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ABSTRACT OF THE DISSERTATION

Multiple Testing Procedures and Simultaneous Interval

Estimates with the Interval Property

by YINGQIU MA

Dissertation Director: Arthur Cohen, Harold B. Sackrowitz

The use of step-wise multiple testing procedures arises because single step procedures

are extremely conservative. Research into the construction of useful, computationally

feasible interval estimates corresponding to step-wise procedures has been slow. We

present an alternative method of constructing multiple testing procedures that easily

admits corresponding interval estimates. The new approach has the desirable interval

property not usually shared by step-wise procedures. Furthermore, the new method

take dependency into account and easily carried out. In addition, these intervals are

typically shorter, less likely to contain the null point falsely, and are more informative

than those based on traditional methods. Applications include treatments vs control,

change point and all pairwise comparisons. Examples and simulations are included.
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Chapter 1

Introduction

Multiple testing models have become an important part of statistical applications. In

the last two decades scores of multiple testing procedures (MTPs) have emerged to meet

the call for applications in diverse fields such as microarrays, astronomy, genomics, bio-

weapons use, mutual fund evaluations, proteomics, cytometry, blood analytes, imaging,

school evaluations, and others.

Among the new MTPs, many are stepwise procedures. See for example Dudoit,

Shaffer and Boldrick (2003), Hochberg and Tamhane (1987) and Lehmann and Romano

(2005). Stepwise procedures are very valuable because they can be more powerful than

single step procedures. Traditional single step procedures are conservative, because

when the number of tests is large, critical values determined to control error rates in

single step procedures are so large as to prevent detection of significant results.

In constructing stepwise testing procedures, it is common to begin with tests for

the individual hypotheses that are known to have desirable properties. For example,

the UMPU tests may have invariance properties and are likely to be admissible. Then

a sequential rule is added that determines which hypotheses to accept or reject at each

step and when to stop. Unfortunately, due to this sequential component, the stepwise

procedures oftentimes do not retain all the desirable properties that the original test

possessed.

We focus on an important practical and theoretical property called interval property.

This property has been studied at length in Cohen and Sackrowitz (2012). Informally

the interval property is simply that the resulting acceptance regions of each individual

tests are all intervals. Suppose one is constructing a test for a two-sided hypothesis

testing problem. Let X = (X1, . . . , XM ) be a sample point. There are often triples
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of points, X,X∗ and X∗∗ (on the same line) such that if both X and X∗∗ are in the

acceptance region then one would also want X∗ to be in the acceptance region if in

fact X∗ was not the most indicative of the alternative of the three points. The interval

property is necessary and sufficient for admissibility in many parametric models and

intuitively desirable in both parametric and nonparametric models. This is a desirable

property that the original tests might have but that the stepwise induced tests can

easily lose.

In exponential family models, lack of the interval property not only means proce-

dures exist with both better size and power for every individual hypothesis but it may

also lead to very counterintuitive results. It is not desirable when testing an individual

hypothesis, if relevant acceptance sections are not intervals. Because this procedure

could yield a reject of a null hypothesis in one instance and then yield an accept of the

same hypothesis in another instance when the evidence and intuition is more intuitively

compelling in the latter case. It is a disturbing practical shortcoming of many of the

usual stepwise procedures.

In a series of papers, Cohen and Sackrowitz (2005a), (2005b), (2007), (2008) and

Cohen, Kolassa, and Sackrowitz (2007) have shown that many of the standard stepwise

procedures under a wide variety of assumptions, do not have the interval property. It

follows that often other such procedures are inadmissible for a variety of risk functions

that involve both expected type I and expected type II errors. In particular, Cohen

and Sackrowitz (2007) illustrated that for multivariate normal models with nonzero

correlations, there exist procedures whose individual tests have smaller expected type

I and type II errors.

In response to the inadmissibility property and the fact that many stepwise pro-

cedures are based on the marginal distributions of test statistics, even when they are

statistically dependent, Cohen, Sackrowitz and Xu (CSX) (2009) recommend a new

MTP method called maximum residual down (MRD) for models with dependent vari-

ables. MRD takes correlation into account and is admissible (in exponential family

models) for a risk function that focuses on expected type I and type II errors.
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Besides admissibility, consistency is also used to assess the quality of an MTP.

The MRD method is not consistent for some models. Therefore, Chen, Cohen and

Sackrowitz (2009) extended MRD to a new MTP called MRDSS, which adds a screening

stage and a sign stage to MRD. When sample sizes are large, MRDSS is applicable

to exponential family models and other models as well. MRDSS is admissible and

consistent. Chen, Cohen and Sackrowitz (2011) show that the binary segmentation

method (BSP) of Vostrikova (1981) and MRD of CSX(2009) are consistent for change

point problems. The change point problem concerns all mean differences between any

two consecutive means. That is, Hi,i+1 : µi = µi+1 vs. Ki,i+1 : µi ̸= µi+1, for i =

1, . . . , k−1. Chapter 2 of this thesis discusses the admissibility of MRDS, which is MRD

with screening stage. We prove that it is also admissible for change point problems.

In addition to testing multiple hypotheses there is often a desire to obtain inter-

val estimates for the parameters. When the number of parameters is large, typical

simultaneous interval estimates such as Scheffé, Bonferroni, Tukey pairwise contrasts

or Dunnett have excessively large lengths and are deemed too conservative because

they are single step methods. See for example Miller (1966) for these latter methods.

Unfortunately research into the construction of useful, computationally feasible interval

estimates corresponding to step-wise procedures has been slow. A number of authors

have commented on the difficulty of the problem of inverting stepwise MTPs, partic-

ularly in the case of two-sided hypotheses. These include Lehmann (1986, page 388),

Stefansson, Kim, and Hsu (1988) and Benjamini and Stark (1996). Most attempts result

in constructions that often lead to non-informative intervals as they contain the entire

alternative space. For example, Stefansson et.al. (1988) give intervals for a one-sided

treatment vs control model but (unless all the parameters are found to be significantly

different from zero), the intervals are of the form (0,∞) for the significant parame-

ters. As yet there is no general method of informative imultaneous interval estimates

to accommodate a wide variety of models and a wide variety of problems represented

in multiple testing situations.

MRD is a desirable MTP that takes correlation into account. However, we can’t
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get simultaneous interval estimates from MRD. In Chapter 3, we present an alternative

method of constructing MTPs that easily admit corresponding interval estimates. The

new methodology will be seen to be made up of a collection of individualized 2-stage

processes each designed to test one of the hypotheses separately. The new method

places greater focus on each hypothesis separately while still using all the data. We

introduce our new approach in the setting of the classical two-sided multiple testing

problem. An analogous development for 1-sided problems easily follows. We have M

populations each with some parameter νi associated with it. From population i we

would observe Xi whose marginal distribution depends only on νi. The Xi may or

may not be independent. The hypotheses to be tested are Hi : νi = 0 vs Ki : νi = 0;

i = 1, . . . ,M .

Not only do these new MTPs perform as well as commonly used step-wise proce-

dures but they also have a practical interval property not usually shared by step-wise

procedures. That is, acceptance regions have desirable interval properties. Further-

more, interval estimates associated with these tests are easily obtained. Like MRD,

this method is also particularly effective in the dependent case. Its specific application

in three common multiple testing models like treatment vs. control, change point prob-

lem and all pairwise comparisons are also described in detail. Simulations indicate that

the new method does well in terms of false discovery rate (FDR) control and in terms

of the total number of type I and type II mistakes. It performs better than MRD in

sparse case. The new method has several advantages over the stepwise methods that

are currently recommended in the literature. We list the following advantages of the

interval estimates:

1. The estimated intervals are typically shorter than SCIs based on the Bonferroni,

Scheffé or Tukey method when they are applicable.

2. They are less likely to contain zero falsely than other competitors.

3. They are informative, i.e., they are all finite, unlike some competitors often are

(0,∞).
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4. They are computationally easily obtained.

5. Both testing and interval procedures have an important interval property not

shared by typical stepwise procedures.

Note that the interval property for simultaneous interval estimates, means that for

some ordered sample points, say X,X∗,X∗∗, suppose the interval for νi covers zero at

X. At X∗ suppose the interval does not cover 0 because its center at X∗ moves away

from 0. Then at X∗∗ where the center of the interval moves even further away from 0,

it also does not cover 0.

In contrast to parametric models, the application of stepwise procedures to non-

parametric statistics has been limited. The properties of these procedures have not

been investigated in detail. Nonparametric multiple testing is discussed in Hochberg

and Tamhane (1987). Campbell and Skillings (1985) explore various multiple rank tests

for pairwise comparisons in a balanced one way layout without a normality assumption.

The model is Yij = θi + ϵij , i = 1, . . . , k, j = 1, . . . , ni, where θi are unknowns and ϵij
′s

are independent, identically distributed, continuous random variables. Hypotheses of

interest are Hij : θi = θi vs Kij : θi ̸= θi for every i ̸= j and i, j = 1, . . . , k. That is,

each population has the same distribution except for a translation parameter. All of

the Ck
2 pairwise differences in translation parameters are tested. They consider single

step and stepwise procedures, finding that stepwise procedures have superior pairwise

power compared to the commonly used single step procedures. Among the stepwise

procedures are those that rerank at different steps as well as those that do not rerank.

They recommend the ad hoc procedure labeled NAH.

Cohen and Sackrowitz (2012) propose a rank test method called RPADD+ for this

model, the analogue of a method developed in Cohen, Sackrowitz and Chen (2010) for

testing pairwise comparisons in a one way layout assuming normality called PADD+

(partitioned average difference down plus). RPADD+ has a desirable and intuitive

interval property in terms of ranks that the ad hoc procedure does not have. For

each individual pairwise hypothesis, relevant acceptance sections are intervals (not a
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collection of disjoint sets) in terms of ranks. Simulations indicate that RPADD+ is

comparable to the performance of the ad hoc procedure in terms of power.

Similarly as in the parametric models, we are still interested in the interval property

of MTPs in terms of actual observations in nonparametric models. Ad hoc procedure

NAH and RPADD+ do not have interval property in terms of the raw data. We are also

interested in other pairwise differences of the parameters in testing other settings besides

all pairwise comparisons, such as treatment vs. control and change point problem. We

first explore several approaches such as step-down MTPs based on permutation test,

bootstrap test and ranks, both on separate ranks and full ranks. We demonstrate that

for k = 2, the two sample rank test, the two sample permutation test and the two sample

bootstrap test have the interval property under certain conditions. For multiple testing,

i.e. k > 2, the usual rank tests and permutation tests fail to have the interval property.

Then we derive the new MTPs based on ranks which do have the interval property.

The ranks are not the ranks of the original observations. The ranks are determined

in a special way to ensure the interval property of MTPs. Simulations indicate that

the new MTP procedures effectively control family wise error rate (FWER) and total

number of type I and type II mistakes.

In addition to testing hypotheses regarding the difference in parameters, there is

often a desire to obtain interval estimates for the difference in parameters in nonpara-

metric models. Very little along these lines has been done in the past. This new

nonparametric MTP provides an approach to simultaneous interval estimations. The

methodology has its origins in the approach we propose for parametric models where

simultaneous interval estimates are determined in a 2 stage process. The second stage

of the process determines an interval estimate for each particular pairwise difference

of interest. The length of each interval depends on the number of rejections made

when testing all other pairwise parameters of interest in the first stage of the process.

Test statistics for parameters in the first stage turn out to be two sample rank tests.

However in comprising the two samples, data from more than 2 populations are used.

The new method has several advantages over the stepwise methods that are currently
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recommended in the literature. The interval has the following properties:

1. They are informative, i.e., they are all finite, unlike some competitors which often

are (0,∞)

2. They are computationally feasible

3. Both testing and interval procedures have an important interval property in terms

of raw data not shared by typical stepwise procedures.

Chapter 2 discusses the admissibility of MRDS, which is MRD with screening stage.

We proved that it is admissible for change point problems. Chapter 3 states a new

method of constructing MTPs that easily admit corresponding interval estimates with

the interval property. Chapter 4 shows the derivation of new nonparametric MTPs

based on ranks that provide simultaneous interval estimates with the interval property

in terms of observations. Simulations and analysis are given in Chapter 5. We present

the comparisons of several MTPs including original MRD, Holm’s step down and three

new tests under the 2 stage framework proposed in Chapter 3. We also report the results

a simulation study for the performance of nonparametric MTPs using the uniform,

normal, exponential and double exponential distributions.
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Chapter 2

Admissibility of MRDS in change point problems

This chapter considers the admissibility of MRD (maximum residual down) with a

screening stage for the change point problems.

The change point problem considered here is as follows. Let Xij , i = 1, . . . ,M, j =

1, . . . , n be independent normally distributed random variables with means µi and

known variance σ2. Consider the testing of consecutive mean change. That is, Hi :

µi − µi+1 = 0 vs. Ki : µi − µi+1 ̸= 0, i = 1, . . . ,M − 1.

Cohen, Sackrowitz and Xu (2009) indicated that most standard stepwise MTPs

(step-up, step-down and others) for the change point model are inadmissible for a vec-

tor risk function concerned with both Type I and Type II errors. On the other hand, the

approach attributed to Vostrikova (1981) called binary segmentation procedure (BSP)

and MRD procedure by Cohen, Sackrowitz and Xu (2009) are admissible.

The MRD procedures are described in detail in Chen, Cohen and Sackrowitz (2011).

Let X̄i =
∑n

j=1 xij/n and X̄ = (X̄1, . . . , X̄M ). Let I = {1, 2, . . . ,M}. Let B =

B(t1, t2) be the subset of consecutive integers t1, t1 + 1, . . . , t2. Let A(t1, i) ⊂ B be the

subset of B consisting of the consecutive integers t1, . . . , i. Next define

Dx̄(A(t1, i);B) = n( ¯̄XA − ¯̄XB\A)
2/(σ2(

1

i− t1 + 1
+

1

t2 − i
)) (2.0.1)

where

¯̄XA =
i∑

j=t1

X̄j/(i− t1 + 1), ¯̄XB\A =

t2∑
j=i+1

X̄j/(t2 − j).
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Let

D∗
x̄(B) = max

{t1≤i≤t2}
Dx̄(A(t1, i);B).

LetA(t1, i
∗) denote the set for which the max is attained. That is,D∗

x̄(B) = Dx̄(A(t1, i
∗);B).

Let 0 < C1 < . . . < CM−1 be constants.

At step 1 of MRD, some 2 set partitions of consecutive integers of I are considered.

That is, A(1, i(x̄)), I\A(1, i(x̄)), i = 2, . . . ,M − 1. Dx̄(A(1, i(x̄)); I) is computed for

i = 2, . . . ,M − 1. If D1 = D∗
x̄(I) ≤ CM−1, stop and set r = 0. If D1 > CM−1 then

partition I into A(1, i∗(x̄)) and I\A(1, i∗(x̄)) and go to step 2 provided i∗ > 2. If i∗ = 2

just consider I\A(1, i∗(x̄)) at step 2.

At step 2, each set A(1, i∗(x̄)) and I\A(1, i∗(x̄)) is treated as I was at step 1 except

now CM−1 is replaced by CM−2. For A(1, i
∗(x̄)) and I\A(1, i∗(x̄)), either all hypothe-

ses are accepted or one of the sets is split into 2 sets, leaving 3 sets to consider at step 3.

This process continues in succeeding steps with different constants. Once again at

each step there can be no additional rejection or 1 rejection. The total number of re-

jections is r.

Chen, Cohen and Sackrowitz (2011) prove that MRD of CSX (2009) are consistent

for change point problems.

Consistency is used to assess the quality of an MTP. There are different definitions

of consistency. Some consider the accuracy of selection results when the number of

variables goes to infinity and others focus on the accuracy when sample size is large.

Our definition of consistency is that an MTP is consistent if the probability of not

making mistakes, either type I or type II error, for each individual hypothesis goes to

zero for sufficiently large sample size.

Consistency is a large sample property. For problems with fewer sample sizes in

change point problems, sometimes the FWER of MRD can be large. To control FWER
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at a reasonable level, MRD with a screening stage (MRDS) is considered as a remedy.

Simulations show that MRDS is effective in controlling the FWER while maintaining

desirable power.

