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Carbon nanomaterials exhibit many remarkable electrical and physical properties.  An 

ongoing challenge associated with specific novel carbon nanomaterials, such as graphene, 

is the development of large-scale production methods at low cost.  The broad objective of 

this work is to investigate flame synthesis of carbon nanomaterials, specifically graphene 

and carbon nanotubes (CNTs), using open-atmosphere processing, with an eye towards 

scalability.  An experimental study using a novel setup, based on multiple inverse-

diffusion flames is undertaken to investigate the direct flame-synthesis of CNTs and 

graphene on metal substrates.  

Few-layer graphene (FLG) is grown on copper and nickel substrates at high rates 

using the novel flame-synthesis burner.  Substrate material (i.e. copper, nickel, cobalt, 

iron, and copper-nickel alloy), along with its temperature and hydrogen pretreatment, 

strongly impacts the quality and uniformity of the graphene films.  The growth of FLG 

occurs in the temperature range 750-950
°
C for copper and 600-850

°
C for nickel and 

cobalt.  For iron, the growth of graphene is not exclusively observed.   
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 CNT growth is observed on a number of substrates.  Transitional growth between 

CNTs and graphene films occurs on nickel and nickel alloys, depending on composition 

and temperature.  For nickel, copper-nickel, nitinol, and Inconel substrates, CNTs grow at 

500°C.  The transitional growth to few-layer graphene is observed on nickel, copper-

nickel and Inconel by changing the substrate temperature to 850°C.  The growth of 

graphene is not observed on nitinol for the examined experimental conditions.  

 The growth of few-layer graphene films and CNTs are also investigated using 

various metal-oxide spinels as catalysts.  The growth of CNTs is examined on NiAl2O4, 

CoAl2O4 and ZnFe2O4 using counterflow diffusion flame and multiple inverse-diffusion 

flames, while the growth of graphene is examined on CuFe2O4 using multiple inverse-

diffusion flames. 

Finally, the growth of CNTs and iron oxide is studied on stainless steel.  At low 

temperatures (500
o
C) the growth of Ŭ-Fe2O3 is observed, while at higher temperatures 

(850
o
C) the growth of CNTs is observed.  Additionally, by following a two-step growth 

process, where the temperature is changed from 500
o
C to 850

o
C, the growth of CNTs and 

ɔ-Fe2O3 occurs. 
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Preface 

Much of the content in Chapters 4, 5, 6, 7, and 8 is verbatim from published or soon to be 

submitted for publication papers [1-4]; and I have obtained permission from the co-

authors to include them in my thesis.  Additionally, other chapters have wording similar 

to or identical to that found in the papers referenced below. 
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Chapter 1 

1. Introduction  

 

Flame synthesis is widely used to manufacture commercial quantities of nanoparticles.  

Of the most commonly used nanoparticles, i.e. carbon black, fumed silica, and titania, 

flame synthesis is the dominant technique in the production of these materials.  

Production volume of the flame synthesis industry is on the order of 100 metric tons per 

day [1].  

 A key advantage of flames is that it readily provides the high temperature 

necessary for gas phase synthesis.  Additionally, flames can naturally provide a 

carbonizing or oxidizing environment.  The scalability of flames has been demonstrated 

since World War II, when there was a high demand for carbon black due to the growing 

tire market [2].  Shortly after, flames were widely used in the production of fumed SiO2, 

TiO2, and Al2O3, where chloride-based precursors are typically used to inject Si, Ti, or Al 

into the synthesizing flame.  A similar process is currently utilized to synthesize SiO2-

GeO2 for the commercial manufacturing of light guides and optical fibers [2].      

 The importance of flame synthesis is apparent, as the technique continues to 

develop, being used currently in the production of advanced materials.  While the flame 

synthesis of aerosol represents a major industry, limited progress has been reported in the 

extension of flames to a chemical vapor deposition (CVD)-type process.  Such 

development could lead to a more scalable and robust method for the growth of 

nanomaterials on substrates and surfaces, e.g. as coatings.    
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1.1 Motivation  

Carbon-based nanostructures and films define a new class of engineered materials that 

display remarkable physical, photonic, and electronic properties.  Graphene is a 

monolayer of sp
2
-bonded carbon atoms in a two-dimensional (2-D) structure.  This layer 

of atoms can be wrapped into 0-D fullerenes, rolled into 1-D nanotubes, or stacked as in 

3-D graphite.  Graphene and carbon nanotubes (CNTs) exhibit unique electronic and 

photonic properties, high thermal conductivity, and exceptional mechanical strength.  

