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ABSTRACT OF THE DISSERTATION 

Modeling longitudinal data with mixed 

dropout mechanisms using extended pattern mixture model 

By Jing Gong 

Dissertation Director: 

Pamela Ohman-Strickland 

 

In physical and mental health research areas, longitudinal studies are popular tool 

for addressing outcome changes over time within and between individuals. However, 

monotone-type missing data caused by dropout is unavoidable in many longitudinal 

studies and may lead to biased inference and incorrect conclusions if the nature of 

dropout is ignored. The dropout process may cause three types missingness: Missing 

Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at 

Random (MNAR). Most of existed statistical methods have treated the entire dropout the 

same, although this assumption may not be true in practice. For a real longitudinal study, 

based on observed dropout reasons, it may be more realistic to assume the nature of 

missingness to be a mixture of MCAR, MAR and MNAR.  

In this thesis, two approaches are proposed to deal the mixed nature of dropout 

due to different longitudinal dataset’s pattern and assumptions, and both of them are 

based on Pattern Mixture Model. If the outcome of interest can be assumed to follow a 

linear trend over time and the detailed dropout reasons for each subject are unknown, EM 

algorithm method will be added to Pattern Mixture Model to reflect a mixture of missing 

natures. If the outcome of interest is not linear with respect time and the detailed reasons 
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for each dropout are known, available-case missing value restriction and non-future-

dependent missing value restriction will be used within Pattern Mixture Model to identify 

the distribution of unknown measurements caused by different dropout reasons. Multiple 

imputation method will be combined to impute multiple complete datasets to reflect the 

uncertainty caused by missing values.  
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Glossary 

 

Yit = response for the i
th

 subject at time t, i = 1,…,N, t = 1,…, T 

Yi = (   ,…,    )
T
 , vector of complete responses for i

th
 subject 

Yi.obs = (   ,…,     )
T
 , vector of observed responses for i

th
 subject 

Ti  = the last time point of measurements (    

                  Q-vector of fixed covariates for the i
th

 subject at time t 

       
        

  T
, Ji×Q matrix of fixed covariates for i

th
 subject 

       
        

  T
, Ji×K matrix of random covariates for i

th
 subject 

  = K-vector of random effects, multi-normally distributed with mean 0 and covariance 

D 

εi = (   ,…,     ) observed responses’ error, normally distributed with mean 0 and 

covariance       

     = Q-vector of coefficients associated with fixed covariates for pattern r 

     = the probability of a subject falling in pattern r 

p
(r)

 = the probability of non-ignorable missingness for the r
th

 dropout pattern 

     dropout pattern for i
th

 subject 

Zi = indicator of the ignorable missingness or not for the i
th

 subject,      if subject i’s 

missing responses are non-ignorable (                  and      if ignorable 

(                   .  
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1 Introduction 
 

Longitudinal studies are widely used in clinical trial and public health to measure 

outcomes over time within individuals as well as differences in changes across 

individuals. Unfortunately, missing data are prevalent in longitudinal studies. The 

inference based solely upon the observed outcomes may be seriously flawed. So how to 

handle missing data is a very important problem in longitudinal studies. According to 

huge papers, it is clear that no universal method can be considered definitive for any 

missingness scenarios. Instead, different methods need to rely on the different patterns 

and types of missing data, the latter one is also known as missing data mechanisms. 

 

There are two patterns of missing data. If at least some outcomes of interest are observed 

again after a missing value occurs, this is called intermittently missingness or non-

monotone missingness. Alternatively, individuals may miss one visit and never return 

due to multiple reasons, such as relocation, death, side effect, no effect, and so on, which 

is called dropout or monotone missingness. In clinical trials, dropout usually causes much 

higher percentage of missing values than intermittently missingness. Moreover, dropout 

can’t provide the important outcomes after the time of dropout, especially the last 

observation which is sometimes the researchers are mostly interested. Specifically, 

missingness caused by dropouts in clinical trials can destroy the benefit provided by 

randomization, which is typically used to make comparison between the treatment and 

the control groups as fair as possible. So dropout may cause more serious problem than 

intermittently missingness if they are ignored in studies’ analysis. Properly handling and 

analyzing missing data caused by dropout is crucial to the validity of the conclusions 
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drawn from any longitudinal study. Thus in my thesis, I will focus on the methods for 

handling monotone missingness caused by dropout in longitudinal studies.     

 

Many methods have been proposed for handling dropouts. The first key in selecting 

effective or meaningful methods is to make clear the dropout mechanisms of data. 

Traditionally the dropout mechanisms are divided into three types (Little, 1995; Little 

and Rubin, 2002; Diggle, 1994): (1) Missing Completely at Random (MCAR), in which 

the probability of dropout doesn’t depend on the observed data and the missing data; (2) 

Missing at Random (MAR), in which the probability of dropout depends on the observed 

data, and (3) Missing Not at Random (MNAR), where the probability of dropout depends 

on the missing data and possibly the observed data. 

 

A variety of literature focuses on regression-based methods for the longitudinal data with 

missingness caused by dropouts. For example, to MCAR data, standard methods include 

generalized estimating equations (GEE) (Liang and Zeger, 1986), complete case analysis 

(CC) (also known as listwise deletion), or simple imputation, such as regression 

imputation and hot deck imputation (Molenberghs, 2004). Among these methods, GEE is 

a better choice because it provides a more robust inferential procedure than other 

methods.  

 

Compared to MCAR, MAR encompasses more dropout mechanisms thus lessening the 

assumptions for missingness. Mixed models, weighted generalized estimating 

equations(WGEE), and multiple imputation (MI) may be suitable methods used to handle 
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MAR missingness (Hogan, 2004; Panel on Handling Missing Data in Clinical Trials, 

2010).  

 

MNAR is the most complicated missing procedure, in which researchers need to make 

many unverifiable assumptions about the data distribution of the unobserved value. 

Actually, there are no existing methods that can be used to differentiate whether missing 

data are MAR or MNAR. So the MNAR methods usually are used as sensitivity analyses 

for MAR methods (Hogan, 2004). The majority of approaches for MNAR are based on 

models for the joint distribution of the outcome and the dropout mechanism. Most of 

them are likelihood-based methods and can be classified into three categories: selection 

models, pattern-mixture models and frailty models (Little 1995).  

 

Last observation carried forward (LOCF) or baseline observation carried forward 

(BOCF) methods used to be considered providing valid and conservative results under 

MCAR or MAR assumptions. But actually, they do make MNAR assumption and not 

always conservative (details are discussed in the next chapter). Food and Drug 

Administration (FDA) recommends not using either of these approaches as the primary 

approach for handing missing data in clinical trials unless the assumptions that underlie 

them are scientifically justified (Panel on handling missing data in clinical trials, 2010).  

 

Although there is an enormous literature on missing data methods for longitudinal 

studies, most of them have treated all observations with dropout as if they fall within the 

same dropout type. In practice, if we review the dropout reasons carefully, we would find 



4 

 

 

 

that different dropout reasons may be related to the outcomes in different ways, for 

example, in an implying different types of dropout HIV study, some patients may drop 

out because of “lost job”, or “moved from study area”, or “unrelated illness required 

treatment with contraindicated medicine”, which is not related to the outcome value and 

will cause MCAR. On the other hand some patients may drop out because they “did not 

get better”, which is clearly outcome related and will cause MAR or MNAR. It follows 

that in studies with either mixed dropout reasons or without clear dropout reasons, 

allowing mixed dropout mechanisms may be appropriate. In these situations, assuming 

one dropout mechanism may lead to biased inference. Methods of accounting for 

multiple dropout processes at the same time may lead to less bias when evaluating the 

longitudinal data. European Medicines Agency expressly pointed out that using different 

techniques for different dropout reasons is an attractive approach (Guideline on Missing 

Data in Confirmatory Clinical Trials, 2011). 

 

Thus, my research is intended to investigate regression-based methods, specifically 

extensions of PMMs for handling monotone missingness caused by mixed dropout 

mechanisms and the potential impact on inference.  

 

The remainder of this section presents two motivating examples with possibly mixed 

dropout mechanisms, followed by my thesis objectives. Chapter 2 discusses the effects of 

dropouts on data analyses and interpretation, describes the different types of dropout 

mechanisms in details, and introduces some regression-based statistical analysis methods 

for dealing with dropouts. Chapter 3 provides the details on one of my proposed 
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statistical approaches for handling mixed dropout mechanisms: EM algorithm used in 

Pattern Mixture - Within – Mixture model. Simulation results and a case study example 

are also presented in this section. Chapter 4 describes the other method I proposed – 

Pattern Mixture Models based multiple imputation with mixed missing values restrictions 

(non-future dependent and available-case) for handling mixed dropout problem, and a 

simulated chronic pain study is analyzed by different methods. Discussion and future 

work are provided in Chapter 5. And some methodological details and codes are given in 

an Appendix. 

 

1.1 Motivating examples 

Example 1: Schizophrenia study  

Schizophrenia is a mental disorder that makes it difficult for a patient to tell the 

difference between real and unreal experiences, to think logically, to have normal 

emotional responses, and to behave normally in social situations. The National Institute 

of Mental Health Schizophrenia Collaborative Study collected longitudinal data on 

treatment related changes in overall severity (Hedeker and Gibbons,1997).  

 

The main outcome of interest was drawn from the Inpatient Multidimensional 

Psychiatric Scale (IMPS), a series of questions which enables immediate stratification 

into psychotic types and the degree of mental illness. Specially, item #79 of IMPS, 

severity of illness can be used to evaluate the effect of treatment for Schizophrenia. It is 

scored as 1=normal, not at all ill; 2=borderline mentally ill; 3=mildly ill; 4=moderately 

ill; 5=markedly ill; 6=severely ill; and 7=among the most extremely ill. In this study, 
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437 patients were randomly assigned to receive one of four medications: placebo (108 

patients), chlorpromazine, flupenzaine or thioridazine. Since Hedeker’s previous 

analyses showed that the three drugs have similar effects on Schizophrenia, they were 

combined into one drug group (329 patients) for comparison with placebo here. 

Patients’ IMPS were supposed to be measured every week. However since most of the 

measurements occurred at weeks 0, 1, 3, and 6 (see Table 1.1), we will focus on these 

weeks. If the completers are defined as those who were measured at week 6, the 

percentages of patients who dropped from the study were 34% and 19% for the placebo 

and drug groups respectively.  

 

Hedeker and Gibbons used the PMMs with two patterns (one is for dropouts and one is 

for completers) to analyze the longitudinal IMPS #79 scores, assumed that all the 

dropouts are MNAR and the linear effects of square root of time and treatment by 

square root of time interaction to the IMPS #79. But here, I assume that the dropouts are 

under mixed dropout mechanisms. 

 

Detailed dropout reasons for each patient are not publicized. However, based on the 

general nature of a longitudinal study for this kind of disease, it may be reasonable to 

assume that among all dropouts, some dropouts may cause MCAR or MAR, while some 

dropouts may cause MNAR. My first proposed method for handling mixed dropout will 

be used on analyzing this study’s data in Chapter 3. Other popular methods, such 

Analysis of Covariance (ANCOVA) for complete case, Mixed Model for Repeated 

Measurements (MMRM), Generalized Estimating Equation (GEE), Weighted GEE, Last 
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Observation Carried Forward (LOCF), Baseline Observation Carried Forward (BOCF) 

and Pattern Mixture Model (PMM) will also be used to this data. And results from all 

methods will be compared. 

 

Table 1.1. The experimental design and corresponding sample sizes: 

 Sample size at Week 

    0            1            2            3           4          5             6 

 

Completers 

Placebo 

(n=108) 

107 105 5 87 2 2 70 66% 

Drug 

(n=329) 

327 321 9 287 9 7 265 81% 

 

 

Example 2: Simulated chronic pain study 

Chronic pain is pain lasting more than 3 months, which may be caused by many reasons, 

such as Fibromyalgia, Diabetes, injury and so on. Due to confidential reason, a real data 

from a chronic pain clinical trial can’t be used in my thesis. Thus, a similar study data 

mimicking is simulated from the real study through some transformation and 

randomization steps. This simulated study is to demonstrate the efficacy of test drug in 

the treatment of chronic pain. In detail, the simulated study mimics a multicenter, 

randomized, double-blind, placebo-controlled, monotherapy, and parallel-group phase 

III study for treating chronic pain. It has two treatment groups and 4 post-baseline-visits 

(weeks 4, 8, 12, 16). One thousand patients have been randomized in a 1:1 ratio to one 

of the two treatment groups - placebo and test drug. The population for the primary 

analysis consists of all patients with a baseline value and at least one post baseline 

measurement of the primary efficacy variable. The primary outcome measure is the 
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change from baseline in pain score. The range of pain scores is from 0 (no pain) to 10 

(the highest level pain). 

 

According to the mimic data, the baseline and measures at each post visit can be treated 

as normal distributions. And all the changes from baseline can be assumed as multivariate 

normal distribution. There are over 30% dropouts in this study, and slightly more 

dropouts occur in drug group (33.4%) than in placebo group (30.6%). Detailed dropout 

reasons for each patient are also simulated from the real study. Reasons includes: adverse 

events, lack of efficacy, lost contact, protocol violation, non-compliancy with respect to 

protocol requirements, and others. Some of these reasons may not be related to the 

patient’s pain scores or may only be related to the observed pain scores, such as lost 

contact, protocol violation and so on. Dropouts due to these reasons can be assigned into 

MCAR and MAR. Alternatively, some reasons such as adverse events may have 

relationships with the missing measures of pain, causing MNAR. In this case, this study 

exhibits mixed dropout mechanisms with known reasons for dropout. Thus, my second 

proposed method will be used to analyze this data in Chapter 4, and the result will be also 

compared with the ones from other established analysis methods.  

 

1.2 Objectives 

  

Whether the detail dropout reasons for each subject are well known or unknown, 

longitudinal studies may actually included mixture of missing or dropout mechanisms. 

However, almost all the proposed regression-based methods for missing data have treated 
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the entire dropouts or the missingness the same. My thesis work is to fill in this gap 

between the practice and the existing statistical methods. The objectives of this thesis 

proposal are listed as follows: 

1. Investigate proper regression-based methods for handling monotone missingness 

with multiply-caused dropout under the situations where 

a. The detail dropout reasons are not clear, and a function between the 

outcome of interest and time can be assumed. 

b. The detail dropout reasons are well known, although there is no function 

between the outcome of interest and time. 

2. Compare my methods with other existing methods. See how the missingness or 

dropout mechanisms affect the results of analyses. 
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2 The effects of dropouts, dropout mechanisms and major regression-

based statistical methods for handling dropouts in a longitudinal 

data   
 

My thesis problem and objectives are generally described in the last Chapter. Now I will 

formalize the details about the effects of dropouts, dropout mechanisms, and some 

popular methods used for handling monotone missingness caused by dropouts.  

 

2.1 The effects of dropout on longitudinal study  

 

The most important problem resulting from dropout is the potential bias. In a clinical 

trial, randomization is applied to obtain balanced comparable treatment groups. However, 

if we ignore the dropouts and only analyze the completers, the treatment groups may be 

incomparable, and the estimation of the treatment effect may be biased. For example, if 

female patients with fewer efficacies are more likely to drop from study, then the gender 

rates in treatment groups will be unbalanced, and the analysis results will prefer to tested 

treatment. In addition, the completers may not be able to represent the target population, 

and then the external validity of this clinical trial is affected. For example, some patients 

drop out because they are not able to tolerate tested drug, and then cannot obtain benefits 

from this drug. If we simply ignore these patients from analysis, we may get biased 

results and target population. 

 

Dropout may also lead to decreased power and variability. It’s clearly that the sample 

size and the variability of the outcomes of interest affect the power of a longitudinal 
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study. If dropouts are simply excluded from the analysis, it will result in a reduction of 

statistical power. On the other hand, dropouts might be more likely to have extreme 

values, for example, due to lack of efficacy, some dropouts have much worse outcomes 

than completers’. Hence, excluding these dropouts from the analysis may lead to the 

underestimation of variability and then narrow the confidence interval for the treatment 

effect.      

 

2.2 Dropout mechanisms 

 

Under different dropout mechanisms, dropouts may lead to various effects in different 

statistical methods. To illustrate the various dropout mechanisms, we consider a 

longitudinal study with some dropouts. Suppose the full data consist of T repeated 

measurements taken on N subjects at a fixed set of time points 1, 2, …, T. The number 

and timing of measurements for all subjects is assumed to be equal. For i
th subject 

(i=1,2,..,N),  his/her observed measurements can be represented by Yi(obs) = (           )
T, 

where  Ti  is the last time point of measurements (     . Subject i dropped out between 

time points Ti and Ti+1 if     , and his/her missed measurements is Yi(mis) = 

(                )
T . The full response vector for i

th
 subject combine Yi(obs)  and Yi(mis) to get 

Yi = (          )T.  Let Xi be the vector of covariates for subject i, and     the measurement 

for subject i at time point t. Mit is an indicator to express whether measurement Yit is 

observed or not. Mit = 1 if Yit is observed, and Mit = 0 if Yit is missing. Define Ri as the 

indicator of dropout pattern, and f(Yi, Ri| Xi) as the full data density for subject i. The 

dropout mechanisms are presented in accordance with Little (1995). 
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Missing completely at random (MCAR): 

The probability of dropout is independent of the observed data and the missing data. That 

is  

f( Ri| Yi, Xi) = f(Ri)   (2.2-1) 

A typical example is that a subject moved to a different location where the treatment 

can’t be continued.  

