

©2012

Sharat Chandra Doddaghatta Shashidhar

ALL RIGHTS RESERVED

Study of Application-Aware Techniques for System and

Runtime Power Management

By

Sharat Chandra Doddaghatta Shashidhar

A dissertation submitted to the

Graduate School – New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree

Master of Science

Graduate program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

And approved by

New Brunswick, New Jersey

OCTOBER 2012

ii

 ABSTRACT OF THE THESIS

Study of Application-Aware Techniques for System and

Runtime Power Management

By Sharat Chandra Doddaghatta Shashidhar

Thesis Director

Professor Manish Parashar

Abstract

Energy efficiency of large-scale data centers is becoming a major concern not

only for reasons of energy conservation, failures, and cost reduction, but also

because such systems are soon reaching the limits of power available to them.

Like High Performance Computing (HPC) systems, large-scale cluster-based data

centers can consume power in megawatts, and of all the power consumed by such

a system, only a fraction is used for actual computations. In this paper, we study

the potential of application-centric aggressive power management of data

center's resources for HPC workloads. Specifically, we consider power

management mechanisms and controls (currently or soon to be) available at

different levels and for different subsystems, and leverage several innovative

approaches that have been taken to tackle this problem in the last few years, can

be effectively used in an application-aware manner for HPC workloads.

To do this, we first profile standard HPC benchmarks with respect to behaviors,

resource usage and power impact on individual computing nodes. Based on a

power and latency model and the workload profiles, we develop an algorithm that

can improve energy efficiency with little or no performance loss. We then

iii

evaluate our proposed algorithm through simulations using empirical power

characterization and quantification. Finally, we validate the simulation results

with actual executions on real hardware. The obtained results show that by using

application aware power management, we can reduce the average energy

consumption without significant penalty in performance. This motivates us to

investigate autonomic approaches for application-aware aggressive power

management and cross layer and cross function predictive subsystem level power

management for large-scale data centers.

iv

Table of Contents
Table of Contents ... iv

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Problem Description .. 3

1.3 Contribution ... 5

1.4 Thesis Organization ... 6

2 Background .. 6

2.1 Dynamic Speed Scaling (DSS).. 6

2.1.1 Performance Governor: Highest Frequency ..7

2.1.2 Powersave Governor: Lowest Frequency ...7

2.1.3 Userspace Governor ...7

2.1.4 Ondemand Governor .. 8

2.1.5 Conservative Governor ... 8

2.2 Dynamic Resource Sleeping ... 9

2.3 Performance States ...10

2.3.1 P state ... 11

2.4 System Monitoring Tools in Linux .. 12

2.4.1 top - Process Activity Command .. 12

2.4.2 vmstat - System Activity, Hardware and System Information 12

2.4.3 mpstat - Multiprocessor Usage .. 13

2.4.4 free - Memory Usage .. 13

2.4.5 iostat - Average CPU Load, Disk Activity .. 13

2.4.6 netstat and ss - Network Statistics ... 13

2.5 Parallel Performance Analysis .. 13

2.5.1 Instrumentation Process ... 14

2.5.2 Measurement ... 15

2.5.3 Analysis .. 16

2.5.4 Presentation ... 17

2.5.5 Optimization .. 17

2.6 Parallel Performance Wizard .. 18

3 Background and Related Work .. 18

3.1 Background and Related work on UPC-PGAS programming model 22

v

3.1.1 UPC Memory Model ... 24

3.1.2 Data Distribution and Coherency in UPC ... 24

4 System Level Power Management ... 26

4.1 Studying Energy Saving Possibilities ... 26

4.2 Experimental Environment ... 26

4.3 Power Saving Quantification .. 27

4.3.1 Quantification ... 27

4.4 Server's power savings and associated delays .. 28

4.4.1 Workload Profiling - ... 30

4.5 Power Saving Opportunities ... 31

4.6 Towards Application-Centric Aggressive Power Management...................................... 35

4.7 Predictive and Aggressive Power Management (PAPM) ... 36

4.7.1 Experimental Evaluation .. 38

4.8 Scaling to Large HPC Cluster Level ... 44

5 Runtime Power Management with PGAS ... 44

5.1 Main features of PGAS ... 45

5.2 Differences with MPI and OpenMP ... 46

5.3 Scope for Power Management with PGAS Programming Model 47

5.4 Opportunities for Power Management using DVFS .. 48

5.4.1 At Barriers – Due to upc_wait operation ... 48

5.4.2 During Remote Memory Calls (memget/memput) .. 48

6 Power Profiling of UPC-NAS applications/Measuring Power with Wattmeter 49

7 Power Profiling of UPC-NAS kernels ... 51

... 53

8 Comparing runtime characteristics of NAS applications at different frequencies 54

8.1 Runtime break-up of MG at 1.6GHz and 2.4GHz .. 55

9 Runtime System to perform DVFS for PGAS Applications ... 56

9.1 Algorithm/techniques ... 57

9.2 Algorithm ... 58

9.3 Results and analysis ... 58

9.3.1 NAS-FT ... 58

9.3.2 NAS-MG .. 60

9.3.3 NAS-CG .. 61

vi

10 Conclusions and Future Work ... 62

10.1 Scope for Future Work ... 64

1. To perform further scalabilty tests ... 64

2. Trying a different policy for NAS-CG benchmark .. 64

3. Using Global Arrays implementation .. 64

11 Bibliography ... 65

1

1 Introduction

1.1 Motivation

Power consumption of high performance computing (HPC) platforms are

becoming a major concern for a number of reasons including cost, reliability,

energy conservation, and environmental impact. High-end HPC systems today

consume several megawatts of power, enough to power small towns, and are in

fact, soon approaching the limits of the power available to them. For example,

the Cray XT5 Jaguar supercomputer at Oak Ridge National Laboratory (ORNL)

with 182,000 processing cores consumes about 7 MW. The cost of power for this

and similar HPC systems runs into millions per year.

To further add to the concerns due to power and cooling requirements and

associated costs, empirical data show that every 10 degree Celsius increase in

temperature results in a doubling of the system failure rate, which reduces the

reliability of these expensive system. As supercomputers, large-scale data centers

are meant to be clusters composed by hundreds of thousands or even millions

processing cores (1) with similar power consumption concerns (2).

In addition, high-performance systems are inefficient in their energy

consumption. Ge et al (3) studied five supercomputers and observed that the

average performance of these systems is only 54–71% of the peak performance on

the optimized benchmark package. That inefficiency is mainly caused by an

unequal distribution between the nodes in the cluster of the various computing,

communication and I/O activities. During idle or slack times, faster components

2

waste their energy by waiting for slower components. They could be slowed down

or even shut down to save energy. Existing and ongoing research in power

efficiency and power management has addressed the problem at different levels,

including, for example, data center design, resource allocation, workload layer

strategies, cooling techniques, etc. At the platform level (individual node or

server), current power management research broadly falls into the following

categories - processor and other subsystems (e.g. memory, disk, etc.) level,

Operating System (OS) level and application level. At the processor level, unlike

the earlier generations of servers and HPC systems that supported only a reduced

set of sleep states, current generation systems support advanced power

management solutions in hardware. For example, the Intel Nehalem processor

has an integrated micro-controller called Power Control Unit or PCU. It has its

own embedded firmware and dynamic sensors to monitor current temperature

and power in real time, and has an integrated power gate, which eliminates the

problem of power leakage.

Although the processor is the most power consuming component, other

subsystems have incorporated energy management functionalities such as

memory, storage and network interfaces (NIC). Within the OS, there are fewer

power management techniques available, and include OS control of processor C-

states, P-states and device power states or sleep states. At the application level

several approaches have been also proposed such as those based on exploiting

communication bottlenecks in MPI programs.

3

1.2 Problem Description

In this thesis, we study the potential of application-centric aggressive power

management of data center's resources for HPC workloads. Specifically, we

consider how power management mechanisms and controls (currently or soon to

be) available at different levels and for different subsystems, and leverage several

innovative approaches that have been taken to tackle this problem in the last few

years, can be effectively used in an application-aware manner for HPC workloads.

To use these mechanisms effectively we require cross-layer solutions that are

driven by the application and which adapt themselves according to application

demands in terms of physical resources. The goal is to investigate power

management strategies and their impact on the overall energy consumption in

order to define an upper bound of possible energy savings and gain sufficient

experience to develop an autonomic runtime to improve the energy efficiency of

data centers' resources.

To do this, we firstly profile standard HPC benchmarks with respect to behaviors,

resource usage and power consumption. Specifically, we profile the HPC

benchmarks in terms of processor, memory, storage subsystem and NIC usage.

From the profiles we observe that across different workloads, the utilization of

these subsystems varies significantly and there are significant periods of time in

which one or more of these subsystems are idle for substantial time-intervals, but

still require a large amount of power. It is worth noting that our approach is

complimentary to existing solutions at different levels such as those implemented

within the OS or those that consider applications' load imbalance and

4

communication slacks. Based on the empirical power characterization and

quantification of the HPC benchmarks, we develop an analytical model that

incorporates the applications resource usage patterns, where subsystems in a

computing node support different power states, each with specific entry and exit

latency, and energy consumption. Furthermore, we use our analysis of HPC

workloads to estimate which subsystems are essential for the workload in

question, and which subsystems can dynamically enter and exit lower power

states (not necessarily idle). We then use the model along with simulations to

investigate the potential energy saving of deterministic, application-aware, power

management strategies. We then evaluate our proposed algorithm through

simulations using empirical power characterization and quantification. Finally,

we validate the simulation results with actual executions in real hardware.

The obtained results show that by using application-aware power management,

we can reduce the average energy consumption without significant penalty in

performance. The results earlier obtained motivate us to investigate autonomic

approaches for application-aware aggressive power management and cross layer

and cross function predictive subsystem level power management for large-scale

data centers. We study this approach for PGAS applications, specifically the UPC

implementation of PGAS.

We also look into applications of Partitioned Global Address Space

implementations (PGAS), such as Unified Parallel C (UPC), which are an

emerging alternative that allows shared memory-like programming on

distributed memory systems. It sparks a new area of interest from the point of

5

view of power management. We study it’s power behavior and analyze the

potential it offers for runtime power management. From the analysis performed,

we derive a mechanism to perform runtime power management. We test the

mechanism under different policies and compare the results to come up with

optimum policies for PGAS applications - specifically UPC-NAS Benchmarks.

1.3 Contribution

The main contributions of this is summarized as follows: (i) that different

existing techniques for energy management can be combined to improve energy

efficiency of data center's servers by configuring them dynamically depending on

the workloads' resource requirements, (ii) profile HPC benchmarks with respect

to behaviors, resource usage and power impact on individual computing nodes

and determine empirically (rather than with estimations) possible ways to save

energy, (iii) formulate an energy consumption model and propose an algorithm

attempting to improve energy efficiency with little or no performance loss, and

(iv) quantify possible energy savings of application-centric aggressive power

management through simulations and actual executions, (v) profile PGAS

implementations (UPC) of HPC applications, (vi) define suitable policies to

implement Power management mechanisms from the knowledge gained of the

power profiles of PGAS applications, (vii) Implement the policies and observe the

trade-offs with energy and runtime.

