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                                 ABSTRACT OF THE THESIS 
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Runtime Power Management 

By Sharat Chandra Doddaghatta Shashidhar 

Thesis Director 

Professor Manish Parashar 

Abstract 

Energy efficiency of large-scale data centers is becoming a major concern not 

only for reasons of energy conservation, failures, and cost reduction, but also 

because such systems are soon reaching the limits of power available to them. 

Like High Performance Computing (HPC) systems, large-scale cluster-based data 

centers can consume power in megawatts, and of all the power consumed by such 

a system, only a fraction is used for actual computations. In this paper, we study 

the potential of application-centric aggressive power management of data 

center's resources for HPC workloads. Specifically, we consider power 

management mechanisms and controls (currently or soon to be) available at 

different levels and for different subsystems, and leverage several innovative 

approaches that have been taken to tackle this problem in the last few years, can 

be effectively used in an application-aware manner for HPC workloads. 

To do this, we first profile standard HPC benchmarks with respect to behaviors, 

resource usage and power impact on individual computing nodes. Based on a 

power and latency model and the workload profiles, we develop an algorithm that 

can improve energy efficiency with little or no performance loss. We then 
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evaluate our proposed algorithm through simulations using empirical power 

characterization and quantification. Finally, we validate the simulation results 

with actual executions on real hardware. The obtained results show that by using 

application aware power management, we can reduce the average energy 

consumption without significant penalty in performance. This motivates us to 

investigate autonomic approaches for application-aware aggressive power 

management and cross layer and cross function predictive subsystem level power 

management for large-scale data centers. 
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1 Introduction 

1.1 Motivation    

Power consumption of high performance computing (HPC) platforms are 

becoming a major concern for a number of reasons including cost, reliability, 

energy conservation, and environmental impact. High-end HPC systems today 

consume several megawatts of power, enough to power small towns, and are in 

fact, soon approaching the limits of the power available to them.  For example, 

the Cray XT5 Jaguar supercomputer at Oak Ridge National Laboratory (ORNL) 

with 182,000 processing cores consumes about 7 MW. The cost of power for this 

and similar HPC systems runs into millions per year.  

To further add to the concerns due to power and cooling requirements and 

associated costs, empirical data show that every 10 degree Celsius increase in 

temperature results in a doubling of the system failure rate, which reduces the 

reliability of these expensive system. As supercomputers, large-scale data centers 

are meant to be clusters composed by hundreds of thousands or even millions 

processing cores (1) with similar power consumption concerns (2). 

In addition, high-performance systems are inefficient in their energy 

consumption. Ge et al (3) studied five supercomputers and observed that the 

average performance of these systems is only 54–71% of the peak performance on 

the optimized benchmark package. That inefficiency is mainly caused by an 

unequal distribution between the nodes in the cluster of the various computing, 

communication and I/O activities. During idle or slack times, faster components 
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waste their energy by waiting for slower components. They could be slowed down 

or even shut down to save energy. Existing and ongoing research in power 

efficiency and power management has addressed the problem at different levels, 

including, for example, data center design, resource allocation, workload layer 

strategies, cooling techniques, etc. At the platform level (individual node or 

server), current power management research broadly falls into the following 

categories - processor and other subsystems  (e.g. memory, disk, etc.) level, 

Operating System (OS) level and application level. At the processor level, unlike 

the earlier generations of servers and HPC systems that supported only a reduced 

set of sleep states, current generation systems support advanced power 

management solutions in hardware. For example, the Intel Nehalem processor 

has an integrated micro-controller called Power Control Unit or PCU. It has its 

own embedded firmware and dynamic sensors to monitor current temperature 

and power in real time, and has an integrated power gate, which eliminates the 

problem of power leakage.  

Although the processor is the most power consuming component, other 

subsystems have incorporated energy management functionalities such as 

memory, storage and network interfaces (NIC). Within the OS, there are fewer 

power management techniques available, and include OS control of processor C-

states, P-states and device power states or sleep states. At the application level 

several approaches have been also proposed such as those based on exploiting 

communication bottlenecks in MPI programs. 
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1.2 Problem Description 

In this thesis, we study the potential of application-centric aggressive power 

management of data center's resources for HPC workloads. Specifically, we 

consider how power management mechanisms and controls (currently or soon to 

be) available at different levels and for different subsystems, and leverage several 

innovative approaches that have been taken to tackle this problem in the last few 

years, can be effectively used in an application-aware manner for HPC workloads. 

To use these mechanisms effectively we require cross-layer solutions that are 

driven by the application and which adapt themselves according to application 

demands in terms of physical resources. The goal is to investigate power 

management strategies and their impact on the overall energy consumption in 

order to define an upper bound of possible energy savings and gain sufficient 

experience to develop an autonomic runtime to improve the energy efficiency of 

data centers' resources. 

To do this, we firstly profile standard HPC benchmarks with respect to behaviors, 

resource usage and power consumption. Specifically, we profile the HPC 

benchmarks in terms of processor, memory, storage subsystem and NIC usage. 

From the profiles we observe that across different workloads, the utilization of 

these subsystems varies significantly and there are significant periods of time in 

which one or more of these subsystems are idle for substantial time-intervals, but 

still require a large amount of power. It is worth noting that our approach is 

complimentary to existing solutions at different levels such as those implemented 

within the OS or those that consider applications' load imbalance and 
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communication slacks. Based on the empirical power characterization and 

quantification of the HPC benchmarks, we develop an analytical model that 

incorporates the applications resource usage patterns, where subsystems in a 

computing node support different power states, each with specific entry and exit 

latency, and energy consumption. Furthermore, we use our analysis of HPC 

workloads to estimate which subsystems are essential for the workload in 

question, and which subsystems can dynamically enter and exit lower power 

states (not necessarily idle). We then use the model along with simulations to 

investigate the potential energy saving of deterministic, application-aware, power 

management strategies. We then evaluate our proposed algorithm through 

simulations using empirical power characterization and quantification. Finally, 

we validate the simulation results with actual executions in real hardware. 

The obtained results show that by using application-aware power management, 

we can reduce the average energy consumption without significant penalty in 

performance. The results earlier obtained motivate us to investigate autonomic 

approaches for application-aware aggressive power management and cross layer 

and cross function predictive subsystem level power management for large-scale 

data centers. We study this approach for PGAS applications, specifically the UPC 

implementation of PGAS. 

We also look into applications of Partitioned Global Address Space 

implementations (PGAS), such as Unified Parallel C (UPC), which are an 

emerging alternative that allows shared memory-like programming on 

distributed memory systems. It sparks a new area of interest from the point of 
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view of power management. We study it’s power behavior and analyze the 

potential it offers for runtime power management. From the analysis performed, 

we derive a mechanism to perform runtime power management. We test the 

mechanism under different policies and compare the results to come up with 

optimum policies for PGAS applications - specifically UPC-NAS Benchmarks. 

1.3 Contribution 

The main contributions of this is summarized as follows: (i) that different 

existing techniques for energy management can be combined to improve energy 

efficiency of data center's servers by configuring them dynamically depending on 

the workloads' resource requirements, (ii) profile HPC benchmarks with respect 

to behaviors, resource usage and power impact on individual computing nodes 

and determine empirically (rather than with estimations) possible ways to save 

energy, (iii) formulate an energy consumption model and propose an algorithm 

attempting to improve energy efficiency with little or no performance loss, and 

(iv) quantify possible energy savings of application-centric aggressive power 

management through simulations and actual executions, (v) profile PGAS 

implementations (UPC) of HPC applications, (vi) define suitable policies to 

implement Power management mechanisms from the knowledge gained of the 

power profiles of PGAS applications, (vii) Implement the policies and observe the 

trade-offs with energy and runtime. 
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1.4 Thesis Organization 

The rest of the thesis is organized as follows. In Section 2, we describe 

background and related work. In Section 4.1, we quantify possible power savings 

and profile HPC workloads using standard benchmarks. In section 4.6, we 

develop a power model and an algorithm for predictive and aggressive power 

management based on workload profiles. In Section 4.2, we discuss our 

evaluation and present the obtained results. In section 5, we explore the 

opportunities of saving energy dynamically in PGAS applications. We 

demonstrate PGAS applications showing the potential to be candidates for DVFS, 

mainly due to load imbalance. In section 6Power Profiling, we profile PGAS 

applications with respect to power, perform runtime and energy analysis. Then 

we describe the runtime system that performs application-aware DVFS on PGAS 

applications in 9.1. We perform analysis on the experimental results and find 

optimum policies that suit different benchmarks in 9.3. Finally, in Section 10, we 

conclude the thesis and outline directions for future work. 

2 Background  

There are two types of power management mechanisms available in HPC systems  

2.1 Dynamic Speed Scaling (DSS) 

In DSS, one can change the performance state of the component to save power, ie 

performance can be reduced when not needed and thus energy be saved, and vice 

versa, ie performance increased when needed. 



7 
 

 
 

DVFS (4) is one of the mechanisms in processors, where the performance can be 

controlled by altering either the supply voltage or the dynamic frequency. Since 

voltage flow to a system has to be kept constant during execution (at runtime), we 

can only alter the performance by altering the dynamic frequency and thus 

control the power consumed. In Linux, DVFS is enabled by the cpufreq (5) 

subsystem provided by ACPI specifications. Cpufreq subsystem allows user to set 

processor frequency either statically or dynamically. The Cpufreq structure 

makes use of governors and daemons for setting a static or dynamic power policy 

for the system. There are different modules in the cpufreq subsystem which can 

be used to control CPU frequency. 

2.1.1 Performance Governor: Highest Frequency 

The CPUfreq governor "performance" sets the CPU statically to the highest frequency 

within the range scaling_min_freq and scaling_max_freq. 

