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ABSTRACT OF THE DISSERTATION

Essays on Bayesian inference of time-series and ordered

panel data models

by Jeehyun Park

Dissertation Director: Professor Hiroki Tsurumi

At the heart of my dissertation is the study of Markov chain Monte Carlo algorithms

and their applications.My dissertation consists of three essays as follow.

The first chapter is on MCMC algorithms for the dynamic ordered probit model

with random effects. I have tried to estimate the model with four representative MCMC

algorithms: two algorithms by Albert and Chib (1993) and Albert and Chib (2001), Liu

and Sabatti (2000), and Chen and Dey (2000). I have found that the autocorrelations

still remain high in the cutoffs compared to other parameters even though the levels

of autocorrelation are reduced in the algorithms by Liu and Sabatti (2000), and Chen

and Dey (2000).

In the second chapter, I have developed the dynamic ordered probit model studied

in the first chapter. It is natural for panel data to have missing data problem because

there is no guarantee that subjects will stay over the study periods. This chapter

provides Bayesian statistical methods that permits non-ignorable missing data in panel

datasets. In order to incorporate non-random missing data in the model, I jointly

model observed and non-ignorable missing ordinal data with selection model approach.

In the empirical section, I have used the model to examine determinants of self-rated

ii



health of old people in the Health and Retirement Study. I have concluded that in this

elderly American population, the longest occupation that respondents have held over

their careers is strongly associated with self-rated health.

In the third chapter of my dissertation, I analyze financial time-series data before and

after the Wall Street meltdown in 2008. In this chapter, I develop MCMC algorithms

for the CKLS model and examine (1) time-series characteristics of the credit default

swap index, stock index and federal funds rate from January 2007 to September 2009,

the highly volatile period. (2) The lead-lag relationship between the credit default

swap and stock markets are examined using the CKLS model employing multivariate

analysis.
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Chapter 1

Introduction

Bayesian statistics began with a posthumous publication in 1763 by Thomas Bayes, a

non-conformist minister from the small English town of Tunbridge Wells. His work was

formalized as Bayesian theorem which, when expressed mathematically, is a simple and

uncontroversial result in probability theory. However, specific uses of the theorem have

been the subject of continued controversy for over a century, giving rise to a steady

stream of polemical arguments in a number of disciplines (Spiegelhalter et al. (2004)).

The basic idea of Bayesian analysis is reasonably straightforward. Using information

from earlier studies or expert opinion, it begins by defining a prior probability distribu-

tion for the parameter of interest. Or the prior can be one of several distributions that

are conventionally used to represent no previous information. The prior distribution is

then updated by combining it with data, which is represented by a likelihood function.

The result is the posterior probability distribution, which combines the earlier informa-

tion and the new data into a single probability distribution that describes the possible

values of the parameter and the probability of each value based on the data.

Hence, the objective of Bayesian is to obtain the posterior probability distribution

of each model parameter. To make inference on the parameters, Bayesian inference

heavily relies on high-dimensional integration over the posterior distribution of other

model parameters, which is hard to calculate analytically. Markov chain Monte Carlo

(MCMC) algorithm, a simulation-based integration using Markov chain, could provide a

solution to the problem. MCMC algorithms enable us to draw samples from probability

distributions by constructing a Markov chain that has the target distribution as its

equilibrium distribution. Since late 1980s, MCMC algorithms have been widely used

in many fields from natural sciences to social sciences.
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The introduction of MCMC algorithms has made Bayesian inference more approach-

able and flexible than frequentist sample theory inference. The advantages of Bayesian

inference employing MCMC algorithms are: 1) Bayesian incorporates prior knowledge

formally into data analysis; (2) important parameters for policy decisions such as elas-

ticity and marginal effect can be easily obtained by MCMC algorithms; and (3) using

predictive densities, economic business forecasts can be obtained not only as point

forecasts but also as forecast densities.

In my dissertation, I attempt to devise the MCMC algorithms. Then, I apply my

MCMC algorithms to real data and explain the implications.

Part II of the dissertation consists of three essays on the application of Bayesian

inference using MCMC to topics in economics. The first chapter is on MCMC algo-

rithms for the ordered probit model to analyze panel data using Bayesian approach.

In the second chapter, I develop the ordered probit model studied in the first chapter

by incorporating non-random missing data analysis in the model. Then, I study the

determinants of self-rated health in Health and Retirement study from 1992 to 2004. In

the third chapter, I analyze financial time-series data before and after the Wall Street

meltdown in 2008 using the CKLS model in Bayesian.
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Chapter 2

Bayesian inference of a dynamic ordered probit model

with random effects

2.1 Introduction

According to Green and Hensher (2010), the ordered response model has been developed

through three discernible steps in the literature. In step 1, Aitchison and Silvey (1957)

treatment of stages in the life cycle of a certain insect; in step 2, Snell (1964)’s analysis

of ordered outcomes (without a regression interpretation); and in step 3, McKelvey and

Zavoina (1975)’s proposal of the modern form of the ordered probit regression model.

From the frequentist viewpoint, the ordered probit model can be estimated by using the

maximum likelihood (ML) method. A Bayesian approach of the ordered probit model

builds on the estimation for the binary probit model, which is pioneered by Tanner

and Wong (1987) and Albert and Chib (1993). This paper is based on the inferential

framework of Albert and Chib (1993) by using the latent variable representation in

MCMC algorithm.

The fundamental advantage of a panel dataset over a cross-section is that it will

allow us greater flexibility in modeling differences in behavior across individuals. Hence,

the major motivation for using a panel dataset is its ability to control for individual

heterogeneity. The literatures on panel data place emphasis on the fixed and random

effects models in order to specify the unobserved individual heterogeneity. Consider a

standard linear panel regression model:

yit = x′itβ + bi + εit

where xit includes k covariates, but a constant term; and bi is the heterogeneity, or
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individual effects. The individual effects (bi) is specified as random effects, but it could

be specified as the fixed effects, to be estimated together with β. An important con-

sideration to determine fixed effects or random effects model is whether the covariates

(xit) are correlated with the individual effects (bi).

If the unobserved individual effects bi is correlated with covariates xit, then it is

specified with fixed effects, i.e., the fixed effects model allows the unobserved individual

effects to be correlated with the covariates. If this model, in which bi is unobserved,

but correlated with xit, is estimated by the least squares, then the least squares esti-

mator of β is biased and inconsistent. Adding a dummy variable for each individual

will solve the problem, but the least square dummy variable approach (LSDV) may be

prohibitive if there are a large number of cross-section observations. When the unob-

served individual effects are uncorrelated, the model leads to the random effects model

Greene (2002). In sum, the crucial distinction between these two cases is whether the

unobserved individual effects embodies elements that are correlated with the covariates

in the model.

My work using the panel dataset of the Health and Retirement Study (HRS) has to

deal with the existence of unobserved heterogeneity and with the need to use nonlinear

models to employ ordered discrete dependent variables, i.e., the ordered probit model

with panel data. As indicated above, two panel models are possible: the ordered probit

model with fixed effects or random effects. When the frequentist methods are employed,

there are two problems that this ordered probit model with fixed effects shares with

other non-linear fixed effects models. First, regardless of how estimation and analysis

are approached, time-invariant variables are not identified. Since I am interested in

the effects of demographic variables such as gender, education level, etc. that are time

invariant, this is likely to be a significant obstacle. Second, there is no sufficient statistic

available to condition the fixed effects out of the model. That would imply that in order

to estimate the model, one must maximize the full log likelihood. If the sample is small

enough, one may simply insert the individual group dummy variables and treat the

entire pooled sample as a cross-section. I am interested in the longitudinal dataset in
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which this would not be feasible due to a large sample size.

The larger methodological problem with fixed effects model approach would be the

incidental parameters problem1. This is even more severe when estimating dynamic

models as mine, the dynamic ordered probit model. The incidental parameters problem

is reflected in the inconsistency of standard estimates like maximum likelihood estimator

(MLE) when the number of individuals N goes to infinity while T is fixed. Even

when T goes to infinity, if it does at a smaller or the same rate as N , the asymptotic

normal distribution is not centered at zero due to the bias coming from the incidental

parameters. Moreover, this problem results in large finite sample biases of the MLE

when using panels where T is not very large. Recent proposals for the bias reduction

methods can be grouped in three approaches: (1) to construct an analytical or numerical

bias correction of a fixed effects estimator, (2) to correct the bias in moment equations,

and (3) to correct the objective function.

A random effects approach also has the drawbacks of imposing a strong assumption

of independence between the unobserved heterogeneity and other covariates: consis-

tency requires that the effects be uncorrelated with the included variables. It also has

the drawback of having to deal with the so-called initial condition problem when es-

timating the dynamic ordered probit model. Taking a fixed effects approach relaxes

the independent assumptions between individual effects and the covariates, and also

allows that there is no initial condition problem. Despite these advantages, there have

been only few applications in health economics of nonlinear panel models with the

fixed effects, as in Jones (2000). This is due to the difficulty of solving the incidental

parameters problem.

McCulloch and Rossi (1994) state that in a Bayesian point of view, there is no

distinction between fixed and random effects models, only between hierarchical and

1Because of the individual-specific fixed effects, the total number of parameters in the models with
fixed effects equals the number of individuals plus the dimension of the common parameters. When the
number of individuals (N) goes to the intinity and the time-series dimension (T ) is fixed, the maximum
likelihood estimator (MLE) typically results in inconsistent estimates of the common parameter of
interest (Neyman and Scott (1948)).
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non-hierarchical models. This paper estimates the dynamic ordered probit model with

random effects by employing four Bayesian MCMC algorithms as in Hasegawa (2009).

The first algorithm developed by Albert and Chib (1993) presents Bayesian imple-

mentations of the ordered probit model using the Gibbs sampler applying the data

augmentation method of Tanner and Wong (1987).

Hoever, Albert and Chib (1993)’s method of data augmentation has the problem of

the high autocorrelation in the estimated cutoff points, cj in equation (??). Along with

Albert and Chib (1993)’s algorithm, this paper employs additional three algorithms that

present the ways to mitigate the high autocorrelation. First, Liu and Sabatti (2000) de-

velop the generalized Gibbs sampling approach (Algorithm 2); Albert and Chib (2001)

transforms the cutoff points and employs the MH-within-Gibbs (Algorithm3); and Chen

and Dey (2000) present one of the approaches to reduce high autocorrelation between

cutoff points, which is ”reparameterization” with the different identification restriction

(Algorithm4).

2.2 Dynamic Ordered Probit with Random Effects

2.2.1 Model

The dynamic ordered probit model can be used to model a discrete dependent variable

that takes ordered multinomial outcomes, e.g., yit = 1, ..., J . Let y∗it (−∞ < y∗it <∞)

be the underlying latent variable for a respondent i at time t for t = 0, 1, ..., T and

i = 1, ..., N . The model can be expressed as

yit = jifcj ≤ y∗it < cj+1,j = 1, ..., J (2.1)

where cj is a cutoff point of ordinal responses and is specified as

−∞ < c1 = 0 < c2 < ... < cJ−1 <∞

Define y∗it as the underlying latent variable as follows

y∗it = φy∗it−1 + vitβ1 + xiβ2 + bi + εit,t = 2, ..., T (2.2)

y∗i0 = vi0β10 + xiβ20 + bi + εi0,t = 1
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where vit = (vit1, ..., vitk) is the time-variant covariates, xi = (xi1, ..., xip) is the cross-

sectional time-invariant covariates, bi is an individual-specific and time-invariant ran-

dom effects, β1 = (β11, ..., β1k)
′, β2 = (β21, ..., β2p)

′, β10 = (β101, ..., β10k)
′, and β20 =

(β201, ..., β20p)
′. εit is a time and individual-specific error term which is assumed to be

normally distributed and uncorrelated across individuals and times and uncorrelated

with bi. bi is distributed with a mean and constant variance, σ2, and independent of εit

for all t. εit is assumed to be strictly exogenous, that is, the εit are uncorrelated with

εis for all t and s (Hasegawa (2009)).

Conditioned on the individual effects bi, the observations on yit, t = 1, ..., T , are

assumed to be independent. Then, the contribution to the likelihood for individual i,

conditional on the covariates and the individual effects, would be the joint probability

p (yi1 = ji1, ..., yiT = jiT |vit, xi, bi)

=

T∏
t=2

[Φ
(
cj − φy∗it−1 − vitβ1 − xiβ2 − bi

)
− Φ

(
cj−1 − φy∗it−1 − vitβ1 − xiβ2 − bi

)
]

× [Φ (cj − vi1β10 − xiβ20 − bi)− Φ (cj−1 − vi1β10 − xiβ20 − bi)]

where Φ (.) is the normal distribution function.

2.2.2 Bayesian Inferences

Let Θ = {φ, β1, β2, β10, β20, b, µ, τ, c}. The prior distribution of the random effects b is

assumed to have a hierarchical structure. Then, the prior distributions are specified as

follows:

p (Θ) = p (φ) p (β1) p (β2) p (β10) p (β20) p (b|µ, τ) p (µ) p (τ) p (c)

The joint posterior distribution for Θ is

p (Θ, y∗, y∗0|y, y0) ∝ p (Θ, y, y0) p (y, y0|Θ, y∗, y∗0)

= p (Θ)

N∏
i=1

{p (y∗i |Θ−β0 , y∗i0) · p (yi|Θ−β0 , y∗i0)

·p (y∗i0|Θ−φ,β) · p (yi0|Θ−φ,β, y∗i0)
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(2.4)

where Θ−β0 = {φ, β1, β2, b, µ, τ, c} except β10 and β20, and Θ−φ,β = {β10, β20, b, µ, τ, c}.

2.2.3 Identification

In equation (2.2), we assume that the error terms, εit, has a mean zero and a standard

normal distribution with variance one. The latent variable y∗it is the unobservable, and

only the ordered responses, yit (yit = 1, 2, ..., J), are observed. Therefore, equation

2.2 links the observed ordered responses with the latent variable. Two restrictions

are necessary in order to uniquely identify the parameters of the model. First, suppose

c∗j = cj+a and φ∗y∗it−1+vitβ
∗
1+xiβ

∗
2+b∗i = φy∗it−1+vitβ1+xiβ2+bi+a for some constant

a. Then, because c∗j −(φ∗y∗it−1+vitβ
∗
1 +xiβ

∗
2 +b∗i ) = cj−

(
φy∗it−1 + vitβ1 + xiβ2 + bi

)
, it

is straightforward to verify that p (yit = j|φ, β1, β2, bi) = p (yit = j|φ∗, β∗1 , β∗2 , b∗i ). This

identification problem is usually corrected by fixing a cutoff point (in addition to c0 =

−∞ and cJ = ∞), in particular, letting c1 = 0 removes the possibility for shifting the

distribution without changing the probability of observing yit.

