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 ABSTRACT OF THE THESIS  

Reduced-order Modeling and Control of PEM Fuel Cells via Balancing Transformation 

and Singular Perturbations 

 

by KLITI KODRA  

Thesis Director: Dr. Zoran Gajic 

 

 

 

Fuel cell systems are considered important clean energy sources with great potential for 

the future. The mathematical models of fuel cell – fuel processing systems (FC – FPS) 

are quite complex therefore it is important to simplify them for efficient study.  In this 

thesis we apply order-reduction techniques to replace a large scale model with a much 

smaller one while still retaining the original behavior. 

Two order-reduction techniques, namely, the balancing transformation and balancing 

residualization applied to an 18
th

-order FC – FPS model are investigated in the first part 

of the study.  The results show that the reduced system even down to 5
th

-order still retains 

the original dynamics.   

In the second part of the thesis we demonstrate how to put linear system in singularly 

perturbed form and then investigate the approximate gramians and balancing 

transformation of the reduced-order system. For the linear singularly perturbed system in 

explicit form we provide a method to evaluate the exact gramians in terms of pure slow 

and pure fast reduced-order Lyapunov algebraic equations and improve the approximate 

method available in the control literature for order-reduction of singularly perturbed 

systems via balancing transformation.  
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Chapter 1 

1. Introduction 
 

Most of the global energy at the present is generated by using fossil fuels and nuclear 

power.  While the demand is met, these sources are neither sustainable nor renewable 

and they have potential consequences for humans and the environment alike. An 

important enabling technology that might have the potential to revolutionize the way we 

power our planet in a cleaner and more efficient way is the fuel cell.  Fuel cells have the 

capability of replacing the internal-combustion engine in vehicles and provide power in 

stationary and portable applications.  Another advantage of the fuel cells is that they do 

not emit any greenhouse gases or pollutants at the point of operation i.e. if pure 

hydrogen is used as a fuel, fuel cells emit only heat and water as byproducts.  Currently 

most of the hydrogen fuel is obtained via natural gas reforming which is quite efficient 

(up to 55%) and it primarily uses fossil fuels during the reforming process. The reformer 

will have to be addressed accordingly if fuel cells are going to be major players in power 

generation in the years to come.  Additionally, another challenge is the high capital cost 

associated with fuel cells.  That has been the main obstacle responsible for the limited 

market penetration of fuel cell technology. Nonetheless, there is promising research 

showing that technical and non-technical barriers will be overcome in the near future 

hence leading to the widespread use of fuel cells technologies.  

1.1 The Fuel Cell 
 

In a nutshell, the fuel cell is an electrochemical device that converts chemical energy 

into electrical energy without generating greenhouse gases or other pollutants.  It is a 
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simple triode made of the anode, the membrane and the cathode.  While there are 

different types of fuel cells the most commonly used are the Proton Exchange 

Membrane Fuel Cell (PEMFC) and the Solid Oxide Fuel Cell (SOFC).  The PEMFC is 

the most developed fuel cell so far and it is mainly used in transportation, backup power, 

and residential power generation. SOFC applications fall primarily into distributed 

electric power generation. In this thesis we will focus only on the PEMFC.  Table 1 

compares four main characteristics of PEMFC and SOFC. 

Table 1: PEMFC vs. SOFC 

 

 PEM SOFC 

Efficiency (%) 40 – 50 50 – 60 

Operating Temperature (  C) 50 – 100 (Typically 80) 600 - 1000 

Dynamics Faster Slower 

Power Range 1 kW – 1MW 5 kW – 5 MW 

 
1.1.1 PEMFC Principle of Operation 

 

 

Figure 1. PEMFC diagram 
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The PEMFC was invented in the 1960s but the principle of its operation was discovered 

circa 1840 [19].  The process starts with the hydrogen delivery to the anode side where it 

is catalytically split into electrons and protons.  During this process the membrane, 

which is a solid, teflon-like material, plays a critical role in the chemical reaction 

because it serves as a conductor for protons and as an isolator for electrons. The 

electrons travel through an external circuit to the cathode thus creating an output current.  

The protons on the other hand permeate through the polymer electrolyte membrane to 

the cathode side where they combine with a stream of oxygen releasing water in the 

process. The chemical equations at the anode and cathode respectively are 

             (1.1) 

 

                (1.2) 

  

To ensure optimal performance, prevent the damage of the membrane, and maintain a 

high efficiency it is important to practice the following: 

 Air must be cooled down to the operating temperature (< 80  C) 

 An optimal supply of hydrogen must be provided on the anode side 

 An optimal supply of oxygen must be provided on the cathode side 

 Effective water and heat management 

1.2 The Reformer 
  

In this section we give a brief introduction to the steam methane reformer since the thesis 

is focused on the fuel cell – reformer system rather than just the fuel cell.  

A reformer is a device that produces hydrogen from fossil fuels such as methane.  The 

most common one used widely in industry is the steam methane reformer.  The process 
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happens at high temperatures and in the presence of a metal-based catalyst.  Methane 

reacts with steam to yield carbon monoxide and water as described by (1.3).  

                 (1.3) 
 

The reaction of (1.3) is strongly endothermic.  More hydrogen can be obtained by 

combining the carbon monoxide with water in what is called a water gas-shift reaction 

(WGS). This exothermic process is summarized by (1.4). 