2.1.2 Powersave Governor: Lowest Frequency 

The CPUfreq governor "powersave" sets the CPU statically to the lowest frequency within 

the range of scaling_min_freq and  scaling_max_freq. 

2.1.3 Userspace Governor 

The CPUfreq governor “userspace” allows the user, or any userspace program running 

with UID “root”, to set the CPU to specific frequency by making the sysfs file 

“scaling_setspeed” available in the CPU-device directory. The user can determine the 

frequency of CPU by writing the scaling_setspeed  file in the CPU-device directory. 
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2.1.4 Ondemand Governor 

The CPUfreq governor “ondemand” sets the CPU frequency depending on the 

current usage. If CPU utilization rises above the threshold value set in 

the up_threshold parameter, the ondemand governor increases the CPU 

frequency to scaling_max_freq. When CPU utilization falls below this 

threshold, the governor decreases the frequency in steps; that is, it sets the CPU 

to run at the next lowest frequency. The lowest frequency that the CPU can go is 

bounded by scaling_min_freq. After each sampling_rate milliseconds, the 

current CPU utilization is reexamined and the same algorithm is applied to 

dynamically adjust the CPU frequency to current process load. 

2.1.5 Conservative Governor 
 

The conservative governor (introduced in Linux kernel version 2.6.12) is based 

on the ondemand governor. It functions like the ondemand governor by 

dynamically adjusting frequencies based on processor utilization. However, the 

conservative governor increases and decreases CPU speed more gradually. If CPU 

utilization is above up_threshold, this governor will step up the frequency to 

the next highest frequency below or equal to scaling_max_freq. If CPU 

utilization is below down_threshold, this governor will step down the 

frequency to the next lowest frequency until it reaches scaling_min_freq. 

After each sampling_rate milliseconds. The current CPU utilization will be 

reexamined and the same algorithm will be applied to dynamically adjust the 

CPU frequency to current utilization.  
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2.2 Dynamic Resource Sleeping 
 

In Dynamic Resource Sleeping, a processor can be put to low power sleep state, if 

the CPU has  been idle. Cpuidle (6) is a processor-idle management framework 

in the Linux kernel. It provides an interface for any processor hardware to make 

use of different processor idle states (C0-C7) which it enters when it is not 

retiring any instructions. The states here differ in amount of power the processor 

consumed while being in that state and also the latency to enter-exit this low-

power idle state. There may also be other differences like preserving the 

processor state across these idle states, etc based on a specific processor. For 

example, a processor may only flush L1 cache in one idle state, but may flush L1 

and L2 caches in another idle state. There can also be differences around when an 

idle state can be entered and what its impact will be on other logical or physical 

processors in the system. There are C-state governors – menu governor and 

ladder governor which are responsible for placing the processor in the 

appropriate C state. The ladder governor takes a step-wise approach to 

selecting an idle state. Although this works fine with periodic tick-based kernels, 

this step-wise model will not work very well with tickless kernels. The kernel can 

go idle for a long time without a periodic timer tick and it may not get a chance to 

step-down the ladder to the deep idle state whenever it goes idle. A new idle 

governor to handle this, called the menu governor, is being worked on. The 

menu governor looks at different parameters like what the expected sleep time 

is (as seen by dyntick), latency requirements, previous C-state residency and then 
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picks the deepest possible idle state straight away. This governor aims at getting 

maximum possible power advantage with little impact on performance. 

2.3 Performance States 
 

Processor performance states (P-states) are a predefined set of frequency and 

voltage combinations at which the processor operates. With higher frequencies, 

you get higher performance, but to achieve that the voltage needs to be higher as 

well, which makes the processor consume more power. With P-states, the 

operating system can dynamically change the tradeoff between power and 

performance all the time. Although changing from one voltage/frequency 

combination to another takes a bit of time, on current chips, this time is actually 

really short. This time, as well as certain other characteristics, determines how 

the operating system should control the frequency/voltage combinations. 

 Some older x86 processors, as well as embedded processors, have a different 

behavior, and for that reason the Linux kernel implements several different 

algorithms for controlling (governing) the performance state that works best on 

the various processors. For current kernels, you can find information on what is 

running on your system by looking at the files in this 

directory: /sys/devices/system/cpu/cpu0/cpufreq. If this directory is not 

present, there is a good chance that your kernel does not have the CPUFREQ 

feature enabled. 

You can list the available governors by using this command: 

  

#cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors 

ondemand userspace performance 
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In the example above, there are three governors available. In addition to 

the ondemand governor, there are the userspace and performance governors. 

You can see what governor is currently active with this command: 

 

 

You can also change the currently running governor by echoing one of the 

available governors to the scaling_governor file node: 

 

 

2.3.1 P state 

While a device or processor operates (D0 and C0, respectively), it can be in one of 

several power-performance states. These states are implementation-dependent, 

but P0 is always the highest-performance state, with P1 to Pn being successively 

lower-performance states, up to an implementation-specific limit of n no greater 

than 16. 

P-states have become known as SpeedStep in Intel processors 

P-states have become known as SpeedStep in Intel processors as PowerNow! or 

Cool’n’Quiet in AMD processors and as PowerSaver in VIA processors. 

The Performance state are as follows :- 

 P0 max power and frequency 

 P1 less than P0, voltage/frequency scaled 

 P2 less than P1, voltage/frequency scaled 

#cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors 
ondemand 

# echo ondemand > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor 
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 …. 

 Pn less than P(n-1), voltage/frequency scaled 

2.4 System Monitoring Tools in Linux 
 

System monitoring tools are an indispensible part in analyzing system 

performance and profiling the system behavior.  These tools provide metrics 

which can be used to get information about system activities. They are basically 

Unix commands that return realtime data and statistics of system resources like 

CPU, Memory, Network Interface card, applications consuming most of CPU 

time. They provide detailed accounts of resources like cpu-idle time, percentage 

of cpu usage over the last interval, CPU time spent in different performance 

states, amount of free memory, used memory, swapped memory,amountof data 

flowing through different network ports etc. Here is a list of useful system 

commands used to monitor subsystem activity :- 

2.4.1 top - Process Activity Command 

The top program provides a dynamic real-time view of a running system i.e. 

actual process activity. By default, it displays the most CPU-intensive tasks 

running on the server and updates the list every five seconds. 

2.4.2 vmstat - System Activity, Hardware and System Information 

The command vmstat reports information about processes, memory, paging, 

block IO, traps, and cpu activity. 
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2.4.3 mpstat - Multiprocessor Usage 

The mpstat command displays activities for each available processor, processor 

0 being the first one. mpstat -P ALL to display average CPU utilization per 

processor 

2.4.4 free - Memory Usage 

The command free displays the total amount of free and used physical and swap 

memory in the system, as well as the buffers used by the kernel. 

2.4.5 iostat - Average CPU Load, Disk Activity 

The command iostat report Central Processing Unit (CPU) statistics and 

input/output statistics for devices, partitions and network filesystems (NFS). 

2.4.6  netstat and ss - Network Statistics 

The command netstat displays network connections, routing tables, interface 

statistics, masquerade connections, and multicast memberships. ss command is 

used to dump socket statistics. It allows showing information similar to netstat. 

See the following resources about ss and netstat commands 

2.5 Parallel Performance Analysis 

Parallel Performance Wizard (PPW) is a performance analysis tool designed for 

partitioned global-address-space (PGAS) programs, in particular UPC and 

SHMEM programs. The tool features an easy-to-use interface and tight 

integration with PGAS programming models via the GASP interface.  
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In experimental performance analysis, there are two major techniques that 

influence the overall design and workflow of performance tools. The first 

technique, profiling, keeps track of basic statistical information about a 

program’s performance at runtime. It gives the user a high-level view of where 

time is being spent in their application code. The second technique, tracing, 

keeps a complete log of all activities performed by a user’s program inside a trace 

file. Tracing usually results in large trace files, especially for long-running 

programs. However, tracing can be used to reconstruct the exact behavior of an 

application at runtime. Performance analysis in performance tools supporting 

either profiling or tracing is usually carried out in five distinct stages: 

(i)instrumentation, (ii) measurement, (iii) analysis, (iv) 

presentation, and (v) optimization. 

User has to take her original application, instrument it to record performance 

information, and run the instrumented program. The instrumented program 

produces raw data (usually in the form of a file written to disk), which she  gives 

to the performance tool to analyze. The performance tool then presents the 

analyzed data to her, indicating where any performance problems exist in her 

code. Finally, she changes her code by applying optimizations and repeat the 

process until  she achieves acceptable performance. 

2.5.1 Instrumentation Process 

During the instrumentation stage, an instrumentation entity (either software or 

a user) inserts code into a user's application to record when interesting events 

happen, such as when communication or synchronization occurs. 
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Instrumentation may be accomplished in one of three ways: through source 

instrumentation, through the use of wrapper libraries, or through binary 

instrumentation. While most tools may use only one of these instrumentation 

techniques, it is possible to use a combination of techniques to instrument the 

user's application. Source instrumentation places measurement code directly 

inside a user’s source code files. While this enables tools to easily relate 

performance information back to the user's original lines of source code, 

modifying the original source code may interfere with compiler optimizations. 

Source instrumentation is also limited because it can only profile parts of an 

application that have source code available, which can be a problem when users 

wish to profile applications that use external libraries distributed only in 

compiled form. Additionally, source instrumentation generally requires 

recompiling an entire application over again, which is inconvenient for large 

applications. 

2.5.2 Measurement 

In the measurement stage, data is collected from a user's program at runtime. 

The instrumentation and measurement stages are closely related; performance 

information can only be directly collected for parts of the program that have been 

instrumented. 

