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ABSTRACT OF THE DISSERTATION

Scanning Tunneling Microscopy and

Spectroscopy studies of graphene

by Adina Luican-Mayer

Dissertation Director: Prof. Eva Y. Andrei

In the two-dimensional (2D) lattice of graphene, consisting of carbon atoms ar-

ranged in a honeycomb lattice, the charge carriers are described by a Dirac-Weyl

Hamiltonian. Seeking to understand their unique nature, this thesis presents

results of scanning tunneling microscopy (STM) and spectroscopy (STS) experi-

ments at low temperatures and in magnetic field. These techniques give access,

down to atomic scales, to structural information as well as to the electronic prop-

erties of graphene.

The main findings include the observation of quantized Landau levels (LL) in

the presence of magnetic field, their dependence on carrier density and effects of

charged impurities and other disorder on the LL spectrum.

Twisting graphene layers away from the equilibrium Bernal stacking leads to

the formation of Moiré patterns that significantly alter the electronic properties

of graphene stacks. The second part of the thesis discusses the effects of such

rotations on the electronic properties as a function of twist angle.
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Chapter 1

Introduction

1.1 Introduction

Discovery of new materials has always resulted in advances in both our under-

standing of the physical world and in practical technological developments. This

was the case of superconductors, magnetic materials, semiconductors and most

recently of carbon allotropes such as fullerenes, nanotubes and graphene.

The experimental possibility of isolating graphene, a two dimensional (2D)

crystal consisting of carbon atoms arranged in honeycomb lattice, was demon-

strated in 2004 and awarded the 2010 Nobel Prize in physics. Since then, a

plethora of scientific activity in this field has uncovered its extraordinary proper-

ties across disciplines ranging from intriguing new physical phenomena to appli-

cations in nanotechnology, biology, chemistry [1, 2] etc.

Its electronic spectrum, which is a direct consequence of the presence of only

C atoms and the symmetries of the honeycomb lattice, makes graphene differ-

ent from the conventional 2D condensed matter systems. For condensed matter

physicists, one of the driving forces to study graphene is to uncover the unique

properties that arise from the fact that at low energies its electrons have a conical

band structure and are described by a relativistic Dirac-Weyl Hamiltonian rather

than a Schröndinger Hamiltonian.

The two dimensionality of the electrons in graphene is perhaps one of the most

remarkable properties. Being one atom thick (≈ 0.3nm) graphene comes closest

to a truly 2D material having its wavefunctions extend outside of the plane in
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the third dimension [3] only by ≈ 0.3nm. Previously studied two dimensional

electron systems (2D) are typically formed by carriers trapped at the interface

between layers of semiconductors as well as electrons floating on helium [4] ,

metallic surface states [5], etc . The fact that the carries of the semiconductor

heterostructures are buried at at interface makes it experimentally challenging to

use local probes [6] and learn about their electronic properties down to the atomic

scales.

In contrast, for graphene, the charge carriers reside at the surface and thus

that opens up the possibility of employing surface experimental techniques as

Scanning Tunneling Microscopy and Spectroscopy to learn about its properties.

The work presented in this thesis is an effort to understand the electronic prop-

erties of graphene at nanometer lengthscales while tuning external parameters

such as magnetic field or concentration of charge carriers. In particular one of

the hallmarks of two dimensionality is the Quantum Hall effect [7, 8, 9] and this

regime is the focus of the studies presented in this thesis.

The challenges that come along with studying fundamental properties of

graphene are related to (1) the fact that graphene is typically placed on a sup-

porting substrate and thus susceptible to extrinsic disorder and (2) the fact that

the small typical size of high quality samples poses experimental challenges for

scanning probes. Both these issues are are addressed in the experiments presented

in the following chapters.

Furthermore, stacking graphene layers one on top of the other produces elec-

tronic properties that are completely new. Thus in a bilayer the charge carriers

are massive chiral fermions for the low energies. The properties of graphene stacks

depend on the coupling between layers. Interestingly rotation between two layers

away from the equilibrium Bernal stacking can significantly alter the electronic

properties of graphene bilayer. Elucidating the effect of rotation on graphene

multilayers is one of the topics of this thesis.
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1.2 Graphene and its physical properties

1.2.1 Tight binding / band structure

The carbon atoms in graphene are arranged in a honeycomb lattice. This is not a

Bravais lattice, but it can be represented as a triangular lattice with 2 atoms per

unite cell. Figure 1.1 (a) shows the graphene lattice in real space, together with

a choice of unit cell spanned by the vectors ~a1 and ~a2, |~a1| = |~a2| = a = 2.46A◦.

~a1 =
a

2

(
1,
√

3
)

; ~a2 =
a

2

(
1,−
√

3
)

(1.1)

In reciprocal space, the lattice is also triangular and the unit vectors can be found

from ~bi ~aj = 2πδij.

~b1 =
2π

a
√

3

(√
3, 1

)
; ~b2 =

2π

a
√

3

(√
3,−1

)
(1.2)

As indicated is Figure 1.1 (b), the Brillouin zone (BZ) is a hexagon. Only two

of the six corners are inequivalent and these special points of the BZ are called

K and K′: K =
(

4π
3a
, 0
)
; K ′

(
−4π

3a
, 0
)
. The low energy electronic properties of

graphene are governed by the band structure around these points.

The electronic configuration for C is: 1s22s22p2. In plane, 3 σ bonds hybridize

in a sp2 configuration, while the perpendicular 2pz makes covalent π bonds.

Most of the electronic properties of graphene are captured in a simple tight

binding (TB) model [10, 11, 12]. In order to set up the TB Hamiltonian we are

going to consider that each C atom has a π orbital. The transfer integrals can be

calculated from Hij = 〈Φi |H|Φj〉, where i, j∈ {A,B} index the sublattice and Φi,j

the Bloch functions for the two atomic sites. Taking into account the distances

to the nearest neighbors it can be shown that the tight binding Hamiltonian is

[13]:
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a1

a2

B

A

(a) (b) M

K’

KГ

kx

ky

b1

b2

Figure 1.1: a) The honeycomb lattice of graphene with the two types of C atoms
and the unit cell. b) The Brillouin zone of graphene.

H =

 HAA HAB

HBA HBB

 =

 ε0 tf
(
~k
)

tf ∗
(
~k
)

ε0

 (1.3)

where t is the nearest neighbor transfer integral, ~δj are distances to the nearest

neighbors, and f(~k):

f(~k) =
3∑
j=1

ei
~k~δj = e

i
aky√

3 + e
− iaky

2
√

3 2 cos

(
akx
2

)
(1.4)

Similarly, the overlap matrix components are given by: Sij = 〈Φi|Φj〉 and it

is given by: S =

 1 sf
(
~k
)

sf ∗
(
~k
)

1


where s is the overlap integral.

In order to find the eigenstates and eigenvalues, we need to solve:

det |H − ES| =

 ε0 − E tf
(
~k
)
− Esf

(
~k
)

tf ∗
(
~k
)
− Esf ∗(~k) ε0 − E

 = 0

(E − ε0)2 − (t− Es)2
∣∣∣f(~k)

∣∣∣ = 0 (1.5)
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E(~k) =
ε0 ± t

∣∣∣f(~k)
∣∣∣

1± s
∣∣∣f(~k)

∣∣∣ (1.6)

When we assume ε0 = s = 0, the solution for the energy becomes:

E(kx, ky) = ±t

√√√√1 + 4 cos

(
aky
√

3

2

)
cos

(
akx
2

)
+ 4 cos2

(
akx
2

)
(1.7)

K

M K’K

ГK’

(a) (b) (c)

Figure 1.2: (a) The dispersion relation in graphene. (b) Top view highlighting
the corners of the BZ. (c) A zoom into the dispersion close to one of the corners
of the BZ.

This dispersion relation is plotted in Figure 1.2(a), where hoping parameter

was taken to be t = −3eV . The BZ is highlighted in the top view, Figure 1.2(b).

The conduction and valence bands touch at the six corners of the BZ. Neutral

graphene has one electron per C atom in the π band, hence taking the spin

degree of freedom into account, the Fermi level is situated exactly at the K points.

Therefore, at charge neutrality, the Fermi “surface” of graphene is represented by

the six points which coincide with the corners of the Brillouin zone. We note that

the electron and hole bands are symmetric. In this simple tight binding model

only hopping to the nearest neighbor is taken into account. Models that take into
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account hopping to the next nearest neighbors [14] show that such contributions

can introduce electron-hole asymmetry.

Importantly, the absence of a gap at the K point is a direct consequence of the

fact that in graphene the A and B sites are occupied by the same type of atom,

C (so that HAA = HBB). A material with similar lattice structure but different

species of atoms on the two sites is hexagonal boron nitride (BN). In this case

because of the inequivalence of the A and B sites the system is an insulator and

the band gap is 5.2eV.

1.2.2 Linear dispersion

Expanding the Hamiltonian around the K point one obtains:
(
~p = ~k −

(
4π
3a
, 0
))

:

fK = e
i
apy√

3 + e
− iapy

2
√

3 2 cos

a
(
px + 4π

3a

)
2

 ≈ −a√3

2
(px − ipy) (1.8)

This means that the dispersion is conical near the K points: E = ±ta
√

3
2
· |~p|

as illustrated in Figure 1.2(c).

The electron velocity is given by v = 1
h̄

∣∣∣dE
dp

∣∣∣ = 1
h̄
ta
√

3
2

. Because it is indepen-

dent of momentum and thus equal to the velocity at the Fermi level, we will refer

to it as vF for the rest of the thesis.

The full Hamiltonian for both valleys combined in low energy approximation,

becomes:

H = h̄vF

 HK 0

0 HK′

 = h̄vF



0 px − ipy 0 0

px + ipy 0 0 0

0 0 0 −px − ipy

0 0 −px + ipy 0


(1.9)
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The corresponding wavefunction has 4 components:

Φ =



ΦK
A

ΦK
B

ΦK′
A

ΦK
B


(1.10)

In other words, near the Dirac points, the electrons in graphene obey a Dirac-

Weyl Hamiltonian for massless particles:

HK = h̄vF (σxpx + σypy) = h̄vF~σ · ~p (1.11)

where ~σi are the Pauli matrices,σx =

 0 1

1 0

 and σy =

 0 −i

i 0

 .
In the case of graphene the spinor representation comes from the existence of

two sub lattices, not from the real spin. The chirality operator, describing the

the projection of ~σ onto the momentum ~p, can be defined for graphene as ~σ~p
|~p| .

Because the Hamiltonian for electrons in graphene is h̄vF~σ ·~p, chirality commutes

with it and thus it is a conserved quantity. The eigenvalues are for electrons and

holes +1 and −1 respectively for one Dirac cone and the reverse for the second

cone.

The fact that chirality is a conserved quantity has as consequence suppression

of backscattering in graphene, which means that the electrons will transmit with

probability 1 at normal incidence through a potential barrier [15].

1.2.3 Density of states in graphene

For a given crystal with a dispersion relation E(~p) , in 3 dimensions, one can define

the Density of States DOS(E) which represents the number of energy states per

unit energy range [16].
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Figure 1.3: (a) Illustration of calculation of the DOS in the conical band structure
at low energies in graphene. (a) DOS corresponding to Figure1.2(a).

DOS(E) = 2
∫
B.Z.

V

(2π)3
δ (E(~p)− E) d~p = 2

∫
E(~p)=E

V

(2π)3

dS

|∇~pE(~p)|
(1.12)

where d~p is the volume element in momentum space and V/(2π)3 is the density

of allowed ~p vectors.

For graphene, at low energies where the dispersion can be considered conical

(Figure1.3(a)) the expression for the density of states per unit area is DOS = dN
dE

,

where N = πp2

(2π)2 is the number of states within a circle of radius p (dN is the

number of states enclosed by the blue area in Figure 1.3(a)):

DOS = 4× dN

dE
= 4× E

(2π)(h̄vF )2
=

2E

π(h̄vF )2
(1.13)

The density of states in graphene for low energies is therefore linear and van-

ishes at the Dirac Point.

In general, if we look at Equation 1.12 we notice that critical points in the

dispersion, for which ∇~pE(~p) = 0, will result in divergences in the density of

states. These are called Van Hove singularities. It can be shown that in two

dimensions maxima and minima of the bands result in jumps in the DOS while



9

a saddle point the DOS diverges logarithmically [17, 16].

Corresponding to the band structure plotted in Figure 1.2(a), the density of

states is presented in Figure 1.3(b). In this case, the peaks in the DOS are Van

hove singularities resulting from the saddle points in the graphene dispersion.

The highlighted area in the low energy regime E < 1eV is the regime in which

the experimental results presented in this thesis are taken.

1.2.4 Graphene in magnetic field-Landau levels (LLs)

The energies of the LLs in graphene

In order to understand how electrons in graphene behave in a perpendicular

magnetic field, B, we start from setting up a Hamiltonian that describes the

massless Dirac electrons in the presence of a perpendicular field [18, 19, 20].

In finite field, the Hamiltonian is obtained by replacing the momentum pi,

i = {x, y} with the canonical momentum pi → pi − eAi. Here A is the vector

potential B =∇×A. One can already notice that the two valleys are decoupled.

For example in the K valley HK · Φ = E · Φ:

h̄vF

 0 px − ipy

px + ipy 0

 ·
 ΦA

ΦB

 = E

 ΦA

ΦB

 (1.14)

E · ΦA = h̄vF (px − ipy)ΦB

E · ΦB = h̄vF (px + ipy)ΦA

(1.15)

E2 · ΦA = h̄vF (px − ipy) · E · ΦB = h̄vF (px − ipy) · h̄vF (px + ipy)ΦA

E2 · ΦB = h̄vF (px + ipy) · E · ΦA = h̄vF (px + ipy) · h̄vF (px − ipy)ΦB

(1.16)

At this point we will substitute the canonical momentum. We have a freedom

of gauge, meaning A is defined up to a ∇A’ since ∇ × (A + ∇A’) = ∇ ×

A + ∇ × ∇A’ = ∇ × A + 0. In the following we choose the Landau gauge in
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which A = B(−y, 0, 0) (an alternative would have been the symmetric gauge

A = B(−y, x, 0)) In this case, px → px + eBy , py → py

E2 · ΦA = vF (px + eBy − ipy) · h̄vF (px + e
c
By + ipy)ΦA

(E
2

v2
F

+ eBh̄) · ΦA = ((px + eBy)2 + p2
y) · ΦA

(1.17)

To find the solution we can compare the form of the Hamiltonian with the

harmonic oscillator and by analogy we can find the eigenenergies for the case of

graphene.

For a Harmonic oscillator the energies and eigenvalues are:

H =
p2
y

2m
+ 1

2
mω2 · y2EN = h̄ω(N + 1

2
), N ≥ 0

ΦN ∝ e−
mωy2

2h̄ ·HN(
√

mω
h̄
y)

(1.18)

Here, HN are the Hermite polynomials.In analogy the energies and wavefunc-

tions for the Landau levels in graphene are:

EN = vF
√

2h̄eBN,N ≥ 0

ΦA,N(x, y) = eikxxe−
mωy2

2h̄ ·HN(
√

mω
h̄
y)

(1.19)

For the B sublattice, we obtain: EN = vF
√

2h̄eBN but N ≥ 1 Notice that

in this case the N = 0 index Landau level is missing meaning that for one valley

this level is sublattice polarized. However, at the other valley it is polarized in

the opposite way.

Thus, the dependence of the energies of the LLs in graphene on index and

magnetic field is:

EN = vF
√

2h̄e ·B ·N (1.20)

This dependence is illustrated in Figure 1.4(a) where the energies of the LL

(assuming vF = 106m/s) are plotted as a function of magnetic field.

The presence of the level N = 0 and the square root dependence in field and

index are unique properties of graphene. In contrast, for conventional 2D electron
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(b) (c)

0 1 2 3-1-2-3

DOS

Energy (ω)

DOS

0 1 2 3-1-2-3

Energy (ω)

Figure 1.4: (a) Landau level energies for graphene as a function of magnetic field.
(b) The delta function peaks of graphene broadened by disorder. (c) The overall
background of the DOS arising due to summing up all the individual broadened
LL peaks.

gas, the LL energies are equidistant, linear in magnetic field and there is no level

at zero energy E2DEG
N = (h̄eB)/(mc)(N+1/2), N ≥ 0, where m and e are effective

electron mass and electron charge.

Degeneracy of the the Landau levels

In the Landau gauge description we notice that there are two quantum num-

bers that label the LL wavefunctions : the LL index N and kx. Because the

energies are independent of the second quantum number for an infinite sample

the degeneracy of a LL is infinite. If we we consider a finite sample of area A,

however, the degeneracy is NB = Φ
Φ0

where Φ = B × A is the total magnetic

flux threading the sample and Φ0 is the elementary flux quantum. When tak-

ing into account the spin and valley degrees of freedom we need to multiply this

degeneracy by a factor of 4.

A natural lengthscale for this system is the magnetic length, lB =
√
h̄/eB

which is roughly the spatial extend of the LL wavefunctions.

1.2.5 Connection with experimentally measured quanti-

ties

In some of the experiments presented in this thesis, the quantity that we measure

with Scanning Tunneling Spectroscopy is proportional to the local density of
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states at a position ~r in the sample plane and at a particular energy E. In the

simplified case, this is a sum of contributions of amplitudes for the wavefunctions

that are eigenstates of the system with energies Es:

LDOS(~r, E) =
∑
s

|Φs(~r)|2 δ(E − Es) (1.21)

Importantly, we note the gauge invariance of the measured quantities: while

the wavefunctions corresponding the the Landau levels in graphene depend on the

choice of gauge, the observables, such as the DOS are independent of the choice

of gauge.

As pointed out before the electronic spectrum of graphene in the presence

of a magnetic field consists of quantized energy levels. Each of the LLs with

index N contributes a delta function peaked at its corresponding energy EN to

the density of states. As will be shown in more detail in Chapter 6, an in plane

inhomogeneous electric field such as the one created by boundaries or disorder

lifts the degeneracy of the LLs which can broaden them into a band. Figure

1.4(b) illustrates an example of such a spectrum with broadened levels where

the dashed red lines indicate the energies of the LLs in units of cyclotron energy

ω = vF
√

2eh̄B.

To understand the overall shape of the density of states in Figure 1.4(b), one

can plot a series of Lorenzian peaks with a finite width such as the ones in Figure

1.4(c). As demonstrated in the superposed plot of Figure 1.4(c), when summed

up, because of their tails, the DOS will have broad peaks riding on top of a linear

background.

In addition to unique electronic properties, the mechanical, thermal, optical,

etc. properties of graphene are also notable [21, 22, 23, 1, 24]. Due to the

strong in plane σ bonds, graphene is a very strong material, despite being one

atom thick. Remarkably, the tensile strength (106MPa) is superior to steel,
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diamond and silicon and the stiffness (Young modulus 103GPa), while still smaller

than diamond it is higher than that of steel [25, 26, 27]. Graphene sheets were

also found to be impermeable to gases [28], a property that could be useful for

applications in pressure sensors, barrier between different phases of matter etc.

Graphene’s thermal conductivity that can be as high as 5× 103W/mK [29, 30] is

the largest of any material measured.

Graphene is also chemically sensitive- it was shown that single molecules

absorbed on graphene can result in measurable changes in the resistivity of a

graphene device [31] which makes it a candidate for ultra sensitive chemical de-

tectors.

Although it is one atom thick, graphene absorbs πα = π e
2

h̄c
≈ 2.3 of incident

light, where α = 1/137 the fine structure constant. The fact that the absorption

is significant makes it possible to see graphene. This is an interesting case where

a property of a material depends solely on universal constants.

The combination all such remarkable properties makes graphene appealing

not only to the condensed matter community but also to Chemistry, Biology,

Engineering etc.
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1.3 Overview of the thesis

The chapters of this thesis are structured in the following way:

Chapter 2 is an introduction to the experimental techniques and to the ma-

terials that were used in this thesis. The principle of operation of STM/STS,

the experimental set-up and the nanofabrication methods of graphene devices are

described. In the last section, the experimental technique and protocol that was

developed and used for measuring micron size graphene samples on macroscopic

substrates is described.

Chapter 3 discusses the STM/STS results for graphene samples in the ab-

sence of a magnetic field illustrating the effects of disorder on the electronic spec-

trum and topographic images. An introduction and experimental results are

presented for tuning carrier concentration in graphene by electrostatic gating.

Studies of the electronic spectrum of graphene in the presence of a perpendic-

ular magnetic field are presented in Chapter 4 for samples of different disorder

strength. In the case of a system where a top graphene layer is weakly coupled

to tis graphite substrate, the effect of interlayer coupling on the LL spectrum is

discussed.

In the presence of a magnetic field and a back-gate voltage STM/STS can

probe the quantized LL spectrum in graphene and that is the topic of Chapter

5. The main features discussed are: the observation of a staircase pattern in the

spectrum evolution with carrier density which is attributed to the discrete nature

of the density of states in graphene in magnetic field and extrinsic features that

appear in such spectra due to disorder. Using Landau level spectroscopy together

with gating is used to obtain a direct measure of the different degeneracies for
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single and a bilayer with large angle twist between layers. Furthermore Chapter

5 contains a discussion connecting our results to the quantum Hall measurements

in electronic transport.

Since trapped charges are the main source of disorder in graphene under-

standing their effect on the electronic spectrum is crucial. Chapter 6 illustrates

examples of the effect of isolated charges impurities on the LLs in graphene. We

present the theoretical background and experimental evidence for spatial ”’bend-

ing”’ of the LLs for very weak potentials and lifting the orbital degeneracy of the

LLs for stronger potential.

Chapter 7 is dedicated to the effect that introducing a twist between graphene

layers has on the topography and electronic properties. The periodic pattern cre-

ated in topographic images due to the rotation, called Moiré pattern is discussed.