               (1.4) 
 

In essence, during reforming natural gas is mixed with air and passed to the main reactor 

called the catalytic partial oxidation (CPOX) reactor.  The gas coming out of the CPOX 

reactor containing primarily   ,   ,    ,    , and     is cooled down using water and 

is sent through two WGS reactors to remove excess    . Water injection during this 

stage serves not only to bring the temperature down to the required inlet temperature for 

the WGS reactors but also to increase the moisture content (steam-to-carbon ratio) and 

drive the WGS reaction forward [33]. The reformate from the WGS reactors is further 

cooled down and mixed with air to clean up additional    in the preferential oxidation 

reaction (PROX) [33].  At this point the hydrogen is ready to be fed to the PEM. Figure 2 

shows the step-by-step process described above.  

 

Figure 2. Reformer components 
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1.3  Thesis Overview 
 

Chapter 1 is an introductory chapter containing the fundamentals of some of the tools 

such as balancing realization and the theory of singular perturbations that will be used 

throughout the thesis.  In Chapter 2 we investigate the linearized fuel cell and the fuel cell 

– reformer models (given in Pukrushpan et al [15], [31] – [34]) separately. We perform 

system order reduction to the fuel cell – reformer linearized models using two techniques: 

direct truncation of the balanced system and the balancing residualization technique.  

Here we compare the impulse and step responses and also investigate frequency behavior 

obtained using both techniques. Additionally, we also conclude that the optimal 

performance remains unchanged under balanced coordinates.  Likewise, we show that the 

continuous algebraic Ricatti equation (CARE) is preserved during a similarity 

transformation.  In Chapter 3 we apply the technique devised by Shahruz and Behtash [3] 

to determine an approximate balancing transformation for the full system by computing 

the balancing transformation for the slow and fast subsystems separately. We take it one 

step further and decouple the reduced-order Lyapunov differential equation using the 

famed Chang transformation to obtain an exact value of the balancing transformation 

using the slow and fast subsystems.   

 

1.4 Modeling the Fuel Cell 
 

Several PEMFC mathematical models have been developed so far.  The simplest of them 

is the 3
rd

 - order linear model derived by El-Sharkh et al. [18].  In this model the 

dynamics of the PEMFC are described by three variables: pressure of hydrogen, pressure 

of oxygen, and pressure of the water vapor.  The model is given in (1.5). 
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(1.5) 
 

 

The state variables      ,       and       represent the pressures    
   ,    

    and 

        respectively and control variables     
    and     

    represent the molar flow 

rates of hydrogen and oxygen and    is a modeling constant               . The 

nonlinear output equation which is the measured fuel cell voltage is obtained using the 

Nernst formula [19].  For the PEMFC, the output voltage is given by 

 
               

  

  
   

              
   

      
                       (1.6) 

 
 

The quantities in (1.6) are defined in Table 2. 

Table 2: Definition of quantities in Equation (1.6) 

 

Quantity Definition 

  Number of fuel cells in the stack 

    Open cell voltage     
  Universal gas constant                      
  Absolute temperature     
  Faraday’s constant            

(C                    
  Constant     
  Constant       

        Internal resistance     
 

The disadvantage of this model is that it is not controllable. The third equation in (1.5) is 

only affected by the current      which is the system’s disturbance and not a controlled 

variable. 
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Another fuel cell model is the nonlinear 3
rd

- order model developed by Chiu et al. [38]. 

The state variables are the same as in the previous case while the control 

inputs        

  ,    

   and      
   represent the inlet flow rates of the hydrogen on the 

anode side, oxygen and water in the cathode side.  The nonlinear system is given in (1.7). 

 
        

  

  
              

        
  

       
      

               
  

  
               

       
  

         

     

                  
  

  
               

       
  

         

      

 

(1.7) 
 

 

The drawback of this model is that it assumes that the constant values of inlet flow 

rates      

  ,     

   and pressures      
,    

are supposed to be known.  

Na and Gou [37] developed an improved Chiu model that also studies the dynamics of 

    
   and   

   . The 5
th

 - order nonlinear model is shown in (1.8). 

 
       

  

  
    

 
  

     
           

  
     

                       

         
  

  
 

  
           

 
    

     
    

    
  

 
  

     
     

       
  

  
    

 
  

        
      

    
   

 
  

        
    

       
  

  
    

 
  

        
                                                            

       
  

  
 

     
              

 
  

        
                          

 
  

  
 

    
        

    
    

        
     

 

(1.8) 
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Table 3: Definition of quantities in Equation (1.8) 

 

Quantity Definition 

   Relative humidity at the anode 

   Relative humidity at the cathode 

  Mole fraction 

    Saturation pressure       

  Modeling constant 

The state variables in this model represent respectively the pressures of hydrogen and 

water at the anode and the pressures of oxygen, nitrogen, and water at the cathode, that is  

          
        

      
      

        
    

 
 (1.9) 

 

The output variables are defined by          
      

      and the control input is 

given by                  
  where 

 
      

 

  
                    

(1.10) 

 

and 

 

 
      

 

  
                            

(1.11) 

 

Higher-order nonlinear models of PEMFC have been obtained by Pukrushpan et al [33]. 

The 9
th

-order model developed by Pukrushpan will be used for analysis in Chapter 2.  