The term metric is used to describe what kind of data is being recorded during 

the measurement phase. The most common metric collected by performance 

tools is the wall clock time taken for each portion of a program, which is simply 

the elapsed time as reported by a standard clock that might hang on your wall. 
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This timing information can be further separated into time spent on 

communication, synchronization, and computation. In addition to wall clock 

time, a performance tool can also record the number of times a certain event 

happens, the amount of bytes transferred during communication, and other 

metrics. Many tools also use hardware counter libraries such as PAPI to record 

hardware-specific information such as cache miss counts. 

2.5.3 Analysis 

During the analysis stage, data collected during runtime is analyzed in some 

manner. In some profiling or sampling tools, this analysis is carried out as the 

program executes. This technique is generally referred to as online analysis. 

More commonly, analysis is deferred until after an application has finished 

execution so that runtime overhead is minimized. Performance tools using this 

technique are often referred to as post-mortem analysis tools. 

The types of analysis capabilities offered varies significantly from tool to tool. 

Some performance tools offer no analysis capabilities at all, while others can 

compute only basic statistical information to summarize a program's execution 

characteristics. A few performance tools offer sophisticated analysis techniques 

that can identify performance bottlenecks. Generally, tools that provide minimal 

analysis capabilities rely on the user to interpret data shown during the 

presentation stage. 
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2.5.4 Presentation 

After data has been analyzed by the performance tool, the tool must present the 

data to the user for interpretation in the presentation stage. 

For tracing tools, the performance tool generally presents the data contained in 

the trace file in the form of a space-time diagram, also known as a timeline 

diagram. In timeline diagrams, each node in the system is represented by a line. 

States for each node are represented through color coding, and communication 

between nodes is represented by arrows. Timeline diagrams give a precise 

recreation of program state and communication at runtime. For profiling tools, 

the performance tool generally displays the profile information in the form of a 

chart or table. Bar charts or histograms graphically display the statistics collected 

during execution. Text-based tools use formatted text tables to display the same 

type of information. A few profiling tools also display performance information 

alongside the original source code, as profiled data such as the percentage of time 

an instruction contributes to overall execution time lends itself well to this kind 

of display. 

2.5.5   Optimization 

In most performance tools, the optimization stage in which the code for the 

program is changed to improve performance based on the results of the previous 

stages is left up to the user. The majority of performance tools do not have any 

facility for applying optimizations to a user's code. At best, the performance tool 

may indicate where a particular bottleneck occurs in the user's source code and 

expects the user to come up with an optimization to apply to their code. 
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2.6 Parallel Performance Wizard 

To analyze the performance of your UPC programs, you will need to configure 

Parallel Performance Wizard to use a UPC compiler. When measuring performance 

data for UPC programs, all shared data references occurring through direct 

variable accesses will be attributed to the ‘upc_get’ and ‘upc_put’ regions. Shared 

data references with affinity to the current thread will be attributed to the 

‘upc_get_local’ and ‘upc_put_local’ regions. Additionally, in some UPC 

implementations (including Berkeley UPC), a ‘upc_barrier’ will be split into 

‘upc_notify; upc_wait;’ and show up in the ‘upc_notify’ and ‘upc_wait’ regions. 

3 Background and Related Work 

In recent work, Liu et al (7) survey power management approaches for HPC 

systems. As they discuss, since processors dominate the system power 

consumption in HPC systems, processor level power management is the most 

addressed aspect at server level. It involves controlling the sleep states or the C-

states (8) and the P-states of the processor when the processor is idle (6) C-state 

is the capability of the processor to go in various low power idle states with 

varying wakeup latency. P-state is the capability of running the processor at 

different voltage and frequency levels (9). The Advanced Configuration and 

Power Interface (ACPI) specification provides the policies and mechanisms to 

control the C-states and P-states of the processor when they are idle. Modern 

operating systems (e.g. Linux kernel) implement ACPI-based policies to reduce 

the processor performance and power when it is less active or in idle state (10). 

Some processors allow frequency and voltage scaling by which the processor 
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performance and power can be reduced when the processor is less active or in 

idle state. The operating system acts as the master controller of the ACPI policies 

and mechanisms. The ACPI policies and mechanisms are controlled by operating 

system using Operating System Directed Power Management (OSPM) (11). The 

Linux kernel can operate in a dynamic ticks mode to save power (10). The 

dynamic ticks mode eliminates the periodic timer tick and allows processor to be 

in a deeper sleep states when idle without waking it up at constant interval.  

Several approaches to enforce power management based on the workload 

characteristics have already been developed. Some of the most successful 

approaches were based on overlapping computation with communication in MPI 

programs, and using historical data and heuristics. 

 Kappiah et al. (12) developed a system called Jitter that exploits inter-node 

bottleneck in MPI programs (i.e. execute blocked processes due to 

synchronization points in lower P-sates). Lim et al (13) developed a MPI runtime 

system that dynamically reduces CPU performance during communication 

regions assuming that in these regions the processor is not on the critical path. 

Other approaches have also studied the bound on the energy saving for an 

application without incurring in significant delay (14) and implemented solutions 

for scientific applications (15). Freeh et al. proposed a model to predict execution 

time and energy consumed of an application running at lower P-states (16) and 

techniques based on phase characterization of the applications, assigning 

different P-states to phases according the previous measurements and heuristics 

(17). Cameron et al. (18) proposed power management strategies based on 



20 
 

 
 

application profiles but they concentrate only on power management of the CPU 

using dynamic voltage and frequency scaling (DVFS) and does not implement 

any power control of the peripheral devices. Horvath et al. (19) exploited DVFS 

with dynamic reconfiguration in multi-tier server clusters, which is a typical 

architecture of current server clusters. Ranganathan et al. (20) designed a cluster 

level power management controller, which employes a management agent 

running on each server and the server which exceeded the power budget 

according to a Service Level Agreement (SLA), is throttled down to an 

appropriate level. Wang et al. (21) proposed a control algorithm to manage power 

consumption of multiple servers simultaneously. The controller monitors the 

power value and CPU utilization of each server to set the frequency of the 

processors in a coordinated way. Weissel et al. (22) defined an energy-aware 

scheduling policy that benefits from event counters. By exploiting the 

information from these counters, the scheduler determines the appropriate clock 

frequency for each individual thread running in a time-sharing environment. 

 Leveraging DVFS mechanisms, Hsu et al. (23) proposed an automatically-

adapting, power aware algorithm that is transparent to end-user applications and 

deliver considerable energy savings with tight control over DVFS-induced 

performance slowdown. They used Millions of Instructions Per Second (MIPS) as 

a metric to measure CPU boundedness and take decisions on DVFS control, 

whereas Malkowski et al. (24) took advantage of memory-bound phase to select 

CPU frequencies. Rountree et al developed a system called Adagio to collect 

statistical data on task execution slacks (25) compute the desired frequency and 
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represent the result in a hash table. When task executes again, an appropriate 

frequency can be found in a hash table. Other techniques based on switching 

on/off nodes and other networking devices have been also proposed (26). These 

techniques have been also applied to virtualized environments (27) but also 

DVFS techniques have been exploited (28) (29). 

Substantial work has been also done for adapting the RAM memory subsystem 

for saving energy. Delaluz et al (30), (31) studied compiler-directed techniques, 

as well as OS-based approaches (32) to reduce the energy consumed by the 

memory subsystem. Huang et al. (33) proposed power-aware virtual memory 

implementation in OS to reduce memory energy consumption. Fradj et al. (34), 

propose multi-banking techniques that consist of setting individually banks in 

lower power modes when they are not accessed. Diniz et al. (35) study dynamic 

approaches for limiting the power consumption of main memories by limiting 

consumption by adjusting the power states of the memory devices, as a function 

of the memory load. Hur et al. (36) propose using the memory controller (thus, at 

chip level) to improve RAM energy efficiency. They exploit low power modes of 

modern RAMs extending the idea of adaptive history-based memory schedulers. 

Existing research work also addresses the storage subsystem management to 

improve energy efficiency of servers. Rotem et al. (37) focus on the energy 

consumed by the storage devices like hard disks in standby mode. They suggest 

file allocation strategies to save energy with a minimal effect on the system 

performance i.e. the file retrieval time, while reducing the I/O activity when there 

is no data transfer. Pinheiro et al. (38) study energy conservation techniques for 
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disk array-based network servers and propose a technique that leverages the 

redundancy in storage systems to conserve disk energy (39). Other approaches 

have addressed energy efficiency of storage systems by spinning-down/up disk 

(40) and the reliability of such techniques (41). Solid State Drive (SSD) disks have 

been also taken into account towards saving energy consumption for the storage 

subsystem (42). 

The research work discussed above addresses energy efficiency by managing 

different subsystems individually (e.g. CPU via DVFS). However, recent 

approaches have proposed energy efficiency techniques for processor and 

memory adaptations (43) (44). Li et al. (45) combine memory and disk 

management techniques to provide performance guarantees for control 

algorithms. 

In contrast to all these approaches, we consider dynamic configuration of 

multiple subsystems within a single server. Thus, we propose using different 

mechanisms and techniques that have been already developed in different 

domains. Thus, our approach is complimentary to existing and ongoing solutions 

for energy management for data centers. 