 

MCAR is simplest but most restrictive dropout mechanism. Under MCAR, the observed 

data can be treated as a random sample of all data. If a data set is MCAR, there is no 

impact on bias and most standard approaches of analysis are valid (e.g. complete case 

analysis, generalized estimating equation, etc.). Little’s test (Little, 1988) can be used to 

test whether missingness is MCAR or not. This test compares the distribution of observed 

variables between dropouts and completers. If there is no significant difference found 

with respect to the variables, then MCAR can be assumed. Unfortunately, MCAR is often 

not plausible in longitudinal studies, especially in clinical trials. 

 

Missing at random (MAR): 

The probability of dropout is only dependent on the observed data (i.e. observed outcome 

of interest or covariates such as treatment) but not dependent on missing data. That is  

f( Ri| Yi, Xi) = f(Ri| Yi(obs), Xi)   (2.2-2) 

Here Yi(obs) is the observed dependent response vector, Xi is the observed covariate vector. 

MAR can be referred to outcome-dependent MAR and/or covariate-dependent MAR 

(DeSiyza 2009). Some researchers think that dropout due to the lack of efficacy will 
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cause MAR. For example, in a phase III study for controlling high blood pressure, some 

of patients drop out from the study because their diastolic blood pressures are still high 

after taking treatment. Hence the dropout process is related to the observed data.  

 

MAR is a more realistic assumption than MCAR in a real study. The primary approach 

for clinical trial is usually based on this assumption. Under MAR, observed cases are no 

longer a random sample of full data, thus some standard approaches of analysis (e.g. 

complete case analysis, GEE) can’t provide unbiased and efficient results for this 

situation any more. Mixed effects model for repeated measurements (MMRM), weighted 

generalized estimating equation (WGEE) and multiple imputation (MI) are three 

available and popular methods for MAR.  

 

Likelihood and Bayesian approaches (e.g. MMRM and MI) are dependent on parametric 

models to catch the inference of interest. The joint distribution of measurement process 

and dropout process can be obtained from a product of two conditional distributions, one 

for full measurement data and one for dropout process. That is 

                               (2.2-3) 

θ presents the parameters used in model         for the measurement process and φ is 

the parameters used in model           for dropout process. The likelihood function for 

(θ, φ) given Yobs, Ymis, X and R is obtained through averaging or integrating over all 

possible values of the missingness Ymis.  

                                                         (2.2-4) 
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If the dropout process is MCAR or MAR, then the second term in the right side of 

equation 2.2-4 may be replaced by         or             , respectively. If θ and φ are 

functionally independent, then the likelihood functions will be 

                                                               

for MCAR, and  

                                                                         

for MAR. 

 

According to above likelihood functions, we find that the parameters of interest, θ, for the 

measurement process are not dependent on the function for the dropout process under 

MCAR or MAR. Therefore, when either a likelihood-based method or a Bayesian 

approach are used, and when θ and φ are functionally independent, MCAR and MAR 

result in ignorable missingness since we don’t need to model dropout process to get the 

estimates for θ.  

 

However, if we use moment-based approaches (frequentist statistical procedures) (e.g. 

GEE), dropout process can’t be ignored under MAR assumption. GEE doesn’t specify a 

model for the whole multivariate distribution of a data vector, but only models the first 

moment mean response E(Yit) at each visit t for the i
th

 subject. Thus, the dropout 

procedure needs to be considered in GEE to reduce the influence of dropout under MAR 

assumption. Weighted GEE (Robins, 1995) modifies the standard GEE through weights 

to address the missingness in the data under MAR assumption.  



15 

 

 

 

Missing not at random (MNAR): 

 

Under MNAR, the probability of dropouts is dependent on the unobserved data and 

possibly the observed data. That is 

f( Ri| Yi, Xi) = f(Ri| Yi(mis), Yi(obs),  Xi)   (2.2-5) 

For example, a subject drops out of the study because he/she doesn’t feel well due to 

his/her unobserved health status (e.g. side effects of a treatment or the progression of the 

disease) after visit Ti. 

 

Under MNAR, the dropout procedure is also dependent on the missing values given 

observed measures. According to the equation 2.2.-4, the parameters θ for the 

measurement process is not independent with the function for the dropout process. Thus 

MNAR is also called non-ignorable missing.  

 

Since we don’t know the exact value of the unobserved outcome, it’s impossible to test 

whether the dropout is only dependent on the observed data (MAR) or dependent on 

missingness given observed data (MNAR). The analyses under MNAR need many strong 

untestable assumptions, so they are not supposed to be used as primary analysis in 

clinical trials. MAR is a more practical (compared to MCAR) and simpler (compared to 

MNAR) assumption for the dropout mechanism, so usually, a method under MAR 

assumption is set as primary analysis in a clinical trial, and then some analyses under 

MNAR (e.g. PMMs) and MCAR (e.g. ANCOVA) are used as sensitivity analyses for 

supporting the results obtained from primary analysis.   
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When data is MNAR, the simple and standard approaches will lead to biased and 

inefficient results. More complex methods based on likelihood such as Selection Models 

(SM), Pattern Mixture Models (PMM) and Shared-parameter models (or Frailty models) 

(Wu 1988, 1989, Follmann and Wu 1995, Albert and Follmann 2000) can be used for 

handling MNAR. All of them need to specify the joint distribution of the measurement 

process and dropout process. The former two methods SM and PMM are more popular 

used by researchers and will be discussed in the next section.    

 

2.3 Major regression-based statistical methods 

 

There are many methods have been proposed for handling longitudinal data with 

dropouts. Here, the most popular methods are introduced, including Complete Case 

Analysis (CC), Generalized Estimating Equation (GEE), Weighted GEE (WGEE), Mixed 

Model for Repeated Measures (MMRM), Last Observation Carried Forward (LOCF), 

Baseline Observation Carried Forward (BOCF), Multiple Imputation (MI), Selection 

Models (SM) and Pattern Mixture Models (PMM). Several ways can be used to classify 

these methods. For example, if we focus on which cases the method uses, we will find 

that some methods only use complete cases (e.g. CC), some methods use available cases 

(e.g. GEE, WGEE, MMRM, SM, PMM), and some methods based on imputed data (e.g. 

LOCF, BOCF, MI). If we classify the methods by from theoretical approach, we can 

separate them into likelihood –based (e.g. MMRM, SM, PMM), moment-based (e.g. 

GEE, WGEE), or Bayesian approaches (e.g. MI). However, the most important 

classification of these methods is based on dropout mechanisms. CC and GEE only can 
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be used under MCAR assumption; MMRM, WGEE, and MI are available under MAR 

assumption; and SM and PMM are popular methods for MNAR. LOCF and BOCF used 

to be thought are valid under MCAR or MAR, but they actually make strong MNAR 

assumptions. These methods will be introduced and discussed one by one. 

 

2.3.1 Traditional Methods for dropout 

2.3.1.1 Complete Case analysis (CC) 

 

CC analysis used to be a popular method for handling missing data. This approach only 

includes the completers in the analysis. There are two scenarios in CC analysis: (1) Using 

those patients who have measurements at each scheduled time point in a longitudinal 

study. For example, repeated measures analysis of variance/covariance 

(ANOVA/ANCOVA) needs the subjects with all measurements to estimate the effect of 

covariates for a longitudinal study. (2) Using those patients who have the observed values 

at the time point that the researchers are interested (e.g. endpoint). For example, if the 

researchers want to know the efficacy of treatment at the end of study 3-month, then 

ANCOVA includes all cases with observed values at 3-months in model.   

 

An obvious advantage of CC analysis is the simplicity of implementation. In addition, it 

can provide unbiased and valid results under MCAR. However, since it only includes 

completers in analysis, the smaller samples will reduce the statistical power and lead to 

inefficient estimates. If the data is not MCAR, then this analysis can produce biased 

results. For example, in a confirmatory clinical trial, the biggest concern with this 
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analysis may be a violation of the intention to treat principle (Guideline on missing data 

in confirmatory clinical trial 2010, Myers 2000). Imaging this scenario, treatment A has 

modest effect for reducing blood pressure no matter the baseline is severe or not, while 

treatment B provide a better effect for patients with less severe high blood pressure, but 

no effect for patients with severe high blood pressure. If the patients are like to drop out 

because of lack of efficacy, then CC analysis may produce bias and favor treatment B.   

 

CC analysis has many disadvantages such as those mentioned above. Thus, it is not 

recommended as the primary analysis in clinical trials (Panel on handling missing data in 

clinical trials 2010, Guideline on missing data in confirmatory clinical trial 2010). 

However, this method still may be used in some situations. For example, it can be used as 

a sensitivity analysis to support the robustness of conclusions.  

 

For population inferences, using the data from all subjects generally leads to more 

efficient and less biased results. The following methods use all observed cases for 

analysis. 

 

2.3.1.2 Generalized Estimating Equations (GEE)  

 

As a semi-parametric regression approach using moment-based inference, GEE was first 

introduced by Liang and Zeger in 1986. It is an extension of generalized linear models 

that account for correlated responses. Instead of attempting to specify a model for the 

whole multivariate distribution of a data vector, GEE only models the first moment, 
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specifically the mean response E(Yit) at each visit t for the i
th

 subject. The part of the 

model that specifies the correlation is treated as a nuisance and not of scientific interest. 

In particular, GEE are specified via the following components: 

 Mean response:            

 Link function:            , β is a vector of fixed effects, Xit are covariates 

 Variance of Yit :                  such that        is the usual variance 

predicted by the model for Yit as a function of the mean and   is an unknown 

dispersion parameter 

 Variance matrix for repeated measurements on i
th

 subject: 

                           

 Working covariance matrix for Yi :          
   

       
   

, where Ri(α) is a 

“working correlation matrix” representing a guess at the true correlation structure 

for repeated measurements on i
th

 subject (e.g. independent, exchangeable, 

autoregressive, or unstructured). 

 

Instead of a convenient likelihood, the following generalized estimating equation (GEE) 

is used to produce the estimates of β: 

        
   

 

  
   

 
                        (2.3.1.2-1) 

The estimators of β are consistent even if the working correlation matrix is not correct. 

However, a poor estimation of the correlation matrix may affect the efficiency of the 

estimators of β. So a sandwich estimator can be used to obtain a good estimate of         

in large samples regardless of the true correlation model (White, 1982; Liang & Zegar, 

1986). This is given as 
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                 (2.3.1.2-2) 

While GEE relaxes the multivariate distribution assumptions about the data, it imposes 

stronger assumptions on the dropout mechanism.  If dropouts are MCAR, both GEE and 

sandwich estimators are robust, regardless of whether the assumed working correlation 

matrix correctly specifies the true correlation structure. But if dropouts are MAR, GEE 

estimator is only consistent when using the true correlation structure for       in 

equation 2.3.1.2-1, and sandwich estimator may not be robust even if working 

assumption is correct (Kenward 1998).  

 

2.3.1.3 Weighted Generalized Estimating Equations (WGEE)  

 

For adjusting the influence of dropout under MAR assumption, WGEE is proposed 

(Robins 1994, 1995) to modify standard GEE. It weights each subject’s measurements 

Yi’s in the GEEs by the inverse of the probability which the subject drops at the observed 

dropout time, resulting in unbiased estimates of  .   

 

Usually, the probability of dropout at any particular time point t for subject i is assumed 

to follow a logistic regression model with 

                                          (2.3.1.3-1) 

where     is the observed outcome indicator (Mij=1 if observed, Mij=0 if discarded), Xit 

are the covariates for i
th

 subject related to the probability of dropout (e.g. treatment), and 

Yi,t is the last observed response. Then for subject i, the probability he/she drops at time 

Ti, is given by  
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1,    ,  ,   1)] (    ), 

   is estimated by replacing   ,   , and   by their maximum likelihood estimates to 

yield    
  . The weights for the estimating equations are given by        

  .  

 

Measurement model for outcomes of interest is the same as in standard GEE. The 

weights gotten from dropout model are combined with measurement model, and the 

estimate of   is the solution of the weighted GEE:  

          
   

 

  
   

 
                        (2.3.1.3-2) 

 

In WGEE, we discard the missing observations and reweight the remaining (observed) to 

make them more representative. Under MAR assumption, WGEE yields consistent 

results when the dropout and mean models are correct and sample size is large. 

 

2.3.1.4 Mixed Model for Repeated Measures (MMRM) 

 

The MMRM model is also known as normal random-effects model, multilevel model, 

hierarchical linear model or Laird-Ware model (Laird and Ware 1982), intended for 

continuous and normally distributed outcomes. As a likelihood-based approach, a mixed 

model contains both fixed and random effects and offers a valid analysis for longitudinal 
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data under the MAR assumption (Cnaan 1997, Verbeke 2000). For a given individual i 

with Ti repeated measurements, the mixed model is  

                 (2.3.1.4-1) 

where  

 Yi is Ti*1 repeated measures’ vector;  

 Xi is the matrix (Ti*p) of fixed effects covariates, where p is the number of 

predictors; 

 β is the vector of unknown fixed effects;  

 bi is the matrix (Ti*q) of random effects covariates, where q is the number of 

random effects;  

   is the vector of within-subject random errors follows multivariate normal 

distribution with mean vector 0 and covariance matrix     ,           
    , 

often we use       the Ti* Ti identity matrix. 

 Ui is the between-subject random components that assumed to follow a 

multivariate normal distribution given as            , where D is the 

between-subject covariance matrix which is typically assumed to be unstructured.  

 

Under these assumptions, the conditional distribution of Yi given Ui is 

                         
        (2.3.1.4-2) 

where Ψ is the complete set of unknown parameters {, 2
, D}.  

 

By integrating over the random effects, the marginal distribution of Yi can be 

demonstrated to be as follows: 
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           (2.3.1.4-3) 

 

As we discussed in section 2.2., in likelihood based or Bayesian method, the parameters 

of interest for measurement process doesn’t depend on the function for the dropout 

process under MCAR or MAR assumption. Therefore, when the parameters for 

measurement process and for dropout process are functionally independent, the dropout 

process can be ignored under MCAR and MAR assumption. Since MMRM is a 

likelihood based method, it can provide valid results under MAR/MCAR assumption 

without any justification for the dropout procedure. 

 

2.3.1.5 Last observation carried forward (LOCF) 

 

Last observation carried forward (LOCF) is one widely used single imputation method 

for incomplete longitudinal data. It imputes all the missing values with the last observed 

value and assumes that the outcomes would not have changed from the last observed 

value (Molenberghs, 2004). After imputing all the missing values, usually analysis of 

(co)variance (AN(C)OVA) model is applied to analyze the imputed full data set. LOCF 

can be illustrated in the next two tables. 

Table 2.1. Dropouts examples 

ID Baseline Month 1 Month 2 Month3 
02-001-1001 135 130   
02-001-1002 120 115 105  
02-001-1003 140 130 120 120 
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Table 2.2. LOCF to fill missing data 

ID Baseline Month 1 Month 2 Month3 
02-001-1001 135 130 → 130 → 130 
02-001-1002 120 115 105 → 105 
02-001-1003 140 130 120 120 

 

This method is sometimes wrongly considered to be valid under the assumptions of 

MCAR or MAR, but actually it assumes MNAR (Panel on Handling Missing Data in 

Clinical Trials, 2010). The reasons are simply explained in the following: 

 

Assume there are T repeated measurements in a longitudinal study, and subjects drop out 

at last visit T. mT is an indicator for the missingness at visit J (mT =1 missing, and mT =0 

observed). Under MCAR, observed data form a random subsample of the full data. While 

under MAR assumption, the observed data form a random subsample of the data within a 

subclass defined by the observed data. Based on these two assumptions, the conditional 

density of missing YJ given X and Yobs is the same as the one for observed YT. In 

mathematical notation,  

                                       

 By contrast, LOCF assumes missing YJ is equal to YJ-1 with the probability 1. Obviously,  

                                            

So LOCF doesn’t make a MCAR or MAR assumption as some researchers used to think. 

 

There is another popular and historical view about LOCF that is faulty: some have 

assumed that it is a conservative method for evaluating results of a clinical trial, 

understating differences in estimated time-trends between treatment groups. Actually, 

depending on the nature of the disease and tested treatment, LOCF may overestimate the 
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treatment effect in a clinical trial with dropouts (Molenberghs 2004, Shao 2003, Myers 

2000). For example, if patients’ disease is expected to grow worse over time (Guideline 

on missing data in confirmatory clinical trial 2010), and if patients in active treatment 

group are dropping out early due to adverse events, the LOCF analysis may produce anti-

conservative results with respect to active treatment group. On the other hand, other 

clinical situations, LOCF may be conservative and underestimate the treatment effect. 

For example, patients’ disease is expected to improve over time, and more patients drop 

out earlier in tested treatment group. In addition, LOCF will artificially reduce the 

standard error of the outcome of interest, especially with outcomes that have high 

variation within a subject, implying that this method is not necessarily conservative. 

  

If the rates of dropout or time to dropout are different between treatment groups, and /or 

dropouts occur early but the outcome of interest is expected to change over time, then 

LOCF can produce biased results. Thus LOCF is not recommended as the primary 

analysis for clinical trial from a regulatory perspective, unless the assumptions that 

underlie it are scientifically justified or it clearly provides conservative results (Guideline 

on missing data in confirmatory clinical trial 2010). Although LOCF is not a good choice 

for primary analysis, it is a convenient candidate for sensitivity analysis, especially when 

accompanied by a discussion of appropriate assumptions. 

