations. However, as the

communication impairments are based on graph theory, the proposed solution needs to be extended

to handle stringent underwater communication constraints. Therefore, it is unclear how well the

proposed solution performs in real underwater communication environments.
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In [53], the problem of team formation from initial to target formation positions under the in-

fluence of external disturbances is studied. An event-based approach is proposed, which relies on

an uncertainty model to trigger surfacing events so that AUVs can measure their own position and

update their control signal. A method is also proposed to characterize the disturbance set using

these events. Communications between AUVs are modeled with network adjacency matrix and are

limited to the time when the AUVs surface. Numerical examples on relevant scenarios are also

provided.

Many of the above approaches use ideal graph theory models to model underwater acoustic

communications. Therefore, it is not clear how well these solutions perform in real underwater

acoustic communications. Conversely, here we propose a team steering and coordination solution

that is based on realistic underwater acoustic communication models and that uses real underwater

acoustic modems. In this way, we are able to assess the impact of the impairments of underwater

communications on the coordination of AUVs.
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Chapter 3

Proposed Inter-Vehicle Communication and Coordination Solutions

In this chapter, we present the details of our solutions for inter-vehicle acoustic communication and

coordination algorithms. We first distinguish position uncertainty into two classes, and we intro-

duce the statistical approach to model the position uncertainty of an underwater glider and extend

the model for a general AUV whose trajectory is predictable, then we present our inter-vehicle

communication solutions, which include QUO VADIS - the QoS-aware inter-glider communication

optimization solution using frequency-dependent directional acoustic transducers, a reliable geo-

casting solution for AUVs with high position uncertainty, and an under-ice/underwater localization

solution that minimizes the localization uncertainty. These solutions can satisfy the following need

to facilitate the coordination of multiple AUVs: 1) the need to optimize acoustic communications

among AUVs, 2) the need to send query or commands to these AUVs, e.g., multicasting to AUVs

located in a specified region; and 3) the need to minimize localization uncertainty, e.g., for the under-

ice environment where deployment of localization infrastructure is difficult, respectively. Based on

these communication techniques, we present our algorithms for team formation and steering in the

end.

3.1 Two Forms of Position Uncertainty

As introduced in Chapter 1, the position uncertainty for underwater vehicles should be considered

in order to improve the performance of solutions for problems in a variety of research areas. Due to

the propagation delay and loss of position information, the position uncertainty as seen by a node

itself and that as seen by other nodes are generally different. Hence it is necessary to distinguish be-

tween these two forms of uncertainty. By distinguishing between internal and external uncertainty,

the causes of the position uncertainty can be understood and different components of the position

uncertainty can be modeled and derived. Solutions can further be designed to reduce the uncertainty
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Figure 3.1: Internal and external uncertainty regions (superscript t is used to clarify that they are
estimated at time t; this is used when necessary).

of different components so that such uncertainty can be minimized for performance improvement.

In this section, we first introduce the two forms of position uncertainty, discuss the relationship

between them, and comment on the benefits of using the external uncertainty in a variety of relevant

research areas.

3.1.1 Internal and External Uncertainties

Internal uncertainty is the position uncertainty associated with a particular entity/node (such as an

AUV) as seen by itself. Many approaches such as those using Kalman Filter (KF) [54, 55] have

been proposed to estimate the internal uncertainty assuming that the variables to be estimated have

linear relationships between each other and that noise is additive and Gaussian. While simple and

quite robust, KF is not optimal when the linearity assumption between variables does not hold. On

the other hand, approaches using non-linear filters such as the extended or unscented KF attempt to

minimize the mean squared errors in estimates by jointly considering the navigation location and

the sensed states/features such as underwater terrain features, which are non-trivial, especially in an

unstructured underwater environment.

External uncertainty is the position uncertainty associated with a particular entity/node as seen

by others. Let us denote the internal uncertainty, a 3D region associated with any node j ∈ N (N is
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the set of network nodes), as Ujj , and the external uncertainties, 3D regions associated with j as seen

by i, k ∈ N , as Uij and Ukj , respectively (i ̸= j ̸= k). In general, Ujj , Uij , and Ukj are different

from each other; also, due to asymmetry, Uij is in general different from Uji. External uncertainties

may be derived from the broadcast/propagated internal-uncertainty estimates (e.g., using one-hop

or multi-hop neighbor discovery mechanisms) and, hence, will be affected by e2e network latency

and information loss.

The estimation of the external-uncertainty region Uij of a generic node j at node i (with i ̸= j)

involves the participation of both i and j. Figure 3.1 illustrates the internal and external uncertainty

regions and their difference. In this figure, j’s uncertainty regions seen by j itself (internal uncer-

tainty), by i (i.e., Uij) and by k (i.e., Ukj) are all depicted to be different (general case). Note that as

shown in Fig. 3.2, in general, the longer the AUV stays underwater, the more uncertain we have for

its position (for both external and internal uncertainty). Estimation of Uij involves estimation of the

change of Ujj with time and in this work a solution is proposed to predict Uij of the general type of

vehicle with predictable trajectory based on the statistical estimation of Ujj .

3.1.2 Benefits to Underwater Applications

We present here a variety of applications or research areas where the proposed external uncertainty

can be applied to improve performance.

Communication protocols for UW-ASNs: In UW-ASNs, external uncertainty can be used to

improve the performance of networking solutions. For example, as shown in [11], a solution that

considers external uncertainty can be used for Delay-Tolerant Networks (DTNs) 1. As shown in

Fig. 3.3(a), by leveraging the predictability of AUVs’ trajectories, a novel solution to dynamically

optimize communications by delaying packet transmissions for the optimal network topology (i.e.,

trading e2e delay for throughput and/or energy consumption) can minimize communication energy

consumption for two classes of delay-tolerant traffic (loss-tolerant and loss-sensitive). Specifically,

the external uncertainty can be used to predict the position of an AUV and to adjust better the

transmission power. Consequently, routing error can be reduced, which decreases energy/bandwidth

1Note that the external uncertainty used in [11] is an ideal version of the external uncertainty, assuming it be the
same as the internal uncertainty. However, due to the delay incurred by large propagation delay, this external uncertainty
estimate is inaccurate. In this work, we propose a solution to predict the external uncertainty from the internal uncertainty
estimated for the generalized AUV with predictable trajectory.
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utilization.

Underwater robotics: In underwater robotics, a team of AUVs can collaborate to explore a 3D

region and take measurements in space and time. In order to derive the spatio-temporal correlation

of the measurements, these AUVs need to keep a geometric formation and steer through the region,

as shown in Fig. 3.3(b). They also need to keep a distance between each other in order to avoid vehi-

cle collisions. In [56], a solution is proposed to minimize the time to form the geometric formation

while avoiding vehicle collisions. However, in that solution, the gliders are assumed to have correct

location information, which is a strong requirement for the underwater environment. The solution

can be made more robust against ocean currents and acoustic channel impairments by exploiting the

concept of external uncertainty, e.g., a control algorithm can be designed to minimize the probability

that two AUVs are within the collision region. This concept can also be used for adaptive sampling

solutions, where sampling strategy is changed based on the variation of underwater measurements.

For example, for real-time ocean forecasting, a team of AUVs can be deployed to take spatial and

temporal measurements. To maximize the forecasting performance, the geometry formation and

inter-vehicle distance can be dynamically adjusted to measure a dynamically changing region. Us-

ing the external uncertainty notion, we can estimate the probability distribution of the measurements

(since location of the measurement is the same as the AUV) and then design an optimal strategy to

minimize the observation uncertainty for accurate forecasting.

Underwater localization: In the underwater environment, AUVs may need to rely on other

anchor nodes (e.g., AUVs) – whose positions may not be accurate – for localization, as shown

in Fig. 3.3(c). Localization error, however, may increase if an AUV relies on anchors with large

position uncertainty. The external uncertainty notion can be used to decrease localization error and

computation complexity. For example, a vehicle can select the optimal subset of anchors (typically

with small external uncertainty) so to minimize the new internal uncertainty.

Task allocation: The proposed notion of uncertainty can also be applied in task allocation,

whose objective is to choose a subset of vehicles to accomplish reliably a mission with specific

requirements. For example, only part of a team of AUVs can be selected to conduct a critical

mission while trying to maximize the remaining energy after the mission or to minimize the time to

complete the mission [57]. In such an application, using the external uncertainty notion for position

estimate, a team of AUVs that are “closer” to the target can be selected, which may lead to less time
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and/or energy to complete the mission.

Data processing and visualization: Once the measurements taken are received by the onshore

stations, oceanographers need to visualize and analyze sensor data for a multitude of ocean science

studies. The external-uncertainty notion can improve the quality of 3D data reconstruction because

it can be used to show the vehicle deviation from the original mission path.

3.2 Estimation of Trajectory and Uncertainty for Gliders

In this section, we present the statistical approach for external-uncertainty region estimation when

gliders are used as AUVs and ocean currents are unknown.

3.2.1 Internal and External Uncertainty for Gliders

As mentioned before, the estimation of the external-uncertainty region Uij of a generic node j at

another node i (with i ̸= j) involves the participation of both i and j. Node j will first estimate

its positions at different points in time, its trajectory, and its internal-uncertainty region Ujj ; then,

it will broadcast the parameters describing this region in its neighborhood. Upon receiving j’s

internal-uncertainty region parameters, glider i will estimate the external-uncertainty region of j,

Uij . Here, we provide a solution for internal- and external-uncertainty estimation when 1) gliders

are used (which move in a predictable ‘sawtooth’ trajectory) and 2) ocean currents are unknown

(Fig. 3.4).

Internal-uncertainty estimation at j: Assume gliders estimate their own locations over time

using some localization algorithm, e.g., dead reckoning (the localization method used on the SLOCUM

glider today). Glider j’s estimated coordinates, Wn = (xn, yn, zn) at sampling times tn (n =

1 . . . N ), are used to estimate its trajectory line segment. Here tn = tn−1 + ∆, where ∆ is the

update interval. From statistics, the Orthogonal Least Square (OLS) line gives the best maximum

likelihood estimation [58]. In other words, the regression line (x0 + at, y0 + bt, z0 + ct) is the

best fitting line such that the sum of the squared distances between it and Wn’s is minimal. Here

x0, y0, z0, a, b, c are coefficients to be calculated while t is the real-valued variable for this parame-

terized line.

As shown in Fig. 3.5, denote the distance of Wn to the regression line by dn, OLS regression
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gives a line that minimizes the sum of the squared distances, i.e., it minimizes

f(x0, y0, z0, a, b, c) =
N∑
n=1

d2n. (3.1)

From geometry, it is not hard to derive

d2n = {[c(yn − y0)− b(zn − z0)]
2 + [a(zn − z0)− c(xn − x0)]

2

+ [b(xn − x0)− a(yn − y0)]
2}/(a2 + b2 + c2). (3.2)

As a consequence, the following equations must be satisfied,

∂f

∂x0
=

∂f

∂y0
=

∂f

∂z0
=
∂f

∂a
=
∂f

∂b
=
∂f

∂c
= 0. (3.3)

However, this equation group is a cubic equation group with 6 variables for which it is hard to derive

a closed-form solution.

To reduce the complexity of this problem, we divide it into two sub-problems by the observation

from (3.2) that x0, y0, z0 and a, b, c have similar effect on di. Therefore, our first sub-problem is to

find the x∗0, y
∗
0, z

∗
0 that minimize f by assuming a, b, c are known. Then, based on the solution on

the first problem, i.e., (x∗0, y
∗
0, z

∗
0), we will find the optimal a∗, b∗, c∗ which can minimize f (second

sub-problem).

Solutions for these two sub-problems are provided in [59], which shows that [x∗0, y
∗
0, z

∗
0 ] =

[x̄, ȳ, z̄] and [a∗, b∗, c∗]T is the corresponding eigenvector to the maximum eigenvalue λmax of ATA,

where x̄ = 1
N

∑N
n=1 xn, ȳ = 1

N

∑N
n=1 yn, z̄ = 1

N

∑N
n=1 zn, and

A =



x1 − x̄ y1 − ȳ z1 − z̄

x2 − x̄ y2 − ȳ z2 − z̄

· · ·

xN − x̄ yN − ȳ zN − z̄


.

Computation complexity for [a∗, b∗, c∗]T can be further reduced by the following proposition.

Proposition 1 [a∗, b∗, c∗]T is the singular vector of A corresponding to its largest absolute singular
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value.

Proof: Computation complexity can be further reduced using the Singular Value Decomposi-

tion (SVD) [60],

A = UΛVT , (3.4)

where Λ is the diagonal singular value matrix, U and V are unitary matrices. The columns of V are

the eigenvectors corresponding to the singular values in Λ. Hence,

ATA = (UΛVT )TUΛVT = VΛ2VT , (3.5)

which means that the eigenvalues of ATA are the squares of the singular values of A, and the

eigenvectors of ATA are the singular vectors of A. Hence the optimal solution (a∗, b∗, c∗) to the

second subproblem is the singular vector of A corresponding to its largest absolute singular value.

Complexity for this decomposition is O(min(9N, 3N2)) = O(9N) when N ≥ 3.

After some math manipulation, we can further normalize the coefficients of this regression line

(x0 + at, y0 + bt, z0 + ct) so that t can be the time instead of just a parameter. Ultimately, this

normalized trajectory segment can be described as W (t) = W̄ + −→v (t − t̄), where W̄ = (x̄, ȳ, z̄)

and −→v = ∥
−−−−→
Ŵ1ŴN∥

∥(a∗,b∗,c∗)∥·(tN−t1) · (a
∗, b∗, c∗). Here t̄ = 1

N

∑N
n=1 tn is the average of the sampling

times, and Ŵi is the projection of point Wi on the line segment (Fig. 3.4(a)).

The optimal and sub-optimal solutions with two sub-problems are compared in Fig. 3.6, where

std is the standard deviation of the samples from trajectory. When N is small, the optimal solution

gives a better fitting line. As N gets larger, fopt and fsubopt get closer; yet, the suboptimal solution

gives an algorithm that requires much less computation (see Proposition 1).

After trajectory estimation, because gliders have no knowledge about the currents affecting

themselves (and the other gliders), the internal-uncertainty region of j is estimated as a cylindrical

region2. This cylinder U is described by its radius R and its height HU −HL, where HU and HL

(as shown in Fig. 3.4) – in general different – are the signed distances of the cylinder’s top and

2If the ocean current moves in any direction in the 3D space, j’s drifting can be treated as a 3D Brownian Motion
where the deviations in x and y direction are identically independently distributed (i.i.d.), which makes the horizontal
projection of j’s confidence region circular. And as j moves along its ascending or descending trajectory, the region
swept is a cylinder. Although the pressure sensor on j gives a rather accurate vertical position, there still can be vertical
uncertainty due to ‘upwelling’ or ‘downwelling’ currents. The uncertainty-region shape can be made more realistic if
some ocean-current knowledge is available.
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bottom surface (i.e., the surface ahead and behind in the trajectory direction, respectively) to glider

j’s expected location Wjj(τ) on the trajectory at current time τ .

The problem to jointly find the HL,HU , and R for Uij is complicated. We simplify it into two

sub-problems that can estimate HL, HU , and R separately. We reason that the probability of the

glider being in Uij in the z direction is greater than 1− α and the probability of it being within the

horizontal cross section of Uij is greater than 1− α, i.e.,

 Pr{HL ≤ H ≤ HU} ≥ 1− α

Pr{D ≤ R} ≥ 1− α
. (3.6)

With (3.6), given a specified α, HL, HU , and R can be estimated using statistical inference

theory [58] by relying on the available N samples. HL and HU can be solved as the lower and

upper bounds of the two-sided confidence interval of H , while R can be solved as the bound of the

one-sided confidence interval of D. The samples of Hn (for H) and Rn (for D) can be calculated

from the available N position samples Wn. We have the following two propositions.

Proposition 2 HL and HU are estimated by

 HL = H − t̂α,N−1S
(H)
√
1 + 1/N

HU = H + t̂α,N−1S
(H)
√

1 + 1/N
, (3.7)

whereH =
∑N

n=1Hn/N is the mean of the currentN samples, S(H) = [ 1
N−1

∑N
n=1(Hn−H)2]1/2

is the unbiased standard deviation, and t̂α,N−1 is the 100(1−α/2)% of Student’s t-distribution [58]

with N − 1 degrees of freedom.

Proof: Assume these Hn’s are i.i.d. normal variables with the same unknown mean and vari-

ance. From predictive inference theory [58], we have

H −H

S(H)
√

1 + 1/N
∼ tN−1, (3.8)

where tN−1 is the Student’s t-distribution with degree of freedomN−1 with probability distribution

function (pdf)

f(t) =
Γ(N/2)√

(N − 1)πΓ((N − 1)/2)
(1 +

t2

N − 1
)−N/2. (3.9)
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Here Γ is the well-known Gamma function. Solving for H yields the following distribution

H + S(H)
√

1 + 1/N · tN−1. (3.10)

Put this into the second inequality in (3.6), we can obtain (3.7).

Proposition 3 R is estimated by

R =

√
N − 1S(R)√
χ̂α,2(N−1)

, (3.11)

where S(R) = [ 1
N−1

∑N
n=1(Rn−R)2]1/2, R = 1

N

∑N
n=1Rn, and χ̂α,2(N−1) is the 100(1−α)% of

χ-distribution with 2(N − 1) degrees of freedom.

Proof: As stated before, the distributions of the glider’s location in the orthogonal x,y direction

of Uij are i.i.d. normal distributions with σ2R. As a result, we have

R/σR ∼ χ2, (3.12)

where χ2 is the χ-distribution with 2 degrees of freedom. Let

 R = 1
N

∑N
n=1Rn

S(R) = [ 1
N−1

∑N
n=1(Rn −R)2]1/2

, (3.13)

we can obtain (3.11) from [58].

As shown in Fig. 3.7, the greater ∆ is, the bigger the estimated cylinder is. Glider i receives

j’s update messages less frequently when j moves farther away since it may need other gliders to

relay these messages, therefore, Uij will become larger. As the number of position samples becomes

smaller, f will become larger and j’s position estimation will become less accurate, according to

Fig. 3.6. For this uncertainty, deterministic geographic routing may be a problem, while our solution

offers higher success rate to forward packets to the destined glider by using a statistical region. As

shown in Fig. 3.4(b), j’s internal-uncertainty region becomes smaller over time (from T0 to T2), i.e.,

as more position estimates are acquired.

External-uncertainty estimation at i: After receiving j’s trajectory and internal-uncertainty re-

gion parameters (W̄ , t̄,−→v ,HU ,HL, R), glider i can update the estimate of j’s external-uncertainty
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region. Note that, because AUVs involved in missions show predictable trajectories, information

about the sawtooth segment can be used to derive the entire glider trajectory through extrapolation

assuming symmetry between glider ascent and descent. Due to packet delays and losses in the

network, j’s external-uncertainty regions as seen by single- and multi-hop neighbors are delayed

versions of j’s own internal uncertainty (Fig. 3.4(b)). Hence, when using multi-hop neighbor dis-

covery schemes, the internal uncertainty of a generic node j, Ujj , provides a lower bound for all

the external uncertainties associated with that node, Uij , ∀i ∈ N . When there is an unexpected

significant change in j’s trajectory, j will inform its neighbors immediately so that the other gliders

will not continue to estimate the external-uncertainty region along the ‘old’ trajectory, i.e., before

the change. In our solution, a higher queueing priority is assigned to broadcast packets containing

this change of course information.

3.3 External Uncertainty Estimation for General AUVs

The previous section depicts how the internal and external uncertainties associated with the under-

water glider can be estimated. In this section, we extend the position uncertainty estimation to a

general type of AUV whose trajectory is predictable. As mentioned above, to obtain Uij , j needs to

estimate its internal-uncertainty region Ujj first, then Ujj is broadcast to its neighbors. Upon receiv-

ing this information, i will derive Uij based on Ujj . Therefore, it is necessary to estimate Ujj first

before Uij can be derived. In this section, we first provide a statistical model for internal uncertainty

estimation. Then in the next section, we propose a solution to predict the external uncertainty.

Our estimation of the internal uncertainty relies on a statistical approach to estimate the con-

fidence region using the position estimates of an AUV itself. We assume each AUV follows a

predictable trajectory. This assumption is reasonable since AUVs generally need to stay on the

pre-planned path(s) to take measurements. The advance in mechanical, electrical and computer en-

gineering technologies has made it possible for the AUVs to autonomously steer close to (or on)

the pre-planned path(s) under disturbance such as drifting. Moreover, AUVs are designed to fol-

low some regular movement pattern (e.g., saw-tooth pattern of underwater glider). Assume this

predictable trajectory of an AUV can be described by a function (x, y, z) = f(t,θ), where θ is

the list of p parameters that needs to be specified by the AUV’s trajectory. Furthermore, we as-

sume f is differentiable except at a countable set of discrete points. This assumption generally
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holds since AUVs rely on forces such as mechanical propulsion and/or buoyancy for acceleration,

which results in a differentiable trajectory except at points where abrupt change is made. For ex-

ample, an underwater glider generally follows a saw-tooth trajectory, whose piece-wise trajectory

can be described as a line (differentiable) segment (x, y, z) = (at + x0, bt + y0, ct + z0). In this

case, θ = (a, b, c, x0, y0, z0). Assume AUV j estimates its own coordinates, Pn = (xn, yn, zn),

at sampling times tn (n = 1 . . . N ), and its trajectory segment is of the form P (t) = f(t,θ),

we need to estimate θ so that the trajectory can be determined. Note that the position Pn can

be estimated using existing localization techniques such as dead reckoning, or long baseline nav-

igation [45]. Based on the derived trajectory, j’s internal uncertainty (i.e., confidence region) can

further be estimated. From nonlinear regression theory in statistics, we estimate its trajectory us-

ing the Gauss-Newton Algorithm [61], which relies on the linear approximation using the Taylor

expansion f(t,θ) ≈ f(t,θ(0)) + Z0(θ − θ(0)), where Z0 = Z |θ=θ(0) = ∂f
∂θ |θ=θ(0) and θ(0) is

the vector to provide initial values of these parameters to start the algorithm. The objective of our

estimation is to find the best θ̂ such that S(θ) =
∑N

n=1 ∥Pn− f(tn,θ)∥2 is minimized. The idea of

the Gauss-Newton Algorithm is to find θ through iteration, i.e., to update θ(q) iteratively until con-

vergence. From nonlinear regression theory, it has been shown that θ̂ − θ(0) = (ZTZ)−1ZT ϵ(0),

where ϵ(0) = P (t) − f(t,θ(0)). Starting from the initial position, we have the following itera-

tive formula to estimate θ(q), i.e., θ(q+1) = θ(q) + δ(q), where δ(q) = [(Zq)TZq]−1Zqϵ(q) and

ϵ(q) = P (t)− f(t,θ(q)).