Second, suppose the variance of εit is scaled by an unrestricted parameter σ2ε . The

latent regression 2.2 will be y∗it = φy∗it−1 + vitβ1 +xiβ2 + bi +σεεit. However, (y∗it/σε) =

φ
(
y∗it−1/σε

)
+vit (β1/σε)+xi (β2/σε)+(bi/σε)+εit is the same model with the same data:

the observed data will be unchanged. This means that there is no information about σε

in the data so that it cannot be estimated. This usual approach to achieve identification

in this case is to fix the variance of ε, σε. For example, in the case of the probit model,

εit is assumed to be normally distributed with the variance of 1. The algorithms of

Albert and Chib (1993), Liu and Sabatti (2000), and Albert and Chib (2001) follow

this standard approach. Instead of fixing the variance of εit to be 1, it is also possible

to restrict one of the cutoff points in addition to c1 = 0. For example, Chen and Dey

(2000) restrict the cutoff point c2 to be 1. This restriction precludes the simultaneous

rescaling of the numerator and denominator in Φ

(
cj−(φy∗it−1+vitβ1+xiβ2+bi)

σε

)
because it

would violate c2 = 1.
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2.3 Algorithms for the Estimation of the Bayesian Dynamic Panel-

Ordered Probit Model

In theory, one could directly apply standard computational tools such as the Gibbs

sampler coupled with a few Metropolis-within-Gibbs steps to fit the model. However,

it has been shown that use of the standard Gibbs sampler in the models with ordered

responses (Albert and Chib (1993)) suffers from slow mixing due to a high correlation

between the simulated cutoff points and latent variables. Cowles (1996) noted the

possibility that sampling of the cutoff points conditional on the latent variables can

lead to small changes in the cutoff points between successive iterations, especially as

more data become available. Li and Tobias (2006) observed only very small local

movements from iteration to iteration when the chain mixes slowly. As a result, it may

take a very long time for the simulator to traverse the entire parameter space. When

the lagged autocorrelation between the simulated parameters are very high, estimates

of posterior features may be quite inaccurate, and numerical standard errors associated

with those estimates will be unacceptably large.

To mitigate this slow mixing problem and move closer to a simulation where one can

obtain i.i.d samples from the posterior distribution, Cowles (1996) suggests sampling

the latent data, y∗, and the cutoff points, c, jointly by drawing from c ∼ p (c|y, β)

marginalized over the latent variable and, subsequently, sampling y∗ ∼ p (y∗|y, β, c).

Nandram and Chen (1996) improve Cowles (1996) that the cutoff points should be sam-

pled jointly, not one-at-a time, and that the particular Metropolis-Hasting (MH) pro-

posal density suggested in Cowles (1996) may be difficult to tune. Nandram and Chen

(1996) suggest a reparameterization of the model and present a sampler that allows

joint sampling of the reparameterized cut points in a single block and also marginally

of the latent variable using a Dirichlet proposal density that depends on the previous

cutoff points, but does not depend on the other parameters or the latent variable. Chen

and Dey (2000) point out that the Dirichlet density will generally work well when the

cell (category) counts are balanced, but may fail to serve as a good proposal density

when the category counts are unbalanced.
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Subsequent works, including Chen and Dey (2000) and Albert and Chib (2001),

are built upon these ideas. They show that the cutoffs c can easily be sampled jointly

in a single block by well-tailored independent chains, marginally of y∗, to improve the

efficiency of MCMC algorithms. Maintaining the identification restriction that the

variance of the error terms equals 1, Albert and Chib (2001) simplify the sampling

of the cutoffs c by transforming them so as to remove the ordering constraint by the

one-to-one map.

In order to reduce high autocorrelation for the cutoff points, Liu and Sabatti (2000)

also propose the generalized Gibbs sampler that provides a framework encompassing

methods of the parameter expansion and reparameterizing such as Albert and Chib

(2001) and Chen and Dey (2000). The generalized version of the Gibbs sampler is

based on conditional moves along the traces of groups of transformations in the sample

space. The details of the four algorithms employed are as follows. The details of the

four algorithms employed are as follow.

2.3.1 Algorithm1: Albert and Chib (1993)

Applying the data augmentation idea of Tanner and Wong (1987), Albert and Chib

(1993) treat the unknown latent variable y∗ values as additional parameters to be

simulated in the Gibbs sampler. Once values are obtained for y∗, the problem of

estimating β in the ordered probit model simplifies to that of doing so in a standard

normal linear model. In order that the domain of the y∗ may be the entire real line,

the cutoff points, c0 and cJ must be fixed at −∞ and ∞, respectively. Albert and

Chib (1993) also note that in order to make the parameters of the model identifiable,

one additional cutpoint must be fixed: without loss of generality, c1 is fixed at 0. The

algorithm of drawing the parameters in the dynamic ordered probit model based on the

method of Albert and Chib (1993) is as follows.

1. Sample φ, β, β0, b, µ, τ from their full conditional distributions.

2. Sample y∗, y∗0 from their full conditional distributions.
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3. Sample c from the full conditional distribution.

2.3.2 Algorithm2: Liu and Sabatti (2000)

Liu and Sabatti (2000)’s generalized version of the Gibbs sampler is based on conditional

moves along the traces of groups of transformations in the sample space. Liu and Sabatti

(2000) indicate that the Gibbs sampler employed Albert and Chib (1993) suffers from

high autocorrelation: conditional on the values of the latent variable, y∗it, and the other

cutoff points c−j , the cutoff point cj has very little room to move.

The algorithm of the generalized Gibbs samplers in the dynamic panel ordered

probit model employing the method of Liu and Sabatti (2000) is as follows:

1. Sample φ, β, β0, b, µ, τ from the full conditional distributions.

2. Sample y∗, y∗0 from their full conditional distributions.

3. Sample c from the full conditional distribution.

4. ImplementLiu and Sabatti (2000)’s generalized Gibbs sampler.

2.3.3 Algorithm3: Albert and Chib (2001)

Albert and Chib (2001) proposed the algorithm for drawing the cutoff points by trans-

forming them as follows:

ξc = log(cj − cj−1), j = 2, ..., J − 1

where ξ = [ξ2, ..., ξC−1]
′ is unrestricted. The algorithm of drawing the parameters in

the dynamic ordered probit model is as follows.

1. Sample φ, β, β0, b, µ, τ from the full conditional distributions.

2. Sample y∗, y∗0 from their full conditional distributions.

3. Sample ξ from the Metropolis-Hastings (MH) algorithm.

4. Calculate cj =
∑J

j=1 exp(ξj), j = 2, ... , J − 1
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2.3.4 Algorithm4: Chen and Dey (2000)

Chen and Dey (2000) consider other transformations of the cutoff points and intro-

duce alternative identification restrictions instead of the traditional one (i.e., variance

of error terms is 1 so that error terms are normally distributed with N (0, 1)). In

particular, Chen and Dey (2000) leave the variance of error terms as σ2 as an unre-

stricted parameter to be estimated, but instead fix another cutoff in addition to having

c0 = −∞, c1 = 0, and cJ = +∞ in order to determine the scale of the latent data. Li

and Tobias (2008)indicate that there are several advantages of working with this repa-

rameterization. First, the rescaling helps to mitigate correlation between the simulated

cutoff points and latent variable and thus improves the performance of the posterior

simulator. Second, the reparameterization effectively eliminates one cutoff point from

each equation in the model. However, the main drawback to working with the repa-

rameterized model is that it requires us to place priors on the transformed parameters

Li and Tobias (2006). Under the identification, the model is modified as

y∗it |. ∼ N(φy∗it−1 + vitβ1 + xiβ2 + b, σ2),t = 2, ..., T

y∗i0|. ∼ N(vi0β10 + xiβ20 + bi, σ
2),t = 1

for i = 1 , ... , N . Further, the cutoff points are transformed as

ξj = log(
cj − cj−1

1− cj
), j = 2, ..., J − 2

where ξ = [ξ2, ... , ξJ−1]
′ is unrestricted. The prior distributions are specified as follows

p (Θ) = p (φ) p (β1) p (β2) p (β10) p (β20) p (b|µ, τ) p (µ) p (τ) p
(
σ2
)
p (ξ)

where Θ = [φ, β1, β2, β10, β20, b, µ, τ, σ
2, ξ]. The prior distribution for σ2 and ξ are

σ2 ∼ InvGam(c̃, d̃)

ξ ∼ N
(
ξ̃, G̃

)

The algorithm of drawing the parameters in the dynamic ordered probit model based

on the algorithm of Nandram and Chen (1996) and Chen and Dey (2000) is as follows:
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1. Sample φ, β, β0, b, µ, τ from the full conditional distributions.

2. Sample y∗, y∗0 from their full conditional distributions.

3. Sample ξ from the Metropolis-Hastings (MH) algorithm.

4. Calculate cj =
cj−1+exp(ξj)
1+exp(ξj)

, j = 2, ... , J − 2

2.4 Results with Simulated Data

2.4.1 Data Generating Process

This section provides a numerical example with simulated data for checking four MCMC

algorithms. I simulate data following the previous simulation study by Hasegawa (2009).

I set up N = 200 and T = 10, and the ordered response variables yit (i = 1, ..., 200,

t = 1, ..., 10) take 4 values, i.e., yit = 1, 2, 3, or 4. The latent variable, y∗it, is distributed

as follows:

y∗it|. ∼ N
(
φy∗it−1 + vitβ1 + xiβ2 + bi, 1

)
,t = 2, ..., 10

y∗i1|. ∼ N (vi1β10 + xiβ20 + bi, 1) ,t = 1

for i = 1, ..., 200. The parameters and the variables are set up as

φ = 0.5; β1 = β10 = 2; β2 = β20 = 1.5;

bi ∼ N (µ, τ)whereµ = 1andτ = 1

c1 = 0; c2 = 5; c3 = 10

vi0 ∼ N (1, 3) ; vit = 0.3vit−1 + uit, whereuit ∼ N (0, 1)

xi ∼ N (2, 4)

2.4.2 MCMC Results

Table 2.1 Here.

For the analysis, the MCMC algorithms run for 24, 000 iterations, keeping 20th

draws after the first 4, 000 draws are burned. Table 2.1 shows posterior summary

statistics for the parameters.



14

The posterior means of the key variables, φ, β, βo, and c, are very close to the true

values in all four algorithms. However, those of individual random effects, µ and τ ,

vary across the algorithms. Especially, the posterior mean of standard deviation (τ) of

random effects from Chen and Dey (2000)’s algorithm is estimated as 0.37, far from

the true value, 4. Generally, the posterior results show that random effects are hard to

draw to be close to the true values. It might be due to relatively small sample sizes in

my simulation study (N = 200 and T = 10).

The main issue is to compare autocorrelation of posterior draws of cutoff points

from four algorithms. In the first algorithm employing Albert and Chib (1993), auto-

correlation for c2 and c3 are 0.98 and 0.97; in the second algorithm (Liu and Sabatti

(2000)), those are 0.33 and 0.27; in the third algorithm (Albert and Chib (2001)),

0.89 and 0.93; and in the fourth algorithm (Chen and Dey (2000)), 0.18 and 0.17. In

terms of autocorrelation, the best algorithm to reduce autocorrelation of cutoff points is

Chen and Dey (2000), using generalized Gibbs sampler, and the second one is Liu and

Sabatti (2000), employing Metropolis-Hasting algorithm. As expected, MCMC draws

from Gibbs samplers by Albert and Chib (1993) show the highest autocorrelation.

2.5 Conclusion

In this paper, I have examined four representative MCMC algorithms for estimating the

dynamic ordered probit model with random effects. For the initial conditions problem,

I employed the approach proposed by Hasegawa (2009). The result of simulated data

suggested that the algorithm using Chen and Dey (2000) is the best one in terms of

reducing autocorrelation. Even though the levels of autocorrelation are reduced in Chen

and Dey (2000) and Liu and Sabatti (2000), I have found that autocorrelation still high

in the cutoffs compared to other parameters. Hence, another MCMC algorithm should

be devised to correct the problem. In the future study, I would like to develop a new

MCMC algorithm using a probability integral transformation method for the cutoff

points.
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True Value Mean Std. AR(1)

Algorithm1: Albert & Chib (1993)

φ 0.5 0.491014 0.016534 0.521104

β1 2 2.042886 0.09483 0.622086

β2 1.5 1.495506 0.09557 0.873232

β10 2 1.82096 0.106477 0.487809

β20 1.5 1.528753 0.094678 0.692229

c2 5 4.946154 0.209125 0.980274

c3 10 10.109342 0.408196 0.971385

µ −3 −2.689466 0.261125 0.675941

τ 4 3.2116 0.472037 0.441375

Algorithm2: Liu & Sabatti (2000)

φ 0.5 0.478799 0.085205 0.360457

β1 2 1.907619 0.194558 0.191619

β2 1.5 1.469513 0.219317 0.502431

β10 2 1.695263 0.19826 0.230064

β20 1.5 1.479918 0.211768 0.364171

c2 5 4.489116 0.466112 0.325568

c3 10 9.360203 0.943748 0.269957

µ −3 −2.742552 0.501644 0.410578

τ 4 3.209466 0.911796 0.390433

Algorithm3: Albert & Chib (2001)

φ 0.5 0.491323 0.016492 0.556116

β1 2 2.19801 0.115296 0.758481

β2 1.5 1.623513 0.109723 0.904076

β10 2 1.976785 0.122717 0.586622

β20 1.5 1.652241 0.112536 0.765145

c2 5 5.266243 0.275124 0.885248

c3 10 10.937321 0.523085 0.929045

µ −3 −2.946039 0.278986 0.686912

τ 4 3.84305 0.617692 0.845353

Algorithm4: Chen & Dey (2000)

φ 0.5 0.488499 0.017588 0.583684

β1 2 2.183088 0.123529 0.155371

β2 1.5 1.618349 0.132593 0.57606

β10 2 1.967679 0.134613 0.198425

β20 1.5 1.644063 0.132182 0.433074

c2 5 5.225161 0.301872 0.183204

c3 10 10.832213 0.568302 0.170061

µ −3 −2.937164 0.32182 0.591519

τ 4 0.373715 0.055038 0.271458

Table 2.1: Posterior results (Simulated data)
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Chapter 3

Bayesian inference of an ordered probit model with

non-ignorable missing data: The determinants of

self-rated health using the Health and Retirement Study

3.1 Introduction

Missing data is an inherent problem in panel surveys or longitudinal studies due to the

characteristic of panel studies: the subjects of the study are chosen at baseline and

samples are taken from the subjects over time. In other words, there is no guarantee

that subjects will stay over the study periods. My study provides statistical methods

to address such missing data problems that panel studies face. Especially, in health

surveys, missing data should not be overlooked because non-response to the survey

tends to be highly correlated with health status of the subjects. If missing data are

related to the respondents’ health status or the explanatory variables on health, ignoring

missing data may lead to an imprecise or incorrect analysis. Furthermore, it is well

understandable that the probability of responding is likely to be related to health status

of older people who are subjects in this study.