The main effect on the electronic spectrum that arises due to hybridization in

momentum space of the two Dirac cones originating from the two layers is the

presence of two saddle points that give rise to Van Hove singularities in the den-

sity of states. The angle dependence of this effect is discusses as well as the

renormalization of the carrier velocity due to this change in the band structure.

The signatures that grain boundaries (periodic array of defects at the bound-

ary between two graphene layers that are rotated with respect to each other)

have on the properties of graphene are discussed in Chapter 8 together with a

comparison with theoretical ab initio calculations.

Chapter 9 is a summary of the main findings of the experiments presented

in this thesis together with an outlook for future directions in which this work

can be extended.



16

Chapter 2

Experimental Method - Scanning Tunneling

Microscopy and Spectroscopy

2.1 Scanning Tunneling Microscopy and Spectroscopy

Parts of this chapter follow closely the text in [32, 33].

Scanning tunneling microscopy (STM) is a powerful technique used to study

the surface morphology of materials as well as to learn about their electronic

properties. The idea behind the operation of an STM, for which Gerd Binnig and

Heinrich Rohrer were awarded the Nobel prize in 1986 [34] is conceptually simple.

By bringing a sharp metallic tip atomically close (≈ 1nm) to a conducting sample

surface one can create a tunneling junction and when a bias voltage is applied

between the two, a tunneling current will start flowing. Such a tunneling junction

is depicted in Figure 2.1(a) where the sample and tip are separated by a vacuum

barrier. The bias between tip and sample is VB, the Fermi level of the sample is

marked as EF and the Fermi level of the tip is situated at an energy eVB below

it. The distance between tip and sample is d.

In this situation the electrons below the Fermi level of the sample will be tun-

neling into the tip, and therefore probe the filled electronic states of the sample.

In the reverse situation, when the Fermi level of the tip is above that of the sam-

ple, the electrons are flowing out of the tip into the sample probing the empty

states of the sample.

The current between the sample and the tip It can be calculated from a

Fermi Golden rule expression which, for a finite temperature T , can be written
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Figure 2.1: (a) Sketch of the tunneling junction between the tip and the sample
in an STM experiment. The important quantities are indicated: the tip-sample
separation d, the Fermi level EF , the bias voltage VB. The indicated DOS for the
sample has an arbitrary shape and for the tip it is assumed constant.(b) Sketch of
the STM set-up in which a graphene flake is placed on a Si/SiO2 substrate. The
main parts of an STM experiment are indicated: the scanning head, the feedback
system, the data acquisition interface, the bias voltage and tunneling current. In
addition, a gate voltage is applied between the graphene and the gate electrode
(typically Si).

as [35, 36, 37, 38, 39]:

I ∝ 4πe

h̄

∫ +∞

−∞
[f (EF − eVB + ε)− f (EF + ε)]×ρS (EF − eVB + ε) ρT (EF + ε) |M |2 dε

(2.1)

where f(E) = {1 + exp [(E − EF ) /kBT ]}−1 is the Fermi distribution, ρS and

ρT are the density of states (DOS) for the sample and tip respectively, m, e are

electron mass and charge.

For measurements at 4K the thermal broadening kBT ≈ 0.35meV , so if we

assume low enough temperatures the Fermi function can be approximated as a

step function so Equation 2.2 becomes:

I ∝ 4πe

h̄

∫ eVB

0
ρS (EF − eVB + ε) ρT (EF + ε) |M |2 dε (2.2)

The origin of the matrix element is the the overlap of the wavefunctions of the

sample and tip within the vacuum barrier. Therefore the explicit form depends
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on the particular shape of the tip, but with the assumptions of a square tunnel

barrier and wavefunctions exponentially decaying, the matrix element:

|M |2 ∝ e
−2d
h̄

√
2mΦ (2.3)

Here, Φ is an effective height of the tunneling barrier which generally is a

function of the work functions of the tip and sample.

Therefore, with all the discussed assumptions, the tunneling current reads:

I ∝ e
−2s
h̄

√
2mΦ

∫ eVB

0
ρS(EF − eVB + ε)ρT (EF + ε)dε (2.4)

Topography.

Using the STM to measure the topography of a sample is based on the con-

dition that It is very sensitive to the tip-sample separation:

I ∝ e
−2d
h̄ (2.5)

The most commonly used measurement mode of STM is the constant current

mode. In this mode initially a bias voltage is applied between the tip and sample

and a tunneling current is set. The tip moves across the sample and it is raised

or lowered by a feedback loop in order to keep the tunneling current constant.

Tracing the contour made by the tip will therefore give information about the

sample topography. It is such contours that we refer to as STM topographs. It is

important to note however that the meaning of this contour of constant current is

not simply the sample topography, but it can also reflect the contributions from

the other terms in Equation 2.4 that related to the sample or tip density of states.

Spectroscopy.

If we assume that the tip density of states (DOS) is flat in the energy range

of choice, by taking the derivative of It with respect to the VB, we obtain:
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dIt
dVB

∝ ρS(eV ) (2.6)

Therefore, the STM can be used to learn about the density of states of the

sample in scanning tunneling spectroscopy (STS) mode. For this, first the tun-

neling junction is set by applying a bias voltage and setting a tunneling current.

Afterwards, the feedback loop is disabled and the tunneling current is recorded

while varying the bias voltage. Typically this differential conductance is measured

with a lock-in technique by applying a small ac. modulation to the bias voltage.

Alternatively one could record the I-V curves and take a numerical derivate.

Common materials used for the tip such as Pt/Ir, W, Au typically satisfy the

condition of flat DOS for small enough voltages.

In this thesis maps of dI/dV as a function of spatial coordinates are presented.

These are taken in the following way: an STS measurement is repeated on a grid

of points across a chosen region. At a particular energy the value of the dI/dV in

each point is mapped on the investigated region resulting in a dI/dV spatial map

at that particular energy.

The main components of an STM experiment are sketched in Figure 2.1(b). In

order to precisely position the tip on the sample and scan different areas, one uses

piezoelectric materials for both fine scanning (≈ nm-µm) and coarse movements

(≈ µm-mm). The feedback system allows for adjusting the tip vertical position in

order to keep the tunneling current constant. In addition, for some of the samples

studied in this thesis, a dc voltage is applied between the sample and the Si gate

electrode using batteries.

2.2 Experimental set-up

The experiments described in this thesis were performed in a home built low

temperature (4K), high magnetic field (12T) STM. The general set-up is such



20

that an insert having a the STM head at the end is placed in a liquid helium

cryostat equipped with a 12T superconducting magnet (Cryomagnetics). The

cryostat is supported by a vibration isolation table(TMC Laboratory Tables)(

Figure 2.2(d)).

The key components of the STM insert are presented in Figure 2.2(a). The

body of the head is made out of Ti, which is nonmagnetic. The sample stage,

shown separately in Figure 2.2(a) contains a Au plated copper sample mount on

top of a moving X-Y stage which is driven by piezo motors which are built based

on the Pan design [40]. The sample holder makes contact with the wires by BeCu

spring contacts. The scanning tube, in the inset of Figure 2.2(c) sits inside a

sapphire prism which is moved by a coarse Z motor. The scanning piezo tube,

which is what allows for the atomically small movements of tip has an outer part

with 4 electrodes (X±,Y±) and an inner side (Z). In order to move the scanner

one applies a dc voltage between the appropriate pair of electrodes depending on

the desired direction.

The metallic tips used for thee experiments are made out of Pt-Ir, either

commercially available or mechanically cut. The SEM image in Figure 2.3 (a)

shows a typical example of a mechanically cut tip, which despite the irregular

shape on large scales, becomes very sharp at the end (inset).

The samples showed in this thesis are graphene devices on Si/SiO2 wafers

which are particularly small in size for a standard STM experiment. An example

of how the samples are mounted in the set-up is presented in Figure 2.3 (b). Typ-

ically the sample is glued onto a sapphire sample holder with rubber cement and

the holder has a few Au contacts which are connected to the sample source/drain

by wire bonding. The connection to the gate is done either by silver paint or

wirebonding.
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(a)

(b) (c) (d)

Sample stage,
XY coarse motor

Scanning tube, 
Z coarse  motor

Figure 2.2: (a) Picture of the STM head. The main components are visible:
sample stage on top of an XY coarse motor stage, scanning tube with Z coarse
motor. (b) Sample stage detached from the scanning head. (c) Scanning head
inside a sapphire prism. (d) Vibration isolation table supporting the cryostat in
which the STM insert is operating.

2.3 Materials and Nanofabrication of graphene samples

Materials

The experiments on graphite crystals were done on commercial HOPG graphite

(SPI). The graphene flakes for devices were exfoliated from either HOPG or nat-

ural graphite (Graphenium flakes from Graphit g.m.b.h.).

For some of the samples, hexagonal boron nitride (BN) was used as a substrate

(a) (b)

Au

SapphireSi/SiO2 wafer

Silver paint 
contact to Si gateGraphene device

Wire 
bond

Figure 2.3: (a) SEM image of a freshly cut Pt-Ir tip. (b) A Si/SiO2 wafer with a
graphene device mounted on the STM sample holder.
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for graphene. BN is an insulator with a hexagonal lattice structure similarly to

graphene, but having the lattice constant larger by 1.7 %. The crystals used were

grown and provided by the groups of Prof. K. Watanabe and Prof. T. Taniguchi.

Nanofabrication of graphene samples

In order to fabricate graphene devices one starts with a Si/SiO2 wafer with

thickness of SiO2 ≈ 300nm. As emphasized in the next chapter the oxide is crucial

for the quality of the devices. We have found that devices produced with SiO2

that was thermally grown and dry chlorinated (Nova Electronics) were of superior

quality compared to the ones lacking the chlorination process.

The wafers are then patterned lithografically to have alignment grids so that

the position of a a small graphene flake can be readily found under Scanning

Electron Microscope (SEM) and optical microscope. To remove possible residues

from the resist these substrates are then baked in a furnace at 230oC in a forming

gas atmosphere (H2:Ar, 10%:90%).

The graphene flakes are obtained by so-called mechanical exfoliation. One

starts from a piece of graphite and presses it onto a sticky tape (Ultron Tape)

(Figure 2.4(b)) until thinner flakes of graphite are left on the tape. We then

press the tape onto the Si/SiO2 substrate so that islands of graphite with different

thicknesses will be left (Figure 2.4(c)). In the next step, under optical microscope

(Nikon Eclipse LV100) we identity those flakes which are a single layers graphene

by their contrast in the optical image (Figure 2.4(d),(e)).

After a graphene flake was found on a substrate, metallic contacts are de-

posited with standard e-beam lithography (Figure 2.4(a)). The substrate is first

coated with a resist, PMMA (poly methyl methacrylate) (MicroChem). Then the

metallic leads are designed for the particular graphene flake using NPGS (Nano

Pattern Generation System) and DesignCAD software followed by electron beam
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(a)

(b) (c) (d) (e)

Figure 2.4: (a)Schematic of the lithography process to contact graphene. (b)
Mechanical exfoliation of graphite using tape. (c) Transferring graphene/graphite
onto the wafer by pressing the substrate into the tape. (d) Optical microscope
is used for identifying graphene layers. (e) Optical microscope image of a single
layer graphene.

writing (FEI Sirion). The pattern is developed using MIBK (Methyl isobutyl ke-

tone) developer (1:3 MIBK:IPA). The metallic leads are deposited using electron

beam evaporation (Thermionics 100-0030), using typically 1.5nm Ti and 30-60nm

Au.

Examples of samples that were fabricated and measured in some of the STM

experiments reported in this thesis are presented in Figure 2.5. In Figure 2.5(a)

and (b) the optical micrograph of a sample having a graphene flake exfoliated

onto SiO2 is shown at different magnifications. A typical size of the graphene

flake is 5-20µm. The choice for the shape of the metallic leads in Figure 2.5(b) is

designed to facilitate finding such a small sample with an STM set-up as explained

in the following section. Figure 2.5(c) shows the image of a similar device where

graphene was transferred onto BN which was mechanically exfoliated onto SiO2.

In these samples a major challenge is the presence of trapped air bubbles from

the fabrication procedure which need to be avoided while scanning the surface

with the STM.

After lift-off in warm acetone and prior to measurement the samples are baked
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Figure 2.5: Optical microscope images of typical samples that were investigated.
(a),(b) Two different magnifications illustrating a graphene flake deposited on
SiO2 patterned with Ti/Au contacts. (c) Sample having graphene transferred to
BN and then patterned with Ti/Au contacts.

in a furnace at 230oC in a forming gas atmosphere (H2:Ar, 10%:90%).

Transfer procedure of graphene on a substrate

A major advance in sample preparation was demonstrated in [41] where Dean

et al. develop a procedure to transfer mechanically exfoliated single layer graphene

onto an arbitrary substrate, in particular onto BN. The method used for fabricat-

ing the samples in this thesis is a modified version of [41] and described in Figure

2.6.

In the first step one substrate is prepared by mechanically exfoliating BN

flakes onto SiO2 in a similar way to the exfoliation of graphene (Figure 2.6(a)).

The selected BN flakes are typically ≈ 20nm thick and are inspected with the

optical microscope to be free of large steps, defects etc.

Another substrate is prepared by first spin coating PVA (Polyvinyl alco-

hol)(Partall 10)(300rpm for 60s) and baking it for 5 min at 75oC. On top of

the PVA film an additional PMMA (A6) film is spin coated (1500 rpm for 60s)

and baked for 5 min at 75oC. On top of the two films one mechanically exfoliates

single layer graphene (Figure 2.6(b)).

Such stack of PVA/PMMA allows peeling off the PMMA film with graphene
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and depositing it on a support as shown in Figure 2.6(c),(d). Afterwards, the film

is stuck to a glass slide under an optical microscope in such a way that the region

with graphene is lifted above the plane of the film by placing a washer underneath

as described by Figure 2.6(e). In the next step the graphene is brought above

the BN deposited previously and using a micro-manipulator precisely aligned

(Figure 2.6(f)). After pressing and heating up the BN substrate the PMMA film

is released and it is stuck to the bottom substrate (Figure 2.6(g)).

The sample is then cleaned in warm acetone and baked in a furnace at 230oC

in a forming gas atmosphere (H2:Ar, 10%:90%). An example of a sample that

was prepared in this way is presented in Figure 2.6(h).

PMMA

Graphene Tape frame

PVA
SiO2

Si PMMA

Graphene Tape frame PMMA

Support

Tape Frame

PMMATape frame
WasherGraphene

Glass slide

Graphene

Boron-nitride
SiO2

Si

Boron-nitride
Boron-nitride

SiO2

Graphene

Graphene

(a) (b) (c) (d)

(e) (f) (g) (h) SiO2

Glass slide

SiSi

Figure 2.6: The steps of transferring graphene on BN. (a) Mechanical ex-
foliation of BN onto Si/SiO2. (b) Mechanical exfoliation of graphene onto
Si/SiO2/PVA/PMMA with a tape frame for support. (c),(d) Graphene on PMMA
is peeled off Si/SiO2/PVA and put on a support. (e) The PMMA/graphene film
on a glass slide with a washer placed in the area having graphene.(f) The glass
slide is attached to a micromanipulator and under an optical microscope placed
above the BN. (g) After applying pressure and heat the graphene is transferred
onto BN. (h) Optical microscope image showing an area where graphene (the
borders of graphene are guides to the eye) was transfered onto a BN flake. Image
adapted from Alem-Mar Goncalves.

2.4 Method of measuring micron-size samples in a low

temperature STM set-up

The discovery of graphene opened exciting opportunities to study a 2D system

by surface probes. However, the fact that the samples obtained by exfoliation
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are only a few microns in size poses technical challenges. The STM piezo-electric

tube scanner can accurately control the position of the tip within angstroms, but

the high resolution of this technique limits its field of view, which is typically

smaller than 1µm. To move the tip across larger distances (microns-mm) coarse

positioning X,Y,Z stages are sometimes used.

The challenge for studying graphene samples with STM is that the technique

is nearsighted and it is difficult to locate micron size graphene flakes on macro-

scopic Si/SiO2 substrates. The first idea would be to use the topographic images

as a guide towards the sample [42, 43], but in practice this means taking and

comparing many small size images. The scanning speed is typically very small

due to the small working distance of the STM and the tip needs to be frequently

retracted and approached for each scan since the piezo-electric scanner has a

limited dynamic range (≈ 100nm) making it likely to experience. This type of

navigation guided by topographic features is therefore very slow and prone to

frequent tip crashes. Moreover, in the case of the graphene devices, a large area

around is insulating which makes it even more likely to have the STM tip crash

before finding the sample.

Some set-ups are solving this problem by adding additional components: long

range optical microscopes or scanning electron microscopes [44, 45]. However,

most low temperature and magnetic field setups are lacking such tools because

their addition complicates the design and stability. For this reason our group has

developed a capacitive method in order to guide the STM tip towards micron size

samples [32].

General set-up of the method

To measure STS one usually applies a small ac modulation to the sample bias

voltage, Ṽs, so that there is an ac current, Ĩ , flowing through the STM tip:

Ĩ = Gt · Ṽs + iωCṼs (2.7)
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(a) (b) (c)

Figure 2.7: (a),(b) Schematic experimental setup and its electrical circuit.
(c)Electric field distribution (Field Precision TC (educational 7.0)) near a con-
ducting bar extending out of the paper. The strip is at 1 V, the back gate at -1V.
The arrows indicate the sample edges.

, where Gt is the tunneling conductance and C is the tip-sample capacitance.

The contributions to the ac current are from tunneling (first term) and from

capacitive pickup (second term). The pick-up signal can be used to resolve small

structures when the tip is far from the surface and it is not in the tunneling

regime. When the tip moves across the sample at a typical height of 3 µm in the

X,Y place there is a capacitance change, however its typical magnitude ≈ 30aF

/(for movements of 5µm) is much smaller than the typical background pickup

which is 6fF . That is why, in order to use the capacitance signal to identify

features on the surface, the background pickup needs to be minimized. This is

achieved using a set-up described in Figure 2.7(b).

The output voltage from the reference channel of a lock-in amplifier is split

into two with 180o phase shift. One of the signals (+) is applied to the sample

directly as Ṽs , the other (-) is applied to the gate − ˜Vgate through a pot resistor

to adjust the amplitude. The capacitive pickup current measured from the tip is

Ĩ.

One key aspect of the procedure is tuning the voltage applied to the back gate

in order to minimize the background pick-up current. To qualitatively illustrate

the sensitivity of this method in detecting sample edges, Figure 2.7 (c) shows

the electric field lines around the sample, when Vs = 1V and Vgate = −1V ,

highlighting the presence of steep potential lines at the edges of the sample.
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Finding the edge of a sample

The measured capacitive current across one of the 200µm Au pads of is shown

in Figure 2.8. For the case of Figure 2.8(a) the tip was 60 µm away and for

Figure 2.8(b) 200 µm away. The vertical left axis is the measured current and

the horizontal axis is the position on the pad.

The signal is higher when the tip is above the pad and smaller when it is off the

pad, riding on top of an overall background signal. In the derivative of this current

with respect to position (right side axis) the edges of the pad can be identified

as two sharp kinks when the tip is closer to the surface. The derivative is very

effective in identifying the edges since, as can be see from the figures, although

the background can be different for different heights, when the derivative is taken,

the edges are readily identified. These two features become less pronounced as

the tip is raised further away. This is seen in Figure 2.8(c), where the spatial

derivative of the capacitive currents is plotted for different heights. The signal at

the center of the sample, however is always the same.

Figure 2.8: (a) Dependence of the capacitive currents as the STM tip moves
above a thin metallic pad. The tip is 60 µm above a 200 µm wide film. Thin line:
pickup current. Thick line: spatial derivative dI/dx. Insert: schematic diagram
of tip-sample geometry. (b) Same as (a) but with tip-sample distance of 210 µm
(c) Spatial derivative dI/dx for various tip-sample distances. Data are centered
relative to the shaded area that shows the 200 µm wide sample.

This measurement was repeated for Au pads with different dimensions as

described in Figure 2.9(a), where this method reliably identifies the edges of

structures down to 1µm.

Protocol of finding a sample
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Another novel and crucial component for reliably finding a small graphene

sample is the design of the metallic lead. This lead is made of connected pads

which are becoming smaller in size closer to the sample, as illustrated in Figure

2.9(a). This contact pad geometry makes it possible to locate small (micron size)

samples on large (mm size) substrates with an STM tip alone, without the aid of

complicated optical microscopy setups.

The procedure for finding a graphene sample is:

We start from room temperature and position the tip above the largest pad.

When the STM is transfered into the cryostat and cooled to 4K, the tip could

drift ≈ 100µm away.

With the tip far away from the sample and above the largest pad (which is

usually ≈ 200 µm × 200 µm , we use the derivative of the capacitive current to

locate the center of the pad where we land the tip in the STM mode. At this

time the large ac modulation is turned off.

The tip is then retracted to a height corresponding to an aspect ratio relative

to the size of the pad of ≈0.3 so for the next scan across the pad in the capacitance

mode the edges can be much better resolved.

Then one needs to move to the smaller pad. That is usually done by crossing

the lower boundary of the larger pad as seen in Figure 2.9(b) right panel.