From statistical inference theory, we have the asymptotic formula θ̂ ∼ N (θ, σ2C−1), where

N () is the normal distribution, C = ZTZ, and σ2 is the variance. From this equation, we have

aT θ̂−aT θ
σ̂(aTC−1a)1/2

∼ tN−p, where tN−p is the t-distribution with N − p degrees of freedom [61], aT =

[0, 0, . . . , 0, 1, 0, . . . , 0] is a vector with p elements, σ̂ = S(θ̂)/(N − p). Note that this actually

gives the confidence interval for each element in θ. It is also proved in [61] that asymptotically

f(tN ,θ)− f(tN , θ̂)

σ̂
[
1 + (ZN )TZTZ

−1
ZN

]1/2 ∼ tN−p. (3.14)

An approximate 100(1− α)% confidence interval at tN is

f(tN , θ̂)± t̂
α/2
N−pσ̂

[
1 + (ZN )

TZTZ
−1

ZN

]1/2
, (3.15)
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which gives the internal-uncertainty region. Here ZN = ∂f(tN ,θ)
∂θ is the Jacobian matrix of f at

tN and t̂α/2N−p is the 100(1 − α/2)% of t-distribution with N − p degrees of freedom. Note that

the estimation of internal uncertainty does not assume a particular localization technique for AUVs,

e.g., dead reckoning, GPS, particle filtering [62], among others, though different internal uncertainty

regions and distributions may result.

3.3.1 Modeling External Uncertainty for General AUVs

In this part, we present our model on external uncertainty for general AUVs. We start from the

estimation of one-hop external uncertainty. Then we show how this estimate can be used to dy-

namically adjust the update interval. Last, we extend the one-hop estimate to that of a node that is

multiple hops away.

One-hop External Uncertainty Estimation

After receiving the trajectory and internal-uncertainty region parameters from AUV j, i.e., (θ̂,

f(tN , θ̂), t̂
α/2
N−pσ̂

[
1 + (ZN )TZTZ

−1
ZN

]1/2
) (estimated as in Sect. 3.3), AUV i can update the estimate

of j’s external-uncertainty region. Due to packet delays and losses in the network, j’s external-

uncertainty regions as seen by single- and multi-hop neighbors are delayed versions of j’s own

internal uncertainty. Hence, when using multi-hop neighbor discovery schemes, the internal uncer-

tainty Ujj provides a lower bound for all the external uncertainties associated with that node, Uij ,

∀i ∈ N . In the rest of this section, we derive Uij based on the received Ujj .

We use UKF to predict how the internal uncertainty ‘propagates’ through the network. This is

done in two steps detailed below: (1) Region Prediction – this is to predict the current position of

an AUV assuming that its previous location is at a point in the internal-uncertainty region; then, the

external-uncertainty region is obtained by taking the set containing these predicted positions; and

(2) Distribution Estimation – this is to calculate the probability density function (pdf) of the current

position by integrating the internal-uncertainty pdf over points with the same predicted position.

(1) Region Prediction: AUV i first needs to predict j’s position assuming j is located at a point

in Ujj and then considers the union of these predicted points. The movement model of j can be

described using the following nonlinear dynamical system. The equivalent discrete-time dynamic

equation can be derived as in [63] by means of the state-space method using iterations. AUV i
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estimates the state from step q = 1 whenever Ujj is received and q is incremented until a new Ujj

is received (q is reset to 1 upon receiving this information). Hence,

sqj = Fjs
q−1
j + o(sq−1

j ) +Guq−1
j +Bwq−1

j (3.16)

represents the state-transition equation for the system describing the motion of AUV j between steps

q − 1 and q. In this equation, sqj = [xqj , y
q
j , z

q
j , ẋ

q
j , ẏ

q
j , ż

q
j , v

oc
j,x, v

oc
j,y, v

oc
j,z]

T represents 3D position,

velocity, and ocean-current velocity of AUV j at step q, o(sq−1
j ) is the ocean-current prediction

function (which is generally nonlinear), uq−1
j = [uq−1,x

j , uq−1,y
j , uq−1,z

j ]T is the control input for

t ∈ [(q − 1)T, qT ), and wq−1
j = [wq−1,x

j , wq−1,y
j , wq−1,z

j , wq−1,x
oc,j , wq−1,y

oc,j , wq−1,z
oc,j ]T represents

discrete random acceleration caused by non-ideal noise in the control input and/or the variation

in ocean current speed. Note that o(sq−1
j ) can be predicted using ocean-current models or data

from real-time onshore ocean observing systems; also, AUVs are spaced apart so currents affecting

different AUVs are generally different.

In (3.16), Fj, G, and B are matrices to adjust the state sqj according to the previous state, control

input, and random acceleration noise, respectively, and are defined as

Fj =


I3 T ′

jI3 T ′
jI3

0 I3 0

0 0 0

 , G =


0

I3

0

 , B =


0 0

I3 0

0 I3

 ,

where I3 is the 3× 3 identity matrix, T ′
j is the difference between the current time and the last time

when Ujj was estimated or the last update time that UKF was run, i.e., T ′
j = tnow− tUjj if i receives

j’s updated internal uncertainty after the last UKF update, whereas T ′
j = T if i does not receive j’s

update message, where tUjj is the time when Ujj is estimated by j and T is the UKF update interval.

Note that, when used as superscript, T indicates matrix transpose; otherwise, it represents the time

interval.

The variable wq−1
j represents 3D samples of discrete time white Gaussian noise; hence, wq−1

j ∼

N (0,Q), where Q ≥ 0 is the covariance matrix of the process. The random acceleration is also
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assumed to be independent on the three axes. Here we assume that an AUV can measure the ocean-

current velocity using sensors such as Acoustic Doppler Current Profiler (ADCP), which are, how-

ever, expensive; for AUVs without ADCP, we can force the state for ocean current to be zero, where

the model reduces to a linear KF and the effect of ocean current should be treated as noise in wq
j .

Note that (3.16) includes delays due to transmission, propagation, reception, and packet loss. As

the ocean-current velocity is generally nonlinear, (3.16) is a nonlinear relationship between sqj and

sq−1
j . Therefore, a nonlinear Kalman filter should be used. Here we use UKF because it can provide

more accurate prediction than the extended KF (another type for nonlinear prediction) while having

the same computation complexity O(L3) for state estimation, where L is the dimension of the state

variable, as proven in [64]. Note that in our case L = 9.

The position observed by the AUV at step q is related to the state by the measurement equa-

tion, Pq
j = Hsqj + T ′

jC̃vq−1
j , where Pq

j = [P q,xj , P q,yj , P q,zj ] represents the observed position

of the AUV at step q; here, H =
[
I3 0 0

]
is the matrix that extracts the position, whereas

C̃ =
[
0 I3 0

]T
adds the noise. The variable vq−1

j = [vq−1,x
j , vq−1,y

j , vq−1,z
j ]T represents

the measurement noise in velocity, expressed as 3D samples of discrete-time white Gaussian noise.

Hence, vq
j ∼ N (0,R), where R ≥ 0 is the covariance matrix of the process. The observed position

of the AUV Pq
j is therefore the actual position of the AUV affected by a measurement noise, which

we represent as a Gaussian variable.

The UKF algorithm provides a computationally efficient set of recursive equations to esti-

mate the state of such process, and can be proven to be the optimal filter in the minimum square

sense [65]. To implement the UKF algorithm, we need to extend the state vector to the aug-

mented vector sq,+j = [(sqj )
T
, (wq−1

j )T , (vq−1
j )T ]T and use the corresponding covariance matrix

Vq,+
j = E[sq,+j (sq,+j )T ]. The use of UKF at AUV i reduces the number of necessary location up-

dates. In fact, the filter is used to estimate the position at the AUV based on measurements, which

is a common practice in robotics, and to predict the position of the AUVs thus limitig message ex-

change (i.e., reducing the need for frequent position updates). The position of j can be estimated and

predicted at i based on past estimates Pq
j . To update the state vector, i needs to calculate a so-called

L× (2L+1) sigma point matrix χj,q−1 with the following column vectors χm
j,q−1 (m = 0, . . . , 2L), i.e.,

for m = 0, χ0
j,q−1 = sq,+j ; for m = 1, . . . , L, χm

j,q−1 = sq,+j +
[
(L+ λ)Vq,+

j

]1/2
m

; for m = L+ 1, . . . , 2L,

χm
j,q−1 = sq,+j −

[
(L+ λ)Vq,+

j

]1/2
m

.
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Here [(L+λ)Vq,+
j ]

1/2
m is them-th column of the matrix square root of (L+λ)Vq,+

j , where λ =

ς2(L+ κ)−L is a scaling factor depending on ς and κ that controls the spread of the sigma points.

These sigma vectors χmj,q−1 (m = 0, . . . , 2L) are propagated through the nonlinear state estimate,

i.e., (3.16), denoted by T here, Ymj,q−1 = T (χmj,q−1). The state and covariance are predicted by

recombining these weighted sigma points, i.e.,

ŝq−j =
∑2L

m=0
Wm
s χmj,q−1, (3.17)

Ŷq−1
j =

∑2L

m=0
Wm
s Ymj,q−1, (3.18)

Vq−
j =

∑2L

m=0
Wm
c [Ymj,q−1 − ŝqj ][Y

m
j,q−1 − ŝqj ]

T , (3.19)

where W 0
s = λ/(L + λ), W 0

c = λ/(L + λ) − (1 − ς2 + β), and Wm
s = Wm

c = 1/[2(L + λ)]

for m = 1, . . . , 2L; β is related to the distribution of s. Normal values are ς = 10−3, κ = 1, and

β = 2. If the distribution of s is Gaussian, β = 2 is optimal. Here the superscript q− means that

the state ŝq−j or Vq−
j covariance estimate is a priori estimate. Eqs. (3.18) and (3.19) describe how

i predicts the state of AUV j before receiving the measurement (a priori estimate). Then, i projects

the covariance matrix ahead. Once received the measurement Pq
j , i updates the Kalman gain Kq

j

and corrects the state estimate and covariance matrix according to the measurement, i.e.,

Vj,ỸqỸq
=
∑2L

m=0
Wm
s [Ymj,q − Ŷmj,q−1][Ymj,q − Ŷmj,q−1]

T ,

Vj,s̃qỸq
=
∑2L

m=0
Wm
s [sq,mj − ŝq−1,m

j ][Ymj,q − Ŷmj,q−1]
T ,

Kq
j = Vj,s̃qỸq

(Vj,ỸqỸq
)−1, (3.20)

ŝqj = ŝq−j +Kq
j (Y

q
j − Yq−1

j ), (3.21)

Vq
j = Vq−

j −Kq
j Vj,ỸqỸq

(Kq
j )
T , (3.22)

where (3.20) updates the Kalman gain, (3.21) calculates the new state (a posteriori estimate), and

(3.22) updates the covariance matrix. Note that the complexity of the above computations is the

same as the extended KF [64] and that the processing cost at i is much lower than the communication

cost.

Let us denote the UKF filtering at time tq from position p at time tq−1 by hUKF (tq,p, tq−1),

then the predicted external-uncertainty region at step q is Uqij = {hUKF (qT,p, (q − 1)T )|p ∈
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Uq−1
ij }, which, for simplicity, we furher simplify in Uqij = hUKF (qT,Uq−1

ij , (q − 1)T ).

(2) Distribution Estimation: Let p ∈ Uqij , assume p is predicted from point p′ at step q− 1, i.e.,

p = hUKF (qT,p
′, (q − 1)T ), p′ ∈ Uq−1

ij . The pdf gqij(p) of the external uncertainty Uqij at step q

can be derived from the pdf gq−1
ij (p) of Uq−1

ij as

gqij(p) =

∫
p=hUKF (qT,p′,(q−1)T ),p′∈Uq−1

ij

gq−1
ij (p′)dp′.

With the help of UKF and the probability theory, we can derive the external uncertainty and its pdf.

Note that the initial pdf g0ij(p) is the t-distribution on Ujj (i.e., U0
jj) received from j. To reduce the

complexity, we convert an uncertainty region (internal or external) into its discrete counterparts, i.e.,

we divide an uncertainty region into a finite number of equal-size small regions. When the number

of small regions is sufficiently large, the UKF filtering on each small region can be approximated by

the UKF filtering on a point – e.g., the centroid – in this small region. Hence, the predicted external-

uncertainty region can be approximated as the region contained in the hull of these predicted points.

The pdf functions are also approximated by the probability mass functions on discrete points, which

simplifies the pdf estimation after UKF filtering.

Adjustment of the UKF Update Interval: So far, we assumed the update interval T for the

UKF algorithm to be fixed. A small T determines frequent updates, i.e., the estimation error is cor-

rected in a timely manner; however, frequent external-uncertainty estimations lead to waste of com-

putation resource and energy, causing large network overhead. On the other hand, a large T would

save such resources; yet, it may lead to large estimation errors (due to slow update and correction)

and thus worse overall performance. To capture this tradeoff, we propose an algorithm to maximize

T (i.e., to minimize the update overhead) while keeping the estimation error within an acceptable

range: AUV j selects the optimal value T ∗ such that the prediction errors of all its neighbors (de-

noted by Nj) be below a specified threshold emax. To do this, j needs to estimate the prediction

errors of its neighbors. Say, j estimates the prediction error for i. At each step q, each AUV j

emulates the prediction procedure performed at i, calculates its actual new position by filtering the

new measurement. Then, it checks to see if the probability of i’s prediction error being greater than

a maximum error emax is within a probability threshold, i.e., if Pr{∥Pq
j − Hŝqj ∥ > emax} < γ.

To make the formulation clear, we denote Pq
j , ŝqj , and vq

j by Pq
ij, ŝ

q
ij and vq

ij, respectively. Letting

Ξq
ij = Pq

j − Hŝqj , this condition is actually Pr{Ξq
ij(Ξ

q
ij)
T > e2max} < γ. From the measurement
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equation Pq
ij = Hsqij+T C̃vq−1

ij , assuming vq−1
ij ∼ N (0, ξ2ijI3), we can see that Ξq

ij(Ξ
q
ij)
T /(ξ2ijT

2)

has the χ2-distribution χ2
3 (note that Ξq

ij has 3 elements). From the probability constraint, for

each i, the maximal T is T = emax

ξij
√
χ̂γ,3

, where χ̂γ,3 is the (1 − γ)% of χ2
3-distribution; therefore,

T ∗ = mini∈Nj
emax

ξij
√
χ̂γ,3

.

External-uncertainty Estimation Across Multiple Links: For a multi-hop neighbor AUV

j, depending on the selection of the path to j, the estimated uncertainty region may be different.

This is because for different paths the j’s uncertainty region estimated by intermediate vehicles is

generally different. This depends on factors such as availability of ocean-current information, packet

loss, communication delays (which introduces asynchronous updates of the external uncertainty for

different nodes). Our objective for the multi-hop estimation is to select the estimate that gives

minimum uncertainty. To compare the degree of uncertainty, we use information entropy as the

metric,

HUij = −
∫
p∈Uij

gij(p) log(gij(p))dp; (3.23)

here, the bigger HUij , the more uncertain Uij . The reason to use this metric instead of simply

using the size of the uncertainty region is that the entropy characterizes better the uncertainty. To

estimate the j’s uncertainty region as it propagates along a path rij , i estimates the uncertainty region

broadcast by k = prev(i, rij), which is i’s previous hop along rij . The estimated uncertainty region

Uij,k∈rij at time tnow is denoted as,

Uij,rij = hUKF (tnow,Ukj,prev(k,rij), tkj,prev(k,rij)), (3.24)

where Ukj,prev(k,rij) is the most recently received estimate of Ukj by k that is sent at time tkj,prev(k,rij).

If we denote the set of all paths from i to j as Pij , then the external-uncertainty region of j esti-

mated by i is Uij = argminUij,rij
,rij∈Pij

HUij,rij
. Note that this multi-hop estimation will incur

low overhead as, from (3.24), we see that this estimation is performed recursively, i.e., i can use its

neighbor’s external-uncertainty estimation for multi-hop node j to estimate Uij .
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Figure 3.8: Glider i delays its transmission by ∆t waiting for a better topology so to improve e2e
energy and/or throughput to destination d. Wide arrows represent the packet forwarding routes and
dashed/dotted simple arrows represent glider trajectories.

3.4 QoS-aware Underwater Optimization Framework for Inter-vehicle Communi-

cations

The internal and external uncertainties estimated above can be used to predict the AUV position.

The predictability of AUV’s trajectory can be further exploited to improve the communication per-

formance among AUVs. In this section, we propose an optimization framework to minimize the

communication energy consumption by delaying packet transmissions in order to wait for a fa-

vorable network topology, thus trading end-to-end (e2e) delay for energy and/or throughput3. For

instance, Fig. 3.8 depicts a scenario where glider i waits for a certain time period ∆t [s] to save

transmission energy and to achieve higher throughput. Based on j’s and d’s trajectory, glider i pre-

dicts a “better” topology with relatively shorter links after ∆t and postpones transmission in favor

of lower transmission energy and higher data rate. This approach differs from that proposed for De-

lay Tolerant Networks (DTNs), where delaying transmission becomes necessary to overcome the

temporary lack of network connectivity [23, 24].

To estimate an AUV’s position, in [66] we proposed a statistical approach to estimate a glider’s

3Due to the peculiar ‘V’ shape of the underwater acoustic ambient noise and the high medium power absorption
exponentially increasing with distance [4], a shorter distance between AUVs translates into a lower transmission loss and
a higher available bandwidth.
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trajectory. The estimates were used to minimize e2e energy consumption for networks where pack-

ets in the queue need to be forwarded right away (delay-sensitive traffic). In this work, we focus

on delay-tolerant traffic and propose an optimization framework that uses acoustic directional trans-

ducers to reduce the computation and communication overhead for inter-vehicle data transmission.

Based on the estimated external uncertainty, we propose QUO VADIS, a QoS-aware4 underwater

optimization framework for inter-vehicle communication using acoustic directional transducers.

QUO VADIS is a cross-layer optimization framework for delay-tolerant UW-ASNs that jointly con-

siders the e2e delay requirements and constraints of underwater acoustic communication modems,

including transducer directivity, power control, packet length, modulation, and coding schemes.

Specifically, the proposed framework uses the external-uncertainty region estimates of the gliders

and forwards delay-tolerant traffic where the maximum e2e delay is large: Class I (delay-tolerant,

loss-tolerant) and Class II (delay-tolerant, loss-sensitive) [10]. Moreover, our cross-layer com-

munication framework exploits the frequency-dependent radiation pattern of underwater acoustic

transducers. By decreasing the frequency band, transducers can change their “directivity” turning

from being almost omnidirectional (with a gain of ≈ 0 dBi) – which is a desirable feature to sup-

port neighbor discovery and multicasting, geocasting, anycasting, and broadcasting) – to directional

(with gains up to 10 dBi) – which is useful for long-haul unicast transmissions.

3.4.1 Proposed Optimization Framework

In this part, we first introduce to motivation of adopting a cross-layer optimization design for inter-

vehicle communications. We then outline the proposed optimization framework for different classes

of traffic and present the detail formulation of the framework. And the solution for this framework

is given in the end of this section.

Underwater channel is characterized by high and variable propagation delay, limited bandwidth

capacity, frequency dependent attenuation, noise, fading, and Doppler spread. Due to these unique

characteristics, we adopt a cross-layer design approach, which has been shown to be necessary

[10]. Our proposed inter-vehicle solution is based on the WHOI Micro-Modem. To exploit its

functionalities, we first test the Signal-to-Noise Ratio (SNR) performance of the Micro-Modem

4The goal of QoS (Quality of Service) is to guarantee a network to deliver predictable results. It involves prioritization
of network traffic. Elements of network performance within the scope of QoS often include bandwidth (throughput),
latency (delay), and error rate.
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Table 3.1: Four Types of Packets used by WHOI Acoustic Micro-Modem (Type 1 and 4 unimple-
mented yet)

Type Modulation Coding Scheme bps Max. Frames Frame Bytes
0 FH-FSK 80 1 32
2 PSK 1/15 spreading 500 3 64
3 PSK 1/7 spreading 1200 2 256
5 PSK 9/17 Rate Block Code 5300 8 256

with our testbed (See 4.1). As Bit Error Rate (BER) can not be directly measured, we use the

measured Packet Error Rate (PER) versus SNR figure to characterize the modem’s communication

performance.
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Figure 3.9: Packet Error Rate (PER) for Type 0, 2, 3 packet.