6

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Section 2, we describe

background and related work. In Section 4.1, we quantify possible power savings

and profile HPC workloads using standard benchmarks. In section 4.6, we

develop a power model and an algorithm for predictive and aggressive power

management based on workload profiles. In Section 4.2, we discuss our

evaluation and present the obtained results. In section 5, we explore the

opportunities of saving energy dynamically in PGAS applications. We

demonstrate PGAS applications showing the potential to be candidates for DVFS,

mainly due to load imbalance. In section 6Power Profiling, we profile PGAS

applications with respect to power, perform runtime and energy analysis. Then

we describe the runtime system that performs application-aware DVFS on PGAS

applications in 9.1. We perform analysis on the experimental results and find

optimum policies that suit different benchmarks in 9.3. Finally, in Section 10, we

conclude the thesis and outline directions for future work.

2 Background

There are two types of power management mechanisms available in HPC systems

2.1 Dynamic Speed Scaling (DSS)

In DSS, one can change the performance state of the component to save power, ie

performance can be reduced when not needed and thus energy be saved, and vice

versa, ie performance increased when needed.

7

DVFS (4) is one of the mechanisms in processors, where the performance can be

controlled by altering either the supply voltage or the dynamic frequency. Since

voltage flow to a system has to be kept constant during execution (at runtime), we

can only alter the performance by altering the dynamic frequency and thus

control the power consumed. In Linux, DVFS is enabled by the cpufreq (5)

subsystem provided by ACPI specifications. Cpufreq subsystem allows user to set

processor frequency either statically or dynamically. The Cpufreq structure

makes use of governors and daemons for setting a static or dynamic power policy

for the system. There are different modules in the cpufreq subsystem which can

be used to control CPU frequency.

2.1.1 Performance Governor: Highest Frequency

The CPUfreq governor "performance" sets the CPU statically to the highest frequency

within the range scaling_min_freq and scaling_max_freq.

2.1.2 Powersave Governor: Lowest Frequency

The CPUfreq governor "powersave" sets the CPU statically to the lowest frequency within

the range of scaling_min_freq and scaling_max_freq.

2.1.3 Userspace Governor

The CPUfreq governor “userspace” allows the user, or any userspace program running

with UID “root”, to set the CPU to specific frequency by making the sysfs file

“scaling_setspeed” available in the CPU-device directory. The user can determine the

frequency of CPU by writing the scaling_setspeed file in the CPU-device directory.

8

2.1.4 Ondemand Governor

The CPUfreq governor “ondemand” sets the CPU frequency depending on the

current usage. If CPU utilization rises above the threshold value set in

the up_threshold parameter, the ondemand governor increases the CPU

frequency to scaling_max_freq. When CPU utilization falls below this

threshold, the governor decreases the frequency in steps; that is, it sets the CPU

to run at the next lowest frequency. The lowest frequency that the CPU can go is

bounded by scaling_min_freq. After each sampling_rate milliseconds, the

current CPU utilization is reexamined and the same algorithm is applied to

dynamically adjust the CPU frequency to current process load.

2.1.5 Conservative Governor

The conservative governor (introduced in Linux kernel version 2.6.12) is based

on the ondemand governor. It functions like the ondemand governor by

dynamically adjusting frequencies based on processor utilization. However, the

conservative governor increases and decreases CPU speed more gradually. If CPU

utilization is above up_threshold, this governor will step up the frequency to

the next highest frequency below or equal to scaling_max_freq. If CPU

utilization is below down_threshold, this governor will step down the

frequency to the next lowest frequency until it reaches scaling_min_freq.

After each sampling_rate milliseconds. The current CPU utilization will be

reexamined and the same algorithm will be applied to dynamically adjust the

CPU frequency to current utilization.

9

2.2 Dynamic Resource Sleeping

In Dynamic Resource Sleeping, a processor can be put to low power sleep state, if

the CPU has been idle. Cpuidle (6) is a processor-idle management framework

in the Linux kernel. It provides an interface for any processor hardware to make

use of different processor idle states (C0-C7) which it enters when it is not

retiring any instructions. The states here differ in amount of power the processor

consumed while being in that state and also the latency to enter-exit this low-

power idle state. There may also be other differences like preserving the

processor state across these idle states, etc based on a specific processor. For

example, a processor may only flush L1 cache in one idle state, but may flush L1

and L2 caches in another idle state. There can also be differences around when an

idle state can be entered and what its impact will be on other logical or physical

processors in the system. There are C-state governors – menu governor and

ladder governor which are responsible for placing the processor in the

appropriate C state. The ladder governor takes a step-wise approach to

selecting an idle state. Although this works fine with periodic tick-based kernels,

this step-wise model will not work very well with tickless kernels. The kernel can

go idle for a long time without a periodic timer tick and it may not get a chance to

step-down the ladder to the deep idle state whenever it goes idle. A new idle

governor to handle this, called the menu governor, is being worked on. The

menu governor looks at different parameters like what the expected sleep time

is (as seen by dyntick), latency requirements, previous C-state residency and then

10

picks the deepest possible idle state straight away. This governor aims at getting

maximum possible power advantage with little impact on performance.

2.3 Performance States

Processor performance states (P-states) are a predefined set of frequency and

voltage combinations at which the processor operates. With higher frequencies,

you get higher performance, but to achieve that the voltage needs to be higher as

well, which makes the processor consume more power. With P-states, the

operating system can dynamically change the tradeoff between power and

performance all the time. Although changing from one voltage/frequency

combination to another takes a bit of time, on current chips, this time is actually

really short. This time, as well as certain other characteristics, determines how

the operating system should control the frequency/voltage combinations.

 Some older x86 processors, as well as embedded processors, have a different

behavior, and for that reason the Linux kernel implements several different

algorithms for controlling (governing) the performance state that works best on

the various processors. For current kernels, you can find information on what is

running on your system by looking at the files in this

directory: /sys/devices/system/cpu/cpu0/cpufreq. If this directory is not

present, there is a good chance that your kernel does not have the CPUFREQ

feature enabled.

You can list the available governors by using this command:

#cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

ondemand userspace performance

11

In the example above, there are three governors available. In addition to

the ondemand governor, there are the userspace and performance governors.

You can see what governor is currently active with this command:

You can also change the currently running governor by echoing one of the

available governors to the scaling_governor file node:

2.3.1 P state

While a device or processor operates (D0 and C0, respectively), it can be in one of

several power-performance states. These states are implementation-dependent,

but P0 is always the highest-performance state, with P1 to Pn being successively

lower-performance states, up to an implementation-specific limit of n no greater

than 16.

P-states have become known as SpeedStep in Intel processors

P-states have become known as SpeedStep in Intel processors as PowerNow! or

Cool’n’Quiet in AMD processors and as PowerSaver in VIA processors.

The Performance state are as follows :-

 P0 max power and frequency

 P1 less than P0, voltage/frequency scaled

 P2 less than P1, voltage/frequency scaled

#cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors
ondemand

echo ondemand > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

12

 ….

 Pn less than P(n-1), voltage/frequency scaled

2.4 System Monitoring Tools in Linux

System monitoring tools are an indispensible part in analyzing system

performance and profiling the system behavior. These tools provide metrics

which can be used to get information about system activities. They are basically

Unix commands that return realtime data and statistics of system resources like

CPU, Memory, Network Interface card, applications consuming most of CPU

time. They provide detailed accounts of resources like cpu-idle time, percentage

of cpu usage over the last interval, CPU time spent in different performance

states, amount of free memory, used memory, swapped memory,amountof data

flowing through different network ports etc. Here is a list of useful system

commands used to monitor subsystem activity :-

2.4.1 top - Process Activity Command

The top program provides a dynamic real-time view of a running system i.e.

actual process activity. By default, it displays the most CPU-intensive tasks

running on the server and updates the list every five seconds.

2.4.2 vmstat - System Activity, Hardware and System Information

The command vmstat reports information about processes, memory, paging,

block IO, traps, and cpu activity.

13

2.4.3 mpstat - Multiprocessor Usage

The mpstat command displays activities for each available processor, processor

0 being the first one. mpstat -P ALL to display average CPU utilization per

processor

2.4.4 free - Memory Usage

The command free displays the total amount of free and used physical and swap

memory in the system, as well as the buffers used by the kernel.

2.4.5 iostat - Average CPU Load, Disk Activity

The command iostat report Central Processing Unit (CPU) statistics and

input/output statistics for devices, partitions and network filesystems (NFS).

2.4.6 netstat and ss - Network Statistics

The command netstat displays network connections, routing tables, interface

statistics, masquerade connections, and multicast memberships. ss command is

used to dump socket statistics. It allows showing information similar to netstat.

See the following resources about ss and netstat commands

2.5 Parallel Performance Analysis

Parallel Performance Wizard (PPW) is a performance analysis tool designed for

partitioned global-address-space (PGAS) programs, in particular UPC and

SHMEM programs. The tool features an easy-to-use interface and tight

integration with PGAS programming models via the GASP interface.

14

In experimental performance analysis, there are two major techniques that

influence the overall design and workflow of performance tools. The first

technique, profiling, keeps track of basic statistical information about a

program’s performance at runtime. It gives the user a high-level view of where

time is being spent in their application code. The second technique, tracing,

keeps a complete log of all activities performed by a user’s program inside a trace

file. Tracing usually results in large trace files, especially for long-running

programs. However, tracing can be used to reconstruct the exact behavior of an

application at runtime. Performance analysis in performance tools supporting

either profiling or tracing is usually carried out in five distinct stages:

(i)instrumentation, (ii) measurement, (iii) analysis, (iv)

presentation, and (v) optimization.

User has to take her original application, instrument it to record performance

information, and run the instrumented program. The instrumented program

produces raw data (usually in the form of a file written to disk), which she gives

to the performance tool to analyze. The performance tool then presents the

analyzed data to her, indicating where any performance problems exist in her

code. Finally, she changes her code by applying optimizations and repeat the

process until she achieves acceptable performance.

2.5.1 Instrumentation Process

During the instrumentation stage, an instrumentation entity (either software or

a user) inserts code into a user's application to record when interesting events

happen, such as when communication or synchronization occurs.

15

Instrumentation may be accomplished in one of three ways: through source

instrumentation, through the use of wrapper libraries, or through binary

instrumentation. While most tools may use only one of these instrumentation

techniques, it is possible to use a combination of techniques to instrument the

user's application. Source instrumentation places measurement code directly

inside a user’s source code files. While this enables tools to easily relate

performance information back to the user's original lines of source code,

modifying the original source code may interfere with compiler optimizations.

Source instrumentation is also limited because it can only profile parts of an

application that have source code available, which can be a problem when users

wish to profile applications that use external libraries distributed only in

compiled form. Additionally, source instrumentation generally requires

recompiling an entire application over again, which is inconvenient for large

applications.

2.5.2 Measurement

In the measurement stage, data is collected from a user's program at runtime.