 

2.3.1.6 Baseline Observation Carried Forward (LOCF) 
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Baseline observation carried forward (LOCF) is another single imputation method used 

for some incomplete longitudinal data. It imputes all the missing values with the baseline 

not the last observation (See Table 2.3).  

Table 2.3. BOCF to fill missing data 

ID Baseline Month 1 Month 2 Month3 
02-001-1001 135 130 → 135 → 135 
02-001-1002 120 115 105 → 120 
02-001-1003 140 130 120 120 

 

This method has the similar problems as LOCF is that it is not valid under MCAR and 

MAR, not always conservative, and risks underestimation of the variability of outcome of 

interest. It is also not recommended as the primary analysis method for clinical trials, 

unless particular assumptions are reasonable.  

 

There are some other single imputation methods, such as regression imputation, 

unconditional or conditional mean imputation, hot deck imputation (Molenberghs, 2004), 

worst and/or best case imputation (e.g. imputing the dropouts in active treatment group 

with the worst possible value of the outcome among the active treatment group, but 

assigning the best possible value among placebo group to dropouts in placebo group), and 

so on. Most of the single imputation methods ignore the uncertainty resulting from 

missingness, and thus create artificially smaller standard errors (Schafer, 1997). This risk 

of underestimating the variance of treatment effect can be reduced by multiple imputation 

method (Rubin 1987). 
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2.3.1.7  Multiple Imputation 

 

Instead of filling in a single numerical value for each missing value, the multiple 

imputation technique replaces each missing with a set of plausible values that represent 

the uncertainty in predicting that missing value. Generally, multiple imputation involves 

three steps: 

1. Imputation step: using an appropriate stochastic model to impute the missing 

values in a data set  m times, resulting in m complete data sets 

2. Analysis step: applying appropriate statistical procedures (e.g. ANCOVA, GEE, 

MMRM) for each data set 

3. Combination step: Combining the results from these m complete data sets to 

obtain the overall statistical inferences 

 

The combined result from the analyses for each complete data set reflects the extra 

variability. The total variability consists of both within and between imputation 

variability. Moreover, MI provides more efficient point estimates than single imputation 

because it reduces sampling variance through averaging over m data sets, even for very 

small m.  

 

The imputation efficiency can be measure by the relative efficiency (RE) (Rubin, 1987). 

That is 

      
 

 
      (2.3.1.7-1) 
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Here λ is the rate of missing information. Table 2.4 shows relative efficiency RE of MI 

with different λ and m. Clearly, only a small number of imputations are necessary to get 

high RE. For example, if there is 50% of missingness, 10 times imputation can reach 

imputation efficiency 0.95.  

 

Table 2.4. Relative Efficiency of MI 

    λ     
m 10% 30% 50% 70% 

3 0.97 0.91 0.86 0.81 

5 0.98 0.94 0.91 0.88 

10 0.99 0.97 0.95 0.93 

20 1.00 0.99 0.98 0.97 

 

There are many tools can be used to multiply impute missing values. Regression, 

predictive mean matching, propensity score, logistic regression, discriminant function 

and MCMC data augmentation are six methods available in SAS’s multiple imputation 

procedure for generating multiple imputations for an incomplete data set. MCMC data 

augmentation and regression model are simple choice to impute continuous data with 

multivariate normal distribution assumption. 

 

After obtaining m imputations of Ymis, appropriate statistical method (e.g. MMRM, GEE, 

etc.) can be used to analyze the m completed data sets and the results are combined.  

 

According to the discussion in section 2.2 dropout mechanisms, under likelihood-based 

method or Bayesian approach, MCAR and MAR can be treated as ignorable missingness, 

which means that the dropout process can be ignored in the analysis. MI is one type of 

Bayesian method, therefore, it can provide the valid results under MCAR/MAR 
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assumption. On the other hand, MI represents the uncertainty about imputed values, 

hence it is recommended by many researchers to instead of single imputation for 

handling missing data. However, if dropouts are MNAR, MI only is not suitable 

anymore.  

 

2.3.2  Main methods as sensitivity analysis under MNAR assumption 

 

MNAR is the most complicate d missing procedure. The majority of approaches for 

MNAR are based on models for the joint distribution of the measurement process and the 

dropout process. Most of them are likelihood-based methods and can be classified into 

three categories: selection models, pattern-mixture models and shared-parameter models 

(frailty models). Generally speaking, frailty models use latent frailties or random effects 

to capture the dependence between the outcome of interest process and dropout 

(Follmann and Wu 1995, Albert and Follmann 2000). The factorization is 

                                  

where γ is the latent frailty term. Compared to frailty models, Selection Models and 

Pattern Mixture Models are more popular for handling MNAR. 

 

2.3.2.1  Selection Model (SM) 

 

Selection models (Rubin 1976, Little 1987, Diggle and Kenward 1994) specify the full 

data likelihood as the product of the marginal density of the measurement process and the 
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density of dropout process conditional on the outcomes. The full likelihood can be 

presented by  

                                                         (2.3.2.1-1) 

where Y is the outcome of interest which includes observed values (Yobs) and missing 

values (Ymis), X represents the covariates, and R is an indicator for dropout. The outcome 

variable in measurement process is analyzed the same as the outcome being analyzed in 

MAR analysis. For example, using a parametric model such as multivariate normal 

regression: 

                           (2.3.2.1-2) 

The dropout process is often analyzed via a logistic regression, for example: 

                                                      (2.3.2.1-3) 

This model shows that the probability of subject i dropping at time point t is dependent 

on some covariates, observed outcomes and the first missing outcome. If       , the 

dropout is MAR, otherwise is MNAR.  

 

There are two key assumptions in this parametric selection model: normality for the 

distribution of outcome and linear relationship between logit(probability of dropout) and 

observed/missing outcome Y. It’s not possible to justify these two assumptions and 

distinguish between violations of them. Thus, extreme caution should be taken when 

parametric selection models are specified under the MNAR assumption (Kenward 1998, 

Hogan 2004).  
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2.3.2.2 Pattern Mixture Model (PMM) 

 

Compared to the Selection Models, Pattern Mixture Models (Little 1993, 1994) are based 

on an alternative factorization of full data likelihood. They describe the full data 

likelihood as the product of the density of measurement process conditional on the 

dropout pattern and the density of dropout process. Conceptually, PMM treat the full data 

distribution as a mixture over dropout times or patterns and describe the observed 

outcomes within each pattern while assuming that the missingness is MAR within a 

pattern. The model can be fitted by  

                                                 (2.3.2.2-1) 

where the former part indicates the distribution of dropout pattern, and the latter part 

gives the conditional distribution of outcome Yobs and Ymis given the dropout pattern.  

 

Some researchers prefer Selection Models because they present the Little and Rubin 

missingness taxonomy (MCAR, MAR, MNAR) in a straight forward way. However, 

Pattern Mixture Models also explicitly present the nature of MNAR assumption in the 

model formulation, clearly specifying that dropouts and missing values are not 

independent.  

 

For example, the conditional distribution f(Y|R,X) follows a multivariate normal 

distribution:  
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Here r denotes the dropout pattern for i
th

 subject; μ(r)
 is the mean vector that can be 

estimated by a linear combination of covariates X (Xβ
(r)

) for dropout pattern r; and  
(r)

 is 

the error variance matrix for dropout pattern r. Using a Bayesian argument, the 

probability of dropout in Pattern Mixture Model can be proven to be dependent on 

missing outcomes, which represents MNAR mechanisms. As a special case, suppose 

there are two patterns, r=0, 1 (represents dropouts and completers respectively). Algebra 

shows that  

                         

                                
  
         

          
 
      

  
          

Thus, the probability of dropout is related to    ,    
 , and all first-order cross-products 

       for all t and s and    . If          , then the logit of the dropout probability is 

linear with respect to     for all t (Hogan 2004). That means the probability of dropout is 

related to all the observed and unobserved measurements, reflecting the nature of MNAR.   

 

If the marginal distribution of Yi (e.g. blood pressure) is of interest, it can be obtained 

through a mixture of normal distributions with mean and variance given by  

                        

                                             

where           .   

 

Under certain conditions, PMMs are under-identified due to the missing values. That is 

not all parameters are estimable from incomplete pattern data. Extra assumptions about 
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the distributions of missing values are needed to produce additional restrictions that result 

in identifiable models. Depending on the nature of the study and data patterns, there is a 

variety of parameter constraints can be used to fix under-identification of the model 

parameters. For example, assuming the outcome of interest for each pattern is a linear 

function of time and other covariates resolves the under-identification problem (Hogan, 

2004). This restriction method will be used in this dissertation and is explained in my first 

proposed approach for handling mixed dropout mechanisms. While for my second 

proposed method, available-case missing value restriction (Thijs, 2002) and non-future-

dependent (NFD) missing value restriction (Molenberghs et al. 2003) within PMMs are 

used to deal with the under-identification problem. 

 

2.4 Summary 

 

Missing data has received increasing attention in healthcare field in recent years, 

especially from regulatory agencies (e.g. U.S.Food and Drug Administration (FDA) or 

European Medicines Agency (EMA)). Further, more researches and policy makers have 

recognized the need for analyses to reflect the nature of missingness when it is not 

MCAR or MAR. Therefore, statistical methods such as Pattern Mixture Models (PMMs) 

or Selection Models (SMs) for handling MNAR data have obtained more attention 

recently. However, both PMM and SM assume the missing mechanism is unique – 

MNAR, which may be a questionable assumption in many longitudinal studies, 

especially in confirmatory clinical trials. Usually, dropouts or missingness are occurs for 

multiple reasons, and may include MCAR, MAR and MNAR mechanisms within the 
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same study. Unfortunately, little research has focused on mixed dropout mechanisms. 

Ofer Harel and Joseph Schafer gave a general introduction about some methods that can 

be used in dealing with partial and latent ignorable missingness problems, but didn’t 

provide the theoretical details or simulations (Harel O., 2009).  

 

Therefore I will provide additional choices for handling mixed dropout to satisfy these 

increasing needs. Although all the methods for handling MNAR missingness including 

the ones I will propose need some unverifiable assumptions about the distribution of 

unobserved values, they provide important sensitivity analyses that support results from 

any primary analysis.  

 

My proposed two approaches for handling mixed dropout mechanisms are motivated 

from two different studies’ scenarios. Both approaches are based on Pattern Mixture 

Models, because relatively PMMs are more flexible, computationally less expensive, and 

lead to simpler exploration of the sensitivity of results to assumptions. The first proposed 

method is pattern mixture - within – mixture model with EM algorithm. This approach 

would be appropriate when the detailed dropout reasons are not clear and are suspected to 

result from mixed dropout mechanisms, as well as when a function between the outcome 

of interest and time can be assumed. The second approach is PMMs with mixed missing 

value restrictions combined with multiple imputation. This approach is appropriate when 

the detailed dropout reason for each subject is known and can result from either a 

MCAR/MAR or a MNAR dropout. 
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3 EM algorithm used in Pattern mixture-within-mixture model for 

handling longitudinal data with mixed dropouts mechanisms 
 

In this chapter, I present an approach to handle continuous data with mixed dropout 

mechanisms that leverages both the PMMs and the EM algorithm. It is assumed that the 

true reason for dropout is unknown. More specifically, I assume that do not know 

whether the dropout is MCAR/MAR or MNAR. 

  

To express the mechanism of MNAR, Pattern Mixture Models factor the joint 

distribution as the marginal distribution of the dropout and the conditional distribution of 

the response given the dropout patterns. The dropout patterns are usually dependent on 

the dropout times. For example, in a longitudinal study with four visits, some subjects 

drop at last visit. Then we have two dropout patterns R =1, 2. The second dropout pattern 

(R=2) represents the completers. 

O O O M   R=1 

O O O O   R=2   

Here O represents an observed value; the capital M indicates the missing values caused 

by dropouts.  

 

Under the MNAR assumption, PMMs treat the full data distribution as a mixture over 

dropout patterns, but assume that outcomes from two individuals with the same dropout 

pattern follow the same distribution. For example, the trend of treatment effect for the 

dropouts is different with the ones for completers, which will result in the different 

distribution of the response. This scenario is represented by Figure 3.1.  
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Alternatively, if all dropouts are MCAR/MAR, the data distribution is considered 

homogeneous over patterns and an Expectation Maximization algorithm can be applied 

which is theoretically equivalent to considering a likelihood of only the observed data 

(after integrating over the missing values). This alternative scenario is represented by 

Figure 3.2. 

 

However, if the dropout mechanisms are mixed with both ignorable missingness 

(MCAR/MAR) and non-ignorable missingness (MNAR), subjects with the same dropout 

time may have different response distributions if these subjects have different dropout 

mechanisms. Furthermore, subjects with different dropout patterns might or might not 

follow different response distributions. Therefore, under mixed dropout, some 

combination of these approaches may be needed to handle mixed dropout. 

 

Thus with this chapter, I use mixture models within each level of dropout pattern to allow 

for the possibility of different missingness mechanisms. I fit mixture models within 

Pattern Mixture Models to handle mixed dropout problem. Specifically, within each 

dropout pattern, a mixture distribution takes into account the possibility of different 

missingness mechanisms. Suppose the outcome of interest is a continuous measurement 

(e.g. blood pressure) that can be assumed as normality. The model for my method is laid 

out pictorially in Figure 3.3.  
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Figure 3.1. Assuming all missingness are MNAR 

Where      is the known probability of a subject following pattern r. 

 

 

Figure 3.2. Assuming all missingness are MCAR/MAR 
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Figure 3.3. Proposed approaches based on Pattern Mixture Model, assuming 

missingness mechanisms are a mixture of MNAR, MCAR and MAR 

     denotes the probability of non-ignorable missingness given pattern 1. Given a 

subject drops out at a particular time prior to completing the study, the response may 

follow one of two distributions. 

 

The distribution of responses from subjects with ignorable missingness (MCAR, MAR) is 

assumed to be the same as the distribution of responses from completers. However, for 

subjects with non-ignorable missingness (MNAR), the distributions of responses are 

assumed different for each dropout pattern.  

 

In order to fit mixture models within Pattern Mixture Models, there are two key issues 

need to be addressed. First, how does one separate mixed dropouts into ignorable 

missingness (MCAR and MAR) and non-ignorable missingness (MNAR). Second, how 

does one solve the under-identified problem for Pattern Mixture Models.  

MNAR, MCAR, 
MAR 

Pattern 1 

with probability π(1) 

MNAR, MCAR & 
MAR 

MNAR 

with probability p(1) 
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with probability 1-p(1) 
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with probability π(r) 

MNAR, MCAR & 
MAR 
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with probability π(M) 

Completers 

Completers 

(Yi|Ri=M)~MVN( (M), (M)) 
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For the first key issue, if the dropout reasons are recorded clearly for each dropout (e.g. in 

confirmatory clinical trials), then we can simply class the dropouts into different types 

according to those recorded dropout reasons. For example, the dropouts caused by 

adverse events usually produce non-ignorable missingness, while ignorable missingness 

is usually caused by reasons like move to other state, etc.. The case where dropout 

reasons may be categized as ignorable or non-ignorable based on known information will 

be handed in the next chapter. In this chapter, handling the setting in which the dropout 

reasons are not clearly recorded in a study (e.g. some historical studies or studies without 

recording dropout reasons). In this case, we cannot classify dropout reasons as ignorable 

or non-ignorable with certainty and this categorization may be treated as an unobserved 

variable. EM algorithm will be used to solve this issue.   

 

The second key issue centers on the under-identification of PMMs. That is not all 

parameters are estimable from incomplete pattern data. Thus, some extra assumptions 

about the distributions of missing values are needed to identify the models for the 

subjects with dropouts. In my first proposed method, I’ll assume that the response for 

each pattern is a defined function of time and other covariates, and then the under-

indentified problem can be solved naturally.  

 

3.1 Model specification and estimates 

 

Suppose the complete data consist of T repeated observations taken on N subjects at a 

fixed set of time points 1, 2, …, T. The number and timing of measurements for all 
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subjects is assumed to be equal. For i
th subject (i=1,2,..,N), the full data response vector is 

Yi = (          )T. Since subject i may drop out from the study, we use Yi (obs)= (       

    )
T  to denote the observed response vector, where  Ti  is the last time point of 

measurement (     .   

 

If there are M dropout patterns, let    be a random variable representing the last observed 

value for subject i, which may take on values r=1,..,M. we would say “subject i has 

missing pattern r). Given      (<M), Yi is either from     
       (the density of Y for 

ignorable missingness) with probability (1-p
(r)

) or      
       (the density of Y for non-

ignorable missingness) with probability p
(r)

. Thus, the marginal distribution of Yi given 

pattern r is  

       
             

                       
          .   (3.1-1) 

We have      denotes the probability of non-ignorable missingness given pattern r, and 

   represents fixed, potentially time varying covariates. 

  

A linear mixed model is fitted for non-ignorable missing Yi given pattern r (=1,…,M-1) 

with 

                    
              (3.1-2) 

   is a Ti×Q matrix of fixed covariates such that        
        

  T
.     is a vector of 

length Q the number of covariate measured at each time t. The random covariates are 

denoted by   , a Ti×K matrix. This matrix can be written as        
        

  T
, where 

the length of each vector     K is the number of random covariates included in the model 
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at each time t. For example, if the random covariates only include the intercept, the K 

would equal 1. The K-vector of random effects Ui is assumed to follow a multivariate 

normally distributed with mean 0 and covariance D. The error vector                 
T
, 

is independent of bi and is assumed to be normally distributed with mean 0 and 

covariance matrix    , where I is the identity matrix.      is the Q-vector of coefficients 

associated with fixed covariates specific to informative dropout in pattern r. Thus,    with 

non-ignorable missing with dropout pattern r is from multivariate normal distribution 

with mean vector    
         and covariance matrix    . 