The procedure is repeated until the smallest pad and sample are found. The

sensitivity of this method is sufficient for finding samples of a few microns as

demonstrated in [46].
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(a) (b)

Figure 2.9: (a)Sample widths measured by the capacitance method. Measured
size versus actual size. Tip-sample distances adjusted for sharp edge resolution,
corresponding to aspect ratios of 0.3 or less. Thin line is a guide to the eye
through the values of the measured widths (b)Left: Possible drift of tip position
after transferring and cooling down and derivative of capacitive currents along
the dashed line. Right:Tip near one edge ready to search for the lower boundary
of the pad and derivative of capacitive currents along the dashed line.
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Chapter 3

From disordered graphene to ideal graphene

Graphene on SiO2. Graphene was initially isolated by mechanical exfoliation

from graphite (Highly Oriented Pyrolitic Graphite (HOPG) or natural graphite)

onto Si wafers capped with SiO2 [47, 48]. In order to fabricate devices from

these flakes, metallic contacts are added using standard e-beam lithography. This

sample configuration allows using the highly doped Si as a back gate so that by

applying a voltage between the flake and the back gate one can tune the carrier

density in graphene. Much of the experimental work and in particular transport

experiments have used this type of sample, but they are far from ideal.

Firstly, the nanofarbrication procedure can result in disorder that can reside

either between the graphene and the SiO2 or on the surface of graphene. Secondly,

graphene will conform to the surface of SiO2 and it will therefore be rippled. An

illustration of this situation is presented in Figure 3.3. As a consequence of the

disorder, the Fermi level of neutral graphene will not coincide with the Dirac point,

meaning graphene is doped [49, 50]. The doping varies on the surface of graphene

creating puddles of different carrier density (electron-hole puddles)[49, 50].

One of the main sources of the electron-hole puddles in graphene is the ran-

dom potential induced by the substrate. For the standard SiO2 substrates which

are routinely used in graphene devices this is particularly problematic due to the

presence of trapped charges and dangling bonds [51]. Improving the quality of the

SiO2 substrates by dry-chlorination leads to a significant reduction in the random

potential. The use of these substrates gave access to the intrinsic properties of
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graphene allowing the observation of Landau levels as detailed in a later section

[46].

Graphene on hexagonal boron nitride (BN), mica etc. More recently,

experimental methods were developed to manipulate other 2D materials from lay-

ered structures (e.g. BN)[47, 41]. In order to minimize the disorder due to the

underlying substrate while still preserving the possibility of gating, graphene was

placed on thin flakes of BN which in turn, were previously exfoliated on Si/SiO2.

The quality improvement by using BN as a substrate was significant; the mo-

bilities for devices were above 100000 cm2/V s which is an order of magnitude

higher than typical graphene devices on SiO2 [41]. In very high magnetic fields

the fractional quantum hall effect was also observed in such samples [52]. Another

substrate demonstrated to be suitable for obtaining flat graphene is mica [53, 54].

Graphene flakes on graphite. After cleavage of a graphite crystal, one

often finds graphene flakes on the surface which are decoupled from the bulk

graphite underneath. These flakes provide the most favorable conditions for ac-

cessing the intrinsic electronic properties of graphene as detailed in the following

sections [44, 55, 56].

Epitaxial graphene, graphene obtained by chemical vapor deposition

etc. Other avenues of producing graphene are epitaxial growth on SiC crystals

[57, 58, 59] and chemical vapor deposition (CVD) [60, 61, 62]. In the epitaxial

growth one starts with a SiC crystal terminated in Si or C and annealing to

temperatures above 1500 oC leads to the formation of graphene layers at the

surface. Often the layers are misoriented with respect to each other thereby

forming Moiré patterns. For the CVD growth, a metallic substrate that plays the

role of a catalyst is placed in a hot furnace in a flow of gaseous carbon source.
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As a result, carbon is absorbed into the metal surfaces at high temperatures

and precipitated out to form graphene during cool down [63]. Other metallic

substrates used for growing graphene films include Ru [64, 65], Ir [66, 67] and Pt

[68].

Parts of this chapter follow closely the text in [33, 46, 69].

3.1 Surface topography of graphene

The discussion about the morphology of a graphene surface is important because

the stability of a 2D membrane in a 3D world is closely related to the tendency

toward crumpling or rippling [70, 71]. The degree of rippling also influences the

quality of the electronic properties [72]. The morphology of the graphene surface

depends strongly on the type of substrate (or lack of substrate) underneath.

Transmission Electron Microscope (TEM) experiments performed on graphene

films placed on TEM grids show that there is an intrinsic rippling of the sus-

pended graphene membrane with deformations of up to 1nm [73]. However, when

deposited on a flat surface such as mica [53], BN [74, 75], or HOPG [69] the height

corrugations become as small as 20-30pm. On the surface of SiO2 the Van der

Waals forces will make graphene conform to the rough surface and typical values

reported for the corrugations are 0.5nm in height and a few nm in the lateral

dimension [44, 76, 50, 46, 77].

The first STM experiments on graphene deposited on SiO2 showed that the

lattice is indeed hexagonal with almost no defects [43]. Moreover, they also

showed the importance of sample cleaning in order to access the pristine graphene

surface [45]. A more extensive analysis of the correlation between the substrate

roughness and intrinsic graphene roughness [44] suggested that in areas where the

graphene does not conform to the oxide surface and it is suspended over the high

points, one can find an additional intrinsic corrugation on smaller length scales
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Figure 3.1: (a) Topography of typical area of graphene on SiO2. (b) Atomic
resolution taken of graphene on SiO2. (c) Topography of typical area of graphene
on BN. (d) Atomic resolution of graphene on BN. (c) Topography of typical area of
graphene on graphite. (d) Atomic resolution of graphene on graphite. Tunneling
conditions: Vb=300mV, It=20pA.
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consistent with TEM studies [73].

A comparison between typical STM data for graphene on SiO2, graphene on

BN and decoupled graphene flakes on HOPG is presented in Figure 3.1. In Figure

3.1(a) the topography of a graphene area on SiO2 shows a rippled surface. In

contrast, graphene on BN is much flatter as seen in the topography map in Figure

3.1(c). The corresponding atomic resolution data demonstrates that despite the

corrugation of the surface of graphene, the honeycomb lattice is continuous across

the hills and valleys (Figure 3.1 (b),(d)). A comparison between the surface

morphology for areas of graphene on SiO2 and on BN shows that, when placed on

BN, graphene is one order of magnitude smoother than on SiO2. On such samples

STM/STS experiments report Moiré patterns that arise because of the lattice

mismatch and rotation between graphene and the BN [74, 75]. Furthermore,

the random potential fluctuation measured by scanning tunneling spectroscopy

appears sometimes smaller than on graphene samples exfoliated on SiO2 [74, 75].

Interestingly, as it will be discussed in a later chapter, the electronic spectrum

in magnetic field is not greatly improved, but rather comparable to the one on

SiO2.

For the case of graphene flakes decoupled on graphite surface the large area

is also rippled-free ( Figure 3.1(e)) and shows a hexagonal lattice in the atomic

resolution images Figure 3.1(f). Remarkably, in all cases the graphene lattice is

defect-free over areas as large as hundreds of nanometers.

3.2 Tunneling spectroscopy of graphene

One of the reasons why graphene has attracted so much interest is its unique

electronic band structure. In the low energy regime the charge carriers obey a

Dirac-Weyl Hamiltonian and have a conical dispersion. To the first approxima-

tion, it is possible to obtain a closed analytical form for the density of states at
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low energy [10]:

ρ(E) =
2Ac
π

|E|
v2
F

(3.1)

where, Ac is the unit cell area of graphene lattice.

The DOS in graphene differs qualitatively from that in non-relativistic 2D

electron systems leading to important experimental consequences. It is linear

in energy, electron-hole symmetric and vanishes at the Dirac point (DP) - as

opposed to a constant value in the non-relativistic case. This makes it easy to

dope graphene with an externally applied gate voltage. At zero doping, the lower

half of the band is filled exactly up to the Dirac points. Applying a voltage to

the graphene relative to the gate electrode (when graphene is on Si/SiO2, the

highly doped Si is the back gate) induces a nonzero charge. This is equivalent

to injecting, depending on the sign of the voltage, electrons in the upper half of

Dirac cones or holes in the lower half. Due to electron-hole symmetry the gating

is ambipolar [78].
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Figure 3.2: (a) STS spectrum of graphene on SiO2. The Dirac Point is marked
as ED. (b) STS spectrum of graphene on BN. (c) STS spectrum of graphene on
graphite.

However, when disorder introduces a random potential, as is the case for the

graphene on SiO2, the spectrum deviates from the ideal V-shape [77, 79, 80, 81,

76]. Some of the measured features in the spectra were attributed to strain and
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ripples [81], others to local doping due to impurities. A typical spectrum is pre-

sented in Figure 3.2(a)[46]. In this case, the Dirac point is shifted from the Fermi

energy by ≈ 200meV corresponding to a carrier concentration n = 2× 1012cm−2.

Some STM experiments on graphene exfoliated on SiO2 reported a gap at the

Fermi level which was attributed to inelastic tunneling into graphene (via phonon

scattering) [80]. In other experiments though, the gap is seen only above certain

tunneling currents [79]. In most cases a dip at the Fermi level is observed in the

tunneling spectra of graphene on SiO2 [77, 46] which can be attributed to a zero

bias anomaly.

The case of graphene on BN is similar to SiO2 in the sense that the spectrum

also deviated from a V-shape, however in this case, the majority of the samples

have a Dirac Point that is close to the Fermi level, as illustrated in Figure 3.2(b).

For graphene on graphite the measured density of states is linear and vanishes

at the Dirac point (Figure 3.2(f)) as expected from theory. For the data shown

in Figure 3.2(c), the Fermi level is slightly shifted away from the Dirac point (≈

16meV) corresponding to hole doping with a surface density n = 2× 1010cm−2.

3.3 Carrier concentration in graphene

3.3.1 Charge carrier inhomogeneity

Theoretically, in neutral graphene the Fermi level should coincide with the Dirac

point. However, it is observed that graphene is often doped such that there is

an energy difference between the Dirac point energy (ED) and the Fermi energy

(EF ). To find the dopant concentration, the carrier density can be calculated as

follows:

n =
N

A
= 4

πk2
F

(2π)2
=
k2
F

π
=

1

π

E2
F

h̄2v2
F

(3.2)
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Here the Fermi velocity is vF = 106m/s and taking EF = 1meV we get n ≈

108/cm2.

The origin of this doping is not yet well understood. However, the most likely

causes are trapped charges and absorbed species at edges/defects etc. Recent

STM experiments using graphene films doped on purpose with nitrogen (N) were

aimed at characterizing at atomic scales the electronic structure modifications

due to individual dopants [82]. It was found that N, which bonds with the carbon

in the lattice, can contribute to the total number of mobile carriers in graphene

resulting in a shift of the Dirac point. Moreover, the electronic properties of

graphene are modified around an individual N dopant on length scales of only a

few atomic spacings [82].

The existence of electron-hole puddles was first pointed out by single electron

transistor studies with a spatial resolution of a hundred nm [49]. Higher resolution

studies of the spatial fluctuations of the carrier distribution using STM showed

even finer density fluctuations on nm scales [50]. The typical variation in Dirac

point of graphene deposited on SiO2 was found to be 30-50meV corresponding

to carrier densities of (2× 1011 − 4× 1011)cm−2 [50, 49, 46].

Figure 3.4 qualitatively illustrates the electrostatic potential created by ran-

dom trapped charges that electrons in graphene see on the supported devices.

To simulate the effect of trapped charges in the substrate, 3000 point charges of

magnitude ±1e,±2e were randomly distributed in a volume 1µx1µx20nm and for

each point in space and the resulting electrostatic potential was calculated.

Planes at different height were considered and the potential on those planes

was calculated. The resulting maps for 3 different heights 1nm, 15nm, 30nm are

shown in Figure 3.4(a), (b) and (c) respectively. This illustrates how on a plane

that is close to the impurities the variation of the electrostatic potential in the XY

direction is very large and on short length scales. For planes at larger distances

vertically from the impurities, the potential becomes weaker and varies smoothly.
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Figure 3.3: (a) Illustration of the varying carrier concentration across a graphene
sample due to the random potential underneath. The Fermi level and the Dirac
point are shown by the black and green lines respectively. (b) Sketch of how
graphene (the orange line) deposited on the surface of SiO2 will have a roughness
comparable to the substrate [44]. The light gray dots illustrate trapped charges.

Therefore, the idea of using a spacer between the SiO2 and graphene such as a

single crystal insulator, BN, is justified, provided of course, that the BN itself

carriers no trapped charges.

The electronic wave functions of the carriers in graphene can, in the presence

of scatters, interfere and form standing wave patterns observed by measuring the

spatial dependence of dI/dV. From the Fourier transform of such pattern one

can obtain information about the momentum of the quasiparticles and thus learn

about the band structure. [83].

The inhomogeneous carrier density is also visible in the in the local density

of state map shown in Figure 3.5(b), which corresponds to the region for which

the topography is shown in Figure 3.5(b). From such maps we estimate that the

typical legthscale of the charge inhomogeneity, the so called puddle size is d≈20
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Figure 3.4: (a) Intensity map of the electrostatic potential created at 1nm above
a box of size 1µx1µx20nm containing 3000 randomly distributed charges. (b),(c)
Same as (a) at distances 15nm and 30nm.
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Figure 3.5: (a)Topography image corresponding to the local density of states
(LDOS) map in (b) (It=20pA, Vb=140mV). LDOS map taken at E = 140 meV
showing doping inhomogeneity in graphene. The highlighted area are example of
puddles of doping inhomogeneity.

nm.

In contrast to graphene on SiO2, graphene on graphite shows very little vari-

ation of the Dirac point (≈ 5meV) across hundreds of nm [55, 69]. This is illus-

trated in a later chapter by the spatial map of the distance between the Dirac

point and the Fermi level as measured in the presence of a magnetic field. The

value of the Dirac point was extracted by fitting the Landau level sequence. Fur-

ther demonstration of the homogeneity of the graphene flakes on graphite is given

by the Fermi velocity which is found to vary by less than 5% across the same area.
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Similarly, the fluctuations of the local charge density in graphene on h-BN were

recently found to smaller, up to an order of magnitude, than on SiO2 [74, 75].

3.3.2 Electrostatic gating

By applying a voltage between graphene and a back-gate electrode, Si, one can

induce a surplus of electrons or holes in graphene (Figure 3.6)(a). The relation-

ship between the number of carriers induced can be derived from a capacitance

formula:

Vg =
n · e
c

(3.3)

Here Vg is the gate voltage, e is the elementary charge, n is the carrier con-

centration and c is the capacitance per unit area between the graphene and the

gate. This value can be estimated from geometrical considerations:

c =
ε0 × εr
d

(3.4)

where ε0 ≈ 1.854 × 10−12F/m is the vacuum permittivity, εr is the dielectric

constant of the insulator that separates graphene from the gate and d is the

distance between graphene and Si. For typical values, εSiO2=3.9 and d ≈ 300nm,

we obtain a value of c = 115× 10−6F/m2, or c = 115× aF/(µm)2

Given this value of the capacitance, applying 1V of gate voltage will introduce

n = 7× 1010cm−2 carriers in the graphene sample.

From Equations 3.2 and 3.3 the relationship between the gate voltage and

distance between Dirac point and Fermi level reads:

|EF − ED| = h̄vF

√
πc|Vg|
e

(3.5)

Experimentally this was checked by measuring the STS spectra and following

the Dirac Point while changing the gate voltage. An example of spectra taken
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Figure 3.6: (a)Schematic of electrostatic gating in graphene devices. By applying
a gate voltage Vg between the sample and Si back-gate one can induce charge
carriers in graphene and move the Dirac Point relative to the Fermi level. (b) STS
spectra of graphene on BN at different gate voltages. The Dirac Point indicated
by ED moved relative to the Fermi level (vertical blue line). (c) Intensity map of
STS spectra taken at different gate voltages. The black horizontal line indicates
the Fermi level. The white curved line represents the theoretical fit to the position
of the Dirac Point. (d) Simulation of the expected STS map as a function of gate
voltage, assuming that the spectrum is V-shaped.

at gate voltages Vg = −28V ,Vg = −8V ,Vg = −2V ,Vg = +18V is presented

in Figure 3.6(b). While at the negative gate voltages The Dirac Point was at

positive sample bias, meaning the sample is hole doped, at positive gate voltages

the Dirac point is at negative sample bias, below the Fermi level which means the

sample is electron doped.

Such spectra were taken at gate voltages between -30V and 30V and plotted

as a map where the intensity represents the value of dI/dV as shown in Figure

3.6(c). Theoretically the Dirac Point according to Equation 3.5 would be found



43

on the white line superposed with the plot. A region of low values of dI/dV

does follow the white line indicating that the Dirac Point does indeed move with

respect to the Fermi level(black line) as gate voltage is applied to the sample. A

simulation of this situation assuming each spectrum is a V-shape line (modeled as

f(x)=|x|) is presented in Figure 3.6(d), in agreement with the experimental map

in (c).
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Chapter 4

Landau levels in graphene

In the presence of a magnetic field, B, normal to the plane, the energy spectrum

of a 2D electron systems breaks up into a sequence of discrete Landau levels (LL).

For the non-relativistic case realized for example in the 2D electron system on

helium [4] or in semiconductor heterostructures [84], the Landau level sequence

consists of a series of equally spaced levels similar to that of a harmonic oscillator:

E = h̄ωc(N + 1/2) with the cyclotron frequency ωc = eB/m∗, a finite energy

offset of 1/2h̄ωc, and an effective mass m∗. In graphene, as a result of the linear

dispersion and Berry phase of π, the Landau level spectrum is different:

En = ±h̄ωG
√
|N |, ωG =

√
2vF
lB

(4.1)

Here, N = ... − 2,−1, 0,+1,+2... is the index of the Landau level, ωG is the

cyclotron energy for graphene and lB =
√

h̄
eB

is the magnetic length.

Compared to the non-relativistic case the energy levels are no longer equally

spaced, the field dependence is no longer linear and the sequence contains a level

exactly at zero energy, N = 0, which is a direct manifestation of the Berry phase

in graphene [19]. We note that the LLs are highly degenerate, the degeneracy

per unit area being equal to 4B/φ0. Here B/φ0 is the orbital degeneracy with

φ0 = h/e the flux quantum and 4 = gs · gv, where gs and gv (gs=gv=2) are the

spin and valley degeneracy, respectively.

In Figure 4.1 an illustration of the quantized LL is presented. The conical

dispersion of graphene in the absence of a magnetic field is transformed into a
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Figure 4.1: Illustration of quantized energy levels in graphene and their signature
in the density of states. Right side: Dirac cone which in a magnetic field no longer
has a continuum energy, but discrete levels: red rings for electrons, blue rings for
holes. Left side: the vertical axis is energy; the horizontal axis is the density of
states. For each Landau level there is a peak in the density of states which is
broadened by electron-electron interactions in ideal systems. In the presence of
disorder, the LL are further broadened. The indexes of the LLs are N=0 for the
one at the Dirac point and N=+1,+2,+3... for the electron side and N=-1,-2,-3,...
for the hole side.
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sequence of levels corresponding to electron carriers above the Dirac point (DP)

and holes below it. In the density of states, represented on the left side, a LL

corresponds to a peak in the DOS. The indexes of the LLs are indicated as N < 0

for holes and N > 0 for electrons. Assuming that the Fermi level is exactly at the

DP (the case of neutral graphene) the gray area in Figure 4.1 represents electronic

states that are already filled.

This quantization is responsible for interesting physical phenomena such as

the integer [48, 85, 86] or fractional quantum hall effect [87, 88, 89].

Experimentally, a direct way to study the quantized Landau levels is through

STS as was demonstrated in early studies on HOPG [90, 91] and adsorbate-

induced two dimensional electron gases (2DEGs) formed by depositing Cs atoms

on an n-InSb(110)surface [92].

An alternative, though less direct, method of accessing the LLs is to probe the

allowed optical transitions between the LLs by using cyclotron resonance mea-

surements. This was done on exfoliated graphene on SiO2 [93, 94], epitaxial

graphene [95] and graphite [56]. Other indirect methods include scanning elec-

tron transistor or similar capacitive techniques [96, 97].

Landau level spectroscopy from STS measurements can be used to obtain the

Fermi velocity of Dirac fermions, the quasiparticle lifetime, the electron phonon

coupling, and the degree of coupling to the substrate [55, 98]. This technique

was adopted and successfully implemented to probe massless Dirac fermions in

other systems including graphene on SiO2 [46], epitaxial graphene on SiC [99],

graphene on Pt [100] and topological insulators [101, 102].

In this chapter we describe Landau level spectroscopy on graphene systems

with different degree of disorder. We start from early attempts of investigating

the LL on graphene deposited on standard SiO2 and then describe improved

experiments on graphene on graphite, chlorinated SiO2 and graphene on BN which

give access to measuring the LL sequence specific to electrons in single layer
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graphene. Parts of this chapter follow closely the text in [33, 46, 69, 55].

4.1 Landau Levels in graphene on disordered SiO2
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Figure 4.2: (a) STM topograph of graphene on standard SiO2. Inset: atomic
resolution image showing the hexagonal structure specific to single layer graphene.
(b) STS spectra taken at the position indicated by the blue dot, for magnetic fields
B=0T to B=12T. (c) STS map along a vertical line crossing the center of (a) at
10T. The intensity is dI/dV. (d) Illustration of the hysteresis when changing gate
voltage. STS spectra at 10T and Vg = −3V before and after sweeping the gate
voltage to more negative values.

The quality of the substrates that supports graphene is crucial for the behavior

of the charge carriers. Many of the initial STM experiments on graphene placed

on regular thermally grown SiO2 do show the expected honeycomb structure for

graphene as discussed in the previous chapter, however the electronic properties
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are strongly affected by the substrate. This is the case also when graphene is

placed in a magnetic field. If the disorder is too strong the Landau levels will

broaden significantly and overlap such that one cannot distinguish a sequence

specific to single layer graphene.