 
1.5 Fundamentals of Balancing Transformation 
 

Balancing of linear time-invariant systems is a well-known technique used for system 

order reduction [35].  When a linear system is in balanced form, its Hankel singular 

values serve as a measure for the dynamic importance of state components. If a Hankel 

singular value is relatively small, the influence of the corresponding state component on 

the output and input energy is respectively, low and therefore this state component can be 
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disregarded in order to obtain a reduced-order system [4], [11].  Let us consider a linear 

time-invariant system represented by  

                  

                
 

(1.12) 
 

 

In (1.5)      is the system state vector,      is the system input vector and      

is the system output vector. The open-loop transfer function is given by  

                   (1.13) 
 

It is assumed that the system is asymptotically stable and that the pairs       and 

      are controllable and observable respectively. Then, using the balancing 

transformation technique we can put the system into balanced coordinates in which the 

controllability and observability gramians defined by [8] 

 
         

 

 

      

          
 

 

     

 

(1.14) 
 
 
 

 

are identical and diagonal. Hence, using the balancing transformation             

where          , the system in (1.5) becomes 

                      

                    
 

(1.15) 
 

 

The matrices in  (1.8) are given by [26] 

 

                             (1.16) 

 

As mentioned above, the following will be true when the system is in the balanced 

coordinates (   are the Hankel singular values   
        ) 

                       
             

 
(1.17) 
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Furthermore, the gramians    and    are the unique solutions of the following algebraic 

Lyapunov equations respectively 

          
      

   

       
      

     
 

(1.18) 
 

 

Now if we partition the balanced system as in (1.19), then the reduced-order system 

obtained via direct truncation is defined by (1.20) with transfer function given by (1.21). 

 
    

      

      
      

   

   
                  

    
   
   

 

                                    

 

(1.19) 
 
 
 

 

                        

                   
 

(1.20) 
 

  

                   
        (1.21) 

 

The reduced-order system is also balanced and asymptotically stable [11] and it has been 

shown that its    norm satisfies [4] 

                                  (1.22) 

 

The residualized reduced-order system given in Liu and Anderson [1] has the following  

 

form 

 

 
 
                        

                    
 

(1.23) 

 

where  

 

                
     

               
      

 

               
      

                   
               

 

(1.24) 

 

It has been shown that the transfer function of the residualized system is 
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        (1.25) 

 

and its    norm satisfies 

 

                                 (1.26) 

 

1.6 Introduction to Singularly Perturbed Systems 
 

We now consider a linear time-invariant singularly perturbed system given by  

                                 

                                 

                             

 

(1.27) 
 

 

In (1.27),   (       ) is a small positive singular perturbation parameter [6]. Matrices 

    and     are of dimensions     and             respectively.  It is assumed 

that matrix     is invertible [2], [4], and [39].  

It is well known (Kokotovic and Khalil [39]) that for sufficiently small  , the dynamics of 

the system in (1.27) can be approximated by the dynamics of lower-dimensional slow and 

fast subsystems.  This technique has two main advantages: 

 We are dealing with two lower-dimensional systems 

 The perturbation parameter disappears in the slow and fast subsystems thus 

avoiding possible numerical ill-conditioning.  

The slow subsystem is represented by [4] 

                                            

          
              

         

                                           

     

( 1.28) 
   
 

 

The second equation in (1.28) is obtained by solving the second equation of the quasi 

steady state system of (1.27).  The matrices   ,   ,    and    are defined in (1.29).  
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( 1.29) 
 

 

The fast subsystem is given by 

                        

                     
 

(1.30) 
 

 

where     
 

 
 .  

An important technique that helps determine the dynamics of a system using the slow and 

fast subsystems utilizes the famed Chang transformation [9].  This transformation 

decouples exactly linear singularly perturbed systems into slow and fast subsystems. The 

highlights of the Chang transformation are given below. 

Let us define a linear singularly perturbed deterministic system 

 

                                 

                                 

                             
 

(1.31) 
 

We can transform the system in (1.31) into pure-slow and pure-fast subsystems via the 

Chang transformation [9] 

                                             

                                         

                                                   

 

(1.32) 
 

 

where 

 
   

                                      

                                            
 

                                                    

(1.33) 
 

 

with  

 

 
  
     

     
   

        
  

  
     

     
     

     

     
  

(1.34) 
 



13 

 

 

 

 

The matrix   on the right of (1.34) is known as the similarity transformation matrix.  

Matrices   and   satisfy the following algebraic equations 

                                             

                               
   

(1.35) 
 

 

A unique solution to (1.35) exists under the assumption that   is sufficiently small and 

matrix     is nonsingular. There are several algorithms that can be used to solve (1.35), 

see for example [5], [12], and [13]. We will utilize the Newton method [5] for the 

iterative solution of (1.35). The algorithm, which has a quadratic rate of convergence of 

       is outlined below. 

    
   
                

   
                       

  
   

                    
   

            
    

                   
               

                  

      

( 1.36) 
   
 

Once we obtained   from (1.36), we can solve (1.37) directly as a linear Sylvester 

equation to obtain  . 

         
     

    
     

           (1.37) 

 
 
1.6.1 Decoupling the Lyapunov Differential Equation of a Singularly 

Perturbed System Using the Chang Transformation 
 

In this section we will explain how to obtain a completely decoupled reduced-order 

differential and algebraic Lyapunov equation by using the Chang transformation. 

The so-called regulator type differential Lyapunov equation is given by 

 

                      (1.38) 

 

Matrices  ,   and   have the following structure [3] 
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(1.39) 

 

 

Substituting (1.39) in (1.38) we obtain 

 

       
           

   
                     

        
           

                        

        
           

                        

      

( 1.40) 
   
 

 

In (1.40) variables    and    change quickly meanwhile    is a slow variable.  By 

looking at (1.38) and (1.39) we can tell that (1.40) is numerically ill-conditioned hence it 

is necessary to decouple it.  We start by multiplying (1.38) by     from the left-hand side 

and by     from the right-hand side.  Matrix   is the Chang transformation matrix 

defined in the previous section. 