3.1 Background and Related work on UPC-PGAS programming 

model 

PGAS is a distributed-shared memory programming model that is slowly gaining 

recognition in High Performance Computing for programmability reasons since it 

incorporates the shared-memory style of programming, but follows the 
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distributed-local memory organization which provides scalability and 

performance. Since the message passing, though present, is not explicit in PGAS, 

and since it incorporates shared-memory style of programming with remote 

accesses to shared memory, one-sided communication it merits a study and 

analysis into it's behavior. Research work on PGAS/UPC have been carried out, 

focusing on primarily performance, scalability issues and compiler optimizations 

to improve it's efficiency and make it comparable with that of MPI. Unified Parallel 

C (UPC) is an extension of ANSI C and is based on partitioned global address 

space programming model. UPC keeps the powerful concepts and features of C 

and adds parallelism; global memory access with an understanding of what is 

local; and the ability to read and write memory with simple statements. The 

simplicity, usability and performance of UPC have attracted interest from high 

performance computing users and vendors. UPC (46) utilizes a distributed 

shared programming model that is similar to shared memory model with the 

addition of being able to make use of data locality. The distributed shared 

memory model divides it’s shared address space into partitions where each 

memory partition  Figure 1 Mi has affinity to thread Thi.  

 

Figure 1 
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3.1.1 UPC Memory Model 

The UPC memory view is divided into private and shared spaces.  Each thread 

has its own private space Figure 2, in addition to a portion of the shared space. 

Shared space is partitioned into a number of partitions each of which has affinity 

with a thread, in other words it resides on the thread’s logical memory space as 

seen in figure 

 

Figure 2 

A UPC shared pointer can reference all locations in the shared space; while a 

private pointer may reference only addresses in its private space or in its local 

portion of the shared space.  Static and dynamic memory allocations are 

supported for both shared and private memory. 

3.1.2 Data Distribution and Coherency in UPC 

Data distribution in UPC is simple due to the use of the distributed shared 

memory programming model. This allows UPC to share data among the threads 

using simple declaration statements. To share an array of size N equally among 

the threads the user simply defines the array as a shared, and UPC will distribute 
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the array elements in a round robin fashion. Since shared memory is accessible 

by all the threads, it is important to take into consideration the sequence in which 

memory is accessed. To manage the access behaviors of the threads, UPC 

provides several synchronization options to the user. First the user may specify 

strict or relaxed memory consistency mode at the scope of the entire code, a 

section of a code, or to an individual shared variable. Secondly the user may use 

locks to prevent simultaneous access by more than one thread. Thirdly, the user 

may use barriers to ensure that all threads are synchronized before further action 

is taken. 

Chen et al (47) compare the performance of benchmarks compiled with their own 

optimizations in BUPC with that of HP UPC compiler. They worked on 

overlapping computation of current iteration and communication of next 

iteration, message coalescing and aggregation, reordering of shared operations 

message pipelining or communication overlap techniques, and providing block 

size information at compile time to avoid affinity tests in order to increase 

performance. Mallon et al provides an upto-date UPC performance evaluation at 

various levels, evaluating two collective implementations, comparing their results 

with their MPI counterparts, and finally evaluating UPC and MPI performance in 

computational kernels. Efforts have been put by Tarek et al (48) to perform 

compiler optimizations and hand tuning like space privatization of local shared 

accesses and block pre-fetching are shown for Sobel edge workload. They also 

consider hand-tuned versions of NPB in UPC and show that if such optimized 

libraries are used, they can performs as well as MPI implementations. Tarek in 
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his paper (49) use synthetic benchmark and UPC application suite involving 

Nqueens Sobel Edge detection and matrix multiplication to study compiler 

performance with different optimizations and highlight it's results with regard to 

remote and local shared memory accesses. They also test the Nqueens benchmark 

for scalability. William Kuchera and Charles Wallace in their paper (50) also 

study the UPC memory model and memory consistency issues 

4 System Level Power Management 

4.1 Studying Energy Saving Possibilities 

The fundamental requirement to study the potential energy saving with the 

approach suggested in this work is to gather reliable usage data for processor, 

memory, storage subsystem and the NIC for a set of representative and standard 

HPC workloads. 

However, we first characterize and analyze the power dissipation of the different 

subsystems and quantify the possible saving using existing techniques based on 

using low power modes to reduce the energy consumption. From the profiling 

information we will be able to obtain patterns (coarse grain) and then identify 

possible opportunities of energy saving in servers for large-scale data centers. 

4.2 Experimental Environment 

 The experiments were conducted with two Dell servers, each with a Intel quad-

core Xeon X3220 processors, 4GB of memory, two SATA hard disks, and two 1Gb 

Ethernet interfaces. We also used a 160GB Intel x25-M Mainstream SATA Solid 

State Drive (SSD) disk. The processors operate at four frequencies ranging from 
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1.6GHz to 2.4GHz. This is intended to represent a general-purpose rack server 

configuration, widely used in large data centers. 

To empirically measure the “instantaneous” power consumption of the servers a 

“Watts Up? .NET” power meter was used. This power meter has an accuracy of 

±1.5% of the measured power with sampling rate of 1Hz. The meter was attached 

between the wall power and the server. We estimate the consumed energy 

integrating the actual power measures over time. 

4.3 Power Saving Quantification 

4.3.1 Quantification 

In order to quantify the possible power savings of a server, we have studied 

empirically the power characteristics of different subsystems individually. 

Specifically, we have studied CPU, RAM memory, disk storage, and NIC. 

Equation 1 shows the simplified dynamic power dissipation model that we 

consider for CPU, where C is the capacitance of the processor (that we consider 

fixed), α is an activity factor (also known as switching activity), and V and f are 

the operational voltage and frequency, respectively. 

                                     Pcpu ~ C × V2 × α ×f                           (1) 

Table I summarizes the server's power savings and the associated delays for the 

different subsystem. For the CPU, the workload was generated with lookbusy (a 

synthetic load generator). During CPU activity, the power demand differs up to 

around 82W (i.e. 39% of total server power) depending of the frequency used, but 

without any load the difference is only up to around 8W (i.e. 3.78% of total server 
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power). However, although CPU power is the more power consuming subsystem 

of the server, we rely on the CPU frequency management performed within the 

OS with “cpufreq” using the “ondemand” governor. For disk storage we consider 

two different possibilities, on the one hand, using spin down/up techniques with 

traditional disks, and, on the other hand, using a SSD disk. With a traditional 

disk we can save almost 10W of power (i.e. around 7.5%). However, there is an 

overhead for spinning down/up the disk. For spinning down the disk the delay is 

around 0.05 seconds and for spinning up the delay is around 5-6 seconds. There 

is also an overhead of energy due to the peak power required to spin up the disk's 

motor (around 60J of energy, according to our experiments). We also consider 

using a SSD drive, which can save around 14W of power when it is idle (i.e. 3% 

less power with respect to a disk in low power mode), according to our 

experiments. The SSD drive also has a much faster access time and does not 

require spinning down techniques to reduce its power consumption. 

CPU freq (idle) 8 “instantaneous” 
CPU freq (loaded) 82 “instantaneous” 

RAM memory 8 “instantaneous” 
Hard Disk 10 5-7s 

Solid State Disk 52 “instantaneous” 
NIC 3 0.15s (on) 3-4s (off) 

Table I 

4.4 Server's power savings and associated delays 

We use low power mode for the network subsystem switching off/on the NIC 

dynamically. We made the assumption that data centers' servers have usually two 

different network interfaces (a faster one for actual computations and a slower 

one for control/administration purposes). Disabling the NIC we can save around 

Subsystems Savings Delay 



29 
 

 
 

3W (i.e. 2.47%) and the overheads for switching on and switching off the NIC are 

around 0.15s and 3-4s, respectively. 

Memory power dissipation can be classified as being dynamic power dissipation 

that occurs only during reads and writes, or static power dissipation due to 

transistor leakage. Equation 2 shows a simple model for memory static power 

dissipation, where Vcc is the supply voltage, N is the number of transistors, kdesign 

is a design dependent parameter, and Ileak is a technology dependent parameter. 

We will consider kdesign and Ileak as fixed parameters. 

                           Pstatic = Vcc × N × kdesign × 
^

Ileak                   (2)  

Since the increasing contribution of static power is clearly evident even in today's 

design, we can reduce the static power dissipation reducing either Vcc or N. Some 

existing approaches based on multi-banking techniques try to set banks of 

memory in lower power modes when they are not accessed, thus reducing N. 

Other approaches may reduce dynamically the voltage when memory is not in the 

critical path of the running workload. Since these techniques are not standardly 

available in widely used systems (such as ours), we estimate the potential savings 

from memory removing physically two of the four banks of memory that are 

available in the server. Using the same subsystems configurations, but with only 

2GB of RAM memory installed, we were able to save around 8W of power (i.e. 

5.78%), on average. We estimate short delay for switching to low power mode. 
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4.4.1 Workload Profiling -  

The methodology involves profiling the workload behavior into I/O intensive, 

memory intensive, communication intensive and computes intensive regions 

with respect to time. Most of the standard profiling utilities are designed for 

comparing computation efficiency of the workloads and systems on which they 

are running, hence their outputs are not very useful from the subsystem usage 

point of view. 

We profiled standard HPC benchmarks with respect to behaviors and subsystem 

usage on individual servers. To collect run-time OS-level metrics for CPU 

utilization, hard disk I/O, and network I/O we used different mechanisms such as 

``mpstat'', ``iostat'', ``netstat'' or ``PowerTOP'' from Intel. We also patched the 

Linux kernel 2.6.18 with the ``perfctr'' patch so that we can read hardware 

performance counters on-line with relatively small overhead. We instrumented 

the applications with PAPI and, since the server architecture does not support 

total memory LD/ST counter, we counted the number of L2 cache misses, which 

indicates (approximately) the activity of memory. 

A comprehensive set of HPC benchmark workloads has been chosen. Each 

stresses a variety of subsystems - compute power, memory, disk (storage), and 

network communication. They can be classified in three different classes: 

 Standard: HPL Linpack that solves a (random) dense linear system in double 

precision arithmetic, and FFTW that computes the discrete Fourier transform. 