This was the case for the samples investigated on thermally grown SiO2 and

a typical situation is presented in Figure 4.2. The topography of the investigated

area is presented in Figure 4.2(a) where the inset shows typical atomic resolution

image in that region, confirming the presence of a single layer graphene. Fur-

thermore, spectroscopy data was recorded at the position indicated by the blue

dot. The field dependence of the spectrum is shown in Figure 4.2(b). One can

observe peaks that develop once the field is increased. However it is not possible

to identify a single layer graphene sequence not even when the field is B=12T.

To illustrate how the spectrum varies for different positions, Figure 4.2(c) shows

a map of the spectra taken on a vertical line crossing the center of the image

in Figure 4.2(a) for B-10T. The bright color corresponds to high value of the

dI/dV and the dark color to low values. The lack on discrete levels (peaks in the

spectrum) and the spatial inhomogeneity along the 60nm line across the sample

further illustrates the effect of disorder on the LL sequence.

Another characteristic of the poor quality samples is the gate hysteresis, mean-

ing that a spectrum taken at the same gate voltage in the same position will not

remain the same if the gate voltage was changed in between. Such a situation is

illustrated in Figure 4.2(d), where the black curve was taken first at Vg = 3V fol-

lowed by ramping the gate voltage to more negative values and then returning at

Vg = −3V , the obtained spectrum is the red curve. Such hysteresis is also present

in transport experiments [103] and usually explained as charges (from either fab-

rication residues, substrate, leads) being attracted/repelled from graphene while

sweeping the gate. Similar data to the one presented in this section was reported

in [79].
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4.2 Landau Levels in graphene on improved quality SiO2

As the potential found on standard SiO2 substrates was too large to allow obser-

vation of LLs by STS even in the highest magnetic fields, further improvement

of the substrate was needed. One procedure that was demonstrated to dramati-

cally improve sample quality is to remove the SiO2 substrate under the graphene

which becomes suspended [104, 105, 87, 88]. However, such samples are fragile

and small, so studying them using scanning probes is challenging. In addition, in

these samples, in the absence of Van der Waals forces between the graphene and

substrate, the electrostatic and Van der Waals forces between tip and sample can

induce vibrations in the graphene membrane and this can lead to unstable STM

junction [106]. To prevent strong tip sample interaction and minimize vibrations

of the suspended graphene, we designed small devices (< 1µm) with triangular

shape as shown in Figure 4.3. For such triangles, at room temperature, it was

possible to obtain STM topographic maps such as the one presented Figure 4.3(b).

1µm

Ti/Au

Graphene

Ti/Au

(a) (b)

Figure 4.3: (a) SEM image of a suspended graphene triangle. (b) Room temper-
ature STM image of the same suspended device.

Therefore, exploring ways to improve the substrate is of interest. In the semi-

conductor industry it is known that the quality of SiO2 can be greatly improved

using dry oxidation in the presence of chlorine. This process reduces the num-

ber of trapped charges in the oxide, improving the uniformity and quality of the

insulator [107, 108, 109, 110]. When using such substrates treated by chlorina-

tion, the STM and STS measurements show that it is possible to see well defined

quantized levels for high enough magnetic fields [46]. While these samples allow
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electron-hole puddles (disorder) and magnetic length. For a low field B2 the
magnetic length will probe both electron and hole areas, but when the field is
higher B1 the magnetic length will become smaller than the size of a puddle. (b)
STS at different magnetic fields for graphene on chlorinated SiO2.

observation of one of the hallmarks of single layer graphene, the unique sequence

of LL and with a level at the Dirac point, given the broadening of the LLs and

the deviation from V-shaped zero-field density of states these samples are not yet

ideal.

STS in zero field was used to give an estimate of the average length scale of

disorder, the electron-hole puddle size, d ≈ 20nm [46]. In order to observe well

defined levels, the magnetic length should be at most (d/2) ≈ 10nm, correspond-

ing to a magnetic field B = 6T . This idea is illustrated by Figure 4.4(a) where a

semi-classical cyclotron orbit of size lB is shown for two different magnetic fields,

B1 > B2 so that in the case of the larger field it becomes smaller than the typical

size of the disorder puddle.
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In Figure 4.4(b) the STS data taken for graphene on chlorinated SiO2 is

plotted as a function of magnetic field. It shows how indeed, for smaller fields,

below 6T, the levels are not well defined, while above 6T they become clearly

defined. The presence of the N = 0 Landau level at energies ≈ 200meV confirms

the fact that the origin of the dip observed in the absence of magnetic field and

marked as ED in Figure 4.4(b) is the Dirac Point. The slight variation in the

position of N = 0 LL could be due to changes of the position of the tip after

changing the field (estimated within a few nm), but it can also be an effect of

pinning of a LL at the Fermi level as it will be explained in detail in Chapter 5.

From the measured sequence of LLs one can extract the Fermi velocity of the

carriers in the following way: according to Equation 4.1 the energies of the levels

depend linearly on the product sgn(N)
√
|N |B. We consider all the LL peaks for

all fields and indexes and we plot them versus sgn(N)
√
|N |B and thus from the

slope of the linear fit we can directly extract the Fermi velocity.

The Fermi velocity obtained in such a way from the data presented in Figure

4.4 is vF = (1.07±0.02) ·106m/s (Figure 4.5(a)) and varies by 5−10% depending

on the position on the sample. This value is consistent with other measurements

of the Fermi velocity in graphene on SiO2.

In such samples it is expected that the levels are broadened by disorder

[111, 112, 113]. The measured width of the levels is typically γ ≈ 20 − 30meV

(Figure 4.5(b)). Compared to the results obtained for graphene on the surface

of graphite [69] and for epitaxial graphene on SiC [99] the levels are broader and

their width varies with position, suggesting a shorter carrier lifetime due to ex-

trinsic scattering mechanisms such as trapped charges, ripples, etc. The typical

linewidth for LLs with N 6= 0, γ ≈ 20 − 30meV , corresponds to the carrier life-

times τ ≈ h̄
∆E
≈ 22−32fs which is consistent with values found by other methods

in nonsuspended graphene samples [93, 96, 97].
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Figure 4.5: (a) Energies of the LL peaks for the data in Figure 4.4 plotted versus
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√

(|N |B). The straight line fit gives the Fermi velocity vF = 1.07 × 106.

(b) Example of a STS spectrum taken at B = 12T showing the N=0 at ≈ 200meV
followed by the hole side of the spectrum N = ±1,±2....

4.3 Landau Levels in almost ideal graphene

(a) (b) (c)

Figure 4.6: (a) STS spectrum of graphene on graphite showing the presence of
Landau levels. (b) The evolution of the LL with magnetic field. (c) The energy

dependence of the LL on the reduced parameter sgn(N)
√
|N |B [69].

Graphite provides a much better substrate for STM studies of graphene in the

sense that it is metallic and therefore can screen the charge inhomogeneities. On

the surface of graphite it is possible to identify graphene flakes that are, due to

underlying defects of the crystal, mechanically and electronically decoupled from

the underlying graphite layers [69, 90].

The measured LLs in magnetic field in such a sample [69] are indeed very
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sharp at already low fields attesting to the quality of such samples.

Figure 4.6(a) shows the STS spectrum on a graphene flake decoupled on the

surface of graphite, inB = 4T , having very sharp LL peaks. their field dependence

is presented in Figure 4.6(b). The dependence on the scaling parameter is in

Figure 4.6(c).

Comparing to Equation (4.1), the slope of the line gives a direct measure of

the Fermi velocity, vF = 0.79 · 106m/s. This value is 20% less than expected

from single particle calculations and, as discussed below , the reduction can be

attributed to electron-phonon interactions.

Electron-phonon interaction and velocity renormalization. The basic

physics of graphene is captured by the simple tight-binding model, but many-body

effects are often not negligible. Theoretical calculations show that the electron-

phonon (e-ph) interactions can introduce additional features in the electron self-

energy, leading to a renormalized velocity at the Fermi energy [114].

Landau level linewidth and electron-electron interactions The line-

shapes of the LLs for the case of graphene on graphite were found to be Lorentzian

rather than Gaussian [69], suggesting that the linewidth reflects the intrinsic

lifetime rather than disorder broadening. Furthermore, looking closer at the

linewidth of the LLs in Figure 4.6(c), it is found that the width increases lin-

early with energy. This dependence is consistent with the theoretical predictions

that graphene displays a marginal Fermi liquid behavior: τ ∝ E−1 ≈ 9ps [115].

Lifting of the LL degeneracy was observed in quantum Hall effect measurements

on the highest quality suspended graphene devices [87, 88] and in STM experi-

ments on epitaxial graphene on SiC [116].

To further illustrate the fact that such graphene flakes on graphite samples

are very homogeneous one can analyze the variation of the Dirac Point and of

the Fermi velocity across the graphene flake presented in Figure 4.8 (a). STS

spectra were recorded on a grid of 64 × 64 points in region G and from a fit
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similar to Figure 4.6 (c) the Fermi velocity and the position of the Dirac point

with respect to the Fermi level were extracted. The results are presented in Figure

4.7. In Figure 4.7(a) each pixel represents the value of the shift of the DP and

the corresponding histogram is shown in Figure 4.7(b). With the exception of a

few scattered points (where the noise in spectrum prevented the fit of the LL) the

plot distribution centered around the value |ED − EF | ≈ 22 meV with a spread

±5meV that is comparable to the error bar from the fit.

The Fermi velocity distribution across the sample is shown in Figure 4.7(c)

and the corresponding histogram in 4.7(d). In this case, similarly to the Dirac

Point, the variation in the Fermi velocity across the sample is within the error

bar.

20nm  

 
(a) (b) 

(c)

 

(d)

Figure 4.7: (a) Map of the Dirac point on graphene on graphite [55]. (b) His-
togram of the values of Dirac point in (a). (c) Map of the Fermi velocity on
graphene on a graphite substrate [55]. (d) Histogram of the velocities in (c).

4.4 Effects of interlayer coupling

For graphene flakes on graphite one can also address the effect of interlayer cou-

pling in regions where the graphene flakes are weakly coupled to the substrate.

It was found that the LL spectrum of graphene which is weakly coupled to a
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Figure 4.8: (a) STM image showing two distinct regions: G- where the graphene
flake is decoupled from graphite; W- where the graphene flake is weakly coupled
to the graphite substrate. (b) The evolution of the Landau levels from region G
to region W. The vertical axis is the position where the spectrum is measured
indicated by d in (a); the horizontal axis is the sample bias. (c),(d) Fits of the
LLs in (b) to the theoretical model [98] for no coupling (c) and weak coupling (d)
[55].

graphite substrate strongly depends on the degree of coupling [55].

In Figure 4.8(a) the topography image shows two regions: G, where the top

layer is decoupled and displays signatures of a single layer graphene and below

it, a different region, W, where there is weak coupling to the underlying graphite

substrate. We chose a coordinate system (Figure 4.8(a)) with the abscissa coin-

ciding with the ridge and the ordinate representing the distance from it. In this

representation all the points in region G are above the x axis and points in region

W are below it. We followed the spatial evolution of the Landau level sequence
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across the flake, from region G to region W as shown in Figure 4.8(b). The spec-

tral features in region B below the ridge show neither characteristics of single

layer graphene nor those of graphite, but as we show below, they are consistent

with a very weakly coupled layer.

The Landau levels in region G correspond to decoupled single layer graphene

[69], as discussed above. In contrast the Landau levels in region W are slightly

shifted towards the Dirac point and their level index dependence is not the one

expected for either bilayer or multilayer graphene.

To understand the behavior of the level sequence in region W we compare

to calculations by Pereira et al.[98], showing the evolution of the Landau level

sequence of a bilayer as a function of interlayer coupling strength. They find that

as the coupling strength is increased the spectrum evolves from that of a single

uncoupled graphene layer into a sequence where each Landau level (except N = 0)

splits as the twofold degeneracy is lifted with increasing coupling strength. For

any given coupling strength this gives rise to a unique Landau level sequence. We

used this model to interpret the Landau level sequence in region W. In Figure

4.8(c) and (d) we compare the experimental data to predictions from this model.

Here the vertical axis is energy and the horizontal axis on the right is the interlayer

coupling, t. In [98], the evolution of Landau level energies with interlayer coupling

depends on the Fermi velocity and on the magnetic field.

In this data the magnetic field was 4 T and the Fermi velocity and coupling

constant were adjusted to obtain the best fit between the measured Landau level

sequence and the model. Figure 4.8(c), we show that the Landau level sequence

in region G matches that of a decoupled layer (or zero coupling in the model) and

Fermi velocity of vF ≈ 0.8 × 106m/s. In Fig. 4(d) the sequence in region B is

shown to match the theoretical model for interlayer coupling t = (40 ± 5)meV ,

one order of magnitude smaller than the coupling constant in graphite. The Fermi

velocity used was vF ≈ 0.8× 106m/s. We therefore conclude that the anomalous
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Landau level sequence in region B reflects a small but finite interlayer coupling.
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Chapter 5

Carrier density dependence of the LL spectrum

Due to its band structure, in particular the electron-hole symmetry, graphene

shows an ambipolar electric field effect. The evolution of the electronic spectrum

with carrier density is therefore accessible for STS experiments on graphene flakes

deposited on the insulating SiO2 surface. Studying this dependence in the pres-

ence of a magnetic field is closely related to quantum Hall physics. The ability

of STS to access both electron and hole states beyond the states close to the

Fermi level makes it a particularly powerful technique, complementary to elec-

trical transport, for gaining a deeper understanding the physical properties that

govern the two dimensional electron system in the quantum Hall regime.

Figure 5.1 illustrates the main characteristics of the data discussed in this

chapter and represents a guide for understanding the presentation of the exper-

imental results. Figure 5.1(a)-(f) shows a sequence of simulated DOS ∝ dI/dV

spectra for a fixed energy range as the number of carriers in the system is changed

using a back gate. In this particular case the parameters were chosen such that

B = 12T ,vF = 1.2 × 106, c = 115aF/(µm)2. The horizontal line at E=0 meV

is the Fermi level which is at Vb = 0V in an STM experiment. For each of the

spectra, the region that was shaded in gray highlights the fact that they are below

the Fermi level, thus they are filled electronic states.

Figure 5.1(g) is an intensity map having as vertical axis the energy, as hor-

izontal axis the bias voltage applied and as intensity the value of dI/dV . Such

a map traces the evolution of the Landau levels which are bright lines (peaks
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Figure 5.1: Schematic of Landau level spectrum behavior as a function of carrier
density. (a)-(f) Simulated DOS versus energy spectra for different gate volt-
ages. The horizontal line indicated the Fermi level. The shaded gray area shows
the filled states of the spectrum while the upper part are the unfilled states.
(g)Intensity map of DOS plots at different gate voltages. The particular spectra
chosen for (a)-(f) are marked by vertical red dashed lines.

in an individual spectrum) with the change in the carrier concentration. Again

as above, the Fermi level is indicated by a horizontal dashed line. The vertical

dashed lines are the particular spectra that were plotted in the top panel.

Previous such measurements were done in GaAs samples by a complex spec-

troscopy technique: time domain capacitance spectroscopy [6]. In those experi-

ments, on very high mobility samples, the equidistant LL spectrum of a 2DEG

was observed as well as signatures of many-body interactions. Also, in graphene

exfoliated on SiO2, Jung et al. [77] reported gate mapping measurements of the
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tunneling spectroscopy in disorder dominated samples.

In this chapter the results obtained by tracing the LLs with changing the

carrier concentration for graphene on both SiO2 and BN are discussed. Parts of

this chapter follow closely the text in [33, 46, 69, 55].

5.1 The staircase-like pattern

Qualitatively, one can understand the overall step-like features in the map of

Figure 5.1(g) (plateaus followed by abrupt changes in slope) as follows: the LL

spectrum contains peaks, corresponding to high DOS, separated by regions of

low DOS. It takes a large change in the charge carrier density to fill the higher

DOS regions - therefore plateaus appear; at this point the Fermi level is pinned

to the particular Landau level being filled. On the other hand, filling the regions

of low DOS in between the LLs does not require much change in carrier density

- therefore an abrupt change in slope appears. For broad Landau levels the DOS

in between the peaks is larger, thus smearing the step-like pattern.

This is readily illustrated by looking at Figure 5.1(a)-(f). Figure 5.1(a),(b)

correspond to the plateau region of Figure 5.1(g) when the LL N = +1 is being

filled. Figure 5.1(c) represents filling the states between the N = +1 and N = 0

which gives rise to the abrupt jump in Figure 5.1(g). Figure 5.1(d) illustrates the

doping level at which the N=0 LL is exactly half filed and it is in the middle of

the plateau in the map. In Figure 5.1(e) the states between N = 0 and N = −1

LL are just finish being filled and N = −1 LL is starting to be filled.

In this chapter the simulations done to understand the expected pattern of

the LL evolution as the carrier concentration is changed was following the general

idea presented below. Each Landau Level is assumed to be a Lorenzian with

lineshape γ centered at energy positions given by graphene LL sequence (in units

of cyclotron energy ω = h̄
√

2vF
lB

= vF
√

2eh̄B): Ei = Sgn(i)
√
|i|. The density of
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states (DOS) is a sum of all the Lorenzians (for numerical calculation purposes a

cutoff was chosen at i=50)

DOS(x) =
+50∑
i=−50

2

π
√

3

1

γ

1 +
4

3

(
x− Ei
γ

)2
−1

(5.1)

The number of electrons one can accommodate in a Landau Level is the degen-

eracy of each state times the total number of states (area under the Lorenzians).

Therefore the number of electrons up to an energy is

n(x) =
4

π

(
arctan

(
2√
3

x− Ei
γ

)
− arctan

(
2√
3

0− Ei
γ

))
(5.2)

The reverse question is: given a certain electron density , n, what is new

position of the Fermi level, µ? This can be answered by numerically solving the

reverse of the equation above: µ(n) = x where x is a solution of n(x) = n.

5.2 Evolution of the LL spectrum with carrier concentra-

tion

On the samples with graphene flakes on the surface of chlorinated SiO2, where

one could identify a sequence of LLs and which did not show gate hysteresis it

was possible to measure the dI/dV spectrum as a function of gate voltage. The

procedure for such measurement was: the STM tip was raised above the surface by

≈ 1µ. Then, a particular gate voltage was applied between the Si back gate and

graphene and after a few minuted the STM tip was lowered again. This procedure

minimized the chance for electrostatic interaction between tip and sample [117]

which could lead to a fatal tip crash.

Figure 5.2(a) shows the map of STS data taken at B=12T as a function of

gate voltage. As described above, each vertical line is a spectrum at a particular

gate voltage VG and the intensity of the plot represents the value of the dI/dV.

The lighter color corresponds to the peaks in the spectrum. The vertical axis
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Figure 5.2: (a) Map of the dI/dV spectra as a function of gate voltage at B = 12T .
The respective LLs are marked as N = 0,±1,±2, etc.. (b)Simulation of the data
in (a).

is the sample bias and the horizontal axis is the gate voltage. The gate voltage

was varied in the range −15V < VG < +43V corresponding to carrier densities:

3 × 1012cm−2 > nc > −0.5 × 1012cm−2. In the spectrum taken at VG=-15V a

very faint N=0 level is seen at ≈ 240meV . Because the sample was hole doped at

neutral gate voltage already, in the energy range that we probe, we only measure

the Landau levels corresponding to hole states: N = −1,−2,−3.... At higher

gate voltages though, for VG > 40V the levels corresponding to electron states

N = +1,+2,+3... also become visible. The plateaus in the map, where the LLs

are pinned to the Fermi level are visible, especially the one corresponding to

N = 0. The others are slightly smeared because of the broadening of the LLs.

A simulation considering the LL broadening and using vF =(1.16 ± 0.02)x106

m/s is plotted in Figure 5.2(b) and shows good agreement with the measured

data in Figure 5.2(a) within the gate voltage range measured.

Probing the shape of the Dirac cone

In contrast to electrical transport measurements that typically probe states

near the Fermi surface, and Angle-resolved photoemission spectroscopy(ARPES)
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which only probes filled states, STS can access both filled and empty states.

Therefore, in a magnetic field, through LL spectroscopy one can, in principle,

probe the full shape of the Dirac cone in the measured energy range. For that

ideally at already low magnetic fields, the LLs would be well separated so that

many of them can be resolved and from their separation in energy the shape of

the Dirac cone can be constructed.

In our experiments we typically need high fields to resolve LLs up to indexN =

±4. Thus we cannot resolve the shape on the cone in energy, but if we assume the

dispersion is conical we can probe the slope of the cone. This way we investigated

the slope as a function of carrier concentration by measuring the Fermi velocity

from the LL sequence as a function of doping. Within the investigated range of

charge carrier density (3 × 1012cm−2 > nc > −0.5 × 1012cm−2), we found that

closer to the Dirac point, the velocity increases by ≈ 25% as seen in Figure 5.3(a).

(a)

Figure 5.3: (a) Dependence of the Fermi velocity on the gate voltage as extracted
from Figure 5.2 (a). The Dirac Point is marked by the red dashed line.

At low carrier density the effects of electron-electron interactions and reduced

screening on the quasiparticle spectrum are expected to become important. The

observed increase in the Fermi velocity is consistent with a renormalization of

the Dirac cone close to the neutrality point due to electron-electron interactions

[118, 119]. If the random potential is further reduced such that LL can be observed
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already in small fields, the fact that the spacing between the levels is smaller will

make it possible to probe the reshaping of the cone with higher accuracy.

A similar result was obtained by Elias et al. on suspended graphene samples

by measuring the amplitude of the Shubnikov de Haas oscillations as a function

of temperature [120]. We point out that this is a slightly different measurement

in that the carriers probed are always at the Fermi level.