Recently, the discovery of graphene by micro-cleaving has generated intensive 

experimental research into its fabrication.  Production methods that currently exist 

include ultrahigh vacuum (UHV) annealing of SiC, and chemical vapor deposition 

(CVD).  Common techniques for CNT fabrication include plasma-arc discharge, laser 

ablation, and CVD.  

Although these methods have been met with some success, they are not readily or 

economically scalable for large-area applications or may be subject to batch-to-batch 

inconsistencies.  Combustion synthesis has demonstrated a history of scalability and 

offers the potential for high-volume continuous production at reduced costs.  In utilizing 

combustion, a portion of the hydrocarbon gas provides the elevated temperatures 

required, with the remaining fuel serving as the hydrocarbon reagent, thereby constituting 

an efficient source of both energy and hydrocarbon reactant.  This can be especially 

important as the operating costs for producing advanced materials, especially in the 

semiconductor industry, far exceed the initial capital equipment costs.  Various 

morphologies of CNTs, carbides, and semiconducting metal-oxide and carbide nanowires 
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have been produced using air-fuel combustion-based configurations, using both aerosol 

and supported-substrate methods. 

The growth of these nanostructures and films over large areas remains especially 

challenging.  Moreover, current processing methods can be complex, while still 

characterized by low growth rates and low total yield densities.  Accordingly, it is evident 

that there is a strong need for better methods of synthesizing nanostructured materials, 

particularly carbon-based nanostructures. 

 

1.2 Research Innovation and Direction 

The unique synthesis configuration undertaken in this work is the multiple inverse-

diffusion (non-premixed) flame burner, where the post-flame species are directed at a 

substrate to grow carbon nanomaterials.  The burner operates in an inverse mode, where 

for each distinct flame in the planar array, oxidizer is in the center, and fuel (e.g. H2, 

CH4) surrounds it.  The hydrocarbon species (rich in Cn and CO), which serve as reagents 

for graphene or CNT growth, are generated in much greater quantities than that 

achievable in stable, self-sustained premixed flames.   By using diffusion flames (burning 

stoichiometrically in the reaction zone), flame speed, flashback, and cellular instabilities 

related to premixed flames are avoided.   

Operation of a multiple inverse-diffusion burner has no scaling problems by 

allowing for stability at all burner diameters, where the issuing flow velocity can be 

independent of the burner diameter.  Moreover, since many small diffusion flames are 

utilized, overall radially-flat profiles of temperature and chemical species are established 

downstream of the burner, ensuring uniform growth. Advantages of the this method are 
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scalability for large-area surface coverage, increased growth rates, high purity and yield, 

continuous processing, and reduced costs due to efficient use of fuel as both heat source 

and reagent.  

The research is primarily focused on growing carbon nanomaterials using transitional 

metals and alloys, such as copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), Inconel, Ni-Cu 

alloy, and stainless steel.  The key factors for carbon nanomaterial growth on metals 

involve carbon solubility, melting point, and chemical stability.  Given the different 

properties of each transitional metal, we seek to identify the conditions suitable for the 

growth of graphene and CNTs.  Our system requires no prior substrate preparation and 

permits open-environment processing.  Also, using the multiple inverse-diffusion flame 

setup, we examine the effects of flame structure, flame temperature, fuel to oxidizer ratio, 

inert addition, hydrogen addition, residence time, and other parameters that impact the 

formation of graphene and CNTs. 

 

1.3 Research Objective 

While a number of different flame configurations are used for the production of CNTs, 

the number of reports on the flame synthesis of graphene is limited.  A key reason for this 

discrepancy is that graphene was only recently ñdiscoveredò as compared to CNTs.  

Another reason is that the flame synthesis of graphene may be more challenging when 

compared to that for CNTs.  Graphene being a two-dimensional material requires large-

scale production across a substrate.  Due to the temperature and species gradients that 

occur in most flames, it is difficult to scale the growth of graphene across an entire 

substrate.  Moreover, a reduced environment with carbon rich species, which is necessary 
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for graphene growth, is difficult to achieve in most flames.  The method of interest of this 

thesis is based on operating multiple diffusion flames in an inverse mode.  This multiple 

inverse-diffusion flame burner can establish a reduced environment with carbon rich 

species suitable for the growth of graphene.  At the same time, this burner can be used for 

the growth of CNTs. 