The instrumentation and measurement stages are closely related; performance

information can only be directly collected for parts of the program that have been

instrumented.

The term metric is used to describe what kind of data is being recorded during

the measurement phase. The most common metric collected by performance

tools is the wall clock time taken for each portion of a program, which is simply

the elapsed time as reported by a standard clock that might hang on your wall.

16

This timing information can be further separated into time spent on

communication, synchronization, and computation. In addition to wall clock

time, a performance tool can also record the number of times a certain event

happens, the amount of bytes transferred during communication, and other

metrics. Many tools also use hardware counter libraries such as PAPI to record

hardware-specific information such as cache miss counts.

2.5.3 Analysis

During the analysis stage, data collected during runtime is analyzed in some

manner. In some profiling or sampling tools, this analysis is carried out as the

program executes. This technique is generally referred to as online analysis.

More commonly, analysis is deferred until after an application has finished

execution so that runtime overhead is minimized. Performance tools using this

technique are often referred to as post-mortem analysis tools.

The types of analysis capabilities offered varies significantly from tool to tool.

Some performance tools offer no analysis capabilities at all, while others can

compute only basic statistical information to summarize a program's execution

characteristics. A few performance tools offer sophisticated analysis techniques

that can identify performance bottlenecks. Generally, tools that provide minimal

analysis capabilities rely on the user to interpret data shown during the

presentation stage.

17

2.5.4 Presentation

After data has been analyzed by the performance tool, the tool must present the

data to the user for interpretation in the presentation stage.

For tracing tools, the performance tool generally presents the data contained in

the trace file in the form of a space-time diagram, also known as a timeline

diagram. In timeline diagrams, each node in the system is represented by a line.

States for each node are represented through color coding, and communication

between nodes is represented by arrows. Timeline diagrams give a precise

recreation of program state and communication at runtime. For profiling tools,

the performance tool generally displays the profile information in the form of a

chart or table. Bar charts or histograms graphically display the statistics collected

during execution. Text-based tools use formatted text tables to display the same

type of information. A few profiling tools also display performance information

alongside the original source code, as profiled data such as the percentage of time

an instruction contributes to overall execution time lends itself well to this kind

of display.

2.5.5 Optimization

In most performance tools, the optimization stage in which the code for the

program is changed to improve performance based on the results of the previous

stages is left up to the user. The majority of performance tools do not have any

facility for applying optimizations to a user's code. At best, the performance tool

may indicate where a particular bottleneck occurs in the user's source code and

expects the user to come up with an optimization to apply to their code.

18

2.6 Parallel Performance Wizard

To analyze the performance of your UPC programs, you will need to configure

Parallel Performance Wizard to use a UPC compiler. When measuring performance

data for UPC programs, all shared data references occurring through direct

variable accesses will be attributed to the ‘upc_get’ and ‘upc_put’ regions. Shared

data references with affinity to the current thread will be attributed to the

‘upc_get_local’ and ‘upc_put_local’ regions. Additionally, in some UPC

implementations (including Berkeley UPC), a ‘upc_barrier’ will be split into

‘upc_notify; upc_wait;’ and show up in the ‘upc_notify’ and ‘upc_wait’ regions.

3 Background and Related Work

In recent work, Liu et al (7) survey power management approaches for HPC

systems. As they discuss, since processors dominate the system power

consumption in HPC systems, processor level power management is the most

addressed aspect at server level. It involves controlling the sleep states or the C-

states (8) and the P-states of the processor when the processor is idle (6) C-state

is the capability of the processor to go in various low power idle states with

varying wakeup latency. P-state is the capability of running the processor at

different voltage and frequency levels (9). The Advanced Configuration and

Power Interface (ACPI) specification provides the policies and mechanisms to

control the C-states and P-states of the processor when they are idle. Modern

operating systems (e.g. Linux kernel) implement ACPI-based policies to reduce

the processor performance and power when it is less active or in idle state (10).

Some processors allow frequency and voltage scaling by which the processor

19

performance and power can be reduced when the processor is less active or in

idle state. The operating system acts as the master controller of the ACPI policies

and mechanisms. The ACPI policies and mechanisms are controlled by operating

system using Operating System Directed Power Management (OSPM) (11). The

Linux kernel can operate in a dynamic ticks mode to save power (10). The

dynamic ticks mode eliminates the periodic timer tick and allows processor to be

in a deeper sleep states when idle without waking it up at constant interval.

Several approaches to enforce power management based on the workload

characteristics have already been developed. Some of the most successful

approaches were based on overlapping computation with communication in MPI

programs, and using historical data and heuristics.

 Kappiah et al. (12) developed a system called Jitter that exploits inter-node

bottleneck in MPI programs (i.e. execute blocked processes due to

synchronization points in lower P-sates). Lim et al (13) developed a MPI runtime

system that dynamically reduces CPU performance during communication

regions assuming that in these regions the processor is not on the critical path.

Other approaches have also studied the bound on the energy saving for an

application without incurring in significant delay (14) and implemented solutions

for scientific applications (15). Freeh et al. proposed a model to predict execution

time and energy consumed of an application running at lower P-states (16) and

techniques based on phase characterization of the applications, assigning

different P-states to phases according the previous measurements and heuristics

(17). Cameron et al. (18) proposed power management strategies based on

20

application profiles but they concentrate only on power management of the CPU

using dynamic voltage and frequency scaling (DVFS) and does not implement

any power control of the peripheral devices. Horvath et al. (19) exploited DVFS

with dynamic reconfiguration in multi-tier server clusters, which is a typical

architecture of current server clusters. Ranganathan et al. (20) designed a cluster

level power management controller, which employes a management agent

running on each server and the server which exceeded the power budget

according to a Service Level Agreement (SLA), is throttled down to an

appropriate level. Wang et al. (21) proposed a control algorithm to manage power

consumption of multiple servers simultaneously. The controller monitors the

power value and CPU utilization of each server to set the frequency of the

processors in a coordinated way. Weissel et al. (22) defined an energy-aware

scheduling policy that benefits from event counters. By exploiting the

information from these counters, the scheduler determines the appropriate clock

frequency for each individual thread running in a time-sharing environment.

 Leveraging DVFS mechanisms, Hsu et al. (23) proposed an automatically-

adapting, power aware algorithm that is transparent to end-user applications and

deliver considerable energy savings with tight control over DVFS-induced

performance slowdown. They used Millions of Instructions Per Second (MIPS) as

a metric to measure CPU boundedness and take decisions on DVFS control,

whereas Malkowski et al. (24) took advantage of memory-bound phase to select

CPU frequencies. Rountree et al developed a system called Adagio to collect

statistical data on task execution slacks (25) compute the desired frequency and

21

represent the result in a hash table. When task executes again, an appropriate

frequency can be found in a hash table. Other techniques based on switching

on/off nodes and other networking devices have been also proposed (26). These

techniques have been also applied to virtualized environments (27) but also

DVFS techniques have been exploited (28) (29).

Substantial work has been also done for adapting the RAM memory subsystem

for saving energy. Delaluz et al (30), (31) studied compiler-directed techniques,

as well as OS-based approaches (32) to reduce the energy consumed by the

memory subsystem. Huang et al. (33) proposed power-aware virtual memory

implementation in OS to reduce memory energy consumption. Fradj et al. (34),

propose multi-banking techniques that consist of setting individually banks in

lower power modes when they are not accessed. Diniz et al. (35) study dynamic

approaches for limiting the power consumption of main memories by limiting

consumption by adjusting the power states of the memory devices, as a function

of the memory load. Hur et al. (36) propose using the memory controller (thus, at

chip level) to improve RAM energy efficiency. They exploit low power modes of

modern RAMs extending the idea of adaptive history-based memory schedulers.

Existing research work also addresses the storage subsystem management to

improve energy efficiency of servers. Rotem et al. (37) focus on the energy

consumed by the storage devices like hard disks in standby mode. They suggest

file allocation strategies to save energy with a minimal effect on the system

performance i.e. the file retrieval time, while reducing the I/O activity when there

is no data transfer. Pinheiro et al. (38) study energy conservation techniques for

22

disk array-based network servers and propose a technique that leverages the

redundancy in storage systems to conserve disk energy (39). Other approaches

have addressed energy efficiency of storage systems by spinning-down/up disk

(40) and the reliability of such techniques (41). Solid State Drive (SSD) disks have

been also taken into account towards saving energy consumption for the storage

subsystem (42).

The research work discussed above addresses energy efficiency by managing

different subsystems individually (e.g. CPU via DVFS). However, recent

approaches have proposed energy efficiency techniques for processor and

memory adaptations (43) (44). Li et al. (45) combine memory and disk

management techniques to provide performance guarantees for control

algorithms.

In contrast to all these approaches, we consider dynamic configuration of

multiple subsystems within a single server. Thus, we propose using different

mechanisms and techniques that have been already developed in different

domains. Thus, our approach is complimentary to existing and ongoing solutions

for energy management for data centers.

3.1 Background and Related work on UPC-PGAS programming

model

PGAS is a distributed-shared memory programming model that is slowly gaining

recognition in High Performance Computing for programmability reasons since it

incorporates the shared-memory style of programming, but follows the

23

distributed-local memory organization which provides scalability and

performance. Since the message passing, though present, is not explicit in PGAS,

and since it incorporates shared-memory style of programming with remote

accesses to shared memory, one-sided communication it merits a study and

analysis into it's behavior. Research work on PGAS/UPC have been carried out,

focusing on primarily performance, scalability issues and compiler optimizations

to improve it's efficiency and make it comparable with that of MPI. Unified Parallel

C (UPC) is an extension of ANSI C and is based on partitioned global address

space programming model. UPC keeps the powerful concepts and features of C

and adds parallelism; global memory access with an understanding of what is

local; and the ability to read and write memory with simple statements. The

simplicity, usability and performance of UPC have attracted interest from high

performance computing users and vendors. UPC (46) utilizes a distributed

shared programming model that is similar to shared memory model with the

addition of being able to make use of data locality. The distributed shared

memory model divides it’s shared address space into partitions where each

memory partition Figure 1 Mi has affinity to thread Thi.

Figure 1

24

3.1.1 UPC Memory Model

The UPC memory view is divided into private and shared spaces. Each thread

has its own private space Figure 2, in addition to a portion of the shared space.

Shared space is partitioned into a number of partitions each of which has affinity

with a thread, in other words it resides on the thread’s logical memory space as

seen in figure

Figure 2

A UPC shared pointer can reference all locations in the shared space; while a

private pointer may reference only addresses in its private space or in its local

portion of the shared space. Static and dynamic memory allocations are

supported for both shared and private memory.

3.1.2 Data Distribution and Coherency in UPC

Data distribution in UPC is simple due to the use of the distributed shared

memory programming model. This allows UPC to share data among the threads

using simple declaration statements. To share an array of size N equally among

the threads the user simply defines the array as a shared, and UPC will distribute

25

the array elements in a round robin fashion. Since shared memory is accessible

by all the threads, it is important to take into consideration the sequence in which

memory is accessed. To manage the access behaviors of the threads, UPC

provides several synchronization options to the user. First the user may specify

strict or relaxed memory consistency mode at the scope of the entire code, a

section of a code, or to an individual shared variable. Secondly the user may use

locks to prevent simultaneous access by more than one thread. Thirdly, the user

may use barriers to ensure that all threads are synchronized before further action

is taken.