2.1 MRD with a screening stage

Chen, Cohen and Sackrowitz (2009) extended MRD to a new MTP called MRDSS,

which adds a screening stage and a sign stage to MRD. MRDSS is admissible and

consistent. When sample sizes are large, MRDSS is applicable to exponential family

models and other models as well.

Now we are interested in change point problems. In particular. We want to know if

MRDS is admissible and consistent. If this is the case, we could simplify the procedures

without adding a sign stage after screening stage for this type of problem.

We will describe the screening stage as in Chen, Cohen and Sackrowitz (2009). For

change point problems, to add a screening stage to MRD, let CU > CL > 0 be two

additional constants. Typically CL ≤ CM < CU . Note that C1 > C2 > . . . > CM are

the set of critical values used in the MRD stage. After MRD is done, each hypothesis

is temporarily accepted or rejected.

Let Hj1 , . . . , Hjp be those hypotheses that MRD rejected. Should any

|xji+1 − xji |/(σ
√

2

n
) < CL

i = 1, . . . , p, then reverse the reject decision to an accept decision.

For those hypotheses that MRD accepted, say, Hjp+1 , . . . ,HjM , Should any

|xji+1 − xji |/(σ
√

2

n
) > CU

i = p+ 1, . . . ,M , then reverse the accept decision to a rejection decision.
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MRD with screening stage for change point

Theorem 2.1.1. MRD with a screening stage is admissible for change point problems.

Proof. Suppose that MRD with a screening stage for change point problem is inad-
missible. Let ψi,i+1(x̄) be the test of Hi determined by MRDS. Suppose ψi,i+1(x̄) is
inadmissible. Let g = (0, . . . , 1,−1, 0, . . . , 0)′ are in the i and i + 1 positions. Then
there exists three points x̄, x̄∗ = x̄ + r1g, x̄

∗∗ = x̄ + r2g with 0 < r1 < r2, such that x̄
and x̄∗∗ are accept points and x̄∗ is a reject point. This can occur in 8 ways. They are

listed in the Table 2.1.1. Without loss of generality, we assume σ
√

2
n = 1.

Sample points x̄ x̄∗ x̄∗∗ x̄ x̄∗ x̄∗∗

Case 1 Case 2

Actions of ψi,i+1 A A A A A R

| x̄i − x̄i+1 |, | x̄∗i − x̄∗i+1 |, | x̄∗∗i − x̄∗∗i+1 | < CU , > CU , < CU < CU , > CU , < CL

Case 3 Case 4

Actions of ψi,i+1 A R A A R R

| x̄i − x̄i+1 |, | x̄∗i − x̄∗i+1 |, | x̄∗∗i − x̄∗∗i+1 | < CU , > CL, < CU < CU , > CL, < CL

Case 5 Case 6

Actions of ψi,i+1 R A A R A R

| x̄i − x̄i+1 |, | x̄∗i − x̄∗i+1 |, | x̄∗∗i − x̄∗∗i+1 | < CL, > CU , < CU < CL, > CU , < CL

Case 7 Case 8

Actions of ψi,i+1 R R A R R R

| x̄i − x̄i+1 |, | x̄∗i − x̄∗i+1 |, | x̄∗∗i − x̄∗∗i+1 | < CL, > CL, < CU < CL, > CL, < CL

Table 2.1.1: Possible behaviors leading to ARA for ψi,i+1

F1: As a function of r, |x̄i − x̄i+1 + 2r| is strictly decreasing for r < (x̄i+1 − x̄i)/2

and strictly increasing for r > (x̄i+1 − x̄i)/2.

Case 1,2,5,6 and 8 require |x̄i − x̄i+1| ≤ |x̄∗i − x̄∗i+1| ≥ |x̄∗∗i − x̄∗∗i+1| at screen stage,

but this would violate the F1.

Case 3 is impossible because MRD without screen stage is admissible.



12

In case 4, |x̄∗i − x̄∗i+1| > CL > |x̄∗∗i − x̄∗∗i+1|. This indicates that x̄∗i < x̄∗i+1 because

x̄∗i = x̄i + r1, x̄
∗∗
i = x̄i + r2 and x̄∗i+1 = x̄i+1 − r1, x̄

∗∗
i+1 = x̄i+1 − r2 where 0 < r1 < r2,

therefore |x̄∗i − x̄∗i+1| = |x̄i− x̄i+1+2r1| and |x̄∗∗i − x̄∗∗i+1| = |x̄i− x̄i+1+2r2|, so it follows

from F1 that 0 < r1 < (x̄i+1 − x̄i)/2 and thus x̄∗i = x̄i + r1 < x̄i + (x̄i+1 − x̄i)/2 =

(x̄i + x̄i+1)/2 = x̄i+1 − (x̄i+1 − x̄i)/2 < x̄i+1 − r1 = x̄∗i+1.

Without loss of generality, we can denote
∑i−1

j=t1
x̄∗j = A, x̄∗i = −b, x̄∗i+1 = b,

∑t2
j=i+2 x̄

∗
j =

D where b > 0 and set m1 = i − t1 + 1 and m2 = t2 − i. Since x̄ is an accept

point of ψi,i+1 and x̄∗ is a reject point of ψi,i+1, ψi,i+1 is increasing from x̄ to x̄∗,

i.e. |

∑i
j=t1

x̄j

m1
−

∑t2
j=i+1 x̄j

m2
| < |

∑i
j=t1

x̄∗j

m1
−

∑t2
j=i+1 x̄

∗
j

m2
|. |

A− b− r1

m1
−
D + b+ r1

m2
| <

|
A− b

m1
−
D + b

m2
|. Thus,

A− b

m1
−
D + b

m2
> 0.

Consider

(1)

(
A

m1 − 1
−

D

m2 + 1
)2

1

m1 − 1
+

1

m2 + 1

(2)

(
A− b

m1
−
D + b

m2
)2

1

m1
+

1

m2
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(3)

(
A

m1 + 1
−

D

m2 − 1
)2

1

m1 + 1
+

1

m2 − 1

(1),(2) and (3) satisfy

(1) + (3) > 2× (2)

because

(1) + (3) > 2×
(
A

m1
−

D

m2
)2

1

m1
+

1

m2

and

(
A

m1
−

D

m2
)2

1

m1
+

1

m2

> (2)

because

A

m1
−

D

m2
>
A− b

m1
−
D + b

m2
> 0

Thus either (1) or (3) is larger than (2). This implies that Hi will not be rejected at

x̄∗ since it is not the maximum test statistic at each stage until only x̄∗i , x̄
∗
i+1 is left to

test. In that special case, the test statistic is the same as that at screen stage, so we

can’t inverse rejection to acceptance at the screening stage.

In case 7, |x̄i − x̄i+1| < CL < |x̄∗i − x̄∗i+1|. This indicates that x̄∗i > x̄∗i+1. Because it

follows from F1 that r1 > (x̄i+1 − x̄i)/2 and thus x̄∗i = x̄i + r1 > x̄i + (x̄i+1 − x̄i)/2 =

(x̄i + x̄i+1)/2 = x̄i+1 − (x̄i+1 − x̄i)/2 > x̄i+1 − r1 = x̄∗i+1.

Without loss of generality, let
∑i−1

j=t1
x̄∗j = A, x̄∗i = b, x̄∗i+1 = −b and

∑t2
j=i+2 x̄

∗
j = D
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where b > 0. Since x̄∗ is an reject point of ψi,i+1 and x̄∗∗ is a accept point of ψi,i+1, ψi,i+1

is decreasing from x̄∗ to x̄∗∗, i.e. |

∑i
j=t1

x̄∗j

m1
−

∑t2
j=i+1 x̄

∗
j

m2
| > |

∑i
j=t1

x̄∗∗j

m1
−

∑t2
j=i+1 x̄

∗∗
j

m2
|.

|
A+ b

m1
−
D − b

m2
| > |

A+ b+ (r2 − r1)

m1
−
D − b− (r2 − r1)

m2
|. Thus,

A+ b

m1
−
D − b

m2
< 0.

(1) and (3) are the same as in case 4, just (2) becomes

(4)

(
A+ b

m1
−
D − b

m2
)2

1

m1
+

1

m2

(1),(4) and (3) satisfy (1) + (3) > 2× (4) because

(1) + (3) > 2×
(
A

m1
−

D

m2
)2

1

m1
+

1

m2

and

(
A

m1
−

D

m2
)2

1

m1
+

1

m2

> (4)

because

A

m1
−

D

m2
<
A+ b

m1
−
D − b

m2
< 0

Similarly as in case 4, Hi will not be rejected at x̄∗ since it is not the maximum test

statistic at each stage until only x̄∗i , x̄
∗
i+1 is left to test. In that special case, the test

statistic is the same as that at screen stage, so we can’t inverse rejection to acceptance

at the screening stage.
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Chapter 3

Multiple testing procedures

In this chapter, we propose a new construction of MTPs having the interval property

that also results in interval estimates. We will present and demonstrate the method by

applying it to some common models of one dimensional normal means of variables that

may or may not be correlated. The two basic models in this chapter are as follows:

I. Consider M independent normal populations with means µi, i = 1, . . . ,M and

common known variance σ2. We consider various models involving collections of pair-

wise differences µi − µj .

II. Let Xα, α = 1, . . . ,M be multivariate normal with mean vector µ and known

covariance Σ. We seek MTPs and interval estimates for the components of µ. An

important special case is the general linear model y = Aβ + ϵ where ϵ ∼ N(0, σ2I).

Then the vector of least squares estimators is normal with mean vector β and covari-

ance matrix σ2(A′A)−1. We seek MTPs and interval estimates for the components of β.

Section 3.1 will introduce the construction of the individualized 2-stage processes

that leads to our new class of MTPs with corresponding interval estimates. We show

that all typical step-down and step-up MTP procedures have equivalent representations

belonging to this class. In Section 3.2, we will apply the method to the above mentioned

models.



16

3.1 Description of new construction and first principles

Suppose we want to test the collection of hypotheses Hi : νi = 0 vs Ki : νi ̸= 0, i =

1, ...,M . First we describe the generic step-down process and step-up process in a fash-

ion similar to Lehmann and Romano (2005). That will be followed by a description of

the new individualized 2-stage process.

For the stepwise procedures we suppose that the individual hypothesis Hi has a test

based on the test statistic Ti with large values indicating evidence for Ki.

1. Step-down process. Fix constants C1 < ... < CM .

Step 1: Consider Ui1 = max{1≤i≤M} Ti. If Ui1 ≤ CM , stop and accept all Hi. If

Ui1 > CM reject Hi1 and go to step 2.

Step 2: Consider Ui2 = max{1≤i≤M,i ̸=i1} Ti. If Ui2 ≤ CM−1 stop and accept all

Hi : i ∈ {1, . . . ,M}\{i1}. If Ui2 > CM−1 reject Hi2 and go to step 3.

Step m: Consider Uim = maxi∈{1,...,M}\{i1,i2,...,im−1} Ti. If Uim ≤ CM−m+1 stop and

accept all Hi : i ∈ {1, . . . ,M}\{i1, . . . , im−1}. If Uim > CM−m+1 reject Him and go to

step (m+ 1).

2. Step-up process. Fix constants C1 > ... > CM .

Step 1: Consider Ui1 = min{1≤i≤M} Ti. If Ui1 ≥ CM , stop and reject all Hi. If

Ui1 < CM accept Hi1 and go to step 2.

Step 2: Consider Ui2 = min{1≤i≤M,i ̸=i1} Ti. If Ui2 ≥ CM−1 stop and reject all

Hi : i ∈ {1, . . . ,M}\{i1}. If Ui2 < CM−1 accept Hi2 and go to step 3.
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Step m: Consider Uim = mini∈{1,...,M}\{i1,i2,...,im−1} Ti. If Uim ≥ CM−m+1 stop and

reject all Hi : i ∈ {1, . . . ,M}\{i1, . . . , im−1}. If Uim < CM−m+1 accept Him and go to

step (m+ 1).

Next we introduce a new method for constructing MTPs that immediately yields

corresponding interval estimates.

3. Individualized 2-stage process.

All hypotheses are treated similarly but they are considered one at a time. We can

begin with testing H1 by subjecting it to the following two stage process. At stage 1

apply any (M-1 population) MTP to ONLY the other hypotheses, i.e., Hi : νi = 0 vs

Ki : νi ̸= 0, i = 2, ...,M , but using all the data. At the end of this stage, r1 = the

number of rejections is recorded.

At stage 2 we construct intervals of the form

ν̂1 ±B(r1)σν̂1

where B(r1) is a decreasing function of r1 and ν̂1 can depend on all the data. The

corresponding test of H1 is to reject if the interval does not contain 0. Typically this

would mimic, except for the use of r1, what would have been done if only the one

population had been observed.

This process is repeated for each hypothesis. Due to the flexibility in choices of

the modified MTP used at stage 1, the choice of ν̂1 and the choice of function B(·),

this process generates a large family of MTP’s with corresponding interval estimates.

Every MTP in this family is associated with an easily obtained interval estimate. We

point out that a natural choice of ν̂1 will often depend on only the data involving the

parameter ν1. This is the case in our examples.
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Two MTPs are said to be equivalent if, with probability one, they make the same

decisions for all the hypotheses in the collection being tested. The following theorem

indicates the versatility of the new construction.

Theorem 3.1.1. The class of MTPs made up of individualized 2-stage tests contains

MTPs equivalent to the generic step-down and step-up procedures.

Proof. Consider the generic step-down procedure using the statistics Tj , j = 1, ...,M

and constants C1 < C2 < ... < CM . We focus on the decision for testing any individual

hypothesis Hj∗. Without loss of generality we can study testing H1. To do this let

V(1) < ... < V(M−1) be the order statistics of T2, ..., TM .

Note that the family of individualized 2-stage procedures includes the following

MTP. At stage 1 use the generic step-down based on T2, ..., TM using the constants

C2 < C3 < ... < CM . At stage 2 reject H1 if and only if T1 > CM−r where r =

0, 1, ...,M − 1 is the number of rejections at stage 1 among the M − 1 tests performed

at stage 1.

Clearly if CM < T1 both methods will reject H1 and if T1 ≤ C1 both methods will

accept H1. Thus we suppose Ci < T1 ≤ Ci+1 for some i = 1, ...,M − 1. Based on the

above definitions we have 1) The step-down procedure will reject H1 if and only if

V(M−1) > CM , . . . , V(i) > Ci+1

2) When using the individualized 2-stage procedure and Ci < T1 ≤ Ci+1, H1 will be

rejected if and only if r ≥M − i. However, getting at least M − i rejections at stage 1

is equivalent to (as in case (1)),

V(M−1) > CM , . . . , V(i) > Ci+1.

This completes the proof for the generic step-down MTP. The proof for the generic

step-up MTP is similar.

Our next concern is that our tests and interval estimates have the interval property.
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Whether or not a particular procedure has the interval property depends on the model

for which it is being used. For example, it can be seen in Cohen and Sackrowitz (CS)

(2008) that in the case of dependence for the test statistics, the commonly used stepwise

procedures often do not have the interval property. We will next establish sufficient

conditions for an individualized 2-stage test to have the interval property.

Suppose we desire a test, ϕi, of Hi to have the interval property with respect to

the direction gi. This will mean that, as a function of λ, ϕi(X + λgi) = 0 only on

an interval. The next two results, Theorem 2.2 and Lemma 2.3 that we will present

are, essentially immediate consequences of definitions. However they are quite useful

in finding MTPs having the interval property. We will state them without proof. The

following theorem gives sufficient conditions for the new tests and interval estimates to

have the interval property. In succeeding sections we will demonstrate the identification

of appropriate vectors g in a number of different models.

Theorem 3.1.2. Suppose for each fixed x, ri(x + λgi) is constant as a function of λ

and ν̂i(x + λgi) is first non-increasing and then non-decreasing as a function of λ.

Then the test and interval estimate will have the interval property with respect to the

direction gi.

Suppose an individualized 2-stage test is to have the interval property in the direc-

tion g. The following simple lemma serves to demonstrate the ease in finding modified

MTPs to be used at stage 1 that will guarantee the condition on r(·) in Theorem 3.1.2.