Therefore, the objective of this thesis is to investigate the growth of graphene 

using flame synthesis.  The use of flames for graphene synthesis is still in its early stage, 

hence this work will aim to increase the fundamental understanding of the mechanisms 

involved for graphene growth.  Additionally, this thesis seeks to establish the parameters 

suitable for the growth of graphene and CNTs using the multiple inverse-diffusion 

burner.    

The research components of this thesis involve: 

1 Novel Multiple Inverse-diffusion Flame Burner.  A new setup, based on multiple 

inverse diffusion flames, is designed and built for carbon nanomaterial synthesis.  

2 Graphene Film Synthesis. In order to use graphene or few-layer graphene (FLG) in 

many applications, large-scale synthesis methods are required. This thesis 

investigates the direct flame-synthesis of FLG on transitional metals.  FLG can be 

transferred to SiO2/Si and quartz by spin-coating a thin layer of poly-

methylmethacrylate (PMMA) and etching away the transitional metal.  Once 

transferred, the optoelectronic properties of the FLG are examined.  Raman 

spectroscopy, analytical electron microscopy techniques, and X-ray photoelectron 

spectroscopy are used to verify the quality and uniformity of the FLG across the 

substrate.  
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Substrate material (i.e. copper, nickel, cobalt, iron, and copper-nickel alloy), 

along with its temperature and hydrogen pretreatment, strongly impacts the quality 

and uniformity of the graphene films.  Thus these parameters are examined in the 

growth of FLG.   

3 CNT Synthesis.  In previous studies [3,4], well-aligned multi-walled CNTs with 

uniform diameters (<15 nm) were grown in 1 and 2-D diffusion flame configurations, 

which are excellent for fundamental investigation, but are limited in their potential for 

scale up.  Hence, the scalable growth of CNTs on large substrates is explored using 

the novel burner.  

4 Transitioning Growth from CNTs to Graphene.  This thesis investigates the 

conditions that enable the transitional growth between CNTs and graphene using the 

multiple inverse-diffusion burner.   

5 Graphene and CNT Synthesis using Spinels. Solid oxide solutions containing 

transition metal ions (spinels) have been used to produce CNTs.  Spinels can be 

readily reduced at high temperatures and provide metal particles, which can enable 

the scalable growth of CNTs and graphene on composites or arbitrary substrates.  

CNT and graphene growth occurs through decomposition of flame-generated carbon 

precursors (e.g. CH4, CO and C2H2) over nanoparticles (i.e. Cu, Ni, Co, and Fe) 

reduced from the solid oxide.  The growth of CNTs is explored on NiAl2O4, CoAl2O4 

and ZnFe2O4, using  both counterflow diffusion flame and multiple inverse-diffusion 

flames, while the growth of graphene is investigated on CuFe2O4 using only multiple 

inverse-diffusion flames.    
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6 CNT and Iron-oxide Synthesis on Stainless Steel.  This thesis explores the growth of 

CNTs and iron-oxide on a stainless steel substrate using multiple inverse-diffusion 

flames.  

 

1.4 Approach  

Figure 1.1 depicts the general approach undertaken to understand the growth mechanisms 

involved in flame synthesis of CNT and graphene films.  A number of different 

parameters are investigated, and the results from the ex-situ characterization help to guide 

the experiment.  Overall a set of optimal parameters are determined for graphene and 

CNT growth.  

 

Figure 1.1.  General approach used for nanomaterial synthesis. 
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1.5 Outline of this dissertation  

Chapter 2 provides a background review on graphene and CNTs along with different 

synthesis methods.  Chapter 3 describes the experimental setup and the characterization 

techniques employed.  Chapter 4 discusses the structure, property, and thickness of the 

graphene films prepared on copper and nickel.  Chapter 5 further discusses the role of the 

substrate material, such as copper, nickel, cobalt, copper-nickel, and iron, on the growth 

of graphene.  Additionally the impact of hydrogen and substrate temperature is discussed.  