Chen et al (47) compare the performance of benchmarks compiled with their own

optimizations in BUPC with that of HP UPC compiler. They worked on

overlapping computation of current iteration and communication of next

iteration, message coalescing and aggregation, reordering of shared operations

message pipelining or communication overlap techniques, and providing block

size information at compile time to avoid affinity tests in order to increase

performance. Mallon et al provides an upto-date UPC performance evaluation at

various levels, evaluating two collective implementations, comparing their results

with their MPI counterparts, and finally evaluating UPC and MPI performance in

computational kernels. Efforts have been put by Tarek et al (48) to perform

compiler optimizations and hand tuning like space privatization of local shared

accesses and block pre-fetching are shown for Sobel edge workload. They also

consider hand-tuned versions of NPB in UPC and show that if such optimized

libraries are used, they can performs as well as MPI implementations. Tarek in

26

his paper (49) use synthetic benchmark and UPC application suite involving

Nqueens Sobel Edge detection and matrix multiplication to study compiler

performance with different optimizations and highlight it's results with regard to

remote and local shared memory accesses. They also test the Nqueens benchmark

for scalability. William Kuchera and Charles Wallace in their paper (50) also

study the UPC memory model and memory consistency issues

4 System Level Power Management

4.1 Studying Energy Saving Possibilities

The fundamental requirement to study the potential energy saving with the

approach suggested in this work is to gather reliable usage data for processor,

memory, storage subsystem and the NIC for a set of representative and standard

HPC workloads.

However, we first characterize and analyze the power dissipation of the different

subsystems and quantify the possible saving using existing techniques based on

using low power modes to reduce the energy consumption. From the profiling

information we will be able to obtain patterns (coarse grain) and then identify

possible opportunities of energy saving in servers for large-scale data centers.

4.2 Experimental Environment

 The experiments were conducted with two Dell servers, each with a Intel quad-

core Xeon X3220 processors, 4GB of memory, two SATA hard disks, and two 1Gb

Ethernet interfaces. We also used a 160GB Intel x25-M Mainstream SATA Solid

State Drive (SSD) disk. The processors operate at four frequencies ranging from

27

1.6GHz to 2.4GHz. This is intended to represent a general-purpose rack server

configuration, widely used in large data centers.

To empirically measure the “instantaneous” power consumption of the servers a

“Watts Up? .NET” power meter was used. This power meter has an accuracy of

±1.5% of the measured power with sampling rate of 1Hz. The meter was attached

between the wall power and the server. We estimate the consumed energy

integrating the actual power measures over time.

4.3 Power Saving Quantification

4.3.1 Quantification

In order to quantify the possible power savings of a server, we have studied

empirically the power characteristics of different subsystems individually.

Specifically, we have studied CPU, RAM memory, disk storage, and NIC.

Equation 1 shows the simplified dynamic power dissipation model that we

consider for CPU, where C is the capacitance of the processor (that we consider

fixed), α is an activity factor (also known as switching activity), and V and f are

the operational voltage and frequency, respectively.

 Pcpu ~ C × V2 × α ×f (1)

Table I summarizes the server's power savings and the associated delays for the

different subsystem. For the CPU, the workload was generated with lookbusy (a

synthetic load generator). During CPU activity, the power demand differs up to

around 82W (i.e. 39% of total server power) depending of the frequency used, but

without any load the difference is only up to around 8W (i.e. 3.78% of total server

28

power). However, although CPU power is the more power consuming subsystem

of the server, we rely on the CPU frequency management performed within the

OS with “cpufreq” using the “ondemand” governor. For disk storage we consider

two different possibilities, on the one hand, using spin down/up techniques with

traditional disks, and, on the other hand, using a SSD disk. With a traditional

disk we can save almost 10W of power (i.e. around 7.5%). However, there is an

overhead for spinning down/up the disk. For spinning down the disk the delay is

around 0.05 seconds and for spinning up the delay is around 5-6 seconds. There

is also an overhead of energy due to the peak power required to spin up the disk's

motor (around 60J of energy, according to our experiments). We also consider

using a SSD drive, which can save around 14W of power when it is idle (i.e. 3%

less power with respect to a disk in low power mode), according to our

experiments. The SSD drive also has a much faster access time and does not

require spinning down techniques to reduce its power consumption.

CPU freq (idle) 8 “instantaneous”
CPU freq (loaded) 82 “instantaneous”

RAM memory 8 “instantaneous”
Hard Disk 10 5-7s

Solid State Disk 52 “instantaneous”
NIC 3 0.15s (on) 3-4s (off)

Table I

4.4 Server's power savings and associated delays

We use low power mode for the network subsystem switching off/on the NIC

dynamically. We made the assumption that data centers' servers have usually two

different network interfaces (a faster one for actual computations and a slower

one for control/administration purposes). Disabling the NIC we can save around

Subsystems Savings Delay

29

3W (i.e. 2.47%) and the overheads for switching on and switching off the NIC are

around 0.15s and 3-4s, respectively.

Memory power dissipation can be classified as being dynamic power dissipation

that occurs only during reads and writes, or static power dissipation due to

transistor leakage. Equation 2 shows a simple model for memory static power

dissipation, where Vcc is the supply voltage, N is the number of transistors, kdesign

is a design dependent parameter, and Ileak is a technology dependent parameter.

We will consider kdesign and Ileak as fixed parameters.

 Pstatic = Vcc × N × kdesign ×
^

Ileak (2)

Since the increasing contribution of static power is clearly evident even in today's

design, we can reduce the static power dissipation reducing either Vcc or N. Some

existing approaches based on multi-banking techniques try to set banks of

memory in lower power modes when they are not accessed, thus reducing N.

Other approaches may reduce dynamically the voltage when memory is not in the

critical path of the running workload. Since these techniques are not standardly

available in widely used systems (such as ours), we estimate the potential savings

from memory removing physically two of the four banks of memory that are

available in the server. Using the same subsystems configurations, but with only

2GB of RAM memory installed, we were able to save around 8W of power (i.e.

5.78%), on average. We estimate short delay for switching to low power mode.

30

4.4.1 Workload Profiling -

The methodology involves profiling the workload behavior into I/O intensive,

memory intensive, communication intensive and computes intensive regions

with respect to time. Most of the standard profiling utilities are designed for

comparing computation efficiency of the workloads and systems on which they

are running, hence their outputs are not very useful from the subsystem usage

point of view.

We profiled standard HPC benchmarks with respect to behaviors and subsystem

usage on individual servers. To collect run-time OS-level metrics for CPU

utilization, hard disk I/O, and network I/O we used different mechanisms such as

``mpstat'', ``iostat'', ``netstat'' or ``PowerTOP'' from Intel. We also patched the

Linux kernel 2.6.18 with the ``perfctr'' patch so that we can read hardware

performance counters on-line with relatively small overhead. We instrumented

the applications with PAPI and, since the server architecture does not support

total memory LD/ST counter, we counted the number of L2 cache misses, which

indicates (approximately) the activity of memory.

A comprehensive set of HPC benchmark workloads has been chosen. Each

stresses a variety of subsystems - compute power, memory, disk (storage), and

network communication. They can be classified in three different classes:

 Standard: HPL Linpack that solves a (random) dense linear system in double

precision arithmetic, and FFTW that computes the discrete Fourier transform.

 CPU intensive: TauBench, which is an unstructured grid benchmark of

Navier Stokes solver kernels.

31

 I/O intensive: b_eff_io, which is a MPI-I/O application, and bonnie++ that

focus on hard drive and file system performance. We run two distributed

instances of bonnie++ using a script and ssh.

Figures 3-20 show the obtained profiles for different benchmarks, along with the

server power consumption during their execution. Axes of the plots have time as

the X-axis and on the Y-axis we show, from the top to the bottom: CPU

utilization, memory utilization (L2 cache misses), disk utilization (number of

blocks accessed), network utilization (traffic of packets on the NIC), the average

p-state residency of the CPU's cores, and power consumption. The plots show the

measurements as well as the bezier curves (dashed lines) to better identify their

trends, except the plots of p-state residency that only show the bezier curves, for

readability.

In the following subsection we discuss the trends and the power saving

opportunities of the profiles shown in Figure 3-20

4.5 Power Saving Opportunities

The plots included in Figures 3-20 plot different application profiles for resource

utilization and power consumption. Some observations are listed below.

The HPL benchmark was configured to run two problems of the same size. Thus,

as is shown in the CPU utilization plot, there is an interval of time in the middle

of the benchmark's execution with lower CPU utilization. It helps us to appreciate

a clear correlation between the CPU utilization and power consumption.

32

In Figure 4, L2 cache misses increase steadily during the HPL's execution, which

suggests high memory activity. The NIC is used in bursts, except at the end of the

two problems solved by HPL (Figure 9).

P-state residency is distributed almost evenly among the maximum and

minimum CPU frequencies (Figure 15). This is explained due to the fact that the

OS scales the frequency down/up dynamically following the iterative

compute+synchronization pattern of HPL. Also, since the network was not very

fast (100Mbps), the communication slack is significant.

In contrast to the other subsystems, disk utilization is scarce (Figure 12).

Therefore, we find higher opportunities for energy saving using disk power

management techniques.

With CPU intensive benchmarks (i.e. TauBench), the CPU utilization steadily

remains close to the maximum utilization (400%), and the p-state residency at

maximum CPU frequency is at 100% during almost the whole execution of the

benchmark. This is because TauBench has much less MPI synchronization than

HPL.

As both b_eff_io and bonnie++ benchmarks are I/O intensive, the CPU

utilization running these benchmarks is low and the p-state residency is

predominated by low frequencies.However, memory and disk have high activity.

In fact, the disk is accessed frequently (see the disk utilization plot for b_eff_io)

thus making it infeasible to spin-up and spin-down the disk.

33

The main difference between b_eff_io and bonnie++ is that b_eff_io has periods

of intensive NIC utilization (Figure 10), and bonnie++ does not perform

synchronization over the network. Therefore, b_eff_io has lower average CPU

utilization than bonnie++, but the CPU utilization is steadier for bonnie++.

Moreover, we can appreciate a clear correlation between memory utilization and

power consumption with bonnie++ that is not present with b_eff_io.

The NIC utilization plot for b_eff_io (Figure 10) shows multiple long duration

idle periods offering opportunities to save energy even though other subsystems

are active most of the time.

As a result, with bonnie++ we have higher opportunities for energy saving from

NIC (Figure 11) and memory (Figure 8) because the network traffic is only at the

beginning and at the end of its execution, and there are some long intervals of

time without L2 cache misses.