As shown in Table 3.1, there are 4 types of packets using different modulation and coding

schemes. Each packet is divided into a number of frames NF depending on its packet type. The

PER of each packet type at each frame length is shown in Figs. 3.9 and 3.10. As we can see in Fig.

3.9, in the low SNR region (Region 1: < 11dB), the PER relationship between different types are:

Type 0 < Type 2 < Type 3. Note that: i) as SNR > 11dB (Region 2 and 3), Type 2 packet has lower
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Figure 3.10: Packet Error Rate (PER) for Type 5 packet.

PER than Type 0; Type 2 packet with 3 frames has about the same PER as Type 0, but its bit rate is

much higher than Type 0; ii) Type 3 packet with 1 frame has approximately the same PER as Type

0, but the bit rate is much higher. As for Type 5 packet (Fig. 3.10), when SNR < 17dB (Region 1

and 2), its PER is higher than the other packet types. For SNR >17dB (Region 3), it has very good

PER performance. It has the highest bit rate of 5300 bps.

As shown in Fig. 3.11, as NF increases, measured througput increases along with the PER.

Different types of packets have different PERs for a specific SNR. Therefore the protocol must

balance the tradeoff between PER and throughput with a joint consideration of packet type and NF .

With the external-uncertainty regions in Sect. 3.2, a glider needs to select an appropriate neigh-

bor to forward each packet to its final destination. Because the major part of available energy in

battery-powered gliders should be devoted to propulsion [67], acoustic communications should not

take a large portion of the available energy. Our proposed protocol minimizes the energy spent to

send a message to its destination and considers the functionalities of a real acoustic modem for a

practical solution. Specifically, we provide support and differentiated service to delay-tolerant ap-

plications with different QoS requirements, from loss sensitive to loss tolerant. Hence, we consider
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Figure 3.11: Measured throughput.

the following two classes of traffic:

Class I (delay-tolerant, loss-tolerant). It may include multimedia streams that, being intended

for storage or subsequent offline processing, do not need to be delivered within strict delay bounds.

This class may also include scalar environmental data or non time-critical multimedia content such

as snapshots. In this case, the loss of a packet is tolerable at the current hop, but its e2e PER should

still be below a specified threshold.

Class II (delay-tolerant, loss-sensitive). It may include data from critical monitoring processes

that require some form of offline post processing. In this case, a packet must be re-transmitted if it

is not received correctly.

Note that our solution also inherently supports the other two classes of traffic as we can always

decrease the maximum e2e delay from the source node to the destination to a small value so that

packets are sent right away (or we can modify the remaining time-to-live to 0 in the optimization

framework, as seen later in the framework formulation). These two classes of traffic are:

Class III (delay-sensitive, loss-tolerant). It may include video/audio streams as well as meta-

data associated with the stream with delay bounds and that are relatively loss tolerant (e.g., video
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streams can be within a certain level of distortion). This class may also include monitoring data

from densely deployed scalar sensors whose monitored phenomenon is characterized by high tem-

poral/spatial correlation, or loss-tolerant snapshots of a phenomenon taken from different view-

points.

Class IV (delay-sensitive, loss-sensitive). This class may include data from time-critical mon-

itoring processes such as distributed control applications.

In the following two subsections, we first formulate the optimization framework and then the

solution for this framework is presented.

3.4.2 Formulation of Optimization Framework

Our protocol employs only local information to make routing decisions, resulting in a scalable

distributed solution. The external-uncertainty regions obtained as described in Sect. 3.2 are used

to select the neighbor with minimum packet routing energy consumption. Here, a framework using

the WHOI Micro-Modem [35] is presented. This framework can be extended and generalized in

such a way as to incorporate the constraints of other underwater communication modems.

To be more specific, given the current time tnow [s] and a message m generated at time t0 [s],

glider i jointly optimizes the time ∆t [s] to wait for the best topology configuration, a neighbor j∗,

a frequency band fij , transmission power P (i,j)
TX (t) [W], packet type ξ, and number of frames5 NF ,

so that the estimated energy Eid(t) [J] to route m to destined glider d’s region Uid is minimized and

message m reaches it within Bmax [s], the maximum e2e delay from the source to the destination.

We assume power control is possible in the range [Pmin, Pmax] although transmission power is

currently fixed for the WHOI Micro-Modem. We anticipate more advanced amplifier hardware will

make this power optimization possible.

Here, Eid(t) is estimated by the energy to transmit the packet to neighbor j in one transmission,

the average number of transmissions N̂ (i,j)
TX (t) to send m to j, and the estimated number of hops

N̂
(j,d)
hop (t) to reach region Uid via j. We need to estimate the transmission power and the number

of hops to destination. The external-uncertainty region is used to estimate the number of hops

N̂
(j,d)
hop (t) to d via neighbor j and the lower bound of the transmission power as follows (Fig. 3.12).

5Each packet sent by WHOI Micro-Modem consists of a number of frames.
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Figure 3.12: Use of external-uncertainty region in the optimization framework.

Let l̂i,p1,p2(t) [m] be the projected distance of line segment from i to position p1 on the line from i to

position p2, and li,p(t) be the distance from i to position p. N̂ (j,d)
hop (t) is estimated by the worst case

of li,p(t)/l̂i,p1,p2(t), i.e., (3.29). The lower bound for transmission power is estimated by the average

transmission power so that the received power at every point in Uij is above the specified threshold

PTH . The transmission power lower bound is the integral of the product of the transmission power

to obtain PTH at a point in Uij and the probability density function (pdf) of j to be at this point.

To estimate the received power, it is necessary to estimate the transducer gains at the transmitter

and receiver. To estimate the transmitter’s gain GTX(θij , ϕij , fij), i needs to compute the radia-

tion angles – the horizontal angle θij ∈ [−180◦, 180◦] and the vertical angle ϕij ∈ [−90◦, 90◦]

with respect to j. Assume the initial position of the transducer is as shown in the top left corner

of Fig. 3.13, then i’s normalized transducer direction vector is −→ni = (0, 0,−1) with the horizon-

tal plane z = z
(i)
0 (defined as the plane perpendicular to −→ni). While the glider is moving, its

pitch, yaw, and roll angles are denoted by εi, ζi, and ηi, respectively. From geometry, the direc-

tion vector after rotation is
−→
n′
i = Qx(ηi)Qy(ζi)Qz(εi)

−→niT , while the transducer’s horizontal plane

is Qx(−ηi)Qy(−ζi)Qz(−εi)[x, y, z]T = z
(i)
0 , where z(i)0 is a constant, and Qx(ηi), Qy(ζi) and

Qz(εi) are


1 0 0

0 cos ηi − sin ηi

0 sin ηi cos ηi

 ,

cos ζi 0 − sin ζi

0 1 0

sin ζi 0 cos ζi

 ,

cos εi − sin εi 0

sin εi cos εi 0

0 0 1

 ,

respectively.
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Figure 3.13: Derivation of transducer angles from glider i to j.

With the position vector
−−→
PiPj from i to j, we can derive cosϕij =

−̂−→
PiPj◦

−−→
PiPj

∥
−̂−→
PiPj∥·∥

−−→
PiPj∥

and cos θij =

−̂−→
PiPj◦−→v i

∥
−̂−→
PiPj∥·∥−→v i∥

, where
−̂−→
PiPj is the projection of

−−→
PiPj on the transducer’s horizontal plane, ◦ is the inner

product, and −→vi = ∥−→vi∥ · [cos εi cos ζi, cos εi sin ζi, sin εi] = (a∗i , b
∗
i , c

∗
i ) is the velocity vector of

glider i as estimated in Sect. 3.2. As
−→
n′
i is perpendicular to the transducer’s horizontal plane, we

have sinϕij = cos(90−ϕij) =
−→
n′
i◦
−−→
PiPj

∥
−−→
PiPj∥

and
−̂−→
PiPj =

−−→
PiPj − (

−−→
PiPj ◦

−→
n′
i) ·

−→
n′
i. The transducer’s gain

at receiver j, GRX(θji, ϕji, fij), can be estimated in a similar way.

Let Lm(ξ) be m’s length in bits depending on packet type ξ and B(ξ) be the corresponding

bit rate. The energy to transmit the packet to neighbor j in one transmission can therefore be

approximated by P (i,j)
TX (t) · Lm(ξ)

B(ξ) .

Overall, the optimization problem can be formulated as

P(i,d, tnow,∆tp): Cross-layer Optimization Problem

Given: Pmin, Pmax,Ξ,Ωξ, GTX(), GRX(), η, Bmax, PER
e2e
max

Computed: εi, ζi, εj , ζj ,Uij ,∀j ∈ Ni ∪ {d} (i.e., R(i)
j ,H

(i,j)
L ,H

(i,j)
H )

Find: j∗ ∈ Ni, P
(i,j)∗
TX (t) ∈ [Pmin, Pmax], ξ

∗ ∈ Ξ, N∗
F ∈ Ωξ,∆t

∗, f∗ij ∈ [fL, fU ]

Minimize: Eid(t) = P
(i,j)
TX (t) · Lm(ξ)

B(ξ)
· N̂ (i,j)

TX (t) · N̂ (j,d)
hop (t) (3.25)

Subject to:

(class-independent relationships)
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t = tnow +∆t; (3.26)

tTTL = Bmax − (tnow − t0); (3.27)

Lm(ξ) = LF (ξ) ·NF + LH ; (3.28)

N̂
(j,d)
hop (t) =

maxp∈Uid
li,p(t)

minp1∈Uij ,p2∈Uid
l̂i,p1,p2(t)

; (3.29)

SINRij(t) =
P

(i,j)
TX (t) · 10Gij(lij(t),fij)/10∑

k∈A\{i} P
(k,j)
TX (t) · 10Gij(lkj(t),fij)/10 +N0

; (3.30)

Gij(lij , fij) = GTX(θij , ϕij , fij) +GRX(θji, ϕji, fij)− LAMP (fij)− TL(lij , fij); (3.31)

θij = arcsin

−→
n′
i ◦

−−→
PiPj

∥
−−→
PiPj∥

; (3.32)

ϕij = arccos

−̂−→
PiPj ◦ −→v i

∥−̂−→PiPj∥ · ∥−→v i∥
. (3.33)

In this formulation, Ni, Ξ, and Ωξ denote the set of i’s neighbors, the set of packet types, and

the set of number of type ξ frames respectively; LF (ξ) [bit] is the length of a frame of type ξ, LH

[bit] is the length of message m’s header; PER(SINRij(t), ξ) is the PER of type ξ at the Signal

to Interference-plus-Noise Ratio SINRij(t), TL(lij(t), fij) is the transmission loss for distance

lij(t) and carrier frequency fij [kHz] – which is calculated using (1.1) – A\{i} is the set of active

transmitters excluding i, and P (i,j)
TX (t) is the transmission power used by i to reach j.

Note that N0 =
∫ fU
fL

psdN0(f, w)df is the ambient noise, where psdN0(f, w) is the empirical

noise power spectral density (psd) for frequency band [fL, fU ] and w [m/s] is the surface wind

speed as in [4]. tTTL is the remaining Time-To-Live (TTL) for the packet, LAMP (fij) [dB] is the

power loss of the power amplifier at fij and PERe2emax is the maximum e2e error rate for packet m.

The objective function (3.25) estimates the energy required to send messagem to the destination

region Uid; (3.26) is the time after waiting ∆t; (3.27) calculates the remaining TTL for message m;

(3.28) calculates the total message’s length; (3.29) estimates the number of hops N̂ (i,j)
hop (t) to reach

destination d; (3.30) estimates the SINR at j while (3.31) estimates the total transmission gain in dB

from i to j, including the transducer gain at the transmitter and receiver, loss at the power amplifier,

and transmission loss; (3.32) and (3.33) estimate the transducer’s radiation angles of j with respect

to i. The constraints for P(i,d, tnow,∆tp) are,

(class-independent constraints)

P
(i,j)
TX (t) ≥

∫
(x,y,z)∈Uij

PRX(i, j, x, y, z) · 10−Gij(lij(t),fij)/10 · pdfR(x, y) · pdfH(z)dxdydz; (3.34)

PRX(i, j, x, y, z) ≥ PTH ; (3.35)
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0 ≤ ∆t ≤ tTTL

N̂
(i,j)
TX (t) · N̂ (j,d)

hop (t)
. (3.36)

In these constraints, PRX(i, j, x, y, z) is the received signal power at the generic 3D location

(x, y, z) when i transmits to j. Last, pdfR(x, y) and pdfH(z) are the pdfs of the glider’s position

on the horizontal plane (i.e., χ-distribution with degree of 2N − 2) and on the vertical direction

(i.e., Student’s t-distribution with N −1 degrees of freedom), respectively [66], PTH is the received

power threshold so that the packet can be received with a certain predefined probability. (3.34)

estimates the lower bound of the transmission power to cover the external-uncertainty region so that

the received power is above a pre-specified threshold, as accounted for in (3.35); (3.36) estimates

the bounds of ∆t, which must be less than the maximum tolerable delay at the current hop. To

support the two classes of delay-tolerant traffic, we have the following additional constraints,

(additional class-dependent constraints)

Class I =

{
N̂

(i,j)
TX (t) = 1

1−
[
1− PER(SINRij(t), ξ)

]N̂(j,d)
hop (t) ≤ PERe2emax

Class II =
{
N̂

(i,j)
TX (t) =

[
1− PER(SINRij(t), ξ)

]−1
.

The first constraint for Class I traffic forces packet m to be transmitted only once, while the

second constraint guarantees the e2e PER of m should be less than a specified threshold PERe2emax.

The constraint for Class II traffic guarantees message m will be transmitted for the average number

of times for successful reception at j. By solving this local optimization problem every time the

inputs change significantly (and not every time a packet needs to be sent), i is able to select the

optimal next hop j∗ so that message m is routed (using minimum network energy) to the external-

uncertainty region Uid where destination d should be. Obviously different objective functions (e2e

delay, delivery ratio, throughput) could be used depending on the traffic class and mission QoS

requirements.

3.4.3 Solution to the Optimization Framework

To reduce the complexity, we can convert P(i,d, tnow,∆tp) into a discrete optimization problem

by considering finite sets of P (i,j)
TX and ∆t, which can be taken to be a number of equally spaced

values within their respective ranges. The problem then can be solved by comparing the e2e energy
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Figure 3.14: Solving P(i,d, tnow,∆tp) every ∆tp at i.

consumption estimates of different combination of these discrete values. Assuming that transmis-

sion power and time are discretized into NP and Ntime values, respectively, for the case of WHOI

modem (3 frequencies and 14 combinations of packet type and number of frames [66]), the proces-

sor in node i needs to calculate the objective value 42NP · Ntime · |Ni| times in each round. The

embedded Gumstix motherboard (400 MHz processor and 64 MB RAM) attached to the Micro-

Modem is adequate to solve such a problem. To further reduce the computation, instead of running

the solution for every packet, it will be rerun only at tnow + ∆tp for the same class of traffic flow

that is sent from i to the same destination d. Here, ∆tp is taken as the minimum of the ∆t values

of the packets belonging to the same class of traffic and the same destination, estimated from the

previous run. Figure 3.14 depicts an example of how P(i,d, tnow,∆tp) is solved at i. At time

tnow, the problem is solved with j found to be the next hop to d. The minimum of the ∆t values

of these packets belonging to the same class of traffic and the same destination observed before

tnow is ∆t′p. Packets for d will then be forwarded to j with the calculated transmission power at

the selected frequency band until tnow +∆t′p. Then, the problem is solved again and k is found to

be the next hop. The minimum ∆t observed so far is ∆t′′p and, hence, the problem will be solved

at tnow + ∆t′p + ∆t′′p . As the Gumstix board in use consumes 2 W of power at maximum and the

WHOI Micro-Modem consumes 8-48 W, and the time to solve the optimization problem in this

way is generally less than 2 or 3 times of the time taken to transmit a packet. The energy spent in

computation is less than that spent in transmission. Therefore it makes sense to optimize the com-

munications using our proposed approach. Moreover, the rapid advance of the processor technology

may further reduce the computation energy to solve this optimization problem.
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Once the optimal frequency band is selected, i needs to notify j to switch to the selected band.

A simple protocol can be used as follows. All AUVs use the same frequency band as the Common

Control Channel (CCC) to tell the receiver which band is selected. A short packet or preamble with

the selected band number is first sent by the transmitter using the CCC, followed by the data packet

using selected frequency band after the time for the transmitter and receiver to finish frequency

band switching. The receiver will first listen on the CCC, switch to the selected band embedded

in the short control packet or preamble, receive the data packet, and then send back a short ACK

packet to acknowledge the reception. Finally, both sides switch back to the CCC if the transmission

succeeds or the transmission times out. More sophisticated frequency-band switching protocols,

which are out of the scope of this work, can be designed to improve network performance. We rely

on the Medium Access Control (MAC) scheme with the WHOI modem to send the data. Since the

speed of acoustic wave underwater is very slow when compared with radio waves, the propagation

delay has to be considered in order to avoid packet collisions. However, it is difficult to estimate

the propagation delay since the positions are uncertain. It may not improve the performance much

as the actual propagation delay may be different from the estimation. Moreover, the inter-vehicle

traffic underwater is generally low. So the problem of packet collisions is not severe and hence we

can just use the MAC scheme provided by the WHOI modem.

3.5 Reliable Geocasting Solution for AUVs

To coordinate the sampling task using multiple AUVs, besides the optimization of the communica-

tions among AUVs, there is general a need to send query or commands to vehicles that are located

within a certain region. Reliable data delivery to these AUVs is a major concern in applications such

as surveillance, data collection, navigation, and ocean monitoring. Geocasting – which is the trans-

mission of data packet(s) to nodes located in a certain geographic region – is becoming a crucial

communication primitive. In UW-ASNs, geocasting may be required to assign surveillance tasks

to AUVs or to query sensor nodes in a region. It can also be used to notify the nodes within an

area of a tactical event (e.g., for detection of enemy vessels). Furthermore, geocasting can be used

to facilitate location-based services by announcing a service in a certain region or by sending an

emergency warning to a subset of network elements.
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Existing geocasting solutions such as [36, 37, 43, 44] are designed for terrestrial wireless net-

works and hence are not tailed for UW-ASNs that are characterized by large access delay, low bit

rate, and high packet loss ratio. Many of these solutions (e.g., [43, 44]) are based on ideal network

models derived from graph theory, e.g., the Unit Disk Graph (UDG) model. As a result, these

solutions do not perform well in UW-ASNs. Moreover, location uncertainty makes geocasting un-

derwater more difficult compared with that in terrestrial wireless networks. To support geocasting,

in fact, location information is required at each node.

Due to these challenges, it is crucial to ensure the communication end-to-end (e2e) reliability

between nodes with inaccurate position information. Using e2e error recovery mechanism to ensure

the reliability incurs high delay and energy consumption as the recovery is initiated from the end

of a route. On the other hand, ensuring link reliability usually leads to reduced delay and energy

consumption as a link in error is recovered right away. However, this may not guarantee e2e relia-

bility as a node may deplete its energy, or move and become disconnected from the network. Since

e2e error recovery mechanisms generally incur high delay and energy consumption, we choose an

approach to guarantee e2e reliability by maximizing link reliability although this may not guarantee

e2e reliability (as a node may become disconnected due to energy depletion or movement). Given

the 3D geocasting region, under the condition of node position uncertainty, the geocasting proto-

col needs to: (i) select a path that can forward packets to the maximal number of nodes along the

specified direction in a given time, and (ii) maximize the link reliability so that minimal number of

retransmissions is required.

We aim at providing a solution to geocast packets to nodes that are located within a directional

3D region. As shown in Fig. 3.15, the geocasting region is a cylinder specified by a tuple (c,−→v , r),

where c = (xc, yc, zc) is the center coordinates, −→v = (vx, vy, vz) is the vector specifying geocasting

distance and direction, and r is the radius of the region in the plane perpendicular to the specified

direction. These seven parameters are the minimum number to characterize a prolonged 3D region.

The reason for not assuming a (simpler) spherical region is that the three dimensions of a region

in the ocean are generally very different (especially in shallow water). Hence, a sphere would not

represent accurately such a region.

We further assume that all the nodes have the same statistical transmission range R, which is

defined as the average distance to receive a specified percentage of the transmitted packets (e.g.,
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50%). The case where nodes have different transmission ranges is left as future work.
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Figure 3.15: Geocasting scenario.

To perform geocasting, a node (such as a sink) issues a geocasting packet, which contains the

geocasting region information, i.e., (c,−→v , r). If this node is in the geocasting region, the packet

will then be forwarded using the geocasting algorithms. Otherwise, the packet will be unicast

to a destination node on the boundary of the destination region and then be forwarded using the

geocasting algorithms. In the rest of this section, we focus on the problem of geocasting a packet

from a node in the geocasting region.

3.5.1 Proposed Geocasting Solution

As shown in Fig. 3.16, based on different degrees of neighbor information, two different versions

of the geocasting algorithm are designed for the following cases: 1) No neighbor knowledge, which

means that each node in the geocasting region has only its own location information (i.e., internal

uncertainty) but not those of other nodes; 2) One-hop neighbor knowledge, where each node has
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Figure 3.16: Two versions of our proposed solution.

the location information of itself (internal uncertainty) and of its neighbors (external uncertainty).