Lemma 3.1.1. If every statistic used during the stage 1 modified MTP is based on

functions of the form a′X, i.e., each is a linear combination of the X’s, where a′g = 0

for each a then r(X+ λgi) is constant as a function of λ.
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3.2 Pairwise comparisons of normal means

3.2.1 Treatment vs Control

Let Xij , i = 1, . . . ,M , j = 1, . . . , n be independent normal variables with means µi

and known variance σ2. For i = 1, the population represents a control, while i =

2, . . . ,M represent treatment populations. We seek simultaneous interval estimates for

νi = µi − µ1, i = 2, . . . ,M . Let X̄i =
∑n

j=1Xij/n. For ν2 the confidence interval at

stage 2 is

(X̄2 − X̄1)±B(r)σ

√
2

n
(3.2.1)

r = 0, . . . ,M − 2, where B(r) is sequence of decreasing constants depending on r =

number of rejections of hypotheses Hi : νi = 0 vs Ki : νi ̸= 0, i = 3, . . . ,M . At step 1

hypotheses are tested by the RSD method of CS (2012).

This MTP method is as follows: Let 0 < C1 < . . . < CM−2 be constants.

Step 1: Let tM = (X̄1 + . . .+ X̄M )/M . Let

Ui1 = max
3≤i≤M

|X̄i − tM |/( σ√
n

√
(M + 1)/M) (3.2.2)

If Ui1 ≤ CM−2, stop and set r = 0. If Ui1 > CM−2 go to step 2.

At step 2: consider

Ui2 = max
{3≤i≤M}\{i1}

|X̄i − tM−1|/(
σ√
n

√
M/(M − 1))

where

tM−1 =
∑

i∈{1≤i≤M}\{i1}

X̄i/(M − 1)

If Ui2 ≤ CM−3 stop and set r = 1. If Ui2 > CM−3 go to step 3.
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At step p, consider

Uip = max
{3≤i≤M}\{i1,...,ip−1}

|X̄i − tM−p+1|/(
σ√
n

√
(M − p+ 2)/(M − p+ 1)) (3.2.3)

If Uip ≤ CM−p−1 stop and set r = p− 1. If Uip > CM−p−1 go to step (p+ 1).

Once r is finalized and the interval estimate for ν2 is determined the process is re-

peated for the other νi.

Note that the above interval estimate will have the interval property. This will fol-

low since r, the number of rejections determined by the MTP part of the process will

not change as X̄2 increases and X̄1 decreases by the same amount. This follows because

of the statistics defined in Ui1,Ui2 and Uip .

Should σ2 be unknown replace σ2 with s2, where s2 is the usual unbiased estimator

of σ2.

An alternative to the method at stage one, called a shortcut method is as follows:

Step 1: Let

Ui1 = max
3≤i≤M

|X̄i − (X̄1 + X̄2)/2|/(
σ√
n

√
3/2) = max

3≤i≤M
|Wi|.

If Ui1 ≤ CM−2, stop and set r = 0. If Ui1 > CM−2 go to step 2.

At step 2, consider

Ui2 = max
{3≤i≤M}\{i1}

|Wi|.

If Ui2 ≤ CM−3, stop and set r = 1. If Ui2 > CM−2 go to step 3.
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At step p, consider

Uip = max
{3≤i≤M}\{i1,...,ip−1}

|Wi|. (3.2.4)

If Uip ≤ CM−p−1 stop and set r = p− 1. If Uip > CM−p−1 go to step (p+ 1).

Again, once r = number of rejections is determined then the confidence interval of

ν2 is determined. The process is repeated for the other νi’s.

3.2.2 Change point

Let Xij , i = 1, . . . ,M , j = 1, . . . , n be independent normal variables with means µi

and known variance σ2. We seek simultaneous interval estimates for νi = µi+1 − µi,

i = 1, . . . ,M − 1. Let B(r) be a decreasing set of constants and let X̄i =
∑
Xij/n. For

ν1 the confidence interval determined at stage 2 is

X̄2 − X̄1 ±B(r)σ

√
2

n
(3.2.5)

r = 0, 1, . . . ,M − 2 where r = number of rejections of hypotheses Hi : νi = 0 vs

Ki : νi ̸= 0, i = 2, . . . ,M − 1.

At stage 1, the hypotheses are tested by the RSD method of CS (2012) which in this

case is spelled out in more detail in Chen, Cohen, and Sackrowitz (2011). For the MTP

part of the overall procedure let I = {1, 2, . . . ,M}. Let B = B(t1, t2) be the subset of

consecutive integers t1, t1 + 1, . . . , t2. Let A(t1, i) ⊂ B be the subset of B consisting of

the consecutive integers t1, . . . , i. Next define

Dx̄(A(t1, i);B) = n( ¯̄XA − ¯̄XB\A)
2/(σ2(

1

i− t1 + 1
+

1

t2 − i
)) (3.2.6)

where

¯̄XA =

i∑
j=t1

X̄j/(i− t1 + 1), ¯̄XB\A =

t2∑
j=i+1

X̄j/(t2 − j).
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Let

D∗
x̄(B) = max

{t1≤i≤t2}
Dx̄(A(t1, i);B).

Let A(t1, i
∗(x̄)) denote the set for which the max is attained. That is, D∗

x̄(B) =

Dx̄(A(t1, i
∗);B). Let 0 < C1 < . . . < CM−1 be constants.

At step 1 of the MTP part, some 2 set partitions of consecutive integers of I are

considered. That is, A(1, i(x̄)), I\A(1, i(x̄)), i = 2, . . . ,M −1. Dx̄(A(1, i(x̄)); I) is com-

puted for i = 2, . . . ,M − 1. If D1 = D∗
x̄(I) ≤ CM−1, stop and set r = 0. If D1 > CM−1

then partition I into A(1, i∗(x̄)) and I\A(1, i∗(x̄)) and go to step 2 provided i∗ > 2. If

i∗ = 2 just consider I\A(1, i∗(x̄)) at step 2.

At step 2, each set A(1, i∗(x̄)) and I\A(1, i∗(x̄)) is treated as I was at step 1 except

now CM−1 is replaced by CM−2. For A(1, i
∗(x̄)) and I\A(1, i∗(x̄)), either all hypothe-

ses are accepted or one of the sets is split into 2 sets, leaving 3 sets to consider at step 3.

This process continues in succeeding steps with different constants. Once again at

each step there can be no additional rejection or 1 rejection. The total number of re-

jections is r.

Note we described the MTP portion of the procedure in order to derive the interval

estimate for ν1. When we seek a interval estimate for νi, i ̸= 1 then we need to consider

two set partitions of consecutive integers of I but always keeping integers i and (i+ 1)

in the same set. For example ifM = 5, I = {1, 2, 3, 4, 5} and we seek a interval estimate

for ν4 − ν3 then at step 1 the two set partitions are ({1}, {2, 3, 4, 5}), ({1, 2}, {3, 4, 5})

and ({1, 2, 3, 4}, {5}). Now we proceed as before always keeping i and (i+ 1) together

in the same set of any future partition of a subset in which i or (i+ 1) appears. Again

r is the total number of rejected hypotheses.
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3.2.3 All pairwise

Let Xij , i = 1, . . . ,M , j = 1, . . . , n be independent normal variables with means µi and

known variance σ2. We seek simultaneous interval estimates for νij = µi − µj , i < j,

i, j = 1, . . . ,M .

At stage 2 the confidence interval for ν12 is

(X̄1 − X̄2)±B(r)σ

√
2

n
(3.2.7)

where r is the number of rejections of hypotheses Hij : νij = 0 vs Kij : νij ̸= 0, ν12 is

not included, i < j , i, j = 1, . . . ,M .

At stage 1 the hypotheses are to be tested by a modification of the PADD or

PADD+ method of Cohen, Sackrowitz, and Chen (2010). To describe the method and

modification, let I = {1, . . . , M}. For any subset of integers A ⊂ I, let N(A) = the

number of points in A. Let X̄A =
∑

iϵA X̄i/N(A). Next define for all A ⊂ H ⊆ I with

A ̸= ϕ and H\A ̸= ϕ, for each sample point (X̄),

Dx̄(A;H) = (X̄A − X̄H\A)/σ[(1/N(A) + 1/N(H\A))1/2] (3.2.8)

and

D∗
x̄(H) = max

A⊂H
Dx̄(A;H) (3.2.9)

ThusD∗
x̄(H) is the largest possible standardized difference in subset means when the

set of {X̄i : i ∈ H} is broken into two non-empty subsets whose union is {X̄i : i ∈ H}.

We further let Vx̄(H) denote the set for which the maximum is attained. That is,

D∗
x̄(H) = Dx̄(Vx̄(H);H) when H is split into Vx̄(H) and H\Vx̄(H).

At the first step of PADD all non-empty 2 set partitions of I are considered. For

the modification here all 2 set partitions are considered except that indices 1 and 2 can
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never be in separate sets. Dx̄(A; I) is computed for all non-empty A ⊂ I. Let λj =

number of indices in the largest set of the partition at step j. Let Cλ1 be a constant at

step 1 and let D1 = D∗
x̄(I). If D1 ≤ Cλ1 then partition I into Vx̄(I) and I\Vx̄(I) and

continue to step 2.

At each successive step, until the procedure stops, one of the sets in the current

partition will be split into 2 sets as follows: Suppose that after step m, I had been

partitioned into (H1,H2, . . . , Hm+1) and we continue. Recall indices 1 and 2 are never

to be separated, i.e., they always lie in the same set of any partition. Compute

Dm+1 = max
1≤k≤m+1

D∗
x̄(Hk)

If Dm+1 ≤ Cλm+1 we stop. If Dm+1 > Cλm+1 find k∗ so that Dm+1 = D∗
x̄(Hk∗ )

. Next

break Hk∗ into Vx̄(Hk∗) and Hk∗\Vx̄(Hk∗). Continue to step (m+ 2).

Thus we see that as we enter stepm, the partition consists ofm sets. Denote these by

Hm,1(x̄),Hm,2(x̄), . . . , Hm,m(x̄). If Dm ≤ Cλm , stop and then (Hm,1(x̄), . . . , Hm,m(x̄))

is the final partition. If Dm ≥ Cλm we continue and the partition will become finer.

If Hm,1(x̄),Hm,2(x̄), . . . ,Hm,m(x̄) is the final partition then Hii′ is accepted provided i

and i′ are in the same set of the partition. Otherwise Hii′ is rejected. The total number

of rejections is r. Note that ν12 = 0 is not one of the hypotheses to be tested, so that

even though (1, 2) will end up in the same set of the final partition, that hypothesis is

not accepted.

Remark 3.2.1. For the procedure based on PADD+ we refer to the reference of Cohen,

Sackrowitz, and Chen (2010). The same modification of keeping indices 1 and 2 in the

same set is made.

Remark 3.2.2. In case σ is unknown, the usual estimate s2 of σ2 is used and then s

replaces σ above.
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Of course the method used for obtaining a interval estimates for ν12 is repeated for

νij .

3.2.4 Normal Models

Components of a mean vector

Let X be a q × 1 normal random vector with mean µ and known covariance matrix

Σ = (σij). We seek MTPs and interval estimates for the components of µ. We point

out that for testing Hi : µi = 0 vs Ki : µi ̸= 0 the appropriate g is the ith column of Σ.

See CS(2012) for justification of the choice g. First focus on µ1.

The interval estimate for µ1 will be

X1 ±B(r)σ
1
2
11 (3.2.10)

where B(r), r = 0, 1, . . . , q − 1 is a set of decreasing numbers and r is the number of

rejections determined by a modified MTP focused on testing Hi : µi = 0 vs Ki : µi ̸= 0,

i = 2, . . . , q.

The modified MTP we use in this case is based on the MRD method of Cohen,

Sackrowitz and Xu (2009) and goes as follows:

Let

 X1

X2

 and let

 V1

V2

 = Σ−1 where V1 is the first row of Σ−1 and V2 is the

last q − 1 rows of Σ.

Define the (q − 1)× 1 vector U = D−1/2(Γ)V2X = (U2, . . . , Uq)
′

where Γ = V2ΣV2
′ and D(Γ) is the diagonal matrix whose diagonal elements are those

of Γ.

Next let Ui1 = max2≤j≤q |Uj | and let 0 < C1 < C2 < . . . < Cq be the constants for

the MTP part of the procedure. If Ui1 ≤ Cq stop and set r = 0. If Ui1 > Cq go to the

next step, namely step 2.
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At step 2, consider X(i1) which is X with Xi1 left out. Let Σ(i1) be the covariance

matrix of X(i1). Let V (i1) = Σ(i1)−1
and let V

(i1)
2 be the last q − 2 rows of V (i1). Let

Γ(i1) = V
(i1)
2 Σ(i1)V

(i1)′

2 and define D(Γ(i1)) as a diagonal matrix as before. Next let

U(i1) = D−1/2(Γ(i1))V
(i1)
2 X(i1) and let Ui2 = max{2≤j≤q}\i1 |U

(i1)
j |. If Ui2 ≤ Cq−1, stop

and set r = 1. If Ui2 > Cq−1 go to step 3.

At step p, considerX(i1,...,ip−1) which isX withXi1 ,. . . ,Xip−1 left out. Let Σ
(i1,...,ip−1)

be the covariance matrix ofX(i1,...,ip−1). Let V (i1,...,ip−1) =Σ(i1,...,ip−1)−1
and let V

(i1,...,ip−1)
2

be the last q − ip rows of V (i1,...,ip−1).

Let Γ(i1,...,ip−1) = V
(i1,...,ip−1)
2 Σ(i1,...,ip−1)V

(i1,...,ip−1)′

2 and define D(Γ(i1,...,ip−1)) as a

diagonal matrix as before. Next let

U(i1,...,ip−1) = D−1/2(Γ(i1,...,ip−1))V2
(i1,...,ip−1)X(i1,...,ip−1)

and let

Uip = max
2≤j≤q\{i1,...,ip−1}

|U (i1,...,ip−1)
j |

If Uip ≤ Cq−p+1, stop and set r = p− 1. If Uip > Cq−p+1 go to step (p+ 1).

Once r is finalized and the interval estimate for µ1 is determined the process is

repeated for µ2 and then µ3,. . . and µq.

That the interval estimate for µ1 (and µ3,. . . and µq) will have the interval property

in the direction of g1 can be seen to follow from Theorem 2.2.

At this point we apply the new procedure to a linear regression model. The general

linear model assumes y = Aβ+ ϵ, where y is an n×1 vector, A is an n×p fixed design

matrix of rank p and ϵ ∼ N(0, σ2I). We assume σ2 is known. It is well known that

β̂ = S−1A′y where S = A′A and β̂ ∼ N(β, σ2S−1).
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Now let S =

 S1

S2

 where S1 is 1× p and S2 is (p− 1)× p and let S−1 = V. We

seek a interval estimate for β1.

Step 1:

Let U =


U2

...

Up

 = S2β̂ = A′
2y where A =

 a1

A2

 ,a1 is the ith row of A

and A2 is n × (p − 1). Let Ui1 = max2≤j≤p |Uj |/σvj = max2≤j≤p |a′jy|/(σ||aj||). Let

0 < C1 < . . . < Cp be constants of the first stage of the procedure. If Ui1 ≤ Cp, stop

and use

β̂1 ±B(0)σv
1/2
11

If Ui1 > Cp, go to step 2.

At step 2 replace S−1 by (S−1)(i1) with row i1 and column i1 deleted from S−1.

Let V (i1) = [(S−1)(i1)]−1. Then let V
(i1)
2 be the last (p − 2) rows of V (i1). Let Γ(i1) =

V
(i1)
2 (S−1)(i1)V

(i1)′

2 and define D(Γ(i1)) as a diagonal matrix as before. Then let

U(i1) = D−1/2(Γ(i1))V
(i1)
2 β̂(i1)

and find

Ui2 = max
{2≤j≤p}\{i1}

|U (i1)
j |.

If Ui2 ≤ Cp−1, stop and set r = 1 and use

β̂1 ±B(1)σv
1/2
11

If Ui2 > Cp−1, go to step 3.

Following the steps as in the previous description with β̂ playing the role of X and
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S−1 playing the role of Σ we continue the procedure and get the interval estimate for

β1 as

β̂1 ±B(r)σv
1/2
11

The process is repeated to obtain interval estimates for all components of β as well as

tests of Hi : βi = 0.