34

 Figure 3 Figure 4 Figure 5

CPU Utilization of HPL, b_eff_io, bonnie 1

 Figure 6 Figure7 Figure 8

Memory Utilization of HPL, b_eff_io,bonnie++

 Figure 9 Figure 10 Figure 11

Network Utilization of HPL,b_eff_io,bonnie++

 Figure 12 Figure 13 Figure 14

Disk Utilization of HPL, b_eff_io,bonnie++

 Figure 15 Figure 16 Figure 17

P-State Residency of HPL,b_eff_io,bonnie++

 Figure 18 Figure 19 Figure 20

Power Profiles of HPL,b_eff_io,bonnie++

35

4.6 Towards Application-Centric Aggressive Power

Management

In this section, we build a model with the goal of developing an algorithm for

aggressive power management. The power dissipated by a server P can be

computed as the sum of it's static and dynamic power as described in Equation

(3)

 Pdynamic = Pstatic + Pdynamic (3)

Pdynamic is composed of power contributions from the CPU and sub-systems such

as memory, storage and the NIC,

 Pdynamic = Pcpu + Pmem + Pdisk + Pnic (4)

Since we assume that the OS manages the CPU power configuration efficiently,

we do not consider CPU henceforth.

We made the simplification that each subsystem has two operational modes:

active (regular configuration) and idle (low power mode). Therefore, we consider

the latencies and overheads that would be involved in switching between these

subsystem power modes. We define ton as the latency to switch from idle to

active mode and toff the latency to switch from active to idle mode. We also define

Eton and Etoff as their respective associated energy costs. Since we consider that

different power configurations for the subsystems can be used during a workload

execution, we model the workload execution time (T) as the sum of time intervals

36

where each two consecutive time interval have different power configurations

(Equation 5).

 ∑
 i (5)

 The energy consumed by the different subsystems (sys={mem, disk, nic}) during

the execution of a workload (E) is defined as the sum of the energy consumed in

each time interval (Equation 6).

 ∑
 ∑

sys
ti (6)

The energy consumed within a time interval includes the energy overhead of

switching between power modes as Equation 7 shows.

 E sys
ti = P sys

active . ti,active + P
sys
idle . ti,idle + E

sys
ton/off (7)

P
sys

active is the power consumed if the subsystem sys is active and ti,active is the time

duration in active mode in seconds. P
sys

idle is the power consumed if the subsystem

sys is idle (low power mode) and ti,idle is the time duration in idle mode in

seconds.

4.7 Predictive and Aggressive Power Management (PAPM)

Building on the model described above, we develop the PAPM algorithm that

transitions the subsystems to the appropriate power mode based on an a-priori

knowledge of the application profile. The algorithm takes into account the latency

of each device in making a transition from one state to another, as well as the

overhead energy consumed to make the transition.

37

Algorithm 1 shows the PAPM algorithm focusing on switching off subsystems and

deciding the appropriate low power state to transition a subsystem from an active

state. The algorithm to switch back to an active state from an idle state is

symmetric to Algorithm 1. It has three conditions: Idle-Condition, Time-

Condition and Energy-Condition on which transition to a low power state is

dependent.

Algorithm 1: Algorithm for idle state transition of memory, storage and NIC subsystems

Idle-Condition checks if the subsystem is going to be idle in the next time interval

and it is given by

 sys

i+1
) 0 (8)

Equation 8 indicates, based on the workload profile data, that if the next time

instance has low or no activity then proceed further to transition the subsystem

to a low power state. Time-Condition is given by,

 (t
sys

i+1 - t
sys

i) > t
sys

off + t
sys

on (9)

38

This condition checks if it is feasible to transition to any of the available lower

power states based on the latency of the subsystems and the idle time between

the two active periods. The active period is denoted by t
sys

 i active .

If the time for which subsystem is idle is greater than the latencies to enter and

exit any of the low power states, then the system should be transitioned to low

power mode. For simplicity, in Algorithm 1 we only consider two possible power

modes (active/idle).

‘Energy-Condition is given by,

 P
sys

active . ti > P
sys

idle . ti,idle + E
sys
toff + E

sys

 ton (10)

This condition checks if it is worthwhile to transition the system to a low power

state and if any energy savings will be achieved. It also takes into consideration

the power to transition the subsystem from a low power mode to operating mode.

If the sum of energy consumed in low power state and energy needed to bring

back the subsystem to active mode is less than the energy used by subsystem

when it continues to be in high power state when idle, it is worthwhile to

transition the system to a low power state.

Other considerations can be incorporated in this model such as ensuring that the

energy saving is significant enough to over-ride the cost of reducing the lifetime

of the disk.

4.7.1 Experimental Evaluation

In this section, we evaluate the energy savings that can be achieved with the

PAPM algorithm proposed previously with a deterministic approach, in order to

39

show its potential in a single server. To do this, we firstly use simulation along

with the workload profile information discussed in section 4.4.1. Then, we

present results obtained from actual executions to validate the former

simulations. Finally, we analyze the potential energy saving in large-scale data

centers.

4.7.1.1 Simulation

In this subsection, we evaluate the PAPM algorithm in a single server using

simulations and present the estimated energy savings. The PAPM algorithm

simulation was developed using MATLAB. We used the benchmarks presented in

section III that, as we discussed previously, have different requirements and

behaviors in terms of subsystems utilization. Although we present the saving for a

single server, the results were obtained using the testbed described in section 4.2.

We also perform our simulations based on the subsystem usage time obtained

from the workload profile data of an individual server. Since the approach is

deterministic, we assume that the workload profile is known in advance.

Following the PAPM algorithm, when a subsystem is switched to another power

mode (e.g. spinning up/down the disk), we consider the savings that we

quantified in section 4.3 as well as the associated overheads in terms of delay and

energy.

Table II present the obtained results. Specifically, it shows the run time, the

energy consumption, and the estimated energy savings of various workloads. The

granularity of the delays is in seconds due to the limitations of the instruments,

and the fact that our approach is based on a coarse-grained model.

40

 It is worth noting that run time and energy consumption are obtained through

actual measurements, while the energy savings for memory, disk and NIC were

obtained through the simulations.

 We present the results for each benchmark with two different configurations:

DVFS and non-DVFS. The former configuration uses ACPI enabling DVFS with

``cpufreq'' and the ``ondemand`` governor. The latter configuration uses

``userspace'' governor at the maximum CPU frequency. Therefore, the CPU

savings are also obtained from actual measurements. Although the total energy

savings are higher considering the CPU, we will consider the savings only from

the other subsystems.

Benchmark DVFS RunTime(s)
Energy

(J)

Energy Savings

 CPU Memory Disk NIC Total (J)

HPL
x
√

1,382 s
1,383 s

298,546 J
292,824 J

 -
5,722 J

1,380 J 5,338 J 240 J
6,958 J

12,680 J

B_eff_io
x
√

 1,206s
1,212 s

164,224 J
161,460 J

-
2,764 J

5,297 J - 1,124 J
6421 J
9,185 J

Bonnie++
x
√

1247 s
1248 s

190,613 J
187, 533 J

-
3,080 J

3,263 J 574 J 3,841 J
7,678 J

10,758 J

tauBench
x
√

1134 s
1136 s

251,904 J
244,473 J

-
7,431 J

3,377 J 7,297 J 1,979 J
12,653 J
20,084 J

FFTW
x
√

1052 s
1055 s

198,621 J
193,146 J

-
5,431 J

2,112 J 6,927 J 297 J
9,336 J
14,811 J

Table II
Energy savings with PAPM Using Simulations For Different Benchmarks

In fact, the results state that DVFS does not penalize the execution time

significantly (0.22% on average) while it provides significant savings of energy

(2.23% on average). This supports our argument that modern OS-driven power

management mechanisms can be leveraged for application-aware power

management, thus not requiring any specific CPU power management. From

Table II we can appreciate that CPU and network-intensive benchmarks provide

41

more opportunities of energy savings from the disk (e.g. FFTW) while I/O-

intensive benchmarks provide more opportunities of energy savings from other

subsystems (e.g. NIC). Furthermore, benchmarks with higher utilization of the

different subsystems (i.e. HPL) obtain less energy savings. Although the average

energy saving is around 4%, we can infer that PAPM can improve the energy

efficiency and hence the power efficiency of HPC workloads from around 2% to

around 5% depending on the workload profile. However, our simulations are very

conservative because we only consider static power to estimate the potential

energy savings from the memory subsystem (our quantification was done with

the server under idle condition). In fact, the simulations may obtain higher

energy savings without significant penalty in run time if we consider additional

memory management techniques, such as Dynamic Voltage Scaling (DVS),

during intervals of time where memory is not in the critical path.

4.7.1.2 Validation

In order to validate our model we implemented the PAPM algorithm and

performed actual experiments. They provides us with a very good opportunity to

prove the effectiveness of PAPM. Since we do not support any mechanism to

reduce the voltage of RAM memory or switching off banks of memory using

multi-banking techniques, we focus on in disk storage and NIC. Specifically, we

used the following configurations:

 Reference: regular execution with DVFS enabled.

42

 PAPM: implementation of PAPM with a script that deterministically

switches to appropriate power state, based on the profile obtained in

previous executions of the same benchmark.

 PAPM+SSD: use of SSD technology for storage and PAPM algorithm for

NIC only

Table III present the obtained results. It shows the run time and the difference

with respect to Reference configuration, the energy consumption and the

difference with respect to Reference configuration and, in order to consider both

energy and performance, the Energy Delay Product (EDP) and the difference

with respect to Reference configuration.

Benchmark Configuration Runtime (s) % Energy (J) % EDP %

HPL

Reference
PAPM
PAPM+SSD

1,383 s -
1,385 s +0.14%
1,385 s +0.14%

292,824 J -
287,906 J -1.67%
281,559 J -3.84%

404,975,592 -
398,749,810 -1.53%
389,959,215 -3.70%

b_eff_io

Reference
PAPM
PAPM+SSD

1,212 s -
1,217 s +0.41%
1,134 s -6.43%

161,460 J -
157,335 J -2.55%
143,768 J -10.95%

195,689,520 -
191,476,695 -2.15%
163,032,912 -16.68%

Bonnie++

Reference
PAPM
PAPM+SSD

1,248 s -
1,249 s +0.08%
1,169 s -6.33%

187,533 J -
182,904 J -2.47%
168,606 J -10.09%

234,041,184 -
228,447,096 -2.39%
197,100,414 -15.78%

TauBench

Reference
PAPM
PAPM+SSD

1,136 s -
1,139 s +0.26%
1,137 s +0.08%

244,473 J -
236,496 J -3.26%
229.446 J -6.14%

277,721328 -
269,368,944 -3.00%
260,880,102 -6.06%

FFTW

Reference
PAPM
PAPM+SSD

1,055 s -
1,057 s +0.19%
1,051 s -0.38%

193,146 J -
187,677 J -2.83%
177,071 J -8.32%

203,769,030 -
198,374,589 -2.64%
186,101,621 -8.67%

Table III
Energy Savings with PAPM Using Actual Executions

With PAPM the overheads of switching the power modes do not penalize the run

time significantly (0.16%, on average). However, the average energy saving is

around 2.5% which is 37.5% lower with respect to the average energy saving

estimated through simulations. The percentage of savings for EDP is only slightly

43

lower than the energy savings. We believe that the differences between the results

obtained with simulations and with actual experiments are motivated by two

factors. On the one hand, the lack of memory power management and, on the

other hand, insufficient precision at some power mode modification times that

may result in some energy saving loss.