Despite missing data problems, the fundamental advantage of a panel dataset over

a cross-section is that it will allow us greater flexibility in modeling differences in be-

havior across individuals. Accordingly, the major motivation for using panel data is its

ability to control individual heterogeneity. In order to specify the unobserved individual

heterogeneity, I employ the random effects model. In addition, I suspect that missing

data are likely to depend on unobserved data, therefore, I jointly model observed and

missing data through selection model approaches.
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Selection models first appeared in econometrics, with Heckman (1979)’s work on

sample selection bias. Later, Diggle and Kenward (1994) proposed selection models

for continuous longitudinal data subject to non-ignorable dropout. Selection model ap-

proach in missing data is the most straightforward way to handle non-ignorable missing

data mechanism since selection models allow a direct estimation of the parameters of

interest from the marginal distribution of responses. Many models have been proposed

that link the response and missing values. Recently, Gad (2011) proposes a model

for continuous longitudinal data with not only non-ignorable dropout, but intermittent

missing data as well, by specifying missing data mechanism with a multinomial logit

model.

In this paper, I extend the model by Gad (2011) to ordinal responses since Gad

(2011) models continuous longitudinal responses with a multivariate normal distribu-

tion. It becomes possible since an estimation of ordered probit model by Bayesian

methods employs the data augmentation approach proposed by Albert and Chib (1993).

Albert and Chib (1993) treat the unknown latent variable y∗ values as additional pa-

rameters to be simulated within Markov chain Monte Carlo (MCMC) algorithms. Once

values are obtained for y∗, the problem of estimating the model parameters in ordered

probit model simplifies to that of doing so in a standard normal linear model.

In addition, Gad (2011) uses a stochastic expectation-maximization1 (EM) algo-

rithm, which adds an imputation step for missing data to a step of estimation through

maximizing a likelihood function. I also impute latent variables and missing data from

their conditional distributions, but estimate the model parameters by MCMC methods.

Although using selection models has an important advantage that we can specify famil-

iar econometric models for response data and missing data, it also has disadvantages

that the estimates from selection model are very sensitive both to misspecification of

1The expectation-maximization (EM) iterative algorithm is a broadly applicable statistical technique
for maximizing complex likelihoods and handling the incomplete data problem. At each iteration step
of the algorithm, two steps are performed: (1) E-step consisting of projecting an appropriate functional
containing the augmented data on the space of the original, incomplete data, and (2) M-step consisting
of maximizing the function.



18

the complete distribution of the response and to the assumed shape of the dependence

between the dropout process and response process (Kenward (1998)).

This paper provides a model to analyze panel data on ordinal dependent variable

with missing observations by employing a selection model with Bayesian methods of

inferences. The model is applied to seven waves (1992 − 2004) of the Health and

Retirement Study (HRS) in order to examine the determinants of self-rated health in

older Americans. Since one can never observe missing data, a certain assumption needs

to be made on the missing data mechanism. Rubin (1976) developed a framework for

inference for incomplete data. First, I explain missing data mechanisms following Rubin

(1976) in section 2. In section 3, I develop a model to analyze ordinal responses under

the assumptions of missing data, and introduce Bayesian inferences for the developed

models in section 4. Using Bayesian inferences, the developed model is applied to

the Health and Retirement Study to explicate the determinants of self-rated health in

section 5. Then, I conclude the paper.

3.2 Missing data mechanism

Missing data exhibit two types of patterns: intermittent missingness and monotone

missingness. Subjects may withdraw from the study prematurely resulting in a mono-

tone missing pattern (a dropout) or they may miss some occasions resulting in an

intermittent missing pattern.

Following Rubin (1976), missing data are generally classified into three groups:

MCAR (missing completely at random), MAR (missing at random), and MNAR (miss-

ing not at random). A missing process is MCAR if a missing observation is independent

of both unobserved and observed data, and MAR if, conditional on the observed data,

the missing observation is independent of the unobserved responses. A process that

depends on the unobserved responses is MNAR.

First, let us discuss missing data, following Little and Rubin (2002). Let y =

(yi1, ..., yiT )′ denote the full data response vector for i = 1, ..., N individuals over time
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t = 1, ..., T . y can be partitioned into observed, yobs, and missing, ymis, values, i.e.,

y = (yobs, ymis). Now define mit to be a binary indicator variable such that

mit =

 0 if yit is observed

1 if yit is missing

The missing data mechanism (MDM) can then be defined by the conditional distribution

of m given y, i.e., p (m|y, ψ), where ψ denotes the unknown parameters of the missing

function. And, y = {yobs, ymis} is denoted as the complete data, {yobs, ymis,m} as the

full data, and {yobs,m} as the observed data.

We can describe MCAR by

p (m|yobs, ymis, ψ) = p (m|ψ)

Note that m depends on ψ, but not on the values of any variables in y. For MAR data,

the conditional distribution becomes

p (m|yobs, ymis, ψ) = p (m|yobs, ψ) (3.1)

and for MNAR, there is no simple way of presenting the conditional distribution of m.

The implications of these different missing data mechanisms (MDM) can be under-

stood by considering the joint distribution of y and m, i.e.,

p (y,m|β, ψ) = p (yobs, ymis,m|β, ψ)

where β denotes the unknown parameters of the model of interest. The marginal

distribution of the observed data can be obtained by integrating out the missing data

p (yobs,m|β, ψ) =

∫
p (yobs, ymis,m|β, ψ) dymis (3.2)

The integrand may be specified as the product of the distribution of y and the condi-

tional distribution of m given y, i.e.,

p (yobs, ymis,m|β, ψ) = p (yobs, ymis|β, ψ) p (m|yobs, ymis, β, ψ)

and this can be simplified to

p (yobs, ymis,m|β, ψ) = p (yobs, ymis|β) p (m|yobs, ymis, ψ) , (3.3)
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if we assume that m|y, ψ is conditionally independent of β, and y|β is conditionally inde-

pendent of ψ, which is usually reasonable in practice. This form of the joint distribution

is known as selection model.

If the data are MAR, then (3.1) and (3.3) imply that (3.2) can be rewritten as

p (yobs,m|β, ψ) = p (m|yobs, ψ)

∫
p (yobs, ymis|β) dymis

= p (m|yobs, ψ) p (yobs|β)

In this case, the joint distribution is factored into two terms, one involving the observed

data and the parameters β, and the other involving the missing indicator, m, and

parameters ψ.

The missing data mechanism (MDM) is termed ignorable for likelihood inference

about β if the missing data are MAR. In addition, the full parameters can be decom-

posed as the parameters of the response model, β, and the missingness mechanism,

ψ, i.e., β and ψ are distinct2 (Little and Rubin (2002)). For ignorability to hold in

Bayesian inference, in addition the priors for β and ψ need to be independent (Daniels

and Hogan (2008)).

When the MDM is not ignorable (i.e., in the case of non-ignorable MDM), infor-

mation on the observed data should be combined with assumptions about the MDM

by building a joint model. Data in MDM is usually denoted by y = {yobs, ymis} as the

complete data, {yobs, ymis,m} as the full data, and {yobs,m} as the observed data.

There are three models according to factorization of outcome and missingness: 1)

selection model (outcome-dependent factorization), 2) pattern-mixture model (pattern

dependent factorization), and 3) shared parameter model (parameter dependent factor-

ization).

First, selection model approach factorizes the joint distribution for the complete

data and the missing indicator (m), i.e., the full data, into the marginal distribution

2The parameter ψ is distinct from β if there are no a priori ties, via parameter space restrictions or
prior distributions, between ψ and β (Rubin (1976)).
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for the complete data and the conditional distribution for the missing indicator given

the complete data as follows:

p (yobs, ymis,m|β, ψ) = p (yobs, ymis|β) p (m|yobs, ymis, ψ) (3.4)

One of the advantages of the selection model is that it specifies the complete data

distribution, p (yobs, ymis|β), directly. As a result, the primary parameters of interest are

explicit in the model, and the nature of dependence between missingness and responses

has a transparent representation. The main disadvantage of the selection model is

the inability to partition the full data response vector into identified and unidentified

components (yobs and ymis).

Pattern-mixture models classify individuals by their missingness and allow different

model structures for each pattern of missing data as follows:

p (yobs, ymis,m|β, ψ) = p (yobs, ymis|m,β) p (m|ψ)

with the assumptions of distinctness of parameters. The complete data model is a

mixture of these patterns:

p (yobs, ymis|β, ψ) =
∑
m∈M

p (yobs, ymis|m,β) p (m|ψ) (3.5)

Since mixture models treat dropout or missingness as a source of variation in the full

data distribution, specifying a different distribution of each dropout time or missing

data pattern seems cumbersome. However, it frequently has the advantage of making

explicit the parameters that cannot be identified by observed data. The ability to

partition the parameters makes a sensitivity analysis possible.

Shared parameter models are specified by adding random coefficients to the models

in order to allow for individual specific latent effects. Incorporating random coefficients

to selection models yields random coefficient selection models and to pattern-mixture

models yields random-coefficient pattern-mixture models (Little (1995)). These models

are also known as shared parameter models. Let b denote a set of random effects and ϕ

associated unknown parameters. Then, the joint distribution, p (yobs, ymis,m, b|β, ψ, ϕ),
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can be factorized as a selection model:

p (yobs, ymis,m, b|β, ψ, ϕ) = p (yobs, ymis|b, β) f (m|yobs, ymis, b, ψ) p (b|ϕ)

or a pattern mixture model:

p (yobs, ymis,m, b|β, ψ, ϕ) = p (yobs, ymis|m, b, β) p (m|b, ψ) p (b|ϕ)

3.3 Models

In developing a model for the ordinal panel data with both dropout and intermittent

missing values, a number of issues need to be addressed:

1. Subjects are followed over time; that is, the observations are correlated across

time.

2. The missing data mechanism of the response variables might be non-ignorable.

3. Both intermittent and monotone missing data patterns are found in the panel

study.

4. There are also missing values in time-varying covariates.

I handle issue 1 by using a dynamic probit model to capture the correlation across

time within a subject and by using random effects to model the correlation across

subjects. For issue 2, I use selection model assuming that missing data depend on

observed responses and missed responses as well. For issue 3, I adopt selection model

proposed by Gad (2011), incorporating both intermittent missingness and dropouts into

the model. Finally, issue 4 is handled by using a joint multivariate distribution for the

response and the time-varying covariates.

3.3.1 Complete-data model

Let yit the discrete dependent variable that takes ordered categorical outcomes, i.e.,

yit = 1, ..., J , and y∗it (−∞ < y∗it <∞) be the underlying latent variable for an individual
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i at time t for t = 1, ..., T and i = 1, ..., N . The model can be expressed as

yit = j if cj ≤ y∗it < cj+1 (3.6)

where cj is a cutoff point of ordinal responses and is specified as

−∞ < c1 = 0 < c2 < ... < cJ−1 <∞

The latent variable, y∗it, is modelled as (Hasegawa (2009))

y∗it = φy∗it−1 + vitβ1 + xiβ2 + bi + εit,t = 2, ..., T (3.7)

y∗i0 = vi1β10 + xiβ20 + bi + εit,t = 1

where vit is the set of the time-variant covariates, xi is the set of the cross-sectional

time-invariant covariates, and bi is an individual specific and time-invariant random

effects. εit is a time- and individual-specific error term that is assumed to be normally

distributed and uncorrelated across individuals and times. In addition, εit is uncorre-

lated with random effects of the individual, bi. bi is distributed a mean, µ, and constant

variance, τ , and independent of εit for all t. εit is assumed to be strictly exogenous,

that is, the vit is uncorrelated with εis for all t and s.

Assume that the observations on yit, t = 1, ..., T , are independent conditional on

the individual effects bi. Then, the contribution to the likelihood for individual i,

conditional on the covariates and the individual effects would be the joint probability:

p (yi1 = ji1, ..., yiT = jiT |vit, xi, bi) (3.8)

=

T∏
t=2

[Φ
(
cj − φy∗it−1 − vitβ1 − xiβ2 − bi

)
− Φ

(
cj−1 − φy∗it−1 − vitβ1 − xiβ2 − bi

)
]

× [Φ (cj − vi1β10 − xiβ20 − bi)− Φ (cj−1 − vi1β10 − xiβ20 − bi)]

where Φ (.) is the normal distribution function.

3.3.2 Incomplete-data model under MAR

Typically, when missing data occur in a response, it is likely that time-varying covariates

are also missing. When missing values occur in both the response and time-varying
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covariates, we need to expand the model (3.8) to jointly model the response and the

time-varying covariates. The conditional joint probability model for y and v is as

follows:

p (y, v|x, β, b, α, a) (3.9)

=

Ti∏
t=1

p (yt|yt−1, x, vt, β, b) p (vt|vt−1, x, α, a)

=

Ti∏
t=1

N∏
i=1

p (yit|uit, β, b) p (vit|wit, α, ai)

where uit ≡ (yit−1, xi, vit) and wit ≡ (vit−1, xi). In addition, bi ˜ N (µy, τy), and

ai ˜ N (µv, τv) are the individual random effects in the model for y and v, respectively.

In (3.9), p (yit|uit, β, bi) is the same as in given in (3.8).

Assume the time-variant covariate, vit, is a continuos variable and vit is normally

distributed with mean wit · α+ ai and variance σ2. ai is an individual random effects,

normally distributed with mean µv and τv.

Then,

p (y, v|x, β, b, α, a)

=

Ti∏
t=1

N∏
i=1

p (yit|uit, β, bi) p (vit|wit, α, ai)

Using parallel notations, I develop the model p (vit|wit, α, ai) for time-varying co-

variate, vit, when it is a binary variable. Specifically, let θit = p (vit = 1|wit, α, ai)

and

logit (θit) = α0 + witα
∗ + ai

where α = {α0, α
∗}. Random effects ai is introduced to account for individual het-

erogeneity and are assumed to be normally distributed with mean µa and variance τa.