Chapter 6 presents the growth of CNTs on various transitional metal alloys.  Chapter 7 

discusses the transition between CNTs and graphene on nickel alloys as a function of 

temperature.  Chapter 8 investigates the use of metal-oxide spinels for the growth of 

graphene and CNTs.  Chapter 9 examines the growth of iron oxide and CNTs on stainless 

steel as a function of temperature.  Lastly, Chapter 10 highlights some concluding 

remarks and suggestions for future work.   
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Chapter 2 

2. Literature Review 

2.1 Introduction  

Carbon atoms can be arranged in a number of different structural forms (Fig. 2.1), which 

greatly impacts the properties of the material.  The oldest forms of carbon that were 

discovered include diamond and graphite.  Diamond is the strongest and hardest known 

material, while graphite is one of the best lubricants.  Other forms of carbon include 

fibers and tubes, which can have an extremely high strength, and fullerene molecules that 

are comprised of 60 carbon atoms in a soccer ball shape [1].  These different structures, 

with varying properties all have the same building block that is carbon.  Hence the 

fascination and amazement around carbon has been recorded for centuries and new forms 

are still being discovered (Table 2.1).               

 

Figure 2.1  Various forms of pure carbon (reproduced from [2]). 

Diamond 

C60 Buckminsterfullerene

Graphite

Nanotube



                                                                                                                                 10 

 

 

 

 

First "lead" pencils 1600's 

Discovery of the carbon composition of 

diamond 

1797 

First carbon electrode for electric arc 1800 

Graphite recognized as a carbon polymorph 1855 

First carbon filament 1879 

Chemical vapor deposition (CVD) of 

carbon patented 

1880 

Production of first molded graphite 

(Acheson process) 

1896 

Industrial production of pyrolytic graphite 1950s 

Industrial production of carbon fibers from 

rayon 

1950s 

Discovery of low-pressure diamond 

synthesis 

1970s 

Development of diamond-like carbon 

(DLC) 

1980s 

Discovery of the fullerene molecules Late 1980s 

Discovery and development of carbon 

nanotubes (CNTs) 

1991 

Industrial production of CVD diamond 1992 

4 cm long single-wall nanotube (SWNT) 2004 

Discovery of Graphene 2004 

Sorting of CNTs by size and properties  2006 

CVD production of large graphene films  2010 

Table 2.1  Chronology and Development of Carbon (reproduced from [3]). 
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The allotropes of carbon play an important role in the progress of nanoscience. 

New properties of carbon nanostructures are constantly being realized, resulting in the 

discovery of numerous applications.  A key component for such applications requires an 

understanding of the synthesis of carbon nanostructures.  Hence this chapter will discuss 

the properties, applications, and synthesis of carbon nanostructures.  Specifically the 

focus will be on sp
2
 hybridized carbon, graphene and nanotubes, which has intrigued 

scientist the most over the past decade.     

2.2 Graphene Background 

2.2.1  Graphene structure and properties  

Graphene comprises of a monoatomic layer of carbon atoms arranged hexagonally. The 

hexagonal graphene lattice belongs to the plane group p6m with a basis of two carbon 

atoms.  Intrinsic ripples within graphene are confirmed using Monte Carlo simulation [4] 

and transmission electron studies (TEM) [5].  These ripples tend to have a horizontal 

dimension of 8 to 10 nm with a vertical displacement of 0.7 to 1 nm (see Fig. 2.2).  The 

stacking of graphene layers along the vertical axis is known as graphite.  When the 

stacking is under 10 layers the material is referred to as few-layer graphene (FLG).   

 

 

Figure 2.2  Monte Carlo simulation of rippled graphene. The arrows are ~8 nm long 

(reproduced with caption from [4]).  
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The bond between carbon atoms within graphene occurs due to sp
2
 orbital 

hybridization, which is comprised of a single 2s carbon orbital along with two 2p carbon 

orbitals. This results in the carbon atom forming three sigma (ů) bonds with its nearest 

neighbors. The bond direction is along the hexagonal graphene plane. Additionally, there 

is a half-filled 2p orbital which results in the formation of pi (ˊ) bonds that is 

perpendicular to the graphene plane. The ů bonds give arise to the mechanical properties 

of graphene, while the ˊ bonds enable electrical conduction in graphene or graphite. 