 CPU intensive:  TauBench, which is an unstructured grid benchmark of 

Navier Stokes solver kernels. 
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 I/O intensive: b_eff_io, which is a MPI-I/O application, and bonnie++ that 

focus on hard drive and file system performance. We run two distributed 

instances of bonnie++ using a script and ssh. 

Figures 3-20 show the obtained profiles for different benchmarks, along with the 

server power consumption during their execution. Axes of the plots have time as 

the X-axis and on the Y-axis we show, from the top to the bottom: CPU 

utilization, memory utilization (L2 cache misses), disk utilization (number of 

blocks accessed), network utilization (traffic of packets on the NIC), the average 

p-state residency of the CPU's cores, and power consumption. The plots show the 

measurements as well as the bezier curves (dashed lines) to better identify their 

trends, except the plots of p-state residency that only show the bezier curves, for 

readability. 

In the following subsection we discuss the trends and the power saving 

opportunities of the profiles shown in Figure 3-20 

4.5 Power Saving Opportunities 

The plots included in Figures 3-20 plot different application profiles for resource 

utilization and power consumption. Some observations are listed below. 

The HPL benchmark was configured to run two problems of the same size. Thus, 

as is shown in the CPU utilization plot, there is an interval of time in the middle 

of the benchmark's execution with lower CPU utilization. It helps us to appreciate 

a clear correlation between the CPU utilization and power consumption. 
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In Figure 4, L2 cache misses increase steadily during the HPL's execution, which 

suggests high memory activity. The NIC is used in bursts, except at the end of the 

two problems solved by HPL (Figure 9). 

P-state residency is distributed almost evenly among the maximum and 

minimum CPU frequencies (Figure 15). This is explained due to the fact that the 

OS scales the frequency down/up dynamically following the iterative 

compute+synchronization pattern of HPL. Also, since the network was not very 

fast (100Mbps), the communication slack is significant. 

In contrast to the other subsystems, disk utilization is scarce (Figure 12). 

Therefore, we find higher opportunities for energy saving using disk power 

management techniques. 

With CPU intensive benchmarks (i.e. TauBench), the CPU utilization steadily 

remains close to the maximum utilization (400%), and the p-state residency at 

maximum CPU frequency is at 100% during almost the whole execution of the 

benchmark. This is because TauBench has much less MPI synchronization than 

HPL. 

As both b_eff_io and bonnie++ benchmarks are I/O intensive, the CPU 

utilization running these benchmarks is low and the p-state residency is 

predominated by low frequencies.However, memory and disk have high activity. 

In fact, the disk is accessed frequently (see the disk utilization plot for b_eff_io) 

thus making it infeasible to spin-up and spin-down the disk.  
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The main difference between b_eff_io and bonnie++ is that b_eff_io has periods 

of intensive NIC utilization (Figure 10), and bonnie++ does not perform 

synchronization over the network. Therefore, b_eff_io has lower average CPU 

utilization than bonnie++, but the CPU utilization is steadier for bonnie++. 

Moreover, we can appreciate a clear correlation between memory utilization and 

power consumption with bonnie++ that is not present with b_eff_io. 

The NIC utilization plot for b_eff_io (Figure 10) shows multiple long duration 

idle periods offering opportunities to save energy even though other subsystems 

are active most of the time. 

As a result, with bonnie++ we have higher opportunities for energy saving from 

NIC (Figure 11) and memory (Figure 8) because the network traffic is only at the 

beginning and at the end of its execution, and there are some long intervals of 

time without L2 cache misses. 
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                             Figure 3                                                                   Figure 4                                                           Figure 5 

CPU Utilization of HPL, b_eff_io, bonnie 1 

                                            

            
                               Figure 6                                                                 Figure7                                                              Figure 8 

Memory Utilization of HPL, b_eff_io,bonnie++ 

                 
                            Figure 9                                                                   Figure 10                                                             Figure 11 

Network Utilization of HPL,b_eff_io,bonnie++ 

                     
                             Figure 12                                                             Figure 13                                                               Figure 14 

Disk Utilization of HPL, b_eff_io,bonnie++ 

                    
                           Figure 15                                                                Figure 16                                                        Figure 17 

P-State Residency  of HPL,b_eff_io,bonnie++ 

             
                             Figure 18                                                               Figure 19                                                      Figure 20 

Power Profiles  of HPL,b_eff_io,bonnie++ 
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4.6 Towards Application-Centric Aggressive Power 

Management 

In this section, we build a model with the goal of developing an algorithm for 

aggressive power management. The power dissipated by a server P can be 

computed as the sum of it's static and dynamic power as described in Equation 

(3) 

                         Pdynamic  = Pstatic + Pdynamic                                     (3) 

Pdynamic is composed of power contributions from the CPU and sub-systems such 

as memory, storage and the NIC, 

           Pdynamic = Pcpu + Pmem + Pdisk + Pnic                (4) 

Since we assume that the OS manages the CPU power configuration efficiently, 

we do not consider CPU henceforth. 

We made the simplification that each subsystem has two operational modes: 

active (regular configuration) and idle (low power mode). Therefore, we consider 

the latencies and overheads that would be involved in switching between these 

subsystem power modes. We define ton as the latency to switch from idle to 

active mode and toff the latency to switch from active to idle mode. We also define 

Eton and Etoff as their respective associated energy costs. Since we consider that 

different power configurations for the subsystems can be used during a workload 

execution, we model the workload execution time (T) as the sum of time intervals 
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where each two consecutive time interval have different power configurations 

(Equation 5). 

                                         ∑   
   i                                                               (5) 

 The energy consumed by the different subsystems (sys={mem, disk, nic}) during 

the execution of a workload (E) is defined as the sum of the energy consumed in 

each time interval (Equation 6). 

                                                 ∑   
   ∑     

 
sys
ti                                         (6) 

The energy consumed within a time interval includes the energy overhead of 

switching between power modes as Equation 7 shows. 

                  E sys
ti  = P sys

active . ti,active +  P
sys
idle . ti,idle + E

sys
ton/off                    (7) 

P
sys

active  is the power consumed if the subsystem sys is active and ti,active is the time 

duration in active mode in seconds. P
sys

idle  is the power consumed if the subsystem 

sys is idle (low power mode) and ti,idle is the time duration in idle mode in 

seconds. 

4.7 Predictive and Aggressive Power Management (PAPM) 

Building on the model described above, we develop the PAPM algorithm that 

transitions the subsystems to the appropriate power mode based on an a-priori 

knowledge of the application profile. The algorithm takes into account the latency 

of each device in making a transition from one state to another, as well as the 

overhead energy consumed to make the transition. 
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Algorithm 1 shows the PAPM algorithm focusing on switching off subsystems and 

deciding the appropriate low power state to transition a subsystem from an active 

state. The algorithm to switch back to an active state from an idle state is 

symmetric to Algorithm 1. It has three conditions: Idle-Condition, Time-

Condition and Energy-Condition on which transition to a low power state is 

dependent. 

 

Algorithm 1: Algorithm for idle state transition of memory, storage and NIC subsystems 

Idle-Condition checks if the subsystem is going to be idle in the next time interval 

and it is given by 

                                 sys

i+1
 )                       0                  (8) 

Equation 8 indicates, based on the workload profile data, that if the next time 

instance has low or no activity then proceed further to transition the subsystem 

to a low power state. Time-Condition is given by, 

                             (t
sys

i+1  - t
sys

i  ) > t
sys

off  + t 
sys

on                                  (9)                                                                                 
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This condition checks if it is feasible to transition to any of the available lower 

power states based on the latency of the subsystems and the idle time between 

the two active periods. The active period is denoted by t
sys

 i active . 

If the time for which subsystem is idle is greater than the latencies to enter and 

exit any of the low power states, then the system should be transitioned to low 

power mode. For simplicity, in Algorithm 1 we only consider two possible power 

modes (active/idle). 

‘Energy-Condition is given by, 

                        P
sys

active . ti  > P
sys

idle . ti,idle + E 
sys
toff  + E

sys

 ton                      (10) 

This condition checks if it is worthwhile to transition the system to a low power 

state and if any energy savings will be achieved. It also takes into consideration 

the power to transition the subsystem from a low power mode to operating mode. 

If the sum of energy consumed in low power state and energy needed to bring 

back the subsystem to active mode is less than the energy used by subsystem 

when it continues to be in high power state when idle, it is worthwhile to 

transition the system to a low power state.  

Other considerations can be incorporated in this model such as ensuring that the 

energy saving is significant enough to over-ride the cost of reducing the lifetime 

of the disk. 

4.7.1 Experimental Evaluation 

In this section, we evaluate the energy savings that can be achieved with the 

PAPM algorithm proposed previously with a deterministic approach, in order to 
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show its potential in a single server. To do this, we firstly use simulation along 

with the workload profile information discussed in section 4.4.1. Then, we 

present results obtained from actual executions to validate the former 

simulations. Finally, we analyze the potential energy saving in large-scale data 

centers.  

4.7.1.1  Simulation 

In this subsection, we evaluate the PAPM algorithm in a single server using 

simulations and present the estimated energy savings. The PAPM algorithm 

simulation was developed using MATLAB. We used the benchmarks presented in 

section III that, as we discussed previously, have different requirements and 

behaviors in terms of subsystems utilization. Although we present the saving for a 

single server, the results were obtained using the testbed described in section 4.2. 

We also perform our simulations based on the subsystem usage time obtained 

from the workload profile data of an individual server. Since the approach is 

deterministic, we assume that the workload profile is known in advance. 

Following the PAPM algorithm, when a subsystem is switched to another power 

mode (e.g. spinning up/down the disk), we consider the savings that we 

quantified in section 4.3 as well as the associated overheads in terms of delay and 

energy. 