Remark 3.2.3. In all the normal models above we assumed σ2 to be known. When

σ2 is unknown we recommend replacing σ2 by s2 in interval estimate and test statistic

formulas. We use s2 to denote the natural independent estimate of σ2 that is typically

available in linear models. The consequence is that the desirable interval property is

retained for fixed s2.

3.3 Determination of constants and simulation results

We now turn to the related issues of implementing and evaluating the procedures.

Basically the constants Ci used in the stage 1 MTPs as well as the B(r) constants used

in stage 2 are chosen by trial and error using simulation. We begin by searching for a

procedure that can be seen, by simulation, to perform well as an overall MTP in the

practical problem at hand. For the Ci a modification of the Benjamini and Gavrilov

(2009) critical values tend to work well while, for the B(r), a modification of the Holm

(1979) critical values work well. That is, begin by fixing an α1 and α2 and taking

C(i) = iα1/(M − i(1− α1)) (3.3.1)

and

B(r) = Φ−1(1− α2/(M − r)). (3.3.2)

Modifying α1 and α2 typically leads to an effective procedure. In the treatments

versus control model of Section 3.2.1 we did extensive simulations for 5, 10 and 25

treatments and one control. When viewed as an MTP we compared the performance

of the MRD and standard step-down procedure with those of the new procedures. In
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(3.3.1) and (3.3.2) the new procedure used α1 = 0.1 and α2 = 0.03 in order to control

the FDR of the overall procedure at 0.05.
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Chapter 4

Nonparametric MTPs and simultaneous interval estimates

Consider a one way layout without a normal assumption. That is, assume each of k

populations has the same continuous distribution with an unknown translation param-

eter µi, i = 1, . . . , k. We are interested in various pairwise comparisons emanating from

a treatment vs control model, a change point model or all pairwise differences model.

We propose new MTPs and also derive simultaneous interval estimates for the various

pairwise differences of interest. Both modes of inference are based on ranks. The ranks

in question however are not the ranks of the original observations. The ranks are deter-

mined in a special way to ensure that the resulting simultaneous interval estimates and

MTP procedures have the interval property. The MTPs derived have interval property

for testing Hij : µi − µj = 0 vs Kij : µi − µj ̸= 0. The simultaneous interval estimates

for µi − µj in the various settings are typically shorter than those based on Bonferroni

methods, are informative (not infinite), computationally feasible and they will also have

a desirable interval property to be described later.

Simultaneous interval estimates are determined in a 2 stage process. The second

stage of the process determines an interval estimate for each particular pairwise differ-

ence of interest. The length of each interval depends on the number of rejections made

when testing all other pairwise parameters of interest in the first stage of the process.

Test statistics for parameters in the first stage turn out to be two sample rank tests.

However in comprising the two samples, data from more than 2 populations are used.

Section 4.1 contains the models considered along with the definitions of the interval

property for testing and for intervals. In Section 4.2 and 4.3, to provide motivation

for what follows, we demonstrate that for k = 2, the two sample rank test and the

two sample permutation test have the interval property, and we also give examples
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of instances where typical stepwise rank tests and permutation test do not have the

interval property in multiple testing situations, i.e., k > 2. The method and details

will be given in Section 4.4. This special rank tests used in determining simultaneous

interval estimates and MTPs do have the interval property.

4.1 Model and Definitions

Let xij = µi+ϵij , j = 1, . . . , ni, i = 1, 2, . . . , k be independent random variables all with

the same continuous distribution except for the translation parameter µi. Let νii′ =

µi − µi′ be parameters of interest. For treatment vs. control models the parameters of

interest are νi1, i = 2, . . . , k as i′ = 1 corresponds to the control population. For change

point models νi+1,i, i = 1, . . . , k− 1 are parameters of interest. For all pairwise models,

i′ < i, i = 2, . . . , k, i′ = 1, 2, . . . , k − 1. For each of the three models we will be seeking

simultaneous interval estimates for νii′ . We will also be concerned with multiple testing

of hypotheses Hii′ : νii′ = 0 vs Kii′ : νii′ ̸= 0. Our approach for all models and all

problems will be to focus on one of the νii′ and get an interval estimate for it or a test

for it and then in turn to focus individually on each of the other νii′ of interest. It will

therefore be helpful to think first about an interval estimate or a test for ν21, let

x = (x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2 , . . . , xk1, xk2, . . . , xknk
)′ (4.1.1)

be an n× 1 vector of observations with n =
∑k

i=1 ni.

Now let ∆ > 0, γ > ∆, also let

x∗ = (x11 −
∆

n1
, x12 −

∆

n1
, . . . , x1n1 −

∆

n1
, x21 +

∆

n2
, x22 +

∆

n2
, . . . , x2n2 +

∆

n2
,

x31, x32, . . . , x3n3 , . . . , xk1 , . . . , xknk
)′ (4.1.2)
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and let

x∗∗ = (x11 −
γ

n1
, x12 −

γ

n1
, . . . , x1n1 −

γ

n1
, x21 +

γ

n2
, x22 +

γ

n2
, . . . , x2n2 +

γ

n2
,

x31, x32, . . . , x3n3 , . . . , xk1 , . . . , xknk
)′ (4.1.3)

If φ21 is a one sided test function for H21, then φ21 has the interval property if

whenever φ21(x) = 1 then φ21(x
∗) = 1. If φ21 is a two sided test function for H21,

then φ21 has the interval property provided whenever φ21(x) = 0 and φ21(x
∗) = 1,

then φ21(x
∗∗) = 1. An interval estimate (L(x), U(x)) for ν21 has the interval property

provided (L(x∗∗), U(x∗∗)) does not cover zero whenever (L(x), U(x)) covers zero but

(L(x∗), U(x∗)) does not.

An overall MTP or overall simultaneous interval estimates have the interval property

provided each test or each interval has the interval property for each parameter of

interest.

4.2 Two sample problem

In this subsection we assume k=2 and demonstrate that for testingH21 : ν21 = µ2−µ1 =

0 vs K21 : ν21 ̸= 0, the rank sum test and permutation test have the interval property.

4.2.1 two sample rank sum test

Without loss of generality let n2 ≤ n1. For the rank test let W be the sum of the

ranks for the second population. Assume that at sample point x given in (4.1.1) with

k = 2 after ranking the n1+n2 observations W = w lies in the acceptance region. Also

assume that at x∗ given in (4.1.2) W = w∗ lies in the rejection region. Now for this

to happen, W at x had to be between the lower critical value and upper critical value

for the rank test (See Devore (2012)) while W at x∗ would have to exceed the upper

critical value. This is true since W could only increase as x → x∗. That is the ranks

for the second population could not decrease. Since this fact is also true as x∗ → x∗∗
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it follows that W at x∗∗ would also exceed the upper critical value.

4.2.2 Two sample Permutation test

Now we study the two sample permutation test. Within a permutation framework it is

known (See Basso, Paserin, Salmaso and Solari (2009)) that the usual t-statistic,

t = |x2 − x1|/{[1/n1 + 1/n2]s
2}1/2

is equivalent to the statistic

T = |x2 − x1| (4.2.1)

The two-sample permutation test is as follows:

The vector x consists of x1 and x2. There are Cn1+n2
n1

possible permutation vectors

xp, corresponding to all possible ways of partitioning n1 + n2 elements of x into two

subsets of size n1 and n2. For each xp, the permutation replication of T is defined as

T p = T (xp). Evaluate all T p permutation replications and then we can calculate

P = Prob(T p ≥ T ) = #(T p ≥ T )/Cn1+n2
n1

.

For the two sample permutation test, we can extend the definition of interval prop-

erty to more general situations. Given

x = (x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2)
′

Let ∆ > 0, γ > 0 and let

x∗ = (x11 − q∆, . . . , x1k1 − q∆, . . . , x1n1 , x21 +∆, . . . , x2k2 +∆, . . . , x2n2)
′ (4.2.2)

x∗∗ = (x11 − qγ, . . . , x1k1 − qγ, . . . , x1n1 , x21 + γ, . . . , x2k2 + γ, . . . , x2n2)
′ (4.2.3)

Note when k1 < n1 and k2 < n2, only some of the observations are changed.



35

Again, if φ21 is a one sided test function for H21, then φ21 has the interval property

if whenever φ21(x) = 1 then φ21(x
∗) = 1. If φ21 is a two sided test function for H21,

then φ21 has the interval property provided whenever φ21(x) = 0 and φ21(x
∗) = 1,

then φ21(x
∗∗) = 1.

We now state

Theorem 4.2.1. The one-sided two sample permutation test has the interval property.

The two-sided two sample permutation test has the interval property if n1 = n2 or if

q ≥ k2
k1

when n1 < n2 or q ≤ k2
k1

when n1 > n2.

Proof. Fact 1: The test statistic (4.2.1) evaluated at x∗ is either an increasing function

of ∆ or first decreasing and later increasing as a function of ∆. This follows from (4.2.2)

since

|x∗
2 − x∗

1| = |x2 − x1 + (
k1q

n1
+
k2
n2

)∆| (4.2.4)

Fact 2: The test statistic evaluated at x∗ changes at the fastest rate among all

permutations under the condition if n1 = n2 or q ≥ k2
k1

when n1 < n2 or q ≤ k2
k1

when

n1 > n2.

To see this, suppose we swapm (m ≤ min{n1, n2}) observations from one population

to the other. Suppose after the swap, m1 observations which are originally from x11 to

x1k1 are now in x2, thus m1 ≤ k1. m2 observations which are originally from x21 to

x2k2 are now in x1, thus m2 ≤ k2. max{m1,m2} ≤ m. Then the change in x2 − x1 is

(k2 −m2)∆−m1∆q

n2
+

(k1 −m1)∆q −m2∆

n1

≤ (
k1q

n1
+
k2
n2

)∆

This ensures that the one-sided sample permutation test has the interval property.
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On the other hand,

(k2 −m2)∆−m1∆q

n2
+

(k1 −m1)∆q −m2∆

n1

≥ −(
k1q

n2
+
k2
n1

)∆

Because (k2−m2)∆−m1∆q
n2

+ (k1−m1)∆q−m2∆
n1

is a decreasing function of m1 and m2, its

minimum is achieved when m1 = k1 and m2 = k2. Note this minimum may not always

be reached because for example when k1 > n2, m1 < k1. In this case, a strict inequality

holds.

The condition n1 = n2 or q ≥ k2
k1

when n1 < n2 or q ≤ k2
k1

when n1 > n2 implies

that

− (
k1q

n2
+
k2
n1

)∆ ≥ −(
k1q

n1
+
k2
n2

)∆

Therefore,

(k2 −m2)∆−m1∆q

n2
+

(k1 −m1)∆q −m2∆

n1
≥ −(

k1q

n1
+
k2
n2

)∆

Now suppose the two sample test will reject when the P -value of the test statistic

(4.2.1) < α. Suppose that at ∆ = 0 we are at an accept point and at ∆ = a∗ we are

at a reject point. This means that the P -value decreases from above α at ∆ = 0 to

below level α at ∆ = a∗. This implies that the test statistic for at least one of the

other permutations fell below the test statistic for the original point with the increase

∆ = a∗. Once the statistic in (4.2.4) as a function of ∆ is increasing it does so at the

fastest rate so the corresponding P -value can only be nonincreasing. Thus once there

is a rejection at x∗ following an acceptance at x, a rejection at x∗∗ must ensue.

Corollary 4.2.1. Under the definition of (4.1.2) and (4.1.3), one-sided and two-sided

two sample permutation tests have the interval property.

Because in that case, k1 = n1, k2 = n2, q∆ = ∆
n1
, ∆ = ∆

n2
, we have q = n2

n1
= k2

k1
. It

satisfies the conditions of the theorem and thus is a special case.
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4.2.3 Two sample bootstrap test

The bootstrap algorithm is quite similar to the permutation algorithm. The main

difference is the sampling is carried out with replacement rather than without replace-

ment. We need to evaluate all (n1+n2)
n1+n2 bootstrap replications of T denoted as T b.

Then we can calculate P -value=Prob(T b ≥ T ) = #(T b ≥ T )/(n1 + n2)
n1+n2 . When

(n1 + n2)
n1+n2 is large, in practice, the bootstrap P -value is approximated by Monte

Carlo methods, that is, instead of evaluating T b for all (n1 + n2)
n1+n2 xb, choose B

vectors randomly from (n1 + n2)
n1+n2 xb. B will usually be at least 1000.

Efron and Tibshirani pointed out in their book An introduction to the Bootstrap

that the permutation test is exact, while the bootstrap test is approximate. In prac-

tice, the two methods often give quite similar results.

The interval property of a bootstrap test in practice is difficult to analyze because

of the randomness in generating the bootstrap sample. For theoretical purpose, we

still could study the property of the limiting form of bootstrap test, that is, when all

(n1 + n2)
n1+n2 T b are evaluated.

Theorem 4.2.2. Under definition (4.2.2) and (4.2.3), if k1 = n1 and k2 = n2, both

the one-sided bootstrap test and the two-sided bootstrap test have the interval property.

Proof.

x∗ = (x11 − q∆, x12 − q∆, . . . , x1n1 − q∆, x21 +∆, x22 +∆, . . . , x2n2 +∆)′

Fact 1: The test statistic evaluated at x∗ is either an increasing function of ∆ or

first decreasing and later increasing as a function of ∆. This follows from (4.2.2) since

|x∗
2 − x∗

1| = |x2 − x1 + (1 + q)∆| (4.2.5)

Fact 2: The test statistic evaluated at x∗ changes at the fastest rate among all
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bootstrap samples if k1 = n1 and k2 = n2.

Because each observation now can be sampled with replacement from (n1+n2)
n1+n2

observations. Suppose now x2 contains m1 observations from x1, note duplication is

possible, thus m1 ≤ n2. x1 contains m2 observations from x2, thus m2 ≤ n1. Then the

change in x2 − x1 is

(n2 −m1)∆−m1∆q

n2
+

(n1 −m2)∆q −m2∆

n1
(4.2.6)

≤ (1 + q)∆

On the other hand,

(n2 −m1)∆−m1∆q

n2
+

(n1 −m2)∆q −m2∆

n1
(4.2.7)

≥ (n2 − n2)∆− n2∆q

n2
+

(n1 − n1)∆q − n1∆

n1

= −(1 + q)∆ (4.2.8)

Suppose the two sample test will reject when the P -value of the test statistic (4.2.1)

< α. Note, suppose that at ∆ = 0 we are at an accept point and at ∆ = a∗ we are

at a reject point. This means that the P -value decreases from above α at ∆ = 0 to

below level α at ∆ = a∗. This implies that the test statistic for at least one of the

other permutations fell below the test statistic for the original point with the increase

∆ = a∗. Once the statistic in (4.2.5) as a function of ∆ is increasing it does so at the

fastest rate so the corresponding P -value can only be nonincreasing. Thus once there

is a rejection at x∗ following an acceptance at x, a rejection at x∗∗ must ensue.

Corollary 4.2.2. : Under the definition of (4.1.2) and (4.1.3), one sample and two

sample bootstrap test have the interval property.

Because in that case, k1 = n1, k2 = n2, it satisfies the conditions of the theorem.

Therefore, it is a special case of this theorem. In the theorem there is no restriction on

the value of q, while in the special case q = n2
n1

= k2
k1
.
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4.3 Multiple testing problem

4.3.1 Step-down MTP based on ranks

We will consider examples where there are three populations, one control and two for

treatments. We will perform a step-down MTP and focus on the test for the difference

in translation parameters for treatment labeled 2, and control which is labeled 1. That

is, let µi, i = 1, 2, 3, represent the translation parameters for the 3 populations. Mul-

tiple test H21 : ν21 = µ2 − µ1 = 0 vs K21 : ν21 ̸= 0 and H31 : ν31 = µ3 − µ1 = 0 vs.

K31 : ν31 ̸= 0 using the step-down method. The tests performed will be based rank

tests. We offer two examples. One where the ranks are based on full ranking of all

observations from the 3 populations and another where ranking is based on each pair

of populations separately.

For the example we will take 3 independent observations from each population. That

is, let xij , i = 1, 2, 3; j = 1, 2, 3 and let x = (x11, x12, x13, x21, x22, x23, x31, x32, x33)
′. Let

Ti, i = 2, 3 stand for treatments with T1 being the control.