Although different, the overall idea of both versions is to give priority to nodes that are close to the

central axis of the region and that are farther along the −→v direction. This is intuitive as generally

nodes that are close to the central axis have more neighbors; and by forwarding packets to nodes that

are farther along the −→v direction, packets can quickly penetrate the geocast region in this direction

around the central axis. To prioritize transmissions, we choose to use timers due to their wide

availability on existing underwater modems. Different times are used to hold off the transmissions

until the time expires. These times are carefully chosen to avoid packet collisions while trying to

maximize the coverage of the transmissions. Moreover, to reduce the number of transmissions, a

mechanism is proposed to select a subset of neighbors for packet forwarding.

In case 1, each node estimates its own internal uncertainty and decides when to forward the

packet itself. As nodes do not know the external uncertainty of their neighbors, an opportunistic

approach is adopted. Furthermore, in order to improve the geocasting reliability, an advertising

mechanism is adopted to notify the receiver before the transmission of geocasting packets, i.e., a

short packet with higher packet success rate is used to notify the receivers of an incoming packet.

In this way, neighbors that did not receive the geocasting packet – but that did receive the short

packet – will be able to know that the geocasting packet is lost. An acknowledgement mechanism

is devised to allow neighbors of these nodes to forward the geocasting packet to them without the

need for retransmissions from the original sender.
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In case 2, instead of forwarding packets opportunistically, priority of packet forwarding is de-

cided by the positions of neighbors. A scheduling scheme is designed to prioritize packet trans-

missions among neighbors. Moreover, a subset of neighbors is selected to maximize the coverage

region without introducing packet collisions at the original sender. In case 1, obviously, no over-

head is incurred for the exchange of location information. On the other hand, in case 2 (which relies

on one-hop neighbor knowledge), nodes need to periodically broadcast information on their uncer-

tainty region. This could be done in different ways, e.g., by periodically embedding this information

in the packet that needs to be geocast. In the Sects. 3.5.2 and 3.5.3, we present the details of our

solution for both cases. Then in Sect. 3.5.4, we will show that only slight modification is necessary

to handle void regions in the area; furthermore, we will analyze the communication overhead asso-

ciated with both versions and discuss the cases where the no-hop or one-hop version is appropriate

in Sect. 3.5.5.

3.5.2 No Neighbor Knowledge

As introduced above, to improve the geocasting reliability for this version, an advertising mecha-

nism is adopted to notify the receiver before the transmission of geocasting packets. This mecha-

nism employs a short packet with higher packet success rate to notify the receivers of an incoming

packet. In this way, neighbors that do not receive the geocasting packet but the short packet will

be able to know that packets are lost. Upon receiving the packet, the neighbors start their hold-

off timers and once this timer expires, the node will broadcast the packet it receives if the channel

is idle. An acknowledgement mechanism is further devised to allow neighbors of these nodes to

forward the geocasting packet to them without the need to retransmit from the original sender.

To geocast a packet, immediately before broadcasting the packet, i first transmits a short packet,

called NOTICE packet, which is sent to cater for the nodes that may have received it but did not

receive the geocasting packet. The reason to send the NOTICE packet is that short packets have

lower packet error rates than normal geocasting packets. Moreover, this NOTICE packet may be

sent using a more reliable modulation and coding scheme. For example, as shown in Figs. 3.9

and 3.10, Packet Error Rates (PERs) of WHOI Micro-Modems for type 0 (using FSK modulation)

packet with 32-byte payload is much lower than that of type 5 (using PSK modulation and 9/17 rate

block code) packet with 2048-byte payload.
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On receiving the geocasting packet for the first time, each neighbor of i, say node j, starts a

hold-off timer, Thold. Thold is a uniformly distributed random variable in [0, 2Tmeanhold ], where

Tmeanhold =

(
1−

d
(−→v )
ij

R

)
τ +

dj
R
τ +

ϕij
ψ
, (3.37)

where d(
−→
v)
ij is the expected projection distance of the vector −−→pipj (position vector from i to j when

i, j is at position pi, pj , respectively) along the vector −→v , R is the transmission radius, τ is the

estimated transmission time for the current packet, dj is the expected distance of j to the central

vector −→v , ψ = 1500 m/s is the propagation speed of acoustic waves, and ϕij = max{0, R −

E[∥−−→pipj∥]}. Here

d
(
−→
v)
ij =

∫
pj∈Ujj

(
−−→pipj ⊙

−→v
∥−→v ∥

)
fj(pj)dpj , (3.38)

dj =

∫
pj∈Ujj

∥−−→cpj ⊗
−→v
∥−→v ∥

∥ · fj(pj)dpj , (3.39)

E[∥−−→pipj∥] =
∫
pj∈Ujj

∥−−→pipj∥fj(pj)dpj , (3.40)

where fj(pj) is j’s pdf at position pj in the internal-uncertain region Ujj , −→cpj is the position

vector from geocasting region center c to pj , and ⊙ and ⊗ are the inner and cross product operator,

respectively.

The first and second term in (3.37) give less time to the neighbor that goes farther in the −→v di-

rection and that is closer to the central axis respectively, while the third term offsets the propagation

delay so that all the nodes receive the packet. This provides fairness by guaranteeing synchroniza-

tion in starting the hold-off timers of the nodes receiving the data packet. Once the hold-off timer

expires, the node broadcasts the packet if the channel is not busy. Otherwise, it just backs off. For

the example in Fig. 3.16, on average, node 1 is the first node to forward packets as it has the greatest

d
(−→v )
ij and smallest dj .

A node that does not receive the geocasting packet – but that receives the NOTICE packet – will

inform the neighboring nodes by sending a NACK packet. Before transmitting a NACK, the node

waits for a duration of TNACK−hold−off = Thold +
R
ψ + TQTX , where TQTX is the transmission time

of the geocasting packet. This ensures that a node waits long enough to overhear the transmission

from a forwarding node in the neighborhood, if any. A node receiving the NACK will respond

with probability Pr(n), where n is the number of NACKs received and Pr(n) is an increasing
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function with respect to (w.r.t.) n. A node that receives higher number of NACKs will have a higher

probability to respond. If a node does not get the packet during the NACK timeout period, it will

retransmit the NACK.

An example is given in Fig. 3.17 to further illustrate the protocol for this no-hop version. The

subfigures depict the steps of this protocol. In Fig. 3.17(a), node i broadcasts a NOTICE packet,

followed by the geocasting data packet (Fig. 3.17(b)). Upon receiving the packets, neighbor nodes

will start their timers according to (3.37). As a result, node 1 will be the first node to do the

geocasting. As shown in Fig. Fig. 3.17(e), node 2 will broadcast a NACK message, informing its

neighbors that it misses the geocasting packets from node i (Fig. 3.17(b)) and from node 2 (Fig.

3.17(d)). Upon receiving this NACK, node 1 and node 3 schedule a transmission of the data packet

with certain probability. Node 1 will then retransmit the data packet as it has higher transmission

probability, as shown in Fig. 3.17(e).
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Figure 3.17: Example for no-hop version.

In (3.37), we need to find an appropriate τ to avoid packet collisions. A small τ cannot space

out consecutive transmissions to avoid packet collisions. On the other hand, large τ may not only

introduce big e2e delay but also impair the priority of transmissions. If the time difference between

i’s receiving the geocasting packet from j and that from k is greater than TQTX , collision at i can be
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avoided. That is, if the probability of reception time (the hold-off time plus the propagation delay)

difference being less than TQTX is kept very low, collisions can be reduced to a great extent at i.

Assuming no significant change in ψ spatially, we have the following constraint:

Pr
(
|T jhold + E[∥−−→pipj∥]/ψ − T khold − E[∥−−→pipk∥]/ψ| ≤ TQTX

)
< γ,

where T jhold and T khold are the hold-off times of j and k, respectively, and γ is the threshold collision

probability. Since there is no information for neighbors, we assume that j and k are uniformly

distributed in the transmission region of i, the pdf function of E[∥−−→pipj∥] is fE[∥−−−→pipj∥](r) =
2r
R2 (the

same for E[∥−−→pipk∥]). Since T jhold and T khold are uniformly distributed in their respective intervals,

let ∆T ij,k =
(
T jhold + E[∥−−→pipj∥]/ψ

)
−
(
T khold + E[∥−−→pipk∥]/ψ

)
, the pdf of ∆T ij,k can then be

derived as

f∆T i
j,k

(s) =

∫ ∫ ∫
fE[∥−−−→pipj∥](rj)fE[∥−−−→pipk∥](rk)fTk

hold
(sk) · fT j

hold
(s+ sk + rk/ψ − rj/ψ)drjdrkdsk;

(3.41)

=

∫ R

0

∫ R

0

∫
s=sj−sk+rj/ψ−rk/ψ

1

2T khold

1

2T jhold

2rj
R2

2rk
R2

dskdrjdrk. (3.42)

Therefore Pr(|T jhold+E[∥−−→pipj∥]/ψ−T khold−E[∥−−→pipk∥]/ψ| ≤ TQTX) =
∫ TQ

TX

−TQ
TX

f∆T i
j,k
(s)ds. Note

that T jhold = (1 − rj cos θj
R )τ +

rj sin θj
R τ +

R−rj
R and T khold = (1 − rk cos θk

R )τ + rk sin θk
R τ + R−rk

R

where θj and θk are the angles of −−→pipj and −−→pipk to −→v respectively.

The optimal τ is found by solving an optimization problem.

Pnohop
desync: No Hop Desyncrhonization Optimization Problem

Given: R, γ, fj(pj), fk(pk); Find: τ∗; Minimize: τ ;

Subject to:

Pr
(
|T jhold + E[∥−−→pipj∥]/ψ − T khold − E[∥−−→pipk∥]/ψ| ≤ TQTX

)
< γ, j ∈ Ni.

This problem can be solved by find the minimal τ∗ = argminj∈Ni
min{ τ |

∫ TQ
TX

−TQ
TX

f∆T i
j,k
(s)ds <

γ} using numerical methods such as the well-known Gauss-Newton algorithm. That is, we can first

find the minimal τ for a specific node j and then find the minimal value for all the neighbors.
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3.5.3 One-Hop Neighbor Knowledge

For this version, with one-hope information, instead of using the opportunistic forwarding mecha-

nism, we can prioritize the transmissions using an optimal scheduling algorithm. To do this, we can

first rank the nodes by jointly considering the relative position along −→v and the number of two-hop

neighbors. We then divide the neighbors into two sets – the set of forwarding nodes and the set of

non-forwarding nodes, which are the nodes that will forward the geocasting packet and the nodes

that will not forward the packet – they instead only acknowledge the reception of the packet. To

further accelerate the geocasting speed, we partition the set of forwarding nodes into ordered sub-

sets OS = {S0, . . . ,SM}, where nodes in each set Si are scheduled to transmit at almost the same

time without introducing collisions. Nodes in these sets are further scheduled to either forward the

packets or acknowledge the packet reception sequentially.

First of all, transmitter i can prioritize the transmissions of its neighbors by calculating the

hold-off timer – similarly to (3.37) – as,

Thold =

(
1−

d
(−→v )
ij

R
+
dj
R

)
· τ · 1

NAj (j)
. (3.43)

Here,NAj (j) represents the expected number of nodes within the 3D region Aj near j, which is the

region inside the sphere of radius R centered at j. That is, NAj (j) =
∑

k∈Ni

∫
Uik∩Aj

fk(pk)dpk,

where Ni is the set of i’s neighbors. We use external-uncertainty region Uik to take into account

neighbors with predictable trajectories such as underwater gliders [11].

Note that different from (3.37), which is used as timer, (3.43) only serves as a metric to pri-

oritize the transmissions of node, i.e., it is not used in the node as a timer to start transmis-

sions, as shown in the rest of this section. With respect to (3.37), the third term is now removed

as the calculation at i does not need to offset for the propagation delay. In addition, NAj (j),

the number of nodes near j, is used as a factor to prioritize transmissions: the more neighbors

a node has, the earlier it should transmit in order to reduce the e2e delay. The pdf of d(
−→
v)
ij is

f
d
(
−→
v)
ij

(d) =
∫
∥−−−→pipj∥=d,pi∈Uii,pj∈Uij

fUii(pi)fUij (pj), where fUii() and fUij () are the pdfs of i in

internal-uncertainty region Uii, and j in Uij , respectively. The pdf of dj can also be obtained sim-

ilarly. The node with the smallest Thold is selected as the neighbor with the highest priority and is

denoted as j∗.
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In addition to giving j∗ the highest priority, we want to allow for more simultaneous transmis-

sions so that more area can be covered. Moreover, we can allow transmissions at opposite sides of

the region to take place as this can reduce the possibility of collisions. For example, for the scenario

shown in Fig. 3.18(a), to geocast the data to the specified region as fast as possible, the packet should

be forwarded with high priority by the neighbor that can go far in the desired direction and that has

high number of neighbors, i.e., according to (3.43). Moreover, to accelerate packet forwarding, we

also design forwarding schemes to allow simultaneous transmissions. For example, as shown in

Fig. 3.18(a), node 3 can also forward the packet at almost the same time as node 2. Intuitively, as

node 3 is at the opposite side of node 2, forwarding packets at node 3 introduces less number of

collisions than the nodes between it and node 2. For example, if node 4 is allowed to transmit at

almost the same time as node 2, packet collisions may happen at node 6. To further ensure the least

number of collisions, we design an algorithm to pick up the best nodes that can transmit at the same

time, as detailed in the rest of this section.

Before going into the details of our algorithm, we illustrate its idea through the example as

shown in the subfigures in Fig. 3.18. In subfigure (b), the data packet is first broacast to node

i’s neighbors. According to (3.43), node 2 will be the node that geocasts first since it has the

smallest Thold (NAj (j) = 5 and it is the farthest along −→v ). Now S0 = {2} and Algorithm 1 is

run. According to subfigure (b), node 3 is the only node that does not share with node 2 a common

neighbor (except i) within i’s neighborhood. The other node, say node 4, has node 6 as common

neighbor with node 2. Note that nodes in S0, i.e., node 2 and 3 (S0 = {2, 3}), are located in

the opposite directions of i’s neighborhood. This will allow geocasting of packets occur in opposite

directions. Moreover, intuitionally, the collision probability of the geocasting in these two directions

will be small. Therefore the data packet can be forwarded in both directions in minimum time.

According the the scheduling rules, node 3 will forward the packet after node 2. Next, node 5 will

be selected to be the first node in S1, and node 4 can also be put in this set. As a result, node 5

will geocast after node 2, followed by node 4. At last, there is no other node that is not covered by

the geocasting of these nodes. So all the remaining nodes, (i.e., node 6 and 7), will be selected as

non-forwarding nodes. According to the corresponding rules, node 6 will send out the ACK first,

followed by node 7.

To achieve this goal, starting from j∗, i partitions its neighbors into sets Sm (m = 0, 1, 2, . . . ,M ).
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Figure 3.18: Illustration of the one-hop algorithm.

Nodes within Sm can forward packets without colliding at i’s neighbors. Moreover, nodes in Sm

are scheduled to transmit earlier than nodes in Sm+1. To avoid collisions, we require that there

be no node that is within the statistical transmission range R of nodes in Sm. To calculate these

sets, i starts from S0, which includes j∗, and then calculates Sm+1 using S0, . . . ,Sm recursively,

as illustrated in Algorithm 1. Node j∗ is first put in S0 and then i searches for a node k in Ni

such that there is no node in the transmission ranges of both k and any node in S0 (except i itself).

The remaining set of nodes not covered by the transmission of nodes in S0 can be calculated by

Nremain = Ni − {k | E[∥−−−→pjpk∥] ≤ R, j ∈ S0}. Similarly, we can find the set S1 ⊂ Nremain

such that nodes in S1 can transmit at the same time without causing collisions except at i. This

process can be repeated to find SM (M ∈ N) such that SM+1 = ∅ (no further sets can be found).

Sm (m = 0, 1, 2, . . . ,M ) are put sequentially into an ordered set OS of sets and the transmissions

are scheduled accordingly; nodes in S0 transmit first, followed by nodes in S1, S2, . . . .

Nodes in Sm (m = 0, 1, 2, . . . ,M ) are set as forwarding nodes that will forward the geocasting

packets to their neighbors. As transmitting a packet (short or not) takes a relative long time for

existing underwater modems, it is better for i to use the overheard transmissions of the forwarding

nodes as acknowledgements for these nodes in order to save time. Hence, it is necessary to avoid

the collision at i. So, i needs to schedule the transmissions of these nodes by putting the scheduling
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Algorithm 1: Compute Ordered Set OS using Ni and Uij’s

1 Nremain = Ni; Calculate Thold’s, and E[∥
−−−→pjpk∥]’s;

2 while Nremain ̸= ∅ do
3 j∗ = argminj∈Nremain Thold; S = {j∗};
4 for k ∈ Nremain − S do
5 S = S ∪ {k} where k have no common neighbor except i with nodes in S;
6 end
7 Add S to the end of OS if S ̸= ∅; break if S = ∅;

8 Nremain = Nremain − {l | E[∥
−−→pqpl∥] ≤ R, q ∈ S};

9 end

information in the geocasting packet. On the other hand, nodes in Ni−
∑M

m=0 Sm will be set as non-

forwarding nodes, which will only acknowledge the received geocasting packets but not forward. To

geocast quickly the packets to the whole region, transmission of these acknowledgement packets is

scheduled after the transmission of the forwarding nodes. As collisions may still happen at two-hop

neighbors, we randomize the transmissions of the neighbors for collision avoidance.

Scheduling of forwarding nodes: As the transmission time is TQTX , collision between packets

can be avoided if the time difference between reception of two packets at i is greater than TQTX .

Packets will arrive sequentially if the transmission time is delayed for some integer multiple of

TQTX . First, i does not delay the transmission of the node with the highest priority. It then chooses

a random permutation of the numbers from 1 to |Sm| and uses this permutation as the transmission

order of the rest of the nodes in Sm so that their transmissions arrive at i one by one. The timeout for

forwarding nodes should be set to 2T j
∗

P + |OS| · TQTX , where T j
∗
p is the propagation delay required

to reach j∗ and |OS| denotes the number of forwarding nodes (i.e., |OS| =
∑M

m=0 |Sm|).

Scheduling of non-forwarding nodes: An explicit ACK is sent by a non-forwarding node to the

sender after waiting for an ACK-hold-off period, TACKhold−off . To avoid collisions with the geocasting

packet, TACKhold−off should be greater than the timeout for forwarding nodes. We require it be uni-

formly distributed in [2T j
∗

P + |OS| ·TQTX , 2T
j∗

P + |OS| ·TQTX +(|Ni|− |OS|) ·TACKTX ]. The sender

will keep track of all the ACKs and overhearings it receives, and will retransmit the packet if there

is even a single neighbor that does not reply implicitly or explicitly. The retransmission timeout is

chosen to be R/ψ + 2T j
∗

P + |OS| · TQTX + (|Ni| − |OS| + 1) · TACKTX so that it is long enough to

hear from all its neighbors before it retransmits. Note that R/ψ and the extra TACKTX are to offset

the propagation delay and the transmission delay, respectively.
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To de-synchronize the transmissions, an appropriate τ needs to be selected. We can formulate

an optimization problem similarly to case 1. However, the pdfs of T jhold and T khold are now derived

from Uij and Uik, respectively. For example, T jhold is distributed in [di,jmin/ψ, d
i,j
max/ψ] with pdf

f
T j
hold

(t) =
∫
∥−−−→pipj∥=ψt,pi∈Uii,pj∈Uij

fUii(pi)fUij (pj), where di,jmin and di,jmax are the minimal and

maximal distances between i (in Uii) and j (in Uij), respectively. Rather than pre-computing τ as in

case 1, calculation of τ can now be done online so to adjust dynamically as the network topology

changes.

3.5.4 Handling Void Region

Our solution ensures all the neighbors will receive the geocasting packet. Therefore, even if there

exists void regions, it will not pose a big problem for packet forwarding. Only slight modification

needs to be made to the geocasting protocol to avoid replicating the packets. That is, each node

keeps track of the packet identifier and it drops the packet that is just received if it has forwarded

it before. Otherwise, the node will forward the packet to its neighbors. For example, suppose the

one-hop version is in use; there is a void region as illustrated in Fig. 3.19; node 6 has geocast a

packet to node 1 and node 2; and now node 1 is forwarding this packet along −→v (it is not aware of

the void). Node 2 is selected by node 1 as the first node to continue the forwarding. If node 2 has

been selected as a forwarding node during node 6’s forwarding, it should have forwarded the packet

to node 3 already and hence it will not forward the packet from node 1. Otherwise, if node 2 was

a non-forwarding node during node 6’s forwarding, it will forward the packet from node 1 so that

node 3 receives the packet. Such forwarding will take place until node 4 will forward the packet to

node 5. This is similar for the no-hop version.

3.5.5 Application Scenarios of Both Versions

In this part, we analyze the communication overhead of these two versions and discuss the scenarios

to apply the no-hop version or one-hop version. The cost for the no-hop version is the communi-

cation overhead (NOTICE packet) and the transmission delay incurred. For the one-hop version,

the communication overhead is the information about internal uncertainty of itself. This informa-

tion includes the pdf of a node’s internal uncertainty if it follows well-known distribution function,

or the probability mass function (pmf) if it does not (where the pdf is properly discretized). This
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requires the number of values to determine the well-known distribution, or Npmf values and the

associated positions if the internal uncertainty region is discretized into Npmf values (which are

4Npmf values). In general, the internal uncertainty region is one connected region, in which case

we only need the positions of the boundary points. Suppose the number of boundary points is Nbd

(clearlyNbd ≤ Npmf ), the number of values to be sent is 3Nbd+Npmf . This number can be further

reduced if the shape of the internal uncertainty region is a regular 3D shape. For example, if it is

a cylinder, we only need the position and radius of the cylinder circular disk center, the cylinder

height and the discretization size. Moreover, the associated transmission delay for the one-hop case

is larger than the no-hop version. Comparing both versions, obviously the no-hop version has less

networking cost in terms of overhead and transmission delay than the one-hop. On the other hand,

the one-hop version has better geocasting performance in terms of reliability and delay.