     
                    

          
      

 

A linear mixed model is also fitted for the completers in the last pattern r =M, which 

includes only completers. This model is  

                  
              (3.1-3) 

Under ignorable missingness, effect of treatment should be the same, independent of 

dropout time, thus we assume the parameters for ignorable missingness are the equal 

across patterns with dropouts, as well as equal to the parameters for the last pattern 

(completers). That is, 

                     
            

… 

                       
            

further, as well as                   
           , assume variances are 

constant across patterns. This assumption can easily be relaxed when appropriate. 
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For any pattern r (<M), we define a Bernoulli random variable Zi for subject i with 

    , subject i’s dropout is considered non-ignorable missingness (            

     ; and      if it is ignorable missingness (                   .      may vary 

by pattern when the probabilities of MNAR dropout for different patterns are not the 

same. Since     is unobserved, that is we don’t know whether Yi is from      
              

or     
             , the EM algorithm is naturally used for estimation in this model. 

 

3.2 EM algorithm 

 

The EM algorithm is an iterative procedure for maximizing observed data likelihood. Let 

Y be the random vector corresponding to the observed data.   is the vector containing the 

unknown parameters in the postulated form for the distribution of Y. If using M as the 

missing data vector, the complete-data log likelihood function is given by  

                         . 

The EM algorithm maximizes the observed data log likelihood function           by 

proceeding iteratively in terms of the complete-data log likelihood function 

             through E-step and M-step. E-step calculates the conditional expectation 

of the complete data log-likelihood given the observed data such that parameters are 

replaced by their previous estimates     , and M-step updates the estimates to        

using this expected log-likelihood. Here,      and        represents the estimated 

complete set of unknown parameters   at t
th

 and (t+1)
th

 iteration respectively. On the 

(t+1)
th

 iteration, the E-step and M-step are defined as follows: 
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E-step: Calculate           where 

                                  

 

M-step: Choose        to maximize          ; that is  

                         

The E-step and M-step are alternated repeatedly until the difference             

          changes by a very small amount to show the convergence of the sequence of 

observed likelihood values            .  

 

To simplify computation, we suppose there is only one random effect – intercept, which 

is from normal distribution with mean 0 and variance   . Random covariates are Ti×1 

matrix           T
. 

The complete data likelihood function for this Pattern Mixture-Within-Mixture Model 

can be written as 
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(3.2-1) 

where      is the fixed probability of a subject following pattern r to estimated from the 

data. For example, if there are 20% of subjects drop at pattern r, then         . Ψ 

represents the complete set of unknown parameters {, 2
,   , p}, where  refers to 

             and                . 

 

The log-likelihood function is 

 

                 

   

 
  
 

  
 

       
                                              

  

   

         
    

           
                                                 

  

   

         
   

 
  
 

  
 

                                      

  

   

          
   

           

           

   

   

 

 

(3.2-2) 
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The unknown parameters can be estimated via maximization of the conditional 

expectation of the log-likelihood of the complete data given the observed data 

                           . Here, all the random effect and indicators of non-

ignorable missingness are considered as missing data. 

 

3.2.1 E-step  

 

At the (t+1)th interation, calculate 

          E                             ,    (3.2.1-1) 

the expectation with respect to                  , where      represents the values of 

parameters estimated at the t
th

 iteration.  

          

                      
   
   

   |  = log  +    =1  log       ,  ,  = ,  =1;  +   log   ; 2+     |  = log   

 +    =1  log       ,  ,  = ,  =0;  +     log   ; 2+          

 log ( )+  =1  log       ,  ,  = ;  + log   ; 2  

Where 
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The following conditional expectations are needed: 
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3.2.2 M-step  

 

New estimates        are obtained at each iteration via maximizing equation (3.2.1-1). 

This is done by setting the first derivatives equal to 0 and solving these equations. For 

example, to obtain (t+1), we need to solve 

           

  
   

In detail,  

   
        

 
                         

             
      

                    
  
                    

                    
   

               

 

   
        

 

   
                           

             
                          

  
        

             
             

      
               

  
                    

            
   
   

                         
   

               
   
          

   
             

 

 

where r=1,…,M-1;    denotes the coefficient for     covariate      ,        . 
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E- and M-steps are alternately repeated until the sequence of maximum likelihood 

estimates is convergent (when (                                    . 

 

3.2.3 Standard errors 

 

Standard errors are estimated by the inverse of the Empirical Fisher Information 

(Meilijson 1989). Empirical Fisher Information matrix is given by  

              
       

 
    

 

 
             , 

where         is the score function, and                
 
   .  
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At t
th

 iteration, it is given by 

      
     

       
    

  
 

and  

                 
    

 

   

 
          

  
 

 

At the convergence of the EM algorithm,          . Thus the empirical fisher 

information is  

                
        

 
      (3.2.3-1) 

where          
         

  
 

In detail, to            , r=1,…,M-1, the elements in          are given by:   
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To            , the elements in          are given by: 

   

   
   

 
          

                    
  
   

  
 

   
  

 
          

               
 

              
  
   

  
   

  
  

 

 

  

   

 

   
  

  
 

 
 
    

       

  
 

 

3.2.4 Marginal results  

 

I focus on estimating the treatment effect in a longitudinal clinical trial with a continuous 

outcome of interest, such that incomplete cases are due to mixed dropout mechanisms. 

The treatment effect is expressed by comparing the means of outcome of interest (e.g. 

blood pressure) at the end of study between two treatment groups (e.g. placebo vs. tested 

drug). The proposed method only provides results from specific dropout pattern and type. 

The marginal mean of outcomes of interest at the last visit can be obtained by averaging 

over dropout patterns and types.  

                               (3.2.4-1) 
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where           is the known probability of a subject drop at pattern r.         

 ( ) is the probability of non-ignorable missingness ( =1) at pattern r, 

while               is the probability of ignorable missingness (   ) at pattern r.  

                , 

                , 

and               . 

Then 

 

     

     
                                                          

      
                                      

              

 (3.2.4-2) 

Here              
          

 

3.2.5 Delta Method 

 

Delta method is used to derive the estimate of variance of a function of parameters, e.g. 

the weighted average parameters. In detail, Taylor series expansions are used to 

approximate variances for functions of random variables. Assume an estimate   

converges in probability to its true values  , then         is convergence in 

distribution to       , which is represented by 
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where n is the number of observations and   is a covariance matrix. Using Taylor series 

expansions, a function g of the estimator   may be approximated by 

                         

The variance of    ) is approximately 

                                                    

 

In our case, the variance for the marginal result estimate can be calculated by  
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In practice, the unknown parameters are replaced by their estimates.  

 

Here, the function of interest is 

                
                                        

            , 

where            and          are functions of       and       respectively. 

   

 

 
 
 
 

     

 
     

     

 
        

 
 
 
 

,     is the observed proportion of subjects with pattern r, r=1,…,M-1. 
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The variance of      can be obtained through the above approximations. 

 

PMWMM and a standard Pattern Mixture Model are compared in Appendix through 

likelihood functions and inferences.  

 

3.3 Simulation 

3.3.1 Data simulation 

 

A simple study is simulated to examine the performance of proposed pattern mixture-

within-mixture models. This study has 400 subjects (200 subjects in placebo group 

(treatment=0), 200 subjects in drug group (treatment=1)), and 4 equally spaced time 

points (0, 1, 2, 3). It was assumed that no subjects withdraw from this study at time points 

1 and 2 and 40% of subjects drop out at time point 3. Therefore, we will have two 

patterns (r=1,2) in which pattern 1 represents dropouts and pattern 2 represents 

completers; as depicted in the following diagam: 

O O O M   r=1 

O O O O   r=2 
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The data are generated from a linear mixed model that includes the fixed covariates of 

time (baseline, 1 month, 2 month, 3 month), treatment (0 and 1), and a treatment - by - 

time interaction. Time is a continuous covariate with values of 0, 1, 2 and 3. Here, the 

“treatment effect” measures the difference between treatment groups at baseline while the 

treatment by time interaction measures the effect of treatment in changes in outcome 

(treatment - placebo) over time. The model error     is from N         and the random 

effect -intercept Ui is from N(0,     ). Four scenarios are considered: 

(1) All missing values caused by dropouts are missing completely at random 

(MCAR). 

All responses are generated from the model   =         , where 

                                                                  

Randomly select 40% of subjects (0.4*200=80) from each treatment 

group, then set the values of these subjects at time point 3 as missing.  

Here f(Ri|Yi,Xi)=f(Ri)=0.4 

 

(2) All missing values caused by dropouts missing at random (MAR). 

All responses are generated from the model   =         , where 

                                                                  

For each treatment group, order the values at time point 2 and then set the 

top 40% of values (0.4*200=80) as missing.  

Here the dropout is dependent on the value of the last observation, so  

f(Ri|Yi,Xi)=f(Ri|Yi2)=0.4, where Yi2 is the last observed value. 
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(3) All missing values caused by dropouts are missing not at random (MNAR). 

The distribution of responses for dropouts with the missing value at time 

point 3 is set using dropout pattern 1, while the distribution for completers 

uses dropout pattern 2. The outcomes for the dropouts (80 (=0.4*200) in 

placebo group, 80 in treatment group) are generated from the model I: 

  =   
          for dropout pattern 1 (r=1), where      is a set of 

fixed covariates’ parameters corresponding to the dropouts. For the 

completers (400-80*2=240), data are simulated from the model II: 

  =   
          for dropout pattern 2 (r=2), where fixed covariates’ 

parameters      is for the completers. Here 

                
           

           
                

                        

                
           

           
                

                      . 

The conditional distributions f(Y|R,X) follows two normal distributions:  

                       

r=1 represents the dropouts and r=2 represents the completers. Algebra 

shows that  

                         

                                
  
         

          
 
      

  
          

Thus, the probability of dropout is related to    ,    
 , and all first-order 

cross-products        for all t and s and    , which includes all the 

observed and missing measurements, reflecting the nature of MNAR. 
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(4) For mixed dropouts, some are missing completely at random (5%), some are 

missing at random (15%), and some are missing not at random (20%). 

For MNAR data, the outcomes of interest for 80 subjects (0.2*400=80, 40 

from placebo group, 40 from drug group) are generated from the model I: 

  =   
          for MNAR in dropout pattern 1 (r=1), where      is 

the set of fixed covariates’ parameters corresponding to the MNAR in 

pattern 1. For the other 320 subjects (400-80=320, 160 in placebo group, 

160 in drug group), data are simulated from the model II:   =   
    

      for completers in pattern 2 (r=2) and subjects with ignorable 

missingness (MCAR & MAR) in pattern 1 (r=1). To generate ignorable 

missingness for each treatment group, we randomly select 10 subjects 

(0.05*200=10) from 160 subjects in each group and make them drop at 

time point 3 to get MCAR. Then order the values at time point 3 for the 

remaining completers and let the top 30 subjects (0.15*200=30) drop at 

time point 3 to generate MAR. We use 

                
           

           
                

                       

and  

                
           

           
                

                      . 

 In this scenario, 50% of dropouts are MCAR /MAR, and 50% of dropouts 

are MNAR. The main simulation steps are shown in figure 8. 
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Figure 3.4. Mixed dropouts’ data simulation steps (p=0.5) 

 

1000 simulated datasets are used for each scenario. 

 

3.3.2 Simulation results 

 

For both dropout patterns, regression coefficients for both the fixed effects time and 

treatment - by - time interaction are assumed to be negative. If we assume a smaller 

outcome is better, this model reflects that the subjects’ outcomes are expected to improve 

in both the drug and placebo groups over time with more improvement among the drug 

group. It is also noted that the same dropout proportions and time for placebo and tested 

drug groups are simulated for the entire four dropout scenario. The parameter of interest 

is the difference in outcome between placebo group and tested drug group at time point 3 

(the end of study).  

400 subjects  

Placebo (200) 

Treatment (200) 

 

 

80 subjects 

Placebo (40) 

Treatment (40) 

From Model I, to get 
MNAR 

 

 

 

All 80 subjects 
drop at time 3 

 
320 subjects 

Placebo (160) 

Treatment (160) 

From Model II, to get 
MCAR and MAR 

and  completers 
 

 

80 subjects drop 
at time 3 

Placebo (40) 

Treatment (40) 
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The popular methods ANCOVA for complete case, Mixed Model for Repeated Measures 

(MMRM), Generalized Estimation Equation (GEE) with exchangeable or compound 

symmetric (CS) working correlation matrix, Last Observation Carried Forward (LOCF) 

followed by ANCOVA, Baseline Observation Carried Forward (BOCF) followed by 

ANCOVA, Weighted GEE (WGEE), Pattern Mixture Models and proposed PMWMM 

are applied and compared. All the models I used here are linear models with treatment, 

time and the treatment - by - time interaction as covariates.  

 

3.3.2.1 Results for MCAR scenario 

 

Table 3.1 shows the models’ results for the first scenario – all missingness is completely 

at random (MCAR). ANCOVA for complete case, MMRM, GEE, WGEE, and PMM all 

provide the unbiased results in least square means and difference in outcome between 

two treatment groups at the end of study. PMWMM cannot obtain convergent results for 

data with MCAR dropout. In comparison, LOCF and BOCF produce conservative 

estimates with estimates biased towards the null hypothesis – no statistical significant 

difference in outcome of interest between placebo group and tested drug group at the end 

of study. These conservative results are predictable since the subjects’ outcome of 

interest is expected to be better over time and the dropout situation are balanced between 

two treatment groups, so more conservative outcomes in tested drug group than in 

placebo group would be obtained under LOCF or BOCF method. Therefore, these two 

methods are not valid under MCAR and this scenario.  
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Table 3.1. Means of outcome of interest at the end of study (time point 3) from the 

simulated study with 400 subjects and 4 equally spaced time points. All missing 

caused by dropout are MCAR. 

Pain Score Placebo Drug LSMD 

(95% CI) 

P-value 

Mean (SEM) Mean (SEM) 

True Value 8.80 7.60 -1.20  

BOCF
a 

9.14 (0.04) 8.27 (0.04) -0.86 

(-0.99, -0.74) 

<0.0001 

LOCF
b 

8.91 (0.03) 7.82 (0.03) -1.09 

(-1.18, -1.00) 

<0.0001 

CC
c 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.30, -1.10) 

<0.0001 

MMRM
d 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.31, -1.09) 

<0.0001 

WGEE
e 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.30, -1.10) 

<0.0001 

GEE
f 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.31, -1.10) 

<0.0001 

PMM
g 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.31,-1.09) 

<0.0001 

PMWMM
h 

- - - - 

a: Using baseline observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

b: Using last observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

c: Using ANCOVA to analyze complete case.  

d: Using Linear Mixed Model with random intercept to analyze observed data. 

e: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE model with weight to analyze observed data. 

f: Using GEE model with compound symmetry correlation structure to analyze observed 

data. 

g: Using PMMs with two dropout patterns, one is for dropouts and one is for completers 

h: Using proposed PMWMM 

 

 

3.3.2.2 Results for MAR scenario 

 

Table 3.2 shows the models’ results for data with MAR observations. MMRM, GEE and 

WGEE all produce unbiased estimates of group means and treatment effects. Here, the 
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GEE estimate is still consistent because it uses the correct working correlation matrix 

(Compound Symmetry) which matches with the structure of our simulated data set. When 

including only complete cases, the ANCOVA model, correctly estimates the difference 

between placebo and drug groups; however, the means of interested outcomes for each 

group are underestimated. The robust estimate of the difference here may occur because 

the numbers of dropouts between two treatment groups are balanced in this scenario. 

Hence complete case is not suitable under MAR assumption. LOCF and BOCF still 

generate the conservative estimates out the same levels as when missing data are MCAR, 

so they are not valid under MAR assumption either. PMM only provides correct 

estimates for the difference between two treatment groups, but wrong means for each 

treatment group, and larger standard errors for all estimates. PMWMM cannot obtain 

convergent results for data with MAR dropout again. 

 

Table 3.2. Means of outcome of interest at the end of study (time point 3) from the 

simulated study with 400 subjects and 4 equally spaced time points. All missing 

caused by dropout are MAR. 

Pain Score Placebo Drug LSMD 

(95% CI) 

P-value 

Mean (SEM) Mean (SEM) 

True Value 8.80 7.60 -1.20  

BOCF
a 

9.14 (0.05) 8.27 (0.05) -0.87 

(-1.00, -0.73) 

<0.0001 

LOCF
b 

8.93 (0.04) 7.84 (0.04) -1.09 

(-1.19, -0.99) 

<0.0001 

CC
c 

8.63 (0.04) 7.43 (0.04) -1.20 

(-1.30, -1.10) 

<0.0001 

MMRM
d 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.31, -1.10) 

<0.0001 

WGEE
e 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.30, -1.10) 

<0.0001 

GEE
f 

8.80 (0.04) 7.60 (0.04) -1.20 

(-1.31, -1.10) 

<0.0001 

PMM
g 

9.68 (0.07) 8.48 (0.07) -1.20 <0.0001 
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(-1.40, -1.00) 

PMWMM
h 

- - - - 

a: Using baseline observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

b: Using last observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

c: Using ANCOVA to analyze complete case.  

d: Using Linear Mixed Model with random intercept to analyze observed data. 

e: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE model with weight to analyze observed data. 

f: Using GEE model with compound symmetry correlation structure to analyze observed 

data. 

g: Using PMMs with two dropout patterns, one is for dropouts and one is for completers 

h: Using proposed PMWMM 

 

 

3.3.2.3 Results for completely MNAR scenario 

 

Table 3.3 shows the models’ results for completely MNAR. Except PMM and PMWMM, 

all the other approaches obtain biased results, especially WGEE. The extreme estimates 

of WGEE may be caused by the incorrect mean structure (measurement model) and the 

wrong weights obtained from the logistic regression model for the probability of dropout. 