The probability density function of v is

p (vit|θit) = θvitit (1− θit)1−vit

The joint distribution y∗ and v conditional on random effects, b and a respectively, is
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given by

p (y∗, v|b, a, x, β, α) =

Ti∏
t=1

p
(
y∗t |y∗t−1, vt, x, β, b

)
· p (vt|vt−1, x, α, a) (3.10)

=
N∏
i=1

T∏
t=1

p (y∗it|uit, β, bi) · p (vit|wit, α, ai)

where

p (vit|wit, α, ai) =
1

1 + exp (− (α0 + witα∗ + ai))

3.3.3 Selection model for non-ignorable missing data mechanisms

Non-ignorable missing data mechanisms imply that the distributions of the response

variables for the respondents and nonrespondents are systematically different, even

after controlling for all known covariates. In such situations, the inferences based on

the likelihood function of the observed data while ignoring the MDM would not be

valid. There are two broad approaches for incorporating non-ignorable MDM: selection

and pattern-mixture models. Here, I use a selection model approach for partitioning

the joint distribution of observables and the missing data.

First, I consider a model where the MDM for time-varying covariates are ignorable.

The dependent variable y is partitioned into observed, yobs, and missing, ymis, values,

i.e., y = (yobs, ymis). The likelihood function is factorized following the selection model

approach under MNAR

p (yobs, ymis,m|β, ψ) = p (yobs, ymis|β) · p (m|yobs, ymis, ψ) (3.11)

where ψ is a vector of the parameters for the missing data mechanism and is distinct

from the parameter β.

The first term, p (yobs, ymis|β), in equation (3.11) is modified as

p
(
yi,obs, yi,mis|β, y∗i,obs, y∗i,mis

)
and same as given in (3.7).

For the missing data mechanism (MDM), p (m|yobs, ymis, ψ) is adjusted as
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p
(
mi|y∗i,obs, y∗i,mis, ψ

)
in the model. Let mit be a missing value indicator that takes

three values as

mit =


0, ifyitisobserved

1, ifyitisintermittentmissing

2, ifyitisdroppedout

(3.12)

The MDM is assumed to conditionally depend on the past and current values of the

dependent variable, y∗it−1 and y∗it. Let, for simplicity,

ηit,1 ≡ ψ11y
∗
it + ψ12y

∗
it−1

ηit,2 ≡ ψ21y
∗
it + ψ22y

∗
it−1

The MDM is modeled as a multinomial logit with three states as

pm,it ≡ p
(
mit = m|y∗it−1,mit−1 6= 2;ψ

)
=


1

1+2
m=1exp(ηit,m)

, m = 0

exp(ηit,m)

1+2
m=1exp(ηit,m)

, m = 1, 2

The parameters ψ1 relate the intermittent missing and ψ2 relate the dropout process

with the response process. The MDM is non-ignorable when these two parameters takes

non-zero values. It is assumed that there are no missing values at the baseline, i.e.,

always mi1 = 0. Note that when mit = 2, it is an absorbing state, i.e.,

p (mit = 2|mit−1 = 2) = 1

For an individual i, the likelihood function of p
(
mi|y∗i,obs, y∗i,mis, ψ

)
is as follows:

ti∏
t=1

(1− p1,it − p2,it)1(mit=0) p
1(mit=1)
1,it p

1(mit=2)
2,it

When there are missing time-varying covariates, and an ignorable MDM for missing

covariates cannot be assumed, another selection model for covariates with different

parameters is necessary. The parameters of the missingness for the response (y) model

are identified in the same way as described above as the case where the MDM for

missing covariates is ignorable. Since the parameters of the model for response, y, are
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distinct from the parameters of the model for time-varying covariates, the framework

developed for selection models for y, can be extended for covariates in the same way.

If a time-varying covariate is binary or ordinal, the same selection model as in (3.11)

is used. If a time-varying covariate is continuous, p (yobs, ymis|β), equation (3.11) is

specified with a linear regression model with normally distributed error terms.

3.4 Bayesian inference

3.4.1 Bayesian inference for complete-data model

Let Θ = {φ, β1, β2, β10, β20, b, µ, τ, c}. The prior distribution of the random effects b is

assumed to have a hierarchical structure. Then, the prior distributions are specified as

follows:

p (Θ) = p (φ) p (β1) p (β2) p (β10) p (β20) p (b|µ, τ) p (µ) p (τ) p (c)

The joint posterior distribution for Θ is

p (Θ, y∗, y∗0|y, y0) ∝ p (Θ, y, y0) p (y, y0|Θ, y∗, y∗0)

= p (Θ)
N∏
i=1

{p (y∗i |Θ−β0 , y∗i0) · p (yi|Θ−β0 , y∗i0)

·p (y∗i0|Θ−φ,β) · p (yi0|Θ−φ,β, y∗i0)}

where Θ−β0 = {φ, β1, β2, b, µ, τ, c} except β10 and β20, and Θ−φ,β = {β10, β20, b, µ, τ, c}.

3.4.2 Bayesian inference under ignorable missing data mechanisms

Let ξ = [β, β0, b, µy, τy, α, a, µv, τv, c]. Bayesian inference under ignorable MDM is mod-

ified based on the complete-data model is

p (ξ, y∗, y∗0, v
∗|y, y0, v) ∝ p (ξ, y∗, y∗0, v

∗) · p (y, y0, v|ξ, y∗, y∗0, v∗) (3.13)

= p (ξ)

N∏
i=1

{p (y∗i |ξ−β0 , y∗i0, v∗i ) p (yi|ξ−β0 , y∗i , y∗i0, v∗i )

·p (y∗i0|β0, bi, µb, τb, c) p (yi0|β0, bi, µb, τb, c, y∗i0)

·p (v∗i |α, ai, µa, τa) p (vi|α, ai, µa, τa)}
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As before, I use proper prior distributions for β, µb, τb, α, µa, and τa with β and α

having a diffuse normal prior, µb and µa having a diffuse normal prior, and τb and τa

having an inverse gamma distribution.

When there are missing values in y and/or v, and if the missing data mechanism

is ignorable, the Gibbs sampling for the complete-data model can be easily modified.

Especially, the Gibbs sampling for the model already include a data augmentation step

for y∗. Hence, we only need to include the missing values in v in the Gibbs sampling

steps by drawing values from its conditional predictive distribution, given the observed

values and the current draws of the parameters.

The Gibbs sampling for ignorable missing data mechanism involves two steps: im-

putation (I) and posterior (P) steps. In imputation step, each missing value is replaced

by a draw from its conditional distribution given the observed data and the current

values of the parameters. And in posterior step, these drawn values of the missing data

are treated as if they were the actual observed values of the data, and one draw of the

parameters is made from the complete data posterior distribution. First, I fill in the

missing values of vit with the current values of parameters. With imputed vit, y
∗
it is

drawn according to the data augmentation method.

Note that I only impute all intermittent missing data and the first dropout values

for the purpose of computation because the dropout probability at Ti only depends on

the current and previous values. Imputing more dropout values is not necessary for

computation and does not provide additional information since all information actually

comes from the available data and the assumptions we based on: the models remain

unchanged over time.

Numerical example with simulated data

This section provides a numerical example with simulated data for checking MCMC

algorithms of an ignorable MDM. I simulate data based on an assumption of missing

not at random (MNAR); therefore, non-ignorable MDM should be considered to analyze
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data. Then, the MNAR dataset is analyzed as though the missing values are ignorable

(so that I use an ignorable MDM). Hence, we can check the performance of the algorithm

of ignorable MDM when a MDM is misspecified.

I set up N = 200 and T = 10, and the ordered response variables yit (i = 1, ..., 200,

t = 1, ..., 10) take 3 values, i.e., yit = 1, 2, or 3. The latent variable, y∗it, is distributed

as follows:

y∗it|. ∼ N
(
φy∗it−1 + vitβ1 + xiβ2 + bi, 1

)
,t = 2, ..., 10

y∗i1|. ∼ N (vi1β10 + xiβ20 + bi, 1) ,t = 1

for i = 1, ..., 200. The parameters and the variables are set up as

φ = 0.5; β1 = β10 = 2; β2 = β20 = 1.5; c1 = 0; c2 = 5;

bi ∼ N (µ, τ)whereµ = 1andτ = 1

vi0 ∼ N (1, 3) ; vit = 0.3vit−1 + uit, whereuit ∼ N (0, 1)

xi ∼ N (2, 4)

Missing values are generated under an assumption of MNAR. By definition, MNAR

depends on the values of both observed and missed dependent variables. Since the

dependent variable yit is ordered in our model, the latent variable of the dependent

variable, y∗it, is used to create MNAR. The first response at t = 1, Yi1, is assumed to

be observed for every subject in the study, and it is assumed that there are no missing

values in the covariates.

Missing data mechanism follows a multinomial logit regression model as follows:

ηit,1 = ψ11y
∗
it + ψ12y

∗
it−1

ηit,2 = ψ21y
∗
it + ψ22y

∗
it−1

where

ψ11 = −1; ψ12 = 0

ψ12 = −2; ψ22 = 0
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By fixing ψ12 = 0 and ψ22 = 0, I make the missing values only depend on the current

value of y∗it for simplicity.

First, the probability of the intermittent missing value is calculated

p
(
mit = 1|y∗it−1,mit−1 6= 2;ψ

)
=

exp (ηit,1)

1 +
∑2

m=1 exp (ηit,1)

and the probability of the dropout is

p
(
mit = 2|y∗it−1,mit 6= 2;ψ

)
=

exp (ηit,2)

1 +
∑2

m=1 exp (ηit,2)

The probability of a response is, therefore,

p
(
mit = 0|y∗it−1,mit 6= 2;ψ

)
= 1− p1 (mit = 1|.)− p2 (mit = 2|.)

Once an observation is dropped out from the study, then the observation must not be

measured in the future. Hence, when mit reaches 2, there are no follow-up observations,

i.e., an absorbing state.

Although a number of missing values depend on the data generating process of y∗it,

the parameter values that I choose create 1.75 ∼ 2.2% intermittent missing values and

13.1 ∼ 21.1% dropouts. The remaining 76.7% of the observations respond.

The MCMC algorithms run for 22, 000 iterations, keeping every10th draws after the

first 2, 000 draws are burned. When there are missing values in the dependent variable,

and if the MDM is ignorable, the Gibbs sampling for the complete-data model can be

easily modified. I fill in the missing values in y∗ in the Gibbs sampling steps by drawing

values from their conditional predictive distribution, given the observed values and the

current draw of the parameters.

1. Sample φ, β, β0 from their full conditional distributions

2. Sample [b|µ, τ ], µ, τ from their full conditional distributions

The random effects, bi, have a hierarchical structure. bi are drawn from the full

conditional distribution (FCD) with a mean, µ, and a standard deviation, τ , both

µ and τ has their own prior parameters.
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3. Sample c following Albert and Chib (1993)

4. Sample ψ11, ψ12, ψ21, ψ22 from the MH algorithm

5. Since we do not have a full conditional distribution of y∗ and y∗0, the MH algorithm

is employed for the latent variables. y∗ and y∗0 are drawn from a proposal density,

normal linear regression model, given current draws of the parameters, and then

the accept-reject algorithm is used through the posterior distribution (3.13).

The simulated data have 2.2% of intermittent missing values, and 16.9% of dropouts.

There is 80.9% of the responses. The results are as follow:

TRUE mean std AR(1) 95%HPDI

φ 0.5 0.464041 0.038634 0.748277 0.389917 0.538269
β1 2 1.648129 0.129983 0.801044 1.402893 1.905542
β2 1.5 1.266007 0.128838 0.773085 1.013718 1.51616
c2 5 5.691052 0.287419 0.994797 5.153038 6.159729
µ 1 1.872833 0.30236 0.891786 1.281703 2.500762
τ 1 0.754516 0.188127 0.591337 0.409215 1.118818
β10 2 1.865389 0.16241 0.715006 1.537643 2.17642
β20 1.5 1.428823 0.14304 0.788267 1.157142 1.709506

Table 3.1: Inference for ignorable MDM with MNAR data

From the results, the posterior means of key parameters (φ, β1, β2, β10, β20) are

underestimated. For β1 and µ, the 95% HPDIs do not include the true values. This

example will be compared with one from correctly specifying non-ignorable MDM.

3.4.3 Bayesian inference under non-ignorable missing data mecha-

nisms

Let β = {φ, β1, β2}′ and Θ = {β, b, µ, τ, c, ψ}. The posterior distribution under non-

ignorable MDM is

p (Θ, y∗obs, y
∗
mis|yobs, y∗mis,m) ∝ p (Θ, y∗obs, y

∗
mis) · p (yobs, ymis,m|Θ, y∗obs, y∗mis) (3.14)

= p (Θ)i p
(
y∗i,obs, y

∗
i,mis|Θ

)
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·p
(
yi,obs, yi,mis,mi|Θ, y∗i,obs, y∗i,mis

)
= p (Θ)i p

(
y∗i,obs|Θ−ψ, y∗i,mis

)
· p
(
y∗i,mis|Θ−ψ

)
·p
(
mi|y∗i,obs, y∗i,mis, ψ

)
· p
(
yi,obs, yi,mis|β, y∗i,obs, y∗i,mis

)
where y∗obs and y∗mis are the latent variables as in (3.7) and

yi ≡ (yi1, ..., yiT )′

y ≡
(
y′1, ..., y

′
N

)′
Numerical example with simulated data (continued)

For this numerical example for non-ignorable MDM, the same data generating process

is used as in section (3.4.2). After augmenting the values of underlying latent variable

and missing values in y∗, model parameters are sampled by following the algorithms:

1. Sample φ, β, β0 from the MH algorithm

2. Sample [b|µ, τ ], µ, τ from their full conditional distributions

The random effects, bi, are drawn from the full conditional distribution (FCD).

3. Sample c following Albert and Chib (1993)

4. Sample ψ11, ψ12, ψ21, ψ22 from the MH algorithm

5. Since the full conditional distribution of y∗ and y∗0 does not have a closed form,

the MH algorithm is employed for the latent variables. y∗ and y∗0 are drawn from

a proposal density, normal linear regression model, given current draws of the

parameters, and then the accept-reject algorithm is used through the posterior

distribution (3.14).