3.6 Under-ice Localization Solution for AUVs

Our model of internal and external uncertainties can be further used to minimize the localization

uncertainty underwater. Such localization uncertainty minimization solution can be used in environ-

ments where deployment of localization infrastructure is difficult, e.g., in the under-ice environment

or open ocean environment. For example, AUVs have been used for continuous measurement of

fresh water exiting the Arctic through the Canadian Arctic Archipelago and Davis Strait in order
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to study the impact of climate change to the circulation of the world’s oceans. The ability to min-

imize localization uncertainty under ice is important so that, for example, scientists can accurately

measure how much fresh water flows through the strait – and at what times of year – so they have a

baseline for comparison in coming years.

Existing localization schemes underwater generally rely on the deployment of transponders or

nodes with underwater communication capabilities as reference points, which requires either much

deployment effort or much communication overhead. Moreover, these schemes are not able to

estimate the uncertainty associated with the calculated position, which is high in under-ice environ-

ments, and thus are not able to minimize position uncertainty.

In this section, we first show how external uncertainty can be used to estimate the uncer-

tainty with the standard distance-based localization technique (i.e., DISLU). Then we propose a

novel Doppler-based localization technique DOPLU that jointly estimates localization uncertainty.

DISLU requires ranging packets to measure the distances for position calculation, which introduces

communication overhead. This weakness in DISLU can be offset by DOPLU, which exploits on-

going inter-vehicle communications to avoid the need for ranging packets. Such an ‘opportunistic’

approach (i.e., DOPLU) does not guarantee correct absolute locations (as Doppler shifts only char-

acterize relative position change) so the team of AUVs needs to go back to DISLU to correct the

locations when the error is too large. Based on this idea, we propose algorithms to solve two opti-

mization problems, one for minimization of localization uncertainty and the other for minimization

of communication overhead.

The communication protocol for our solution is presented in Fig. 3.20. Each AUV first runs

DISLU using the distances measured from the round-trip time. Then, DOPLU is run using Doppler-

shift information extracted from inter-vehicle packets. By overhearing the ongoing packets from

the reference nodes, AUV i estimates the Doppler shifts and then extracts the relative velocity,

from which the AUVs calculate their absolute velocities. DISLU is run to fix the localization error

introduced by DOPLU after Tp, which is the time after the last DISLU is started (Ts is the duration

for which enough Doppler shifts are collected to estimate the position).

Both DISLU and DOPLU use the external uncertainty and corresponding probability distribu-

tion function (pdf) to estimate the uncertainty resulted from the localization technique, i.e., the
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Figure 3.20: Overview of the proposed approach (paired arrows represent the start and the end of
one transmission).

internal uncertainty and pdf of the AUV running the localization algorithm. Then this internal un-

certainty information is broadcast for other AUVs to estimate external uncertainties.

3.6.1 Distance-based Localization with Uncertainty Estimate (DISLU)

We present here the DISLU technique, which is based on the following idea: to estimate its own

position, vehicle i needs 1) to estimate the distances between itself and its reference vehicles, and

2) to estimate its own position based on these distances.

DISLU relies on the round-trip time TRTT to measure the inter-vehicle distance. By extracting

the one-way propagation time, i is able to calculate the inter-vehicle distance. That is, the distance

between transmitter i and receiver j is dij = c ·(TRTT −T (TX)
i −T (TX)

j −T (hold)
j )/2, where T (TX)

i

and T (TX)
j are the duration to transmit the packet at i and the duration to transmit acknowledgement

at j (i.e., transmission delays), T (hold)
j is the holdoff time of j to avoid collisions. To reduce the

transmission time, we can use the short ping packets (e.g., provided by WHOI modem). Once j

receives the ping packet, it starts a hold-off timer, T (hold)
j , which is a uniformly distributed random

variable in [0, 2Tmeanhold ] where Tmeanhold is given by,

Tmeanhold = (1− dij
R

)τ +
ϕij
c
, (3.44)

where dij is the distance from i to j, τ is the estimated transmission time for the current packet,

c = 1500 m/s is the propagation speed of acoustic waves, R is the transmission radius of the
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underwater modem, and ϕij = max{0, R − dij}. The first term in (3.44) gives less time to the

neighbor that is closer to i, and the second term is the extra delay that a node should wait so that all

the nodes receive the packet. This gives fairness by providing synchronization in starting the hold-

off timers of all the nodes receiving the data packet. T (hold)
j is then embedded in the acknowledge

packet for i’s information.

After the calculation of dij’s, i estimates its own position as the point with the least mean squared

error to the reference nodes. Then, i estimates its internal uncertainty region using conditional

probability and the distribution of the reference nodes within their external-uncertainty regions.

Given the set of i’s neighbors Ni, the external uncertainty regions Uij , the distances dij , and the

pdf of j within region Uij , ∀j ∈ Ni, i can estimate the pdf of being at generic point p as

g(Pi = p) =

∫
pj∈Uij ,j∈Ni

g(Pi = p,
∩
j∈Ni

Pj = pj)

=

∫
pj∈Uij ,j∈Ni

[
g(Pi = p|

∩
j∈Ni

Pj = pj) · g(
∩
j∈Ni

Pj = pj)
]
. (3.45)

Here g(Pi = p) is the pdf of the position of i at point p, g(|) denotes conditional probability function.

In our solution, p is calculated as the point that has the minimum squared error, i.e., p ∈ Si, where

Si ≡ {q = argmin
∑

j∈Ni
∥d(p, pj)−dij∥2} (i.e., Uii = Si). Here, d(p, pj) is the distance between

point p and pj . Note that Si may have more than one element due to the Euclidean norm (e.g., there

are two possible positions for the case with three reference nodes and corresponding distances to

them known) and p may not be uniformly distributed in Si if more position constraints are given.

Here we assume p to be uniformly distributed in Si. In other words, we have

g(Pi = p|
∩
j∈Ni

Pj = pj) =

 1/|Si|, p ∈ Si

0 , p ̸∈ Si
, (3.46)

where |Si| is the number of elements in Si if Si is a discrete set, or the area (or volume) of Si if Si

is a non-empty non-discrete set (e.g., the case with two references).

The joint pdf, g(
∩
j∈Ni

Pj = pj), can be approximated as,

g(
∩
j∈Ni

Pj = pj) ≈
∏
j∈Nj

g(Pj = pj), (3.47)

as the distributions of these AUVs is approximately independent. Since Tp and Ts are generally

large (see Sect.3.6.3), the positions of AUVs can be treated as independent after drifting for a long
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time (while accuracy derivation of the joint pdf is rather difficult). Therefore, (3.45) can be expanded

as,

g(Pi = p) ≈
∫
pj∈Uij ,j∈Ni

[
g(Pi = p|

∩
j∈Ni

Pj = pj) ·
∏
j∈Nj

g(Pj = pj)
]
. (3.48)

Hence i’s internal uncertainty Uii with g() being the pdf is estimated, which is then broadcast to

other AUVs. AUVs receiving this information then use Uii to estimate i’s external uncertainty.

3.6.2 Doppler-based Localization with Uncertainty Estimate (DOPLU)

DOPLU runs between two consecutive run of DISLU. Obviously, whenever the Doppler shifts from

more than 3 nodes are extracted, DOPLU can be run. The time between two consecutive runs of

the DISLU is divided into sub-slots with appropriate duration Ts (Fig. 3.20) so that the DOPLU

will be run at an appropriate frequency. Within each sub-slot, the vehicle that runs DOPLU extracts

Doppler shifts from the packet it overhears (even if the packet is not intended to be received by

it) from the reference vehicles. With the additional information it obtains from the packet header

(such as velocity of the reference node), it computes its own absolute velocity, which is then used

to estimate its own position and internal uncertainty. This reduces the communication overhead for

sending packets to estimate inter-vehicle distance.

An algorithm is designed so that Ts can be adjusted dynamically according to the frequency of

ongoing communication activities. Within Ts, a AUV is expected to collect enough Doppler shifts

from its reference neighbors so that the DOPLU algorithm runs efficiently. Note that if Ts is too

small, it is very likely that the velocity calculated by DOPLU is close to that obtained from the last

calculation, which means waste of computation resources. On the other hand, Ts should not be too

large as it would lead to too much localization error. After all, the less frequent a AUV calculates

its position, the more position error accumulates.

In the rest of this section, we focus on the main problem, i.e., how to estimate the position

and internal uncertainty when Doppler shifts are available, and leave the optimization of Ts in

Sect. 3.6.3. Using the Doppler shifts regarding to the reference nodes, i can estimate its own absolute

velocity using the projected positions (i.e., by adding history position with history velocity times

the time passed) and velocities. Using this relationship for all reference nodes, i obtains an equation

group to solve, where absolute velocity −→vi can be estimated.
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To see how to calculate the absolute velocity, assume that at the end of one sub-slot, AUV i has

collected the Doppler shift ∆fij from reference node j. From the definition of Doppler shift, we

have ∆fij = −
−→vij◦

−−→
PiPj

∥−−→PiPj∥
f0
c , where vij is the relative velocity of i to j,

−−→
PiPj is the position vector

from i to j, f0 is the carrier frequency, c = 1500 m/s is the speed of sound, and ◦ is the inner

product operation. From this equation, we have

−→vij ◦
−−→
PiPj

∥
−−→
PiPj∥

= −∆fij
c

f0
. (3.49)

Note that we assume the Doppler shift is estimated accurately. In reality, the frequency-dependent

Doppler frequency spread is usually significant due to the inherently wideband nature of the un-

derwater acoustic channel with low Q-factor. Moreover, the temporary variations in factors such as

temperature, salinity, depth and ocean surface affect the acoustic speed and propagation path, while

drifting due to ocean currents affects the motion of the transmitter and the receiver. All these lead to

randomness in the Doppler measurements. Therefore, estimation of Doppler shifts is non-trivial and

some solutions such as [68] and [69] have been proposed. To apply DOPLU, special design such as

OFDM communication [70] can be applied in physical layer to deal with the generated inter-symbol

interference. In this work, we focus on the localization solution itself and assume the Doppler shift

reading from acoustic modem - where appropriate Doppler estimation techniques have been applied

- is accurate. Consideration of the randomness in Doppler reading in DOPLU is left as future work.

From (3.49), assume that i has collected the Doppler shifts of N (ref)
i reference nodes, we then

have an equation group with N (ref)
i equations. We then can derive i’s velocity −→vi . Assume −→vi =

(v
(i)
x , v

(i)
y , v

(i)
z ) and

−−→
PiPj

∥−−→PiPj∥
= (α

(ij)
x , α

(ij)
y , α

(ij)
z ), (3.49) is then −→vij ◦

−−→
PiPj

∥−−→PiPj∥
= (−→vi −−→vj) ◦

−−→
PiPj

∥−−→PiPj∥
=

(v
(i)
x −v(j)x )α

(ij)
x +(v

(i)
y −v(j)y )α

(ij)
y +(v

(i)
z −v(j)z )α

(ij)
z = −∆fij

c
f0

. By manipulating this equation,

we have

v(i)x α(ij)
x + v(i)y α(ij)

y =−∆fij
c

f0
− v(i)z α(ij)

z + v(j)x α(ij)
x + v(j)y α(ij)

y + v(j)z α(ij)
z . (3.50)

In this equation, v(i)x and v(i)y in the left-hand side are variables to be solved, whereas v(i)z in the

right-hand side can be derived from pressure sensor reading, (α(ij)
x , α

(ij)
y , α

(ij)
z ) is the normalized

vector of
−−→
PiPj , and (v

(j)
x , v

(j)
y , v

(j)
z ) is obtained from the velocity information embedded in the

overheard packet header of j.

Considering all the N (ref)
i reference nodes, we can obtain a linear equation group, which can
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be expressed in a matrix form as Ax = b, where

A =


αi1x αi1y

αi2x αi2y

· ·

α
iN

(ref)
i

x α
iN

(ref)
i

y

 ,x =

υx
υy

 ,b =


bi1

bi2

·

b
iN

(ref)
i


. (3.51)

Here bij = −∆fij
c
f0

− v
(i)
z α

(ij)
z + v

(j)
x α

(ij)
x + v

(j)
y α

(ij)
y + v

(j)
z α

(ij)
z . We want to find the optimal x∗

such that the sum of squared errors is minimized. That is,

x∗ = argmin ∥b−Ax∥2. (3.52)

From matrix theory, x∗ can be solved as x∗ = (ATA)−1ATb. Once the velocity is calculated, the

position of i is updated as pi = p′i +
−→v · Ts, where −→v = [v

(i)
x , v

(i)
y , v

(i)
z ]T .

Assume that the uncertainty regions Uij and the distribution pdf of j within region Uij are known

(by embedding these parameters in the header of the packet), ∀j ∈ Ni, i can estimate the pdf of

being at point p as g(Pi = p) ≈
∫
pj∈Uij ,∀j∈Ni

[
g(Pi = p|

∩
j∈Ni

Pj = pj) · g(
∩
j∈Ni

Pj = pj)
]
.

Similar to the case of DISLU, i can calculate the distribution of its own location and, hence, its

internal uncertainty region.

Minimization of Location Uncertainty: Obviously, localization using different references

leads to different estimation of internal uncertainty and corresponding pdf. Our objective is to

minimize the estimated internal uncertainty. Using our notions of internal and external uncertainty,

this can be achieved by solving an optimization problem. To measure the degree of uncertainty, we

use information entropy as the metric, i.e.,

H(Uij , gij) = −
∫
p∈Uij

gij(p) log(gij(p))dp. (3.53)

The bigger H(Uij , gij) is, the more uncertain Uij is. The reason to use information entropy instead

of simply the size of uncertainty region is that it can better characterize uncertainty. Example:

Assume that an AUV’s position is distributed (in 1D) in [0,10] along x-axis with pdf being 9.9 in

[0,0.1] and 0.1/99 in [0.1, 10] (Case 1). Then its entropy is -3.17 bits, which is less than the entropy

3.32 bits when the AUV is uniformly distributed in [0,10] (Case 2) or the entropy 3 bits when the

AUV is uniformly distributed in [0,8] (Case 3). Obviously Case 1 is the most certain in these 3 cases



79

even though Case 2 has the same size and Case 3 has the smallest size of the region. Note that the

information flow between AUVs can occur in loops; this may not amplify errors of the positioning

algorithm, as our problem selects the neighbors that can minimize the uncertainty.

With this metric, the problem to minimize localization uncertainty can be formulated as,

Given: Ni,Uij , gij();

Find: A∗
i ; Minimize: H(Uii, gii);

S.t.: Uii ≡ {q = argmin
∑
j∈Ai

∥d(p, pj)− dij∥2}; (3.54)

g(Pi = p) =

∫
pj∈Uij ,j∈Ai

[
g(Pi = p|

∩
j∈Ni

Pj = pj) ·
∏
j∈Ai

g(Pj = pj)
]
; (3.55)

|Ai| ≥ 3; Ai ⊂ Ni. (3.56)

Here Ai represents a subset of i’s reference nodes, (3.54) and (3.55) estimate the internal uncertainty

and corresponding pdf when nodes in Ai are used as references; and (3.56) are the constraints for

Ai so that enough reference nodes are selected for localization.

To reduce the complexity, we can convert an uncertainty region (internal or external) into dis-

crete counterparts. That is, we divide an uncertainty region into a finite number of equal-size small

regions. When the numberKi of small regions is sufficiently large, the pdf of the AUV’s position on

a point – such as the centroid – in this small region can therefore be approximated by the probabil-

ity on a small region. Hence the estimated external-uncertainty region can be approximated as the

region contained in the hull of these estimated points. The pdf functions are also be approximated

by the probability mass functions on discrete points, which simplifies the pdf estimation. The above

optimization can then be solved using exhaustive search algorithm after the discretization. The

computation complexity of the exhaustive search is O(2|Ai|K
|Ai|
i ). Since the number of AUVs is

generally small, this complexity is mainly decided by Ki. Depending on the computation capability

of the onboard processor, appropriate Ki can be used. Further improvement of the solution can be

done after converting it into appropriate optimization that can be solved efficiently and we leave this

as future work.
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3.6.3 Minimization of Communication Overhead

In this part, we discuss how to optimize Ts and Tp so that localization overhead can be minimized

while keeping the localization uncertainty low. We first propose an algorithm to dynamically ad-

just Ts in order to maintain the performance of DOPLU. Then, Tp is optimized to minimize the

localization overhead.

As for Ts, it should be large enough so that packets from enough reference nodes are overheard.

Suppose Kmin is the minimum number of reference nodes (or |Ai| if the optimization algorithm in

Sect. 3.6.2 is used) so that x∗ can be calculated using DOPLU. In the beginning, Ts is initialized

as Ts = R
c + TTX ·Kmin, i.e., the minimum time to overhear packets from Kmin reference nodes.

Suppose that during the last T ′
s period, Doppler shifts from N ′ reference nodes with smaller degree

of uncertainty (seen by i) than i’s are received. On average, it takes T ′
s/N

′ to receive a useful

Doppler shift. Then, the expected time to receive Kmin useful Doppler shifts is T ′
s ·Kmin/N

′. We

update Ts using a weighted average. That is, Ts = β ·T ′
s+(1−β) ·T ′

s ·Kmin/N
′, where β ∈ (0, 1)

is a weight factor.

Using internal and external uncertainty, we can also optimize the interval Tp running DISLU.

By optimizing Tp, we minimize the overhead to use DISLU and hence the overall overhead. DISLU

is run when the localization error is large. The localization error can be estimated by calculating the

distance from the position estimated by DISLU to that estimated by DOPLU. When the localization

error is greater than a threshold dth, DISLU is run to correct the error. Since the position is not

deterministic, this requirement is expressed in a probabilistic way. That is, DISLU should be run

when the probability of the localization error being over dth is above a threshold probability γ.

Therefore, to minimize the overhead of running DISLU, Tp should be maximal under the constraint

that the probability of the localization error being over dth is below γ. This can be formulated into

the following optimization problem,

Given: Uij , gij(), γ;

Find: T ∗
p ; Maximize: Tp;

S.t.: Pr{∥
−−−−−−−−→
pi(Tp)p̃i(Tp)∥ > dth} < γ,

where pi(Tp) and p̃i(Tp) are the predicted positions using the DOPLU and DISLU after Tp from

the last DISLU run time, respectively. This prediction of future internal uncertainty is based on
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the current estimated internal uncertainty and AUV’s trajectory, as in Sect. 3.3. As the previous

optimization problem, we can also convert it into discrete variable optimization problem and solve

it in a similar way. Depending on the prediction method and the type of AUVs, the computation

complexity varies. For example, using the prediction method in Sect. 3.2, the computation com-

plexity is O(KiNsmp) for underwater gliders with Nsmp of position samples. Note that Ts and Tp

can be jointly optimized, which is more complicated and hence is left as future work.

3.7 Team Formation and Steering Algorithms

Based on our proposed communication solutions, we further proposed a solution for the coordina-

tion of a team of underwater gliders. Our solution is based on the functionalities of WHOI acoustic

Micro-Modem. We focus on how to form the team according to the given formation geometry

when randomly scattered gliders are selected and on how to steer them along the trajectory while

maintaining their formation. We assume that the gliders in the team have been selected from a pool

of vehicles using a task allocation algorithm (e.g., [57]). As in Fig. 3.21, given i) the number of

scattered gliders, ii) the corresponding geometry formation, and iii) the target trajectory, two phases

of operations are required to perform the monitoring mission: 1) the selected gliders need to be

mapped into a specified geometric formation making sure that no collisions occur (Phase I); 2) after

the first phase, the team needs to steer through the 3D region of interest along the predefined tra-

jectory while maintaining its formation (Phase II). Note that swarming using a specified geometric

formation is necessary not only in coordinated monitoring missions but also in many applications

such as surveillance/tracking and collision avoidance in critical navigation missions.

In our solution, a glider is selected to play the role of leader in order to guide the other gliders,

which will then act as followers. These are logical roles that do not depend on the physical position

within the formation, i.e., the leader is not necessary ahead of the followers at all times. As GPS

does not work underwater, gliders can only receive GPS signals when at the surface; therefore, to

calculate their positions while underwater they can only rely on localization algorithms. Moreover,

accuracy of the location information decreases as the time in the water increases due to the accumu-

lation of localization errors. Consequently, in order to take advantage of the GPS information, the

last surfaced glider is chosen to be the leader. The aim of the leader is to let the team be on track

along the target trajectory, while the aim of the other gliders, the so-called followers, is to maintain
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Figure 3.21: Overview of the proposed solution for team formation and steering.

the formation according to the predefined geometry. When surfaced, a glider advertises itself as

the ‘new’ leader by broadcasting a message. Upon receiving this message, the ‘old’ leader sends a

confirmation to the new leader using an acknowledgement packet (ACK), whereas the other gliders

just update their leader information without sending any ACK to avoid message implosion. The

ACK packet from the ‘old’ leader serves also as communication redundancy to echo the message

from the new leader; by leveraging spatial diversity, the probability of reaching all the gliders is thus

increased.