 

2.2.1.1  Electrical properties  

Graphene has a unique structure for its charge carriers that resemble massless relativistic 

particles (Dirac fermions) [7-9].  Also, the primary Brillouin zone contains two different 

points K and Kô (Dirac points), where a band crossing takes place, this results in 

graphene being a zero band gap semiconductor (see Fig. 2.3). Graphene exhibits high 

electronic conductivity due to its well-defined crystal structure.  For mechanically 

exfoliated graphene on Si/SiO2, the mobility is measured at ~200,000 cm
2
 at a carrier 

density of 2 x 10
11

 cm
-2

 [10,11] (see Fig. 2.4). 
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Figure 2.3  Bandgap in graphene devices. Schematic diagrams of the lattice structure of 

monolayer (a) and bilayer (b) graphene. The green and red colored lattice sites indicate 

the A (A1/A2) and B (B1/B2) atoms of monolayer (bilayer) graphene, respectively. The 

diagrams represent the calculated energy dispersion relations in the low-energy regime, 

and show that monolayer and bilayer graphene are zero-gap semiconductors (for bilayer 

graphene, a pair of higher-energy bands is also present, not shown in the diagram). (c) 

When an electric field ( ) is applied perpendicular to the bilayer, a bandgap is opened in 

bilayer graphene, whose size (2) is tunable by the electric field (reproduced with caption 

from [6]). 

 

 

Figure 2.4  (A) Measured four-probe resistivity as a function of gate voltage before (blue) 

and after (red) current annealing; data from traditional high-mobility device on the 

substrate (gray dotted line) shown for comparison. The gate voltage is limited to ±5 V 

range to avoid mechanical collapse. (B) Mobility as a function of carrier density n for the 

same devices. (C) AFM image of the setup before the measurements (reproduced with 

caption from [10,11]). 
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2.2.1.2  Mechanical properties   

The mechanical properties of graphene are measured using numerical simulation, AFM, 

and Raman.  It is reported that the Youngôs modulus of graphene is 1 TPa and the 

fracture strength is 130 GPa [12].  Similar results are observed for FLG [13].  

Compressive and tensile strain can be measured by monitoring the change in the G and 

2D peak of the Raman spectrum, when a stress is applied [14].  Mechanical properties of 

graphene are summarized in Table 2.2.      

 

Table 2.2  Mechanical properties of graphene (reproduced with caption from [11]). 

  

2.2.1.3  Optical properties  

Graphene absorbs only 2.3% of incident light over a broad wavelength from 300 to 

2,500nm.  A peak in the ultraviolet region (~270nm) occurs due to an exciton-shifted 

singularity in the graphene density of states [15]. In FLG, each layer is perceived as a 2D 

electron gas, hence little perturbation happens from adjacent layers [15].  Thus, the 

absorption of light follows a linear relation with the increase of each layer of graphene 

[16].  Optical image contrast enables the identification of graphene on Si/SiO2.  This 

technique can also be used to approximate the number of graphene layers (see Fig. 2.5).  
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Figure 2.5 (a) Photograph of a 50-ɛm aperture partially covered by graphene and its 

bilayer. The line scan profile shows the intensity of transmitted white light along the 

yellow line. Inset shows the sample design: a 20-ɛm thick metal support structure has 

apertures 20, 30, and 50 ɛm in diameter with graphene flakes deposited over them; (b) 

Optical image of graphene flakes with one, two, three, and four layers on a 285-nm thick 

SiO2-on-Si substrate (reproduced with caption from [17-19]). 

 

2.2.1.4  Thermal properties  

Thermal management is a key factor that determines the performance of a material for 

electronic devices.  Large amounts of heat need to effectively be dissipated for higher 

performance electronic devices.  Recently, extremely high thermal conductivity ~5000 

W/mK was reported for suspended graphene [20], whereas for supported graphene this 

value is around 600 W/mK [21].  An effective method to measure the thermal 

conductivity is using confocal micro-Raman spectroscopy (see Fig. 2.6).  The 

temperature change is determined by measuring the shift in the graphene G peak. For 

FLG the thermal conductivity is typically lower and in the range between 1000 to 3000 

W/mK [22]. A number of factors such as defects, edge scattering, and doping can 

strongly impact the thermal conductivity of graphene [23,24]. Typically much lower 
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values are observed for non-pristine graphene such as graphene oxide [25] (see Table 

2.3).    

 

Figure 2.6  Thermal conductivity measurement of graphene using Raman spectroscopy 

(reproduced with caption from [22]). 