                                        (1.41) 

 

(1.41) can be written as 

 

                      (1.42) 

 

where 

 

 
         

   

 
 

 
  

                

             

           

           
    
  
   

                       

           
     

   
    

                         
 

        

( 1.43) 
   
 

Now we can partition (1.42) to obtain a completely decoupled form of (1.38) and (1.40) 

as 

 

 

           
       

            
         

            
        

        

( 1.44) 
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The same derivation holds for the corresponding algebraic Lyapunov equations. Using a 

bar to denote the corresponding steady state quantities we have 

 

 

             
            

            
           

            
           

        

( 1.45) 
   
 

 

In summary, either      or               can be obtained exactly from the reduced-

order Lyapunov equations (1.44) and (1.45) with 

 
         

     

   
    

          
( 1.46) 

   
 

 

or  

 
 

       
       
    

     
        

( 1.47) 
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Chapter 2 

2. Balanced Realization of the Linearized Fuel Cell – Reformer 

Model 
 

As we stated earlier in the introduction, we will be investigating the 18
th

 - order coupled 

fuel cell – natural gas reformer system in this study.  We will present the 8
th

 - order 

linearized model given in [33] but we will not elaborate on it.  The focus will be the 

overall 18
th

 - order model. 

 

2.1 Balancing Transformation of the 8th - Order Linear Fuel Cell Model 

The linearized model of the fuel cell is developed in [33]. It has the following form 

                                    
          

                                        
 

( 2.1) 
   

 

The state     , measurements     , input     , and disturbance      are 

 

            
                                      

                

     
     

 

 

( 2.2) 
   
 
 

 

All the corresponding matrices of model (2.1) except for the disturbance matrices (which 

we are not using) can be found in Table 5.  The balancing transformation of this model 

has already been investigated in [40] and we will extend those results to the 18
th

 order 

fuel cell – reformer system. The notations used in (2.2) are defined in Table 4. 

 

 



17 

 

 

 

Table 4: Fuel cell notation definitions 

 

 

 

 

Table 5: Linearized matrices of the PEM fuel cell 

          

      
 

 

 

                                       

-6.3091 0 -10.954 0 83.7446 0 0 24.0587

0 -161.08 0 0 51.5292 0 -18.026 0

-18.786 0 -46.314 0 275.659 0 0 158.374

0 0 0 -17.351 193.937 0 0 0

1.2996 0 2.9693 0.3977 -38.702 0.1057 0 0

16.6424 0 38.0252 5.0666 -479.38 0 0 0

0 -450.39 0 0 142.208 0 -80.947 0

2.0226 0 4.6212 0 0 0 0 -51.211

Symbol Definition 

    Mass of oxygen 

   
 Mass of hydrogen 

   
 Mass of nitrogen 

    Compressor speed (rad/sec) 

    Pressure of gas in supply 

manifold 

    Mass of gas in supply 

manifold 

      Mass of water in the anode 

channel 

    Pressure in the return 

manifold 

    Compressor flow rate 

    Stack voltage 

    Compressor motor input 

voltage 

    Stack current 

      Air blower signal 

       Valve blower signal 
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2.2 Balancing Transformation of the 18th - Order LTI Fuel Cell – 

Reformer Model 

To couple the fuel cell and the reformer models together we start by defining the 10
th

 

order linearized fuel processor system (reformer). The model is shown in (2.3) with    

     

     
. 

                                                     
                     

       
              

 
( 2.3) 

   

 

All the matrices of (2.3) are defined in Table 7.  The state     , the input     , and 

disturbance      are respectively defined in (2.4). 

               

                              

    

       
          

           

               
 

     

 

 

  ( 2.4) 
   

 

Table 6 defines the notations of (2.4).  

 

0

0

0

0 0 0 5.0666 -116.45 0 0 0

0 0 0 0 1 0 0 0

12.9699 10.3253 -0.5693 0 0 0 0 0

0

0

0

3.9467

0

0

0

0
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Table 6: Reformer notation definitions 

 

      Catalyst temperature 

   

   Pressure of hydrogen in the 

anode 

    Anode pressure 

     Heat exchanger pressure 

     Speed of the blower (rad/sec) 

     Pressure of hydro-desulfurizer 

    

    Pressure of     in the mixer 

    
    Pressure of air in the mixer 

   

     

 

Hydrogen pressure in water gas 

shift converter (WROX) 

      Total pressure in WROX 

 

 

 

Table 7: Linearized matrices of the reformer system 

      

 

 

 

 

-0.074 0 0 0 0 0 -3.53 1.0748 0 1E-06

0 -1.468 -25.3 0 0 0 0 0 2.5582 13.911

0 0 -156 0 0 0 0 0 0 33.586

0 0 0 -124.5 212.63 0 112.69 112.69 0 0

0 0 0 0 -3.333 0 0 0 0 0

0 0 0 0 0 -32.43 32.304 32.304 0 0

0 0 0 0 0 331.8 -344 -341 0 9.9042

0 0 0 221.97 0 0 -253.2 -254.9 0 32.526

0 0 2.0354 0 0 0 1.8309 1.214 -0.358 -3.304

0.0188 0 8.1642 0 0 0 5.6043 5.3994 0 -13.61
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We now proceed to define the overall coupled LTI system using results from [30]. The 

coupled system has the following state space form 

 
    

  

      
    

   
       

    

        
    

  
     

     
     

     
    

  

       

    
   

        
   
       

    

        
    

   

    
       

     
     

     
    

  

       

 

( 2.5) 
 
 
   

 

With the help of MATLAB we are able to put this MIMO system into balanced 

coordinates. The Hankel singular values of the balanced system are shown in Table 7. 