Let Ui(x) = |Ri − R1|, i = 2, 3, where Ri is the sum of the ranks for population i

, be test statistics for Hi1. For the step-down method at step 1, let C1 be a constant

and let U
(1)
i∗ (x) = maxi∈{2,3} Ui(x). If U

(1)
i∗ (x) ≤ C1, accept H21 and H31.

If U
(1)
i∗ (x) > C1, reject Hi∗1 and go to step 2.

At step 2, let C2 < C1 be a constant and consider U (2)(x) = Ui(x) where i ̸= i∗. If

U (2)(x) ≤ C2, reject Hi∗1, but accept Hi1. If U
(2)(x) > C2, reject both hypotheses.

Now we offer numerical examples to demonstrate that the step-down MTP for test-

ing H21 does not have the interval property. Note that the sample points in the exam-

ples follow the behavior given in (4.2.1), (4.2.2) and (4.2.3) with ∆ = 0.2 and γ = 0.4.

Thus the scores for the treatment T2 and the control are getting closer together as



40

x → x∗ → x∗∗ while the (independent) scores for treatment T3 remain fixed.

Step-down MTP based on joint ranks

The step-down MTP based on joint ranks doesn’t have the interval property.

A counter example is as follows:

Let C1 = 8, C2 = 5.

for sample points at x

Raw Scores Ranks

T2 T1 T3 T2 T1 T3

1.6 2.2 6 1 2 6

2.8 5.2 8 3 5 7

3.8 8.1 9 4 8 9

|R2 −R1| = 7, |R3 −R1| = 7, accept H21 and H31.

for sample points at x∗

Raw Scores Ranks

T2 T1 T3 T2 T1 T3

1.8 2.0 6 1 2 6

3.0 5.0 8 3 5 8

4.0 7.9 9 4 7 9

|R2 −R1| = 6, |R3 −R1| = 9, reject H21 and H31.



41

for sample points at x∗∗

Raw Scores Ranks

T2 T1 T3 T2 T1 T3

2.0 1.8 6 2 1 6

3.2 4.8 8 3 5 8

4.2 7.7 9 4 7 9

|R2 −R1| = 4, |R3 −R1| = 10, reject H31 and accept H21.

Thus we see that for testing H21 : ν21 = 0, the step down procedure goes from

accept to reject to accept as x → x∗ → x∗∗.

MTP based on separate ranks

The step-down MTP based on separate ranks doesn’t have the interval property.

A counter example is as follows:

Let C1 = 6, C2 = 4.

for sample points at x

Raw Scores Ranks

T2 T1 T3 T2 T1 T1 T3

1.6 2.2 6 1 2 1 3

2.8 5.2 8 3 5 2 4

3.8 8.1 9 4 6 5 6

|R2 −R1| = 5, |R3 −R1| = 5, accept H21 and H31.
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for sample points at x∗

Raw Scores Ranks

T2 T1 T3 T2 T1 T1 T3

1.8 2.0 6 1 2 1 3

3.0 5.0 8 3 5 2 5

4.0 7.9 9 4 6 4 6

|R2 −R1| = 5, |R3 −R1| = 7, reject H21 and H31.

for sample points at x∗∗

Raw Scores Ranks

T2 T1 T3 T2 T1 T1 T3

2.0 1.8 6 2 1 1 3

3.2 4.8 8 3 5 2 5

4.2 7.7 9 4 6 4 6

|R2 −R1| = 3, |R3 −R1| = 7, reject H31 and accept H21.

Thus we see that for testing H21 : ν21 = 0, the step down procedure goes from ac-

cept to reject to accept as x → x∗ → x∗∗.

4.3.2 Step-down MTP based on permutation test

When k > 2, the multiple permutation test doesn’t have the interval property. Two

counter-examples are offered here. They demonstrate that when k = 3 the step-down

procedure based on pairwise permutation tests does not have the interval property.

Consider the change point model when there are 3 populations at times t1, t2, t3.

We demonstrate that the step-down MTP based on pairwise permutation tests for

ν21 = µ2 − µ1 and ν32 = µ3 − µ2 does not have the interval property for testing
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H21 : ν21 = 0. For critical values we let C1 = 0.05 and C2 = 0.10. The data for 3

populations are as follows:

for sample points at x

t1 t2 t3

-0.55 0.21 1.02

-1.31 0.12 1.45

-0.06 1.32 2.12

0.54 0.58 1.88

-0.89 -0.77 0.66

The means (x1, x2, x3) = (−0.454, 0.292, 1.426). The statistics are |x2−x1| = 0.746,

|x3−x2| = 1.134 with permutation P -value of 0.151 and 0.032 respectively. This means

that at x, H21 is accepted and H32 is rejected. Note the permutation P -values are

determined by listing all C10
5 possible outcomes for the permutations and finding the

percent of these outcomes where statistic is less than or equal to the observed statistic

at x.

for sample points at x∗

t1 t2 t3

-0.65 0.31 1.02

-1.41 0.22 1.45

-0.16 1.42 2.12

0.44 0.68 1.88

-0.99 -0.67 0.66

The means (x∗1, x
∗
2, x

∗
3) = (−0.554, 0.392, 1.426). The statistics are |x∗2−x∗1| = 0.946,

|x∗3 − x∗2| = 1.034 with p-value of 0.087 and 0.048 respectively. This means that at x∗,

H21 and H32 are both rejected. At x∗∗
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for sample points at x∗∗

t1 t2 t3

-0.70 0.36 1.02

-1.46 0.27 1.45

-0.21 1.47 2.12

0.39 0.73 1.88

-1.04 -0.62 0.66

The means are (−0.604, 0.442, 1.426). The statistics are |x∗∗2 − x∗∗1 | = 1.046, |x∗∗3 −

x∗∗2 | = 0.984 with P -values 0.071 and 0.071 respectively. This means that at x∗∗, H21

and H32 are both accepted. Thus for H12, as x → x∗ → x∗∗ we have an accept, followed

by a reject, followed by an accept. This violates the interval property.

Consider the treatment vs. control model when there are 3 populations at times

T1, T2, T3. We demonstrate that the step-down MTP based on pairwise permutation

tests for ν21 = µ2−µ1 and ν31 = µ3−µ1 does not have the interval property for testing

H21 : ν21 = 0. For critical values we let C1 = 0.05 and C2 = 0.10. The data for 3

populations are as follows:

for sample points at x

T2 T1 T3

0.41 1.55 2.22

0.32 0.79 2.65

1.52 2.04 3.32

0.78 2.64 3.08

-0.57 1.21 1.86

The means (x1, x2, x3) = (1.65, 0.49, 2.63). The statistics are |x2 − x1| = 1.16,

|x3 − x1| = 0.98 with permutation P -value of 0.071 and 0.056 respectively. This means
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that at x, both H21 and H31 are accepted. Note the permutation P -values are deter-

mined by listing all C10
5 possible outcomes for the permutations and finding the percent

of these outcomes where statistic is less than or equal to the observed statistic at x.

for sample points at x∗

T2 T1 T3

0.51 1.45 2.22

0.42 0.69 2.65

1.62 1.94 3.32

0.88 2.54 3.08

-0.47 1.11 1.86

The means (x∗1, x
∗
2, x

∗
3) = (1.55, 0.59, 2.63). The statistics are |x∗2 − x∗1| = 0.96,

|x∗3 − x∗1| = 1.08 with P -value of 0.071 and 0.040 respectively. This means that at

x∗, H21 and H31 are both rejected.

for sample points at x∗∗

T2 T1 T3

0.56 1.40 2.22

0.47 0.64 2.65

1.67 1.89 3.32

0.93 2.49 3.08

-0.42 1.06 1.86

The means are (1.50, 0.64, 2.63). The statistics are |x∗∗2 − x∗∗1 | = 0.86, |x∗∗3 − x∗∗1 | =

1.13 with P -values 0.111 and 0.040 respectively. This means that at x∗∗, H21 is accepted

and H31 is rejected. Thus for H21, as x → x∗ → x∗∗ we have an accept, followed by a

reject, followed by an accept. This violates the interval property.
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4.4 New Approach

In this section, we will describe the new nonparametric MTPs which have associated

interval estimates and the practical interval property.

Let M be the total number of parameters, νii′ , of interest for a particular pairwise

difference model. Our approach to obtaining MTPs and simultaneous interval estimates

is the same for all pairwise comparisons models. It is to focus on each individual pa-

rameter separately and treat it with a 2-stage process that depends on all the data. All

parameters are treated in a similar fashion. For example, we can focus on the parameter

ν21.

At stage 1 we apply an (M-1 population) MTP to ONLY all the other hypotheses

involving parameters of interest, (i.e., omitting only ν21). However, this MTP is based

on all the data. At the end of this stage the number of rejections, r = r(x), with

possible values r = 0, 1, ...,M − 1 is recorded.

At stage 2 the process we present produces an interval estimate based on the r

produced at stage 1 and on ranking the pairwise differences of observations from popu-

lations 1 with those from population 2. The corresponding MTP decision is defined by

accepting the hypothesis H21 : ν21 = 0 if and only if the interval covers 0. With this

relationship between the MTP and interval estimates it immediately follows that

Theorem 4.4.1. The MTP has the interval property if and only if the corresponding

interval estimates have the interval property.

The particular interval estimate we use at stage 2 is based on the Wilcoxon rank-

sum interval as described in Devore (2012), page 643. The interval is determined as

follows:

Let B(r) be a decreasing set of constants. Also let, for e = 1, . . . , n2, f = 1, . . . , n1,

def = x2e − x1f and let the ordered differences be def(1), def(2), . . . , def(n1n2). Then the
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interval estimate for ν21 is

(def(n1n2−B(r)+1), def(B(r))) (4.4.1)

For the constants B(r) we take the approximation also given in Devore (2012).

B(r) = largest integer in n1n2/2 + zγ(r)/2
√
n1n2(n1 + n2 + 1)/12

where z denotes the standard normal critical values.

The values of γ(r) need to be determined by simulation. Also the constants used

with the particular choice of the MTP used at stage 1 need to be determined by simu-

lation. These issues will be discussed later.

There is considerable flexibility in choosing the M-1 dimensional MTP to be used at

stage 1. Those that we suggest here require some of what we refer to as amalgamation

of samples. The amalgamation of two samples consists of first converting the observed

samples of (possibly) unequal sizes to samples with equal sizes and then combining

them. We use the following algorithm to accomplish the amalgamation.

a. Sample size conversion: Suppose x
(j)
(1), . . . , x

(j)
(nj)

are nj ordered values for some

population j. We wish to convert them into nm ordered values z
(j)
(1), . . . , z

(j)
(nm). To

do so define njnm scores yβ , β = 1, . . . , njnm as follows. Fix i = 1, . . . , nj . For all

β = (i − 1)nm + 1, . . . , inm. Let yβ = x
(j)
(i) . That is, yβ is the sequence of x

(j)
(i) scores

and each repeated nm times. Next go along the yβ sequence taking them nj at a time.

For i = 1, . . . , nm, define the converted score to be

z
(j)
(i) =

inj∑
β=(i−1)nj+1

yβ/nj (4.4.2)
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b. Combining scores: Suppose we want to amalgamate the samples from popula-

tions i and i′ that have had their sample sizes converted to nm. We form a sample of

size nm of ordered values by taking a weighted average of all corresponding nm order

statistics. For example, the first weighted ordered value of the combined sample is

U(1)(x) = (niz
(i)
(1) + ni′z

(i′)
(1) )/(ni + ni′) (4.4.3)

Continue and determine U(2)(x), . . . , U(nm)(x). These are the amalgamated scores.

It is easy to check that

Lemma 4.4.1. Suppose we are testing H21 : ν21 = 0 and all the statistics used in

the stage 1 MTP depend on the samples from populations 1 and 2 only through their

amalgamation. Then r will be constant for x,x∗,x∗∗ as defined in (4.1.1), (4.1.2) and

(4.1.3). That is, r(x) = r(x∗) = r(x∗∗).

Clearly the analogous result holds for testing Hii′ : νii′ = 0 for any i, i′. We can now

state

Theorem 4.4.2. If all the statistics used in the stage 1 MTP for testing Hii′ : νii′ = 0

depend on the samples from populations i and i′ only through their amalgamation then

the interval estimate for νii′ has the interval property.

Proof. It suffices to show

(1) B(r) does not change as the sample point x changes to x∗ and x∗ changes to x∗∗.

(2) def(n1n2−B(r)+1) given in (4.4.1) increases as x → x∗ → x∗∗.

To see (2) assuming (1), suppose the INTERVAL ESTIMATES of (4.4.1) covers zero

at x but not at x∗. Since the lower end point of the interval increases as x → x∗

this implies that at x∗, def(n1n2−B(r)+1) > 0. Now with def(n1n2−B(r)+1) > 0 increasing

further as x∗ → x∗∗, the lower end point > 0. The reason def(n1n2−B(r)+1) increases

follows from (1) and the definition of def which implies that all ordered values of the

combined n1n2 differences increase.
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(1) follows from Lemma 4.4.1. which completes the proof.

Corollary 4.4.1. If all the statistics used in the stage 1 MTP for testing Hii′ : νii′ = 0

depend on the samples from populations i and i′ only through their amalgamation then

the MTP resulting from the interval procedure (rejecting a hypothesis if and only if the

interval does not cover zero) has the interval property.

Proof. The proof follows from Theorem 4.4.1.

In the specific models that follow we will demonstrate the use of a variety of pos-

sible stage 1 MTPs. They will all be based on 2-sample Wilcoxon rank sum statistics.

However the particular situation will determine how to form the two samples on which

the test is applied.

We will use the following notation and terminology with regard to use of the

Wilcoxon rank sum test. Suppose our samples to be compared have sizes m1 and

m2 with m1 ≤ m2. Then the Wilcoxon rank sum statistic, W, is equal to the sum of

the ranks of the scores in the smaller sample when the ranks come from the ranking of

the combined sample. By the corresponding two sided P -value we mean

P = 2[1− Φ(W −m1(m1 +m2 + 1)/2)/
√
m1m2(m1 +m2 + 1)/12)]

where Φ denotes the standard normal cdf.

4.4.1 Treatments vs. Control

In keeping with Section 3.2.1, the treatment vs control setup we offer 2 different MTPs

that can be used at stage 1 of the individual tests. When focusing on ν21 we need a

stage 1 MTP for testing the k−2 hypotheses Hi1 : νi1 = 0 vs Ki1 : νi1 ̸= 0, i = 3, . . . , k.

The first procedure we present is a very easily computable stepwise procedure. The

first step of this stage 1 MTP is to form k−2 two sample Wilcoxon rank sum statistics.

One sample of the two is just the sample of size ni from population i. The other sample
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comes from amalgamating the samples from populations 1 and 2 resulting in a single

sample of size is nm = min(n1, n2).

ComputeWi the two sample Wilcoxon rank sum statistic for i = 3, . . . , k and its cor-

responding two sided P -value denoted by Pi. Then let Pi∗ = min3≤i≤k Pi. If Pi∗ > C1,

then accept all Hi1, i = 3, . . . , k. If Pi∗ ≤ C1, reject Hi∗1 and go to step 2.

At step 2, repeat step 1 except now leave population i∗ out of all calculations. That

is, get the same set of P -values but leave out Pi∗ (this time there are k − 3 P−values)

and get the min of these to compare with C2 > C1. If this min P -value corresponds to

population i∗∗ and is < C2, reject Hi∗∗1 and go to step 3. Otherwise stop and accept all

hypotheses other than Hi∗1. In this latter case r =number of rejections is 1. Should the

process continue, eventually r will be determined as a number 0, 1, . . . , (k− 2) which in

turn will determine B(r) to be used in stage 1.

It follows from Theorem 4.4.2 and Corollary 4.4.1 that

Theorem 4.4.3. The interval estimate for ν21 has the interval property.

and

Corollary 4.4.2. Corollary: The MTP resulting from the interval procedure (rejecting

a hypothesis if and only if the interval does not cover zero) has the interval property.