 

 

Table 2.3 Thermal conductivity of graphene and graphene oxide based materials 

(reproduced with caption from [11]). 
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2.2.2  Graphene synthesis  

Initially discovered by micromechanical exfoliation of graphite [26], graphene has 

generated intense experimental research on its fabrication.  Widespread use of graphene 

will require large-scale synthesis methods.  Production methods for graphene that 

currently exist include mechanical or liquid exfoliation, ultrahigh vacuum (UHV) 

annealing of SiC, and chemical vapor deposition (CVD).  Additionally, the chemical 

conversion of graphite to graphene oxide can be performed.  

 

2.2.2.1  Micromechanical exfoliation 

Micromechanical exfoliation involves peeling highly ordered pyrolytic graphite (HOPG) 

using adhesive tape [27] (see Figure 2.7).  Since each layer of graphene is connected to 

the other layer by van der Waals bonding, it is feasible to cleave HOPG.  Typically the 

peeling is performed multiple times.  This process can also be used to produce FLG.  This 

is the simplest method for graphene production and is commonly used in laboratory 

experiments, however it is not scalable for large-scale graphene growth.       

 

Figure 2.7 Mechanical exfoliation of graphene using scotch tape from HOPG (reproduced 

with caption from [11]).  
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2.2.2.2  Liquid-phase exfoliation 

Liquid-phase exfoliation (LPE) involves using a solvent to exfoliate graphite by 

ultrasonication [28,29].  Commonly used solvents include acetic acid, sulfuric acid, and 

hydrogen peroxide [11].  The ultrasonication time is usually 60 minutes with a power of 

250 to 500 W.  Green and Hersam reported the use of sodium cholate as a surfactant for 

the exfoliation of graphene [30] (see Fig. 2.8).  Additionally, they were able to separate 

the sheets by density gradient ultracentrifugation, which enabled the isolation of graphene 

from FLG.  LPE can also be used for the production of graphene nanoribbons [31], where 

the width of the graphene sheet is less than 10 nm.  While LPE represent a scalable 

method for the production of graphene, large scale film growth remains challenging.   

 

Figure 2.8 (A) Photograph of a centrifuge tube following the first iteration of density 

gradient ultracentrifugation (DGU). The concentrated graphene was diluted by a factor of 

40 to ensure that all graphene bands could be clearly resolved in the photograph. Lines 

mark the positions of the sorted graphene fractions within the centrifuge tube. (B and C) 

Representative AFM images of graphene deposited using fractions f4 (B) and f16 (C) 

onto SiO2. (D) Height profile of regions marked in panels B (blue curve) and C (red 

curve) demonstrating the different thicknesses of graphene flakes obtained from different 

DGU fractions (reproduced with caption from [11,30]). 
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2.2.2.3  Graphene Oxide  

Production of graphite oxide using the Hummers method has been known for over 50 

years [32].  Strong acids such as sulfuric acid (H2SO4), sodium nitrate (NaNO3), or 

potassium permanganate (KMnO4) are used in the production of graphite oxide.  The 

sonication of graphite oxide results in the synthesis of graphene oxide (GO).  Through 

this process, it is possible to obtain monolayer or few-layer GO.  However this method 

disrupts the sp
2
 lattice of graphene, as it can contain epoxide or hydroxyl groups.  The 

reduction of GO (called rGO) [33] can partially remove the hydroxyl or epoxide groups 

(see Figure 2.9). Despite the reduction, rGO does not exhibit the same properties as 

graphene. Nevertheless, this method has several advantages such as the ability to produce 

large sheets at low cost using a facile process [34].   

 

Figure 2.9  Illustration on the preparation of reduced graphene oxide (reproduced with 

caption from [35]). 
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2.2.2.4  Annealing of Silicon Carbide (SiC) 

When a SiC substrate is heated to a high temperature (around 1200
o
C), under ultrahigh 

vacuum (UHV), the silicon atoms sublimate from the surface [11].  Subsequently the 

carbon atoms rearrange to form graphene or FLG.  A number of parameters such as time 

and temperature strongly impact the film thickness and growth quality [36,37].  A key 

advantage of this process for the semiconductor industry is the direct growth of graphene 

on an insulating surface.  However, the price of a SiC wafer is expensive and the transfer 

of graphene to other substrates from SiC is challenging.  While the growth of graphene 

on SiC is suitable for certain high performance applications, such as THz frequency 

electronics [38], it is not viable for a wider range of graphene driven applications.      