The real distribution of outcomes for our simulated data is the mixture of two 

multivariate normal distributions rather than the marginal distribution used in the WGEE 

measurement model. Except for the Pattern Mixture Model, LOCF produces closed 

estimates to the true values. BOCF keeps giving the conservative estimates under this 

scenario. Complete case ANCOVA, MMRM and GEE result in biased treatment effects 

with this effects that are greater than the true value under the alternative hypothesis – the 

tested drug has significant positive effect, which bias is the most concern and tried to be 

avoided by FDA.  
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Table 3.3. Means of outcome of interest at the end of study (time point 3) from the 

simulated study with 400 subjects and 4 equally spaced time points. All missing 

caused by dropout are MNAR. 

Pain Score Placebo Drug LSMD 

(95% CI) 

P-value 

Mean (SEM) Mean (SEM) 

True Value 9.84 8.88 -0.96  

BOCF
a 

10.01 (0.09) 9.22 (0.09) -0.79 

(-1.03, -0.55) 

<0.0001 

LOCF
b 

9.89 (0.08) 8.99 (0.08) -0.90 

(-1.13, -0.68) 

<0.0001 

CC
c 

9.23 (0.08) 8.13 (0.08) -1.10 

(-1.33, -0.86) 

<0.0001 

MMRM
d 

9.74 (0.09) 8.70 (0.09) -1.04 

(-1.30, -0.80) 

<0.0001 

WGEE
e 

12.61 (0.13) 12.48 (0.12) -0.13 

(-0.48, 0.20) 

0.3919 

GEE
f 

9.73 (0.09) 8.68 (0.09) -1.05 

(-1.30, -0.80) 

<0.0001 

PMM
g 

9.84 (0.04) 8.88 (0.04) -0.96 

(-1.07, -0.85) 

<0.0001 

PMWMM
h 

9.85 (0.04) 8.88 (0.04) -0.97  

(-1.08, -0.86) 

<0.0001 

a: Using baseline observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

b: Using last observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

c: Using ANCOVA to analyze complete case.  

d: Using Linear Mixed Model with random intercept to analyze observed data. 

e: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE model with weight to analyze observed data. 

f: Using GEE model with compound symmetry correlation structure to analyze observed 

data. 

g: Using PMMs with two dropout patterns, one is for dropouts and one is for completers 

h: Using proposed PMWMM 

 

3.3.2.4 Results for Mixed dropouts 

 

The results for the mixed missingness are shown in Table 3.4. The proposed Pattern 

Mixture-Within-Mixture Model produces the unbiased estimates. Comparing to the 
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proposed approach, Pattern Mixture Model also provides very close estimates to the true 

values but relatively bigger standard errors and confidence interval under our simulation 

conditions. When the data distribution and dropout structure are different with our 

simulated scenario, the difference between these two methods may be more obviously. 

The results of MMRM and GEE are a little far from the true ones and with larger effect. 

BOCF and LOCF underestimate the true effect for the simulated data with mixed 

dropouts.   

Table 3.4. Means of outcome of interest at the end of study (time point 3) from the 

simulated study with 400 subjects and 4 equally spaced time points. Missingness 

mechanisms caused by dropout are mixed: 20% MNAR, 15% MAR and 5% MCAR 

(the probability of MNAR dropout is 0.5) 

Pain Score Placebo Drug LSMD 

(95% CI) 

P-value 

Mean (SEM) Mean (SEM) 

True Value 9.32 8.24 -1.08  

BOCF
a 

9.52 (0.07) 8.72 (0.07) -0.80 

(-1.00, -0.60) 

<0.0001 

LOCF
b 

9.37 (0.07) 8.40 (0.07) -0.97 

(-1.16, -0.79) 

<0.0001 

CC
c 

8.90 (0.07) 7.78 (0.07) -1.12 

(-1.31, -0.94) 

<0.0001 

MMRM
d 

9.27 (0.08) 8.15 (0.08) -1.12 

(-1.33, -0.91) 

<0.0001 

WGEE
e 

9.45 (0.10) 8.47 (0.12) -0.98 

(-1.28, -0.68) 

0.0067 

GEE
f 

9.25 (0.08) 8.12 (0.09) -1.13 

(-1.35, -0.90) 

<0.0001 

PMM
g 

9.30 (0.05) 8.24 (0.05) -1.06 

(-1.21,-0.91) 

<0.0001 

PMWMM
h 

9.31 (0.04) 8.23 (0.04) -1.08 

(-1.19,-0.97) 

<0.0001 

p (the probability of MNAR) =0.50 

a: Using baseline observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

b: Using last observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

c: Using ANCOVA to analyze complete case.  

d: Using Linear Mixed Model with random intercept to analyze observed data. 
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e: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE model with weight to analyze observed data. 

f: Using GEE model with compound symmetry correlation structure to analyze observed 

data. 

g: Using PMMs with two dropout patterns, one is for dropouts and one is for completers 

h: Using proposed PMWMM 

 

3.4 Worked Example: Schizophrenia study 

 

The National Institute of Mental Health Schizophrenia Collaborative Study collected 

longitudinal data on treatment related changes in overall severity (Hedeker and 

Gibbons,1997). The main outcome of interest was drawn from the Inpatient 

Multidimensional Psychiatric Scale (IMPS), a series of questions which enables 

immediate stratification into psychotic types and the degree of mental illness. Specially, 

item #79 of IMPS, severity of illness can be used to evaluate the effect of treatment for 

Schizophrenia. It is scored as 1 = normal, not at all ill; 2 = borderline mentally ill; 3 = 

mildly ill; 4 = moderately ill; 5 = markedly ill; 6 = severely ill; and 7 = among the most 

extremely ill.  

 

In this study, 437 patients were randomly assigned to receive one of four medications: 

placebo (108 patients), chlorpromazine, flupenzaine or thioridazine. Since Hedeker’s 

previous analyses showed that the three drugs have similar effects on Schizophrenia, they 

were combined into one drug group (329 patients) for comparison with placebo here. We 

want to compare the tested drug group (329 patients) with the placebo group (108 

patients).  Patients’ IMPS were focused measured on weeks 0, 1, 3, and 6. The 

completers are defined as those who were measured at week 6, and the percentages of 
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patients who dropped from the study were 34% and 19% for the placebo and drug groups 

respectively. Detailed dropout reasons for each patient are not publicized. However from 

other similar studies, common dropout reasons can be predicted, such as adverse events, 

lack of treatment effect and withdrawal for unspecified reasons, etc.. Reasons such as 

lack of treatment effect, adverse events may be related to the outcome of interest, but 

others may not be. The nature of dropout or missingness for this study may be a mixture 

of MCAR, MAR and MNAR 

Dropout numbers and cumulative information at each mainly visit are represented at 

Table 3.5 and Figure 3.5.  

 

Table 3.5. Dropout number by week and treatment group 

 Placebo (N=108) Drug (N=329) 

week Count Cum count 

Cum 

Percent (%) Count Cum count 

Cum 

Percent (%) 

1 2 2 2 6 6 2 

3 18 20 19 34 40 12 

6 17 37 34 22 62 19 
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Figure 3.5. Cumulative percentage of dropout by week 

 

 

From above table and figure, we can easily find that there are many more percentages of 

dropouts occur in placebo group (total 34%) than in tested drugs group (total 19%). It 

indicates that the dropout mechanism is not MCAR, but related to at least treatment.  

 

The primary outcome of interest indicating efficacy for treatment is the IMPS #79 score, 

severity of illness. Table 3.5 showed that the size of dropouts at each time point is small, 

so all the dropouts are grouped together. The means of IMPS #79 score at each visit in 

placebo and drug groups for dropouts, completers and all patients are presented in Table 

3.6 and Figure 3.6. The means of IMPS #79 score decrease less in placebo dropouts’ 

group (from 5.58 to 5.31 to 5.23) than in placebo completers’ group (from 5.23 to 4.82 to 

4.59 to 4.25). In comprison, IMPS #79 scores decrease more in drug dropouts’ group 

(from 5.32 to 4.19 to 2.74) than in drug completers’ group (from 5.39 to 4.49 to 3.95 to 

3.06). Figure 3.6 suggests that dropout is not MCAR again because the mean IMPS #79 

scores have different trends for completers and dropouts. Although the detailed dropout 

reasons for each patient were unknown, based on these results, one might hypothesize 

more patients dropped out in the placebo group due to lack of efficacy, while in drug 

group more patients may dropped out because of good efficacy. Figure 3.6 also 

demostrates that the means of IMPS #79 score are approximately linear with square root 

of week, and the linear trends for dropouts and completers are not the same.   
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Table 3.6. Mean of IMPS #79 score at each visit by treatment group for dropouts 

and completers 

  All Dropouts Completers 

week Sqrt. of week Placebo Drug Placebo Drug Placebo Drug 

0 0 5.35 5.38 5.58 5.32 5.23 5.39 

1 1 4.99 4.43 5.31 4.19 4.82 4.49 

3 1.73 4.74 3.80 5.23 2.74 4.59 3.95 

6 2.45 4.25 3.06   4.25 3.06 

 

 

Figure 3.6. Mean of IMPS79 score at each visit by treatment group for dropouts and 

completers 

 

The Pattern Mixture-Within-Mixture Model, which uses an EM algorithm within a 

Pattern Mixture Model was motivated by this study, illustrating the need of accounting 

for mixed dropout mechanisms. In particular, for this study, dropout reasons are not clear 

and a linear relationship between the outcome of interest and time can be assumed. In 

analyzing this longitudinal study, both my proposed method Pattern Mixture-Within-
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Mixture Model and Pattern Mixture Model assume that the data is separated into two 

patterns – dropouts and completers. While the Pattern Mixture Model assumes missing 

values of all patients with dropout follow the same pattern represented by a single 

multivariate normal distribution. The PMWMM assumes that dropouts responses may 

follow two patterns, as modeled by a mixture of two multivariate normal distributions, 

which one is for MNAR and the other is for MAR and MCAR. The latter distribution is 

also assumed to be the same as completers’.  

 

Last Observation Carried Forward (LOCF), Baseline Observation Carried Forward 

(BOCF), ANCOVA for complete case, Mixed Models for Repeated Measurements 

(MMRM), Generalized Estimation Equation (GEE), and Weighted GEE (WGEE) are 

also applied to the data from this study. Description of these approaches can be found in 

section 2.3. All the linear models use treatment group, time (square root of week) and the 

treatment - by - time interaction as covariates: 

Imps #79 score = time +treat + time*treat. 

 

The results are compared in Table 3.7. We can find that all the approaches give 

significant results for the difference in mean IMPS#79 score between placebo and drug 

groups at the end of study (week 6). IMPS #79 score in drug group is significantly lower 

than in the placebo group, showing a robust positive effect of drug. Among these 

methods, our proposed method give the largest difference of IMPS #79 score (-1.62) 

between two treatment groups. Pattern Mixture Model also provides big difference (-
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1.57) compare to the remaining methods. MMRM, GEE and WGEE methods obtain 

estimates that are similar to one another (-1.38, -1.38 and -1.36 respectively).  

 

In this study, complete case ANCOVA induces the smallest difference (-1.25). From 

Figure 3.6, we can find that the difference between treatment groups is obviously smaller 

in completers than in dropouts. If we excluded all the dropouts, the results must be biased 

towards null hypothesis direction – no difference between placebo and tested drug 

groups. BOCF method also produces similar small difference (-1.27) as complete case 

analysis does.    

 

The simulation study suggested that LOCF can be a conservative approach, yielding 

estimates that are closed to the null value. However, as evidenced here, compared to 

MMRM and WGEE methods under MAR assumption, LOCF may not always be a 

conservative statistical technique for longitudinal data analysis which is preferred by 

regulation agency. Since the outcome of interest (IMPS #79 score) decreases on average 

over time, the biased estimates toward bigger IMPS #79 score are obtained for both 

treatment groups under the LOCF method. However, the difference between two groups 

may not be biased towards null hypothesis, because there are more dropouts in placebo 

group than in drug group (34% vs. 19%). Thus, the influence of LOCF is more serious in 

placebo group than in drug group.  

 

Table 3.7. Evaluation of IMPS #79 score at 6-weeks using different methods. 

IMPS #79 score at end of study 

 Placebo 

(N=450) 

Drug 

(N=450) 

LSMD 

(95%CI) 

P-value 
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Mean (SEM) Mean (SEM) 

LOCF
a 

4.65 (0.10) 3.15 (0.06) -1.50  

(-1.72,-1.27) 

<.0001 

BOCF
b 

4.70 (0.10) 3.44 (0.06) -1.27  

(-1.49,-1.04) 

<.0001 

CC
c 

4.34 (0.11) 3.09 (0.06) -1.25 

(-1.50, -1.01) 

<.0001 

MMRM
d 

4.43 (0.12) 3.05 (0.06) -1.38  

(-1.64, -1.11) 

<.0001 

GEE
e 

4.43 (0.14) 3.05 (0.08) -1.38  

(-1.70, -1.05) 

<.0001 

WGEE
f 

4.44 (0.15) 3.08 (0.08) -1.36  

(-1.70, -1.03) 

<.0001 

PMM
g 

4.45 (0.12) 2.88 (0.07) -1.57  

(-1.85, -1.30) 

<.0001 

PMWMM
h
 4.45 (0.12) 2.83 (0.06) -1.62 

(-1.89, -1.35) 

<.0001 

p (the probability of MNAR) =0.69 

a: Using last observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

b: Using baseline observation carried forward method to impute missing values, then use 

ANCOVA to analyze this imputed full data set. 

c: Using ANCOVA to analyze complete case.  

d: Using Linear Mixed Model with random intercept to analyze observed data. 

e: Using GEE model with compound symmetry correlation structure to analyze observed 

data. 

f: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE model with weight to analyze observed data. 

g: Using Pattern Mixture Model with two dropout patterns to analyze observed data. 

h: Using proposed Pattern Mixture-Within-Mixture Model to analyze observed data. 

 

 

3.5 Summary 

 

It is clearly that all methods for handling data with MNAR must make some unverifiable 

assumptions concerning the unknown missing values. Therefore, no single MNAR 

approach can be used definitively. In particular with unknown dropout reasons, it is 

difficult to tell which sensitive method (PMM or PMWMM) is more correct or efficient 

since they are dependent on different assumptions. Rather, in any study with dropout, 
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several methods based on different reasonable assumptions regarding to the missingness 

mechanisms should be considered as a sensitivity analyses family. Obtaining similar 

results from these methods will point to robust conclusions. On the other hand contrasting 

results may aid investigators to understand their study results more deeply. 

 

The results from simulation and Schizophrenia study showed that there may be no big 

different marginal outcome of interest between PMWMM and PMM for some studies. If 

the distinction between two interested groups (e.g. placebo and tested drug) is very 

significant or very non-significant, we don’t need to pay much attention on explaining 

these two analyses methods and their results. But if the difference is very close to the 

critical value, then these two methods may produce distinct test results – one significant 

and one non-significant. Under this situation, more discussions will be needed to explain 

the different MNAR methods’ results and the assumptions about the missing values.     

 

Both PMM and PMWMM discussed in this Chapter assume that the response for each 

pattern is a function of time and other covariates. For example, in Schizophrenia study, 

we assume the linear relationship between IMPS #79 score and the time (square root of 

week) and time-treatment interaction. However, this assumption may not be correct to 

many other studies. So other approaches need to be developed under mixed dropout 

assumptions if a specific function cannot be specified for the relationship between 

response and time. My next proposed method for handling mixed dropout will combine 

Pattern Mixture Model and Multiple Imputation, and use mixed missing values restriction 
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to resolve the under-identification of the PMM when the response is not necessary a 

predefined function of time and other covariates.  
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4 Pattern Mixture Models based Multiple Imputation with mixed 

missing values restriction  

 
 

Dropout is an important and unavoidable problem in longitudinal clinical trials. The 

dropout mechanisms need to be considered very carefully in the data analyses in order to 

reduce as much as possible the possibility that the dropouts will bias the study results. 

Much literature has focused on statistical methods for handling dropouts. For continuous 

data, regression methods range from using simple ANCOVA with only complete cases to 

more complicated approaches such as Pattern Mixture Models, which treats all the 

dropouts as if they fall in the same dropout mechanism. In this chapter, I focus on 

estimating the treatment effect in a longitudinal clinical trial with a continuous outcome 

of interest, such that incomplete cases are due to mixed dropout mechanisms (ignorable 

missingness (MCAR/MAR), and non-ignorable missingness(MNAR)). The treatment 

effect is expressed by comparing the changes from baseline at the end of study between 

two treatment groups (e.g. placebo vs. tested drug).  