5.3 Connection to the quantum Hall effect

As described before, STS in magnetic field and in the presence of a back-gate

probes the Landau level spectrum as a function of carrier density. The integer

quantum Hall effect (IQHE) measured in electrical transport experiments in two

dimensional electron systems in the presence of a magnetic field has its origin

in the existence of the LL spectrum with its peaks and valleys. So what is the

connection between the two?

A typical IQHE measurement in a hall bar configuration [86], as sketched in

Figure 5.4(b) top, measures the Hall (transverse) resistance Rxy and the longitu-

dinal resistance Rxx while varying the filling factor, ν.

ν =
n · h
e ·B

(5.3)

where n is the the carrier density, B the magnetic field, h the Planck constant

and e the electron charge.

The data in Figure 5.4(b) shows the IQH measurement with a 4-lead con-

figuration on a device that was prepared by transferring graphene on BN. The

mobility of this particular device at room temperature was µ > 50×103cm2(V s)−1

which is approximately an order of magnitude higher than on typical graphene on

SiO2 devices. It is because of such high mobility that in a magnetic field as low

as B = 2T , for which the LL separation is ≈ 50meV , one can observe quantized
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gate. Bottom: Simulated map of the STS spectra as a function of filling factor (
B = 12T ). The arrow point to examples of spectra at different filling factors that
are often seen in transport experiments. (b) Top: Schematic of a typical Hall bar
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are obtained from the respective voltages Rxy = Vxy
I

,Rxx = Vxx
I

. Bottom: IQH
measurement at B = 2T and T = 300mK. The plateaus in Rxy corresponding to
ν = 2, 6, 10 are highlighted.

plateaus.

In connection to the LL measured by an STS experiment, qualitatively one

can understand the features measured in the transport experiments as follows:

When the filling is such that the Fermi level lies in between two LLs - corre-

sponding to the abrupt jumps in the STS spectra as indicated by the yellow arrow

at, for example ν = 2, in Figure 5.4(a), the electrons are trapped in the localized

states around the impurities and they do not play any role in the conduction. At

this point Rxx = 0 and Rxy is quantized.
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When the Fermi level is at a peak of a Landau level - corresponding to the

plateaus in the STS spectra in Figure 5.4(a) , the electrons occupy the percolating

state across the sample so Rxx is finite and Rxy increases making the transition

between the quantized plateaus of the resistance in the electrical transport exper-

iment.

It is important to note the crucial difference between the two measurements:

while the electrical transport probes the states that are close to the Fermi level

for any given filling, the STS experiments give access to the full LL spectrum.

Probing electron correlation gaps in STS measurements

When the magnetic field is sufficiently high and the temperature is low, the

effect of Coulomb interactions is expected to affect the electronic spectrum the

two dimensional electron system.

In the best samples of GaAs the presence of correlated electron states was

reported as gaps opening in the LL spectrum as a function of filling factor us-

ing time domain capacitance spectroscopy [121]. In epitaxially grown graphene

samples on the surface of SiC STS experiments [116] found that the N = 0 level

can be split into 4 levels and this was attributed to lifting of the valley and spin

degeneracy. In those experiments, however the filling factor was changed only by

changing the magnetic field and the lack of possibility for gating prevented the

unambiguous identification of correlated electron states.

Single electron transistor experiments that measure local electronic compress-

ibility in high quality suspended graphene samples found signatures of fractional

quantum Hall states.

It is expected that for STS experiments provided that the samples are clean

enough so that the LL are not significantly broadened by disorder, one can observe

features of many body interactions. If we compare the numbers obtained from

transport experiments for the gaps of some of the typical states, say ν = 1 [52],

they can be as low as a few meV, which is much lower than the typical 30 −
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50meV broadening of the LLs dues to disorder. Therefore, further improvement

of the samples is necessary. Suspended graphene samples are one possibility as

well as placing graphene on very clean BN.

5.4 From single layer to large angle twisted double layer

graphene

Graphene layers stack to form graphite in the so-called Bernal stacking. If we

name the two inequivalent atomic sites in the graphene lattice A and B, the top

layer will have B atoms sitting directly on top of A atoms of the bottom layer and

A atoms of the top layer sit above the centers of the hexagons of the graphene

underneath. A system consisting of two layers of graphene in Bernal stacking,

bilayer graphene, is characterized by a hyperbolic energy dispersion of its massive

chiral fermions.

Bernal-stacked bilayer graphene

In the presence of a magnetic field the LL sequence for an ideal Bernal-stacked

bilayer graphene is given by: En = ( eh̄B
m∗

)
√
N(N − 1) where m∗ is the effective

mass of the carriers, B is the magnetic field, e is the electron charge, h̄ is Planck’s

constant and N=0,1,2,3,... . The eight fold degeneracy occurring forN = 0, N = 1

can be broken either by an applied electric field or by electron-electron interactions

[122, 123, 124]. Experimentally, magneto-transport measurements of high qual-

ity suspended bilayer samples have revealed the presence of interaction-induced

broken symmetry states [125, 126, 127].

In order to directly probe massive chiral fermions in bilayer graphene, STM/STS

were performed on mechanically exfoliated graphene placed on insulating SiO2

[128, 129]. It was found that the measured LL spectrum was dominated by ef-

fects of the disorder potential due to the substrate. The random potential creates

an electric field between the two layers which results in locally breaking the LL
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degeneracy and a LL spectrum that is spatially nonuniform [129]. Therefore, in

order to access the intrinsic properties of bilayer graphene, an improvement of

samples that can be measured by STM/STS is necessary .

Twisted graphene stacks

As will be discuss in detail in Chapter 7, because the coupling between

graphene layers has a great influence on their electronic properties, twisting bi-

layer graphene away from the Bernal stacking can change its electronic properties

dramatically. For large angles the system can maintain the electronic properties

of single layer graphene, while Fermi velocity renormalization and other effects

can occur for smaller rotation angles. With the new sample fabrication advances

of transferring layers on graphene individually and positioning them in the de-

sired spot on the sample it is possible to experimentally explore the electronic

properties of stacks of graphene layers.

We have prepared graphene samples that have the following configuration

(Figure 5.5(a)): flakes of BN were mechanically exfoliated onto a Si/Si02 wafer.

Then one layer of graphene was transfered on top (G1) and an additional one

was then transfered on the first one (G2). The optical microscope image together

with the corresponding sketch are shown in Figure 5.5(b),(a). The data presented

here were taken on the two layers G1+G2 on the BN, marked by the red rectangle

Position 1 and on the single layer G2 on BN, marked by the blue rectangle

Position 2. In both regions, in the presence of a perpendicular magnetic field

B = 10T , one can measure quantized Landau levels and by tuning the gate

voltage the dependence of these levels with carrier concentration was studied.

Figure 5.5(b) shows the map obtained for the case of Position 1. The Fermi

level is indicated by the horizontal black line. Interestingly, in this region the LL

sequence is the one expected for a single layer graphene with a Fermi velocity that

is vF = 1.2×106m/s. However, within the gate voltage range (-20V,30V) only the

LL N = 0 and the localized states around it are filled. In order to reproduce this
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Figure 5.5: (a) Left: Schematic of the sample investigated together with the
two cases discussed: Position 1- bilayer graphene G1+G2 and Position 2 - single
layer graphene G2. Right: Optical microscope image of the sample. (b),(c) Gate
dependence of the LL spectrum for Position 1. and its simulation . (d),(e) Gate
dependence of the LL spectrum for Position 2 and its simulation.

in the simulation one can assume a single layer graphene on the substrate but use

a value for an effective capacitance to the gate that is precisely half the value of

the one calculated from geometrical considerations. In the simulation presented

in Figure 5.5(c) the value used to reproduce the gating map was c = 57aF/(µm)2.

Similarly to Position1 in region Position2 where a single layer graphene is

placed on BN, the LL sequence is characteristic of a single layer graphene. In

contrast, within the same range of gate voltage, much more of the electronic

spectrum is filled. This is confirmed by the simulation which closely resembles
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the data for a capacitance value c = 115aF/(µm)2.

What this different in the effective capacitances reflects is the different degen-

eracies of the two systems. On one hand, in the bilayer case there are Landau

levels in each layer to be filled and therefore for each LL the degeneracy becomes

4x2=8. For the single layer the LLs have the usual degeneracy 4.

Similar systems have recently been probed by electrical transport experiments

[130, 131, 132]. It was found that the two layers contribute independently to the

magnetoresistance. The properties of each layer could also be addressed by using

both top and bottom gates [130].

5.5 Extrinsic features in the LL spectrum due to disorder

Exploring different samples and different positions within the same sample it was

found that the maps of STS spectra as a function of gate voltage can show extrinsic

features and thus differ from the simple model simulation previously discussed.

A few examples of data taken on different samples are presented in Figure 5.6

together with corresponding simulations that reproduce the main features.

Figure 5.6(a) is a map of the STS spectrum as a function of gate voltage taken

at B = 12T . At gate voltages Vg < 0V the LL with indices N < 0 are being filled,

followed by N = 0 at gate voltages Vg > 0V . The simulation in Figure 5.6(b) is

in good agreement with the data.

The map in Figure 5.6(b) was also taken at B = 12T and aside from the

expected staircase patter it shows two additional features : first the N = 0 LL

is split for all ranges of gate voltage and second a sequence of strong peaks are

present in the spectrum and they cross the LL spectrum at gate voltages where the

states in between the LL are being filled. The general features observed for these

peaks is discussed in the next chapter. The reason for N = 0 being split could be

related to the presence of a charged impurity as it will be discussed in the next



71

-20 0 20 40

-200

0

200

-1

+2

+1

N=0

V
gate

(v)

S
a

m
p

le
 B

ia
s

 (
m

V
)

2.200

5.098

7.500

-20 0 20

-100

0

100

200 +2

+1

-2

-1

N=0

V
gate

(V)

S
a

m
p

le
 B

ia
s

 (
m

V
)

0.5000

2.844

5.188

6.500

(a) (b)

(c) (d)

-30 -20 -10 0 10 20 30 40
-150

0

150

Vgate (V)

B
ia

s
 (

m
V

)

0.5000

1.867

3.000

(e) (f)

Figure 5.6: (a),(c),(e) STS maps as a function of gate voltage for magnetic fields
B = 12T ,B = 12T and B = 7T respectively. (b),(d),(f) Simulations for (a),(c)
and (e) respectively.

chapter, although in this scenario the degree of splitting is expected to depend of

the filling of the LLs because of screening. Another possibility could be related to

correlations induced gap, however in this case one would also expect that these

features would appear at particular fillings rather than for the entire range of

carrier density that is investigated. The simulation in Figure 5.6(d) agrees well

with the general staircase pattern, but cannot reproduce the discussed gap in the

N = 0 LL and presence of the 4-peaks.

Figure 5.6(e) shows the spectra taken at a lower field, B = 7T where the
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degeneracy of the LL is smaller and as also presented in the simulations the

jumps are less abrupt. The simulation for this case in Figure 5.6(f) is in good

agreement with the data.
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Chapter 6

Effects of charged impurities and other disorder

of the electronic spectrum in the quantum Hall

regime

Disorder plays a fundamental role in two-dimensional (2D) electron-systems, dra-

matically affecting their physical properties. Understanding the effects of disorder

at the atomic scale is crucial for understanding 2D electron systems. The dom-

inant source of scattering and disorder in 2D electron systems [3] are charged

impurities. They can produce a spatially localized signature in the density of

states (DOS) which, for impurities located at the sample surface, is readily ob-

served with scanning tunneling microscopy and spectroscopy (STS/STM) [133].

In this respect graphene is ideally suited system for elucidating the effect of

impurities[134, 135, 136, 50, 137, 138, 139, 140, 141]. [10, 142, 143], being a two

dimensional (2D) material with its electronic states at the surface.

Previous experiments that report the spectrum of a 2D electron system with

spatial resolution in the QH regime [92, 144, 145, 96, 146, 147] appeared to support

a picture of bent Landau levels (LLs), whose energies continuously change in

space, adjusting to the local disorder potential U(r). This behavior can be fully

understood within the semi-classical framework, where electrons follow classical

drift trajectories along the equipotential lines of U(r). In this picture, LLs are

broadened into bands with a continuous spectrum within. It is physically clear,

however, that since the drift orbits around impurities are closed and finite in size,

the true quantum-mechanical spectrum within each LL is, in fact, discrete as
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illustrated in Figure 6.1(a).

In this chapter we discuss spatially resolved scanning tunneling spectroscopy

and microscopy experiments that reveal the influence of an isolated impurity on

the electronic spectrum of graphene in the QH regime and demonstrate that its

strength can be controlled by gate voltage. We find that the impurity-potential is

strongest above half filling (weak screening) causing the Landau-levels to split into

discrete localized sublevels that are purely orbital in nature. By tuning the gate

voltage below half-filling, the impurity becomes almost invisible. These results

shed new light on the electronic properties in the QH regime and on the prospect

of realizing tunable nanoscale quantum-dots in graphene. Furthermore progress

in elucidating other disorder effects that are extrinsic to graphene are presented.

Parts of this chapter follow closely the text in [33, 148].

6.1 The LL spectrum of graphene in the presence of a

charged impurity

6.1.1 Lifting of the orbital degeneracy and screening of an

impurity

The low energy spectrum of pristine graphene consists of two electron-hole sym-

metric Dirac cones. This gives rise to a linear density of states, which vanishes at

the charge neutrality point (CNP), also known as the Dirac point. In the presence

of a magnetic field B, the spectrum becomes quantized in a sequence of LLs with

energies:

EN = ± h̄vF
lB

√
2|N | = ±vF

√
2eh̄|N |B,N = 0,±1,±2, . . . , (6.1)

where vF is the Fermi velocity, lB =
√
h̄/eB the magnetic length, e the electron

charge, h̄ the reduced Planck constant, and +(−) refers to electron (hole) states
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N > 0(N < 0).

Seeking to investigate the effect of an impurity potential on the LL spectrum,

we used STM/STS to locate an impurity and characterize its properties. We used

samples of exfoliated graphene deposited on a highly doped Si back-gate capped

by 300nm of chlorinated SiO2. In order to achieve high quality samples, for this

experiment we used two graphene layers twisted by a large angle [46, 149]. The

fact that the rotation angle is large ensures that the spectrum of single layer

graphene is preserved, however the level degeneracy is doubled [149, 130, 131].

The STM topography image of such an impurity is shown in Figure 6.1(b).
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Figure 6.1: (a) Schematic illustration of drift orbits around a charged impurity.
(b) STM topography image showing an isolated impurity in graphene (bias volt-
age V = 250mV and tunneling current It = 20pA). The spectrum in (c) and
map in (d) were taken at the position indicated by the blue dot and the tunneling
spectra in Figure 2(b) were taken along the dashed line. (c) STS in B = 10T
shows quantized LLs corresponding to N = 0,±1,±2,±3,±4 (d) Intensity map
of tunneling spectra as a function of gate voltage. (e) Schematic DOS and corre-
sponding LL sequence in graphene. The gray area below the Fermi level, chosen
to coincide with the Dirac point represents filled states, and above it are empty
states.
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The differential tunneling conductance dI/dV measured in STM/STS is pro-

portional to the local single-particle DOS, D(E, r), at the tip position r with

the bias voltage V = (E − EF )/e corresponding to an energy E relative to the

Fermi level EF . A typical dI/dV spectrum taken far from the impurity in the

presence of a magnetic field is shown in Figure 6.1(c). The peaks in the spectrum

correspond to the LLs [69, 90] and the level index is readily obtained by fitting to

Equation 6.1. The LLs are well resolved up to N = 4 in both electron and hole

sectors attesting to good sample quality. Fitting the field and level index depen-

dence to Equation 6.1 we confirm that the spectrum corresponds to single layer

graphene with vF = 1.2× 106ms, a value consistent with other measurements on

similar samples. In pristine graphene the CNP coincides with the Fermi energy,

but this is not the case in most samples due to the inevitable presence of charged

impurities. For the sample in Figure 6.1 the CNP is very close to the Fermi en-

ergy (18meV ) attesting to a low intrinsic doping level (n ≈ 3× 1010cm−2), which

again is consistent with good sample quality [143].

By tuning the back-gate voltage we change the carrier concentration in graphene

to explore its influence on the electronic spectrum. Keeping the tip position fixed

we obtain the spectrum for each carrier concentration, shown in Figure 6.1(d).

The vertical and horizontal axis represent the sample bias (or energy) and the

back-gate voltage respectively, with the bias origin chosen to coincide with the

Fermi energy. For the sample geometry used here the carrier density is given by

n ≈ 7×1010Vg[V ]cm−2, where Vg is the back-gate voltage. Bright lines correspond

to the LLs and the step-like pattern reflects their discreteness and degeneracy

[6, 46]. Since the energy of the LLs is independent of the Fermi energy the bright

lines are nearly horizontal for gate voltages corresponding to partially filled levels.

Once a LL is filled, a further increase in gate voltage starts populating the next

LL and the simultaneous jump in Fermi energy produces a shift in the spectrum



77

which gives rise to the steps in Figure 6.1(d). The simulated map in Figure6.1(e)

is in good agreement with the experimental map.

We now focus on the influence of the impurity on the spectrum. To this end,

we first present dI/dV maps at fixed energies over the area in Figure 6.1(b).

In Figure 6.2(a) we show a typical spectrum around N = 0 LL together with

energies at which the dI/dV maps in Figure 6.2(b) were taken. The maps are

roughly radially symmetric, consistent with a charged impurity at the center. In

addition, the stronger intensity (bright spots) at negative energies corresponds to

a down-shift of the LL energies, as explicitly seen in Figure 6.2(c). This downshift

is indicative of a positively charged impurity, which thus breaks the electron-hole

symmetry of the LL spectrum.

We study this effect quantitatively by measuring spectra along the line cut

shown in Figure 6.1(b). The resulting map shown in Figure 6.2(c) was taken at

Vg = 7V where the effect is strongest as discussed later. The horizontal axis refers

to the spatial position along the cut. We note that upon approaching the impurity

the energy of the LLs shifts downwards (toward negative energies) reaching its

minimum value right at the impurity, consistent with the maps in Figure 6.2(b).

Remarkably, in the immediate vicinity of the impurity the N = 0 LL does not

shift smoothly, but rather splits into a series of well resolved discrete spectral

lines. This is clearly demonstrated in Figure 6.2(d) where we plot the spectra at

the positions indicated by the yellow dashed lines A, B, and C.

The origin of these discrete states can be understood by considering the

quantum-mechanical electron motion in graphene in the presence of a magnetic

field and a single charged impurity. For simplicity, we assume a weak, radially and

valley symmetric potential U(r) of an impurity located at point r = 0, r = |r|.
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We also neglect the Zeeman effect.

Under these assumptions, in each valley, K or K ′, and for each spin projection,

↑ or ↓, the electron wave-function ψ(r) satisfies an effective Dirac equation:

Ĥψ = Eψ, Ĥ = Ĥ0 + U(r), Ĥ0 = h̄vFσ(p− eA). (6.2)

Here σ represents Pauli matrices and A is the vector potential. The wave-function

ψ(r) = (ψA(r), ψB(r))t is a two-component spinor in the AB sublattice space. Ĥ0

describes electron motion in the magnetic field B = (0, 0, B) in the absence of the

impurity. The solutions to the eigenvalue problem Ĥ0ψNm(r) = ENψNm(r) yield
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the unperturbed LL sequence in Equation 6.1 and the wave functions ψNm(r) of

the eigenstates |Nm〉. In the symmetric gauge A = 1
2

[B× r], |Nm〉 are labeled

by the LL index N and an integer orbital momentum m ≥ −|N | (Figure 6.3(a)).

Importantly, since the energies EN are independent of m, the LLs have an infinite

orbital degeneracy (for an infinite sample).
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Figure 6.3: (a) Probability densities |ψNmA(r, ϕ)|2 and |ψNmB(r, ϕ)|2 on A (blue)
and B (red) sublattices, respectively, of the wave-functions in graphene in a mag-
netic field in the absence of an impurity. The plots are for one valley, for the
other valley the sublattices would be interchanged, A ↔ B. (b) and (c) Simu-
lated spectra ENm(left) and tunneling DOS D(E, r) (right) in graphene in the QH
regime in the presence of an impurity, calculated according to Equation (3) for
a model potential U(r) = U0 exp(−r2/b2)/

√
r2 + a2 (yellow line) with linewidth

γ = 0.05h̄vF/lB. (b) The case of a sufficiently sharp impurity potential with
a = 2lB, b = 2lB, U0 = 1.5h̄vF/lB, for which γ < ∆ENm and the discreteness of
the spectrum around an impurity is resolved for lower LLs, N = 0,±1. (c) The
case of a smooth impurity potential with a = 3lB, b = 6lB, U0 = 1.5h̄vF/lB, for
which γ > ∆ENm and the discreteness cannot be resolved.

For a sufficiently weak impurity potential, when first-order perturbation the-

ory holds, the LL spectrum acquires anm-dependent correction UNm = 〈Nm|U(r)|Nm〉

resulting in the spectrum ENm ≈ EN + UNm. The impurity may be treated as a

perturbation provided UNm � EN . Thus, the impurity lifts the orbital degener-

acy of the LLs and splits them into series of discrete sublevels. For a given LL

index N , the level spacing ∆ENm = EN,m+1−ENm is largest for ψNm(r) localized

in the immediate vicinity of the impurity, i.e., for lower m. For larger m, the wave
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functions spread out away from the impurity and the energy levels get denser,

approaching the values of the unperturbed LLs: UNm → 0 and ENm → EN as

m → +∞. The level spacing grows with the overall magnitude of the potential

U(r) and decreases with increasing its spatial extent; similarly it decreases with

increasing N , as the spatial extent of the wave-function ψNm(r) grows. These

general properties are illustrated in Figure 6.3.