Table 8: Hankel singular values of the full system 

 

25.60763836134406 

2.01988385423792 

1.21474392320380 

0.70365666238635 

0.38531820753714 

0.15631858030661 

0.05720423543465 

0.01511029257832 

0 0

0 0

0 0

0 0

0.12 0

0 0.1834

0 0

0 0

0 0

0 0

0 0

0 0

1 0 0 0 0 0 0 0 0 0

0 0.994 -0.088 0 0 0 0 0 0 0
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0.00502216085300 

0.00160140766543 

0.00058469735238 

0.00010379403288 

0.00004321862626 

0.00002995901222 

0.00000890678138 

0.00000098707658 

0.00000007729738 

0.00000001121134 

 

A graphical representation of the Hankel singular value decomposition is shown in Figure 

3.  By comparing these values we can see that the first six state variables are more 

dominant than the others (especially the first one).  Hence we can infer that we can get a 

good approximation of the system by ignoring the non-dominant corresponding state 

components because they have insignificant contribution to the input-output map. In the 

following sections we will investigate the step and impulse responses of the reduced-

order models (via direct truncation) and compare them with responses of the overall 18
th

 - 

order model.  
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Figure 3. Hankel singular value decomposition 

 

2.3 Step and Impulse Responses of the Reduced-Order Models via Direct 

Truncation 
 

We will compare the step and impulse responses of the 18
th

 order LTI model with the 

reduced-order models ranging from 10
th

 to 3
rd

 - order.  Since we are dealing with a 

MIMO model (two inputs and five outputs), ten plots are generated in total. 

 
2.3.1 Step Response  
 

The 18
th

 order MIMO system has two input and five outputs therefore ten step responses 

are generated overall. For our purposes we will only investigate the step response due to 

the first input and third output.  That step response is shown in Figure 4.   
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As we can see in Figure 4, the response settles approximately after five seconds to a 

value of      .  To compare it with the reduced-order linear models we truncate the 

overall balanced system. The truncation ranges from a 10
th

 - order down to a 3
rd

 - order 

system i.e.         .  The results of the step responses are shown in Figure 5.  From 

the plot it is clearly visible that the step response of the 10
th

 - order system is almost 

identical to that of the actual 18
th

 - order system. Furthermore we can see that even lower 

orders such as the 9
th

, 8
th

, and 7
th

 have a step response quite similar to that of the full 

order system.  This indicates that order reduction of the balanced system via direct 

truncation (even down to 7
th

 - order in our case) gives a good approximation of the actual 

18
th

 - order linear fuel cell – reformer model.  

Next we investigate the impulse response of the full order and reduced-order systems.

 

Figure 4. Step response of 18th order LTI model due to Input 1 and Output 3 
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Figure 5. Step response of reduced-order LTI models due to Input 1 and Output 3 

 
2.3.2 Impulse Response  
 

For the impulse response we will also consider the response given by the first input and 

the third output. The plot generated with the help of MATLAB is shown in Figure 6.  The 

plots of the reduced-order systems (        ) via direct truncation are depicted in 

Figure 7. Figure 8 is a zoomed version of Figure 7.  We can clearly see that the impulse 

response of the 4
th

 or even 3
rd

 - order system is similar to that of the full order system 

shown in Figure 6.  Hence we can conclude that the individual reduced-order systems 

obtained through direct truncation of the balanced system give a very good 

approximation of the system’s impulse response. On the other hand, the system’s step 

response approximation from the individual step responses of the reduced-order systems 

(ranging from 6
th

 to 3
rd

 in our case) displays a steady state error. This happens because 
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the original system and the reduced-order systems have different DC gains.  In the 

following section we will present a technique which corrects this discrepancy.   

 
Figure 6. Impulse response of 18th order LTI model due to Input 1 and Output 3 
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Figure 7. Impulse response of reduced-order LTI models due to Input 1 and Output 3 

 
Figure 8. Impulse response of reduced-order LTI models due to Input 1 and Output 3 (zoomed) 
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2.4  Step and Impulse Responses of the Reduced-Order Models via   

Residualization Method 
 

The balancing residualization technique presented in Section 1.4 is known to reduce the 

response steady state error to zero. We will obtain the step and impulse responses of the 

reduced-order systems using the residualization technique and then compare them with 

the results we obtained in the previous section. 

 

2.4.1 Step Response  
 

Here we consider the step responses of the reduced-order models ranging from 10
th

 order 

down to 3
rd

 order i.e.         . The plots obtained for the step responses using the 

residualization technique are shown in Figure 9 and Figure 10 (zoomed version of Figure 

9).  As we can see, all the plots are quite identical to the step response of the overall 18
th

 

order model from the first input and the third output shown in Figure 4. This agrees with 

the claim that we made earlier that the residualization technique gives a better 

approximation of the system’s step response than the direct truncation method.  This is 

clearly visible if we were to compare Figure 5 with Figure 9.  
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Figure 9. Step response of reduced-order LTI models due to Input 1 and Output 3 

 
Figure 10. Step response of reduced-order models due to Input 1 and Output 3 (zoomed) 
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2.4.2 Impulse Response  
 

 

Figure 11 and Figure 12 (zoomed version of Figure 11) show the impulse responses for 

each of the reduced-order systems (order 10 to 3) obtained using the balancing 

residualization technique.  By comparing it to Figure 6 we can see that the impulse 

response of the individual reduced-order systems is a very good approximation of the 

system’s impulse response just like we concluded using the direct truncation technique. 