The PAPM+SSD configuration allows us to identify the potentials and tradeoffs of

using SSD technology. Since SSD disks do not require spinning down techniques

to switch to low power mode, the PAPM algorithm only focus on NIC (potentially

it may consider also memory). As is shown in Table III using SSD technology

reduces the energy consumption 7.86% on average. For non-disk intensive

benchmarks (e.g. HPL) the savings are moderate (5%, on average) while the

energy savings are much higher for I/O intensive benchmarks (around 10%, on

average). The run times obtained with PAPM and with the other configurations

are similar for the non-disk intensive benchmarks. However, with I/O intensive

benchmarks (b_eff_io and bonnie++) the run times are reduced up to 6.43%.

This is explained due to the fact that both b_eff_io and bonnie++ benchmarks

access the disk frequently (see Figure 8,14) and SSD drives have a much shorter

access time. As SSD technology is still very expensive, we can assume that only

some servers of a data center will have a SSD disk available (at least for cache

data). Hence, the problem will include mapping the applications that can take

more advantage of SSD technology to the nodes with a SSD installed, depending

of the application profile.

44

Therefore, servers with SSD disks may be assigned to I/O intensive applications

while non-disk intensive applications (e.g. HPL) may take advantage of power

management techniques on traditional disks (spinning dow/up), if the benefit of

using SSD does not compensate the cost of SSD technology. It is worth noting

that this trade off will also depend of the estimated workload execution time.

4.8 Scaling to Large HPC Cluster Level

PAPM does power savings on per node basis per run basis, which can produce

significant amount of energy savings if scaled to data center magnitudes. We

assume that the data center is composed by the server configuration used

throughout this thesis, the average energy savings obtained from our validation

experiments (5.21%) and an average power demand of 200W due to almost

continuous load. If the daily energy consumption is $200W ×24h × 3,600s =

0.48kWh$, the daily energy saving is around 0.25kWh. Thus, the yearly energy

saving will be $0.25kWh × 365days = 91.28kWh per node. Considering that the

average kWh price (March 2010) in United States is $0.125 and €0.36 in Europe,

the yearly saving will be $11.41 or €32.86 per node. For a 1,000 node data center

it will save approximately $11,410 or €32,860 per year only on computational

costs. As the size of HPC cluster increases the savings would increase by same

order of magnitude.

5 Runtime Power Management with PGAS

PGAS is a parallel programming model that presents a single shared partitioned

address space, where variables may be directly read and written by any processor,

45

but each variable is physically associated with a single processor. Due to this

feature, the portions of shared address space may have an affinity for a particular

thread thereby exploiting locality of reference. Where parallel programs are

usually written either using distributed memory model or Shared Memory model,

depending on the feasibility and the demands, PGAS model brings with it, the

advantages of the Shared memory programming like OpenMP as well as the

Distributed memory programming like MPI. It has the performance and data

locality (partitioning of data) features of MPI and

the programmability and data referencing simplicity of shared-memory model.

Hence it has the potential to dramatically improve runtime performance and

programmer productivity on increasingly ubiquitous multi-core architectures.

5.1 Main features of PGAS

It has support for distributed data structures like global arrays. The PGAS model

uses “global address space” which presents the programmer a uniform view of the

global shared memory. It allows the programmer to access the remote shared

variables and the local shared variables in a seamless way, without him having to

worry about the location of the data. The programmer has control over the

placement of data and how the global data gets distributed among the different

processors. One-sided communication for improved inter-process performance –

One process can access a remote variable in another process, without involving

the remote process in the communication.

46

5.2 Differences with MPI and OpenMP

One sided communication in PGAS remote accesses as opposed to two-way

synchronization for SEND/RECEIVEs in MPI access to remote memory is

implicit in PGAS. No explicit language-level APIs/library calls are required to

access remote memory, unlike MPI which uses MPI calls to access remote

memory. Two level memory hierarchy exists – private data on local machines,

shared data on local and remote machines (accessed using global pointers). PGAS

implementations like UPC have split-phase barriers apart from the regular

barriers for synchronization. These split-phase barriers allow a process to

perform operations on local data (without touching shared memory), while

waiting for other process to reach the barrier. Programmer has control over data

layout and has the flexibility to distribute data over processes differently.

Work distribution in order to leverage data locality is possible - similar to

OpenMP.

Some of the PGAS implementations that are being developed are:-

 Unified Parallel C

 Global Arrays

Most popular implementation developed by UC Berkeley and Livermore Berkeley

National Laboratories uses the SPMD model of computation. Library developed

by scientists at Pacific Northwest National Laboratories follows MIMD model of

computation.

Some of the implementations of PGAS model are

 Chapel – Developed by CRAY Inc

 Titanium – Parallel dialect of Java , developed at UC Berkeley

47

 X 10– Being developed by IBM research

 Fortress – Created by Sun Microsystems

 Co-array Fortran

In our thesis, we shall focus our work on UPC implementation-Unified Parallel C

5.3 Scope for Power Management with PGAS Programming

Model

Load imbalance of parallel applications can be exploited to save CPU energy

without penalizing the execution time. An application is load imbalanced when

some nodes are assigned more computation than others. The nodes with less

computation can be run at lower frequency since otherwise they have to wait for

the nodes with more computation blocked due to synchronization calls. HPC

systems use an increasingly large number of processors with MPI-based parallel

programs. The resulting increase in the number of processes of an application

usually decreases the load balance degree of the application. In load imbalanced

MPI applications, there are processes that complete their computation and have

to wait for the other processes to communicate. These nodes can run at lower

frequencies and save energy consumed by CPU without increasing the execution

time. The dynamic power is proportional to the product of the frequency and the

square of the voltage and it can be reduced via DVFS technique.

It is possible to realize the potential for a runtime system Power Management

mechanism, if one studies the application runtime pattern. By studying the

application execution pattern, we can understand the application at a lower level

of granularity which would help us see inside the application- the sequence of

calls being made and the duration of the calls. It highlights the different sub-

48

routine library calls made, sequence of execution of the calls, slack involved in

communicating between processes and the load imbalance in the execution

runtime - from which we can appreciate the benefit of performing DVFS.

5.4 Opportunities for Power Management using DVFS

5.4.1 At Barriers – Due to upc_wait operation

The Figure 21 below depicts an execution trace of UPC NAS-MG benchmark.

The red colored lines denote threads after having reached their barrier and

waiting for other threads to synchronize. We can see that the different threads hit

the barrier at different points of time. Hence the threads wait at the barriers to

synchronize with remaining threads, during which they do not perform any

useful task. This provides us with an opportunity to reduce CPU frequency, since

it is not required to be performing at it’s peak.

Figure 21 : Threads approaching Barrier at Different times due to load imbalance

5.4.2 During Remote Memory Calls (memget/memput)

We also know that when a thread performs remote memory operations from a

local node, it has to wait for the data to get transferred from the remote node.

Since the processor bound to the thread is again not doing any useful work, other

than waiting for the data transfer, we can insert power management mechanisms

49

to reduce consumption of power. In Figure 22, we can see the threads

performing memget operation – depicted in green colour. The processor bound

to the thread is not performing any work other than waiting for the data to arrive

from the remote node – which provides with ample time to benefit from DVFS

techniques in saving power.

Figure 22: Memget operation (upc_memget)

6 Power Profiling of UPC-NAS applications/Measuring

Power with Wattmeter

Power profiles of applications give a broad overview of the nature of power usage

of applications. Comparing power profiles at different frequencies help us

appreciate how significantly frequency plays a role in the power consumption of

an application.

From the figures below, we can see the gap between the power traces at 1.6 GHz

and 2.4Ghz.It also clearly shows that the application finishes execution faster

when run at 2.4 GHz. The power profile also reflects the iterative nature of the

applications.

50

The NAS-CG benchmark is a memory intensive benchmark. It performs

computation for a short period followed by a longer remote memory fetch

operation, followed by a barrier used for synchronization, and this happens

iteratively. It mostly consists of small reads followed by small writes. Studying

the profile of CG (Figure 23), we can see that it consumes energy at a steady rate.

The runtime at 1.6 GHz consumes lot more time than the one at 2.4 GHz. NAS-IS

application profile shows sharp spikes at regular intervals which contends to be a

good candidate for performing DVFS.

 Figure 23 : Power Profile of CG Figure 23 : Power Profile of IS

Power profile of CG and IS

NAS-MG Benchmark has remote memory fetch at the beginning of execution. As

the application progresses, memory operations are mainly longer remote memory

write operations and short local memory reads, with computation. NAS-MG

varies constantly such that the spikes are spaced very closely to each other and

hence does not seem to be good candidate for DVFS since it would result in

overhead while performing DVFS so often. NAS-FT, unlike MG, consists of

mainly longer memory read operations, with brief periods of computation and

short local memory write operations.

51

 Figure 24 : Power Profile of MG Figure 25 : Power Profile of FT

Next section shows further analysis about the energy savings and runtime

features of NAS applications.

7 Power Profiling of UPC-NAS kernels

We run UPC-NAS benchmarks at different frequencies (1.6 GHz, 1.867 GHz and

2.4 GHz) to measure the energy consumed by them at each frequency. We notice

that all benchmarks consume least energy at 1.6 GHz except the EP benchmark

that consumes the least energy at 2.4 GHz.

The highest energy-gain percentage is registered by the NAS-FT benchmark

(15%) whereas EP benchmark registers 18% energy loss when run at 1.6 GHz as

compared to the run at 2.4GHz. This can be reasoned by observing the runtimes

of the benchmark which also play a role in determining energy consumption of

application. The runtime of EP at 1.6 GHz is nearly 40% greater than the runtime

of EP at 2.4 GHz thus consuming power for too long a duration to register any

energy savings. This result of EP can be explained by considering the nature of

benchmark which is highly parallel with little communication. This causes a

higher frequency execution to finish a lot faster than the lower frequency run, as

it has very little slack- thus resulting in a huge difference between the two

52

runtimes. Since 2.4GHz run consumes lot lesser time, the energy consumed will

be lesser than that due to 1.6GHz run. We can see that NAS-FT has the least

runtime loss and the highest EDP gain percentage (13.8%) followed by NAS-IS

and NAS-MG with 10.7% and 7.2% respectively.