In the ideal single-particle case, each discrete level ENm contributes an in-

finitely narrow delta-function peak δ(E − ENm) to the DOS. The energy levels

measured by STS/STM via the dI/dV spectrum, however, always possess some

finite linewidth γ. The linewidth may represent the natural finite lifetime of an

electron state due to inelastic processes or could be limited by instrumental res-

olution. This level broadening can be taken into account phenomenologically by

modeling the tunneling DOS by the expression

D(E, r) = 4
∑
Nm

δγ(E − ENm)ψ†Nm(r)ψNm(r), (6.3)

where δγ(E) = γ/[π(E2 +γ2)] are Lorentzians of width γ (the factor 4 comes from

the valley and spin degeneracy in single layer graphene). The ideal single-particle

DOS is obtained in the limit γ → 0, when the Lorentizian becomes a delta func-

tion, δγ(E)→ δ(E).

The intensity of the broadened peaks δγ(E−ENm) is position-dependent and

determined by the probability density ψ†Nm(r)ψNm(r) in a given state |Nm〉.

The discreteness of the spectrum ENm around a given m can be resolved in

the experimental D(E, r) if the linewidth γ is smaller than the level spacing

∆ENm. If however γ > ∆ENm, then for a given LL N , the broadened peaks

δγ(E − ENm)ψ†Nm(r)ψNm(r) of adjacent (in space and energy) states overlap in

the sum over m and merge into a broadened continuous line. Thus, even if the

spectrum is discrete, but the resolution is insufficient, the measured D(E, r) will
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still display “bent” LLs, whose energies seemingly adjust to the local value of the

impurity potential U(r), as illustrated in Figure 6.3(c).

Our data in Figure 6.2 are fully consistent with the above theoretical consid-

erations. As clearly seen in Figures 6.2(c),(d) upon approaching the impurity the

N = 0 LL splits into three well resolved discrete spectral lines, which we are able

to attribute to specific impurity states. To lowest order in perturbation theory,

one may use the wave-functions ψNm(r) unperturbed by the impurity, which are

known, see Figure 6.3(a), and solely determined by one parameter, the magnetic

length lB. Using Equation 6.3, we find that the spatial distribution of the three

discrete lines is in good agreement with the probability densities ψ†0m(r)ψ0m(r)

of the states |0m〉 with m = 0, 1, 2, as shown in Figure 6.2(c). The states |0m〉

with m ≥ 3, however, are less affected by the impurity potential and their con-

tributions to D(E, r) merge into a single continuous line. The discreteness of

the spectrum is also not resolved for higher index LLs, N 6= 0, consistent with

the weaker impurity effect predicted by the theory. Finally, we mention that the

theoretically simulated DOS for a model potential shown in Figure 6.3(b), very

closely resembles the experimental map in Figure 6.2(c).

We now turn to the effect of the electron density on the strength of the impu-

rity potential. The evolution of the LL spectrum close to the impurity shows a sur-

prisingly strong dependence on gate voltage as illustrated in Figure 6.4(a). In the

range of gate voltages corresponding to filling of the N = 0 LL, −15V < Vg < 9V ,

the impurity strength monotonically grows with increasing Vg (i.e., the filling frac-

tion and EF ): the distortion of the N = 0 LL is weak, moderate, and strong for

Vg = −10V, 5V , Vg = 0V , and Vg = 7V , respectively. We note that the impurity

can shift the energy levels by as much as 0.1 eV, indicating that the effect would

survive at room temperature. Also, for Vg = −25V , corresponding to a more than
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half-filled N = −1 LL, the effect is strong, while for Vg = 15V , corresponding to

less than half-filled N = 1 LL, it is nearly absent. This suggests that the same

monotonic growth of the impurity effect with gate voltage would be present for

filling other LLs, as well.
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Figure 6.4: (a) Maps of the tunneling spectra versus position across the impurity
for indicated gate voltages. The Fermi level is highlighted by the yellow line. (b)
and (c) Schematic picture of the local screening properties, responsible for the
variation of the impurity strength as function of doping. (b) The particle-hole
asymmetry of the local screening properties is reflected in the local DOS DS(E)
averaged over a finite-size region of area S around a positively charged impurity.
(c) Top: Below half-filling of a given LL, virtual electron transitions (indicated by
arrows) between the filled and empty states (red dots represent electrons) occur
in the vicinity of positively charged impurities and away from negatively changed
impurities; hence, their potentials are strongly and weakly screened, respectively.
Bottom: above half-filling, the situation is particle-hole reversed.

We attribute the observed variation in the strength of the impurity potential

with gate voltage to the screening properties of the electron system. Our argu-

ment is illustrated schematically in Figures 6.4(b) and 6.4(c). For a positively

charged impurity and less than half filled LLs, empty states necessary for virtual

electron transitions to occur, are available in the vicinity of the impurity, which

leads to substantial screening. For more than half-filled LLs, empty states are
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available only far away from the impurity, which renders local screening ineffi-

cient. For a negatively charged impurity, the situation would be particle-hole

reversed within a given LL: its potential would be screened (unscreened) roughly

above (below) half-filling. These properties are readily derived by examining the

local DOS, DS(E) =
∫
d2rD(E, r)/S, averaged over the finite-size region of area

S around the impurity. Unlike the DOS averaged over the whole sample, such

local DOS is manifestly particle-hole asymmetric within a given Landau level,

which translates to the particle-hole asymmetry of the local screening.

For gate voltages Vg = −5V, 0V in Figure 6.4(a), where the impurity potential

is screened, the level splitting is not visible and the N = 0 LL appears as a con-

tinuous distorted line, similar to earlier observations [92, 145, 146]. This reflects

the fact that at these gate voltages the splitting between the impurity sublevels is

reduced below the linewidth, giving an appearance of a “bent” LL, as illustrated

in Figure 6.3(c). The capability to tune the strength of the impurity potential by

the gate voltage thus allows us to trace the evolution between the discrete and

the quasi-continuous regimes of the impurity spectrum.

An isolated impurity in the QH regime thus behaves as a multi-level tun-

able quantum dot. Graphene-based quantum dots are highly desirable as build-

ing blocks for single electron transistors, detectors, memory and spin qubit de-

vices [150, 151], owing to unique properties such as two-dimensional structure,

mechanical robustness, and long spin coherence times. Realizations of such de-

vices, tens of nanometer in size[152, 153, 154, 155], achieved by lithographic tech-

niques are inherently limited by the difficulty to control the edge structure and

size. The findings reported here demonstrate a mechanism for realizing tunable

nanoscale quantum dots in graphene, which circumvents the need for nanosculpt-

ing. Furthermore, realization of gate controlled energy level shifts of 0.1eV opens
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the door to room-temperature graphene-based nanoelectronics.

6.1.2 Strategy for finding isolated impurities

We find that the most efficient way to identify isolated impurities is by using

Landau level spectroscopy. The reason is that the position of the LLs for certain

range of filling is very sensitive to the local potential (as discussed in the previous

section), much more so than the typically very broad V-shaped spectrum taken

in the absence of magnetic field.

Figure 6.5(a) shows an STM image over a large area on the sample studied. The

first step towards finding impurities is to take the tunneling spectra along a line

such as the one indicated. We then plot the tunneling spectra as a function of

position along the line and the resulting map is shown in Figure 6.5(b). We can

clearly see that the energies of the LLs, strongest for N=0 (for reasons explained

in the main text), shift with position reflecting the presence of a potential created

by charged impurities. N=0 moves towards both negative and positive energies

suggesting the presence of both positive and negative impurities. We then look

for an area that shows a minimal number of impurities such as the one indicated

by the red arrow in Figure 6.5(a), where the data in the main text were taken.

6.1.3 Typical effects of close-together impurities in a sin-

gle layer graphene on SiO2

To illustrate an example of studying impurities on single layer graphene on SiO2,

Figure 6.6(a) shows the topography of an area affected by multiple impurities.

The typical spectrum averaged over the entire area is shown in Figure 6.6(b) at

magnetic field B=12T. In this case we can resolve N=0, N=+1, etc.
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(a)

(b)

Figure 6.5: (a) STM topography of the graphene sample. Scale bar: 50nm. (b)
dI/dV line map along the blue line in (a).

Figure 6.6 shows the dI/dV maps across the region in Figure 6.6(a), at bias

voltage indicated in Figure 6.6(b) by E (0V) and L(55V). The light color rep-

resents large DOS, while the dark color is low DOS. Therefore, we can identify

several impurities located in the area. To see the effect of these impurities we

take a line cut across the direction indicated in Figure 6.6(a) and the result is

presented in Figure 6.6(d). In this case we see two features: one is the fact that

the LLs “bend” around the impurities, but it is hard to distinguish the effect of

a single impurity. The second feature is the split of the N=0 is several bands,

which are a result of the presence of the 4-peaks mentioned above.

More examples of the effect of charged impurities on the LL spectrum is shown

in Figure 6.7. Figure 6.7 (a) is a topographic image on the area of the twisted

bilayer sample where we identify 3 charged impurities. Notice that in this case

they have no distinct signature in the topographic image. The typical dI/dV

spectrum away from impurity is shown in Figure 6.7(b) and blue circles show the

energies at which the maps in Figure 6.7(c) are taken. The dI/dV spatial maps

in Figure 6.7(c) clearly show the presence of three independent impurities and
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Figure 6.6: (a) Topography of graphene on SiO2. (b) STS spectrum at B = 12T
averaged over the area in (a). (c) dI/dV maps at energies indicated by E and L
in (b). (d) Dependence of the STS on position along the line in (a).

the high intensity at −30meV indicated that in this case too we have positive

impurities shifting the LL towards negative values.

The tunneling spectra around these impurities, distinguished as 1, 2, 3 in Fig-

ure 6.8(a) are shown in Figure 6.8(b),(c) and (d). Similar to the data presented

in the previous chapter, the LL sequence in the graphene region is that of a single

layer and the LL appear “bent” around the impurity. In the case of impurity 1

there is even a hint of splitting of the N=0 around the impurity suggesting that

this particular impurity was strong enough to provide a large potential that would

lift the orbital degeneracy if the LL around it.

6.2 Towards elucidating the origin of extrinsic peaks in

the LL spectrum

In order to understand more the origin and behavior of the 4-peaks measured in

the STS spectra we have studied samples that have graphene on BN which allow
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Figure 6.7: (a) Topography image of an area on the large angle twisted graphene
sample which shows three close together impurities. (b) STS spectrum taken in
an impurity-free region of the area in (a). The blue dots indicate the energies
where the maps in (c) are taken. (a) dI/dV maps at particular energies across
the area in (a) showing the presence of 3 impurities.

observation of Landau levels in high enough fields.

One question that we address is what is the magnetic field dependence of the 4-

peaks? To this end we position the STM tip at one point and record the spectrum

as a function of magnetic field. The data is summarized in Figure 6.9(a). Above

B = 4T the presence of pairs of 4 distinct, equidistant peaks on the negative side

of the spectrum is clear. We observe more than one band of 4-peaks. Measuring

the distance between the peaks for 2 different areas and plotting it as a function

of the magnetic field we obtain the results in Figure 6.9(b). We notice a weak

field dependence and a typical separation between peaks of ∆E = 20− 30meV .

In an area where a charge impurity is present we can also study the behavior

of the 4-peaks around a charges impurity as presented in Figure 6.9(c). The right

panel is the topographic image of an area of graphene on BN and the arrow

indicates where the STS data was taken. The left panel is the map of the dI/dV

spectrum as a function of position across the line in the right panel. the N = 0
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Figure 6.8: (a) dI/dV map also shown in Figure 6.7 highlighting the presence of 3
impurities at the positions of the bright yellow features. The dashed lines indicate
the positions across which the data om (b),(c),(d) was taken. (b)-(d) Position
dependence across the lines in (a) of the STS spectra across the 3 impurities.

LL is present at approximately the Fermi level and to the left and right end of

the energy range, around 400mV and −400mV we see a clear series of 4peaks.

Interestingly they are present in the entire region and around the positions with

a charge impurity they bend upwards towards more positive energies.

To gain insight into the spatial extent of the states that are responsible for the

appearance for the 4-peaks, the spatial dI/dV maps were studied in the region

shown in Figure 6.10(a). In Figure6.10(b), the STS spectrum was taken in the

top left part of Figure 6.10(a) and was restricted to the negative energy interval
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Figure 6.9: (a) Magnetic field dependence of the spectra taken at one position
where the 4-peaks are pronounced. (b) The energy separation between the peaks
for the area in (a) (Area 1) and a second Area 2. (c) Position dependence of
the STS spectrum at 12T. The right panel shows the topography image with the
black arrow indicating the region where the spectra were recorded. The left panel
is the position dependence of the STS spectra.

where the 4-peaks were present.

The white dots with red contour mark the energies at which the sequence

of dI/dV maps in Figure 6.10(c) were recorded (the peaks and the valley of the

spectrum). Starting from −530meV we observe that at energies corresponding to

a valley the spatial dI/dV maps shows hollow ring, while at the peaks, the maps

have opposite contrast. This repetitive pattern suggests that each of the 4 peaks

has the same origin.
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Figure 6.10: (a) Topography image where the maps in (c) were taken. (b) STS
spectrum taken in the upper left corner of (a) and indicating the energies at which
the maps in (c) are taken. (c) STS maps across the area in (a) at energies marked
in (b).

6.3 Strain and electronic properties

Controlling strain in graphene is expected to provide new ways to tailor its elec-

tronic properties [156, 157]. Interestingly, as a result of strain in the lattice, the

electrons in graphene can behave as if an external magnetic field is applied. The

origin of this pseudo magnetic field is the fact that strain will introduce a gauge

field in the Hamiltonian which mimics the presence of a magnetic field. In order

to create a uniform field, however, the strain needs to be designed in particu-

lar configurations such as stretching graphene along three coplanar symmetric

crystallographic directions [157].

Experimentally the effect of strain on the graphene spectrum was addressed

by STM/STS measurements of graphene nanobubbles grown on a Platinum (111)
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surface [100]. On such samples, these peaks in tunneling spectroscopy reported

in [100] were interpreted as Landau levels originating from the pseudo magnetic

field.
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Chapter 7

Electronic properties of twisted graphene layers

Graphite is a stack of graphene layers arranged so that the A atoms of top layer

sit above the B atoms of the bottom layer and the B atoms of the top layer sit on

to of the center of a hexagon of the bottom layer. This type of stacking is called

AB stacking or Bernal stacking. Because the band structure of graphene stacks

is determined by the hoppings between neighboring carbon atoms, the stacking

order plays a major role in determining the electronic properties of the these

systems [123, 158, 159, 160, 161].

For a bilayer graphene one can have the situation that that A (B) atoms of

the top layer sit directly above A (B) atoms of the bottom layer and this is called

AA-stacking (Figure 7.1 (a)), however it is typically the case for the bilayers

extracted from graphite that the stacking order is Bernal or AB-stacking (Figure

7.1 (b)) [158].

When the two layers have an infinitesimally small rotation away from Bernal

stacking the system will significantly change its the electronic properties [149,

162, 163, 164]. For large angles of rotation it will mostly have properties of single

layer graphene, while for small angles the properties of the twisted layers become

more complex. This property opens up the possibility of an extra knob to tune

the electronic properties of graphene stacks.

With the new methods of preparing graphene by chemical vapor deposition it

became even more important to address questions regarding properties of rotated

layers since the growth mechanism seems to favor the formation of twisted layers
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[62, 61, 60].

In this chapter using scanning tunneling microscopy and spectroscopy, direct

evidence for the electronic structure of twisted graphene layers is presented. The

samples were suspended membranes of CVD grown graphene and graphite crys-

tals which contain areas with various rotation angles. In topographic images the

regions of twisted layers appear as superpatterns, Moiré patterns, that have pe-

riods which depend on the misorientation angle. It is found that the density of

states on twisted layers develops two Van Hove singularities that flank the Dirac

point at an energy that is proportional to the twist angle. In the presence of a

magnetic field the density of states develops quantized Landau levels (LL) char-

acteristic of massless Dirac fermions. From the energy and field dependence of

the LL sequence the Fermi velocity is obtained and it is found to be renormalized

by an amount that depends on the angle of rotation. These results are com-

pared with theoretical predictions. Parts of this chapter follow closely the text in

[33, 149, 164].

7.1 Moiré pattern

Rotational stacking faults are common and have been observed on graphite sur-

face already in early STM studies [165, 166, 167, 168]. Their electronic proper-

ties, however have been investigated both theoretically and experimentally only

recently with the discovery of graphene.

In this thesis, for studying the effect of twisting graphene layers two types

of samples were used: graphite surfaces with rotational stacking defects from

growth and graphene samples prepared by Chemical Vapor Deposition (CVD)

(Figure 7.2) which were provided to us by Prof. Andre Geim group at Manchester

University and Prof. Jing Kong at MIT.

Continuous films of large-area single to few-layer graphene were grown via
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Figure 7.1: (a) Schematic of two layers of graphene superposed in AA stacking.
(b) Schematic of two layers of graphene superposed in AB stacking (Bernal stack-
ing). (c) Emergent Moiré patten when rotating two layers of graphene by θ= 8o.
(d) Emergent Moire patten when rotating two layers of graphene by θ= 15o.

ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films

[62]. These films were transferred from Ni to a commercially available TEM gold

grid (Figure 7.2(a)). A 250nm layer of PMMA was spin-coated on graphene to

provide mechanical support, after which the graphene layers with PMMA on top

were released from the Ni film by etching in 1M FeCl3 solution. After the release,

the graphene layer covered with PMMA was transferred to a TEM grid. Acetone

was used to dissolve the PMMA and to release the graphene on the gold grid.

The samples were dried in a critical point dryer to prevent the membrane from



95

(a) (b) (c)

Figure 7.2: (a) Optical image of the graphene film transferred to a Au grid (3mm
diameter), (c) and (d) SEM image showing fully covered graphene membrane on
gold grid.

rupturing due to surface tension.

The consequence of superposing and rotating two identical periodic lattices

with respect to each other is the formation of Moiré patterns. Considering two

hexagonal lattices, the Moiré pattern emerging for a rotation angle θ= 8o is il-

lustrated in Figure 7.1(c), while for a larger twist angle, θ= 15o, the pattern

becomes finer as illustrated in Figure 7.1(d). A commensurate superstructure

is obtained for discrete families of angles that can be mathematically derived

[163, 169, 170, 171, 172, 173]. For example, one such family of angles is given by:

cos(θi) = (3i2 + 3i+ 1/2)/(3i2 + 3i+ 1) with i = 0, 1, 2, ....

The mathematical relation between the period of the superlattice created by

twisting the two layers, L and the rotation angle θ is:

L(θ) =
a

2sin( θ
2
)

(7.1)

where a ≈ 0.246nm is the lattice constant of graphene. From this we can see

that for small rotation angles, the Moiré superperiod is very large, while for large

angles the superpattern period is smaller.

STM topographic images can reveal areas where a Moiré pattern resulting

from the twist of graphene layers is formed. They appear as superpatterns with

triangular symmetry and periods larger than the atomic lattice of graphene such

as the ones illustrated in Figure 7.3. In Figure 7.3(a) a Moiré pattern is seen in
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(a) (b)

Figure 7.3: (a) STM topography image taken on the surface of graphite
(Vb=300mV, It=20pA) showing a Moiré pattern on top. scale bar 50nm. (b)
STM topography image taken on the surface of graphite (Vb=300mV, It=20pA)
showing the border of a Moiré pattern. Scale bar 10nm.

the top part of an STM topographic image on graphite surface and in Figure 7.3

(b) a similar situation is presented for the case of a Moiré patterns found on the

surface of a graphene film obtained by CVD.

Different angles will result in the formation of different patterns, as described

by Eq. (7.1). Experimentally this is demonstrated by STM images showing

superpatterns of different periodicity in samples with different twist angles. For

example, at rotation angle θ = 1.79o the superperiod is L = 7.7nm. The sequence

of four topographic maps in Figure 7.4 (a)-(d) have approximately the same field

of view and they correspond to rotation angles of 1.16o, 1.79o, 3.5o, 21o. For these

angles the corresponding periodicities are:L(1.16o) = 12nm, L(1.79o) = 7.7nm,

L(3.5o) = 4nm, L(21o) = 0.7nm. Figure 7.4 (b) (for θ= 1.79o) illustrates the fact

that the period of the atomic lattice of the graphene layer is much smaller than

the Moiré pattern and can be visible on top of it. Typically the height observed

in topography for the Moiré patterns is ≈ 0.1− 0.3nm.

To further demonstrate that the origin of the measured superpattern is the

presence of a twist between the top and underlying layer of graphene one can
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Figure 7.4: (a)(b)(c)(d) STM images for Moiré patterns corresponding to angles
1.16 o,1.79o, 3.5o, 21o, respectively [90, 149]. Scale bar in (a)-(c) 2nm, (d) 1nm.
The inset in (b) is an STM imaged zoomed into one of the Moire maxima showing
the C atoms lattice. Tunneling parameters:Vb=300mV, It=20pA.

compare the Fourier transform of the superpattern and the graphene pattern.

In Figure 7.5 such a comparison is presented. Figures 7.5(a) and (b) show the

STM images of the superpattern and zoomed in image of the C lattice within the

superpattern for rotation angle θ= 1.79o. If one takes the Fourier Transform (FT)

of the Moiré pattern in Figure 7.5(a) one obtains six bright spots at the corners of

a hexagon as shown in Figure 7.5(c). Similarly, for the graphene lattice in Figure

7.5(b) one obtains the FT in Figure 7.5(d). The two hexagons have different

sizes, the one of the Moiré pattern is much smaller. A schematic superposition

of the two is presented in Figure 7.5(e), where the FT of the Moiré pattern was

magnified for clarity. The angle between the two is 30o ± 2o consistent with the

expected 30o − θ/2 ≈ 29o.
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(d)

(e)

Figure 7.5: (a) STM image of a Moiré pattern corresponding to θ= 1.79o. (b)
Atomic resolution zoom-in of one of the bright spot in the Moiré pattern showing
the lattice of the C atoms. (c),(d) Fourier transforms of (a) and (b). (3) Sketch
of the superposition of the two FT in (c) and (d) showing the angle between them
29o ± 2o.