Figure 11. Impulse responses via balancing residualization 
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Figure 12. Impulse responses via balancing residualization (zoomed) 

 

2.5 Frequency Behavior of Reduced-Order Models 
 

Now we consider the frequency errors of the above order reductions. According to 

Anderson and Liu [20], the residualization method has very good approximation errors at 

low frequencies meanwhile the direct truncation technique is the opposite i.e. it displays 

very good approximation errors at high frequencies. Figure 13 shows the frequency 

response of the full order system as well as three reduced-order systems (10
th

, 9
th

, and 8
th

) 

using both techniques, direct truncation (DT) and residualization (RES). As we can see 

from the figure, at higher frequencies (     ), the direct truncation method gives a 

better approximation than the residualization method.  
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Figure 13. Frequency response of full and reduced-order systems 

 

2.6 Optimal Performance Criterion and Riccati Equation in Balanced 
Coordinates 

 

In this section we will investigate how the continuous-time Riccati equation (CARE) and 

the optimal performance criterion would change if we were to go to balanced coordinates. 

For a system such as the one given in (1.12), the performance criterion to be optimized is 

given in (2.6). 

 

        

 
                                           (2.6) 

 

We assume that full-state feedback is available and define static feedback control in the 

following way 

 

                   (2.7) 
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where      is given by 

             (2.8) 
 

and   is the solution of the CARE given in (2.9) [7] 

 

                     (2.9) 
 

Under balanced coordinates matrix   and the CARE become 

                     (2.10) 
 

   
                 

    
      (2.11) 

 

Now if we substitute the balanced matrices from (1.16) and    from (2.10) in (2.11), we 

obtain the following 

                                               (2.12) 
 

Multiplying the left-hand side of (2.12) with   and its right-hand side with   the 

equation simplifies to the algebraic Riccati equation given in (2.9). Hence we conclude 

that during a similarity transformation, the CARE is preserved just like the system’s 

eigenvalues and transfer function.  

In a similar fashion we can investigate if the optimal performance criterion in balanced 

coordinates given in (2.13) is equivalent to the optimal performance criterion. 

 
       

 

 
  
                    

  
 

 

   

       
           

                       

(2.13) 

 

It can be shown that after some algebra, the integral in (2.13) is the solution of the 

following algebraic Lyapunov equation 

              
                             

          (2.14) 

 

The solution of Equation (2.14) can be used to evaluate the optimal performance criterion 

given in Equation (2.15).  
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(2.15) 

 

Substituting       and    in (2.15) we obtain 

 

 
       

 

 
                    

(2.16) 

 

which after simplification becomes 

 
       

 

 
                

(2.17) 

 

Hence by looking at (2.17) we conclude that the optimal performance criterion is 

persevered during the similarity transformation.  

2.6.1 Suboptimal Performance Criterion 
 

For a reduced-order system, the suboptimal feedback controller is given by [22], [23] 

                        (2.18) 

 

Following the same steps as we did with the optimal performance criterion  

 
       

 

 
  
              

(2.19) 

 

The suboptimal gain      is obtained by using the optimal gain      and padding it with 

zeros, starting with the last entry and gradually reducing the number of feedback loops. 

     
         

             (2.20) 
 

Table 8 shows the simulation results obtained for the balanced full-order system.  The 

weighted matrix is defined as           [40]. 
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Table 9: Suboptimality with r-feedback loops 

 

    suboptimal 

1 296.12 

2 241.54 

3 -1287.8 

4 294.67 

5 172.42 

6 168.55 

7 168.52 

8 168.51 

9 168.12 

10 168.12 

11 168.12 

12 168.12 

13 168.12 

14 168.12 

15 168.12 

16 168.12 

17 168.12 

18 =   168.12 =   optimal 
 

 

Table 9 shows that the suboptimal performance criterion when the system’s order is 

reduced from the 17
th

 to the 9
th

 order is exactly the same as the optimal performance 

criterion of the full-order system. Even the result of a reduction down to     shows 

only a 2.5% difference between the suboptimal performance criterion and the optimal 

performance criterion of the full system. We can also see from Table 8 for     the 

algorithm is not feasible. For     and     the suboptimal performance criterion 

looses monotonicity.  
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Chapter 3 

3. Investigation of the Singularly Perturbed Models 
 

In this chapter we will study the balanced realizations of a linear singularly perturbed 

system. We will utilize the technique used in Shahruz and Behtash [3] to find the 

approximate balancing transformation for the full system by computing the balancing 

transformations for the slow and fast subsystems. Next we will make use of the Chang 

transformation to find the exact balancing transformation of the full system and improve 

the results of Shahruz and Behtash [3].  

3.1 Balancing Transformation Approximation via Shahruz and Behtash        

Technique 
 

The singularly perturbed system has the form given in (1.27). To determine the 

perturbation parameter   we separate the system into a slow and a fast subsystem.  

The small perturbation parameter     in our case is the ratio of the fastest eigenvalues 

of the slow subsystem with the slowest eigenvalue of the fast subsystem. For example, if 

an asymptotically stable system with real eigenvalues                         

where                 is partitioned into a fast subsystem with eigenvalues 

                and a slow subsystem with eigenvalues                  , 

then the singular perturbation parameter   is 

 
  

      

   
 

(3.1) 

 

The eigenvalues of our system (PEMFC - Reformer) are given in Table 9. 
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Table 10: Eigenvalues of the full order system 

 

System’s eigenvalues 

-660.68 

-219.63 

-157.9 

-89.485 

-89.137 

-46.177 

-22.404 

-18.258 

-12.169 

-3.333 

-2.9151 

       -2.771 + 0.5473i 

       -2.771 - 0.5473i 

-1.6473 

-1.468 

-1.4038 

-0.358 

-0.086154 

 

This table clearly indicates the presence of multiple time scales in the system. For 

example for     , we have                 and for     , we have   

               . 