 

For analyzing the repeated continuous data with monotone missingness caused by 

dropouts (described in more detail in Chapter two), ANCOVA and GEE are only suitable 

under MCAR assumption, whereas MMRM and MI are recommended under the 

MAR/MCAR assumption. Selection Models, shared-parameter models and Pattern 

Mixture Models are used as sensitivity analyses under MNAR assumption. Although 

LOCF and BOCF used to be popular methods for longitudinal clinical trials with 

dropouts, they do make strong MNAR assumption and are no longer recommended by 

FDA as primary analyses.  
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In the last chapter, I proposed Pattern Mixture-Within-Mixture Models, integrating an 

EM algorithm within PMMs to handle the mixed dropout problem when the reasons for 

dropout are unknown. However, in contemporary clinical trials, the reasons of dropout 

are often recorded as clearly as the investigators can, so that the dropout reasons are 

known rather than unknown. The differential dropouts may result in missing values that 

can be classified as ignorable missingness or non-ignorable missingness, depending on 

whether the dropout is related to the observed or/and unobserved data. Further, to 

overcome the under-identified problem of PMMs, the previous proposed method assumes 

the linear effects of time and treatment by time interaction to the outcome of interest, a 

very strong and restrictive assumption which may be untrue in many clinical trials with 

longitudinal follow-up.  

 

As another approach, Lu (2011) proposed imposing a non-future missing value restriction 

when using PMMs combined with multiple imputation for handling dropouts under the 

MNAR assumption. I extended this approach to deal with mixed dropout mechanisms, a 

potentially more realistic scenario for some longitudinal studies.  

 

The proposed imputation strategy handles longitudinal studies with continuous responses 

and mixed dropout mechanisms – ignorable missingness and non-ignorable missingness. 

I apply two missing value restrictions (available-case and non-future dependence) within 

PMMs, combined with multiple imputation to fill in the missing values caused by 

different dropout categories. And then the multiple imputed complete data sets are 

analyzed by a selected method, e.g. GEE, to catch the treatment effects – the difference 
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of changes from baseline at the end of study between two treatment groups. Finally, the 

results from each imputed complete data set are combined based on standard multiple 

imputation methodology (see section 2.3.1.7). The proposed imputation step uses the 

dropout information from the trials and relaxes the assumption of linear effects of time 

and treatment by time interaction, flexibly allowing the user to choose the identifying 

restrictions or assumptions regarding the inestimable parameter that best fit the problem 

at hand.   

 

The pattern mixture models (PMMs) based multiple imputation (MI) with mixed missing 

value restrictions (available-case and non-future dependence) approach is described in the 

next two sections, along with details for implementation. This method is applied to a 

simulated chronic pain clinical trial, demonstrating the effect of a drug for chronic pain. 

Results are compared to more traditional methods for longitudinal study with dropouts. 

Finally, procedures for sample size and power calculations through simulation are 

provided for the proposed method and these results are compared to the ones from other 

approaches.  

 

4.1 Two missing data structures within PMMs 

 

Assume there are T designed visits in a longitudinal study and let               

represent the value of a patient’s outcome measure (continuous variable) at visit t. Before 

introducing imputation strategy, I will fully describe the data structure and the 

assumptions for modeling. The structure of the data is laid out in the following figure. 
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O M M M   R=1 

O O M M   R=2 

O O O M   R=3 

O O O O   R=4 

 

Here, R denotes the Dropout Pattern, R=1,…,T. R=t indicates the number of observed 

measurements in this pattern, such that subjects with this pattern drop out of the study 

between visit t and visit t+1 (the measurements from visit t+1 to T are missing); O 

represents an observed value; the gray capital M indicates the first missing value or 

current missing value; and black capital M denotes a future missing value. Throughout 

discussion that follows, the “future” for any particular subject refers to any time point 

beyond the first one with a missing value, i.e., T>t+1.   

 

Recall, a PMM describes the full data likelihood as the product of the density of 

measurement process given dropout pattern and the density of dropout process. 

Specifically, it can be decomposed as follows: 

                                           

=                                    ,    (4.1-1) 

where             , and               .              represents the conditional 

distribution for observed outcomes given each dropout pattern and covariates (e.g. 

treatment), and                   represents conditional distribution for missing values 

given observed data and covariates within each dropout pattern.  
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The distribution function of PMMs in equation (4.1-1) can be further decomposed as 

                 

                                                                 
     

t|X)     (4.1-2) 

In this function, only the first and the last factors can be identified from the data, while 

other factors – the distributions of first and future missingness are under-identifiable, 

because the missing values are unobserved and the true relationship between missingness 

and observations are unknown. The under-identification of PMMs actually increases the 

flexibility of these models, allowing the researchers to use different reasonable 

identifying restrictions for the missing values.  

 

 

To handle the mixed dropout mechanisms, the model will be based on the following two 

missing data restrictions– available-case missing value restriction for ignorable 

missingness and non-future dependent missing value restriction for non-ignorable 

missingness.   

 

4.1.1 Restrictions for ignorable missingness  

 

Only one restriction, available-case missing value restriction, is needed for the first and 

future missing values. This restriction assumes that the conditional density of a missing 

observation is equal to the density of that observation for the available cases. This is 

represented by 
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for all     and    . 

Molenberges gave a detailed proof in his paper (1998) to show that for longitudinal data 

with dropouts, available-case missing value restriction is equivalent to MAR, as 

expressed by  

                                            

  

                                 , 

which means that the MAR assumption holds if the predictions of missing values for 

those who drop at time j are equivalent in distribution to the predictions for the available 

cases (observations). Thus, under MAR, missing values at time j and beyond can be 

predicted sequentially from the subjects who have the observations at those times.  

 

Available-case missing value restriction method will be used to impute the missing 

values caused by MAR, which is ignorable missingness. For example, if the repeated 

measures of interest Y=(y1,…,yT) follows a multivariate normal distribution, given as  

            

For the dropouts at pattern t, Y=( Yobs, Ymis), where Yobs=(y1,…,yt)  and Ymis=(yt+1,…,yT). 

The conditional distribution of Ymis given Yobs follows a multivariate normal distribution 

too, given by 

                                

MI MCMC data augmentation will be used to impute these missing values. The details of 

imputation method and steps will be introduced in section 4.2.2.3. 
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4.1.2 Restrictions for Non-ignorable missingness 

 

Missing data from participants with non-ignorable missingness are separated into two 

types: first missing value and future missing values.  Different assumptions or 

“restrictions” are used for each type. 

 

For the first missing value     , National Research Council in “The prevention and 

treatment of missing data in clinical trials” (2010) provides a way to identify the 

distribution of missing value by introducing a sensitivity parameter Δ, expressed as 

                                                 

Through modifying the values of Δ, the analysis can be conducted so that the results 

favor the null hypothesis, an approach preferred by regulation agencies. Hence, adding 

shift for the first missing values will be used for treating non-ignorable missingness 

dropout in my proposed method.  

 

For example, supposing the repeated measures of interest Y=(y1,…,yt+1) follows a 

multivariate normal distribution, yt+1 is the first missing. We draw a value Yt+1*  from the 

conditional distribution of the first missing value                                   for 

Yt+1 through MCMC data augmentation firstly, then impute the first missing value by 

Yt+1*+Δ.   

 

Although the exact shift value is unknown, a reasonable approximated range based on the 

minimum and maximum values of the primary efficacy variable can be set (Lu, 2011). 
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According to the relevant historical data, shift value can be selected as a series of 

proportions of the observed treatment efficacy (eg. 10%, 20%, and 30%, etc.).  

 

For future missing values yj where j>t+1, Kenward et al. proposed a non-future-

dependent (NFD) missing value restriction (Kenward 2003) for PMMs. This restriction 

assumes that the probability of dropout is only related to the observations and the first 

missing value, but not related to the future missing values. Within the PMMs framework, 

the non-future dependent missing value restriction can be defined as follows: 

                                                (4.1.2-2) 

for all         , and all     . For example, at pattern R=1such that T=4, we can 

demonstrate using the NFD missing value restriction that 

                                     

and 

                                        

 

For the remainder of this section, we demonstrate the connection under this restriction 

with Selection Models and justify its use when data are assumed to be non-ignorable 

(MNAR). Recall, Selection Models can be factorized as the product of the marginal 

density of the measurement process and the density of dropout process conditional on the 

outcomes 
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When selection models are used, researchers usually assume that the probability of 

dropout at pattern t is only related to the covariates, observations y1, …, yt, and the first 

missingness yt+1, which is called “missing non-future dependent”. It can be expressed by  

                                    

For example, at pattern R=1, the subjects drop out between visit 1 and 2. The probability 

of dropout at this pattern is dependent on the covariates, observation y1, and the first 

missing value y2,  

                                . 

 

Kenward et al. (2003) proved that the “non-future dependent missing value restriction” 

used in PMMs is equivalent to the “missing non-future dependent” assumption used in 

SMs. Specifically   

                                              

  

                                    

 

In addition, we can demonstrate that the non-future dependent missing value restriction 

for PMMs implies a MNAR mechanism. Note that this restriction within PMMs is 

recommended by National Research Council in “The prevention and treatment of missing 

data in clinical trials” (2010) to handle missingness under MNAR assumption.  

 

Non-future dependent missing value restriction within PMMs will be only used to impute 

missing values caused by non-ignorable missingness dropout; while for the missing 
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values from ignorable missingness dropout, available-case missing value restriction is 

applied as discussed next. 

 

4.2 PMMs based Multiple Imputation with mixed missing value 

restrictions 

4.2.1 Classification of dropout categories  

 

A key issue to mixed dropout problem is how to assign the dropouts to ignorable 

missingness or non-ignorable missingness category. Usually, the assignment is based on 

the dropout information collected from a clinical trial termination form that includes a list 

of potential dropout reasons. The main reasons may be: (1) didn’t get better, give up; (2) 

death; (3) side effects; (4) move from study area (5) study requirement is too onerous, 

give up (6) unrelated illness required treatment with contraindicated medicine, and so on. 

Some of dropout reasons may not be related to the missing measurements, which can be 

assigned into ignorable missingness. Alternatively, some reasons may be related to the 

missing measures of interest, implying non-ignorable missingness, e.g. side effects or 

death. Due to the study design, the termination form may vary from one study to another, 

so that these details concerning dropout classification will need to be determined within 

each study. 

 

4.2.2 Imputation strategy  
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Based on dropout reasons, the dropouts can be separated into ignorable and non-

ignorable. A Bernoulli variable G is defined for the differential dropout categories. G=1 

indicates non-ignorable missingness dropout, while G=0 indicates ignorable missingness 

dropout. Treatment is set as the covariate X (0 – placebo, 1 – tested drug).  

 

Let                       express the conditional density of yi ,... yj, given the last 

observed measurement is at visit t ,the participant is receiving treatment x and the dropout 

category is g. Then the complete data density for pattern t and dropout type g can be 

written as 

                      

                                                     

 

     

                       

(4.2.2-1) 

 

The first factor on the right side of (4.2.2-1) is clearly identifiable from the observed 

values. The second factor                            represents the conditional 

distribution for the first missingness. The third and beyond factor 

                           (with all         ) represent the conditional 

distribution for the future missing values. All the missing values can be identified by 

various assumptions due to the dropout categories - ignorable or non-ignorable.   
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4.2.2.1 Imputation for the first missing 

4.2.2.1.1 First missing from ignorable missingness dropout 

Available-case missing value restriction is used for the first missing value at pattern t in 

treatment x from ignorable missingness dropout. The conditional densities can be 

imputed by 

                                                    , (4.2.2.1-1) 

which means the predictions of missing values given previous measures under ignorable 

missingness assumption for those who drop at time t in treatment x are equivalent in 

distribution to the predictions for the observations at that time given previous measures in 

treatment x. 

4.2.2.1.2 First missing from non-random dropout 

The conditional densities for the first missing at pattern t in treatment x from non-random 

dropout are selected as 

                                                       

 (4.2.2.1-2) 

The difference between these two distributions in (4.2.2.1-2) is a shift Δ parameter. 

Compared to the distribution of all observed     , the distribution of the missing      

caused by non-random dropout at pattern t will shift Δ units. When    , the conditional 

distribution of       in pattern t is different from that of observed measurements, 

representing a scenario of missing not at random.    

 

To make sure the sensitivity analysis under mixed dropouts assumption is conservative, 

with estimates biased towards the null hypothesis, a different shift parameter Δ may be 
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preferred for various treatment groups. For example, for the placebo or control group, we 

may set Δ=0 for the non-ignorable missingness dropouts; while for the drug group, we 

may try a series of non-zero shifts for these dropouts. 

 

4.2.2.2 Imputation for the future missing 

4.2.2.2.1 Future missing from ignorable missingness dropout 

Under random dropout, available-case missing value restriction is also used for the future 

missing value at pattern t in treatment x. The conditional densities of the missing values 

can be obtained by assuming 

                                                    

 (4.2.2.2-1) 

for all         , and all     . 

4.2.2.2.2 Future missing from non-ignorable missingness 

Non-future dependent missing value restriction is applied to the future missing values 

from non-random dropout. It assumes that the dropout is only related to the observed and 

first missing measurements, but not related to future missing measurements. The 

unidentifiable conditional distributions of future missing    at pattern t in treatment x 

satisfy 

                                                      

 (4.2.2.2-2) 

for all         , and all     . 
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This means that all the future missing values in non-random dropouts are imputed based 

on the observed and imputed first missing values. 

 

The right hand side of (4.2.2.2-2) can further be partitioned into 

                          

 
                    

                      

 
                                       

                      
 

 
                      

                      
                          

 
                    

                      
                        

                                                                

  (4.2.2.2-3) 

where 

     
                      

                      

   
                              

                                  
 

 

Note on the right side of (4.2.2.2-3), the conditional density for the first missing 

                          is a mixture distribution of non-ignorable missingness 

dropout and ignorable missingness dropout: 
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  (4.2.2.2-4) 

where        denotes the fraction of patients from ignorable missingness dropout group at 

pattern s-1 in treatment x.  

Then we can formulate the right side of (4.2.2.2-3) as the following: 

                          

                                        

                                            

                                                                

  (4.2.2.2-5) 

Here, 

        
                              

                                  
               

 (4.2.2.2-6) 

 

Therefore, under non-future dependent missing value restriction, the unidentifiable 

conditional densities for visit s in pattern t (s ≥ t +2) can be expressed as a mixture 

distribution of                        , the conditional distributions of ys from 

pooled patterns with observed measurement at visit s and beyond in treatment x, 

and                          , the previous conditional distributions of ys 

adding a shift. The weight      is based on (a) identifiable densities                
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       and                         - both pooled patterns including 

completers in treatment x, (b)             and              , which can be 

estimated using the fractions of patients from the pooled patterns in treatment x, and 

(c)       , the fraction of random dropout at Pattern s-1 in treatment x. 

 

If Δ equals to 0, the right side of (4.2.2.1-2) for the first missing value at pattern t in 

treatment x becomes 

                                                      

 For future missing measures at pattern t, based on equation (4.2.2.2-5), the right side of 

(4.2.2.2-2) can be expressed as 

                          

                                                                

                                                              

                         

for all         , and all     . 

Hence, under 0 shift, NFD missing value restriction is equivalent to available-case 

missing value restriction, which leads to MAR. 

 

4.2.2.3 Multiple Imputation (MI) steps 

4.2.2.3.1 Markov Chain Monte Carlo (MCMC) 

When the continuous outcome of interest can be treated as multivariate normal 

distribution, MCMC data augmentation is one available Bayesian MI method in SAS to 

impute the missing values.  
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MCMC is a class of algorithms that produce a chain of simulated draws from probability 

distribution via Markov Chains. A Markov Chain is a sequence of random variables in 

which the distribution of each element depends only on the previous set of imputed 

values. As a Bayesian method, MCMC iteratively generates imputed values for the 

missing elements using reasonable starting values. After a sufficient number of iterations 

(complete sets of updated imputations for all missing measures), the Markov Chain 

converges to a stable stationary distribution, which is the distribution of interest. A 

complete imputed sample is then drawn via the next iteration of the Markov Chain. 

 

Consider, the repeated measures of interest Y=(y1,…,yT) are from a multivariate normal 

distribution, given by  

            

Y=( Yobs, Ymis), where Yobs=(y1,…,yt)  are fully observed, and Ymis=(yt+1,…,yT) have 

missing values at visits from t+1 to T. The conditional distribution of Ymis given Yobs 

follows a multivariate normal distribution too, given by 

                                

The detail formulas of          and         are given in the following imputation I - step. 

 

The MCMC data augmentation conducts the imputation I-step and the posterior P-step 

iteratively to achieve the reliable multiply imputed data set (Schafer 1997). At m
th

 

iteration: 

1. The imputation I-step: 
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Given an estimated mean vector (      and covariance matrix      , the I-step 

draws the missing values     
    from a conditional distribution for      given 

     for each subject independently. 

Suppose           
    

     
    

 
 

 is the partitioned predicted mean vector for      

and     , where     
   

is for      and     
   

is for     . And also define  

      
   
   

   
   

   
   

    
   

  

a partitioned covariance matrix, where    
   

 is the covariance matrix for 

observations     ,    
   

 is the covariance matrix for missing values     , and    
   

 

is the covariance matrix between      and     . The conditional distribution of 

     given      is a multivariate normal distribution with the mean vector 

        
   

     
   

    
   

    
     

          
   

 , 

and the covariance matrix  

        
   

    
   

    
    

   
     

   
   

 

 

2. The posterior P-step: 

Given a complete data (    
         , the P-step draws the new posterior 

population mean vector (        and covariance matrix         from 

               
    .  