7.2 Van-Hove singularities

In momentum space, the consequence of the twist between two graphene layers

is the rotation of the corresponding Dirac cones with respect to each other as

sketched in Figure 7.6(b). With the same notation as previously, the distance

between the cones is given by:

∆K =
4π

3a
2sin(

θ

2
) (7.2)

At the intersections of the two Dirac cones their bands will hybridize, resulting

in the key feature of the band structure, the two saddle points in both the electron

and hole side [163, 90]. The theoretical calculation of the dispersion in the case

of rotation angle θ= 1.79o is presented in Figure 7.6(a).

In general, because the DOS ∝ 1

|∇E(~k)| , critical points in the band structure for

which |∇E(~k)| = 0 lead to diverging density of states, also known as Van Hove

singularities (VHS)[17]. For twisted graphene bilayers the Van Hove singularities

will not appear in the absence of interlayer coupling.

The VHS in the DOS, corresponding to the saddle points in the dispersion

shown in Figure 7.6(a), are presented in Figure 7.7(a). The distance between

the cones and implicitly between the saddle points is controlled by the rotation
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(a) (b)

Figure 7.6: (a) Calculated dispersion for the low energy regime for θ= 1.79o,
t⊥ ≈0.27eV. (b) Schematic illustration of the consequence of twist between the
layers in momentum space. The cones corresponding to the two layers are sepa-
rated by ∆K [90].

angle such that the distance in energy between the VHS depends monotonically

on the angle. For the small angle regime, 2o < θ < 5o the energy separation is:

∆E = h̄vF∆K − 2tθ, where tθ is the interlayer coupling.

Importantly, the rotation-induced VHSs are very robust and not restricted

to the case of two layers. This is illustrated by the plot presented in Figure

7.7(b) where the density of states was calculated for the case of a trilayer: the

top single layer of graphene is rotated above a Bernal-stacked bilayer. In this

case, qualitatively the VHS are preserved. This allows observation of the VHS on

multilayer graphene samples.

The theoretical curve [90] for the separation energies between the VHS is pre-

sented in Figure 7.7(c) indicating a monotonic increase with rotation angle. Ex-

perimentally, the STS taken on the Moiré patterns for different angles, 1.16o,1.79o,

3.5o are presented in Figure 7.8(a),(b) and (c). The presence of two pronounced

peaks is apparent and the separation between them is increasing with increasing

the rotation angle, which is in good agreement with the theoretical curve as seen

in Figure 7.7(c). For a given Moiré pattern the presence of the two peaks is
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observed across the entire area of the sample that has the superpattern.

An interesting situation arises in the limit of small angles [90]. Figure 7.9 (a)

shows the measured topography of the Moiré pattern corresponding to θ = 1.16o.

The spectrum in this case is presented in Figure 7.9(c) showing the two VHSs

separated by a small energy ∆E ≈ 12meV . It is known that when the Fermi

energy is close to the VHS, interactions, however weak, are magnified by the

enhanced density of states, resulting in instabilities, which can give rise to new

phases of matter [174, 175, 176, 90]. This is consistent with the observation that

the STS maps in Figure 7.9(b), taken at the energy of the singularity, suggest the

formation of an ordered state such as charge density wave. Such localization by

Moiré patterns is also predicted by theoretical calculations [169].

7.3 Renormalization of the Fermi velocity

While for sufficiently separated cones, the low energy electronic bands still de-

scribe Dirac fermions the slope of the Dirac cone is influenced by the Van Hove

singularities, leading to a renormalized Fermi velocity.

Theoretically the equation describing the velocity renormalization is [163]

vF (θ)

v0
F

= 1− 9(
tθ⊥

h̄v0
F∆K

)2 (7.3)

where v0
F is the bare velocity, vF (θ) is the renormalized value at an angle θ; the

interlayer coupling is tθ⊥ ≈ 0.4t⊥ and t⊥ is the interlayer coupling in the Bernal

stacked bilayer. For large angles θ > 15o the renormalization effect is small, but

the velocity is strongly suppressed for smaller angles.

One way to probe the Fermi velocity is by measuring the quantized electronic

spectrum in a magnetic field, the Landau levels. From the slope of their energy

dependence on field and index [149] vF is extracted .

Large angles



101

The results of STM and STS on twisted layer graphene with a large angle are

presented in Figure 7.10. The topography image of the area where the pattern

was identified is shown in Figure 7.10(a). The blue rectangle indicates the region

where the data presented further was taken. Figure 7.10(b) shows the pattern,

and the FT in the inset highlights the fact the both the superpattern and the

graphene lattice are visible. In order to investigate the electronic properties of the

twisted layers, the spectroscopy data as a function of magnetic field from B=2T

to B=10T was taken as summarized in Figure 7.10(c). It is found that when

the energies of the LL peaks are plotted as a function of the reduced parameter

sgn(N)
√
|N |B one obtains a linear dependence (Figure 7.10(d)). The extracted

Fermi velocity is vF = (1.10± 0.01)106m/s, which is again, consistent to a single

layer graphene.

Thus, the low energy electronic properties for this system of large twist angle

graphene layers are indistinguishable from those in a single layer.

Intermediate angles

Figure 7.11(a) shows the topography image on the surface of a CVD graphene

film. The region highlighted is a region where the Moiré pattern in Figure 7.11(b)

was identified. Two adjacent regions A and B are shown in the topography image

of Figure 7.11(c). In region A, a Moiré pattern with period of L = 4.0nm is

resolved, while in region B, the pattern is not resolved indicating an unrotated

layer (or a much smaller period not resolved within the experimental resolution).

In the absence of a magnetic field, within the energy range −600meV < E <

600meV , STS shows two VHS in region A and a V-shaped spectrum for region

B.

In magnetic field, from B=1T to B=8T in both regions STS shows LL se-

quences as plotted in Figure 7.12(a) and (b) for region A and B respectively.

From the dependence of the LL energies on field and index ( Figure 7.12(c)(d))

we see that the LL sequences are those specific to massless Dirac fermions with
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different Fermi velocities: 0.87x106m/s and 1.10x106m/s for regions A and B

respectively. This already indicates that the twist angle can have a strong effect

on the electronic spectrum and can lead to renormalization of the carrier velocity.

Very small angles

The regime of very small angles, θ < 2o is more complex since the VHSs

become so dominant that massless Dirac fermions no longer describe the electronic

states. Furthermore, in magnetic field, the lengthscale of the cyclotron orbits,

magnetic length, becomes comparable to the size of the pattern.

Figure 7.13 presents the case of two patterns that are created by rotation

angles θ = 1.2o and θ = 1.8o. The topographic images of these two cases are shown

in Figure 7.13 (a) and (b) respectively. For the case of θ = 1.2o the separation

between VHS is ≈ 12meV . The evolution of the spectrum with magnetic field,

presented in Figure 7.12 (c) shows the comparison between the bright and dark

regions of the superpattern.

At higher fields, at energies near the VHSs, several peaks develop, but one

cannot identify the sequence specific to the sequence expected for single layer

graphene. The situation is similar for θ = 1.8o as indicated by Figure 7.12 (d)

where the field dependence of the spectrum is presented from B=0T to B=12T.

Summing up, one can now plot the theoretical curve described by Equation

7.3 together with the velocities found experimentally as shown in Figure 7.14. At

large angles the velocity is not renormalized, for angles around 3o a renormaliza-

tion of ≈ 20%, while for smaller angles the situation is more complex.

It is important to note that the mechanism for renormalization of the Fermi

velocity in the presence of VHS is different from the case of graphene flakes on

graphite [69]. In the twisted layers the renormalization is a sensitive function of

the misorientation angle. In contrast, the velocity renormalization observed in

the the case of graphene on graphite is due to electron-phonon interaction [69].

For a more detailed analysis of the Fermi velocity one can separately calculate
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vF for the electron and hole side of the spectrum. The results for the case of large

angle in Figure 7.10(d) together with the data from regions A and B of Figure

7.12 are presented in Figure 7.14(b). In all cases the electrons have a higher

velocity than the holes. In the large angle case, where the averaged velocity is

1.1× 106m/s we obtain a value of 1.2× 106m/s for electrons and 1.02× 106m/s

for holes. In the case of region A, the electrons have 1.0× 106m/s, the holes have

0.76× 106m/s, and the average is 0.87× 106m/s. The origin of this asymmetry

could be related to an enhancement of next-nearest neighbor hopping in the case

of twisted layers.

In the previous discussion regarding velocity renormalization we studied the

Landau quantization in the twisted layers systems below the energy scales of the

VHS. Recent theoretical predictions [177, 178, 179, 180] investigate the full LL

spectrum. For a given rotation angle one regime is below the energy range of

the VHS. In this case it is predicted in agreement with the previous experimental

findings that the LL sequence of a twisted bilayer is the one of Dirac Fermions

with the renormalized Fermi velocity and double the degeneracy. Above the VHS

however the degeneracy of the two layers is broken.

Experimentally for medium angles we can extend the energy range for STS to

include the VHS as presented in Figure 7.15 for the regions (a) and (b) respectively

of Figure 7.12 and Figure 7.11. The data is suggestive of the fact that in Figure

7.15(b) at larger energies, closer to the VHS, the LL sequence is strongly affected

by the presence of the VHS. To compare with the theoretical predictions and

study the degree of splitting, cleaner samples, with LL sequences well defined at

lower fields are necessary.

The results obtained on Moiré patterns on CVD graphene and graphite differ

from the ones on epitaxially grown graphene on SiC [99, 181] which report a

single layer graphene spectrum regardless of the twist angle. One clue towards

understanding these results can be found in the unusual presence of a continuous
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atomic honeycomb structure across the entire Moiré superstructure in the case

of epitaxial graphene. This is in contrast to Moiré patterns generated by two

rotated layers where one sees a correlation between the Moiré pattern and the

atomic structure which changes from triangular, to honeycomb, or in between the

two, depending on the local stacking within the superpattern [168, 90].

If in addition to the twist of the top most layer, a Moiré pattern is present

under the first layer (layer 2 rotated with respect to layer 3), it is expected that a

complex superstructure involving several Moiré patterns will appear. This is the

case in some of the experiments reported on epitaxially grown graphene on SiC

[182]. In the case of the CVD graphene samples or graphite such multiple Moiré

patterns were not observed. Therefore, the previously discussed features (VHS,

reduction in Fermi velocity) are consequences of twisting only the top most layer

with respect to the underlying single layer graphene or Bernal-stacked multilayer

graphene.

Recently also Raman experiments have been used to investigate twisted layers

[183, 183, 184, 185, 186] confirming the presence of VHS and renormalization of

the velocity for intermediate angles.

Electrical transport in twisted bilayers [131, 130, 187] in the quantum Hall

regime confirmed that in the case of large angle twist the two layers indeed de-

couple and behave as single layer graphene in the low energy regime.
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(a)

(b)

(c)

Figure 7.7: (a) DOS calculated for the dispersion in Figure 7.6(a). (b) DOS
calculated for the case of single layer rotated above a bilayer. (c) Theoretical
curve and experimental values for the dependence of the the energy between
VHS and rotation angle [90].
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a) b) c) 

Figure 7.9: (a)Topography of a Moiré pattern corresponding to rotation angle
θ = 1.16o. (b) dI/dV map taken at the area in (a) at energy E=1meV. (c) STS
on the peaks and valleys of (a).
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Figure 7.10: (a) STM topography of a region with a large angle Moiré pattern,
θ = 21.8o. The blue rectangle indicated the position where the data in (ac) was
taken. (b) Atomic resolution image of the superpattern observed in the region
indicated by the blue rectangle in (a). The corresponding period is L = 0.7nm.
Inset: Fourier Transform showing both the superlattice and the atomic lattice
rotated with respect to each other (c) STS for indicated magnetic fields showing
the sequence of Landau Levels measure in the point indicated in (a). d) Linear

energy dependence of the LLs in (c) on the reduced parameter sgn(N)
√
|N |B.
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Figure 7.11: (a)STM topography image of a region where the Moiré pattern was
observed in the highlighted square. (b) Topography image taken at the region
with a Moiré pattern. The inset represents the FT of the patter. (c) Topography
image showing the border of the superpattern , A, with another region on the
graphene film, B. (d) STS comparison between the two regions; region A shows
VHS.
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Figure 7.13: (a),(b) Topography images of superpatterns corresponding to rota-
tion angles θ = 1.2o and θ = 1.8o respectively. (c) STS for increasing values of
magnetic fields for the region in (a) for the two situations of bright and dark
regions of the superpattern. (d) STS for increasing values of magnetic fields for
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Chapter 8

Electronic properties at grain boundaries

Topological defects (ex. missing atoms, dislocations, grain boundaries etc.) are

inherently present, due to growth methods, in any crystalline material such as

graphite. Early STM experiments have already identified that wire-like peri-

odic structures often observed on the graphite surface represent the boundaries

between two misoriented grains of the crystal [188, 189, 190, 191, 192]. Al-

though these studies analyzed the topography features associated with the pres-

ence of a grain boundary, only with the recent interest in graphene theoretical

[193, 194, 195, 196, 197] and experimental work [198, 199, 200] addressed questions

regarding the electronics properties .

Furthermore, recent experimental efforts targeted at growing wafer-size graphene

found that the films grown by chemical vapor deposition method are polycrys-

talline. Transmission electron microscopy studies visualized the atomic details of

such defects [201, 202, 203] and demonstrated that the typical sizes of the single

crystal domains are several microns with a large range of misorientation angles

between grains.

The presence of such grain boundaries can affect the transport properties

[194, 63] and thus understanding their electronic properties is necessary. Magnetic

properties can also be affected by grain boundaries in graphite/graphene films

[204, 205, 199].

In this chapter Scanning Tunneling Microscopy and Spectroscopy experiments

at low temperature and in magnetic field are used to characterize the electronic
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states near grain boundaries on the surface of graphite. Topographic surface

maps show the grain boundaries as narrow stripes within which the lattice is

reconstructed into a periodic pattern whose period is determined by the relative

orientation between adjacent grains. In spectroscopy the grain boundaries pro-

duce sharp peaks in the density of states at energies that are characteristic of the

twist angle between adjacent grains. Spatial maps of the density of states at these

peak energies show that the peaks correspond to electronic states that are local-

ized on the grain boundaries. Measurements of these localized electronic states,

their evolution with magnetic field and twist angle between grains are presented.

The experimental results are also compared with theoretical density functional

theory (DFT) calculations. Parts of this chapter follow closely the text in [206].

8.1 Grain boundaries on the surface of graphite

8.1.1 Topography

Grain boundaries (GB) are interfaces between two misaligned grains in a material.

The family of possible grain boundaries can be theoretically classified and a sketch

of one of the simplest realized grain boundaries in graphene is presented in Figure

8.1(a). This is a symmetric GB so that the left and right grains are rotated by

the same amount with respect to the boundary, it is composed of sequences of

alternating heptagons and hexagons and it can be thought of as an array of

dislocations (denoted by T in the figure). DFT calculations [207] suggest that

this is one of the most stable grain boundaries in graphene.

To characterize a GB between two graphene grains we use the following con-

vention depicted in Figure 8.1(b): a vertical axis is drawn along the boundary and

the corresponding horizontal axis is perpendicular to it. The angle corresponding

to the grains to the left and right with respect to the horizontal axis are θL and

θR respectively. The angle that will characterize the boundary is θ = θL + θR
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We use STM topographic images to identify a grain boundary and STS to

learn about the local density of states both with and without magnetic field. In

topography images, grain boundaries appear on the surface of graphite as long,

continuous wires similar to the one shown in Figure 8.1(c) and (d). Note that

in Figure 8.1(c) perpendicular to the boundary there are two steps in graphite

which can be easily distinguished from a GB by the fact that the atomic lattice

is not continuous across them.

Importantly, we can already infer from the topography images that the grain

boundaries are not only restricted to the top layer of graphite. If this was not

the case, we would necessarily observe a Moiré pattern to the left of right of the

boundary since due to the presence of the boundary the stacking can no longer

be Bernal between the top and second layer. The absence of the Moiré pattern,

therefore, suggests that rather than a grain boundary at the surface one has a

plane of grain boundaries going deep into the graphite crystal [199]. This could

have an effect on the electronic properties of the observed boundaries and it will

be discussed in a later section.

When zooming in on a GB we often find a periodic pattern as the one shown in

Figure 8.1(e) which was taken on the grain boundary presented in Figure 8.1(c).

In this case, the rotation angle between the grains is: θ = θL + θR ≈ 11o + 10o ≈

21o. This is most likely the symmetric structure presented in Figure 8.1(a). In

comparison, the theoretical calculation for the 21o boundary considering a bias

voltage Vb = 300meV is presented in Figure 8.1(f) and it is in good agreement

with the experimental topography.

Similarly to the case of Moiré patterns the period of the boundary pattern,

D, is given by the relationship:

D(θ) =
a

2sin( θ
2
)

(8.1)

where a ≈ 0.246nm is the lattice constant of graphene and θ is the angle of
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θ=21

Figure 8.1: (a) Schematic of the atomic details at a grain boundary for θ = 21o

where the boundary is a sequence of heptagons and pentagons (Adapted from
[207]). (b) Schematic of the convention for measuring the angle of a grain bound-
ary. (c),(d) Topography image of a grain boundary on the surface of graphite. (e)
Topography image of a grain boundary θ = 21o (Vb=300meV, It=20pA). (f) The
theoretical calculation for a grain boundary θ = 21o at bias voltage Vb = 300meV .

the grain boundary as defined before. Thus, for small tilt angles, the periodicity

is very large, while for large angles it becomes smaller.

This is observed experimentally as exemplified in Figure 8.2 where measured

grain boundaries at different angles are presented together with their respective

atomically resolved GB as insets. For θ = 10o the measured grain boundary

has a periodicity of ≈ (1.8 ± 0.3)nm which is in agreement with the expected

D(10o) = 1.4nm. For θ = 21o the experimental value (0.7± 0.3)nm also in good

agreement with D(21o) = 0.6nm. From the periodicity and rotation angle, the
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Figure 8.2: (a)-(d) STM topographs of grain boundaries on the surface of graphite
for different angles as labeled. The insets are respective atomically resolved
boundaries.

boundary with θ = 32o in Figure 8.2(c) is most likely also one corresponding to an

arrangement with heptagons and pentagons. This, together with the symmetric

GB, θ = 21o, are predicted to be the most energetically favorable boundaries

[207].

Experimentally we find that on the surface of graphite the most abundant

grain boundaries are irregular such as the one in Figure 8.2(d) which appears as

a zig-zag pattern. Such boundaries are referred to as amorphous and they are a

result of additional disorder (such as relaxation of the lattice in the boundary)

beyond the simple model of a periodic array of dislocations [195]. The relaxation

of the lattice allows for for an extension of the available orientations of the grains.

Furthermore, when one images a grain boundary it is often the case that only

some portions of the boundary are free of disorder, while for others the tunnel

junction is not stable. This can be explained by the fact that the grain boundaries

have an enhanced chemical reactivity [208].

8.1.2 Electronic properties

Previous STM/STS experiments addressing the question of electronic spectrum

of grain boundaries on graphite find that typically peaks in the density of states

are associated with the presence of a GB [198, 199]. However, direct evidence of
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Figure 8.3: (a) STS spectra on the grain boundary (red curve) and outside the
grain boundary on the graphite surface (black curve) for the grain boundary in the
inset θ = 10o. The separation between the observed peaks on the grain boundary
is 106meV . (b) Theoretical calculation for the DOS versus energy in the case of
grain boundaries of θ = 7.3o (red curve) and θ = 9.4o (green curve). (c) STS
spectra on the grain boundary (black curve) and outside the grain boundary on
the graphite surface (red curve) for the grain boundary in the inset θ = 21o.
The peak measured on the grain boundary is situated at ≈ 500meV . (d)(b)
Theoretical calculation for the DOS versus energy in the case of grain boundaries
of θ = 21o [206].

the presence of new electronic states that are associated with the GB is lacking.

In the following we present STS results on grain boundaries of different angles

and a comparison with theoretical DFT calculations.

In Figure 8.3(a) the data taken on the grain boundary in Figure 8.2(a) is

presented. The spectroscopy on the grain boundary shows two very pronounced

peaks separated by E ≈ 106mV . We note in connection to the discussion regard-

ing Van Hove singularities on Moiré patterns, that if the origin of these peaks

were VHS [164] the angle would have to be much smaller, θ ≈ 2o and therefore

the period of the structure much larger ≈ 10nm. Therefore, it is the presence
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of the grain boundary that is most likely responsible for the existence of the two

peaks in the spectrum. In contrast, outside the grain boundary, the spectrum

(black line) does not display any peaks, but it is approximately V-shaped, as is

typical for a graphite surface.

Theoretical ab initio calculations for the density of states in the cases of two

angles close to the measured 10o are presented in Figure 8.3(b). The green line

corresponds to θ = 9.4o and the red line to θ = 7.3o. The two peaks close to

50− 100meV resemble the experimentally measured spectrum.

The spectra on the grain boundary and off the boundary for the case of θ =

21o are compared in Figure 8.3(c). In this case we find that while outside the

grain boundary the spectrum is again typical of the graphite surface and has no

peak features, on the boundary a strong peak is present on the electron side at

≈ 500meV .