The data generating process simulates a dataset with 1.75% of intermittent missing

values, 13.1% of dropout values, and therefore, 85.15% of responses.

So far, I have examined two numerical examples: in the examples, missing data are

generated based on an assumption of missing not at random, i.e., missingness depends
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TRUE mean std AR(1) 95%HPDI

φ 0.5 0.471161 0.033515 0.689461 0.405424 0.536378
β1 2 1.900816 0.147563 0.811174 1.62278 2.19259
β2 1.5 1.71629 0.189391 0.894441 1.372818 2.071071
c2 5 5.001917 0.283764 0.992227 4.556836 5.576122
µ 1 0.834036 0.395551 0.903113 0.035744 1.641484
τ 1 1.540151 0.406483 0.644241 0.832063 2.37792
β10 2 2.107924 0.173894 0.697289 1.778993 2.46646
β20 1.5 1.517123 0.177661 0.888077 1.183802 1.865441
ψ11 −1 −0.71194 0.146569 0.725916 −0.99162 −0.43838
ψ12 0 −0.15773 0.091341 0.304052 −0.33061 0.022277
ψ21 −2 −1.59185 0.278491 0.722029 −2.12838 −1.06164
ψ22 0 0.06644 0.115394 0.936178 −0.18944 0.290959

Table 3.2: Inference for nonignorable MDM with MNAR data

on the dependent variable. The data with missing data under missing not at random

are specified with the model under ignorable missing data mechanisms in section 3.4.2

and under non-ignorable missing data mechanisms in section 3.4.3. In the example for

non-ignorable MDM (3.4.3), the response data and missing data are jointly modeled;

therefore, the parameters for missing data mechanism (ψ11, ψ12, ψ21, ψ22) are drawn,

different from the ignorable case in section 3.4.2. Based on the results, we can observe

that the key parameters, β′s, are underestimated in section 3.4.2. However, in section

3.4.3, the posterior means of every parameter are closer to true values than in section

3.4.2. Only one 95% HPDIs of ψ11 exclude the true value, but the difference is not much

because the true value is −1 and the upper bound of the HPDIs is −0.99. This example

implies that if missingness might not be at random, we should consider non-ignorable

missing data mechanism to prevent biased estimations.

In sum, these examples imply that if missing observations depend on unobserved

data (i.e., MNAR), ignoring the missing observations may lead to an imprecise or

wrong data analysis. Hence, we need to consider non-ignorable MDM if missing data

are suspected to be MNAR. For analyzing such missing observations, I have developed

Bayesian approach for the ordered probit model with non-ignorable missing data mech-

anism through selection models. In next section, I apply the model to the Health and

Retirement Study to examine self-rated health and its determinants.
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3.5 Empirical application: Self-rated health in the Health and Retire-

ment Study

3.5.1 Self-rated health

This section examines self-rated health and its determinants in the Health and Re-

tirement Study (HRS) by estimating the model developed in the previous sections.

Self-rated health is a widely used indicator of general health. This single item global

rating is used in health surveys all over the world, in many languages, to serve as health

indicators for the population and to track trends over time. Usually, health surveys ask

respondents to rate their health with a single question; for example, the Health and

Retirement Study asks respondents ”would you say your health is (1) excellent, (2) very

good, (3) good, (4) fair, or (5) poor?”.

Self-rated health has long been a focus of interdisciplinary research on social and

psychological factors in health. The the first study on self-rated health and mortality

appeared in 1982 (Mossey and Shapiro (1982)). Since Mossey and Shapiro (1982), many

other studies across areas have found that self-rated health has an independent effect

even beyond objective clinical measures of health and other risk factors. As a measure

of health, the reliability and validity of self-rated health have been well-established, that

is, self-rated health provides a valid assessment of overall health (Idler and Benyamini

(1997)) and is a strong predictor of mortality (Mossey and Shapiro (1982)), functional

limitation (Idler et al. (2000)), health-related behavior (Cott et al. (1999)), and health

care utilization (Pinquart (2001)). It is, therefore, natural to attempt to gain better

understanding of what underlies self-rated health.

In this section, I investigate the determinants of self-rated health among older

Americans using seven waves of the Health and Retirement Study (HRS). Previous

researchers, in economics and health science, focus on explaining differences of health

status with socioeconomic inequalities. For example, Smith and Kington (1998) provide

evidence to support that socioeconomic status plays a role in explaining racial and eth-

nic differences in health outcomes of older Americans using the HRS. Recently, Berry
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(2007) examines the effect of household financial resources on health over six panels of

the HRS (1992 − 2002). Based on results estimated from fixed-effects models, Berry

(2007) concludes that there is a significant influence of long-term income on health,

but not short-term income, in the elderly. Frijters and Ulker (2008) examine robust-

ness of the common determinants of health to explain six health measures, including

self-rated health, in the HRS (1992 − 2002). In case of self-rated health, all of the

key variables (income, drinking, smoking, and exercise) are significant to explain self-

rated health when using the pooled sample. However, only two of them, exercise and

smoking, remain significant after controlling for fixed effects. Kim (2011) investigates

socioeconomic inequalities in self-rated health among middle-aged and older adults in

the HRS (1992 − 2006). The findings show more income, assets, and education, and

having private health insurance predict better self-rated health.

Although the previous studies use panel data from the HRS, which suffer from

dropouts of respondents over time, most of them do not consider missing data in their

analyses by simply dropping missing observations. My analysis starts from this point:

if panel attrition is related to the respondent’s health status or the determinants of

health, then this attrition might have implications for explaining the relationship be-

tween health and its determinants. Banks et al. (2010) show that wealth appears to

predict attrition in the group aged 55 − 64 using three waves (2002 − 2006) of the

HRS. Kapteyn et al. (2006) categorize the respondents in the HRS, by using six waves

(1992 − 2002), into four groups: “always-in” (who provide interview in all six waves),

“ever-out” (who have ever dropped out, but come back into the survey), “died”, and

“permanent attritors” (who drop out permanently because of other reasons than death).

Estimating from a multinomial logit, Kapteyn et al. (2006) show that the characteristics

of respondents who drop out over time are quite different from those in the retention

samples. Particularly, those who attrit, but are recruited back into the survey are

very different from those who permanently drop out from the HRS. The differences are

mainly on race and ethnicity, education, health and household income. Kapteyn et al.

(2006) conclude that it is likely that missing at random (MAR) assumption for the
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HRS is violated. This conclusion provides justification to assume missing data in the

HRS as missing not at random.

Statistical methods to address such attrition in panel data have been actively stud-

ied. This empirical study employs one of the statistical methods under the assumption

of missing not at random. Since missing data on self-rated health are supposed to be

not at random, my model adapts non-ignorable missing data mechanism through se-

lection model approaches. It is common that time-varying covariates are also missing

when missing data occur in responses. Hence, missing covariates are also considered

in my model. Another significant feature of my model is its capability to analyze

intermittent missing values (caused by respondents who drop out, but return to the

survey) as well as dropouts (due to permanent attritors). Using seven waves of the

HRS (1992− 2004) and correcting missing data problems in the analysis, this paper in-

vestigates the determinants of self-rated health of old people. Gueorguieva et al. (2009)

examine occupational differences in self-rated health after accounting for demograph-

ics, health behaviors, economic attributes, and employment characteristics over seven

waves (1992− 2004) in the HRS, using hierarchical linear models. By using a different

way to account for missing data and a different model, this paper examines if the same

conclusions as Gueorguieva et al. (2009) are obtained.

Since the Whitehall study, established in 1985 as a panel survey in Britain, studies

have found that occupation has a significant impact on health, with a marked social

gradient between British civil service grades and a variety of health outcome (Bosma

et al. (1997), Ferrie et al. (2002), Marmot et al. (1997a), Marmot et al. (1991), Marmot

et al. (1997b)). The effects of occupation on health are particularly important for older

people due to the cumulative effects of an individual’s occupational commitment over

time and the decline in health that occurs as one ages.

This paper provides three sets of estimation results from a dynamic ordered probit

model with non-ignorable missing data mechanism through selection model approaches.

Main differences of my paper, across all sets of results, from Gueorguieva et al. (2009)

are (1) the models: self-rated health is specified with hierarchical linear models in
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Gueorguieva et al. (2009), but with a dynamic ordered probit model with random

effects in my analyses, (2) the estimation methods: although Gueorguieva et al. (2009)

use a frequentist method, my analysis is based on Bayesian inferences, using MCMC

algorithms, and (3) the methods to handle missing data: Gueorguieva et al. (2009)

assume missing data as random and include a dummy variable for respondents who

drop out, but I jointly model responses and missing data based on the assumption of

missing not at random.

In the first analysis, I employ the same covariates and periods as Gueorguieva et al.

(2009) do. All covariates are measured at the study baseline (1992) and, therefore, there

are no missing values in covariates over time. Only self-rated health, the dependent

variable, changes over time and has missing values. In this analysis, only differences

are that I use continuous variables for wealth and income rather than using binary

variables for separating the ranges into five categories as in Gueorguieva et al. (2009).

The number of subjects is 9, 557 in my analysis rather than 9, 586 in Gueorguieva et al.

(2009). The difference might be due to my assumption that there are no missing data

at baseline. From this part of analyses, we could observe how the results are affected

solely by the different statistical model and the different way to handle missing data.

In the second analysis, I employ the same covariates and periods as in Gueorguieva

et al. (2009), but let the time-varying covariates change over time. As indicated as one

of their limitations, Gueorguieva et al. (2009) only consider baseline characteristics in

covariates to examine changes in self-rated health. However, I suspect that changes

in status or health habits might have significant effects on explaining self-rated health

over time. For example, the analysis uses subjects who were 50 − 64 years of age or

older in 1992 (baseline), and these subjects were 62− 76 years old in 2004 (the year of

the last wave in the analysis). Most subjects, then, became eligible to receive Medicare,

government-provided health insurance. The dataset from the HRS shows that only 12%

of the subjects in my dataset was covered by government health insurance program at

baseline, but it increased to 52% in 2004. The HRS also shows significant changes in

employment status: 20% of subjects at baseline were retired, but it increased to 50% in
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2004. Hence, in the second part of the analyses, we can see how the results change if we

consider changes of respondents’ status and characteristics over time in the analysis.

In the third analysis, I include additional control variables to explain self-rated

health: regular exercise, objective health problems (doctor-diagnosed chronic diseases,

body mass index (BMI)), and respondents’ mental health, represented by depression.

There has been a long-standing interest in social inequalities in health and survival,

and in the behavioral, psychosocial, and environmental mechanisms that may account

for these disparities. However, social scientists have only recently begun to examine the

underlying biological pathways linking social status to mental and physical well-being

(Goldman et al. (2011)). Hence, it will be interesting to see how much self-rated health

is explained by objective health status in terms of a number of the chronic diseases that

are diagnosed by doctors and BMI.

It has been studied that even physical activity from non-leisure activities, e.g.,

walking, household chores, and job-related activity, as well as leisure-time physical

activity are associated with a substantial reduction in all-cause mortality (Arrieta and

Russell (2008)). In the HRS, vigorous physical activity is defined as sports, heavy

housework, or a job that involves physical labor. Frijters and Ulker (2008) create a

binary indicator for regular exercise showing whether the respondent participates in

vigorous physical activity at least 3 times a week, and examine the effect of regular

exercise on self-rated health in the HRS. The results support the significant association

between regular exercise and self-rated health. Following Frijters and Ulker (2008),

I recode a variable for regular exercise to examine the effects of regular exercise on

self-rated health.

Finally, I explore the relationship between mental health and self-rated health in

the analysis. I focus on depression, the most prevalent mental health condition in

older population and a leading cause of disability. According to Leon et al. (2003), the

prevalence in patients aged more than 65 years can be as high as 30% in outpatient

setting and 40% in hospitalized patients. Chang-Quan et al. (2010) conduct a meta-

analysis of eleven longitudinal studies, examining the relationship between self-rated
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health and depression for the elderly. They conclude that poor self-rated health is very

closely associated with depression. Hence, I hypothesize that depression is a significant

explanatory variable that should not be overlooked on an explanation of self-rated

health in my study.

3.5.2 Model and variables

The empirical analyses employ the model (3.11) developed in section 3.3.3 and Bayesian

inference and MCMC algorithms explained in section 3.4.3. For the second and third

analyses, I consider missing time-varying covariates and assume that missing covari-

ates are missing at random. Although I assume the missing covariates as MAR, this

assumption can be easily relaxed to missing not at random by employing another se-

lection model for missing covariates with different parameters in section 3.3.3.

Data

I use seven waves (1992 − 2004) from the Health and Retirement Study (HRS)3 as

Gueorguieva et al. (2009). The RAND Center for the Study of Aging provide publicly

available dataset from the HRS. This study uses the most recent RAND HRS data

version K that includes information on people’s health, socioeconomic status, and health

care uses. The HRS is a longitudinal survey of individuals aged 51− 61 in 1992 in the

U.S. Data were collected every two years and cover a wide range of aspects of the life

of the population over 50 years old. In 1992, 12, 652 interviews were conducted for a

random sample of individuals born between 1931 and 1941. Spouses of these individuals

were included irrespective of their age. I exclude respondents who have missing values

in self-rated health and covariates at baseline, and include ones who were 50−64 years of

3The original cohort entering the HRS study in 1992 was composed of individuals born between
1931 and 1941 and their spouses, irrespective of their age. The next year, a much older cohort was
interviewed, the Study of Assets and Health Dynamics among the Oldest Old (AHEAD) cohort, which
was born before 1923. Both these cohorts have been followed every two years up through 2006 (the
AHEAD cohort is interviewed in 1993 and 1995, and then merged with the main study for 1998
onwards). In 1998, two new cohorts were added and blended into the original sample, the so-called
Children of the Depression Age Cohort (CODA), born between 1924 and 1930, and the War Babies
cohort, born between 1942 and 1947.
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age or older at baseline (1992), following Gueorguieva et al. (2009). The number of the

respondents included in my analysis is reduced to 9, 5574, therefore, total observations

including missing values are 66, 899 over seven waves. Table (3.7) in the appendix

shows the proportions of respondents with missing observations due to dropouts and

intermittently missingness in self-rated health and covariates. Since there are people

who were intermittently missing for a while, but came back, then dropped out, a sum

of the probabilities might be greater than 1.