An alternative stepwise multiple testing procedure to be used at stage 1 for the

simultaneous interval estimation procedure parallels the MRD based method in Section

3.2.1. It is as follows: Again the first step of the stepwise procedure is to form (k − 2)

two sample Wilcoxon rank sum statistics. Assuming we are seeking the confidence

interval for ν21 the one sample of the two is the sample of size ni from population

i, i ̸= 1, i ̸= 2. The other sample comes from pooling the amalgamation of samples

1 and 2 with the other k−3 samples (i.e., not including samples from populations 1, 2, i).

Obtain, Wi, the two sample Wilcoxon rank sum statistic for i = 3, . . . , k and its cor-

responding two sided P -value denoted by Pi. Then let Pi∗ = min3≤i≤k Pi. If Pi∗ > C1,
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then accept all Hi1, i = 3, . . . , k. If Pi∗ ≤ C1, reject Hi∗1 and go to step 2.

At step 2, repeat step 1 except now leave population i∗ out of all calculations. Once

again get a set of P−values (this time there are k − 3 P -values) and get the min of

these to compare with C2 > C1. If this min P -value corresponds to population i∗∗

and is < C2, reject Hi∗∗1 and go to step 3. Otherwise stop and accept all hypotheses

other than Hi∗1. In this latter case r =number of rejections is 1. Should the process

continue, eventually r will be determined as a number 0, 1, . . . , (k − 2) which in turn

will determine B(r) to be used in stage 1.

It follows from Theorem 4.4.2 and Corollary 4.4.1 that both the interval estimates

and the MTP using this alternative procedures at stage 1 has the interval property.

We illustrate the simultaneous interval estimation procedure with an example. We

consider data from exercise 26, P.649 of Devore (2012). The data consists of observations

from a control population and 3 treatment populations. We deliberately left out one

observation to illustrate the method. Letting control be treatment 1 the raw data for

the 4 populations are as follows:

T1 : 33.2, 25.3, 20.2, 20.3, 18.3, 19.3, 17.3, 17.0, 16.7, 18.3

T2 : 37.1, 31.8, 28.0, 25.9, 25.5, 25.3, 23.7, 24.4, 21.7

T3 : 58.9, 54.2, 49.2, 47.9, 38.2, 48.8, 47.8, 40.2, 44.0, 46.4

T4 : 56.7, 49.6, 46.4, 40.9, 39.4, 37.1, 37.5, 39.6, 35.1, 36.5

It will be convenient to order the values for each population. The ordered values are as
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follows:

T1 : 16.7, 17.0, 17.3, 18.3, 18.3, 19.3, 20.2, 20.3, 25.3, 33.2 (4.4.4)

T2 : 21.7, 23.7, 24.4, 25.3, 25.5, 25.9, 28.0, 31.8, 37.1 (4.4.5)

T3 : 38.2, 40.2, 44.0, 46.4, 47.8, 47.9, 48.8, 49.2, 54.2, 58.9

T4 : 35.1, 36.5, 37.1, 37.5, 39.4, 39.6, 40.9, 46.4, 49.6, 56.7

We first seek an interval estimate for ν21 = µ2 − µ1. We will derive such at stage 2 of

the process. At stage 1 we wish to do an MTP for H31 : ν31 = 0 and H41 : ν41 = 0.

The MTP will be a step-down procedure where at step 1 we will form 2 two sample

rank statistics. The first statistic will arise from the ranks of population 3 and the

combined ranks of population 1 and 2. The second statistic will arise from the ranks

of population 4 and the combined ranks of populations 1 and 2. To find the combined

ranks of populations 1 and 2, first note that the sample sizes are n1 = 10, n2 = 9.

We convert the 10 ordered observations from population 1 into 9 using (4.4.2) as

follows:

{ 9

10
16.7 +

1

10
17.0,

8

10
17.0 +

2

10
17.3,

7

10
17.3 +

3

10
18.3,

6

10
18.3 +

4

10
18.3,

5

10
18.3,

+
5

10
19.3

4

10
19.3 +

6

10
20.2,

3

10
20.2 +

7

10
20.3,

2

10
20.3 +

8

10
25.3,

1

10
25.3 +

9

10
33.2}

= {16.73, 17.06, 17.60, 18.3, 18.8, 19.84, 20.27, 24.30, 32.41} (4.4.6)

At this point we use (4.4.3) to get a weighted average of the corresponding order

statistics for population 1 and 2 combined. For this example these are as follows by
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virtue of (4.4.5) and (4.4.6):

U(1) = (10(16.73) + 9(21.7))/19 = 19.08

U(2) = (10(17.06) + 9(23.7))/19 = 20.21

U(3) = (10(17.6) + 9(24.4))/19 = 20.82

U(4) = (10(18.3) + 9(25.3))/19 = 21.62

U(5) = (10(18.8) + 9(25.5))/19 = 21.97

U(6) = (10(19.84) + 9(25.9))/19 = 22.71

U(7) = (10(20.27) + 9(28.0))/19 = 23.93

U(8) = (10(24.30) + 9(31.8))/19 = 27.85

U(9) = (10(32.41) + 9(37.1))/19 = 34.63

Next we find the 2 sample Wilcoxon rank sum statistics for testing population 3

with 10 observations against population 1 represented by the 9 order statistics just

computed. That is, compare the two samples

(i) 38.2, 40.2, 44.0, 46.4, 47.8, 47.9, 48.8, 49.2, 54.2, 58.9

(ii) 19.08, 20.21, 20.82, 21.62, 21.97, 22.71, 23.93, 27.85, 34.63.

The rank sum statistic is W = −45 with a 2-sided P -value of 0.0004.

Similarly we find the rank sum statistic for testing population 4 with 10 observa-

tions against population 1 represented by the 9 order statistics computed. This time

W = −45 again with a 2-sided P−value of 0.0004.

We now complete stage 1, which is an MTP for testing H31 and H41. Toward this

end consider constants as prescribed in Section 4. We pick α1 = 0.05 and α2 = 0.01

so that C1 = 0.024 and C2 = 0.091. Note both P -values < 0.01 which means the

step-down procedure prescribed at stage 1 rejects both H31 and H41. Thus r = 2.

For stage 2 we use (4.4.1) with r = 2, γ(2) = 0.01 as derived from (4.4.7) and thus
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B(r) = 77 which means we need the 14th and 77th ordered values from the 90 ordered

pairwise differences of T2 and T1 gives in (4.4.5) and (4.4.4) respectively. Hence the

interval estimate using (4.4.1) is [0.6, 12.7]. This completes the two stage procedure for

ν21. We would repeat these same procedures to get interval estimates for ν31 and ν41.

4.4.2 Change Point

We will focus on ν(̂i+1)̂i, so at stage 1 we do a stepwise multiple testing procedure for

H(i+1)i : ν(i+1)i = 0 vs. K(i+1)i : ν(i+1)i ̸= 0, i = 1, . . . , k − 1 but i ̸= î. The first step

of the stepwise procedure is to form k − 2 two sample Wilcoxon rank sum statistics.

If i < î one sample of the two comes from pooling the samples from populations 1

through i into one large sample. The other sample comes from pooling the samples

from populations i + 1 through k but with the samples from populations î and î + 1

being amalgamated. If i > î one sample of the two comes from pooling the samples

from populations i + 1 through k. The other sample comes from pooling the samples

from populations 1 through i but with the samples from populations î and î+ 1 being

amalgamated.

Let those k − 2 statistics be denoted by Wi, i = 1, . . . , k − 1 but i ̸= î and let Pi

denote the corresponding P -value. Bear in mind as we continue the description that

H(̂i+1)̂i is never tested and that the samples from î+ 1 and î are always amalgamated.

Thus d, i∗ and i∗∗ below cannot be equal to î.

Then let P
(1)
i∗ = min1≤i≤k−1 Pi. If P

(1)
i∗ > C1, then accept all H(i+1)i and set r =

number of rejections to 0. If P
(1)
i∗ < C1, then reject H(i∗+1)i∗ and go to step 2.

At step 2 the populations are divided into 2 subsets. Namely {1, . . . , i∗} and

{i∗ + 1, . . . , k}. Each subset now is treated as the original set of k populations to

determine if there is a change point within a subset. That is, for the subset {1, . . . , i∗}

form i∗ − 2 two sample Wilcoxon rank sum statistics. One sample of the two comes
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from combining the order statistics from populations 1 through d, d = 2, . . . , i∗− 1 and

the second sample comes from combining the order statistics from populations (d+ 1)

to i∗. Also form k − (i∗ + 1) two sample Wilcoxon rank sum statistics from the popu-

lations in {i∗ + 1, . . . , k}. Once the (i∗ − 2) + k − (i∗ + 1) = k − 3 statistics and their

corresponding P -values are determined then proceed as in step 1 except now use the

constant C2 > C1, instead of C1. That is, if P
(2)
i∗∗ is the minimum P -value of (k − 3)

P -values and P
(2)
i∗∗ < C2, reject H(i∗∗+1)i∗∗ and go to step 3. If P

(2)
i∗∗ > C2 accept all

hypotheses except H(i∗+1)i∗ and set r = 1.

At step 3, the original set {1, . . . , k} could now be partitioned into 3 subsets. If

2 ≤ i∗∗ ≤ i∗, the subsets are {1, . . . , i∗∗}, {i∗∗ + 1, . . . , i∗},{i∗ + 1, . . . , k}. If i∗ + 1 <

i∗∗ < k − 1 then the 3 subsets are {1, . . . , i∗}, {i∗ + 1, . . . , i∗∗} and {i∗∗ + 1, . . . , k}.

Now each of the 3 subsets is treated as {1, . . . , k} was treated in step 1. At each step

any single subset could potentially be split into 2 smaller subsets. If the process is

concluded at step 3, r is set equal to 2. If the process is not stopped at step 3, then it

continues until r is determined. We conclude this section with

Theorem 4.4.4. The simultaneous interval estimation procedure and MTP resulting

from the interval estimation procedure for the change point problem have the interval

property.

Proof. The proof follows from Theorem 4.4.2 and Corollary 4.4.1.

Remark 4.4.1. An MTP for the change point problem for normal populations is given

in Chen, Cohen and Sackrowitz (2011).

Remark 4.4.2. The statistics in the stage 1 MTPs are actually a non parametric

version of cusum type statistics where data from i and i+ 1 are never separated.

4.4.3 All pairwise

Once again we are focused on ν21, so at stage 1 we do a stepwise MTP for Hii′ : νii′ = 0

vs. Kii′ : νii′ ̸= 0, i′ < i, i′ = 1, . . . , k − 1 and i = 2, . . . , k but not i′ = 1, i = 2. That
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is, there are Ck
2 − 1 hypotheses to be tested.

The first step of the stepwise procedure entails forming two sample Wilcoxon rank

sum statistics. The pairs of statistics are determined as follows: All 2 set partitions of

I = {1, 2, . . . , k} are considered except those for which indices 1 and 2 are separated.

For each set of the 2 set partition the samples corresponding to the indices are pooled

into one large sample. The samples coming from populations 1 and 2 are amalgamated

within the set that they (both must) appear. Then for each 2 set partition the rank

sum statistic is computed along with its corresponding P -value.

Let P
(1)
A1

be the minimum of all P -values at step 1 where A1, I\A1 is the partition

that gave rise to P
(1)
A1

. If P
(1)
A1

> C1, then accept all Hii′ . If P
(1)
A1

< C1, then reject all

Hii′ where i ∈ A1 and i′ ∈ I\A1 and go to step 2.

At step 2 treat A1 and I\A1 as I was treated at step 1. Again find P -values for

all 2 sample Wilcoxon rank sum tests and get P
(2)
A2

the minimum of all such P -values.

This time let the set corresponding to this minimum P -value be denoted by A2 where

A2 ⊂ A1 or A2 ⊂ I\A1. If P
(2)
A2

> C2 accept the remaining hypotheses and stop, set-

ting r = number of hypotheses rejected at step 1. If P
(2)
A2

< C2, reject all hypotheses

Hii′ where i ∈ A2, i
′ ∈ A1\A2 if A2 ⊂ A1. If A2 ⊂ I\A1, reject Hii′ with i ∈ A2,

i′ ∈ I\A1\A2. Now go to step 3 where the partition of I consists of 3 sets. The 3 sets

are either A2, A1\A2, I\A1 or A1, A2, I\A1\A2. Now treat each of the 3 sets as I was

at step 1. Continue this process until r is determined.

We conclude this section with

Theorem 4.4.5. The simultaneous interval estimation procedure and MTP resulting

from the estimation procedure for all pairwise contrasts has the interval property.

Proof. The proof follows from Theorem 4.4.2 and Corollary 4.4.1.
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Remark 4.4.3. An MTP for all pairwise contrasts for normal distributions is given

in Cohen, Sackrowitz and Chen (2010). Also an MTP using rank tests with a different

type of interval property is offered in Cohen and Sackrowitz (2012b).

4.5 Determination of constants and simulation results

We now turn to the related issues of implementing and evaluating the procedures.

Basically the constants Ci used in the stage 1 MTPs as well as the γ(r) and hence the

B(r) constants used in stage 2 are chosen by trial and error using simulation. We begin

by searching for a procedure that can be seen, by simulation, to perform well as an

overall MTP in the practical problem at hand. This chore is not as daunting as it may

seem since there are logical paths to follow. For the Ci a modification of the Benjamini

and Gavrilov (2009) critical values tend to work well while, for the γ(r), a modification

of the Holm (1979) critical values work well. That is, begin by fixing an α1 and α2 and

taking

C(i) = iα1/(M − i(1− α1)) (4.5.1)

and

γ(r) = α2/(M − r). (4.5.2)

Modifying α1 and α2 typically leads to an effective procedure. In the treatments

versus control model of Section 4.4.1 we did extensive simulations for ten treatments

and one control. When viewed as an MTP we compared the performance of the stan-

dard step-down procedure based on the Wilcoxon rank sum test with that of the new

procedure. In (4.5.1) and (4.5.2) the new procedure used α1 = 0.025 and α2 = 0.03 in

order to control the FWER of the overall procedure at 0.05. We studied their perfor-

mance for a wide variety of possible parameter points. We used the Normal, Uniform,

Exponential, Double Exponential and Cauchy distributions. In all cases the two pro-

cedures essentially matched one another in terms of FWER control and expected total

number of mistakes (Type I plus Type II errors).
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However, the new procedure has the interval property while step-down does not.

Also the new procedures admit corresponding interval estimates while step-down does

not.
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Chapter 5

Simulations

5.1 Simulations for comparisons of 5 MTPs

We did some simulations to compare 5 MTPs. We studied MRD, three kinds of two-

stage methods and Holm’s step down method in the treatments vs control problem. The

three new methods are denoted as FSM (first stage MRD), SCM (shortcut method)

and FSR (first stage residual) in the tables.

FSM is using original MRD method in the first stage, described in Section 3.2.1.

SCM is also described in Section 3.2.1, is an alternative to FSM. We call it shortcut

because the test statistic is simplified.

FSR is using step down in the first stage, with the first step residual from MRD as

the statistics and do not recalculate residuals.

Note that the second stage of these three methods are the same.

We consider two different treatments vs control problems by letting the number

of treatments M equal to 25 Table 5.1.2-5.1.4). We studies both the sparse case and

the non-sparse case of alternative hypotheses. FDR is controled at level α = 0.05 for

all five MTPs. To control FDR, usually we need to choose a set of critical values by

simulation. In our simulation, for the first stage, using α1 = 0.1 in the Benjamini and

Gavrilov (2009) critical values in (3.3.1) tends to work well. For the B(r) in the second

stage, using α2 = 0.031 for SCM and α2 = 0.0375 for FSM and FSR in the Holm (1979)

critical values in (3.3.2) works well.
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We studied the performance of these methods for a wide variety of possible param-

eter points. For each configuration, the number of iterations is 10000. We report the

expected number of Type I errors, the expected number of Type II errors, FDR and

total number of mistakes which is the sum of the expected number of Type I and Type

II errors.

From the simulation results we find that the three new methods FSM, SCM and

FSR are all uniformly better than step-down procedures in terms of total errors for

most the parameter settings we considered. For a small proportion of true alternatives

(< 20%) MRD has fewer numbers of mistakes compared to other procedures. For the

proportion of alternatives > 20%, other methods performs quite similarly and much

better than MRD. Also, the three new methods control FDR at a similar level as step-

down procedures while MRD fails to control FDR at a lower level for non-sparse case.