The theoretical calculation in Figure 8.3(c) does indeed show for the 21o GB

the presence of a peak at ≈ 400 − 500meV , however the striking difference is

the presence of an additional peak at the negative energy side of the spectrum.

One possible explanation for the absence of this peak in experiment could be

that it is located at even higher energies than −800meV . Another scenario could

be related to the key difference between the experimental data presented and

the theoretical consideration: while the experiments are performed on graphite

surface, the theory only takes into account single layer graphene joined at a grain

boundary. So the number of layers and the fact that the grain boundary can be

layers deep could affect the electronic structure.

In order to understand what is the influence of such a more realistic scenario,

a calculation of the DOS was done for a stack of 2 layers as shown in the inset

in Figure 8.4. The first important observation is that it is possible to stack two

grain boundaries on top of each other while preserving the Bernal stacking for

graphene on both side as illustrated. The resulting DOS shown in Figure 8.4
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(red), is compared to the single layer case (green). The peak on the electron side

is in fact more robust than the one on the hole side. This suggests that going

to larger numbers of layers, the changes in nearest neighbor hoping could result

in an electron -hole asymmetry which could explain the discrepancy between

experiment and theory.

In the case of the boundary θ = 32o (Figure 8.2(c)) we also observe a peak at ≈

500meV on the positive energy side of the dI/dV which is in good agreement with

the theoretical calculations [207]. For this case also the spectrum is asymmetric

and shows a peak on the hole side.

Figure 8.4: Theoretical calculation for the case of a constructed model of 21o

grain boundary in bilayer graphene. The inset is the atomic arrangement in such
a system. The DOS plot compared the calculation for this bilayer case (red curve)
as well as for comparison for a single layer case (green curve) [206].

To understand the spatial variation of the peak feature associated with the

spectrum on the GB, local dI/dV maps were taken. The spectrum was acquired

on a grid of points across the region having a grain boundary and for a given

energy the value for the dI/dV was plotted. Such maps are presented in Figure

8.5 where the bright yellow represents high values of the dI/dV and dark brown

represent low value.

On the hole side of the spectrum the map does not change much compared to

the one presented in Figure 8.5(a) at −400meV . On the electron side for energies

around the peak, a high intensity is developed at the region of the boundary as
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seen in Figure 8.5(a) for 456meV and 505meV and it disappears at even higher

energies 700meV . This shows that the states that give rise to the peak in the

DOS at ≈ 500meV are localized in space at the position of the grain boundary.

Also this shows that the peak feature is indeed present across the entire grain

boundary.

(a)

(b) (c)

Figure 8.5: (a) dI/dV maps for the grain boundary θ = 21o at the corresponding
energies. (b) Dependence of the STS spectrum on the distance away from the
boundary. The topographic image shows the location of the boundary together
with the points where the spectra were taken. The corresponding dI/dV spectra
are shown below. (c) Dependence of the STS spectra at the grain boundary on
magnetic field for B = 0T, 4T, 8T, 12T

In addition we can look at the peak intensity as a function of position with

respect to the boundary as shown in Figure 8.5(b). The topographic image shows

the grain boundary together with the points where the STS was recorded away
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from the boundary and close to the boundary. The colors of the STS curves

presented match the color in the topographic map. We find that the intensity of

the peak is decreasing away from the grain boundary on length scales of nm which

is also consistent with the fact that the peak in only localized at the boundary

(Figure 8.5(a)).

Theoretical predictions suggest that the peak should decay exponentially away

from the boundary [207, 195] and this is consistent with our observation: within

1− 2nm the peak corresponding to the grain boundary completely disappears in

the graphite regions. We note that such localized states were observed also on the

more irregular grain boundaries of Figure 8.2(d), however for a particular energy

only patches of the irregular boundary will have localized states. This is likely

the due to the fact that different sections of the GB have different tilt angle and

thus localized states at different energies corresponding to the respective angle.

Motivated by some theoretical [209, 210, 211] and experimental [199] evidence

hinting at the presence of magnetism in graphene due to defects, adatoms etc. is

also interesting to investigate what happens in magnetic fields to the electronic

spectrum in grain boundaries.

The STS spectra obtained for magnetic fields 4T, 8T, 12 T are presented in

Figure 8.5(c). Within the experimental resolution (≈ 20meV ), we find no change

in the spectrum, the major feature remains, for all fields, the discussed peak

around the energy 500meV .

In summary, STM/STS was used to characterize the electronic properties

of grain boundaries on the surface of graphite. Using topography images the

grain boundaries are identifies as narrow structures that have, when zooming

in, periodic patterns with period determined by the relative orientation of the

adjacent grains. Using STS we find that the signature of the grain boundaries are

sharp peaks at energies specific to the angle characterizing the GB. The position

in energy of such states is in agreement with the theoretical predictions. The



120

fact that the states that produce the peaks in the DOS are localized at the grain

boundaries is demonstrated experimentally by measuring the spatial maps of the

density of states. Understanding the electronic properties of the grain boundaries

is important for predicting the transport properties of large scale graphene films

grown by chemical methods and potentially open new opportunities for the design

of graphene based electronic devices.
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Chapter 9

Concussions and outlook

In summary, the experiments described in this thesis are aimed at understanding

the electronic properties of graphene using scanning tunneling microscopy and

spectroscopy both without and in the presence of a magnetic field.

Electronic properties of graphene with different degree of disorder

Directly relevant to understanding electronic devices are graphene samples

on insulating substrate where, due to substrate-induced potential fluctuations, it

is found that the electronic properties are affected by disorder. The surface of

graphene is rippled, follows the corrugations of the substrate, and the density of

states deviates from a perfect V-shape. In magnetic field, the quantized energy

levels are well defined only above a critical field which corresponds to a magnetic

length smaller than the typical disorder lengthscale.

We were able to access the carrier density dependence of the spectrum and

we have observed pinning of the Fermi level within the LL which was filled.

These experiments give access to the physics of graphene in the quantum Hall

effect regime beyond the states at the Fermi level as is the case in transport

experiments.

In addition, in areas where the charged impurities are isolated we investigated

their effect on the LL spectrum. We find that the Coulomb potential created

by charged impurities can lift the degeneracy of the Landau levels. Using the

back-gate voltage we tune the strength of the impurity potential.

Reducing the substrate-induced disorder allows one to explore intrinsic graphene



122

physics. Towards this goal, currently we have fabricated graphene devices placed

on hexagonal boron nitride flakes which are less intrusive.

On a minimally intrusive substrate, decoupled graphene flakes on graphite,

we observed a distinctive signature of massless Dirac fermion quasiparticles: a

V shaped density of states that vanishes at the Dirac point, and in magnetic

field a sequence of sharp quantized Landau level sequence that is characteristic

of massless Dirac fermions. In this system we were able to determine the effect

of interlayer coupling in regions where the graphene flakes are weakly coupled to

the substrate.

One of the biggest challenges for doing STM on graphene devices is finding

micron size samples without optical microscope access at low temperatures. That

was overcome by developing a method based on capacitance signal between tip

and sample.

Electronic properties of twisted graphene layers.

Both in graphite and in graphene grown by chemical vapor deposition (CVD)

one can find Moiré superpatterns created by the rotation of the top graphene

layer with respect to the rest. STM/STS allowed characterizing the influence of

the twist between layers on the band structure by measuring both the angle (from

the period of the pattern) as well as the density of states.

The Dirac cones corresponding to the two twisted layers will rotate with re-

spect to each other in momentum space and will hybridize at to two saddle points.

These saddle points will give rise to two Van Hove singularities in the density of

states. We experimentally demonstrate their existence and their monotonic in-

crease in energy separation as a function of rotation angle.

Moreover, when measured in the presence of magnetic field, from the spacing

and field dependence of the LL, the Fermi velocity is found to depend strongly on

the twist angle. For intermediate angles the velocity is renormalized, for angles

close to 30◦ the velocity is unchanged. An interesting regime is reached at very
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small rotation angle (<2◦) where the spectra are dominated by twist-induced van

Hove singularities.

Electronic states near grain boundaries on the surface of graphite were char-

acterized. Topographic surface maps show the grain boundaries as narrow stripes

within which the lattice is reconstructed into a periodic pattern whose period is

determined by the relative orientation between adjacent grains. In spectroscopy

the grain boundaries produce sharp peaks in the density of states at energies that

are characteristic of the misorientation angle between adjacent grains. Spatial

maps of the density of states at these peak energies show that the peaks corre-

spond to electronic states that are localized on the grain boundaries. We present

measurements of these localized electronic states, their evolution with magnetic

field and misorientation angle between grains. The experimental results are com-

pared with theoretical calculations.

Outlook

Following up on the ideas of the results presented above, the immediate in-

teresting questions that need to be addressed are related to striving to minimize

the effects of disorder and probing intrinsic properties of graphene.

Mechanically exfoliated graphene samples onto Si/SiO2 can be significantly

improved by removing the oxide under graphene as demonstrated by transport

experiments [87]. Such clean samples would unveil electron correlation effects in

graphene. Lifting the degeneracies of the Landau levels (LL) leads to formation

of intriguing broken-symmetry states which so far have only been addressed by

electrical transport measurement and a clear understanding of their nature is

missing. To complement the transport techniques, by spatially resolving the

density of states and the wave functions of the LL, STM/STS would give more

insight into the origin of the correlated electronic states.

The gapless band structure of graphene is protected by the lattice symme-

tries and therefore any local modifications of the lattice will locally break the



124

symmetry and alter the band structure. Hence, vacancies, adatoms, edges, grain

boundaries, etc. are likely to induce the formation of various interesting electronic

states. In particular of great importance to the physics of the Quantum hall ef-

fect are graphene edges. The two high symmetry crystallographic directions

in graphene are armchair and zigzag. These two types of edges have different

properties due to the different boundary conditions that they impose on the wave

function. For the zigzag case the wave function vanishes on one sublattice, while

for the armchair it vanishes on both sublattices. The zigzag edges have attracted

attention because they are expected to have localized surface electronic states Us-

ing combined STM and magneto-transport, one can envision a method to control

and study graphene edges in the following way. It was observed that upon cur-

rent annealing of graphene devices (passing a large current through the graphene

device) their quality can improve significantly. Often, by scanning electron mi-

croscope investigations, the change in quality was linked to edge reconstruction

[212].

New experimental developments described in the previous chapters make it

possible to create stacked heterostructures of 2D materials that can have

novel properties. Thus far, this direction is both theoretically and experimen-

tally in its infancy. One simple example is depositing graphene layers of different

thicknesses on a superconducting material With the use of nanofabrication tech-

niques, these stacks can be made into gated devices introducing an extra knob,

the charge carrier density. The heterostructures offer a very large parameter space

and therefore are very promising for the design of materials with unique physical

properties.

The novel findings in this thesis about tuning the electronic properties

of graphene stacks by twisting them away from Bernal stacking together with

the experimental possibility of fabricating heterostructures, open up interesting

possibilities of exploring the properties of such new systems. In particular the
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presence of Van Hove singularities at energies that are within reach using elec-

trostatic gating, are particularly promising for observing new states of matter

(superconductivity, charge density waves etc.) in graphene.
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Chapter 10

List of abbreviations

AFM Atomic Force Microscope

ARPES Angle Resolved Photoemission Spectroscopy

BN Boron Nitride

CVD Chemical Vapor Deposition

CNP Charge Neutrality Point

DOS Density Of States

DFT Density Functional Theory

DP Dirac Point

FT Fourier Transform

IQHE Integer Quantum Hall Effect

FQHE Fractional Quantum Hall Effect

HOPG Highly Oriented Pyrolitic Graphite

LDOS Local Density Of States

PMMA Poly(methyl methacrylate)

PVA Polyvinyl alcohol

STM Scanning Tunneling Microscopy

STS Scanning Tunneling Spectroscopy

SG Suspended Graphene

TEM Transmission Electron Microscope
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[9] T. Chakraborty and P. Pietiläinen. The quantum Hall effects: integral and
fractional. Springer-verlag, 1995.

[10] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
Geim. The electronic properties of graphene. Rev. Mod. Phys., 81(1):109–
162, Jan 2009.

[11] DSL Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty.
Properties of graphene: a theoretical perspective. Advances in Physics,
59(4):261–482, 2010.

[12] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May
1947.

[13] R. Saito, G. Dresselhaus, M.S. Dresselhaus, et al. Physical properties of
carbon nanotubes, volume 35. World Scientific, 1998.



128

[14] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón. Tight-binding de-
scription of graphene. Phys. Rev. B, 66:035412, Jul 2002.

[15] MI Katsnelson, KS Novoselov, and AK Geim. Chiral tunnelling and the
klein paradox in graphene. Nature Physics, 2(9):620–625, 2006.

[16] G. Grosso and G.P. Parravicini. Solid State Physics. Academic Press, 2000.

[17] L. Van Hove. The occurrence of singularities in the elastic frequency distri-
bution of a crystal. Physical Review, 89(6):1189, 1953.

[18] M. O. Goerbig. Electronic properties of graphene in a strong magnetic field.
Rev. Mod. Phys., 83:1193–1243, Nov 2011.

[19] G.W. Semenoff. Condensed-matter simulation of a three-dimensional
anomaly. Physical Review Letters, 53(26):2449–2452, 1984.

[20] II Rabi. Das freie elektron im homogenen magnetfeld nach der diracschen
theorie. Zeitschrift für Physik A Hadrons and Nuclei, 49(7):507–511, 1928.

[21] A.K. Geim and K.S. Novoselov. The rise of graphene. Nature materials,
6(3):183–191, 2007.

[22] M.I. Katsnelson. Graphene: carbon in two dimensions. Materials today,
10(1):20–27, 2007.

[23] A.K. Geim. Graphene: status and prospects. science, 324(5934):1530–1534,
2009.

[24] A.K. Geim and P. Kim. Carbon wonderland. Scientific American,
298(4):90–97, 2008.

[25] N. Savage. Materials science: Super carbon. Nature, 483(7389):S30–S31,
2012.

[26] J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanen-
baum, J.M. Parpia, H.G. Craighead, and P.L. McEuen. Electromechanical
resonators from graphene sheets. Science, 315(5811):490–493, 2007.

[27] C. Lee, X. Wei, J.W. Kysar, and J. Hone. Measurement of the elastic prop-
erties and intrinsic strength of monolayer graphene. Science, 321(5887):385–
388, 2008.

[28] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia,
H.G. Craighead, and P.L. McEuen. Impermeable atomic membranes from
graphene sheets. Nano letters, 8(8):2458–2462, 2008.

[29] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and
C.N. Lau. Superior thermal conductivity of single-layer graphene. Nano
Letters, 8(3):902–907, 2008.



129

[30] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour. Growth of
graphene from solid carbon sources. Nature, 468(7323):549–552, 2010.

[31] F. Schedin, AK Geim, SV Morozov, EW Hill, P. Blake, MI Katsnelson, and
KS Novoselov. Detection of individual gas molecules adsorbed on graphene.
Nature materials, 6(9):652–655, 2007.

[32] G. Li, A. Luican, and E.Y. Andrei. Self-navigation of a scanning tunneling
microscope tip toward a micron-sized graphene sample. Review of Scientific
Instruments, 82:073701, 2011.

[33] Adina Luican-Mayer and Eva Y. Andrei. Probing dirac fermions in
graphene by scanning tunneling probes. preprint, 2012.

[34] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scan-
ning tunneling microscopy. Phys. Rev. Lett., 49(1):57–61, Jul 1982.

[35] J. Tersoff and D. R. Hamann. Theory and application for the scanning
tunneling microscope. Phys. Rev. Lett., 50:1998–2001, Jun 1983.

[36] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope.
Phys. Rev. B, 31(2):805–813, Jan 1985.

[37] C.J. Chen. Introduction to scanning tunneling microscopy, volume 4. Ox-
ford University Press, USA, 1993.

[38] J.A. Stroscio and W.J. Kaiser. Scanning tunneling microscopy, volume 27.
Academic Pr, 1993.

[39] R. Wiesendanger. Scanning probe microscopy and spectroscopy: methods
and applications. Cambridge Univ Pr, 1994.

[40] S. H. Pan, E. W. Hudson, and J. C. Davis. [sup 3]he refrigerator based
very low temperature scanning tunneling microscope. Review of Scientific
Instruments, 70(2):1459–1463, 1999.

[41] CR Dean, AF Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
T. Taniguchi, P. Kim, KL Shepard, et al. Boron nitride substrates for high-
quality graphene electronics. Nature nanotechnology, 5(10):722–726, 2010.

[42] Ke Xu, Peigen Cao, and James R. Heath. Scanning tunneling mi-
croscopy characterization of the electrical properties of wrinkles in exfo-
liated graphene monolayers. Nano Letters, 9(12):4446–4451, 2009. PMID:
19852488.

[43] E. Stolyarova, K.T. Rim, S. Ryu, J. Maultzsch, P. Kim, L.E. Brus, T.F.
Heinz, M.S. Hybertsen, and G.W. Flynn. High-resolution scanning tun-
neling microscopy imaging of mesoscopic graphene sheets on an insulating
surface. Proceedings of the National Academy of Sciences, 104(22):9209,
2007.



130

[44] V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte, M. Schmidt,
R. Rückamp, M. C. Lemme, and M. Morgenstern. Intrinsic and extrin-
sic corrugation of monolayer graphene deposited on sio2. Phys. Rev. Lett.,
102(7):076102, Feb 2009.

[45] M. Ishigami, JH Chen, WG Cullen, MS Fuhrer, and ED Williams. Atomic
structure of graphene on SiO2. Nano Lett, 7(6):1643–1648, 2007.

[46] Adina Luican, Guohong Li, and Eva Y. Andrei. Quantized landau level
spectrum and its density dependence in graphene. Phys. Rev. B, 83:041405,
Jan 2011.

[47] KS Novoselov, D. Jiang, F. Schedin, TJ Booth, VV Khotkevich, SV Mo-
rozov, and AK Geim. Two-dimensional atomic crystals. Proceedings
of the National Academy of Sciences of the United States of America,
102(30):10451, 2005.

[48] Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim. Experimental observa-
tion of the quantum Hall effect and Berry’s phase in graphene. Nature,
438(7065):201–204, 2005.

[49] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, JH Smet, K. Von Klitz-
ing, and A. Yacoby. Observation of electron–hole puddles in graphene using
a scanning single-electron transistor. Nature Physics, 4(2):144–148, 2007.

[50] Y. Zhang, V.W. Brar, C. Girit, A. Zettl, and M.F. Crommie. Origin of
spatial charge inhomogeneity in graphene. Nature Physics, 5(10):722–726,
2009.

[51] JH Chen, C. Jang, MS Fuhrer, ED Williams, and M. Ishigami. Charged
impurity scattering in graphene. Arxiv preprint arXiv:0708.2408, 2007.

[52] CR Dean, AF Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe,
T. Taniguchi, P. Kim, J. Hone, and KL Shepard. Multicomponent fractional
quantum hall effect in graphene. Arxiv preprint arXiv:1010.1179, 2010.

[53] C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, and T.F. Heinz. Ultraflat
graphene. Nature, 462(7271):339–341, 2009.

[54] S. Hattendorf, A. Georgi, V. Geringer, M. Liebmann, and M. Morgenstern.
Graphene on mica probed by scanning tunneling microscopy: networks of
aba and abc stacked graphene and corrugation of the monolayer. Arxiv
preprint arXiv:1207.5427, 2012.

[55] A. Luican, G. Li, and E.Y. Andrei. Scanning tunneling microscopy and
spectroscopy of graphene layers on graphite. Solid State Communications,
149(27-28):1151–1156, 2009.



131

[56] P. Neugebauer, M. Orlita, C. Faugeras, A.L. Barra, and M. Potemski. How
perfect can graphene be? Physical review letters, 103(13):136403, 2009.

[57] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N.
Marchenkov, E.H. Conrad, N. Phillip, et al. Ultrathin epitaxial graphite: 2d
electron gas properties and a route toward graphene-based nanoelectronics.
The Journal of Physical Chemistry B, 108(52):19912–19916, 2004.

[58] AJ Van Bommel, JE Crombeen, and A. Van Tooren. Leed and auger elec-
tron observations of the sic (0001) surface. Surface Science, 48(2):463–472,
1975.

[59] I. Forbeaux, J.-M. Themlin, and J.-M. Debever. Heteroepitaxial graphite on
6h − SiC(0001) : interface formation through conduction-band electronic
structure. Phys. Rev. B, 58:16396–16406, Dec 1998.

[60] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn,
P. Kim, J.Y. Choi, and B.H. Hong. Large-scale pattern growth of graphene
films for stretchable transparent electrodes. Nature, 457(7230):706–710,
2009.

[61] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing
Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc,
Sanjay K. Banerjee, Luigi Colombo, and Rodney S. Ruoff. Large-area syn-
thesis of high-quality and uniform graphene films on copper foils. Science,
324(5932):1312–1314, 2009.

[62] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus,
and J. Kong. Large area, few-layer graphene films on arbitrary substrates
by chemical vapor deposition. Nano letters, 9(1):30–35, 2008.

[63] Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu,
D. Pandey, D. Wei, et al. Control and characterization of individual grains
and grain boundaries in graphene grown by chemical vapour deposition.
Nature Materials, 10(6):443–449, 2011.

[64] S. Marchini, S. Günther, and J. Wintterlin. Scanning tunneling microscopy
of graphene on ru(0001). Phys. Rev. B, 76:075429, Aug 2007.

[65] P.W. Sutter, J.I. Flege, and E.A. Sutter. Epitaxial graphene on ruthenium.
Nature materials, 7(5):406–411, 2008.

[66] Alpha T. N’Diaye, Sebastian Bleikamp, Peter J. Feibelman, and Thomas
Michely. Two-dimensional ir cluster lattice on a graphene moiré on ir(111).
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