Self-rated health

Self-rated health is used as a dependent variable. The respondents are asked to rate

their current health as 1 (excellent), 2 (very good), 3 (good), 4 (fair), and 5 (poor),

having discrete ordinal values with five categories. Figure 3.1 describes the distribution

of self-rated health across all seven waves and total waves. The distribution shows that

the trend of self-rated health became worse over time. For example, the percentage of

respondents who reported their health as excellent declined from 22% in the first wave

to 11% in the seventh wave.

Explanatory variables

1. Socioeconomic variables:

Following Gueorguieva et al. (2009), eight dummy variables categorizing occupation are

used in this analysis. These eight categories are (1) professional and technical support

(reference category), (2) managerial, (3) clerical and administrative support, (4) sales,

(5) mechanical, construction, and precision production, (6) service (including private

household services, protective services, food preparation, health services, and personal

services), (7) operators, fabricators, and laborers, and (8) farming, forestry, and fishing.

4At baseline, 12, 652 subjects were interviewed and included spouses. All of those subjects reported
self-rated health, but 1, 417 subjects did not answer their longest occupation at wave 1. I eliminated the
subjects with missing occupation and those who are less than 50 (n = 1218) or more than 64 (n = 460).
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As Gueorguieva et al. (2009), occupation corresponds to occupational group for the job

with the longest reported tenure at baseline.

Other socioeconomic variables used in the study are years of education, household

wealth, and household income, which are all continuous variables. I use the consumer

price index (CPI) as a deflator for constructing real variables for household wealth and

income (1992 as a common year).

2. Health risk factors:

For chronic disease, I use count variables indicating how many chronic diseases among

eight are diagnosed by doctors: cancer, heart condition, lung disease, a stroke, high

blood pressure, diabetes, arthritis, and psychiatric problems.

For depression, respondents are asked about eight common symptoms of depression,

taken from the Center for Epidemiologic Studies Depression (CESD) instrument. In

validation studies against the full CESD battery, the presence of four out of the eight

symptoms is associated with clinically significant depression (Karp (2007)). Depression

variable used in this study has nine ordered values according to level of depressive

symptoms: 0 indicates no depression and 8 does the most depression.

3. Other controls:

Other control variables are age, gender, marital status, race/ethnicity (black or His-

panic), smoking, types of health insurance (employer sponsored, government sponsored,

other private insurance), employment status, body mass index (BMI), and regular exer-

cise. Following Frijters and Ulker (2008), I recode regular exercise variable as a binary

indicator showing whether the respondent participates in vigorous physical activity at

least 3 times a week.

Summary statistics across all waves and all categories of self-rated health are pre-

sented in appendix table (3.8) and summary statistics by self-rated health across all

waves are shown in appendix table (3.9). For comparisons of characteristics over time,
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I present summary statistics of covariates by self-rated health at wave 1 in table (3.10)

and at wave 7 in table (3.11).

3.5.3 Results

The scaling of the ordered probit coefficients is arbitrary. To provide an indication of the

magnitude of the associations between self-rated health and the explanatory variables,

I present the average partial effects of the explanatory variables on the response proba-

bilities. The partial effects give the impact on the specific probability per unit change in

the covariates. For continuous covariates, such as household wealth and income, these

are obtained by taking the derivative of the ordered probit probabilities with respect

to the variable in question given random effects. For discrete covariates, such as binary

variables for dummy variables for the longest occupation, they are obtained by taking

differences given random effects.

For example, suppose x is a binary variable in the model and β is the coefficient on

x. I measure the effect of a change in x from 0 to 1 with all other variables held at the

values of interest using

∆ Pr (y = j) = Pr (y = j|x = 1)− Pr (y = j|x = 0)

where j is the ordered value in the dependent variable. It is possible to compute partial

effects for each of five categories of self-rated health in the ordered probit model. For

simplicity, I present average partial effects on probability of reporting excellent and poor

self-rated health in the appendix. Hence, partial effects with a positive coefficient on

probability of reporting excellent self-rated health imply a positive effect on self-rated

health, whereas partial effects with a positive coefficient on probability of reporting

poor self-rated health mean a negative effect on self-rated health.

In this section, I present the results based on average partial effects from three sets

of analyses. In the first analysis, the posterior results from my model are compared

with Gueorguieva et al. (2009) by using same baseline covariates to analyze self-rated
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health. In the second analysis, the results are presented when time-varying covariates

are considered to explain the self-rated health over time. Finally, in the third analysis,

the results from employing additional control variables are presented.

Analysis1: Explanation of self-rated health using only baseline covariates

wave2-7 Baseline
Occupation means 95%HPDI Pr (PE ¡0)∗ means 95%HPDI Pr (PE ¡0) Differences∗

Managerial -0.028 -0.053 -0.002 0.981 -0.035 -0.068 0.000 0.979 0.006
Sales -0.028 -0.056 0.001 0.967 -0.065 -0.102 -0.030 1.000 0.037

Clerical and administrative -0.015 -0.040 0.013 0.878 -0.046 -0.078 -0.012 0.995 0.031
Service -0.102 -0.129 -0.075 1.000 -0.128 -0.160 -0.096 1.000 0.026

Farming and fishing -0.107 -0.153 -0.058 1.000 -0.152 -0.206 -0.092 1.000 0.045
Mechanical -0.082 -0.111 -0.053 1.000 -0.123 -0.159 -0.086 1.000 0.042

Operator -0.120 -0.145 -0.095 1.000 -0.165 -0.195 -0.133 1.000 0.044
∗Pr(PE¡0): probability of the partial effects to be less than zero
∗Differences: the differences of posterior means of the partial effects between wave2-7 and baseline

Table 3.3: Analysis1: Average partial effects on excellent self-rated health (including
only baseline covariates)

This first analysis can be compared with Gueorguieva et al. (2009) since this analysis

only employs baseline covariates as Gueorguieva et al. (2009). The results from the

analysis examine whether their findings are robust when the analysis employs an ordered

probit model with random effects specifying missing observations with non-ignorable

missing data mechanism. For the analyses, the MCMC algorithms run for 100, 000

iterations, keeping every 15th draws after the first 40, 000 draws are burned. Table

3.3 shows posterior summary statistics for the average partial effects of occupation on

excellent self-rated health and complete posterior results are presented in tables 3.12

for wave 2− 7 and 3.13 for baseline in the appendix.

Measuring occupation as the longest occupation that respondents have held over

their careers, Gueorguieva et al. (2009) find substantial variations in self-rated health

across longest occupation at baseline of the HRS. However, they do not find any signif-

icant impact of occupation on rate changes in health over time. That is, occupational

differentials in self-rated health are persistent as individuals age, but such differentials

neither widen nor narrow.
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First, regarding the directions of coefficients in table 3.3, all posterior means of the

partial effects show same negative directions at baseline and over time (wave 2 − 7).

In other words, all occupational groups are negatively associated with excellent self-

rated health relative to the reference group, professional, based on cross-sectional and

longitudinal evidence.

In general, occupational groups could be separate into two groups in terms of 95%

HPDIs of the partial effects: those of three occupational groups, managerial, sales, and

clerical and administrative, overlap each other, and those of the remaining four do so.

It shows that the managerial, sales, and clerical and administrative groups have similar

effects on explaining excellent self-rated health, either service, farming and fishing,

mechanical, and operator groups do. This pattern is observed not only at baseline

but also over time from wave 2 to 7. It implies that there are variations in self-rated

health across longest occupation even though it fall into two. Hence, the results provide

evidence to support Gueorguieva et al. (2009) that there are substantial variations in

self-rated health across longest occupation at baseline and they persist over time.

Another empirical question is whether such occupational differentials in self-rated

health either widen or narrow at older ages. Gueorguieva et al. (2009) find that gaps

remain while the health disparities persist. My results in table 3.3 indicate that absolute

values of the partial effects are reduced from baseline to waves 2-7. That is, the impact

on health narrow in old age.

In sum, I examine if the ordered probit model with non-ignorable missing data

mechanism obtains same results as Gueorguieva et al. (2009) by using same baseline

covariates as Gueorguieva et al. (2009). Based on evidence from 95% HPDIs of the

partial effects, my results indicate that there are substantial variations in self-rated

health across longest occupation at baseline and they remain over time, not widen, but

narrow. My first analysis with baseline covariates confirm the findings of Gueorguieva

et al. (2009) that self-rated health is explained by longest occupation differently, but

narrowed gaps do not provide evidence to support Gueorguieva et al. (2009) that the

health disparities persist over time, not widening nor narrowing.
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Analysis2: Explanation of self-rated health using time-varying covariates

wave 2-7 Baseline
Occupation means 95%HPDI Pr (PE ¡0)∗ means 95%HPDI Pr (PE ¡0) Differences∗

Managerial -0.025 -0.052 0.000 0.975 -0.031 -0.064 0.002 0.968 0.005
Sales -0.066 -0.094 -0.036 1.000 -0.094 -0.132 -0.056 1.000 0.027

Clerical and administrative -0.037 -0.064 -0.012 0.996 -0.064 -0.097 -0.028 1.000 0.026
Service -0.155 -0.183 -0.127 1.000 -0.165 -0.200 -0.130 1.000 0.011

Farming and fishing -0.143 -0.189 -0.095 1.000 -0.175 -0.227 -0.123 1.000 0.032
Mechanical -0.118 -0.148 -0.090 1.000 -0.151 -0.187 -0.117 1.000 0.033

Operator -0.167 -0.196 -0.137 1.000 -0.201 -0.234 -0.168 1.000 0.033
∗Pr(PE¡0): probability of the partial effects to be less than zero
∗Differences: the differences of posterior means of the partial effects between wave2-7 and baseline

Table 3.4: Analysis2: Average partial effects on excellent self-rated health (using time-
varying covariates)

In the second analysis, I examine if the same results as the first analysis are obtained

when covariates change over time rather than being fixed at baseline. Still the same

covariates used by Gueorguieva et al. (2009), but the covariates allowed to change over

time in this analysis. Missing covariates are assumed as MAR, and missing observations

in covariates are augmented in the algorithms described in the previous section. By

allowing covariates to be time-varying, this analysis controls for changes in status and

health habits of a respondent on self-rated health over seven waves of the HRS: changes

in health behaviors, health insurance, employment status, household wealth and income,

and importantly, longest occupation for respondents. Complete sets of average partial

effects on poor and excellent self-rated health are presented in tables 3.14 and 3.15 in

the appendix.

The results in the second analysis are same as ones from the first analysis in terms

of signs on coefficients. That is, compared with the professional workers, all other

occupation have negative effects on reporting excellent self-rated health. However, the

absolute values of the partial effects are greater in the second analysis. Hence, when

changes in covariates over time are considered, the results imply stronger negative

associations between occupational groups and excellent self-rated health, relative to

the reference, professionals.

Regarding 95% HPDIs, the results in the second analysis show the same pattern as
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in the first analysis: 95% HPDIs overlap for managerial, sales, and clerical and admin-

istrative, and for service, farming and fishing, mechanical, and operator, respectively.

Decreases in the absolute values of the partial effects over time indicate that occupa-

tional differentials in self-rated health narrow. In sum, the second analysis also show the

same results as the first analysis that there are substantial and continuous differentials

of longest occupation in self-rated health over time, but the degree of the differentials

narrow as ones age.

It is interesting to see the differences between partial effects between wave 2-7 and

baseline in the first (table 3.3) and second (table 3.4) analyses. Decreasing absolute

values of the partial effects from baseline to wave 2-7 for each analysis provides us signif-

icant evidence to support that the occupation-related differences narrow at older ages.

In the second analysis, the differences between partial effects over time are reduced

when compared with the first analysis. Although both analyses show the health dis-

parities narrow over time, the magnitude is reduced in the case of considering changes

in individuals’ status and health habits.

My analysis allowing covariates to vary over time shows that there are significant dif-

ferent effects of longest occupation on explaining self-rated health not only at baseline,

but over time as well. Such health disparities narrow over the study period. However,

the degrees of narrowed gaps are smaller when compared with the first analysis consid-

ering only baseline characteristics. Controlling for changes in socioeconomic status and

health habits of respondents might be important to explain self-rated health over time.

Analysis3: Explanation of self-rated health using additional covariates

The third analysis includes additional control variables (regular exercise, doctor-diagnosed

chronic diseases, BMI, depression) to the second analysis to explain self-rated health.

Tables 3.16 and 3.17 in the appendix show complete results about average partial effects

of covariates on poor and excellent self-rated health.

Since the analysis includes additional control variables, average partial effects of
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wave2-7 Baseline
Occupation means 95%HPDI Pr (PE ¡0) means 95%HPDI Pr (PE ¡0)

Managerial -0.011 -0.033 0.011 0.863 -0.020 -0.050 0.009 0.909
Sales -0.037 -0.061 -0.011 0.999 -0.058 -0.092 -0.022 1.000

Clerical and administrative -0.018 -0.040 0.004 0.937 -0.038 -0.068 -0.008 0.994
Service -0.087 -0.111 -0.064 1.000 -0.090 -0.121 -0.059 1.000

Farming and fishing -0.111 -0.147 -0.074 1.000 -0.136 -0.186 -0.084 1.000
Mechanical -0.083 -0.107 -0.058 1.000 -0.108 -0.140 -0.077 1.000

Operator -0.121 -0.142 -0.099 1.000 -0.149 -0.179 -0.120 1.000

BMI -0.004 -0.005 -0.003 1.000 -0.006 -0.007 -0.004 1.000
Exercise 0.073 0.066 0.080 0.000 0.077 0.059 0.095 0.000

CESD -0.044 -0.046 -0.042 1.000 -0.048 -0.052 -0.044 1.000
Chronic diseases -0.127 -0.132 -0.123 1.000 -0.191 -0.199 -0.184 1.000

Table 3.5: Analysis3: Average partial effects on excellent self-rated health (using addi-
tional covariates)

longest occupation on excellent self-rated health are reduced from the second analysis.

And, 95% HPDI of some occupational groups include zero: managerial at baseline and

wave2-7, and clerical and administrative for wave 2-7. By using one of the advantages

in Bayesian inferences, I calculate posterior probabilities that average partial effects are

less than zero. At baseline, the probability for managerial is over 90%; however, that

for wave 2-7 are lower than 90%, but the probability of clerical and administrative is

over 90%. The analysis coincide with the previous findings that there are substantial

and persistent variations in self-rated health, but the differentials narrow over time.

In addition, I investigate several other determinants of self-rated health in this

analysis. First, the partial effects of BMI are negative; i.e., a unit increase in BMI

has negative effects on reporting excellent self-rated health at baseline and wave 2-

7. A number of chronic diseases also show significant relationship with excellent self-

rated health, i.e., a number of chronic diseases is negatively associated with excellent

self-rated health at baseline and over time. Particularly, average partial effects of a

number of chronic diseases are the second highest after ”age” among all covariates.