Table II present the obtained results. Specifically, it shows the run time, the 

energy consumption, and the estimated energy savings of various workloads. The 

granularity of the delays is in seconds due to the limitations of the instruments, 

and the fact that our approach is based on a coarse-grained model. 
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 It is worth noting that run time and energy consumption are obtained through 

actual measurements, while the energy savings for memory, disk and NIC were 

obtained through the simulations.  

 We present the results for each benchmark with two different configurations: 

DVFS and non-DVFS. The former configuration uses ACPI enabling DVFS with 

``cpufreq'' and the ``ondemand`` governor. The latter configuration uses 

``userspace'' governor at the maximum CPU frequency. Therefore, the CPU 

savings are also obtained from actual measurements. Although the total energy 

savings are higher considering the CPU, we will consider the savings only from 

the other subsystems. 

Benchmark DVFS RunTime(s) 
Energy 

(J) 

Energy Savings 

    CPU Memory            Disk NIC Total (J) 

HPL 
x 
√ 

1,382 s 
1,383 s 

298,546 J 
292,824 J 

      - 
5,722 J 

1,380 J 5,338 J 240 J 
6,958 J 

12,680 J 

B_eff_io 
x 
√ 

        1,206s  
1,212 s 

164,224 J 
161,460 J 

- 
2,764 J 

5,297 J - 1,124 J 
6421 J 
9,185 J 

Bonnie++ 
x 
√ 

1247 s 
1248 s 

190,613 J 
187, 533 J 

- 
3,080 J 

3,263 J 574 J 3,841 J 
7,678 J 

10,758 J 

tauBench 
x 
√ 

1134 s 
1136 s 

251,904 J 
244,473 J 

- 
7,431 J 

3,377 J 7,297 J 1,979 J 
12,653 J 
20,084 J 

FFTW 
x 
√ 

1052 s 
1055 s 

198,621 J 
193,146 J 

- 
5,431 J 

2,112 J 6,927 J 297 J 
9,336 J 
14,811 J 

Table II 
Energy savings with PAPM Using Simulations For Different Benchmarks 

 

In fact, the results state that DVFS does not penalize the execution time 

significantly (0.22% on average) while it provides significant savings of energy 

(2.23% on average). This supports our argument that modern OS-driven power 

management mechanisms can be leveraged for application-aware power 

management, thus not requiring any specific CPU power management. From 

Table II we can appreciate that CPU and network-intensive benchmarks provide 
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more opportunities of energy savings from the disk (e.g. FFTW) while I/O-

intensive benchmarks provide more opportunities of energy savings from other 

subsystems (e.g. NIC). Furthermore, benchmarks with higher utilization of the 

different subsystems (i.e. HPL) obtain less energy savings. Although the average 

energy saving is around 4%, we can infer that PAPM can improve the energy 

efficiency and hence the power efficiency of HPC workloads from around 2% to 

around 5% depending on the workload profile. However, our simulations are very 

conservative because we only consider static power to estimate the potential 

energy savings from the memory subsystem (our quantification was done with 

the server under idle condition). In fact, the simulations may obtain higher 

energy savings without significant penalty in run time if we consider additional 

memory management techniques, such as Dynamic Voltage Scaling (DVS), 

during intervals of time where memory is not in the critical path. 

4.7.1.2  Validation 

In order to validate our model we implemented the PAPM algorithm and 

performed actual experiments. They provides us with a very good opportunity to 

prove the effectiveness of PAPM. Since we do not support any mechanism to 

reduce the voltage of RAM memory or switching off banks of memory using 

multi-banking techniques, we focus on in disk storage and NIC. Specifically, we 

used the following configurations: 

 Reference: regular execution with DVFS enabled. 
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 PAPM: implementation of PAPM with a script that deterministically 

switches to appropriate power state, based on the profile obtained in 

previous executions of the same benchmark. 

 PAPM+SSD: use of SSD technology for storage and PAPM algorithm for 

NIC only 

Table III present the obtained results. It shows the run time and the difference 

with respect to Reference configuration, the energy consumption and the 

difference with respect to Reference configuration and, in order to consider both 

energy and performance, the Energy Delay Product (EDP) and the difference 

with respect to Reference configuration. 

Benchmark    Configuration Runtime (s)     % Energy (J)      % EDP                  %  

HPL 

Reference 
PAPM 
PAPM+SSD 

1,383 s               - 
1,385 s        +0.14%         
1,385 s        +0.14% 

292,824 J              - 
287,906 J      -1.67% 
281,559  J      -3.84% 

404,975,592        - 
398,749,810      -1.53% 
389,959,215      -3.70% 

 
b_eff_io 

Reference 
PAPM 
PAPM+SSD 

1,212 s              - 
1,217 s         +0.41% 
1,134 s         -6.43% 

161,460 J                - 
157,335  J       -2.55% 
143,768 J     -10.95% 

195,689,520         - 
191,476,695       -2.15% 
163,032,912    -16.68% 

 
Bonnie++ 

Reference 
PAPM 
PAPM+SSD 

1,248 s              - 
1,249 s       +0.08% 
1,169 s         -6.33% 

187,533 J                - 
182,904 J      -2.47% 
168,606 J    -10.09% 

234,041,184          - 
228,447,096     -2.39% 
197,100,414     -15.78% 

 
TauBench 

Reference 
PAPM 
PAPM+SSD 

1,136 s             - 
1,139 s        +0.26% 
1,137 s        +0.08% 

244,473 J             - 
236,496 J      -3.26% 
229.446 J      -6.14% 

277,721328            - 
269,368,944     -3.00% 
260,880,102    -6.06% 

 
FFTW 

Reference 
PAPM 
PAPM+SSD 

1,055 s             - 
1,057 s        +0.19% 
1,051 s         -0.38% 

193,146  J              - 
187,677  J      -2.83% 
177,071  J      -8.32% 

203,769,030         - 
198,374,589      -2.64% 
186,101,621       -8.67%  

Table III 
Energy Savings with PAPM Using Actual Executions 

With PAPM the overheads of switching the power modes do not penalize the run 

time significantly (0.16%, on average). However, the average energy saving is 

around 2.5% which is 37.5% lower with respect to the average energy saving 

estimated through simulations. The percentage of savings for EDP is only slightly 
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lower than the energy savings. We believe that the differences between the results 

obtained with simulations and with actual experiments are motivated by two 

factors. On the one hand, the lack of memory power management and, on the 

other hand, insufficient precision at some power mode modification times that 

may result in some energy saving loss. 

The PAPM+SSD configuration allows us to identify the potentials and tradeoffs of 

using SSD technology. Since SSD disks do not require spinning down techniques 

to switch to low power mode, the PAPM algorithm only focus on NIC (potentially 

it may consider also memory). As is shown in Table III using SSD technology 

reduces the energy consumption 7.86% on average. For non-disk intensive 

benchmarks (e.g. HPL) the savings are moderate (5%, on average) while the 

energy savings are much higher for I/O intensive benchmarks (around 10%, on 

average). The run times obtained with PAPM and with the other configurations 

are similar for the non-disk intensive benchmarks. However, with I/O intensive 

benchmarks (b_eff_io and bonnie++) the run times are reduced up to 6.43%. 

This is explained due to the fact that both b_eff_io and bonnie++ benchmarks 

access the disk frequently (see Figure 8,14) and SSD drives have a much shorter 

access time. As SSD technology is still very expensive, we can assume that only 

some servers of a data center will have a SSD disk available (at least for cache 

data). Hence, the problem will include mapping the applications that can take 

more advantage of SSD technology to the nodes with a SSD installed, depending 

of the application profile. 
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Therefore, servers with SSD disks may be assigned to I/O intensive applications 

while non-disk intensive applications (e.g. HPL) may take advantage of power 

management techniques on traditional disks (spinning dow/up), if the benefit of 

using SSD does not compensate the cost of SSD technology. It is worth noting 

that this trade off will also depend of the estimated workload execution time. 

4.8 Scaling to Large HPC Cluster Level 

PAPM does power savings on per node basis per run basis, which can produce 

significant amount of energy savings if scaled to data center magnitudes. We 

assume that the data center is composed by the server configuration used 

throughout this thesis, the average energy savings obtained from our validation 

experiments (5.21%) and an average power demand of 200W due to almost 

continuous load. If the daily energy consumption is $200W ×24h × 3,600s = 

0.48kWh$, the daily energy saving is around 0.25kWh. Thus, the yearly energy 

saving will be $0.25kWh × 365days = 91.28kWh per node. Considering that the 

average kWh price (March 2010) in United States is $0.125 and €0.36 in Europe, 

the yearly saving will be $11.41 or €32.86 per node. For a 1,000 node data center 

it will save approximately $11,410 or €32,860 per year only on computational 

costs. As the size of HPC cluster increases the savings would increase by same 

order of magnitude. 

5 Runtime Power Management with PGAS 
 

PGAS is a parallel programming model that presents a single shared partitioned 

address space, where variables may be directly read and written by any processor, 
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but each variable is physically associated with a single processor. Due to this 

feature, the portions of shared address space may have an affinity for a particular 

thread thereby exploiting locality of reference. Where parallel programs are 

usually written either using distributed memory model or Shared Memory model, 

depending on the feasibility and the demands, PGAS model brings with it, the 

advantages of the Shared memory programming like OpenMP as well as the 

Distributed memory programming like MPI. It has the performance and data 

locality (partitioning of data) features of MPI and 

the programmability and data referencing simplicity of shared-memory model. 

Hence it has the potential to dramatically improve runtime performance and 

programmer productivity on increasingly ubiquitous multi-core architectures. 