The performances of new MTPs are satisfying.
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Table 5.1.1: Comparisons of 5 MTPs for 25 treatments vs 1 control problem

# of means equal to type I error type II error
0 2 -2 4 -4 MRD FSM SD SCM FSR MRD FSM SD SCM FSR

25 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0
23 2 0 0 0 0.1 0.1 0.1 0.1 0.1 1.2 1.7 1.7 1.5 1.7
23 0 0 2 0 0.2 0.1 0.1 0.1 0.1 0 0.3 0.3 0.1 0.3
21 2 2 0 0 0.2 0.1 0.1 0.1 0.1 2 3.3 3.3 2.9 3.3
21 4 0 0 0 0.2 0.1 0.1 0.1 0.1 2.5 3.3 3.3 3.1 3.3
21 2 0 0 2 0.2 0.1 0.1 0.1 0.1 1 1.9 2 1.5 1.9
21 2 0 2 0 0.2 0.1 0.1 0.1 0.1 1 1.9 1.9 1.5 1.9
21 0 2 0 2 0.3 0.1 0.1 0.1 0.1 0 0.5 0.6 0.1 0.6
21 0 4 0 0 0.3 0.1 0.1 0.1 0.1 0 0.5 0.6 0.1 0.5
19 4 2 0 0 0.2 0.1 0.1 0.1 0.1 2.8 4.9 5 4.4 4.9
19 6 0 0 0 0.2 0.1 0.1 0.1 0.1 3.8 4.9 5 4.8 4.9
19 4 0 0 2 0.3 0.1 0.1 0.1 0.1 1.9 3.5 3.6 3 3.5
19 4 0 2 0 0.3 0.1 0.1 0.1 0.1 1.9 3.5 3.6 3.1 3.4
19 2 0 2 2 0.3 0.1 0.1 0.1 0.1 0.8 2.1 2.2 1.5 2.1
19 2 0 4 0 0.3 0.1 0.1 0.1 0.2 0.8 2.1 2.2 1.6 1.9
19 0 0 4 2 0.4 0.1 0.1 0.1 0.1 0 0.7 0.8 0.1 0.8
19 0 0 6 0 0.4 0.1 0.1 0.1 0.5 0 0.7 0.8 0.2 0.4
21 4 0 0 0 0.2 0.1 0.1 0.1 0.1 2.5 3.3 3.3 3.1 3.3
21 0 0 4 0 0.3 0.1 0.1 0.1 0.1 0 0.5 0.6 0.1 0.5
17 4 4 0 0 0.3 0.1 0.1 0.1 0.1 3.2 6.4 6.7 5.8 6.4
17 8 0 0 0 0.3 0.1 0.1 0.1 0.1 5.5 6.5 6.6 6.5 6.4
17 4 0 0 4 0.4 0.1 0.1 0.1 0.1 1.6 3.6 3.8 3 3.6
17 4 0 4 0 0.4 0.1 0.1 0.1 0.4 1.7 3.6 3.8 3.1 3
17 0 0 4 4 0.5 0.1 0.1 0.1 0.1 0 0.8 1 0.2 1
17 0 0 8 0 0.5 0.1 0.1 0.1 1 0 0.8 1.1 0.2 0.2
13 8 4 0 0 0.6 0.1 0.1 0.1 0.1 4.9 9.1 9.9 8.7 9
13 12 0 0 0 0.9 0.1 0.1 0.1 0.2 10.2 9.5 9.9 9.9 8.7
13 8 0 0 4 0.8 0.1 0.1 0.1 0.1 4.2 6.3 7.1 6.1 6.4
13 8 0 4 0 0.9 0.1 0.1 0.1 0.4 4.4 6.4 7.1 6.4 5
13 4 0 4 4 0.7 0.1 0.1 0.1 0.2 1.3 3.4 4.2 2.9 3.7
13 4 0 8 0 0.7 0.1 0.1 0.1 0.7 1.3 3.4 4.2 3 2.1
13 0 0 8 4 0.7 0.1 0.1 0.2 0.4 0 0.6 1.4 0.2 0.8
13 0 0 0 12 2.5 0.2 0.1 0.2 1 1.5 0.7 1.5 0.3 0.2
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Table 5.1.2: Comparisons of 5 MTPs for 25 treatments vs 1 control problem

# of means equal to FDR total errors
0 2 -2 4 -4 MRD FSM SD SCM FSR MRD FSM SD SCM FSR

25 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1
23 2 0 0 0 0.05 0.039 0.038 0.037 0.039 1.3 1.7 1.8 1.6 1.7
23 0 0 2 0 0.051 0.03 0.029 0.022 0.031 0.2 0.4 0.4 0.2 0.4
21 2 2 0 0 0.045 0.026 0.024 0.023 0.026 2.2 3.4 3.4 3 3.4
21 4 0 0 0 0.057 0.034 0.031 0.033 0.034 2.6 3.4 3.4 3.2 3.4
21 2 0 0 2 0.051 0.021 0.02 0.018 0.022 1.2 2 2 1.6 2
21 2 0 2 0 0.051 0.026 0.024 0.019 0.028 1.2 2 2 1.6 2
21 0 2 0 2 0.05 0.018 0.017 0.015 0.019 0.3 0.6 0.6 0.2 0.6
21 0 4 0 0 0.05 0.022 0.021 0.015 0.026 0.3 0.6 0.6 0.2 0.6
19 4 2 0 0 0.049 0.022 0.019 0.02 0.022 3 5 5.1 4.5 5
19 6 0 0 0 0.074 0.031 0.028 0.032 0.033 4.1 5 5 4.8 5
19 4 0 0 2 0.056 0.018 0.016 0.017 0.018 2.2 3.6 3.7 3.1 3.6
19 4 0 2 0 0.056 0.024 0.022 0.019 0.029 2.2 3.6 3.7 3.2 3.6
19 2 0 2 2 0.051 0.015 0.014 0.014 0.016 1.1 2.2 2.3 1.6 2.2
19 2 0 4 0 0.051 0.019 0.019 0.015 0.035 1.1 2.2 2.3 1.6 2.1
19 0 0 4 2 0.051 0.014 0.013 0.013 0.016 0.4 0.8 0.9 0.3 0.9
19 0 0 6 0 0.051 0.016 0.017 0.013 0.059 0.4 0.8 0.9 0.3 0.9
21 4 0 0 0 0.057 0.034 0.031 0.033 0.034 2.6 3.4 3.4 3.2 3.4
21 0 0 4 0 0.05 0.022 0.021 0.015 0.026 0.3 0.6 0.6 0.2 0.6
17 4 4 0 0 0.047 0.018 0.014 0.016 0.019 3.5 6.5 6.7 5.9 6.5
17 8 0 0 0 0.108 0.03 0.024 0.033 0.037 5.8 6.6 6.7 6.6 6.5
17 4 0 0 4 0.055 0.013 0.011 0.013 0.016 2.1 3.7 3.9 3.1 3.7
17 4 0 4 0 0.055 0.017 0.017 0.014 0.052 2.1 3.7 3.9 3.2 3.4
17 0 0 4 4 0.051 0.011 0.01 0.011 0.012 0.5 0.9 1.1 0.3 1
17 0 0 8 0 0.052 0.013 0.014 0.012 0.093 0.5 0.9 1.1 0.3 1.2
13 8 4 0 0 0.076 0.016 0.009 0.014 0.021 5.6 9.2 10 8.8 9.2
13 12 0 0 0 0.275 0.031 0.018 0.04 0.044 11.1 9.6 9.9 10 8.9
13 8 0 0 4 0.093 0.013 0.008 0.014 0.017 5 6.4 7.1 6.2 6.6
13 8 0 4 0 0.101 0.017 0.012 0.017 0.047 5.2 6.5 7.1 6.5 5.4
13 4 0 4 4 0.053 0.011 0.007 0.012 0.016 1.9 3.5 4.3 3 3.9
13 4 0 8 0 0.058 0.012 0.01 0.013 0.06 2.1 3.5 4.3 3.1 2.8
13 0 0 8 4 0.05 0.01 0.007 0.011 0.027 0.7 0.7 1.5 0.4 1.1
13 0 0 0 12 0.179 0.017 0.009 0.012 0.066 4 0.9 1.5 0.4 1.1



63

Table 5.1.3: Comparisons of 5 MTPs for 25 treatments vs 1 control problem

# of means equal to type I error type II error
0 2 -2 4 -4 MRD FSM SD SCM FSR MRD FSM SD SCM FSR

18 7 0 0 0 0.3 0.1 0.1 0.1 0.1 4.6 5.7 5.8 5.6 5.6
18 0 0 7 0 0.4 0.1 0.1 0.1 0.8 0.0 0.8 0.9 0.2 0.3
11 7 7 0 0 0.8 0.1 0.0 0.1 0.2 4.8 9.9 11.6 9.8 10.1
11 14 0 0 0 1.4 0.1 0.1 0.1 0.2 12.9 11.1 11.5 11.5 10.2
11 7 0 0 7 1.0 0.2 0.0 0.2 0.4 3.1 5.1 6.5 5.0 4.7
11 7 0 7 0 1.3 0.2 0.1 0.2 0.4 3.5 5.4 6.5 5.4 4.1
11 0 0 7 7 0.8 0.2 0.1 0.2 0.2 0.0 0.4 1.5 0.3 1.1
11 0 0 14 0 8.8 0.6 0.1 0.2 0.8 10.1 0.8 1.6 0.3 0.2
11 14 7 0 0 2.2 0.1 0.0 0.2 0.2 13.1 13.8 17.2 13.4 10.4
4 21 0 0 0 1.3 0.0 0.0 0.2 0.0 20.8 17.2 16.9 16.5 17.2
4 14 0 0 7 2.3 0.1 0.0 0.2 0.3 13.2 10.4 11.8 9.7 6.8
4 14 0 7 0 2.5 0.1 0.0 0.2 0.0 15.9 11.2 11.8 10.5 11.3
4 7 0 7 7 2.8 0.3 0.0 0.2 0.3 6.5 4.0 6.6 4.3 3.6
4 7 0 14 0 3.8 0.3 0.0 0.2 0.1 16.8 4.9 6.7 4.8 4.7
4 0 0 14 7 4.0 0.3 0.0 0.2 0.3 12.7 0.8 1.6 0.4 0.3
4 0 0 0 21 4.0 0.1 0.1 0.2 0.0 20.7 2.7 1.8 0.6 2.2

Table 5.1.4: Comparisons of 5 MTPs for 25 treatments vs 1 control problem

# of means equal to FDR total errors
0 2 -2 4 -4 MRD FSM SD SCM FSR MRD FSM SD SCM FSR

18 7 0 0 0 0.086 0.031 0.026 0.033 0.034 4.9 5.8 5.9 5.7 5.7
18 0 0 7 0 0.051 0.014 0.015 0.012 0.086 0.4 0.9 1.0 0.3 1.1
11 7 7 0 0 0.072 0.016 0.007 0.014 0.022 5.6 10.0 11.6 9.9 10.3
11 14 0 0 0 0.407 0.034 0.016 0.047 0.036 14.3 11.2 11.5 11.7 10.3
11 7 0 0 7 0.081 0.013 0.005 0.013 0.032 4.1 5.3 6.6 5.2 5.1
11 7 0 7 0 0.11 0.017 0.01 0.016 0.038 4.9 5.5 6.6 5.5 4.5
11 0 0 7 7 0.051 0.012 0.005 0.013 0.015 0.8 0.6 1.6 0.5 1.3
11 0 0 14 0 0.736 0.046 0.008 0.014 0.051 18.9 1.4 1.7 0.5 1.0
11 14 7 0 0 0.212 0.012 0.002 0.017 0.019 15.4 14.0 17.3 13.6 10.6
4 21 0 0 0 0.622 0.006 0.007 0.068 0.006 22.2 17.3 16.9 16.6 17.2
4 14 0 0 7 0.215 0.01 0.002 0.015 0.018 15.4 10.5 11.9 9.9 7.0
4 14 0 7 0 0.357 0.014 0.004 0.026 0.005 18.4 11.3 11.9 10.7 11.3
4 7 0 7 7 0.165 0.016 0.002 0.012 0.014 9.3 4.3 6.7 4.5 3.8
4 7 0 14 0 0.541 0.022 0.004 0.018 0.009 20.6 5.1 6.8 5.0 4.8
4 0 0 14 7 0.33 0.015 0.002 0.011 0.014 16.7 1.1 1.6 0.6 0.6
4 0 0 0 21 0.936 0.005 0.004 0.014 0.003 24.6 2.8 1.9 0.8 2.2

5.2 Simulations for the MTP in interval estimation

We did some simulations for the shortcut method (SCM) as an interval estimates

method in 25 treatments vs 1 control problem. We compare the performance of SCM
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with Dunnett’s (DNT in the table) method in terms of false coverage rate (FCR), aver-

age length of intervals and probabilities of false coverage of zero. FCR is the expected

proportion of parameters not covered by their interval estimates among the selected

parameters, where the proportion is 0 if no parameter is selected. See Benjamini, Y.

and Yekutieli, Y. (2005) for further discussion of FCR.

The Dunnett’s method is a single step method giving equal length intervals for all

parameters given the number of treatments and sample size. For SCM, the length of

the interval is determined in the second stage, which is related to the number of rejec-

tions in the first stage. The set of critical values for SCM in both stages are chosen

to make the FDR controlled at level α = 0.05 when SCM is performed as a MTP. In

our simulation, for the first stage, using α1 = 0.1 in the Benjamini and Gavrilov (2009)

critical values in (3.3.1) tends to work well. For the B(r) in the second stage, using

α2 = 0.031 in the Holm (1979) critical values in (3.3.2) works well.

From the results we can see that SCM controls the FCR at 0.05 for most parameter

settings we considered, while Dunnett’s method controls the FCR too strictly. SCM

always gives narrower intervals. The probabilities of false coverage of zero using SCM

are always less than those using Dunnett’s method.
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Table 5.2.1: Comparison of interval estimates for 25 treatments vs control problem
average length of intervals

# of parameters equals FCR SCM DNT

0 2 -2 4 -4 SCM DNT 0 2 -2 4 -4 all

25 0 0 0 0 0.047 0.045 6.02 6
23 2 0 0 0 0.050 0.037 5.99 5.53 6
23 0 0 2 0 0.063 0.028 5.95 4 6
21 4 0 0 0 0.042 0.030 5.95 5.61 6
21 2 2 0 0 0.045 0.023 5.95 5.35 5.35 6
21 2 0 2 0 0.049 0.021 5.90 5.34 4.16 6
21 2 0 0 2 0.053 0.016 5.90 5.34 3.94 6
21 0 0 4 0 0.054 0.018 5.86 3.96 6
21 0 0 2 2 0.057 0.016 5.86 3.95 3.95 6
19 6 0 0 0 0.039 0.026 5.89 5.71 6
19 4 2 0 0 0.043 0.019 5.89 5.44 5.2 6
19 4 0 2 0 0.040 0.019 5.84 5.44 4.4 6
19 4 0 0 2 0.051 0.014 5.85 5.43 3.9 6
19 2 0 4 0 0.046 0.017 5.80 5.19 4.12 6
19 2 0 2 2 0.049 0.012 5.79 5.18 4.11 3.91 6
19 0 0 6 0 0.053 0.015 5.76 3.93 6
19 0 0 4 2 0.052 0.011 5.76 3.91 3.9 6
21 4 0 0 0 0.050 0.037 5.95 5.6 6
21 0 0 4 0 0.063 0.028 5.86 3.96 6
17 8 0 0 0 0.042 0.030 5.81 5.8 6
17 4 4 0 0 0.045 0.023 5.82 5.28 5.28 6
17 4 0 4 0 0.049 0.021 5.72 5.26 4.37 6
17 4 0 0 4 0.053 0.016 5.72 5.25 3.87 6
17 0 0 8 0 0.054 0.018 5.64 3.9 6
17 0 0 4 4 0.057 0.016 5.63 3.88 3.88 6
13 12 0 0 0 0.039 0.026 5.58 5.88 6
13 8 4 0 0 0.043 0.019 5.58 5.45 4.92 6
13 8 0 4 0 0.040 0.019 5.48 5.44 5.1 6
13 8 0 0 4 0.051 0.014 5.48 5.43 3.82 6
13 4 0 8 0 0.046 0.017 5.38 4.9 4.32 6
13 4 0 4 4 0.049 0.012 5.38 4.89 4.25 3.83 6
13 0 0 12 0 0.053 0.015 5.29 3.88 6
13 0 0 8 4 0.052 0.011 5.28 3.85 3.83 6
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Table 5.2.2: Comparison of interval estimates for 25 treatments vs control problem
False coverage probability

