Staff View
Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

Descriptive

TitleInfo
Title
Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models
Name (type = personal)
NamePart (type = family)
Loikith
NamePart (type = given)
Paul
NamePart (type = date)
1984-
DisplayForm
Paul Loikith
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Broccoli
NamePart (type = given)
Anthony J
DisplayForm
Anthony J Broccoli
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Lintner
NamePart (type = given)
Benjamin R
DisplayForm
Benjamin R Lintner
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Decker
NamePart (type = given)
Steven G
DisplayForm
Steven G Decker
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Lau
NamePart (type = given)
Ngar-Cheung
DisplayForm
Ngar-Cheung Lau
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-10
CopyrightDate (qualifier = exact)
2012
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El NiƱo-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.
Subject (authority = RUETD)
Topic
Atmospheric Science
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4339
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xvi, 113 p. : ill., maps
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Paul C. Loikith
Subject (authority = ETD-LCSH)
Topic
Atmospheric circulation--North America
Subject (authority = ETD-LCSH)
Topic
Meteorology--Observations
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000066899
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T34B3038
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Loikith
GivenName
Paul
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-01 09:49:57
AssociatedEntity
Name
Paul Loikith
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

FileSize (UNIT = bytes)
5753344
OperatingSystem (VERSION = 5.1)
windows xp
ContentModel
ETD
MimeType (TYPE = file)
application/pdf
MimeType (TYPE = container)
application/x-tar
FileSize (UNIT = bytes)
5754880
Checksum (METHOD = SHA1)
41b5bfe97caedcfbc64649a37aa112a11919417b
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024