Jeffreys noninformative prior distribution is used in this step. The posterior 

distributions of   and   are given by: 

                                 inverted Wishart distribution 
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                                     
 

 
        

Where      (         
    ,   

 

   
    

   
  

                 
   

             , and 

i=1,…,N denotes i
th

 subject. 

These new estimates will be used in the next I-step. 

 

A Markov chain      
              ,      

              , … is created, which converges 

in distribution to                 . When the iterates converge to a stationary 

distribution, an approximately independent draw of the missing values can be simulated 

from this distribution.   

 

4.2.2.3.2 Detailed multiple imputation steps for PMMs with mixed missing value 

restrictions  

 m sets of plausible values are imputed for each missing measure to yield m imputed 

complete data sets. Then GEE procedure is applied for each imputed data set. The results 

from these m complete data sets are combined to obtain the overall statistical inferences.  

 

The details of imputation steps at pattern t in treatment x are presented as the following: 

 

Step 1. Impute the first or current missing value yt+1 for each subject at pattern R=t 

(t = 1, ..., T-1).  

Using the MCMC method described in previous section, a single value of     
  can be 

imputed firstly based on the observed values y1,…, yt and the parameters of multivariate 
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normal distribution from pooled patterns t+1 and above in treatment x (placebo or tested 

drug). Initial parameter estimates for the mean vector and covariance matrix to be used in 

the MCMC are derived using an EM algorithm. 200 burn-in iterations are conducted 

before a stationary distribution has been achieved and each of the next iteration are used 

for the imputed values.  

 

Based on formulas 4.2.2.1-1 and 4.2.2.1-2, the first missing values can be imputed by the 

following three types: 

 If the patient’s dropout is from placebo group, the missing yt+1 is imputed as       

    
 . 

 If the patient’s dropout is from tested drug group and is ignorable (G=0), then the 

missing yt+1 in this pattern is also imputed as           
 .  

 If the patient’s dropout is from tested drug group and is non-ignorable (G=1), then 

the missing yt+1 in this data pattern is imputed as           
    . 

 

Step 2. Impute the future missing values of yt+2, yt+3, ..., yT for patients at pattern R=t 

(t = 1, ..., T-1). 

Starting with imputation for yt+2, first, similar to Step 1, draw     
  through MCMC 

method. According to formulas (4.2.2.2-1) and (4.2.2.2-5), the future missing yt+2 is 

imputed as: 

           
  , if the dropout is from placebo group. 

           
  , if the dropout is ignorable missingness dropout from tested drug group. 
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           
    with probability     ,  if the dropout is non-ignorable missingness 

dropout from tested drug group where      is calculated through formula 4.2.2.2-6. 

           
  with probability       , if the dropout is non-ignorable missingness 

dropout from tested drug group.  

 

Missing values of yt+3 through yT can be imputed similar to the missing values for yt+2.  

 

The imputations of yt+1 through yT are created recursively within each treatment group, 

pattern (for all          ) and dropout category G (G=0, 1) to create a complete 

dataset. This is repeated m times to create m complete data sets. Small m can provides 

efficient point estimates through averaging over m data sets. Based on the relative 

efficiency of MI table in section 2.3.1.7, if there is 50% of missingness, 10 times 

imputation can reach imputation efficiency 0.95. Thus 10 imputation is enough in my 

method.  

  

The shift adding for non-ignorable missingness makes the imputed complete data ruined 

the assumption of multivariate normal distribution. Since GEE procedure doesn’t make 

any assumption about the distribution of repeated measures, it is performed to each 

imputed complete data set.  

 

Finally, the results from these m complete data sets are combined as follows to obtain the 

overall statistical inferences. Suppose Q is a generic scalar quantity to be estimated (e.g. a 

mean, or regression coefficient). The overall estimate of Q is  
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   ,    

where       is the estimate of Q based on the l
th

 imputed data set.   

and estimated total variance is 

                 

B is the between imputation variance  

                      
       

   is the within imputation variance 

            
       

 Here                   
    , and                 

    , the variance for      .  

Tests are based on Student’s t-approximation  

             

 

4.3 Worked Example: Simulated Chronic Pain Study 

 

A chronic pain study is mimicked here to demonstrate the efficacy of tested drug in the 

treatment of chronic pain. In detail, the simulated study mimics a multicenter, 

randomized, double-blind, placebo-controlled, monotherapy, and parallel-group phase 

III study for treating chronic pain. It has two treatment groups, one baseline visit and 

four post-baseline-visits (weeks 4, 8, 12, 16). One thousand patients have been 

randomized in a 1:1 ratio to one of the two treatment groups - placebo and tested drug. 

The population for the primary analysis consists of all patients with baseline value and 

at least one post baseline measurement of the primary efficacy variable. The range of 
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pain scores is from 0 (no pain) to 10 (the highest level pain). The primary outcome 

measure is the change from baseline in pain score. The treatment effect is expressed 

through the difference of primary outcome between two treatment groups (placebo vs. 

tested drug) at the end of study.  

 

Dropout numbers and cumulative information at each visit are presented at Table 4.1 and 

Figure 4.1. There are over 30% dropouts in this study, and slightly more dropouts occur 

in drug group (33.4%) than in placebo group (30.6%).  

 

Table 4.1. Dropout number by visit and treatment group 

anvis Pl_count Pl_cum Pl_Percent(%) Dr_count Dr_cum Dr_Percent(%) 

1 50 50 10 50 50 10 

2 39 89 17.8 47 97 19.4 

3 29 118 23.6 31 128 25.6 

4 35 153 30.6 39 167 33.4 

 

 

Figure 4.1. Cumulative Percentage of Dropout at each visit  
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The means of change from baseline in pain score by treatment group and dropout pattern 

are shown in Table 4.2 and Figure 4.2.  

 

Table 4.2. Mean of change from baseline at each post-baseline visit. 

visit Pl_I Pl_II Pl_III Pl_IV Dr_I Dr_II Dr_III Dr_IV 

1 -0.91 -1.32 -1.07 -1.22 -0.91 -1.20 -2.15 -1.73 

2   -0.87 -0.92 -1.55   -1.53 -2.17 -2.15 

3     -1.01 -1.46     -2.00 -2.27 

4       -1.45       -2.14 

 

 

Figure 4.2. Change from baseline in Pain score by visit. 

 

Figure 4.2 shows that in both treatment groups, the completers changed more than 

dropouts. However, there is no obvious relationship between change and visit. So the 

linear function of visit for the changes from baseline can’t be assumed.  

-2.50 

-2.00 

-1.50 

-1.00 

-0.50 

0.00 

1 2 3 4 

C
h

a
n

g
e

 f
ro

m
 b

a
s

e
li
n

e
 

visit 

Change from baseline in Pain score by visit 

Placebo_I 

Placebo_II 

Placebo_III 

Placebo_IV 

Drug_I 

Drug_II 

Drug_III 

Drug_IV 



97 

 

 

 

Detailed dropout reasons for each patient are also simulated from the real study. Reasons 

includes: adverse events, lack of efficacy, lost contact, protocol violation, non-

compliance with respect to protocol requirements, and others. Dropout due to an Adverse 

Event (AE) in tested treatment group is of most concern to the FDA. AE may lead to non-

ignorable missingness dropout since an AE is likely related to the patient’s missing 

chronic pain score. Comparable to AE, “Lack of Efficacy” (LOE) is another major 

dropout reason. However, it is debatable whether a dropout caused by LOE is MAR or 

MNAR. Except AE and LOE, all the other dropout reasons may be assumed as ignorable 

missingness dropout. Thus two scenarios are considered, as laid out into Table 4.3 and 

Table 4.4 respectively. According to the first dropout classification system, “Lack of 

Efficacy” is assigned as non-ignorable, but in the second dropout classification, it is 

assumed as ignorable. 

 

Table 4.3. Dropout Category I 

Dropout Reasons Classification of Dropout Category 

1. Adverse Event Non-ignorable missingness 

2. Lack of Efficacy Non-ignorable missingness 

3. lost contact Ignorable missingness 

4. protocol violation Ignorable missingness 

5. became pregnant Ignorable missingness 

6. non-compliant with protocol 

requirements 

Ignorable missingness 

7. Other Ignorable missingness 

  

Table 4.4. Dropout Category II 

Dropout Reasons Classification of Dropout Category 

1. Adverse Event Non-ignorable missingness 

2. Lack of Efficacy Ignorable missingness 

3. lost contact Ignorable missingness 

4. protocol violation Ignorable missingness 

5. became pregnant Ignorable missingness 
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6. non-compliant with protocol 

requirements 

Ignorable missingness 

7. Other Ignorable missingness 

 

The dropout information is presented in Table 4.5 and Figure 4.3. Generally speaking, 

more dropouts in drug group are caused by Adverse Events, while in placebo group more 

dropouts are caused by Lack of Efficacy. 

Table 4.5. Dropout number by visit, treatment group and dropout reasons. 

visit Treatment AE
a 

LOE
b 

Others
c 

1 Placebo 25 10 15 

 Drug 34 5 11 

2 Placebo 19 9 11 

 Drug 33 8 6 

3 Placebo 14 9 6 

 Drug 13 12 6 

4 Placebo 6 2 27 

 Drug 10 2 27 

a: Dropout caused by adverse events 

b: Dropout caused by lack of efficacy 

c: Dropout caused by other reasons except AE and LOE 

 

 

Figure 4.3. Dropout Number by Treatment, Visit and Dropout Category 
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In statistical analyses, the changes from baseline in pain score are treated as continuous 

variables and assumed to follow a multivariate normal distribution. The treatment effect 

is defined as the difference of changes from baseline between placebo and drug groups at 

the end of study. 

 

PMM-based MI with mixed missing value restrictions (available-case and NFD) is 

applied to this simulated study in order to handle mixed dropout mechanisms based on 

the dropout categories expressed in Table 4.6 and Table 4.7 respectively. According to 

the observed treatment efficacy, shift series are selected as 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for 

drug group and 0 for placebo group.  

 

These results may be compared to results from analyses that do not rely on MI, including 

BOCF, LOCF, Modified BOCF (impute missing values caused by Adverse Events or 

Lack of Efficacy by BOCF, but impute other missing values by LOCF), and MMRM 

(Mixed Model for Repeated Measures), four main approaches used in clinical trials of 

chronic pain, either as primary analysis or sensitivity analysis. The results from these four 

methods are shown in Table 4.8 with the results from GEE, WGEE and ANCOVA 

model. Except for the ANCOVA model, all the other models analyze the change from 

baseline in pain score from all post visits with treatment, visit (as a factor), treatment by 

visit interaction, baseline pain score, and baseline pain score by visit interaction as 

explanatory variables. In ANCOVA model, change from baseline in pain score at the end 

of study (visit=4) is analyzed, and only treatment is set as a factor and baseline pain score 

as a covariate. 
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MMRM assumes the outcome of interest is multivariate normal distribution, so if the 

imputed data can’t be assumed as multivariate normal distribution, MMRM is not 

suitable anymore. GEE doesn't make any assumption about the distribution of outcome of 

interest, and also it can provide unbiased estimators regardless of whether the correlation 

structure is correct or not. Here BOCF, LOCF, mBOCF, and the proposed method 

produce imputed values that do not follow a multivariate normal distribution. Hence GEE 

is a better choice to apply to these imputed complete longitudinal data sets. GEE 

procedure with an autoregressive correlation structure (expressed as AR(1) in SAS) is fit 

to analyze each imputed complete data set, with treatment group, visit (as a factor), 

treatment by visit interaction, baseline pain score, and baseline pain score by visit 

interaction as explanatory variables. Based on this estimation procedure, least squares 

means with standard errors for each treatment group and the difference of least squares 

means between two groups with 95% confidence interval are obtained. Results are shown 

in Table 4.6 , Table 4.7 , and Table 4.8. 

 

Table 4.6. Change from baseline at the end of study (using proposed PMMs based 

MI with mixed missing value restrictions method, based on dropout category I, treat 

dropout caused by AE and LOE as non-ignorable), GEE model with autoregressive 

correlation structure for the imputed complete datasets. 

Change from baseline at end of study 

shift Placebo 

(N=450) 

Drug 

(N=450) 

LSMD*  

(95%CI) 

P-value 

Placebo Drug Mean (SEM) Mean (SEM) 

0 0 -1.330 (0.104) -2.030 (0.109) -0.701 

(-0.993, -0.409) 

<0.0001 

0 0.2 -1.332 (0.101) -1.986 (0.114) -0.655 

(-0.955, -0.354) 

<0.0001 

0 0.4 -1.331 (0.104) -1.970 (0.108) -0.639 

(-0.936, -0.342) 

<0.0001 

0 0.6 -1.323 (0.102) -1.929 (0.106) -0.606 

(-0.894, -0.317) 

<0.0001 
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0 0.8 -1.329 (0.102) -1.918 (0.115) -0.589 

(-0.891, -0.287) 

0.0001 

0 1.0 -1.323 (0.104) -1.873 (0.114) -0.550 

(-0.855, -0.245) 

0.0004 

*: The difference between the least square means for placebo and drug groups. 

 

Table 4.7. Change from baseline at the end of study (using proposed PMMs based 

MI with mixed missing value restrictions method, based on dropout category II, 

only treat dropout caused by AE as non-ignorable). GEE model with autoregressive 

correlation structure for the imputed complete datasets. 

Change from baseline at end of study 

shift Placebo 

(N=450) 

Drug 

(N=450) 

LSMD*  

(95%CI) 

P-value 

Placebo Drug Mean (SEM) Mean (SEM) 

0 0 -1.330 (0.104) -2.030 (0.109) -0.701 

(-0.993, -0.409) 

<0.0001 

0 0.2 -1.332 (0.101) -1.995 (0.114) -0.663 

(-0.964, -0.363) 

<0.0001 

0 0.4 -1.332 (0.104) -1.988 (0.108) -0.656 

(-0.952, -0.360) 

<0.0001 

0 0.6 -1.324 (0.102) -1.956 (0.108) -0.632 

(-0.919, -0.344) 

<0.0001 

0 0.8 -1.330 (0.102) -1.953 (0.114) -0.623 

(-0.923, -0.323) 

<0.0001 

0 1.0 -1.325 (0.104) -1.917 (0.112) -0.593 

(-0.894, -0.291) 

0.0001 

*: The difference between the least square means for placebo and drug group. 

 

Table 4.8. Change from baseline at the end of study (using different methods). 

Change from baseline at end of study 

Pain Score Placebo 

(N=450) 

Drug 

(N=450) 

LSMD* 

(95%CI) 

P-value 

Mean (SEM) Mean (SEM) 

LOCF
a 

-1.30 (0.10) -1.92 (0.10) -0.62 

(-0.90, -0.34) 

<0.0001 

BOCF
b 

-1.10 (0.10) -1.60 (0.10) -0.50 

(-0.76, -0.23) 

0.0003 

MBOCF
c 

-1.23 (0.10) -1.77 (0.10) -0.54 

(-0.82, -0.26) 

0.0001 

MMRM
d 

-1.33 (0.11) -2.04 (0.11) -0.70 

(-1.00, -0.40) 

<0.0001 

GEE
e 

-1.33 (0.10) -2.03 (0.11) -0.70  <0.0001 
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(-1.00, -0.40) 

WGEE
f 

-1.34 (0.10) -2.05 (0.11) 0.71 

(-1.01, -0.41) 

<0.0001 

ANCOVA
g 

-1.42 (0.12) -2.17 (0.12) -0.75 

(-1.07, -0.42) 

<0.0001 

a: Using Last Observation Carried Forward method to impute missing values, then use 

GEE (autoregressive correlation structure) to analyze this imputed full data set. 

b: Using Baseline Observation Carried Forward method to impute missing values, then 

use GEE (autoregressive correlation structure) to analyze this imputed full data set. 

c: Using modified BOCF method (impute missing values caused by Adverse Events or 

Lack of Efficacy by BOCF, while impute other missing values by LOCF), then use GEE 

(autoregressive correlation structure) to analyze this imputed full data set. 

d: Using Mixed Model for repeated measurements with unstructured correlation to 

analyze observed data. Model with fixed terms of treatment group, visit, treatment by 

visit interaction, baseline pain score, and baseline pain score by visit interaction as 

explanatory variables 

e: Using GEE (autoregressive correlation structure) model to analyze observed data. 

f: Using logistic model with explanatory variables treatment group and last observed 

change to get the weights, then use GEE (autoregressive correlation structure) model with 

weight to analyze observed data. 

g: Using ANCOVA to analyze observed case at the end of study. 

*: The difference between the least square means for placebo and drug group. 

 

Three tables show that all the approaches obtain a significant difference in change from 

baseline between the placebo group and drug group, in favor of the drug. When there is 

no shift (∆=0), the Least Square Means and Least Square Means Difference (LSDM) 

from the proposed PMM-based MI with mixed missing value restriction approach are the 

same as the results from original MMRM analysis for observed data which assumes the 

missingness is MAR. Comparing Table 4.6 and Table 4.7, whether dropouts caused by 

“Lack of Efficacy” are set as ignorable or non-ignorable, the LSDM decreases as the shift 

value increases. Also, when LOE dropouts are treated as non-ignorable, the difference 

reduces more quickly than when LOE dropouts are treated as ignorable. These results can 

be easily explained by the value of shift and the percentage of measurements adding shift. 
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If the shift and/or the percentage of non-random dropouts in drug group become larger, 

then the analysis becomes more conservative, in favor of placebo treatment. 