2.2.2.5  CVD Synthesis 

Chemical vapor deposition (CVD) of graphene on transition metals such as nickel (Ni) 

[39,40] and copper (Cu) [41,42] shows the most potential for large-volume production of 

graphene.  While still in its early stages, CVD-grown graphene has already demonstrated 

excellent device characteristics [43], including an electron mobility of 7,350 cm
2
V

-1
s

-1
 

[38].  In addition, large scale roll-to-roll production of 30-inch graphene films was 

demonstrated using CVD [43] (Fig. 2.10).  The graphene obtained from this process is of 

high quality, with a sheet resistance of ~125 Ý/square and 97.4% optical transmittance.  

Graphene growth using CVD is fairly straightforward (Fig. 2.11), where a copper 

or nickel substrate is placed in an isothermal reactor at a temperature of around 1000
o
C.  

After the substrate is placed in the CVD reactor, hydrogen is added to the reactor.  This 

step is critical to eliminate any oxide layer present on the metal, for the case of Cu this 
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will reduce any native layers of CuO and Cu2O.  The hydrogen atmosphere also 

facilitates the growth of grain boundaries [38], which is necessary for the growth of high 

quality graphene.  Afterwards, a hydrocarbon gas (usually methane) is added to the 

reactor.  The hydrocarbon gas provides the necessary carbon species used in the growth 

of graphene.  The hydrocarbon to hydrogen ratio plays an important role in the growth of 

graphene.  If insufficient hydrogen is present, this could result in oxidized metal layers 

being present, which will lead to a disordered graphene structure.  In contrast, excess 

hydrogen can etch away graphene.  On polycrystalline substrates, the graphene flakes 

tend to have different lattice orientations. 

 

Figure 2.10 a) Schematic of the roll-based production of graphene films grown on a 

copper foil. The process includes adhesion of polymer supports, copper etching (rinsing) 

and dry transfer-printing on a target substrate. A wet-chemical doping can be carried out 

using a setup similar to that used for etching. (a) Roll-to-roll transfer of graphene films 

from a thermal release tape to a PET film at 120
o
C. (c) A transparent ultralarge-area 

graphene film transferred on a 35-in. PET sheet. (d) An assembled graphene/PET touch 

panel showing outstanding flexibility (reproduced with caption from [11,43]). 
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Figure 2.11 Schematic illustrating the three main stages of graphene growth on copper by 

CVD: (a) copper foil with native oxide; (b) the exposure of the copper foil to CH4/H2 

atmosphere at 1000 
o
C leading to the nucleation of graphene islands; (c) enlargement of 

the graphene flakes with different lattice orientations (reproduced with caption from 

[38]). 

 

Using CVD, graphene is grown onto transition metals, which provide a low 

energy pathway by forming intermediate compounds for the growth of graphene.  The 

first row of transition metals (Fe, Co, Ni, and Cu) is of great interest due to their low cost 

and high availability.  The difference in the carbon solubility between these metals (Fig. 

2.12) impacts the growth quality.  Fe has an asymmetrical distribution of electrons in the 

d-shell, which gives rises to its high carbon solubility and Cu has a filled 3d shell and has 

the lowest solubility of carbon.  Co and Ni have carbon solubility that falls in between Fe 

and Cu.  Due to its low carbon solubility, Cu is an ideal metal for growing single layer 

graphene.  When using Ni and Co it is common to get up to 10 layers of graphene. 

Similarly on Fe it is common to have FLG.  Figure 2.13 illustrates the growth of 

graphene or FLG on Ni, Fe, Co, and Cu using CVD.   
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Figure 2.12 Binary phase diagrams of transition metals and carbon. (a) NiïC; (b) CoïC; 

(c) FeïC; (d) CuïC. The low carbon solubility in Cu, of 0.008 weight % at 1084 °C is 

highlighted in the inset of panel (d) (reproduced with caption from [38]). 
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Figure 2.13 Typical optical microscopy images, SEM images, and Raman spectroscopy 

of MLG and FLG grown on Ni (a-c), Fe (d-f), Co(g-i), and Cu (j-l) foil substrates using 

ethylene as the carbon source at 975
o
C. The growth time was 3 min, and the gas mixing 

ratio of C2H4/H2 was 5/500, and the cooling rate was 60 
o
C min

-1
. (a, d, g, and j). Optical 

microscope images of graphene. (b, e, h, and k) SEM images of graphene. (c, f, i, and l) 

Raman spectroscopy of graphene. Cu substrate background was subtracted. The spectra 

were normalized with the G-band (reproduced with caption from [44]). 

 

 

 














































































































































































































































































