This implies that chronic diseases have important meaning to explain self-rated health

in older people.

It has been studied that depression has a negative and significant effect on self-

rated health. Also, poor self-rated health is viewed as a concomitant phenomenon of
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depression. My results also indicate that depressive symptoms are negatively associated

with self-rated health. This negative effects remain significantly different from zero over

time in table 3.5. Hence, depression should be considered as one of the determinants

when we examine self-rated health over time in the elderly. In terms of regular exercise,

my results support the findings of Frijters and Ulker (2008) about significantly positive

association between regular exercise and excellent self-rated health. It implies that

the respondents in the HRS with vigorous physical activity including sports, heavy

housework, or a job involving physical activity rated their health status as healthier.

mean std AR(1) 95%HPDI

ψ1 -3.19349 0.037557 0.628769 -3.26904 -3.12062
-0.07359 0.022708 0.98161 -0.12057 -0.02775
0.090063 0.018862 0.967074 0.051738 0.128077

ψ2 -3.18834 0.035635 0.711621 -3.25924 -3.12113
-0.17576 0.028674 0.982354 -0.22923 -0.1205
0.365284 0.022708 0.992981 0.322141 0.409721

Table 3.6: Posterior summary statustics for missing data mechanisms, ψ

Lastly, in table 3.6, the posterior means for ψ1 on the dependent variable are

{−0.07, 0.09} and for ψ2 are {−0.18, 0.37}. Note that the parameters in ψ1 relate

the intermittent missing data and ψ2 relate the dropout process. Any of the parame-

ters in ψ1 and ψ2 do not include zero in their 95% HPDIs. The parameters different

from zero imply that missing data might not be at random and be highly related to

unobserved data. Hence, in order to analyze self-rated health over time, non-ignorable

missing data mechanism should be considered to avoid incorrect analyses.

3.6 Conclusion

In this paper, I have developed Bayesian ordered probit model with random effects to

analyze ordinal panel responses subject to non-random missing data. I used Bayesian

MCMC algorithms to estimate the model. The strength of the Bayesian method in this

paper lies in its ability to incorporate all of available information of randomness and

uncertainty in inference, including those in missing data mechanism.
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This paper provides a statistical method to correct missing data not only in the

dependent variable, but also in time-varying covariates by jointly modeling responses

and missing data. Also, the model is able to analyze missing data due to respondents

who not only dropout, but also those who missed some waves of the survey, but come

back to the survey later.

In order to examine the determinants of self-rated health, the model was applied

to the Health and Retirement Study using seven waves. The empirical analyses were

conducted by employing three different sets of covariates. The first analysis used only

baseline characteristics to explain self-rated health over time, following Gueorguieva

et al. (2009). Using same dataset as Gueorguieva et al. (2009), but different models

specifying missing data with non-ignorable missing data mechanism, my results confirm

the findings of Gueorguieva et al. (2009) that there are substantial differences in self-

rated health across longest occupation at baseline and the differences persist over time,

but narrow at older ages.

In the second analysis, I employed the same covariates and periods as Gueorguieva

et al. (2009), but allow the covariates to be changed over time. As indicated as one

of their limitations, Gueorguieva et al. (2009) only consider baseline characteristics

in covariates in examining changes in self-rated health. By allowing covariates to be

time-varying, my second analysis controls for changes in status and health habits of a

respondent on self-rated health over time. Using time-varying covariates, the results

show that there are important variations in self-rated health across occupation not only

at baseline, but over time as well. The health disparities narrow same as in the first

analysis, but the degree of narrowed disparities became smaller.

Finally, in the third analysis, I included additional control variables to explain self-

rated health to the second analysis to explain self-rated health. A number of chronic

diseases turned out to be key variables to explain self-rated health in the elderly. Also,

degree of depressive symptoms has high impact on explaining older people’s self-rated

health.



50

I have developed selection models to examine the determinants of self-rated health

for older people based on the assumption that missing data might be highly related to

older people’s health status. However, it is true that we can never observe true missing

data mechanism, so, in further analysis, the sensitivity of the posterior inferences should

be compared against other missing data models.
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Figure 3.1: Self-rated health by wave
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Missing status (N=9,557)
Variables Completed (N) (%) Dropped out (N) % Missed intermittently (N) (%)

Self-rated health 5830 61.00 2882 30.00 1206 12.62
Marital status 5805 60.74 2884 30.18 1238 12.95
Smoking 5639 59.00 2883 30.17 1444 15.11
Drinking 5639 59.00 2883 30.17 1444 15.11
Wealth 5837 61.08 2879 30.17 1199 12.55
Income 5837 61.08 2879 30.17 1199 12.55
BMI 5639 59.00 2954 30.91 1354 14.17
Exercise 5631 58.92 2882 30.16 1446 15.13
CESD 5125 53.63 3384 35.41 1504 15.73
Chronic diseases 5837 61.08 2879 30.12 1199 12.55

Table 3.7: Missing data



53

Variable Obs Mean Std. Dev.

Self-rated health 55134 2.70 1.14
Age (years) 55151 61.15 5.31
Female (%) 66899 48.74 0.50
Not married/partnered (%) 55094 25.15 0.43
Black (%) 66899 16.89 0.37
Hispanic (%) 66899 8.32 0.28
Education (years) 66899 12.17 3.14
Drinking 66899 32.81 0.47
Smoking 54865 20.59 0.40
Health insurance (%)

Government sponsored 66899 30.38 0.46
Employer sponsored 66899 36.52 0.48

Other private 66899 12.76 0.33
Occupation (%)

Professional* 66899 12.23 0.33
Managerial 66899 11.69 0.32

Sales 66899 7.40 0.26
Clerical and administrative 66899 12.86 0.33

Service 66899 11.69 0.32
Farming and fishing 66899 2.45 0.15

Mechanical 66899 9.44 0.29
Operator 66899 13.42 0.34

Employment status (%)
Employed full-time* 66899 31.43 0.46
Employed part-time 66899 6.26 0.24

Not employed/not retired 66899 1.04 0.10
Retired 66899 36.10 0.48

Household wealth ($) 55151 318099 1041136
Household income ($) 55151 54678 85406
BMI 54634 27.50 5.13
Exercise (%) 54854 36.62 0.48
CESD 51806 1.49 1.93
Number of chronic diseases 55151 1.51 1.32

Table 3.8: Summary statistics
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self-rated health 1 (Excellent) 2 (Very good) 3 (Good) 4 (Fair) 5 (Poor)
Nobs 8696 (15.77%) 16417 (29.78%) 16675 (30.24%) 9219 (16.72%) 4127 (7.49%)

mean std mean std mean std mean std mean std
Age (years) 59.80 5.20 61.10 5.30 61.42 5.29 61.78 5.24 61.72 5.27
Female (%) 49.29 0.50 51.31 0.50 48.97 0.50 50.91 0.50 49.33 0.50
Not married/partnered (%) 20.75 0.41 20.99 0.41 24.83 0.43 31.42 46.42 0.38 0.49
Black (%) 8.59 0.28 11.57 0.32 18.01 0.38 24.00 42.71 0.24 0.43
Hispanic (%) 5.44 0.23 4.42 0.21 8.26 0.28 14.67 35.38 0.13 0.33
Education (years) 13.39 2.79 13.03 2.64 12.15 2.94 10.96 3.30 10.15 3.64
Drinking (%) 22.01 0.41 20.62 0.40 18.55 0.39 14.67 0.35 10.86 0.31
Smoking (%) 15.53 0.36 17.60 0.38 21.62 0.41 25.06 0.43 29.07 0.45
Health insurance (%)

Government sponsored 24.33 0.43 30.65 0.46 35.74 0.48 48.77 0.50 65.71 0.47
Employer sponsored 52.10 0.50 50.42 0.50 45.65 0.50 33.88 0.47 21.32 0.41

Other private 16.35 0.37 16.55 0.37 15.90 0.37 13.86 0.35 11.34 0.32
Occupation (%)

Professional* 21.73 0.41 18.49 0.39 13.26 0.34 8.29 0.28 6.71 0.25
Managerial 19.28 0.39 17.72 0.38 13.09 0.34 8.22 0.27 7.10 0.26

Sales 10.44 0.31 9.25 0.29 8.63 0.28 8.02 0.27 8.31 0.28
Clerical and administrative 16.62 0.37 18.12 0.39 15.82 0.36 12.34 0.33 9.79 0.30

Service 8.22 0.27 11.02 0.31 14.97 0.36 20.77 0.41 21.37 0.41
Farming and fishing 2.37 0.15 2.25 0.15 3.04 0.17 3.98 0.20 4.56 0.21

Mechanical 8.99 0.29 10.11 0.30 12.52 0.33 12.78 0.33 14.56 0.35
Operator 9.73 0.30 11.63 0.32 17.40 0.38 24.04 0.43 26.70 0.44

Employment status (%)
Employed full-time* 51.68 0.50 43.67 0.50 39.46 0.49 25.99 0.44 9.30 0.29
Employed part-time 9.13 0.29 8.13 0.27 7.96 0.27 6.55 0.25 3.10 0.17

Not employed/not retired 1.38 0.12 1.01 0.10 1.45 0.12 1.37 0.12 1.09 0.10
Retired 32.88 0.47 41.54 0.49 43.89 0.50 51.39 0.50 58.32 0.49

Household Wealth ($) 463238 1007710 406846 1476230 275436 801433 193317 604290 109959 323327
Household Income ($) 76265 100347 64235 91053 51430 85710 36487 65263 24845 32238
BMI 25.91 4.09 26.94 4.39 28.02 5.08 28.70 5.89 28.37 6.82
Exercise 50.66 0.50 43.31 0.50 35.75 0.48 25.48 0.44 13.02 0.34
CESD 0.77 1.30 0.94 1.45 1.40 1.76 2.43 2.22 3.83 2.35
Number of chronic diseases 0.60 0.79 1.10 0.99 1.58 1.15 2.29 1.34 3.05 1.54

Table 3.9: Summary statistics by self-rated health (All waves)
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self-rated health 1 (Excellent) 2 (Very good) 3 (Good) 4 (Fair) 5 (Poor)
Nobs 2133 (22.32%) 2694 (28.19%) 2717 (28.43%) 1325 (13.86%) 688 (7.20%)

mean std mean std mean std mean std mean std
Age (years) 55.38 3.58 55.73 3.66 56.04 3.70 56.16 3.63 56.44 3.54
Female (%) 48.57 0.50 50.00 0.50 47.18 0.50 51.32 0.50 45.49 0.50
Not married/partnered (%) 18.24 0.39 18.71 0.39 20.54 0.40 29.21 0.45 36.34 0.48
Black (%) 8.91 0.28 13.29 0.34 19.58 0.40 27.17 0.45 25.29 0.43
Hispanic (%) 6.00 0.24 4.94 0.22 9.35 0.29 15.17 0.36 11.48 0.32
Education (years) 13.24 2.82 12.90 2.64 11.82 3.06 10.81 3.25 10.00 3.68
Drinking (%) 18.85 0.39 17.41 0.38 15.90 0.37 14.79 0.36 11.48 0.32
Smoking (%) 20.30 0.40 24.20 0.43 29.41 0.46 33.51 0.47 38.66 0.49
Health insurance (%)

Government sponsored 6.84 0.25 5.98 0.24 8.65 0.28 20.75 0.41 45.78 0.50
Employer sponsored 58.65 0.49 56.98 0.50 53.63 0.50 39.02 0.49 24.56 0.43

Other private 13.22 0.34 13.40 0.34 12.81 0.33 12.38 0.33 9.88 0.30
Occupation (%)

Professional* 20.72 0.41 16.70 0.37 12.18 0.33 6.64 0.25 6.25 0.24
Managerial 19.74 0.40 16.67 0.37 12.44 0.33 7.40 0.26 6.69 0.25

Sales 9.61 0.29 9.73 0.30 8.50 0.28 8.68 0.28 7.27 0.26
Clerical and administrative 16.36 0.37 17.71 0.38 14.72 0.35 12.15 0.33 8.87 0.28

Service 8.67 0.28 11.73 0.32 15.46 0.36 22.19 0.42 19.62 0.40
Farming and fishing 1.97 0.14 2.49 0.16 3.05 0.17 4.30 0.20 5.38 0.23

Mechanical 9.70 0.30 11.02 0.31 12.81 0.33 12.91 0.34 15.99 0.37
Operator 10.45 0.31 12.69 0.33 19.62 0.40 24.45 0.43 28.92 0.45

Employment status (%)
Employed full-time* 69.10 0.46 65.18 0.48 61.10 0.49 42.57 0.49 17.88 0.38
Employed part-time 10.97 0.31 11.92 0.32 10.75 0.31 11.70 0.32 3.63 0.19

Not employed/not retired 1.92 0.14 2.15 0.15 3.86 0.19 2.57 0.16 2.76 0.16
Retired 13.36 0.34 15.29 0.36 17.56 0.38 27.92 0.45 47.82 0.50

Household Wealth ($) 310944 531896 262893 553766 168495 315877 123549 291189 74975 185769
Household Income ($) 64255 64898 53876 50061 43741 40887 30336 30230 21544 22785
BMI 25.69 3.94 26.72 4.40 27.72 4.93 28.64 6.19 28.20 6.50
Exercise (%) 27.33 0.45 19.97 0.40 16.97 0.38 14.42 0.35 9.93 0.29
CESD 1.34 1.51 1.77 1.71 2.11 1.84 3.08 2.08 4.26 2.07
Number of chronic diseases 0.41 0.65 0.75 0.81 1.15 0.98 1.83 1.18 2.53 1.40

Table 3.10: Summary statistics by self-rated health (Wave1)
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self-rated health 1 (Excellent) 2 (Very good) 3 (Good) 4 (Fair) 5 (Poor)
Nobs 712 (10.67%) 1914 (28.67%) 2147 (32.16%) 1345 (20.15%) 557 (8.34%)

mean std mean std mean std mean std mean std
Age (years) 66.97 3.46 67.38 3.61 67.45 3.59 67.47 3.64 67.87 3.77
Female (%) 52.11 0.50 52.77 0.50 49.65 0.50 51.97 0.50 49.91 0.50
Not married/partnered (%) 24.72 0.43 25.04 0.43 28.31 0.45 36.16 0.48 40.57 0.49
Black (%) 7.16 0.26 11.13 0.31 17.28 0.38 22.08 0.41 19.21 0.39
Hispanic (%) 5.48 0.23 4.34 0.20 6.94 0.25 15.61 0.36 14.00 0.35
Education (years) 13.58 2.76 13.13 2.64 12.35 2.82 11.17 3.38 10.44 3.66
Drinking (%) 26.54 0.44 20.27 0.40 18.40 0.39 14.72 0.35 9.69 0.30
Smoking (%) 10.41 0.31 11.18 0.32 14.21 0.35 19.57 0.40 21.58 0.41
Health insurance (%)