 

4.4 Simulation for sample size and power calculation 

Many software programs have been developed to calculate samples size or powers (e.g. 

PS, nQuery, etc.). However, most of them are based on formulas of sample size (e.g. two 

samples t-test, one sample t-test, etc.), which are only suitable for simple studies. If the 

studies are complicated, for example, longitudinal studies with many dropouts, then these 

software routines may not produce the correct estimates. Hence, in this section, 

simulation is conducted to produce the power based on the pre-specified sample size 

according to the proposed approach PMM-based MI with mixed missing value 

restrictions and other main methods under differential dropout assumptions.   

 

It is well known that the dropout problem is unavoidable to many clinical trials and may 

interfere with the ability of the study to detect an effect, so it is necessary to pay attention 

to the influence of dropouts when designing a study. To account for potential dropouts, 

researchers have traditionally increased the sample size through simple mathematical 

calculations. For example, if the estimated sample size is n and the dropout rate is d, then 

the final sample size would be n/(1-d). However, this estimate is actually based on the 

assumption that observed and missing values will follow the same distribution as would 

be the case if dropout is MCAR. If the dropout is not MCAR, this estimate may not 

accurately reflect the sample sizes necessary to achieve the nominal power.  
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In recent years for longitudinal studies with many dropouts, the Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) have asked 

pharmaceutical companies to provide sensitivity analyses under the MNAR assumption. 

They want consistent results to support the effect of drug as obtained from the primary 

analysis. If the influence of the dropout mechanisms is ignored, contradictory results may 

be obtained due to unsuitable sample size and power. Then the effect of the studied drug 

may be questioned by agency, and a new trial may also be requested. To ensure an 

efficient study, it may be better to calculate the sample sizes or powers for the study up 

front considering different dropout mechanisms. Then, armed with more information 

about the sample size and power in the presence of various types of dropout, researchers 

have a better chance of determining a suitable size for the study, resulting in consistent 

positive results across primary and sensitivity analyses.   

 

There are no straightforward formulations that can be used to calculate the sample size or 

power for longitudinal study with dropouts under various dropout mechanisms. Instead, 

simulation procedures are needed to provide the power based on pre-specified sample 

size. A SAS macro (SAS 9.2) is developed here to do this simulation. This simulation 

procedure includes the power calculation for methods MMRM, ANCOVA (ANCOVA 

model for the observed data at the end of study), BOCF – GEE (use BOCF to impute the 

missing values, then use GEE to analysis imputed complete data), LOCF - GEE, mBOCF 

– GEE, MI – GEE, and my proposed approach PMM-based MI with mixed missing value 

restrictions – GEE.   
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I give an example to show the different powers obtained from various dropout 

assumptions, based on the same pre-specified sample size. The following simulation 

conditions are mimicked from one existed real clinical trial. Because the relationship 

between the response and time cannot be specified (e.g. linear), a model with covariate 

time is not convenient to be used for simulating the longitudinal data. Thus, multivariate 

normal distributions are used to generate the longitudinal continuous variable for two 

treatment groups (placebo vs. drug), with 200 subjects per group, and 1 baseline (visit=0) 

and 4 post visits (visit=1, 2, 3, 4) per subject. The overall dropout rate is assumed 30% 

for placebo group and 40% for drug group. For both groups, there are 40% of the 

dropouts are assumed to occur between visits 1 and 2, 30% between visits 2 and 3, and 

30% after visit 3. The mean vectors are (0, -13, -16, -18, -20) for placebo group and (0, -

17.55, -21.6, -24.3, -27) for drug group. The standard deviation vectors are (12, 18, 20, 

20, 20) for placebo group and (12, 19, 21, 21, 21) for drug group. The correlation matrix 

is  

 
 
 
 
 
     
     

            
              

       
       
        

               
                
                 

 
 
 
 

 

 The correlation structure for the changes from baseline at four post visits can be treated 

as autoregressive. The primary efficacy parameter is the change from baseline in the 

outcome of interest. The treatment effect is also measured as the difference of the 

changes from baseline between placebo and drug groups at the end of study (visit 4).  

 

As mentioned before, adverse event (AE) is one of most popular and important dropout 

reasons, and the dropout caused by AE in tested treatment group is of the most concern 
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by regulation agency, so it’s better to provide sensitive analysis that treats these dropouts 

under MNAR assumption. Since usually more AE occur within drug group, I set 60% of 

dropouts in drug group are caused by AE, while only 30% of dropouts in placebo group 

are assumed due to AE in our example.  

 

MMRM model assumes that all the missingness caused by dropout is MAR. It uses fixed 

terms of treatment group (as a factor), visit (as a factor), treatment by visit interaction, 

baseline score, and baseline score by visit interaction as explanatory variables to analyze 

all the observed change from baseline. ANCOVA model (under MCAR assumption) is 

fitted to analyze the observed change from baseline at the end of study (visit 4), with 

treatment as a factor and baseline as a covariate. The imputed methods BOCF, LOCF, 

mBOCF, and MI have been introduced in previous sections already. GEE models with 

autoregressive correlation structure are used to analyze these imputed complete data sets. 

Explanatory variables include treatment (as a factor), visit (as a factor), treatment by visit 

interaction, baseline score, and baseline score by visit interaction. 

 

In the PMM-based MI with mixed missing value restrictions approach, the dropouts 

caused by AE in drug group are set as non-ignorable, and the remaining dropouts are 

assumed to be ignorable. Then the imputation follows the steps introduced in 4.3 section, 

and the shift parameter is varied from 0 to 10 by 2 for the non-ignorable dropouts in drug 

group, and 0 for all the other dropouts. 1000 data sets are simulated and analyzed. The 

mean of simulation results and power are shown in Table 4.9 and Table 4.10. 
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Table 4.9. Power calculation (1000 simulations), using main methods.  

Change from baseline at visit 4 

Pain Score Placebo 

(N=200) 

Drug 

(N=200) 

LSMD (SEM) 

(95%CI) 

Power (%) 

Mean (SEM) Mean (SEM) 

MMRM -20.08 (1.53) -27.03 (1.58) -6.95 (2.20)  

(-11.26, -2.63) 

88.30 

ANCOVA -20.03 (1.70) -27.02 (1.83) -6.99  (2.50) 

(-11.91, -2.07) 

78.40 

LOCF
 

-18.69 (1.37) -24.53 (1.45) -5.84 (2.00) 

(-9.76,-1.92) 

83.50 

BOCF
 

-14.02 (1.42) -16.22 (1.56) -2.20 (2.12) 

(-6.34, 1.95) 

17.00 

mBOCF
 

-17.31 (1.41) -19.55 (1.56) -2.24 (2.11) 

(-6.37, 1.89) 

18.40 

MI -20.08 (1.55) -27.02 (1.70) -6.94 (2.31) 

(-11.46, -2.42) 

86.00 

 

Table 4.10. Power calculation (1000 simulations), using proposed PMMs based MI 

with mixed missing value restrictions method, GEE used for the imputed complete 

datasets. 

Change from baseline at end of study 

shift Placebo 

(N=200) 

Drug 

(N=200) 

LSMD (SEM) 

(95%CI) 

Power 

Placebo Drug Mean (SEM) Mean (SEM) 

0 0 -20.07 (1.55) -27.04 (1.70) -6.97 (2.30) 

(-11.54, -2.40) 

86.20 

0 2 -20.07 (1.55) -26.53 (1.70) -6.46 (2.30) 

(-11.03, -1.89) 

82.00 

0 4 -20.07 (1.55) -26.02 (1.71) -5.95 (2.30) 

(-10.53, -1.38) 

73.30 

0 6 -20.07 (1.55) -25.52 (1.71) -5.45 (2.31) 

(-10.03, -0.86) 

65.30 

0 8 -20.07 (1.55) -25.01 (1.72) -4.94 (2.32) 

(-9.54, -0.34) 

56.40 

0 10 -20.07 (1.55) -24.50 (1.74) -4.43 (2.33) 

(-9.05, 0.19) 

46.30 

 

The results in above two tables show that under ignorable missingness dropout 

assumption (the distribution of the missing values is the same as that of observations), 

MMRM, MI and proposed method with shift=0 produce unbiased point estimates for the 
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least square means (-20 for placebo & -27 for tested treatment) and the least square 

means difference (-7) at the end of study. The powers obtained from these three methods 

are also similar (88.3%, 86% & 86.2% respectively). ANCOVA model ignores the 

correlation among repeated measures, and only use the observed changes at the end of 

study. Although it also gives unbiased point estimators here, it does produce larger 

standard errors and make the results less efficient (power is 78.4%).  

 

This simulated study assumes that the smaller measure is better, so the evolution of 

disease is improved in both placebo and tested treatment group. Moreover, the dropout 

rate in tested treatment group is larger than the ones in placebo group. Therefore, LOCF, 

BOCF, and mBOCF all give smaller point estimators (LSMD -5.84, -2.20 & -2.24 

respectively) than MMRM, MI and proposed method with shift=0. However, the standard 

error from LOCF is obviously less than other methods, so we still get 83.5% power in 

this simulation. In some circumstances, although the point estimators of LOCF are 

smaller, LOCF still may produce higher power than the ones from MMRM or other 

methods under MAR assumption. Therefore, treating LOCF as a conservative method, 

prefer to placebo or control treatment is a mistake to many studies. BOCF and mBOCF 

provide much smaller estimators and powers (17.0% & 18.4% respectively) in this 

simulated scenario. So if the process of disease is improved over time, and the dropout 

rate in tested treatment group is obviously higher than the ones in placebo group, then 

BOCF or mBOCF may produce too conservative results.  
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Thus, under this simulation scenario, if the investigator wants to use proposed method 

with some shifts, BOCF, mBOCF, or ANCOVA as the sensitivity analysis for supporting 

the results from primary analysis under MAR assumption (e.g. MMAR, MI), larger 

sample size may be needed to achieve the higher power.  

 

4.5 Summary 

 

This chapter proposed a multiple imputation strategy for handling mixed dropout 

mechanisms for clinical trials with continuous outcomes measured longitudinally. Within 

PMMs, NFD missing value restriction is used for imputing missing values caused by 

non-ignorable missingness dropout, and available-case missing value restriction is 

applied to ignorable missingness dropout. In addition, in contrast to single imputation, 

MIs overcome the problem of underestimating the variance to researchers. Through 

changing the value of shift, the level of conservativeness can be easily controlled by 

investigators. Further, the sample size and power calculation based on this proposed 

method may help investigators finding a suitable sample size for clinical trial, and make 

the trial achieves the enough power not only for primary analysis, but also for sensitivity 

analyses. 
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5 Discussion and Future Works 
 

5.1 Discussion  

 

With longitudinal data, dropout can impact both the bias of treatment effects as well as 

decreased power and narrowed confidence interval for the treatment effects. Although 

there are extensive literatures on methods for handling dropout, no single method is 

flexible enough to handle all types of dropout. Rather, for different dropout mechanism 

assumptions (under MCAR, MAR and MNAR assumptions), different methods are 

recommended as presented in Chapter Two. Therefore, my thesis explores two 

regression-based approaches for the continuous outcomes measured longitudinally with 

mixed dropout mechanisms. These approaches, presented in Chapters 3 and 4, differ 

according to whether the reasons for dropout are unknown or known, respectively. 

 

The first proposed method, the pattern mixture-within-mixture model, is developed for 

use when the reasons for dropout are unknown. It assumes linear trends in the outcome 

over time within each treatment group. It also assumed that within each dropout pattern, a 

mixture distribution takes into account the possibility of different missingness 

mechanisms. Overall, in simulation studies, this approach provided results with estimates 

close to the true values and standard errors. In comparison to this approach, PMMs and 

GEE also provides very close estimates to the true values but relatively bigger standard 

errors under our simulation conditions. BOCF and LOCF underestimate the true effect 

for the simulated data sets with mixed dropouts. When applied to the Schizophrenia 
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study, however, the proposed approach produced somewhat different results than those 

from alternative methods, may caused by the unbalanced dropout rates. 

  

Potential limitations include the computational effort for EM convergence and the added 

assumptions for the pre-specification of linear trends of time. For many studies, the 

assumption of a linear trend in the outcome over time may be reasonable. For example, 

some HIV studies during short time period (e.g. 3 months). However, it may be not true 

for other longitudinal studies. For example, the chronic pain studies. In addition, 

estimates of interest cannot be obtained through this method under MCAR/MAR 

assumption, since there are no mixed distributions can be separated by EM algorithm.  

 

The second approach supposes that the reasons for dropouts are well known and relaxes 

the assumption that the outcome of interest is linearly associated with time. In fact, no 

particular structure is assumed for the trend in outcome over time. This approach multiply 

imputes missing values assuming a PMM with multiple missing value restrictions 

dependent on (1) whether dropout is ignorable or non-ignorable and (2) whether the 

missing value is the first missing value or a future missing value.  Standard methods are 

used to generate and combine the estimates from the multiply imputed data. The 

imputation procedure makes this method flexible for handling different dropout types 

ignorable or non-ignorable. Thus this approach is more practical to contemporary 

longitudinal clinical trials with many dropouts.  
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This proposed method can be implemented under SAS macro, no heavy or slow 

computation problem. Compared to the MMRM (under MAR assumption), this proposed 

method provide the same result in simulation studies when shift is set as zero, and 

conservative results when shift is larger than 0. The conservative level of analysis can 

readily be controlled by modifying the values of shift in this method. The potential 

problem of this method may be the explanation of the value of shift and the non-future 

dependent missing value restriction to clinician.   

 

My proposed methods provide reasonable sensitivity analyses under mixed dropout 

mechanisms (MCAR/MAR and MNAR) for supporting the primary analysis. The second 

proposed method is also response to the suggestion by European Medicines Agency at 

Guideline on Missing Data in Confirmatory Clinical Trials (2011), using different 

techniques for different dropout reasons. It flexibly allows users to impute the missing 

values under MAR assumption (set shift=0) or same MNAR assumption (use same shift 

for all dropouts) or mixed dropout assumption. Future works are included in the 

following section. 

 

5.2 Future Works  

 

 A specific imputation model may be reasonable for some studies, but not suitable to 

others, depending on the nature of the disease and/or drug. Therefore, additional models 

may need to be crafted to suit each future study of interest. For example, in some studies, 

it might be reasonable to assume that dropped subjects from the treatment group will 
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exhibit the same future evolution of the disease as the subjects from the placebo group. In 

such a case, missing values for both the placebo and treatment groups should be imputed 

based only on the parameters from the placebo group. This may be just one sensitivity 

analysis under MNAR assumption to support the primary analysis. It can also be 

combined with my proposed method. In detail, for the MNAR dropout, the first missing 

value will be imputed by the placebo based imputation approach, and then followed by 

non-future dependent missing value restriction to impute the future missing values.    

 

A more complex problem arises for longitudinal clinical trials that have high rates of 

dropouts, e.g. over 50%. Clinicians may feel uncomfortable about the analysis results 

based on the imputed complete data. My proposed method also can be extended to treat 

this situation. The first missing value under MNAR assumption will be imputed based on 

my proposed imputation method of adding shift. Through non-future dependent missing 

value restriction, the future missing values will be imputed or un-imputed due to a 

calculated probability. The entire MCAR/MAR dropouts will be left un-imputed. The 

imputed incomplete data cannot be assumed as multivariate normal distribution, so 

MMRM is not suitable. Moreover, the left dropouts may be caused by reasons for MAR 

dropout, and thus GEE is questionable too. WGEE may be a good choice to this imputed 

incomplete data, but this needs to be confirmed by future research. 

 

Additionally, in my proposed method, the dropout caused by death is treated as MNAR, 

assuming that the missing values after death can be imputed. This assumption may be 
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implausible. How to handle death as a reason of dropout is a perplexing problem that 

needs to be solved in the future.  
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Appendix 
 

Details of the EM and Standard Error computation for PMMs 

 

To simplify computation, we suppose there is only one random effect – intercept, which 

is from normal distribution with mean 0 and variance   . Random covariates are Ti×1 

matrix           T
.   

 

The complete data likelihood function for PMM can be written as 

                                                 

  

   

      
        

 

   

 

                                        
  

  

   

 

           

 

   

 

 

EM algorithm 

1) In E-step, at the (t+1)
th

 iteration, the conditional expectation of the log-likelihood of 

the complete data given the observed data is 
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Then we can get 
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The following conditional expectations are needed: 

                 
          

      
  
   

      
  
   

 

    
              

    

      
  
   

                     

 

2) In M-step, the updated parameters are  

   
        

 
            

             
      

               
  
                    

       
   

               

 

where r=1,…,M;    denotes the coefficient for     covariate     ,        . 
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Standard Errors 

To            , r=1,…,M, the elements in          are given by: 

   

   
   

 
          

                   
  
   

  
 

 

   
  

    
 

 

  

   

 
           

               
 

              
  
   

  
    

  
 

 

   
  

  
 

 
 
    

       

  
 

 

From these expressions for updating fixed effects coefficients, we can find that the 

formulas for calculating pattern and dropout specific effects derived from PMM are 

different with ones derived from my proposed method PMWMM for mixed dropout 

mechanisms, but the exactly quantity of difference between two methods are intractable.  
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