Figure 26 : Power Consumption of NAS-UPC Benchmarks

Figure 27 : Energy Gain of NAS-UPC Benchmarks

53

Figure 28 : Runtime Loss of NAS-UPC Benchmarks

Figure 29 : EDP gain percentage of NAS-UPC Benchmarks

Application Runtime (s)

Energy in Joules (J) Runtime Loss (%) Energy gain (%)

1.6
GHz

1.867
GHz

2.4GHz 1.6GHz 1.867GHz 2.4GHz T2.4/1.6 T 2.4/1.867 T2.4/1.6 T 2.4/1.867

FT - B 635 628 625 176141.5 183487 207649 1.6 0.48 15.17 11.636

MG-C 142 138 137 40524.1 41162 45268 3.649 0.73 10.479 9.07

CG-C 676 690 654 184326 196133 204656 3.363 5.504 9.93 4.16

EP-C 152 132 105 43099 39694.7 36327.7 44.76 25.714 -18.63 -9.26

IS-C 362 355 350 99363 102555 115173.6 3.42857 1.42857 13.727 10.95

Table IV

Summary of Energy and Runtime data of NAS-UPC Benchmarks at 1.6Ghz, 1.867GHz and 2.4GHz

54

EDP (Js in million)

 EDP % gain

1.6 GHz

1.867 GHz

2.4 GHz

1.6 vs 2.4 GHz

1.867 vs 2.4 GHz

FT-B

111.85

115.23

129.78

13.81

11.21

MG-C

5.75

5.68

6.2

7.21

8.40

CG-C

124.6

135.33

133.845

6.90

-1.11

EP-C

6.55

5.24

3.81

-71.74

-37.36

IS-C

35.97

3.64

4.03

10.76

9.68

Table V : EDP gain of UPC-NAS Benchmarks

8 Comparing runtime characteristics of NAS

applications at different frequencies

We ran the applications at frequencies 1.6 GHz and 2.4 GHz and collected

breakup runtimes of individual subroutines. This also helps us in determining the

UPC subroutine that should be instrumented with DVFS mechanism to reduce

energy consumption.

By looking at the break up runtimes of individual subroutines, we can find that

memget operation consumes most of the runtime during the execution.

For FT benchmark, memget operation consumes approximately 90% of total

runtime. We can observe that the percentage change in runtime (Figure 32) of

the remote memory fetch operation does not change significantly upon reduction

of frequency whereas every other subroutine shows increase in runtime. This fact

helps us in recognizing memget as a good candidate for DVFS for NAS-FT since

we can safely reduce frequency and thus energy without affecting runtime

severely.

55

Figure 30: Runtime Breakup of FT at 1.6 GHz and 2.4 GHz

Figure 31 : Percentage Difference in runtimes of FT at 1.6 GHz and 2.4 GHz

8.1 Runtime break-up of MG at 1.6GHz and 2.4GHz

NAS-MG consumes 45% of runtime on memput operations. Figure 34 shows

that the percentage difference for memput operation is negligible- and thus

performing DVFS during memput will not adversely affect runtime. We can see

that wait operation consumes lesser percentage time (negative runtime loss) in

the 1.6 GHz than the 2.4 GHz run. This means that NAS-MG achieves better load

balance at 1.6 GHz compared to 2.4 GHz.

56

Figure 32 : Runtime Breakup of MG at 1.6 GHz and 2.4 GHz

Figure 33 : Percentage Difference in Runtimes of MG at 1.6 GHz and 2.4 GHz

9 Runtime System to perform DVFS for PGAS

Applications

Our second objective of research was to build an application-aware runtime

DVFS system that controls CPU frequency during execution of application that

would result in power savings.

57

From our previous experiments and results above, we can deduce that

performing DVFS on memget and wait operation would not affect the runtime

severely. We inserted DVFS mechanisms inside the UPC-Memget and UPC-Wait

operation subroutines. When the memget or wait was called by the application,

the DVFS mechanism would reduce the frequency, causing the application to

consume lesser power while memget/wait was in execution. We implemented

this mechanism with different policies. The policies are based on the statistics of

the duration of memget or a wait operation on a thread.

9.1 Algorithm/techniques

To introduce policies to our DVFS mechanism, we used the statistical data of the

time spent in individual memget and wait operations.

From our experiments we found that the wait operations take a duration of the

order of hundreds of micro-seconds(10-4) while memget operations are of the

order of hundreds of milli-seconds (0.1). We also computed the overhead in

carrying out DVFS mechanism and found it to be of the order of tens of micro-

seconds duration.

We also studied the pattern of time spent in memget and wait operations .We

found that the the time spent on wait operation or a memget over subsequent

calls falls under the same range. For example if a thread waits on a barrier for

greater than 0.1ms, the subsequent calls to “wait“ operation by the same thread

would consume same order of time repeatedly. We make use of this fact in our

policy.

58

The policy we implemented makes sure that DVFS mechanism is triggered only if

the time spent in previous wait/memget call was greater than the overhead time

in performing DVFS.

9.2 Algorithm

The “threshold” value should be atleast equal to the DVFS-Overhead time, lest

the mechanism would get triggered for wait durations of very small periods and

the energy saved during this would not amortize with the energy spent in

performing the DVFS.

If (wait_time_prev_iteration > threshold)

{

 PerformDVFS() ; //Push down frequency

}

Start = Start_timer();

upc_wait() ;

Stop = Stop_timer();

PerformDVFS(); //Bring up the frequency to Highest value

wait_time_prev_iteration = (Stop – Start);

We performed tests with different values of thresholds to see how often DVFS

would get triggered for wait and memget operation.

9.3 Results and analysis

9.3.1 NAS-FT

For FT benchmark we found that a wait operation would trigger DVFS 99% of

times if the threshold value was set to 0.1ms, 97% when threshold was set to

59

0.01s and 89% when it was set to 0.1s. However since memget operations are

always of the order of hundred-milliseconds duration, DVFS always gets

triggered-demonstrating that it was always beneficial to perform DVFS on a

memget.

Since the duration of wait operation is lesser than that of memget operation, and

for the reason that DVFS happens on fewer occasions for a wait operation, the

contribution to power savings by wait operation is lot lesser than that of memget

operation. We evaluated the percentage of contribution of wait and memget

operation for different values of threshold on the FT benchmark.

When the threshold on wait is 0.1ms, it contributes to 9% of the total savings

where as memget contributes to 91% of the power saved. When the threshold is

increased to 0.01s, the power saved due to wait operation decreases to almost 4%

and goes upto 7.5% when the threshold is further increased to 0.1s.

 Figure 34 Figure 35

We can see reduction in EDP after DVFS, where the maximum energy savings is

achieved when threshold is 0.01s.

60

Figure 36

NAS-FT DVFS Results

9.3.2 NAS-MG

MG benchmark provides almost 5% energy savings when threshold is 0.1 ms.

Increasing the threshold degrades the energy saving percentage due to the

reduction in fraction of times DVFS is triggered on a barrier. The two policies

produce similar results for MG benchmark. This shows that duration of memput

calls are of the same range as of wait calls.

 Figure 37 Figure 38

61

Figure 39

NAS-MG DVFS Results

9.3.3 NAS-CG

While CG benchmark registers no energy savings but consumes extra energy due

to extra runtime caused by DVFS mechanism. For NAS CG Benchmark, energy

consumed increases after performing DVFS - showing that the current policy is

not effective.

The reason for this is that for CG, wait and memget operations contribute

almost equally in runtime. Infact total time consumed by wait operation is

greater than total time consumed by memget operation. Also in the earlier graph

we saw that wait operation consumes 10% greater time at 1.6Ghz compared to

2.4Ghz. Hence runtime of the execution where DVFS is performed, exceeds the

runtime when no DVFS is performed (ie frequency constant at 2.4Ghz), hence

consuming more energy.

62

Figure 40

 Figure 41 Figure 42

NAS-CG DVFS Results

Table VI

Policy I – DVFS if “wait” duration > 0.1ms and DVFS on memget

Policy II – DVFS if “wait” duration > 0.01s and DVFS on memget

Policy III – DVFS “wait” duration > 0.1s and DVFS on memget

10 Conclusions and Future Work

Energy Gain (%)
 Runtime Loss (%)

EDP Gain (%)

1.6GHz
Policy

I
Policy

II
Policy

III
1.6GHz

Policy
I

Policy II
Policy

III
1.6GHz

Policy
I

Policy
II

Policy
III

FT-B

15.17

7.64

9.04

6.86

1.6

4.32

0.63

0.41

13.81

2.03

6.93

4.91

MG-C

10.47 4.21 0.97

-

3.64 -0.12 -0.098

-

7.21 4.03 0.86

-

63

In this paper, we studied the potential impact of deterministic application-centric

power control at the device level on the overall energy efficiency of the system.

Specifically, we analyzed the power consumption of a node according to the usage

of its processor, memory and storage subsystem, and the NIC. Based on a power

and latency model and workload profiling, we have developed the PAPM

algorithm, which attempts to improve energy efficiency with little or no

performance loss. We evaluated our approach with simulations and actual

executions to validate them. The simulations used empirical data that was

obtained from executions in real hardware to quantify the potential energy

savings.

The results stated that using application-aware subsystem power control can save

additional energy without significant penalty in performance. Furthermore, the

results showed that combining PAPM with using low power devices (e.g. SSD

technology) can increase remarkably the potential to improve the energy

efficiency of the system. It allows cross layer optimizations, such as application-

aware mapping across the data center. We conclude that power management at

the subsystem level cannot be neglected due to the increasing requirements of

energy efficiency optimization in large-scale data centers. We believe that our

proposed predictive application-aware power management approach has

sufficient potential to tackle this problem.

It motivates us to investigate autonomic approaches for application-aware

aggressive power management rather than the deterministic approach presented

in this paper. Since HPC applications usually follow iterative patterns, we plan to

64

profile the applications on run time and, then predict the optimal subsystems'

power configuration to be applied for the following iterations. We also can

conclude that current and ongoing technologies such as SSD disk drives or

memories that allow DVS must be adopted and supported in large-scale data

centers to enhance global energy optimizations.

In conjunction with application aware predictive algorithms we also propose a

cross layer and cross function predictive subsystem level power management

system as future research directions.

We also analysed UPC-NAS applications with respect to power, studied their

traces and instrumented the UPC library with a feature that dynamically takes

decisions to perform DVFS.

We arrived at suitable policies for performing DVFS for each application that are

optimal from the point of view of power consumption.

10.1 Scope for Future Work

1. To perform further scalabilty tests:- Benchmark UPC-NAS applications

and application codes with different cluster configurations by using varying

number of processes and nodes.

2. Trying a different policy for NAS-CG benchmark :- CG Benchmark has a

better chance of showing power savings when DVFS is performed only on

Memget operation.

3. Using Global Arrays implementation - which is an implementation of

PGAS programming model and explore what kind of policies would work.

65

11 Bibliography
1. Large-scale distributed systems at Google: current systems. Dean, J. s.l. : 3rd ACM

SIGOPS International Workshop on Large Scale Distributed Systems and Middleware,

2009.

2. Mission Possible -- Greening the HPC Data Center. HPC Wire. [Online] 2009 йил.

http://www.hpcwire.com/hpcwire/2009-08-31/mission_possible_--

_greening_the_hpc_data_center.html.

3. K. W. Cameron, R. Ge, and X. Feng. High-performance, power-aware distributed

computing for scientific applications. Computer. 2005 йил, Vol. 38.