Our solution is based on the SLOCUM glider. SLOCUM glider control involves monitoring

navigation performance, adjusting glide angle by controlling pitch and/or buoyancy, and adjusting

heading by controlling roll or rudder position. The gliders can use Precision Navigation TCM2

attitude sensors to sense heading, pitch and roll, and pressure sensors to measure depth and, from

pressure rate, vertical velocity. Altitude is measured using an acoustic altimeter. A movable rudder

gives the tightest turning radius (approximately 7 m) and allows turning without significant roll so

that the acoustic altimeter, critical in shallow-water operations, remains accurate.

Our solution controls the pitch angle α and yaw angle β (see Fig. 3.21) to steer each glider

and keep the team formation. The pitch α for a glider ranges in [αmin, αmax] and determines the

velocity of the vehicle (in fact, the horizontal velocity can be considered constant in the absence of

ocean currents).
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3.7.1 Team Formation

To enable the communications between the scattered gliders, we propose a communication tech-

nique that emulates the vocalizations used by killer whales. These whales use low frequency whis-

tles ranging from 0.5 to 40 kHz (with peak energy in 6− 12 kHz) to communicate with each other.

These low frequencies make long-range communication possible, as explained by the underwater

communication theory: low-frequency tones undergo a lower medium attenuation and achieve a

higher SNR [4] at the receiver. Moreover, the whistles are usually short, which is advantageous as

they are less affected by multipath. This effect is similar to what happens in wireless communica-

tions: shorter packets experience a lower Packet Error Rate (PER).

We incorporated these characteristics in our acoustic communication framework, to understand

what we show in Figs. 3.9 and 3.10 the WHOI Micro-Modem’s PER performance as measured

in our testbed emulation [66]. As presented in Table 3.1, there are four types of packets used by

these underwater acoustic modems, each adopting a different combination of modulation and coding

scheme, and a specific number of frames. By comparing Figs. 3.9 and 3.10, it is clear that type 0

packets have the lowest PER when the SNR is low, which means that they perform the best for

long-range communications. This is because type 0 is the shortest packet and the modulation it uses

(FSK) is very robust; this comes, however, at the price of low bit rates (80 bps). For these reasons,

this packet type is a proper choice for long-range control message exchange to resemble long-haul

whale vocalizations.

The communication protocol for team formation is depicted in Fig. 3.22. To calculate the ‘best’

formation position for each glider - with the objective of minimizing the formation time while

avoiding collisions -, the leader broadcasts a packet to collect the positions from the followers.

Upon receiving the position packet from all the followers, the leader runs the formation mapping

algorithm to find the best mapping (glider → vertex in the geometry); then, the leader informs each

follower about their assigned formation position. The followers then acknowledge the reception of

the message from the leader, and all the gliders start moving towards their assigned positions. All

these control messages use short type 0 packets as their aim is to reach far apart gliders that are

scattered in a wide region.

The gliders can move in regular formations as shown in Fig. 3.23. Different formation geome-

tries can be used depending upon the number of gliders and the type of mission. Given the number
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Figure 3.22: Protocol for Team Formation (Type 0 packets).

of gliders forming the team and the corresponding geometry formation, the problem that we face

is to map every glider to its position in the formation. Selecting a position in the formation for a

glider depends upon factors such as the time for that glider to reach this position, the possibility

of collision with other gliders, and the permutation of the gliders with the formation positions. We

have to determine the optimum to minimize both the time and energy spent to attain the formation.

We first optimize on time to find the mapping, and then on energy consumption, while deciding on

the exact trajectory for the selected mapping.

The formation optimization problem, which aims at mapping the gliders to formation positions,

finds - out of all the permutations that avoid collisions (the so-called feasible solutions) - the best

permutation that minimizes the time to form the team formation. Specifically, given M = |N |

gliders 1, 2, . . . ,M , and the corresponding formation points G1, G2, . . . , GM , we need to find a

permutation π ∈ Π such that the time spent by the gliders to form the formation is minimized while

no collision occurs. Here, Π is the set of all M ! permutations.

For simplicity and because of the large inter-vehicle distances, in this dissertation a glider is

considered to be a single mass point. Note, however, that our solutions can be straightforwardly

extended to account for the real dimensions of the gliders by adding marginal spaces between the
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Figure 3.23: Formation geometries for 2 - 5 gliders in Front and Top Views, where the mission-
specific inter-glider distance is l and the last surfaced glider is chosen as leader.

points. To ensure no collision among gliders, the sufficient and necessary condition is that two or

more gliders of the team do not meet at the same point and at the same time as they move along their

trajectories. However, solving this problem in the 3D space is complex; also, the solution would be

affected by the uncertainty of the velocities of the gliders caused by ocean currents. Therefore, we

adopt a simpler conservative approach that relies on a sufficient condition to avoid collisions. Note

that the fastest way for a glider to move to a point is to follow the sawtooth trajectory laying in the

vertical plane containing the current glider position and the destination point. Hence, a sufficient

condition to ensure no collision is that the projections of the glider trajectories on the x-y plane -

segments describing the horizontal advance of the gliders - do not intersect (Fig. 3.24).

If we denote the initial position of glider i and formation point Gi as P 0
i = (x0i , y

0
i , z

0
i ) and

PGi = (xGi , yGi , zGi), respectively, given the constant horizontal speed sH of the gliders, the
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formation mapping problem can be formulated as,

Given: P 0
i , PGi , sH(∀i = 1, . . . ,M)

Find: π∗ ∈ Π

Minimize: max

(√
(x0i − xGj )

2 + (y0i − yGj )
2/sH

)
Subject to: Gj = π(i); (3.57)

π ∈ {π : ∀i,m, i ̸= m,Λz(T
π(i)
i ) ∩ Λz(T

π(m)
m ) ≡ ∅}; (3.58)

where T π(i)i is the vertical trajectory from i to its mapped point π(i) and Λz() is the vertical pro-

jection to the x-y plane. Here, (3.57) is the mapping of glider i to Gj , and (3.58) ensures that the

permutations incurring intersections of vertical trajectory projection, i.e., those unfeasible, not be

considered.
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Figure 3.24: Mapping gliders 1, 2, and 3 to geometry vertexes G1, G3, and G2, respectively. Note
that gliders 2 and 3 may collide as Λz(TG3

2 ) and Λz(T
G2
3 ) intersect at point I .

3.7.2 Team Steering

The team steering problem can be divided into two subproblems: 1) steering the team to follow the

planned team trajectory and 2) maintaining the formation. As the leader (the last glider that has
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surfaced) has the most accurate position information, it is selected to estimate the team dislocation,

i.e., the deviation from the target trajectory. The leader calculates the adjusted sawtooth trajectory

to steer the team back to the target trajectory. Depending on the application requirements, the leader

can decide to either move back to the closest point on the target trajectory, or to head towards

the final destination of the target trajectory. While the former strategy is more conservative, as

it minimizes the time to go back to the target trajectory, the latter is more energy efficient when

the goal is to reach the final destination. The other gliders, i.e., the followers, will then focus on

maintaining the geometry of the formation, which also implies following the leader’s path. Due to

space limitation, in the following we focus only on this second subproblem.

We use a hybrid approach to keep the team formation depending on whether the position in-

formation is absolute or relative. Specifically, Absolute Formation Adjustment (AFA) is used when

absolute information such as gliders’ position is available; whereas Relative Formation Adjustment

(RFA) is used when relative information such as inter-vehicle velocity is available. The reason for

this hybrid approach is to reduce the communication overhead for position information dissem-

ination. Using absolute positions, in fact, requires the exchange of location information, which

introduces overhead. On the other hand, relative inter-glider velocity information can be estimated

by each glider by measuring the Doppler shift of ongoing inter-vehicle communications. These

relative velocities can then be used to control the trajectory of each glider in such a way as to keep

the inter-distance between gliders constant. While this ‘opportunistic’ approach does not guarantee

that the absolute geometry is maintained (e.g., rotations can occur), it does not introduce additional

overhead as it may exploit ongoing communications. Consequently, in order to compensate for the

errors due to formation rotations, the team periodically goes back to AFA to readjust the geometry

using absolute positions.

The communication protocol for hybrid steering is presented in Fig. 3.25. Periodically, each

glider runs AFA using the position information obtained from the localization algorithm. Then,

RFA is run using relative information extracted from inter-vehicle packets. Glider i’s relative veloc-

ity is estimated by j when an inter-vehicle packet is received. This information is then embedded

into the reverse direction packet and fed back to i. At this point, the gliders are able to make ad-

justments according to their relative velocity. Finally, if the leader (or any other follower) assesses
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that the geometry is seriously compromised (i.e., if the team dislocation is greater than the disloca-

tion associated with a new permutation), the leader can rerun the formation optimization problem

and find the new best permutation (often involving only a subset of the vehicles) to reconstruct the

geometry.

i j

Posi�on Pkt

Posi�on PktCompute Posi�ons,

Run AFA

Data Pkt

ACK Pkt With vij

t

Compute Posi�ons,

Run AFA

Es�mate vij

Run RFA

Data Pkt

ACK Pkt With vji

Es�mate vji

Run RFA

Posi�on Pkt

Opportunis�c

Steering

Period TAFA

Figure 3.25: Hybrid steering using acoustic communications.

Intuitively, in order to keep the formation, two gliders need to move closer if the distance be-

tween them is larger than the initial specified distance, i.e., the equilibrium distance in the formation

geometry. Conversely, they need to move farther if their distance is smaller than the equilibrium dis-

tance. In such a scenario, an Attraction and Repulsion Model (ARM) is appropriate to implement

the swarming behavior using local controls. Bio-inspired algorithms based on the ARM have been

proposed and analyzed in [71, 72]. Specifically, in [71] a class of attraction and repulsion functions

for swarm formation is presented and their stability is analyzed, while in [72] a framework using

artificial potentials and virtual leaders is proposed. Artificial potentials define interaction control

forces between neighboring vehicles and an optimal inter-vehicle spacing is therefore enforced.

Virtual leaders can be used to manipulate group geometry and direct group motion by means of

additional artificial potentials. Closed-loop stability is proved and robustness to a single vehicle

failure is shown.
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In this dissertation, we account for the physical constraints characterizing SLOCUM gliders and

their energy-efficient acoustic WHOI Micro-Modems, and propose a novel distributed attraction and

repulsion swarming solution integrated with the communication mechanisms. As ARM is similar

to a spring system in physics, we treat the team as such a system and we define a metric between i

and j called virtual potential energy, Eij = 1
2kij∆x

2
ij , where kij is the virtual spring constant and

∆xij is the displacement from the expected formation equilibrium between i and j. Virtual spring

constant between the leader L and a follower F , and between followers, are denoted by kLF and

kFF , respectively. To emphasize the role of the leader, which has more recent (and therefore more

accurate) location information and is in charge of steering the entire team along the target trajectory,

we enforce kLF > kFF so that the dislocation from the leader will have greater influence than that

between followers. This will imply that the ‘rigidity’ of the edges of the team structure will not be

homogeneous; rather, it will depend on the logic role of the vehicles at the vertexes, being higher

when one of the two gliders of an edge is the leader.

When glider i is in its equilibrium formation position, the total virtual potential energy between

i and its neighbors, Ei =
∑

j∈Ni
Eij , will be zero; otherwise, it will be greater than zero, where Ni

is the set of neighbors of i. To keep the specified formation, i should adjust its pitch (αi) and yaw

(βi) angles so that Ei can be minimized. For AFA, given the team glider positions Pj and directions

αj and βj , with j = 1, 2, . . . ,M , which are obtained by exchanging control packets, in a given

interval δ [s] glider i will adjust its pitch and yaw by solving,

Given: Pi, dij , sH , δ, αj , βj(∀j ∈ Ni)

Find: α∗
i ∈ [αmin, αmax], β

∗
i

Minimize: Ei =
1

2

∑
j∈Ni

kij∆x
2
ij

Subject to: ∆xij = ∥
−−→
PiPj + (v⃗j − v⃗i)δ∥ − dij ; (3.59)

∥v⃗i∥ · cosαi = sH ; (3.60)

where dij is the equilibrium distance between i and j in the formation,
−−→
PiPj is the location vector

from i to j, v⃗i is i’s velocity, and ∥ · ∥ is the vector length. Note that the velocity of each glider

j ∈ Ni can be computed at i as v⃗j = (sH · cosβj , sH · sinβj , sH · tanαj).
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For RFA, we adopt a bio-inspired communication technique that imitates the echolocation mech-

anism of the bat. A bat estimates the distance to an object by shouting and then measuring the acous-

tic echoing time from the object. Also, a bat relies on the Doppler effect, i.e., the frequency shift

caused by the relative velocity, to sense an object’s direction. Specifically, if the object is moving

away from the bat, the returning echo will have a lower frequency than the original sound; con-

versely, the echo from an object moving towards the bat will have a higher frequency. When we do

not rely to absolute position information, we use a similar technique to keep the swarm formation.

The WHOI Micro-Modem can estimate the relative speed of the transmitter exploiting the fre-

quency shift caused by the Doppler effect. Suppose that during steering glider i obtains its relative

speed sij (a scalar) with respect to another glider j. This can be extracted from ongoing inter-

vehicle communications without additional overhead: upon receiving i’s packet, j can estimate the

Doppler frequency shift ∆fij ; the relative speed sij of glider i to j along the line connecting the two

gliders is then calculated from ∆fij = −sij · f0/c, where f0 is the current acoustic communication

central frequency and c is the average underwater acoustic wave speed (1500 m/s). Glider j then

sends sij back to iwith its own location Pj , which can be estimated using the leader’s GPS position,

and relative location and velocity. Both sij and Pj can be embedded in the ongoing communication

packets to avoid additional overhead. In this way, i computes its relative speed vector with respect

to j as v⃗ij = sij ·
−−→
PiPj

∥−−→PiPj∥
.

Consequently, the expected virtual potential energy Ei after time δ can be estimated as Ei =

1
2

∑
j∈Ni

kij∥v⃗ijδ∥2. Hence, the problem of steering i back into formation becomes the search for

the optimal pitch and yaw to obtain a correction velocity v⃗i such that Ei can be minimized,

Given: v⃗ij , sH(∀j ∈ Ni)

Find: α∗
i ∈ [αmin, αmax], β

∗
i

Minimize: Ei = 1
2

∑
j∈Ni

kij∥(v⃗ij + v⃗i)δ∥2;

Subject to: ∥v⃗i∥ · cosαi = sH . (3.61)

By solving this problem, glider i is able to fix its own steering so that the formation error, i.e.,

the virtual potential energy, can be minimized. Note that this is a distributed solution as only local

information from i’s neighbors is needed.
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Chapter 4

Performance Evaluation

In this chapter we first present the testbed emulator in Sect. 4.1, which we proposed for evaluating

the performance of our solutions. Then we evaluate the performance of our proposed solutions

for inter-vehicle communication and coordination. In Sect. 4.2, we evaluate the accuracy of our

internal- and external-uncertainty models; in Sect. 4.3, we evaluate the performance of the QUO

VADIS solution against existing geographic routing and DTN solutions; in Sect. 4.4, we evaluate

the performance of our geocasting solution; in Sect. 4.5, we evaluate the performance of our under-

ice localization solution; and in the last part, we evaluate the performance of our team formation

and steering solution.

4.1 Testbed Emulator

M-Audio Delta 

1010LT Audio 

Interface

PC #2

(Dell Op�plex 755)

PC #1

(Dell Op�plex 755)

USB Cables

Bo!om Layer:

Micro-Modem

Middle Layer: Modem 

DSP Coprocessor

Top Layer: 

Gums�x

Front View of 

Micro-Modem

Micro-Modem 

System:

Gums�x and Micro-

Modem

Figure 4.1: Underwater communication emulator using WHOI Micro-Modems.

Our protocol and cross-layer design are closely coupled with the functionalities of Micro-

Modem and testbed. Therefore, in this section, we present the physical and logical architecture of
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our underwater network testbed. Our underwater testbed relies on a multi-input multi-output audio

interface installed on a Personal Computer (PC) and can process real-time signals using software.

With the help of softwares such as MATLAB, we can precisely adjust the signal gains, introduce

propagation delay, mix the acoustic signals, and add ambient noise and interference in real time.

Consequently, underwater communication models described in [4] can be emulated.

4.1.1 Physical Architecture

As shown in Fig. 4.1, the physical architecture of our testbed includes the following components.

• WHOI Acoustic Micro-Modem: Low-power underwater acoustic Micro-Modem developed

by WHOI. It can transmit 4 different types of packets at 4 data rates (Table 3.1) in four

different bands from 3 to 30 kHz. Control of the Modem is by NMEA commands [73].

• Audio Interface: M-Audio Delta 1010LT PCI Audio Interface [74]. It is a 10-In 10-Out

24-bit PCI audio interface card with maximum sampling rate of 96kHz. It can process the

audio signals from multiple inputs in real time and route them to corresponding outputs.

• Gumstix Motherboard (GM): The embedded system with Marvell PXA255 400 MHz pro-

cessor, 64 MB RAM, and 1GB SD disk storage [75]. It runs OpenEmbedded Linux and

controls the modem via serial port. It is connected to PCs through the USB port.

• PC #1: A Dell Optiplex 755 desktop with Intel 2.4 GHz Quad Core CPU and 2GB RAM. It

runs the computer emulation controller software commanding the GMs. It also controls the

channel emulator running at PC #2 via Ethernet and collects the emulation results from the

GMs.

• PC #2: The same configuration as PC #1. It listens to the control information through the

Ethernet from PC #1 and emulates the underwater communication channels including signal

gain change and ambient noise.

4.1.2 Logical Architecture

The logical architecture of our testbed is shown in Fig. 4.2. When the emulation starts, the Emula-

tion ConTroLler (ECTL) at PC #1 issues commands to the channel emulator at PC # 2, which will



93

Emula�on 

Controller

(PC #1)

Modem #1

Modem #2

Modem #3

Modem #4

Audio

Interface

(M-Audio 

Delta

1010T)

Channel 

Emulator

(PC #2)

100 Mbps Ethernet

USB

USB

USB

USB

PCI Bus

IN

OUT

IN

OUT

IN

OUT

IN

OUT

Out1

In3

Out2

In4

Out3

In5

Out4

In6

Testbed Core

Gums�x #1

Gums�x #2

Gums�x #3

Gums�x #4

COM

COM

COM

COM

Figure 4.2: Logical architecture of proposed testbed.

start emulating the channel according to the parameters provided. ECTL then requests the GMs to

run their network tasks. Whenever a packet is transmitted or received, the GMs inform the ECTL

via USB connection so that ECTL can collect the emulation results and issue further commands.

Upon the command from PC #1, channel emulator at PC #2 will adjust the gains of input sig-

nals, mix them, introduce propagation delay, add ambient noise, and route the processed signals to

corresponding outputs. Acoustic signals are processed in real-time with MATLAB using real-time

audio processing package Playrec [76].

The acoustic gain for each node to node connection in simulation is determined by a Bellhop-

based simulator. For each transmitter-receiver pair, a simulation is run to determine the incoherent

gain given the transmitter depth, receiver depth, and receiver range. Typically the Munk sound speed

profile is used for the simulation because it is a representative open ocean acoustic environment with

a depth of 5000 m.

Note that due to the limited number of Micro-Modems and audio processing channels, we can

only mix signals from up to 3 transmitters at the receiver modem. Therefore, we calculate, select

for transmission, and mix with ambient noise, only the three most powerful signals the receiver

will encounter. This is good enough in general as the inter-vehicle traffic underwater is generally

low. We leave the simulation of more than three simultaneously transmitted signals as a problem

for further research.



94

Table 4.1: Emulation Parameters for Evaluating the Position Uncertainty Model

Parameter Value
Initial deployment region 2.5(L)×2.5(W)×1(H)Km3

Transmission Power [1, 10] W
Glider Horizontal Speed 0.3 m/s

Gliding Depth Range [0, 500] m
Pitch Angle Range [10◦, 35◦]

4.2 Performance Evaluation of Position Uncertainty Model

In this section, we first list out the setup for the simulations. Then the accuracy of our prediction

model is evaluated. Assume that a glider’s drifting (i.e., the relative displacement from the glider’s

trajectory) is a 3D random process {X(t), t ≥ 0} as the following [77]: 1) In the beginning of the

deployment, the drifting is 0,i.e., X(0) = (0, 0, 0); 2) The drifting has independent increments, in

that for all 0 ≤ t1 < t2 < · · · < tn, X(tn) −X(tn−1), X(tn−1) −X(tn−1), . . . , X(t2) −X(t1),

X(t1) are independent; 3) The drifting has stationary increments, in that the distribution of X(t +

φ)−X(t) does not depend on t and is normally distributed with zero mean and covariance matrix

φϕ2I3, where I3 is the 3 × 3 identity matrix, and ϕ is a scaling factor that decides the magnitude

of drifting. Note that this drifting model is ideal since the drifting in any of the x, y, z directions

is Gaussian. Simulation parameters are listed in Table 4.1 and the AUVs are initially randomly

deployed in the 3D underwater region. We use typical velocity for PDVs, which varies from 2 to 10

Km/hr [57]. The velocity of PDVs is dependent on various non-linear factors like drag force, and

friction of the motor. For the underwater glider, we assume the trajectory segment can be described

by the linear form as discussed in Sect. 3.3. For PDV, we assume the trajectory segment can be

described by the quadratic form as (x, y, z) = 0.5ζt2 + ηt + P0, where ζ, η, and P0 denote the

acceleration vector, velocity vector and initial position of the vehicle, respectively. This can be used

to describe the kinematic model of a PDV such as that in [78].