5.1 Main features of PGAS 

It has support for distributed data structures like global arrays. The PGAS model 

uses “global address space” which presents the programmer a uniform view of the 

global shared memory.  It allows the programmer to access the remote shared 

variables and the local shared variables in a seamless way, without him having to 

worry about the location of the data. The programmer has control over the 

placement of data and how the global data gets distributed among the different 

processors. One-sided communication for improved inter-process performance – 

One process can access a remote variable in another process, without involving 

the remote process in the communication. 
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5.2 Differences with MPI and OpenMP 

One sided communication in PGAS remote accesses as opposed to two-way 

synchronization for SEND/RECEIVEs in MPI access to remote memory is 

implicit in PGAS. No explicit language-level APIs/library calls are required to 

access remote memory, unlike MPI which uses MPI calls to access remote 

memory. Two level memory hierarchy exists – private data on local machines, 

shared data on local and remote machines (accessed using global pointers). PGAS 

implementations like UPC have split-phase barriers apart from the regular 

barriers for synchronization. These split-phase barriers allow a process to 

perform operations on local data (without touching shared memory), while 

waiting for other process to reach the barrier. Programmer has control over data 

layout and has the flexibility to distribute data over processes differently. 

Work distribution in order to leverage data locality is possible - similar to 

OpenMP. 

Some of the PGAS implementations that are being developed are:- 

 Unified Parallel C 

 Global Arrays 

Most popular implementation developed by UC Berkeley and Livermore Berkeley 

National Laboratories uses the SPMD model of computation. Library developed 

by scientists at Pacific Northwest National Laboratories follows MIMD model of 

computation. 

Some of the implementations of PGAS model are  

 Chapel – Developed by CRAY Inc 

 Titanium – Parallel dialect of Java , developed at UC Berkeley 
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 X 10– Being developed by IBM research 

 Fortress – Created by Sun Microsystems 

 Co-array Fortran 

In our thesis, we shall focus our work on UPC implementation-Unified Parallel C  

5.3 Scope for Power Management with PGAS Programming 

Model  
 

Load imbalance of parallel applications can be exploited to save CPU energy 

without penalizing the execution time. An application is load imbalanced when 

some nodes are assigned more computation than others. The nodes with less 

computation can be run at lower frequency since otherwise they have to wait for 

the nodes with more computation blocked due to synchronization calls. HPC 

systems use an increasingly large number of processors with MPI-based parallel 

programs. The resulting increase in the number of processes of an application 

usually decreases the load balance degree of the application. In load imbalanced 

MPI applications, there are processes that complete their computation and have 

to wait for the other processes to communicate. These nodes can run at lower 

frequencies and save energy consumed by CPU without increasing the execution 

time. The dynamic power is proportional to the product of the frequency and the 

square of the voltage and it can be reduced via DVFS technique. 

It is possible to realize the potential for a runtime system Power Management 

mechanism, if one studies the application runtime pattern. By studying the 

application execution pattern, we can understand the application at a lower level 

of granularity  which would help us see inside the application- the sequence of 

calls being made and the duration of the calls. It highlights the different sub-
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routine library calls made, sequence of execution of the calls, slack involved in 

communicating between processes and the load imbalance in the execution 

runtime - from which we can appreciate the benefit of performing DVFS. 

5.4 Opportunities for Power Management using DVFS 

5.4.1   At Barriers – Due to upc_wait operation 

The Figure 21 below depicts an execution trace of UPC NAS-MG benchmark. 

The red colored lines denote threads after having reached their barrier and 

waiting for other threads to synchronize. We can see that the different threads hit 

the barrier at different points of time. Hence the threads wait at the barriers to 

synchronize with remaining threads, during which they do not perform any 

useful task. This provides us with an opportunity to reduce CPU frequency, since 

it is not required to be performing at it’s peak. 

 

Figure 21 : Threads approaching Barrier at Different times due to load imbalance 

5.4.2     During Remote Memory Calls (memget/memput) 

We also know that when a thread performs remote memory operations from a 

local node, it has to wait for the data to get transferred from the remote node. 

Since the processor bound to the thread is again not doing any useful work, other 

than waiting for the data transfer, we can insert power management mechanisms 
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to reduce consumption of power. In Figure 22, we can see the threads 

performing memget operation – depicted in green colour. The processor bound 

to the thread is not performing any work other than waiting for the data to arrive 

from the remote node – which provides with ample time to benefit from DVFS 

techniques in saving power. 

 
Figure 22: Memget operation (upc_memget) 

6   Power Profiling of UPC-NAS applications/Measuring 

Power with Wattmeter  

Power profiles of applications give a broad overview of the nature of power usage 

of applications. Comparing power profiles at different frequencies help us 

appreciate how significantly frequency plays a role in the power consumption of 

an application. 

From the figures below, we can see the gap between the power traces at 1.6 GHz 

and 2.4Ghz.It also clearly shows that the application finishes execution faster 

when run at 2.4 GHz. The power profile also reflects the iterative nature of the 

applications.  
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The NAS-CG benchmark is a memory intensive benchmark. It performs 

computation for a short period followed by a longer remote memory fetch 

operation, followed by a barrier used for synchronization, and this happens 

iteratively. It mostly consists of small reads followed by small writes. Studying 

the profile of CG (Figure 23), we can see that it consumes energy at a steady rate. 

The runtime at 1.6 GHz consumes lot more time than the one at 2.4 GHz. NAS-IS 

application profile shows sharp spikes at regular intervals which contends to be a 

good candidate for performing DVFS. 

                   
      Figure 23 : Power Profile of CG                                                                  Figure 23 : Power Profile of IS 

Power profile of CG and IS  

                                

NAS-MG Benchmark has remote memory fetch at the beginning of execution. As 

the application progresses, memory operations are mainly longer remote memory 

write operations and short local memory reads, with computation. NAS-MG 

varies constantly such that the spikes are spaced very closely to each other and 

hence does not seem to be good candidate for DVFS since it would result in 

overhead while performing DVFS so often. NAS-FT, unlike MG, consists of 

mainly longer memory read operations, with brief periods of computation and 

short local memory write operations. 
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                 Figure 24 : Power Profile of MG                                                                     Figure 25 : Power Profile of FT 

Next section shows further analysis about the energy savings and runtime 

features of NAS applications. 

 

7 Power Profiling of UPC-NAS kernels  
 

We run UPC-NAS benchmarks at different frequencies (1.6 GHz, 1.867 GHz and 

2.4 GHz) to measure the energy consumed by them at each frequency. We notice 

that all benchmarks consume least energy at 1.6 GHz except the EP benchmark 

that consumes the least energy at 2.4 GHz. 

The highest energy-gain percentage is registered by the NAS-FT benchmark 

(15%) whereas EP benchmark registers 18% energy loss when run at 1.6 GHz as 

compared to the run at 2.4GHz. This can be reasoned by observing the runtimes 

of the benchmark which also play a role in determining energy consumption of 

application. The runtime of EP at 1.6 GHz is nearly 40% greater than the runtime 

of EP at 2.4 GHz thus consuming power for too long a duration to register any 

energy savings. This result of EP can be explained by considering the nature of 

benchmark which is highly parallel with little communication. This causes a 

higher frequency execution to finish a lot faster than the lower frequency run, as 

it has very little slack- thus resulting in a huge difference between the two 
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runtimes. Since 2.4GHz run consumes lot lesser time, the energy consumed will 

be lesser than that due to 1.6GHz run. We can see that NAS-FT has the least 

runtime loss and the highest EDP gain percentage (13.8%) followed by NAS-IS 

and NAS-MG with 10.7% and 7.2% respectively. 

 
Figure 26 : Power Consumption of NAS-UPC Benchmarks 

 

Figure 27 : Energy Gain of NAS-UPC Benchmarks 
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Figure 28 : Runtime Loss of NAS-UPC Benchmarks 

 
Figure 29 : EDP gain percentage of NAS-UPC Benchmarks 

 

 

Application Runtime (s) 
 

Energy in Joules (J) Runtime Loss (%) Energy gain (%) 

1.6 
GHz 

1.867 
GHz 

2.4GHz 1.6GHz 1.867GHz 2.4GHz T2.4/1.6 T 2.4/1.867 T2.4/1.6 T 2.4/1.867 

FT - B 635 628 625 176141.5 183487 207649 1.6 0.48 15.17 11.636 

MG-C 142 138 137 40524.1 41162 45268 3.649 0.73 10.479 9.07 

CG-C 676 690 654 184326 196133 204656 3.363 5.504 9.93 4.16 

EP-C 152 132 105 43099 39694.7 36327.7 44.76 25.714 -18.63 -9.26 

IS-C 362 355 350 99363 102555 115173.6 3.42857 1.42857 13.727 10.95 

Table IV 

Summary of Energy and Runtime data of NAS-UPC Benchmarks at 1.6Ghz, 1.867GHz and 2.4GHz 
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EDP (Js in million)  

           
 EDP % gain 

 
1.6 GHz 

 
1.867 GHz 

 
2.4 GHz 

 
1.6 vs 2.4 GHz 

 
1.867 vs 2.4 GHz 

 
FT-B 

 
111.85 

 
115.23 

 
129.78 

 
13.81 

 
11.21 

 
MG-C 

 
5.75 

 
5.68 

 
6.2 

 
7.21 

 
8.40 

 
CG-C 

 
124.6 

 
135.33 

 
133.845 

 
6.90 

 
-1.11 

 
EP-C 

 
6.55 

 
5.24 

 
3.81 

 
-71.74 

 
-37.36 

 
IS-C 

 
35.97 

 
3.64 

 
4.03 

 
10.76 

 
9.68 

Table V : EDP gain of UPC-NAS Benchmarks 

8 Comparing runtime characteristics of NAS 

applications at different frequencies 
 

We ran the applications at frequencies 1.6 GHz and 2.4 GHz and collected 

breakup runtimes of individual subroutines. This also helps us in determining the 

UPC subroutine that should be instrumented with DVFS mechanism to reduce 

energy consumption.  

