Staff View
Reaction pathways linking chemisorption to desorption of methylchlorosilanes on copper(001)

Descriptive

TitleInfo
Title
Reaction pathways linking chemisorption to desorption of
methylchlorosilanes on copper(001)
Name (type = personal)
NamePart (type = family)
Lallo
NamePart (type = given)
James
NamePart (type = date)
1981-
DisplayForm
James Lallo
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Hinch
NamePart (type = given)
Barbara J.
DisplayForm
Barbara J. Hinch
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Castner
NamePart (type = given)
Edward W
DisplayForm
Edward W Castner
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Garfunkel
NamePart (type = given)
Eric
DisplayForm
Eric Garfunkel
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Bartynski
NamePart (type = given)
Robert A
DisplayForm
Robert A Bartynski
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-10
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract
The interactions of silane molecules with metal surfaces are pivotal in many commercial processes. Of particular interest is the commercial Direct Process," in which methyl chloride (CH3Cl) is exposed to silicon, in the presence of a copper catalyst and other promoters, producing dimethyldichlorosilane as the predominant product. Previous UHV studies have investigated the interaction of pre-dissociated" methyl (CH3) and chlorine (Cl) with copper and copper-silicide surfaces. This thesis investigates the reac- tion mechanisms of pre-associated" methylchlorosilanes ((CH3)xClySiHz, x+y+z=4) adsorbed on a copper(001) surface. The goal was to develop an understanding of the intermediates and transfer processes involved for dissociative adsorption and subse- quent desorption of these molecules. Only molecules containing at least one Si-H bond were observed to undergo chemisorption. It was found that dimethylsilane (CH3)2SiH2 and methylsilane (CH3)SiH3 exhibit ligand transfer on the copper surface, leading to the desorption of trimethylsilane (CH3)3SiH, in both cases. The suggested intermedi- ates present after adsorption of methylsilane were methylsilyl CH3SiH2, methysilylene ii CH3SiH and methylsilylidyne CH3Si. The proposed mechanisms leading to trimethylsi- lane desorption involve rate liming methyl transfer between silicon centers. Chlorinated silane species also exhibited methyl transfer to form desorbing silane species. While methyl transfer appears facile, chlorine transfer among silicon centers was not observed. Investigations were also conducted on absorbed methyl groups alone on the copper sur- face. Under certain conditions of azomethane pyrolysis the adsorption of both CH3 groups and H atoms on the copper surface was observed. The co-adsorption of methyl and atomic hydrogen leads to the simultaneous desorption of methane and molecular hydrogen at 300K. Any remaining methyl groups decompose at 420K, leading to a resumption of the simultaneous methane and H2 desorption. The relative intensities and peak desorption temperatures of the CH4 and H2 desorption were used to study the kinetics of the associative desorption reaction.
Subject (authority = RUETD)
Topic
Chemistry and Chemical Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4349
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xi, 139 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by James Lallo
Subject (authority = ETD-LCSH)
Topic
Chemistry, Physical and theoretical
Subject (authority = ETD-LCSH)
Topic
Methyl chloride
Subject (authority = ETD-LCSH)
Topic
Silicon compounds
Subject (authority = ETD-LCSH)
Topic
Copper
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000066884
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T32B8WS8
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Lallo
GivenName
James
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-01 15:07:00
AssociatedEntity
Name
James Lallo
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

FileSize (UNIT = bytes)
13920256
OperatingSystem (VERSION = 5.1)
windows xp
ContentModel
ETD
MimeType (TYPE = file)
application/pdf
MimeType (TYPE = container)
application/x-tar
FileSize (UNIT = bytes)
13926400
Checksum (METHOD = SHA1)
81a3fb021d10015df3cae46f982683e7e5a4810d
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024