4. Dynamic frequency scaling. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Dynamic_frequency_scaling.

5. L i n u x C P U F r e q. www.mjmwired.net. [Online]

http://www.mjmwired.net/kernel/Documentation/cpu-freq/governors.txt.

6. cpuidle-Do nothing efficiently... V. Pallipadi, S. Li, and A. Belay. s.l. : Ottawa

Linux Symposium, 2007.

7. Zhu, Y. Liu and H. A survey of the research on power management techniques for

high-performance systems. 2010 йил.

8. Power and thermal management in the Intel Core Duo processor. A. Naveh, E.

Rotem, A. Mendelson, S. Gochman, R. Chabukswar,K. Krishnan, and A.

Kumar,. s.l. : Intel Technology Journal Tech. Rep., , 2006 йил.

9. Processor power management features and process scheduler: do we need to tie

them together?”. V. Pallipadi and S. B. Siddha. s.l. : LinuxConf Europe, 2007.

10. Getting maximum mileage out of tickless. S. Siddha, V. Pallipadi, and A. V. D.

Ven. s.l. : Ottawa Linux Symposium, 2007.

11. Advanced Configuration & Power Interface (ACPI). 2009.

12. Just in time dynamic voltage scaling: exploiting inter-node slack to save energy in

MPI programs. Kappiah, Nandini and Freeh, Vincent W. and Lowenthal,

David K. s.l. : ACM/IEEE conference on Supercomputing (SC'05), 2005.

13. Adaptive, transparent frequency and voltage scaling of communication phases in

MPI programs. Lim, Min Yeol and Freeh, Vincent W. and Lowenthal, David K.

s.l. : ACM/IEEE conference on Supercomputing (SC'06), 2006.

14. Bounding energy consumption in large-scale MPI programs. Rountree, Barry

and Lowenthal, David K. and Funk, Shelby and Freeh, Vincent W. and de

Supinski, Bronis R. and Schulz, Martin. s.l. : ACM/IEEE conference on

Supercomputing (SC'07), 2007.

66

15. Adagio: making DVS practical for complex HPC applications. Rountree, Barry

and Lownenthal, David K. and de Supinski, Bronis R. and Schulz, Martin

and Freeh, Vincent W. and Bletsch, Tyler. s.l. : 23rd international conference on

Supercomputing (ICS'09).

16. Exploring the energy-time tradeoff in MPI programs on a power-scalable cluster.

Freeh, Vincent W. and Pan, Feng and Kappiah, Nandini and Lowenthal,

David K. and Springer, Rob. s.l. : 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS'05), 2005.

17. Using multiple energy gears in MPI programs on a power-scalable cluster. Freeh,

Vincent W. and Lowenthal, David K. Chicago, IL, USA : ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming (PPoPP'05), 2005.

18. Feng, Kirk W. Cameron and Rong Ge and Xizhou. High-performance, power-

aware distributed computing for scientific applications. Computer. 2005 йил, Vol. 38.

19. Horvath, Tibor and Skadron, Kevin. Multi-mode energy management for multi-

tier server clusters. International conference on Parallel Architectures and Compilation

Techniques (PACT'08). 2008 йил.

20. Ranganathan, Parthasarathy and Leech, Phil and Irwin, David and

Chase, Jeffrey. Ensemble-level power management for dense blade servers. SIGARCH

Comput. Archit. News. 2006 йил, Vol. 34.

21. Cluster level feedback power control for power optimization. Chen, Xiaorui

Wang and Ming. Salt Lake City, UT, USA : IEEE 14th International Symposium on

High Performance Computer Architecture (HPCA), 2008.

22. Process cruise control: event-driven clock scaling for dynamic power management.

Weissel, Andreas and Bellosa, Frank. Grenoble, France : International conference

on Compilers, Architecture, and Synthesis for Embedded Systems (CASES'02), 2002.

23. A power-aware run-time system for high-performance computing. Hsu, Chung-

Hsing and Feng, Wu-Chun. s.l. : ACM/IEEE conference on Supercomputing (SC'05),

2005.

24. Phase-aware adaptive hardware selection for power-efficient scientific

computations. Malkowski, Konrad and Raghavan, Padma and Kandemir,

Mahmut and Irwin, Mary Jane. s.l. : International Symposium on Low Power

Electronics and Design (ISLPED'07), 2007.

25. Adagio: making DVS practical for complex HPC applications. Rountree, Barry

and Lownenthal, David K. and de Supinski, Bronis R. and Schulz, Martin

and Freeh, Vincent W. and Bletsch, Tyler. s.l. : 23rd International conference on

Supercomputing (ICS'09), 2009.

67

26. Energy conservation in heterogeneous server clusters. Heath, Taliver and Diniz,

Bruno and Carrera, Enrique V. and Jr., Wagner Meira and Bianchini,

Ricardo. Chicago, IL, USA : ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming (PPoPP'05), 2005.

27. pMapper: power and migration cost aware application placement in virtualized

systems. Verma, Akshat and Ahuja, Puneet and Neogi, Anindya. Leuven,

Belgium : 9th ACM/IFIP/USENIX International Conference on Middleware

(Middleware'08), 2008.

28. VirtualPower: coordinated power management in virtualized enterprise systems.

Nathuji, Ripal and Schwan, Karsten. Stevenson, Washington, USA : ACM SIGOPS

Symposium on Operating Systems Principles (SOSP'07), 2007.

29. Power-aware scheduling of virtual machines in DVFS-enabled clusters. He, G.

Laszewski and L. Wang and A. J. Younge and X. s.l. : IEEE International

Conference on Cluster Computing and Workshops, 2009.

30. Energy-oriented compiler optimizations for partitioned memory architectures.

Delaluz, V. and Kandemir, M. and Vijaykrishnan, N. and Irwin, M. J. San

Jose, California, USA : International conference on Compilers, Architecture, and

Synthesis for Embedded Systems (CASES'00), 2000.

31. Delaluz, Victor and Kandemir, Mahmut and Vijaykrishnan, N. and

Sivasubramaniam, Anand and Irwin, Mary Jane. Hardware and Software

Techniques for Controlling DRAM Power Modes. IEEE Trans. Comput. 2001 йил, Vol.

50.

32. Automatic data migration for reducing energy consumption in multi-bank memory

systems. Delaluz, Victor and Kandemir, M. and Kolcu, I. New Orleans, Louisiana,

USA : 39th annual Design Automation Conference (DAC'02), 2002.

33. Positional adaptation of processors: application to energy reduction. Huang,

Michael C. and Renau, Jose and Torrellas, Josep. San Diego, California : 30th

annual International Symposium on Computer Architecture (ISCA'03).

34. System level multi-bank main memory configuration for energy reduction.

Auguin, Hanene Ben Fradj and Cecile Belleudy and Michel. s.l. : International

Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS),

2006.

35. Limiting the power consumption of main memory. Diniz, Bruno and Guedes,

Dorgival and Meira,Jr., Wagner and Bianchini, Ricardo. San Diego, California,

USA : 34th annual International Symposium on Computer Architecture (ISCA'07), 2007.

36. A comprehensive approach to DRAM power management. Lin, Ibrahim Hur and

Calvin. Salt Lake Citi, UT, USA : 14th International Conference on High-Performance

Computer Architecture (HPCA).

68

37. Analysis of trade-off between power saving and response time in disk storage

systems. Tsao, Doron Rotem and Ekow Otoo and Shih-Chiang. s.l. : Fifth

Workshop on High-Performance Power-Aware Computing (HPPAC'09) with IPDPS'09,

2009 йил.

38. Energy conservation techniques for disk array-based servers. Pinheiro, Eduardo

and Bianchini, Ricardo. Malo, France : 18th International conference on

Supercomputing (ICS'04), 2004.

39. Pinheiro, Eduardo and Bianchini, Ricardo and Dubnicki, Cezary.

Exploiting redundancy to conserve energy in storage systems. SIGMETRICS Perform.

Eval. Rev. 2006 йил, Vol. 34.

40. Massive arrays of idle disks for storage archives. Colarelli, Dennis and

Grunwald, Dirk. s.l. : ACM/IEEE conference on Supercomputing (SC'02), 2002.

41. An energy-efficient reliability model for parallel disk systems. Qin, S. Yin and X.

Ruan and A. Manzanares and X. s.l. : IEEE International Conference on Cluster

Computing and Workshops, 2009.

42. Empirical analysis on energy efficiency of flash-based SSDs. Urgaonkar,

Euiseong Seo and Seon Yeong Park and Bhuvan. San Diego, USA : 1st Workshop

on Power Aware Computing and Systems (HotPower'08), 2008.

43. Cross-component energy management: joint adaptation of processor and memory.

Li, Xiaodong and Gupta, Ritu and Adve, Sarita V. and Zhou, Yuanyuan. s.l. :

ACM Trans. Archit. Code Optim., 2007 йил, Vol. 4.

44. Memory-aware energy-optimal frequency assignment for dynamic supply voltage

scaling. Cho, Youngjin and Chang, Naehyuck. Newport Beach, California, USA :

International Symposium on Low Power Electronics and Design (ISLPED'04), 2004.

45. Performance directed energy management for main memory and disks. Li,

Xiaodong and Li, Zhenmin and Zhou, Yuanyuan and Adve, Sarita. s.l. : ACM

Transactions on Storage, 2005 йил, Vol. 1.

46. Sebastien Chauvin, Proshanta Saha, Francois Cantonnet, Smita

Annareddy, Tarek El-Ghazawi. UPC Manual. s.l. : The George Washington

University - High Performance Computing Laboratory.

47. A performance analysis of the Berkeley UPC compiler. Wei-Yu Chen, Dan

Bonachea, Jason Duell, Parry Husbands, Costin Iancu, and Katherine

Yelick. s.l. : In Proceedings of the 17th Annual International Conference on

Supercomputing (ICS’03), June 2003.

48. UPC Performance and Potential: A NPB Experimental Study. Cantonnet, Tarek

El-ghazawi and Francois. s.l. : In Supercomputing2002 (SC2002), IEEE Computer

Society, 2002.

69

49. UPC Benchmarking Issues. Chauvin, Tarek El-Ghazawi and Sebastien. 2001.

50. The UPC Memory Model: Problems and Prospects. Wallace, William Kuchera

and Charles. 2004.

51. Adaptive, transparent frequency and voltage scaling of communication phases in

MPI programs. Lim, Min Yeol and Freeh, Vincent W. and Lowenthal, David K.

s.l. : ACM/IEEE conference on Supercomputing (SC'06), 2006.

52. CPU MISER: A Performance-Directed, Run-Time System for Power-Aware

Clusters. Ge, Rong and Feng, Xizhou and Feng, Wu-chun and Cameron, Kirk

W. s.l. : ICPP '07: Proceedings of the 2007 International Conference on Parallel

Processing, 2007.

53. Augmenting RAID with an SSD for energy relief. Noh, Hyo J. Lee and Kyu H.

Lee and Sam H. San Diego, USA : 1st Workshop on Power Aware Computing and

Systems (HotPower'08), co-located with OSDI 2008, 2008.

