Staff View
Multifunctional mesoporous and nanostructured catalysts

Descriptive

TitleInfo
Title
Multifunctional mesoporous and nanostructured catalysts
SubTitle
exploring novel synthetic methods, properties and applications
Name (type = personal)
NamePart (type = family)
Das
NamePart (type = given)
Sayantani
DisplayForm
Sayantani Das
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Asefa
NamePart (type = given)
Tewodros
DisplayForm
Tewodros Asefa
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Garfunkel
NamePart (type = given)
Eric L
DisplayForm
Eric L Garfunkel
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Goldman
NamePart (type = given)
Alan
DisplayForm
Alan Goldman
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Kruk
NamePart (type = given)
Michal
DisplayForm
Michal Kruk
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-10
CopyrightDate (qualifier = exact)
2012
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Novel multifunctional mesoporous and nanostructured catalysts containing two or more different types of judiciously chosen functional / catalytic groups were developed and their unique and cooperative catalytic activities in various useful organic reactions were explored. First, mesoporous silica material containing tertiary amine/silanol groups was synthesized by simple postgrafting synthetic method. The material was found to exhibit efficient cooperative acid/base bifunctional catalytic activity towards Michael addition reactions between trans-β-nitrostyrene and various active methylene compounds such as malononitrile, acetylacetone and dimethylmalonate. Besides serving as a solid base catalyst, such organoamine-functionalized mesoporous silica materials can be utilized as effective support materials for catalytically active organometallic complexes. This was demonstrated by immobilizing ethylenediamine onto mesoporous silica via postgrafting synthetic method and then complexing Fe(III) onto the supported ethylenediamine groups. This yielded a bifunctional Fe(III)/silanol-based heterogeneous catalyst that showed efficient catalytic activity towards epoxide ring opening reactions. Next, the potential of these types of organic-functionalized mesoporous silicas for immobilization of metallic nanoparticle catalysts was investigated. Specifically, mercaptopropyl-functionalized mesoporous silica was synthesized and the material was then supported with ultrasmall Aun nanoclusters. The catalytic properties of the resulting materials in styrene oxidation were studied. Furthermore, the effect of the removal of the thiol groups from around the surfaces of the gold nanoclusters on catalytic activities of the mesoporous silica-supported nanoparticles was investigated. As mesoporous silica have some limitations of crowding in their pores and poor mass transport for reactants when they are functionalized with larger groups such as nanoparticles, a new strategy was developed, where such catalytic groups were immobilized on the outer surface of silica microspheres. These supported nanoparticle catalytic groups on the silica nanospheres were further coated with a porous silica shell in order to overcome their possible aggregation, sintering and loss of catalytic activities. The resulting nanomaterials, dubbed produced SiO2-Au-pSiO2 core-shell-shell microspheres, were then used as efficient and recyclable nanocatalysts for styrene epoxidation. This strategy was further extended to core-shell-shell microspheres containing the metal (e.g., Pd) nanoparticles within G4 PAMAM dendrimers that are supported on silica nanosphere cores and coated by nanoporous silica shells. These nanomaterials, denoted as SiO2-Pd/PAMAM-pSiO2 core-shell-shell microspheres, were shown to serve not only as efficient and recyclable catalysts but also as selective catalysts for specific functional groups in hydrogenation reaction of various substrates.
Subject (authority = RUETD)
Topic
Chemistry and Chemical Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4351
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xxxiii, 183 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Sayantani Das
Subject (authority = ETD-LCSH)
Topic
Mesoporous materials
Subject (authority = ETD-LCSH)
Topic
Nanostructured materials
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000066720
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3B27T2C
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Das
GivenName
Sayantani
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-01 17:16:23
AssociatedEntity
Name
Sayantani Das
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2013-05-02
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after May 2nd, 2013.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

FileSize (UNIT = bytes)
5455360
OperatingSystem (VERSION = 5.1)
windows xp
ContentModel
ETD
MimeType (TYPE = file)
application/pdf
MimeType (TYPE = container)
application/x-tar
FileSize (UNIT = bytes)
5457920
Checksum (METHOD = SHA1)
091adc1a65fe3c413bb7efb404100da948eac73a
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024