By looking at the break up runtimes of individual subroutines, we can find that 

memget operation consumes most of the runtime during the execution.  

For FT benchmark, memget operation consumes approximately 90% of total 

runtime. We can observe that the percentage change in runtime (Figure 32) of 

the remote memory fetch operation does not change significantly upon reduction 

of frequency whereas every other subroutine shows increase in runtime. This fact 

helps us in recognizing memget as a good candidate for DVFS for NAS-FT since 

we can safely reduce frequency and thus energy without affecting runtime 

severely. 
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Figure 30: Runtime Breakup of FT at 1.6 GHz and 2.4 GHz 

 
Figure 31 : Percentage Difference in runtimes of FT at 1.6 GHz and 2.4 GHz 

 

8.1 Runtime break-up of MG at 1.6GHz and 2.4GHz 

NAS-MG consumes 45% of runtime on memput operations. Figure 34 shows 

that the percentage difference for memput operation is negligible- and thus 

performing DVFS during memput will not adversely affect runtime. We can see 

that wait operation consumes lesser percentage time (negative runtime loss) in 

the 1.6 GHz than the 2.4 GHz run. This means that NAS-MG achieves better load 

balance at 1.6 GHz compared to 2.4 GHz. 
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Figure 32 :  Runtime Breakup of MG at 1.6 GHz and 2.4 GHz 

 

 

Figure 33 : Percentage Difference in Runtimes of MG at 1.6 GHz and 2.4 GHz 

 

9 Runtime System to perform DVFS for PGAS 

Applications 
 

Our second objective of research was to build an application-aware runtime 

DVFS system that controls CPU frequency during execution of application that 

would result in power savings. 
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From our previous experiments and results above, we can deduce that 

performing DVFS on memget and wait operation would not affect the runtime 

severely. We inserted DVFS mechanisms inside the UPC-Memget and UPC-Wait 

operation subroutines. When the memget or wait was called by the application, 

the DVFS mechanism would reduce the frequency, causing the application to 

consume lesser power while memget/wait was in execution. We implemented 

this mechanism with different policies. The policies are based on the statistics of 

the duration of   memget or a wait operation on a thread. 

9.1     Algorithm/techniques 

To introduce policies to our DVFS mechanism, we used the statistical data of the 

time spent in individual memget and wait operations. 

From our experiments we found that the wait operations take a duration of the 

order of hundreds of micro-seconds(10-4) while memget operations are of the 

order of hundreds of milli-seconds (0.1). We also computed the overhead in 

carrying out DVFS mechanism and found it to be of the order of  tens of micro-

seconds duration. 

We also studied the pattern of time spent in memget and wait operations .We 

found that the the time spent on wait operation or a memget over subsequent 

calls falls under the same range. For example if a thread waits on a barrier for 

greater than 0.1ms, the subsequent calls to “wait“ operation by the same thread 

would consume same order of time repeatedly. We make use of this fact in our 

policy. 
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The policy we implemented makes sure that DVFS mechanism is triggered only if 

the time spent in previous wait/memget call was greater than the overhead time 

in performing DVFS.  

9.2  Algorithm 

The “threshold” value should be atleast equal to the DVFS-Overhead time, lest 

the mechanism would get triggered for wait durations of very small periods and 

the energy saved during this would not amortize with the energy spent in 

performing the DVFS. 

If (wait_time_prev_iteration > threshold) 

{ 

            PerformDVFS() ;                      //Push down frequency 

} 

Start = Start_timer(); 

upc_wait() ; 

Stop = Stop_timer(); 

PerformDVFS();               //Bring up the frequency to Highest value 

wait_time_prev_iteration = (Stop – Start); 

We performed tests with different values of thresholds to see how often DVFS 

would get triggered for wait and memget operation. 

9.3  Results and analysis 

9.3.1     NAS-FT 

For FT benchmark we found that a wait operation would trigger DVFS 99% of 

times if the threshold value was set to 0.1ms, 97% when threshold was set to 
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0.01s and 89% when it was set to 0.1s. However since memget operations are 

always of the order of hundred-milliseconds duration, DVFS always gets 

triggered-demonstrating that it was always beneficial to perform DVFS on a 

memget. 

Since the duration of wait operation is lesser than that of memget operation, and 

for the reason that DVFS happens on fewer occasions for a wait operation, the 

contribution to power savings by wait operation is lot lesser than that of memget 

operation. We evaluated the percentage of contribution of wait and memget 

operation for different values of threshold on the FT benchmark. 

When the threshold on wait is 0.1ms, it contributes to 9% of the total savings 

where as memget contributes to 91% of the power saved. When the threshold is 

increased to 0.01s, the power saved due to wait operation decreases to almost 4% 

and goes upto 7.5% when the threshold is further increased to 0.1s. 

       

                                   Figure 34                                                                                            Figure 35 

         

We can see reduction in EDP after DVFS, where the maximum energy savings is 

achieved when threshold is 0.01s. 
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Figure 36 

NAS-FT DVFS Results 

9.3.2 NAS-MG 

MG benchmark provides almost 5% energy savings when threshold is 0.1 ms. 

Increasing the threshold degrades the energy saving percentage due to the 

reduction in fraction of times DVFS is triggered on a barrier. The two policies 

produce similar results for MG benchmark. This shows that duration of memput 

calls are of the same range as of wait calls. 

        

                                          Figure 37                                                                            Figure 38 
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Figure 39 

NAS-MG DVFS Results  

9.3.3 NAS-CG 

 

While CG benchmark registers no energy savings but consumes extra energy due 

to extra runtime caused by DVFS mechanism. For NAS CG Benchmark, energy 

consumed increases after performing DVFS - showing that the current policy is 

not effective.  

The reason for this is that for CG, wait and memget operations contribute 

almost equally in runtime. Infact total time consumed by wait operation is 

greater than total time consumed by memget operation. Also in the earlier graph 

we saw that wait operation consumes 10% greater time at 1.6Ghz compared to 

2.4Ghz. Hence runtime of the execution where DVFS is performed, exceeds the 

runtime when no DVFS is performed (ie frequency constant at 2.4Ghz), hence 

consuming more energy.  
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Figure 40 

   

                                        Figure 41                                                                                Figure 42 

NAS-CG DVFS Results 

 

 

 

 

 

 

Table VI 

Policy I – DVFS if “wait” duration > 0.1ms and  DVFS on memget 

Policy II – DVFS if “wait” duration > 0.01s and DVFS on memget 

Policy III – DVFS “wait” duration > 0.1s and DVFS on memget 

10 Conclusions and Future Work 

   

Energy Gain (%) 
  Runtime Loss (%) 

 
EDP Gain (%) 

 

1.6GHz 
Policy 

I 
Policy 

II 
Policy 

III 
1.6GHz 

Policy 
I 

Policy II 
Policy 

III 
1.6GHz 

Policy 
I 

Policy 
II 

Policy 
III 

 
FT-B 

 
15.17 

 
7.64 

 
9.04 

 
6.86 

 
1.6 

 
4.32 

 
0.63 

 
0.41 

 
13.81 

 
2.03 

 
6.93 

 
4.91 

 
MG-C 

10.47 4.21 0.97 
 
- 

3.64 -0.12 -0.098 
 
- 

7.21 4.03 0.86 
 
- 
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In this paper, we studied the potential impact of deterministic application-centric 

power control at the device level on the overall energy efficiency of the system. 

Specifically, we analyzed the power consumption of a node according to the usage 

of its processor, memory and storage subsystem, and the NIC. Based on a power 

and latency model and workload profiling, we have developed the PAPM 

algorithm, which attempts to improve energy efficiency with little or no 

performance loss. We evaluated our approach with simulations and actual 

executions to validate them. The simulations used empirical data that was 

obtained from executions in real hardware to quantify the potential energy 

savings. 

The results stated that using application-aware subsystem power control can save 

additional energy without significant penalty in performance. Furthermore, the 

results showed that combining PAPM with using low power devices (e.g. SSD 

technology) can increase remarkably the potential to improve the energy 

efficiency of the system. It allows cross layer optimizations, such as application-

aware mapping across the data center. We conclude that power management at 

the subsystem level cannot be neglected due to the increasing requirements of 

energy efficiency optimization in large-scale data centers. We believe that our 

proposed predictive application-aware power management approach has 

sufficient potential to tackle this problem. 

It motivates us to investigate autonomic approaches for application-aware 

aggressive power management rather than the deterministic approach presented 

in this paper. Since HPC applications usually follow iterative patterns, we plan to 
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profile the applications on run time and, then predict the optimal subsystems' 

power configuration to be applied for the following iterations. We also can 

conclude that current and ongoing technologies such as SSD disk drives or 

memories that allow DVS must be adopted and supported in large-scale data 

centers to enhance global energy optimizations. 

In conjunction with application aware predictive algorithms we also propose a 

cross layer and cross function predictive subsystem level power management 

system as future research directions. 

We also analysed UPC-NAS applications with respect to power, studied their 

traces and instrumented the UPC library with a feature that dynamically takes 

decisions to perform DVFS.  

We arrived at suitable policies for performing DVFS for each application that are 

optimal from the point of view of power consumption. 

10.1 Scope for Future Work 

1. To perform further scalabilty tests:- Benchmark UPC-NAS applications 

and application codes with different cluster configurations by using varying 

number of processes and nodes. 

2. Trying a different policy for NAS-CG benchmark :- CG Benchmark has a 

better chance of showing power savings when DVFS is performed only on 

Memget operation. 

3. Using Global Arrays implementation - which is an implementation of 

PGAS  programming model and explore what kind of policies would work. 
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