Before we proceed any further, it is important to put the overall system in singularly 

perturbed form.  A method to convert the system from implicit to explicit singularly 

perturbed form is detailed next. 

3.1.1 Implicit to Explicit Singularly Perturbed Linear Systems 
 

The explicit singularly perturbed linear system is represented by  

                         

                         
 

(3.2) 
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where        stands for slow state variables and        stands for fast state 

variables. In addition, it is assumed that     is nonsingular (           ). Note that if  

    is singular then       contains also some slow variables and they have to be moved 

to the slow subsystem which will increase the dimensions of the slow variables above    

and reduce the dimensions of fast variables below   . 

By letting       the linear singularly perturbed system in (3.2) can be written in the 

fast time scale representation as 

                            

                        
 

(3.3) 

 

or 

 

      

  
          

(3.4) 

 

where 

 

 
      

        

      
  

(3.5) 

 

It can be observed that elements in the top row of      are     . It can be concluded that 

in the fast-time scale representation [39] 

       

  
      

(3.6) 

 

       

  
      

(3.7) 

 

If we have a singularly perturbed system in an implicit form (this can be detected by 

finding the eigenvalues and observing that they are clustered into two disjoint groups) 

represented in the slow time scale as 
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(3.8) 

 

The eigenvalues of      are clustered in two groups, slow (        ) which are      

and fast (        ), which are       . The matrix      has also some large elements 

(whose rows correspond to         ) and some small elements (whose rows correspond 

to         ). Let us put the above equation in the fast time scale representation by 

multiplying both sides by   [39] 

 
 
     

  
           

     

  
          

(3.9) 

 

Apparently,           are                      with                and 

              .  

The algorithm for converting a singularly perturbed linear system to explicit form is as 

follows 

Step 1: Form      as  

            (3.10) 

 

Step 2:  Form                with             (number of fast modes). As a 

matter of fact set all      elements (less than some prespecified small number) to zero. 

Step 3:  Form matrix   using    linearly independent rows of   . Then 

      (3.11) 

 

is the fast variable. 

Step 4:  Find the left null space of    

        or    
      (3.12) 

 

then the slow variable is  
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      (3.13) 

 

Step 5:  Form the similarity transformation 

 
   

 
 
  (3.14) 

 

then 

 
          

    

 
     

      

   
 

 
   

  
(3.15) 

 

or  

 

                        

                         
 

(3.16) 

 

Since fuel cell models have multiple time-scale eigenvalues (singularly perturbed) we can 

use the above procedure to put them in the standard singularly perturbed form.  

 

3.1.2  Gramians of Singularly Perturbed Systems and the method of [3] 
 

Here we study the relation between the controllability and observability gramians of the 

full singularly perturbed linear system defined in (1.27) and also in (3.2) and gramians of 

the slow and fast subsystems defined in (1.28) and (1.30) respectively. 

For the system defined in (1.27), we have the system of matrices 

 
   

      
 

 
   

 

 
   

 ,    
   
 

 
   

 ,            

 

(3.17) 

 

The controllability gramian can be obtained from 

             
 

(3.18) 
 

 

The symmetric matrix P which is the solution of the algebraic Lyapunov equation is 

unique, positive definite and appropriately partitioned as [2], [10], [39] 
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 (3.19) 

 

where matrices        
 ,        

 , and     are of dimensions    ,    , and 

    respectively. Furthermore it can be shown that [3], 

              

             

             

 

(3.20) 

 

In (3.20) matrices          
       ,          

       and            satisfy the 

following algebraic equations [3] 

               
      

            

                 
        

   

    
      

           
                 

  

 

(3.21) 

 

where matrices    and    are given in (1.29).  Matrices       and       are the approximate 

controllability gramians of the slow and fast subsystems respectively.  

Substituting     ,     and     from (3.20) into (3.19) we obtain 

 
   

         

    
  

 
     

   
        
        

  
(3.22) 

 

For sufficiently small  , the first matrix on the right-hand side of (3.22) is an approximate 

controllability gramian of the full system [3].  

In a similar fashion we can obtain the approximate observability gramian for the full 

system.  The observability gramian can be obtained from the following Lyapunov 

algebraic equation 

             
 

(3.23) 
 

 

With   being appropriately partitioned as 
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 (3.24) 

 

and with the following property 

              

             

             

 

(3.25) 

 

After substituting (3.25) into (3.24) we obtain 

 
   

          
     

       

   
         

          
  

(3.26) 

 

where       satisfy the following 

           
        

              

            
          

      

          
                  

        
  

 

   (3.27) 

 

and where    is defined in (1.29). 

Likewise, for sufficiently small  , the first term in the right-hand side of (3.26) is an 

approximate observability gramian for the full system.  Furthermore for the system in 

balanced coordinates we can find its Hankel singular values the following way 

   
          (3.28) 

 

The product of the gramian (using (3.22) and (3.26)) is  

 

 
    

         

    
              

         
   

        
        

  

 

(3.29) 

 

Then 

   
                                        (3.30) 
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It is important to emphasize that the Hankel singular values obtained from (3.30) will 

only be an approximation since the technique omits the      terms, which is in fact the 

method of [3]. 