# of treatments equal to SCM Dunnett

0 2 -2 4 -4 2 -2 4 -4 2 -2 4 -4

25 0 0 0 0
23 2 0 0 0 0.759 0.841
23 0 0 2 0 0.031 0.159
21 4 0 0 0 0.774 0.841
21 2 2 0 0 0.732 0.726 0.842 0.837
21 2 0 2 0 0.732 0.036 0.848 0.155
21 2 0 0 2 0.731 0.026 0.840 0.161
21 0 0 4 0 0.028 0.156
21 0 0 2 2 0.025 0.026 0.162 0.156
19 6 0 0 0 0.791 0.837
19 4 2 0 0 0.756 0.709 0.845 0.843
19 4 0 2 0 0.753 0.047 0.846 0.158
19 4 0 0 2 0.753 0.023 0.846 0.162
19 2 0 4 0 0.707 0.035 0.838 0.163
19 2 0 2 2 0.703 0.034 0.025 0.843 0.154 0.157
19 0 0 6 0 0.024 0.157
19 0 0 4 2 0.024 0.024 0.155 0.162
21 4 0 0 0 0.774 0.841
21 0 0 4 0 0.027 0.159
17 8 0 0 0 0.810 0.841
17 4 4 0 0 0.720 0.022 0.842 0.837
17 4 0 4 0 0.720 0.024 0.848 0.158
17 4 0 0 4 0.719 0.023 0.840 0.16
17 0 0 8 0 0.024 0.156
17 0 0 4 4 0.022 0.022 0.162 0.16
13 12 0 0 0 0.820 0.837
13 8 4 0 0 0.762 0.666 0.845 0.838
13 8 0 4 0 0.758 0.084 0.846 0.16
13 8 0 0 4 0.760 0.021 0.846 0.157
13 4 0 8 0 0.664 0.041 0.838 0.165
13 4 0 4 4 0.654 0.036 0.022 0.843 0.151 0.156
13 0 0 12 0 0.022 0.157
13 0 0 8 4 0.020 0.019 0.155 0.164
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Table 5.2.3: Comparison of interval estimates for 25 treatments vs control problem
average length of intervals

# of parameters equals FCR SCM DNT

0 2 -2 4 -4 SCM DNT 0 2 -2 4 -4 all

18 7 0 0 0 0.041 0.025 5.85 5.75 6
18 0 0 7 0 0.054 0.014 5.7 3.9 6
11 14 0 0 0 0.051 0.018 5.39 5.88 6
11 7 7 0 0 0.036 0.008 5.37 5.1 5.09 6
11 7 0 7 0 0.030 0.009 5.2 5.09 4.89 6
11 7 0 0 7 0.052 0.005 5.19 5.07 3.82 6
11 0 0 14 0 0.053 0.006 5.03 3.88 6
11 0 0 7 7 0.056 0.005 5.02 3.83 3.83 6
11 21 0 0 0 0.075 0.009 4.3 5.66 6
4 14 7 0 0 0.050 0.005 4.17 5.04 5.03 6
4 14 0 7 0 0.033 0.004 4.1 5.03 4.25 6
4 14 0 0 7 0.054 0.004 4.09 5.01 3.78 6
4 7 0 14 0 0.036 0.003 3.96 4.25 4.91 6
4 7 0 7 7 0.047 0.004 3.97 4.24 4.7 3.78 6
4 0 0 21 0 0.055 0.004 3.91 3.94 6
4 0 0 14 7 0.055 0.003 3.91 3.83 3.77 6

Table 5.2.4: Comparison of interval estimates for 25 treatments vs control problem
False coverage probability

# of treatments equal to SCM Dunnett

0 2 -2 4 -4 2 -2 4 -4 2 -2 4 -4

18 7 0 0 0 0.802 0.841
18 0 0 7 0 0.025 0.025
11 14 0 0 0 0.826 0.841
11 7 7 0 0 0.696 0.696 0.842 0.842
11 7 0 7 0 0.695 0.695 0.848 0.848
11 7 0 0 7 0.692 0.692 0.840 0.84
11 0 0 14 0 0.023 0.156
11 0 0 7 7 0.019 0.019 0.162 0.162
11 21 0 0 0 0.780 0.837
4 14 7 0 0 0.692 0.550 0.845 0.849
4 14 0 7 0 0.689 0.130 0.846 0.157
4 14 0 0 7 0.685 0.017 0.846 0.156
4 7 0 14 0 0.546 0.073 0.838 0.157
4 7 0 7 7 0.540 0.060 0.019 0.843 0.151 0.158
4 0 0 21 0 0.025 0.157
4 0 0 14 7 0.020 0.018 0.155 0.163
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5.3 Simulations for nonparametric MTPs

We did some simulations to compare the proposed nonparametric shortcut method

(SCM) and the step-down method based on the Wilcoxon rank sum test in the treat-

ments vs control problem for unknown distribution. The nonparametric SCM is de-

scribed in detail in Section 4.4.1. We considered five different distributions including

double exponential, normal, Cauchy, exponential, and uniform (Table 5.3.1-5.3.5). We

present the results of the 25 treatments vs 1 control problem with sample size 10.

Independent observations have been generated for each shift and distribution. 5,000

replications of each translation or shift configuration were performed.

FWER is controled at level α = 0.05 for both methods. To control FWER, usually

we need to choose a set of critical values by simulation. In our simulation, we found

that in the first stage, using α1 = 0.045 in the Benjamini and Gavrilov (2009) critical

values in (4.5.1) tend to work well. For the B(r) in the second stage, using α2 = 0.045

in the Holm (1979) critical values in (4.5.2) work well.

We studied their performance for a wide variety of possible treatment shifts. The

shifts shown in the table have been adjusted for the sample size we chose. We report

the expected number of Type I errors, the expected number of Type II errors, FWER

and total errors.

From the results we can see that for all 5 different distributions, using the same sets

of critical values we selected, FWER can be controlled very well at all the parameter

points we explored using the new method. The new method SCM is uniformly better

than than step-down procedures in terms of total errors for double exponential, expo-

nential and uniform distribution. For normal and Cauchy distribution, SCM matches

the performance of step-down procedure. We have pointed out that the new procedures

have the interval property while the step-down procedure does not. Also the new pro-

cedures admit corresponding interval estimates while the step-down procedure does not.
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Table 5.3.1: MTPs in 25 treatments vs 1 control with double exponential distribution

# of means equal to type I type II FWER total errors
0 0.63 0.63 1.27 -1.27 SCM SD SCM SD SCM SD SCM SD

25 0 0 0 0 0.1 0.1 0 0 0.047 0.043 0.1 0.1
23 2 0 0 0 0.1 0.1 1.8 1.9 0.04 0.036 1.9 1.9
23 0 0 2 0 0.1 0.1 0.9 1.3 0.029 0.029 1 1.3
21 2 2 0 0 0.1 0.1 3.6 3.8 0.03 0.027 3.7 3.8
21 4 0 0 0 0.1 0.1 3.7 3.8 0.035 0.03 3.8 3.8
21 2 0 0 2 0.1 0.1 2.6 3.2 0.023 0.022 2.7 3.2
21 2 0 2 0 0.1 0.1 2.8 3.1 0.026 0.026 2.9 3.2
21 0 0 2 2 0.1 0.1 1.5 2.5 0.018 0.019 1.6 2.6
21 0 0 4 0 0.1 0.1 1.8 2.5 0.021 0.023 1.9 2.5
19 4 2 0 0 0.1 0.1 5.5 5.6 0.024 0.021 5.5 5.7
19 6 0 0 0 0.1 0.1 5.6 5.6 0.031 0.025 5.7 5.7
19 4 0 0 2 0.1 0.1 4.4 5 0.019 0.017 4.4 5.1
19 4 0 2 0 0.1 0.1 4.7 5 0.024 0.021 4.8 5
19 2 0 2 2 0.1 0.1 3.3 4.4 0.016 0.016 3.4 4.4
19 2 0 4 0 0.1 0.1 3.8 4.3 0.02 0.019 3.9 4.4
19 0 0 4 2 0.1 0.1 2.2 3.7 0.015 0.014 2.3 3.7
19 0 0 6 0 0.1 0.1 2.8 3.7 0.019 0.017 2.9 3.7

Table 5.3.2: MTPs in 25 treatments vs 1 control with normal distribution

# of means equal to type I type II FWER total errors
0 0.63 0.63 1.27 -1.27 SCM SD SCM SD SCM SD SCM SD

25 0 0 0 0 0.1 0.1 0 0 0.04 0.038 0.1 0.1
23 2 0 0 0 0.1 0.1 1.9 1.9 0.035 0.032 2 2
23 0 0 2 0 0.1 0.1 1.2 1.5 0.026 0.028 1.3 1.6
21 2 2 0 0 0.1 0.1 3.8 3.9 0.028 0.026 3.9 3.9
21 4 0 0 0 0.1 0 3.9 3.9 0.031 0.027 3.9 3.9
21 2 0 0 2 0.1 0.1 3.1 3.4 0.022 0.022 3.1 3.5
21 2 0 2 0 0.1 0.1 3.2 3.4 0.024 0.024 3.3 3.5
21 0 0 2 2 0.1 0.1 2.2 3 0.017 0.018 2.3 3
21 0 0 4 0 0.1 0.1 2.6 3 0.02 0.023 2.6 3
19 4 2 0 0 0.1 0 5.7 5.8 0.024 0.021 5.8 5.8
19 6 0 0 0 0.1 0 5.8 5.8 0.028 0.024 5.8 5.8
19 4 0 0 2 0.1 0.1 4.9 5.3 0.019 0.017 4.9 5.4
19 4 0 2 0 0.1 0.1 5.2 5.4 0.023 0.022 5.3 5.4
19 2 0 2 2 0.1 0.1 4.1 4.9 0.015 0.016 4.2 4.9
19 2 0 4 0 0.1 0.1 4.6 4.9 0.02 0.02 4.7 4.9
19 0 0 4 2 0.1 0.1 3.3 4.4 0.014 0.014 3.4 4.5
19 0 0 6 0 0.1 0.1 4 4.4 0.021 0.019 4.1 4.5
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Table 5.3.3: MTPs in 25 treatments vs 1 control with Cauchy distribution

# of means equal to type I type II FWER total errors
0 0.63 0.63 1.27 -1.27 SCM SD SCM SD SCM SD SCM SD

25 0 0 0 0 0.1 0.1 0 0 0.047 0.036 0.1 0.1
23 2 0 0 0 0.1 0 2 2 0.041 0.032 2 2
23 0 0 2 0 0.1 0.1 1.9 1.9 0.04 0.03 1.9 2
21 2 2 0 0 0.1 0 3.9 4 0.035 0.027 4 4
21 4 0 0 0 0.1 0 4 4 0.038 0.028 4 4
21 2 0 0 2 0.1 0 3.9 3.9 0.031 0.024 3.9 3.9
21 2 0 2 0 0.1 0 3.9 3.9 0.034 0.026 3.9 3.9
21 0 0 2 2 0.1 0 3.7 3.8 0.03 0.022 3.8 3.9
21 0 0 4 0 0.1 0 3.8 3.8 0.034 0.025 3.8 3.9
19 4 2 0 0 0.1 0 5.9 5.9 0.032 0.025 6 6
19 6 0 0 0 0.1 0 5.9 5.9 0.035 0.025 6 6
19 4 0 0 2 0.1 0 5.8 5.9 0.029 0.023 5.9 5.9
19 4 0 2 0 0.1 0 5.8 5.9 0.034 0.024 5.9 5.9
19 2 0 2 2 0.1 0 5.7 5.8 0.026 0.021 5.8 5.8
19 2 0 4 0 0.1 0 5.8 5.8 0.033 0.023 5.8 5.8
19 0 0 4 2 0.1 0 5.6 5.7 0.025 0.02 5.7 5.8
19 0 0 6 0 0.1 0 5.7 5.7 0.033 0.022 5.7 5.8

Table 5.3.4: MTPs in 25 treatments vs 1 control with exponential distribution

# of means equal to type I type II FWER total errors
0 0.63 0.63 1.27 -1.27 SCM SD SCM SD SCM SD SCM SD

25 0 0 0 0 0.1 0 0 0 0.044 0.033 0.1 0
23 2 0 0 0 0.1 0 1.7 1.8 0.029 0.025 1.8 1.9
23 0 0 2 0 0.1 0.1 0.4 1.1 0.022 0.023 0.5 1.2
21 2 2 0 0 0.1 0 3.4 3.6 0.023 0.019 3.5 3.7
21 4 0 0 0 0.1 0 3.5 3.6 0.024 0.021 3.6 3.7
21 2 0 0 2 0.1 0.1 2.5 2.9 0.018 0.016 2.5 3
21 2 0 2 0 0.1 0 2.3 2.9 0.019 0.019 2.4 2.9
21 0 0 2 2 0.1 0.1 1.1 2.2 0.016 0.015 1.2 2.2
21 0 0 4 0 0.1 0 1 2.2 0.017 0.018 1 2.2
19 4 2 0 0 0.1 0 5.2 5.4 0.019 0.015 5.3 5.5
19 6 0 0 0 0 0 5.4 5.4 0.02 0.017 5.4 5.5
19 4 0 0 2 0.1 0.1 2.8 3.7 0.019 0.017 2.9 3.7
19 4 0 2 0 0.1 0 4.2 4.7 0.017 0.016 4.3 4.7
19 2 0 2 2 0.1 0 2.8 3.9 0.013 0.012 2.9 4
19 2 0 4 0 0.1 0 3 3.9 0.016 0.015 3 4
19 0 0 4 2 0.1 0 1.4 3.2 0.014 0.011 1.5 3.2
19 0 0 6 0 0.1 0 1.6 3.2 0.018 0.014 1.7 3.2
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Table 5.3.5: MTPs in 25 treatments vs 1 control with uniform distribution

# of means equal to type I type II FWER total errors
0 0.63 0.63 1.27 -1.27 SCM SD SCM SD SCM SD SCM SD

25 0 0 0 0 0.1 0.1 0 0 0.044 0.043 0.1 0.1
23 2 0 0 0 0.1 0.1 1.9 2 0.039 0.038 2 2
23 0 0 2 0 0.1 0.1 1.4 1.6 0.029 0.031 1.5 1.7
21 2 2 0 0 0.1 0.1 3.9 3.9 0.031 0.03 3.9 4
21 4 0 0 0 0.1 0.1 3.9 3.9 0.033 0.031 3.9 4
21 2 0 0 2 0.1 0.1 3.3 3.6 0.023 0.024 3.4 3.6
21 2 0 2 0 0.1 0.1 3.4 3.5 0.029 0.028 3.5 3.6
21 0 0 2 2 0.1 0.1 2.6 3.2 0.018 0.019 2.7 3.3
21 0 0 4 0 0.1 0.1 2.9 3.2 0.026 0.026 3 3.2
19 4 2 0 0 0 0.1 5.8 5.9 0.026 0.024 5.9 5.9
19 6 0 0 0 0.1 0.1 5.8 5.8 0.028 0.026 5.9 5.9
19 4 0 0 2 0.1 0.1 5.2 5.5 0.019 0.019 5.2 5.6
19 4 0 2 0 0.1 0.1 5.4 5.5 0.026 0.024 5.4 5.5
19 2 0 2 2 0.1 0.1 4.6 5.1 0.017 0.017 4.6 5.2
19 2 0 4 0 0.1 0.1 5 5.1 0.024 0.023 5 5.2
19 0 0 4 2 0.1 0.1 4 4.7 0.016 0.015 4 4.8
19 0 0 6 0 0.1 0.1 4.5 4.7 0.025 0.021 4.6 4.8
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