We evaluate the accuracy of our prediction model using statistical non-linear regression and

UKF algorithm. We are also interested in comparing the external-uncertainty prediction accuracy

of our proposed UKF algorithm with that predicted using Kalman Filter. To do this, we compare

the 3D sizes and probability mass functions (pmfs) between those obtained in simulations and those

predicted by our model. Simulations of 100 rounds are done for predictions of gliders and PDVs
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Figure 4.3: Estimated region sizes.
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and the average results are plotted in Figs. 4.3 and 4.4. Note that the ‘Glider (UKF)’ and ‘Glider

(KF)’ denote the uncertainty for a glider predicted using the UKF and KF, respectively, while the

notations for PDV have similar notations.

From these figures, we can see that our external uncertainty model using UKF generally gives

more accurate predictions than that using KF on the region sizes and distribution functions for both

types of vehicle. In any of these axis directions, the vehicle may be randomly located in a range

[τ − ρ/2, τ + ρ/2], where τ is the expected location of this vehicle in this direction. We call ρ

the size of the uncertainty region as it decides the range that the AUV may be distributed. Figure

4.3 plots these sizes at different times, where the horizontal axis is the time duration that an AUV

stays underwater. We assume at time 0 there is no position uncertainty (e.g., AUVs are on the ocean

surface where GPS is accessible) and we assume our estimations of the external uncertainty are run

at the same time. To better compare the distribution functions, we also align the pmfs (i.e., move the

expected positions of the vehicle in these three cases to 0) in Fig. 4.4. Each pmf value at a discrete

position, say x0, is calculated by checking if the vehicle lies in the range [x0 − ψ/2, x0 + ψ/2],

where ψ is the interval size. Note that the prediction accuracy for glider is generally better than that

for PDV. This is because gliders follow saw-tooth trajectories (piece-wise line segments), which is

easier to predict than the non-linear trajectories of the PDVs. Also note that the longer the AUV

stays underwater, the less accurate the prediction will be. Provided an accuracy threshold, our model

can also be used for AUVs to decide when to surface for position correction (e.g., getting a GPS

fix).

-3 dBi gain

z

horizontal 

planez

Figure 4.5: Picture of the SLOCUM underwater glider with BT-25UF mounted on top (Courtesy of
Hans. C. Woithe and Dr. Ulrich Kremer) and radiation pattern of the BT-25UF transducer.
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Table 4.2: Emulation Scenario Parameters for Evaluating QUO VADIS

Parameter Value
Deployment 3D region 2500(L)×2500(W)×1000(H) m3

Confidence Parameter α 0.05
[Pmin, Pmax] [1, 10] W

Packet Types Ξ {0, 2, 3, 5}
Glider Horizontal Speed 0.3 m/s

Gliding Depth Range [0, 100] m
Carrier Frequencies 10, 15, 25 kHz

Bmax 10 hr

4.3 QoS-aware Underwater Optimization Framework for Inter-vehicle Communi-

cations

QUO VADIS is implemented and tested on our underwater communication emulator as shown in

Fig. 4.1. We are interested in evaluating the performance of the proposed solution in terms of e2e

energy consumption, e2e reliability (i.e., e2e delivery ratio), average bit rate of a link, and overhead,

under an environment that is described by the Bellhop model (and the Munk acoustic speed profile

as input).

Assume that a glider’s drifting model is the same as in Sect. 4.2. Emulation parameters are listed

in Table 4.2. The radiation pattern of the BT-25UF transducer (Fig. 4.5) is used in the emulations.

Every 10 seconds, a packet is generated in each node. A glider is randomly selected as the collector

and half of the other gliders are randomly selected to forward their packets towards it. Note that it

actually is a scenario for deep water. We will also evaluate the performance in shallow water, where

acoustic waves propagate differently.

We are interested in evaluating the performance of our solution for the two classes of traffic in

Sect. 3.4.2, using either the BT-25UF transducer or an ideal omni-directional transducer (with gain

equal to 0 dBi). We also want to compare the performance of our solution, which delays the trans-

mission for optimal topology configuration, with the solution without delaying the transmission. For

convenience, we denote QUO VADIS for Class I traffic using the BT-25UF transducer, for Class I

traffic using the ideal omni-directional transducer, for Class II traffic using the BT-25UF transducer,

for Class I traffic using the ideal omni-directional transducer, the solution with no delaying of the

transmission (i.e., ∆t = 0 for P(i,d, tnow,∆tp)) by ‘QUO VADIS I’, ‘QUO VADIS I - OMNI’,
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‘QUO VADIS II’, ‘QUO VADIS II - OMNI’, and ‘QUO VADIS - ND’. We will also compare the

performance of our solution with geographical routing solutions – MFR, GRS, CRM, and PTKF –

and DTN solutions – RAPID, Spray and Wait, and MaxProp – as review in Sects. 2.1 and 2.2. To

make the comparison fair, we use two variant protocols for each of these solutions by adding the

constraints of the two classes of traffic to these solution. For example, we denote the MFR solution

with Class I constraints in (3.37) by ‘MFR I’, and the solution with Class II constraints in (3.37) by

‘MFR II’.

The following networking metrics are compared:

• e2e energy consumption: the average energy consumed to route one bit of data to the desti-

nation;

• e2e delivery ratio: the number of data packets received correctly over the number of data

packets sent;

• link bit rate: the average bit rate between a transmission pair;

• overhead: the number of bytes used for position and control to facilitate the transmission of

payload data.

For statistical relevance, emulations are run for 50 rounds and the average is plotted with 95%

confidence interval. Emulations are done for different settings and the results are plotted and dis-

cussed in the following subsections.

4.3.1 Comparison With Geographic Routing Protocols

We compare the performance of our solution with geographic routing protocols in Figs. 4.6 and

4.7. As shown in these two figures, we can see that QUO VADIS has better performance than

QUO VADIS - OMNI and QUO VADIS - ND for the same class of traffic in terms of these three

metrics. By delaying packet transmissions to wait for the optimal network topology, the e2e energy

consumption is reduced while the e2e delivery ratio and link bit rate increase (e.g., with 5 gliders, the

energy consumption for QUO VADIS I is around 30% of that for QUO VADIS-ND). By exploiting

the frequency-dependent radiation pattern of the transducer, received signal power may obtained a

gain of up to 20 dB, which we observed in the simulations. Hence QUO VADIS using the BT-25UF
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Figure 4.6: Performance comparison for Class I traffic with geographic routing protocols.
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Figure 4.7: Performance comparison for Class II traffic with geographic routing protocols.
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Figure 4.8: Performance comparison for Class I traffic with DTN protocols.
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Figure 4.9: Performance comparison for Class II traffic with DTN protocols.
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Figure 4.10: Comparison of e2e delay with DTN protocols.
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transducer has better performance than that using the omni-directional transducer. Due to the QoS

requirements, retransmissions are needed to recover link errors, resulting in higher e2e delivery

ration for Class II traffic than for Class I traffic. On the other hand, this leads to more energy

consumption.

Different versions of our QUO VADIS solutions also perform better than geographic routing

protocols GRS, MFR, CRM and PKTF. This is because that uncertainty in location leads to errors

in route selection, packet transmissions and transmission power estimates. Also these geographic

routing protocols do not consider the propagation delay underwater, which results in degraded com-

munication performance. Interesting enough, we can see that among these geographic routing pro-

tocols, PKTF offers the best performance. This is because it jointly considers the transmission

power and routing to minimize the e2e energy consumption. Therefore it performs better than the

other geographic routing protocol, which only consider the distance or angle metrics for routing

(not closely related to network performance). GRS gives the worst performance since it generally

needs to forward the packet to the node that is far from the transmitter, which introduces bad link

performance. Similarly, CRM performs better than MFR as the CRM has less probability to forward

packets to node that is far away than MFR does.

4.3.2 Comparison with DTN Solutions

We further compare QUO VADIS with the DTN solutions – RAPID, MaxProp and Spray and Wait.

As shown in Figs. 4.8 and 4.9, QUO VADIS gives improved performance over RAPID, MaxProp

and Spray and Wait. The is mainly due to that these DTN solutions transfer packets once the neigh-

bors are in the transmission range. Such schemes may be good for scenarios where the connectivity

is intermittent. However, the performance may not be optimal since this may not be the time to

achieve the best link performance. In contrast, QUO VADIS predicts and waits for the best network

configuration, where nodes move closer for the best communications. So the e2e delivery ratio

and link bit rate of QUO VADIS is the highest while its energy consumption is minimal. Note that

among these compared DTN solutions, RAPID performs the best. This is because RAPID prioritizes

old packets so they won’t be dropped. MaxProp gives priority to new packets; older, undelivered

packets will be dropped in the middle. Spray and Wait works in a similar way, which does not give

priority to older packets. On the other hand, Spray and Wait is slightly better than MaxProp. This
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is because in our scenario, the network connectivity is not disrupt. The way MaxProp routes based

on the e2e delivery ratio estimation will be very different from that Spray and Wait does, i.e., just

transmits the packet to a neighbor then lets the neighbor continue to forward it. Moreover, MaxProp

still needs to pay for the overhead to obtain the global e2e delivery ratio information.

4.3.3 End-to-end Delay Comparison

To see QUO VADIS can meet the delay requirement of the delay-tolerant traffic, we also calculate

and plot the e2e delays of these solutions. As shown in Fig. 4.10, QUO VADIS - ND gives the least

e2e delay. Compared to QUO VADIS and QUO VADIS - OMNI, QUO VADIS - ND does not wait

for the vehicles to move to the optimal configuration yet more retransmissions are necessary. As

the vehicle speed is much slower than the acoustic speed, QUO VADIS - ND still needs much less

time than QUO VADIS and QUO VADIS - OMNI even though more retransmissions are needed

(thus resulting in more communication delay). Similarly, the huge difference between vehicle speed

and acoustic speed leads to the result that QUO VADIS and QUO VADIS - OMNI need more time

than the DTN protocols (RAPID, MaxProp, and Spray and Wait), especially when the number of

vehicles is small (where average inter-vehicle distance is large). On the other hand, by taking the

position uncertainty into account, communications using QUO VADIS - ND is more reliable than

those using RAPID, MaxProp or Spray and Wait so less delay is incurred. QUO VADIS has less

delay than QUO VADIS - OMNI due to the improvement in communications by exploiting the

directional transducer gain. Also Class II traffic generally has more e2e delay than Class I due to

the need for retransmissions. Last, note that as the number of gliders increases, the delays of QUO

VADIS and QUO VADIS - OMNI drop quickly. This is because average inter-vehicle distance

becomes smaller and the number of close neighbors increases, which reduces the need for a glider

to wait a long time until a neighbor moves close.

4.3.4 Overhead Comparison

We plot and compare the overheads (per node) of these protocols in Fig. 4.11. Note that as QUO

VADIS, QUO VADIS - ND, and QUO VADIS - OMNI work almost the same way, i.e., the un-

certainty region information is broadcast periodically (here the period is taken to be 60 s), their
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Figure 4.11: Comparison of the overhead.

overheads are the same and thus we use QUO VADIS in the figure to represent these variant ver-

sions. Similarly, nodes running the geographic routing protocols GRS, MFR and CRM only need to

periodically broadcast the position information so their overhead is basically the same. Hence we

use GRS/MFR/CRM to represent them.

Surprisingly, even though QUO VADIS achieves the best network performance, its overhead

is not the biggest. The protocols with the larger overhead are RAPID and MaxProp. In order to

work, RAPID needs the following control information: average size of past transfer opportunities,

expected meeting times with nodes, list of packets delivered since last exchange, the updated de-

livery delay estimate based on current buffer state, and information about other packets if modified

since last exchange with the peer, which takes a large number of bytes. MaxProp needs to exchange

a list of the probabilities of meeting every other node on each contact, which is basically global

information. It also has the neighbor discovery overhead. Compared to RAPID and MaxProp, QUO

VADIS only needs to exchange the external uncertainty information of itself and the destination

node, which is obviously less. On the other hand, PKTF needs a probe message that has five data

fields. Only the nodes in the selected path are required to respond with a probe – whether it is sent
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for the forwarding or reverse direction. The Spray and Wait protocol reduces transmission over-

head by spreading only a few number of data packets to the neighbors. The source node then stops

forwarding and lets each node carrying a copy perform direct transmission. In our emulation, we

select the number to be one to make the comparison fair and hence the overhead is small. Lastly,

for the other geographic routing protocols GRS, MFR and CRM, the nodes just need to know the

geographic locations of the neighbors and the destination. Therefore the overhead required is the

least. Note that here it is not necessary to differentiate the two classes of traffic since the overhead

difference is small.

4.3.5 Performance in Shallow Water

So far the results are obtained using the setting in Table 4.2, which is for the deep water. We change

the network scenario to the shallow water scenario by setting the depth of the 3D region to 200 m.

In this shallow water scenario, the path loss estimated by the Urick’s model is very different from

that estimated by the Bellhop model. We had anticipated the performance will degrade because of

this mismatch. Surprising enough, as shown in Fig. 4.12 and 4.13, we find the performance (in

terms of e2e delivery ratio, energy consumption, and link bit rate) in the shallow water is actually

better. A more careful analysis reveals the reason – the existence of the surface duct in the shallow

water. Surface duct is basically a zone below the sea surface where sound rays are refracted toward

the surface and then reflected. The rays alternately are refracted and reflected along the duct out to

relatively long distances from the sound source. Hence the acoustic waves are relatively concen-

trated in the surface duct, leading to less path loss. This consequently leads to improved network

performance.

4.3.6 Performance using Different Uncertainty Update Intervals

Emulations so far have been fixing broadcast interval of uncertainty region to 60 s. Our last interest

is to evaluate the performance of the QUO VADIS variants when different broadcast intervals are

used. Therefore we re-run the emulations for two more cases: i) half of interval (i.e., 30 s); and ii)

double of interval (i.e., 120 s). From Fig. 4.14 and 4.15, we can see that the performance of the

QUO VADIS variants becomes worse when the update interval is doubled. This is because when

the interval is doubled, the position uncertainty information becomes less accurate. This leads to
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Figure 4.12: Shallow water: performance comparison for Class I traffic.
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Figure 4.13: Shallow water: performance comparison for Class II traffic.
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Figure 4.14: Uncertainty update interval: performance comparison for Class I traffic.
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Figure 4.15: Uncertainty update interval: performance comparison for Class II traffic.
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larger error in selection of neighbor for packet forwarding and estimation of transmission power.

On the other hand, halving the interval leads to improvement of performance due to the uncertainty

information is updated in a more timely manner (so routing error becomes smaller and transmission

power is better estimated). However, this obviously leads to the overhead increase. Therefore the

tradeoff between overhead and metrics such as delivery ratio, energy consumption and link bit rate

should be carefully considered for different applications. Here we use “QUO VADIS - Half”, “QUO

VADIS”, and “QUO VADIS - Twice” to denote the cases with update interval of 30 s, 60 s and 120

s, respectively.

To sum up, our proposed framework QUO VADIS improves the network performance for delay-

tolerant applications in terms of e2e energy consumption, delivery ratio, and link bit rate by wait-

ing for a ‘favorable’ topology configuration and by exploiting the gains of directional transducers.

Through emulations for different setups, we demonstrated that they can offer better performance

than the well-known geographic routing and DTN protocols when serving two classes of delay-

tolerant traffic.

4.4 Geocasting Solution

Both versions of our proposed geocasting solution are implemented and tested via simulations.

We are interested in evaluating the performance of our solution to see if it achieves our goal –

maximizing the number of nodes receiving the geocasting packet in a given time. Our simulation

is based on the Bellhop model. Simulation parameters are set as: number of nodes = 100, −→v =

(10, 0, 0) Km, c = (20, 0, 10) Km, r = 5 Km, R = 2 Km (denoted as “Setting I”). Nodes

are uniformly distributed in the specified geocasting region with drifting model as in Sect. 4.2. The

communication parameters are based on the specifications and measurements of the WHOI acoustic

modem.

We compare the performance of our solution with two well-known geocasting solutions that

were originally designed for terrestrial wireless networks, i.e., the Location-Based Multicast (LBM)

[36] algorithm and GeoTORA [37]. In LBM, a node forwards packets to the geocasting region if

it is within the forwarding zone, which is generally a region containing the geocasting region. If

a node is in the geocasting region, it simply forwards the packets to all the neighbors. Outside

the forwarding zone packets are discarded. Here we use the second scheme of LBM [36], where
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packets are forwarded when nodes are closer to the center of the geocasting region. GeoTORA is a

geocasting solution based on the Temporally Ordered Routing Algorithm (TORA) [38], a unicasting

algorithm for ad hoc networks. It maintains a single directed acyclic graph, where the directions

are defined by assigning a height (the distance to the destination region) to each node. A packet

is always forwarded to a neighbor with lower height. Nodes in the geocasting region are assigned

height 0. Neither LBM nor GeoTORA consider the propagation delay.

We compare the performance of the two versions of our solution with LBM and GeoTORA in

the following scenarios: i) source node located in the base of the cylinder region; ii) different radius

sizes of the geocasting cylinder; iii) different node densities; and iv) source node located in the

middle of the cylinder region surface. In order to study the pros and cons, we are interested in the

percentage of nodes that received the geocasting packet at a given time. At the same time, we also

want to measure the control overhead of each algorithm. Simulation results for these metrics are

plotted in Figs. 4.16, 4.17, 4.18, and 4.19. The following is observed:

1) As shown in Figs. 4.16 and 4.18, our one-hop version solution performs the best, i.e., it takes

the least time to geocast to all nodes within the region. However, this comes at the price of the

largest overhead due to the need to exchange location information between neighbors (Figs. 4.17

and 4.19). Our no-hop version solution uses the second least time to finish geocasting the region.

Due to the use of the NOTICE packet, the overhead it uses ranks the second among these four

algorithms.

2) LBM algorithm performs the worst – using the largest amount of time to finish geocasting.

This is because it simply floods the packet without coordination, leading to a large number of colli-

sions. Therefore, retransmissions are needed, thus resulting in increased e2e delay. In this case, no

control is needed to coordinate the nodes so the overhead is the lowest.

3) GeoTORA ranks the third among these four algorithms (Figs. 4.16 and 4.18). As it needs to

use the TORA protocol to discover the geocasting routes, it waits the longest time before geocasting.

Once the routes are discovered, the control overhead decreases as it is only needed when a route

breaks (route maintenance). As GeoTORA does not rely on simple flooding, it has less collisions.

Hence, its e2e geocasting delay is less than that for LBM. However, as propagation delay is not

considered, it has more packet collisions than the two versions of our solution.

4) As shown in Fig. 4.18, it takes less time to finish geocasting from the middle of the cylinder
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region than from the base of the cylinder region, which is obvious since geocasting can be done in

both directions along the cylinder. This confirms the intuition that it is better that the geocasting be-

gins from the middle of the geocasting region. It also gives a guideline for unicasting the geocasting

packet from the surface station to the geocasting region.

5) By doubling the node density, the number of neighbors also double. Hence, the probability

of packet collisions may increase, leading to longer geocasting finish time, as confirmed by the sim-

ulation results (Figs. 4.16(c) and 4.17(c)). Similar results can be observed by halving the cylinder

radius (Figs. 4.16(b) and 4.17(b)). Interesting enough, the increase of geocasting finish time for

both versions of our solution is much less than for LBM and GeoTORA. This is due to the selection

of appropriate τs to de-synchronize transmissions. The increase of geocasting finish time for the

one-hop version is less than for the no-hop version since τ is computed online for the one-hop ver-

sion. Also, the control overhead for the one-hop version is relatively constant as nodes only need to

broadcast location information periodically. Even though location information may be lost when the

link is bad, nodes can use past information to predict the trajectory of a neighbor so the estimation

of propagation delay is accurate. On the other hand, the no-hop version needs more retransmissions

due to the lack of neighbor information, leading to increase in control overhead. Such situation is

more severe in LBM and GeoTORA.

In sum, using more information from the neighborhood, nodes are able to schedule their packet

transmissions in a better way so that collisions can be reduced or avoided, which leads to a higher

e2e geocasting reliability. Moreover, our solution performs better than LBM and GeoTORA, two

solutions originally designed for terrestrial wireless networks.

4.5 Under-ice Localization

The under-ice localization solution is implemented and tested on our underwater communication

emulator. Our solution is compared against AAL, DNRL, and CNA, as introduced in Sect. 2.3,

under an environment that is described by the Bellhop model [5]. We use the typical Arctic sound

speed profile as in [79] and the corresponding Bellhop profile is plotted in Fig. 4.20. Note that we

use 25 KHz, the sound frequency in use for our WHOI modem. We modify AAL, DNRL, and CNA,

as they were originally designed for settings that are quite different from the under-ice environment.

Specifically, AAL, DNRL and CNA all use the AUV that surfaces last as reference node because
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(a) Results using parameters in Setting I
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(b) Results using parameters in Setting I except halving the
cylinder radius
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(c) Results using parameters in Setting I except doubling
node density (i.e., doubling number of nodes)

Figure 4.16: Comparison of reliability.
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(b) Results using parameters in Setting I except halving the
cylinder radius
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(c) Results using parameters in Setting I except that node
density becomes two times

Figure 4.17: Comparison of control overhead.
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Figure 4.18: Geocasting from the middle of the cylinder surface.