Comment 1: From (3.22) and (3.26) we see that the controllability and observability 

gramians of the original singularly perturbed system are  

 
   

        

          
 ,    

        
        

  
(3.31) 

 

which indicates that in the original coordinates the controllability and observability 

measures of the slow subsystem are both     , that is         ,         . 

However, the fast subsystem is strongly controllable (          ) and weakly 

observable (           in the original coordinates. 

The order-reduction technique based on singular perturbation (using only the slow 

subsystem) will neglect some dominant fast modes whose controllability measure is 

      . Hence the order-reduction based on system balancing seems to be more general 

than the order-reduction technique based on singular perturbations. 

Comment 2: Another observation is that the order-reduction technique of singularly 

perturbed linear systems is completely based on matrices   and   (which carry only 

information about the system controllability) and does not take into the account the 

observability of the system that is 

                    
                    

 
            
             

 
(3.32) 
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3.1.3 Computation of the Approximate Balancing Transformation of [3] 
 

An approximate balancing transformation for the full system can be determined by 

computing the approximate balancing transformations for the slow and fast subsystems as 

was determined in [3]. We let    and   , denote the transformation matrices for the 

approximate slow and fast subsystems respectively.    and    can be computed using the 

algorithm given in  [36], applied respectively to 

                                          
                                 

 
(3.33) 

 

producing 

         
         

           
           

        
         

           
           

 
(3.34) 

 

Note that            and            . 

In Equation (3.34)       and       are the approximate controllability gramians of the slow 

and fast subsystems respectively defined in (3.22).       and       represent the 

approximate observability gramians of the slow and fast subsystems respectively defined 

in (3.26).  

The approximate system’s balancing transformation matrix is defined in [5] using the 

balancing transformation matrices of the slow and fast subsystems as 

 
    

   

 
 

 
  
  

(3.35) 

 

Using the approximate controllability and observability gramians given in (3.22) and 

(3.26), we can compute           and         .  
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(3.36) 

 

 
          

   
   

   
   
   

   
           

           
  

(3.37) 

 

Thus, for sufficiently small  ,                                               

 

    .  
 

 

3.2  Improved Method for Balancing Singularly Perturbed Linear 
        Systems 
 

The approximate balancing transformation technique for linear singularly perturbed 

systems of [3] was based on the approximate slow and fast controllability and 

observability gramians both obtained by solving the algebraic Lyapunov equation, 

defined in (3.38) and (3.39) respectively that is 

              
      

   

               
        

   
 

(3.38) 

 

   
              

     

   
                

      
 

(3.39) 

 

Applying the Chang transformation to the exact controllability (3.17) – (3.19) and 

observability gramians , we can obtain the exact slow and exact fast reduced order 

Lyapunov equations as presented in Section 1.6.1. For the controllability gramians we 

have 

                
      

 

                  
      

 

                
      

 

 

(3.40) 
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And for the observability gramians we obtain 

       
               

   
        

               
  

    
              

  

 

(3.41) 

 

where 

 
 
  

 
 

 
  
                 

    
  
   

           
     

   
    

  
(3.42) 

 

  comes from the Chang transformation defined in Section 1.6 

    
        

  
  (3.43) 

 

  and   satisfy the following algebraic equations 

                        
                              

 
(3.44) 

 

References providing solutions to the above equations are presented in Section 1.6. Using 

the results (3.40) – (3.44) we can find the exact gramians of the system 

                           (3.45) 

 

then 

   
                   (3.46) 

 

The square root of (3.46) will give us the exact Hankel singular values of the system. 

 

Using the exact controllability and observability gramians obtained in terms of pure slow 

and pure fast gramians we will be able to obtain the exact balancing transformation, and 

hence improve the approximate balancing of the singularly perturbed system of Shahruz 

and Behtash [3].  
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3.3  Balancing Transformation via the Chang Transformation Approach 
 

The Chang transformation method was outlined in Section 1.6.  It can be used to 

completely decouple a singularly perturbed system such as the one in (1.39). The Chang 

transformation method included      whereas the technique presented by Shahruz and 

Behtash omits it hence we would expect more accurate results. In other words we will see 

the following relations between the approximate matrices and the ones obtained through 

the exact system decomposition into slow and fast subsystems 

                            

                       

                       

 

(3.47) 

 

The matrices from (3.47) are defined in (3.48)  

                                                 

                             

                                                             
 

(3.48) 

 

With this information we can investigate the gramians of the slow and fast subsystems by 

solving the decoupled Lyapunov differential equations and improve the accuracy of [3].  
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Chapter 4 

4. Conclusions 
 

Fuel cell systems’ mathematical models are usually of large order and that makes them 

impractical for efficient study.  In this thesis we presented a theoretical approach on how 

to reduce the order of an 18
th

- order fuel cell – fuel processing system developed by the 

University of Michigan without compromising the original behavior of the system. 

First we investigated order-reduction using the balancing transformation and balancing 

residualization techniques. We compared the step and impulse responses of the reduced-

order systems and the full-order system and concluded that the reduced system retained 

the original system’s dynamics to high accuracy. The suboptimal gain was also observed 

and the results showed that it remained unchanged even when the system was reduced 

down to 6
th

 order. 

In the second part of the study we demonstrated how to put the linear system in singularly 

perturbed form. We investigated the approximate gramians and balancing transformation 

developed in [3] and then provided a method to evaluate the exact gramians and 

balancing transformation by utilizing the Chang transformation. 
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