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

time [s]

C
on

tr
ol

 O
ve

rh
ea

d 
[B

yt
es

 p
er

 m
in

ut
e]

 

 
No Neighbor Information
One−Hop Neighbor Information
LBM
GeoTORA

Figure 4.19: Control overhead (from the middle of the cylinder surface).
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Figure 4.20: Bellhop profile for typical Arctic environment.

intuitively the shorter an AUV stays underwater (the less time it stays in an uncertain environment

after a GPS fix), the less uncertain its position is. Triangulation is employed for position calcula-

tion in AAL and DNRL, while EKF filtering is used in CNA. We are also interested in seeing the

performance improvement that we get using the external uncertainty notion. Therefore, we imple-

ment another version of our proposed localization solution without using external uncertainty, i.e.,

forcing the position uncertainty to be zero. We denote this modified version and the original version

by ‘Proposed solution w/o EU’ and ‘Proposed solution w/ EU’, respectively (in this section, they

denote the solutions for under-ice localization).

In order to evaluate the localization performance, two metrics, the localization error and the

deviation of error, are used. Localization error is defined as the distance between the actual and the

estimated AUV position. The deviation of error is the amount the localization error deviating from

the total averaged error. The average localization error Ē and deviation of error σ are plotted. The

formulae of Ē and σ are expressed as,

Ē =
1

Lt

Lt∑
j=1

(
1

N

N∑
i=1

Ei

)
, σ =

√√√√ 1

N

N∑
i=1

(
Ei − Ē

)2
, (4.1)

whereN is the number of AUVs in the UW-ASN,Ei represents the localization error for each AUV

operating in the UW-ASN at that particular time, and Lt is the number of times the localization is

performed, such that Lt = Tend
∆T .
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Figure 4.21: Two scenarios for simulations: different dotted circles represent different scenarios.

Table 4.3: Simulation Parameters for Evaluating Under-ice Localization Solution
Total Time 10600 s (∼2.94 h)
Time Interval, ∆T 60 s

Deployment 3D Region 2000(L)×2000(W)×1000(H) m3

Confidence Parameter, α 0.05
AUV Velocity 0.25-0.40 m/s

AUV Depth Range [0,1000] m
Typical Currents 0.01-0.03 m/s [80]
Extreme Currents 0.04-0.06 m/s [80]
Water Temperature Range [-2,2] ◦C

Salinity Range [32.5,35] ppt
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(a) Location: Bayfront Park bay, Lavallette, NJ
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(b) Doppler speeds measured at node 1.
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(c) Doppler speeds measured at node 2.

Figure 4.22: Doppler speed measurement. Only part of the measurements are plotted for clear
visualization. Time coordinates vary due to different reception time.
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(a) Localization error comparison (6 AUVs)
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Figure 4.23: Scenario 1 with Typical Currents: under the ice mission with no resurfacing.
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(a) Localization error comparison (6 AUVs)
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Figure 4.24: Scenario 1 with Extreme Currents: under the ice mission with no resurfacing.
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(a) Localization error comparison (6 AUVs)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

time [s]

de
vi

at
io

n 
[m

]

 

 
Proposed Solution w/ EU
Proposed Solution w/o EU
CNA
DNRL
AAL

(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Figure 4.25: Scenario 2 with Typical Currents: under the ice mission with resurfacing.
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(b) Deviation comparison (6 AUVs)
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(c) Localization error for number of AUVs

Figure 4.26: Scenario 2 with Extreme Currents: under the ice mission with resurfacing.
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4.5.1 Simulation Scenarios

The parameters for our simulations are listed in Table 4.3. We further assume that ongoing com-

munication packets are generated according to the Poisson traffic model with arrival rate being 3

packets per minute. As shown in Fig. 4.21, we utilize the following two specific scenarios.

Scenario 1: This scenario involves a team of AUVs who collaboratively explore an underwater

region located under ice. These AUVs remain under-ice for the duration of the mission and do not

return to the surface until the mission is completed.

Scenario 2: This scenario is similar to the first except that individual AUVs will periodically

surface to update their positioning via GPS. These AUVs take turns to go back to the surface at a

predefined interval, which is 4000 s in our simulations. In order to avoid ice cover, these AUVs

return to the edge of the ice sheet where they were deployed. Once an AUV surfaces, it acquires a

GPS fix and updates its current coordinate position (position uncertainty is also reset).

Both scenarios are tested with typical and extreme currents, whose speed ranges are listed in

Table 4.3. A random 3D direction is chosen for the current throughout one round of simulation.

The Doppler data is based on the 6-hour Doppler speed measurement that we took using WHOI

modems on November 20th, 2011 in the Bayfront Park bay, Lavallette, NJ, as shown in Fig. 4.22.

Our measurement shows that most of the Doppler speeds are low, similar to the part we plot here.

Note that the right hand side in (3.49) is replaced with the measured Doppler speed here as there is

no need to calculate the Doppler shifts.

4.5.2 Evaluation Results

Real time (one simulation run) localization errors and deviations of error are plotted in the first two

subfigures of Figs. 4.23-4.26. Moreover, to obtain results of statistical significance, 250 rounds were

conducted for varying numbers of AUVs. The average errors for the AUV’s predicted location are

plotted in Figs. (4.23-4.26)(c) with 95% confidence intervals.

Scenario 1: As shown in Figs. 4.23 and 4.24, our original solution ‘Proposed solution w/ EU’

performs the best. In the typical current setting, ‘Proposed solution w/ EU’ obtains about 74.6%

less error than ‘Proposed solution w/o EU’ while it obtains 80.4% less error in the extreme current

setting. This is mainly due to the use of the external uncertainty model to predict the position and
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distribution of the AUVs and the ability to minimize the localization uncertainty. ‘Proposed solution

w/o EU’ ranks the second in terms of error performance because an AUV can leverage the ongoing

communications and cooperation of other AUVs for localization. Even though CNA uses EKF to

predict the positions, its performance is worse than ‘Proposed solution w/o EU’ since the AUV can

only use its own states for position estimation. On the other hand, CNA is still better than DNRL

and AAL due to the use of EKF filter, and DNRL performs better than AAL since it takes the current

influence into account.

By comparing Figs. 4.23 and 4.24, we can see that under extreme conditions, the localization

error keeps increasing, since more dislocation is incurred by the extreme currents. Interestingly

enough, we can see that the performance of our solution without using external uncertainty is not

much better than that using CNA. In this case, using Doppler information does not help improve

the localization much since the position uncertainties associated with other AUVs are also large and

thus the performance is not too much better than that of using EKF. However, our solution using

external uncertainty still performs the best due to the ability to estimate the position uncertainty and

then use such information to minimize uncertainty.

Scenario 2: As shown in Figs. 4.25 and 4.26, the performance ranking for these solutions

closely resembles that in Scenario 1. However, the localization performance in Scenario 2 is much

better than that in Scenario 1 since AUVs can obtain position correction periodically, as seen by

comparing Figs. 4.23 with 4.25 (or Figs. 4.24 with 4.26). From these figures, we can see that

localization error and deviation decrease when AUVs surface, i.e., at 4000 s and 8000 s in the results.

Moreover, we can see that for typical current settings in Scenario 2, the localization error and its

deviation can stay within certain threshold for ‘Proposed Solution w/ EU’, while the error of other

solutions tends to increase. This shows the effectiveness of our proposed solution in minimizing the

localization uncertainty.

Communication Overhead: Last, we compare the communication overhead of our solutions

against other solutions. As shown in Fig. 4.27, ‘Proposed solution w/o EU’ achieves less overhead

than CNA, DNRL and AAL due to the ability to exploit the Doppler shifts of ongoing communi-

cations for localization, reducing the use of ranging packets. ‘Proposed solution w/ EU’ has the

biggest communication overhead in the beginning because of the need to broadcast external uncer-

tainty information (such as pdf information). However, due to the ability to optimize the update
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Figure 4.27: Comparison of communication overhead.

intervals Ts and Tp as in Sect. 3.6.3, its communication overhead drops quickly to a level that is

lower than CNA, DNRL and AAL. CNA has higher overhead than DNRL and AAL as CNA needs

to broadcast additional information such as velocities and sensor readings for EKF while DNRL

and AAL only need to broadcast the position and time information that is embedded in the ranging

packet. Note that in ‘Proposed solution w/ EU’, to save the overhead, when the AUVs broadcast

the pdf information, they only broadcast the key parameters if the pdf is one of the well-known dis-

tributions (e.g., the average and standard deviation for a normal distribution). Otherwise, the point

mass function of a finite number of points is broadcast.

4.6 Team Formation and Team Steering

In this section, we first outline the objectives of our emulation and its setup for the AUV coordination

solution; then, we discuss the results for representative scenarios.
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Figure 4.28: Screenshot of the 3D visualization of our solution: global view of a team with 3 gliders.

4.6.1 Emulation Overview and Setup

We are interested in comparing the performance of our coordination algorithms (which use un-

derwater acoustic communications) in terms of coordination errors with the solutions without using

underwater communications or coordination algorithms. Specifically, our solution is compared with

the following two solutions. The first one is the solution using satellite to exchange coordination in-

formation instead of using acoustic communications. In this solution, all gliders surface for satellite

communications every 2 hours, while underwater they do not exchange coordination information.

Once they have exchanged the control information, they use the AFA algorithm to set their steering

angles and then keep steering with the calculated angles until the next surface time. The second one

is the solution where gliders do not coordinate at all. Each glider just steers itself to the destination

without exchanging coordination information with other gliders. For convenience, in the following

figures, we denote our proposed solution that uses acoustic communications, the solution using only

satellite communications, and the solution without coordination as “Acoustic,” “Satellite,” and “No

Coordination,” respectively.

The team formation and steering solution is implemented and tested on our hybrid testbed in

Sect. 4.1. We are interested in the performance of different solutions in the presence of ocean

currents. A 3D visualization demo is also made during the implementation of our solution as shown
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Figure 4.29: Screenshot of the 3D visualization of our solution: individual view of glider 2. The
transparent sphere (halo) at the glider head means that it is team leader.

Table 4.4: Emulation Parameters for Evaluating the Team Formation and Steering Algorithms

Parameter Value
Initial deployment region 3000(L)×3000(W)×500(H)m3

Interval ∆ 30 s
Transmission Power 10 W

Glider Horizontal Speed (Relative) 0.3 m/s
Gliding Depth Range [0, 500] m

Pitch Angle Range [10◦, 35◦]
Trajectory Length 8000 m

in Figs. 4.28 and 4.29, so that the movement and trajectories of the gliders can be visualized. More

details about the demo can be found at [81].

We simulated these solutions considering the following different ocean current profiles. 1) Cur-

rent Profile 1: current along x direction with constant velocity; 2) Current Profile 2: current

along y direction with constant velocity; and 3) Current Profile 3: ocean gyre current model as in

Fig. 4.30, i.e., a circular eddy with counter-clockwise tangential velocity profile sH · r · exp(−2r2),

where r is the ratio of the distance from a point to gyre center to a reference distance D [1]. We

assume the current profiles are vertically constant, i.e., the current velocities are the same if the

horizontal locations are the same. More realistic ocean models will be studied and solutions dealing

with these models will be proposed in our future work.
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Figure 4.30: Ocean current profile [1]. Each thin arrow indicates ocean current speed and direction
at that point, while each thick arrow indicates the starting position and direction of the planned
trajectory in Sect. 4.6.4. The position is relative to the gyre center and scales relative to reference
distance D.
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(a) Deviation from planned trajectory
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(c) Displacement error during steering

Figure 4.31: Performance of the proposed solution for ocean current profile 1 (speeds are in m/s).
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(c) Displacement error during steering

Figure 4.32: Performance comparison of different solutions for ocean current profile 1 at v =
0.1m/s.
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Figure 4.33: Performance for ocean current profile 2 (speeds are in m/s).
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Figure 4.34: Performance comparison of different solutions for ocean current profile 2 at v =
0.05m/s.
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Emulation parameters are listed in Table 4.4. The direction of the planned trajectory is along

the x-axis direction. In the beginning, gliders are randomly deployed in an initial 3D region. They

are expected to form an equilateral triangle with inter-glider distance of 400 m and then steer along

the planned trajectory.

We use the following three metrics to evaluate and compare performance. 1) Deviation From

Trajectory (DFT): the distance from the centroid of the team to the planned trajectory. This is used

to characterize how well the algorithms work to keep the glider team on the planned trajectory; 2)

Formation Perimeter Error (FPE): the difference between the actual formation perimeter and the

perimeter of target formation geometry. This offers a way to estimate the distortion of the whole

team’s formation; and 3) Displacement Error (DE): the average displacement distance of each

glider from its expected location, i.e., the average distance from one glider’s actual position to its

expected position. This metric quantifies how well the gliders can maintain the expected formation.

Emulations are run and the above metrics vs. the time from when the gliders are deployed are

plotted in Figs. 4.31-4.36, which are discussed in the following. Note that different solutions and

different ocean current models have different finish times. This is because different solutions or

current models lead to different movement trajectories and, thus, different finish times. We stop the

emulation when it is clear that getting to the end point of the planned trajectory is impossible and

plot the metrics in intervals where another solution succeeds. Last, but not least, note that the plot

of DE starts from Phase II as DE in Phase I is meaningless.

4.6.2 Performance using Ocean Current Profile 1

In this case, the performance of our proposed solution is plotted in Fig. 4.31 for different velocities

v. As the ocean current speed increases, DFT, FPE and DE all increase, which is not difficult to

understand. After all, the greater the current, the harder for the team is to stay in the expected

position. From this figure, we can see that when the ocean speed is at 0 m/s and 0.1 m/s, the glider

team using our proposed solution can stay close to the planned trajectory. Note that even at v = 0,

these error metrics are not perfectly zero. This is because the physical constraints of the glider (such

as sawtooth movement and pitch angle range) make it impossible to achieve perfect coordination.

At a speed of 0.2 m/s, increase rate of FPE and DE becomes large when time is after about 5 or 6

hours. This is because the team is pushed over the target trajectory end point by the strong current,
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Figure 4.35: Performance for ocean current profile 3.
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which is difficult to compensate for.

As shown in Fig. 4.32, when compared to the other two solutions, our proposed solution achieves

lower errors in terms of DFT, FPE, and DE. By exchanging the position information and extracting

Doppler shifts from ongoing communications, our algorithms can adjust the gliding angles for error

minimization in a timely manner. On the other hand, the “Satellite” solution only adjusts the an-

gles of the gliders when they surface; hence, the error keeps accumulating during the long intervals

between surfacing. Steering error is adjusted only when the gliders surface. For the “No Coordina-

tion” solution, though it has less error than the “Satellite” solution in the beginning, the error keeps

increasing without a way to decrease it due to no coordination. In the end, it accumulates more error

than the “Satellite” solution.

4.6.3 Performance using Ocean Current Profile 2

In this case, the direction of the ocean current is perpendicular to the direction of the planned

trajectory. Such an ocean current pushes the gliders sideways and, therefore, away from the planned

trajectory. As shown in Fig. 4.33, when the current speed is at 0.05 m/s, the proposed solution is

able to keep DFT, FPE, and DE within a certain threshold. This verifies the effectiveness of our

solution for team steering. As shown in Fig. 4.34, our solutions leads to the least error in terms of

DFT, FPE, and DE among the three solutions. In fact, through extensive emulations we found that

this is the maximum speed for which our solution is still effective.

4.6.4 Performance using Ocean Current Profile 3

Depending on the relative position of the team in the gyre current model, the performance of our

proposed solution varies. As shown in Fig. 4.30, three cases, “counter-clockwise,” “center,” and

“clockwise” are simulated for D = 4000m. If the glider team moves counter-clockwisely around

the gyre center (corresponding to “counter-clockwise” in Fig. 4.35), the vehicle and the current

speeds add up together, leading to fast accumulation of error. Therefore, in this case the performance

of our solution is worse than that in the “clockwise” case and that in the “center” case. In the

“center” case, the team moves through the gyre via the center, where currents on opposite sides

of the center tend to cancel the error as they move in opposite direction. Interesting enough, in

Fig. 4.36 the performance of our solution is not much better than that of the “No Coordination”,
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Figure 4.36: Performance comparison of different solutions for ocean current profile 3 (“center”
case).
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which is because varying current speed makes it more difficult to coordinate.

In sum, our proposed coordination solution is effective when the ocean current speed is within

a certain threshold (which depends on the current model). Compared to the other two solutions, our

solution leads to lower formation and steering errors.
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Chapter 5

Conclusions and Future Work

Position information is of vital importance in mobile underwater sensor networks. However, fac-

tors such as drifting and localization errors cause uncertainty when estimating an AUV’s trajectory.

In this dissertation we first offered the distinction between two forms of position uncertainty - the

internal and external uncertainty - and then we proposed a statistical approach to estimate an un-

derwater glider’s internal uncertainty. By using the previous estimated positions, a glider is able

to estimate the uncertainty associated with itself (internal uncertainty). This internal uncertainty is

then forwarded to other vehicles, and used as the base to estimate the external uncertainty. We also

extended internal- and external-uncertainty estimation to the general type of AUVs whose trajecto-

ries are predictable.

Based on this uncertainty model, we proposed the following communication solutions.

1) A QoS-aware communication optimization framework called QUO VADIS, which pro-

vides energy-efficient communications among AUVs for delay-tolerant applications. By leveraging

the predictability of AUV trajectories, QUO VADIS waits for a favorable network topology and

hence it can optimize communications by delaying packet transmissions. QUO VADIS also exploits

the frequency-dependent radiation pattern of underwater acoustic transducers to reduce communica-

tion energy consumption by adjusting the transducer directivity on-the-fly. QUO VADIS can serve

two-classes of delay-tolerant traffic, which is a complement of current solutions for underwater net-

works. Performance results showed that QUO VADIS is effective in serving two different classes of

delay-tolerant traffic. Compared with existing well-known geographic routing solutions and DTN

solutions, our proposed solution has lower transmission energy consumption and higher data rates.

Communication energy consumption is further reduced by exploiting the frequency-dependent ra-

diation pattern of underwater acoustic transducers.

2) A reliable geocasting solution, which can be used to efficiently mutlicast data to AUVs in a
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specified geographic region with minimal amount of time. We proposed two versions of geocasting

solution for AUVs based on different degrees of neighbor information whose objective is to reach

the highest number of nodes within a pre-defined directional 3D region in a given amount of time

when the positions of the nodes are uncertain. Based on the external uncertainty estimates, packets

are forwarded along the path that can reach the nodes in the region along the specified direction

in minimal time while maximizing link reliability. Moreover, packet transmissions are scheduled

in an optimal manner in order to avoid collisions and save the number of transmissions. Both

versions of the proposed solution are implemented and tested via simulations, whose results show

that higher reliability can be achieved when more neighbor information is available and that our

solution performs better than LBM and GeoTORA, two well-known geocasting solutions originally

designed for terrestrial networks.

3) An under-ice localization solution, which can minimize the localization uncertainty for

AUVs with high position uncertainty. External uncertainty offers a way to model the position of the

AUV in a probabilistic way. This model is used to estimate the uncertainty resulted from localization

techniques, as shown for our proposed Doppler-based localization and the standard distance-based

localization. Algorithms are then proposed to minimize the position uncertainty and communication

overhead. Our solution is implemented on WHOI modems and compared with several existing

localization techniques using an acoustic communication emulator. It is shown that our approach

achieves excellent localization results with low localization overhead.

Based on these inter-vehicle communication solutions, we proposed a team formation and steer-

ing solution using acoustic modems. Our team formation algorithm minimizes the time to form

the planned geometry formation in minimal time while avoiding glider collisions. A novel team

steering algorithm is devised to minimize the communication overhead for coordination. This al-

gorithm uses Doppler shift information extracted from ongoing opportunistic communications to

estimate the inter-vehicle distance and hence formation error is minimized. Our algorithm is a dis-

tributed solution as only local neighborhood information is used. Our team formation and steering

algorithms were shown to be robust against ocean currents and communication impairments. The

advantage of our solution over the solution that only uses satellite communications for coordina-

tion and over the solution without coordination is verified by simulations using a hybrid underwater

acoustic communication emulator.
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Future work will be to implement our proposed communication and coordination solutions on

AUV platforms and evaluate their performance in ocean experiments. We are building our own

AUV platform for performance evaluation of our solutions. Our proposed communication and co-

ordination solutions can be used as part of the adaptive sampling solution using AUVs to reconstruct

the ocean temperature field. Specifically, given a field to sense, the AUVs should coordinate to take

measurements with minimal cost (such as time or energy) in order to reconstruct the field with ad-

missible error. To achieve this, we will propose a framework that jointly considers the online field

measurements and multi-AUV trajectory planning. Novel distributed algorithms that can minimize

the sampling cost for one-round sampling will be proposed, and more underwater communication

solutions will be designed to coordinate the vehicles. In this way, low sampling cost can be achieved

while the computation complexity per vehicle can be reduced by using distributed algorithms.

We also plan to seamlessly integrate the underwater acoustic sensor networks, underwater robots

or vehicles, and ocean observation infrastructure together. The performance of Ocean Observing

Infrastructure (OOI), robots/vehicles, and sensors can all be improved when they share information

with each other. On one hand, information from existing OOI can be leveraged by underwater

robots, vehicles, or sensors for performance improvement. For example, trajectory planning of the

robots can be made easier with the help of OOI. On the other hand, the sensed data can be used in

existing OOI to reduce sensing errors (e.g., reducing ocean forecasting error). The integration of

these systems can enable the seamless sensing of the ocean. To achieve this goal, we will further

study integration issues among different systems, and develop solutions to enable the ubiquitous

computing and sensing, e.g., solutions to jointly optimize the performance of the integrated system.
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