Government sponsored 69.10 0.46 72.62 0.45 76.53 0.42 82.30 0.38 89.95 0.30
Employer sponsored 38.20 0.49 38.09 0.49 33.35 0.47 24.83 0.43 18.85 0.39

Other private 21.63 0.41 21.47 0.41 19.93 0.40 17.77 0.38 12.21 0.33
Occupation (%)

Professional* 23.46 0.42 19.44 0.40 14.67 0.35 9.59 0.29 6.28 0.24
Managerial 18.68 0.39 18.08 0.38 13.51 0.34 8.33 0.28 8.98 0.29

Sales 11.24 0.32 9.67 0.30 8.38 0.28 6.91 0.25 9.87 0.30
Clerical and administrative 16.99 0.38 19.02 0.39 16.67 0.37 13.31 0.34 11.13 0.31

Service 7.30 0.26 10.34 0.30 14.90 0.36 19.33 0.40 20.47 0.40
Farming and fishing 2.67 0.16 2.25 0.15 2.61 0.16 4.31 0.20 4.31 0.20

Mechanical 8.15 0.27 9.09 0.29 12.62 0.33 12.79 0.33 12.03 0.33
Operator 8.85 0.28 10.76 0.31 15.09 0.36 23.94 0.43 25.13 0.43

Employment status (%)
Employed full-time* 23.31 0.42 20.22 0.40 15.84 0.37 11.38 0.32 4.13 0.20
Employed part-time 8.29 0.28 4.96 0.22 4.42 0.21 3.42 0.18 0.90 0.09

Not employed/not retired 0.56 0.07 0.37 0.06 0.14 0.04 0.37 0.06 0.36 0.06
Retired 63.90 0.48 69.80 0.46 74.10 0.44 75.84 0.43 76.66 0.42

Household Wealth ($) 809831 1876759 618473 2334577 418154 1118255 244392 585994 157294 324548
Household Income ($) 82636 101200 69638 132754 58949 115464 37302 48111 28308 29224
BMI 26.00 4.27 27.09 4.51 28.52 5.31 28.91 6.13 28.70 6.78
Exercise (%) 50.98 0.50 35.86 0.48 26.47 0.44 16.65 0.37 7.55 0.26
CESD 0.47 1.00 0.70 1.29 1.13 1.64 2.15 2.20 3.62 2.31
Number of chronic diseases 0.96 0.96 1.57 1.12 2.12 1.18 2.78 1.42 3.62 1.53

Table 3.11: Summary statistics by self-rated health (Wave7)
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Poor self-rated health Excellent self-rated health
(Wave2-7) mean std 95%HPDI mean std 95%HPDI

lag 0.046 0.002 0.043 0.049 -0.048 0.002 -0.051 -0.045
Age (years) 0.729 0.028 0.673 0.781 -0.758 0.028 -0.811 -0.699
Female -0.006 0.008 -0.023 0.010 0.006 0.009 -0.011 0.024
Not married/partnered 0.036 0.010 0.017 0.055 -0.037 0.010 -0.057 -0.018
Black 0.076 0.010 0.055 0.095 -0.079 0.011 -0.099 -0.057
Hispanic 0.066 0.013 0.042 0.091 -0.069 0.013 -0.095 -0.043
Education (years) -0.015 0.001 -0.017 -0.012 0.015 0.001 0.013 0.018
Drinking -0.023 0.009 -0.041 -0.004 0.023 0.010 0.004 0.042
Smoking 0.098 0.007 0.083 0.112 -0.103 0.008 -0.117 -0.087
Health insurance

Government sponsored 0.154 0.012 0.129 0.178 -0.155 0.012 -0.178 -0.130
Employer sponsored -0.049 0.008 -0.065 -0.033 0.051 0.008 0.035 0.067

Other private -0.024 0.012 -0.048 -0.002 0.025 0.012 0.003 0.049
Occupation

Managerial 0.027 0.013 0.002 0.051 -0.028 0.013 -0.053 -0.002
Sales 0.027 0.014 0.000 0.054 -0.028 0.015 -0.056 0.001

Clerical and administrative 0.014 0.012 -0.012 0.039 -0.015 0.013 -0.040 0.013
Service 0.098 0.013 0.072 0.124 -0.102 0.014 -0.129 -0.075

Farming and fishing 0.103 0.023 0.056 0.147 -0.107 0.024 -0.153 -0.058
Mechanical 0.078 0.014 0.051 0.107 -0.082 0.015 -0.111 -0.053

Operator 0.115 0.012 0.091 0.138 -0.120 0.013 -0.145 -0.095
Employment status

Employed part-time -0.031 0.011 -0.053 -0.009 0.032 0.012 0.009 0.055
Not employed/not retired 0.027 0.021 -0.012 0.068 -0.028 0.021 -0.070 0.013

Retired 0.058 0.011 0.037 0.080 -0.060 0.011 -0.082 -0.038
Household wealth -0.008 0.002 -0.011 -0.004 0.008 0.002 0.004 0.012
Household income -0.059 0.005 -0.069 -0.050 0.062 0.005 0.052 0.071

Table 3.12: Analysis1 (Wave2-7): Average partial effects on poor and excellent self-
rated health
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Poor self-rated health Excellent self-rated health
(Baseline) mean std 95%HPDI mean std 95%HPDI

Age (years) 0.757 0.033 0.692 0.821 -0.800 0.033 -0.864 -0.735
Female -0.002 0.010 -0.022 0.018 0.002 0.011 -0.019 0.023
Not married/partnered 0.045 0.012 0.022 0.067 -0.046 0.012 -0.070 -0.023
Black 0.119 0.014 0.093 0.146 -0.120 0.013 -0.146 -0.095
Hispanic 0.066 0.018 0.030 0.100 -0.067 0.018 -0.101 -0.032
Education (years) -0.021 0.002 -0.024 -0.018 0.022 0.002 0.019 0.025
Drinking -0.056 0.011 -0.078 -0.033 0.061 0.013 0.035 0.086
Smoking 0.081 0.010 0.061 0.101 -0.084 0.010 -0.104 -0.064
Health insurance

Government sponsored 0.268 0.015 0.238 0.299 -0.250 0.012 -0.273 -0.225
Employer sponsored -0.065 0.010 -0.083 -0.045 0.069 0.010 0.048 0.089

Other private -0.016 0.014 -0.043 0.011 0.017 0.015 -0.012 0.046
Occupation

Managerial 0.033 0.017 0.000 0.066 -0.035 0.017 -0.068 0.000
Sales 0.064 0.019 0.029 0.101 -0.065 0.019 -0.102 -0.030

Clerical and administrative 0.044 0.017 0.011 0.076 -0.046 0.017 -0.078 -0.012
Service 0.127 0.017 0.093 0.160 -0.128 0.017 -0.160 -0.096

Farming and fishing 0.157 0.032 0.090 0.218 -0.152 0.029 -0.206 -0.092
Mechanical 0.122 0.019 0.084 0.160 -0.123 0.018 -0.159 -0.086

Operator 0.165 0.017 0.132 0.198 -0.165 0.016 -0.195 -0.133
Employment status

Employed part-time -0.028 0.014 -0.055 -0.001 0.031 0.015 0.000 0.060
Not employed/not retired 0.006 0.025 -0.043 0.057 -0.006 0.027 -0.059 0.045

Retired 0.144 0.013 0.119 0.170 -0.146 0.012 -0.171 -0.121
Household wealth -0.009 0.002 -0.013 -0.005 0.009 0.002 0.005 0.014
Household income -0.058 0.005 -0.068 -0.048 0.061 0.005 0.051 0.071

Table 3.13: Analysis1 (Baseline): Average partial effects on poor and excellent self-rated
health
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Poor self-rated health Excellent self-rated health
(Wave2-7) mean std 95%HPDI mean std 95%HPDI

lag -0.020 0.001 -0.023 -0.017 -0.045 0.002 -0.049 -0.041
Age (years) 0.044 0.002 0.040 0.047 -0.784 0.023 -0.830 -0.739
Female -0.001 0.008 -0.017 0.015 0.001 0.009 -0.015 0.018
Not married/partnered 0.016 0.006 0.004 0.027 -0.016 0.006 -0.028 -0.004
Black 0.109 0.010 0.089 0.127 -0.113 0.010 -0.132 -0.092
Hispanic 0.082 0.013 0.056 0.107 -0.085 0.014 -0.111 -0.058
Education (years) -0.020 0.001 -0.023 -0.017 0.021 0.001 0.018 0.024
Drinking -0.045 0.006 -0.056 -0.034 0.047 0.006 0.035 0.058
Smoking 0.016 0.006 0.004 0.028 -0.016 0.006 -0.029 -0.004
Health insurance

Government sponsored 0.015 0.004 0.007 0.023 -0.015 0.004 -0.023 -0.007
Employer sponsored -0.012 0.004 -0.021 -0.004 0.013 0.004 0.004 0.022

Other private -0.018 0.005 -0.027 -0.009 0.019 0.005 0.009 0.028
Occupation

Managerial 0.025 0.013 0.000 0.051 -0.025 0.013 -0.052 0.000
Sales 0.064 0.014 0.036 0.092 -0.066 0.015 -0.094 -0.036

Clerical and administrative 0.036 0.013 0.012 0.063 -0.037 0.013 -0.064 -0.012
Service 0.150 0.014 0.123 0.177 -0.155 0.014 -0.183 -0.127

Farming and fishing 0.139 0.023 0.092 0.184 -0.143 0.024 -0.189 -0.095
Mechanical 0.115 0.015 0.088 0.144 -0.118 0.015 -0.148 -0.090

Operator 0.161 0.014 0.131 0.188 -0.167 0.015 -0.196 -0.137
Employment status

Employed part-time -0.003 0.007 -0.017 0.011 0.003 0.007 -0.011 0.017
Not employed/not retired 0.001 0.015 -0.029 0.031 -0.001 0.015 -0.031 0.030

Retired 0.017 0.004 0.009 0.025 -0.017 0.004 -0.026 -0.009
Household wealth -0.002 0.001 -0.003 -0.001 0.002 0.001 0.001 0.003
Household income -0.004 0.001 -0.007 -0.002 0.004 0.001 0.002 0.007

Table 3.14: Analysis2 (Wave2-7): Average partial effects on poor and excellent self-
rated health
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Poor self-rated health Excellent self-rated health
(Baseline) mean std 95%HPDI mean std 95%HPDI

Age (years) 0.867 0.032 0.804 0.931 -0.913 0.031 -0.972 -0.852
Female 0.005 0.010 -0.016 0.026 -0.006 0.011 -0.027 0.017
Not married/partnered 0.024 0.010 0.004 0.043 -0.025 0.010 -0.045 -0.004
Black 0.146 0.013 0.121 0.172 -0.147 0.012 -0.171 -0.123
Hispanic 0.075 0.017 0.043 0.109 -0.077 0.017 -0.110 -0.045
Education (years) -0.024 0.002 -0.028 -0.021 0.026 0.002 0.022 0.030
Drinking -0.055 0.009 -0.072 -0.038 0.059 0.010 0.040 0.078
Smoking 0.006 0.008 -0.010 0.022 -0.006 0.009 -0.023 0.011
Health insurance

Government sponsored 0.155 0.012 0.131 0.179 -0.154 0.011 -0.176 -0.133
Employer sponsored -0.029 0.008 -0.045 -0.014 0.031 0.008 0.015 0.047

Other private -0.001 0.010 -0.021 0.018 0.002 0.011 -0.019 0.022
Occupation

Managerial 0.030 0.017 -0.002 0.062 -0.031 0.017 -0.064 0.002
Sales 0.093 0.020 0.055 0.132 -0.094 0.019 -0.132 -0.056

Clerical and administrative 0.062 0.018 0.027 0.096 -0.064 0.018 -0.097 -0.028
Service 0.166 0.019 0.129 0.203 -0.165 0.018 -0.200 -0.130

Farming and fishing 0.182 0.031 0.122 0.241 -0.175 0.027 -0.227 -0.123
Mechanical 0.151 0.019 0.115 0.189 -0.151 0.018 -0.187 -0.117

Operator 0.202 0.018 0.167 0.238 -0.201 0.017 -0.234 -0.168
Employment status

Employed part-time -0.003 0.011 -0.024 0.019 0.003 0.012 -0.020 0.026
Not employed/not retired -0.014 0.021 -0.055 0.025 0.015 0.022 -0.027 0.060

Retired 0.099 0.010 0.080 0.117 -0.102 0.010 -0.120 -0.083
Household wealth -0.007 0.002 -0.011 -0.002 0.007 0.003 0.002 0.012
Household income -0.024 0.005 -0.033 -0.015 0.025 0.005 0.016 0.035

Table 3.15: Analysis2 (Baseline): Average partial effects on poor and excellent self-rated
health
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Poor self-rated health Excellent self-rated health
(Wave2-7) mean std 95%HPDI mean std 95%HPDI

lag 0.0430 0.0016 0.0402 0.0459 -0.0459 0.0016 -0.0489 -0.0429
Age (years) 0.2091 0.0325 0.1483 0.2722 -0.2229 0.0343 -0.2894 -0.1588
Female -0.0247 0.0068 -0.0387 -0.0117 0.0263 0.0073 0.0124 0.0414
Not married/partnered -0.0097 0.0052 -0.0199 0.0003 0.0104 0.0055 -0.0003 0.0212
Black 0.0702 0.0078 0.0552 0.0855 -0.0756 0.0084 -0.0925 -0.0593
Hispanic 0.0976 0.0103 0.0773 0.1173 -0.1054 0.0112 -0.1268 -0.0830
Education (years) -0.0132 0.0012 -0.0154 -0.0109 0.0140 0.0013 0.0117 0.0164
Drinking -0.0216 0.0050 -0.0316 -0.0119 0.0231 0.0053 0.0127 0.0338
Smoking 0.0401 0.0054 0.0293 0.0505 -0.0429 0.0058 -0.0540 -0.0313
Health insurance

Government sponsored -0.0096 0.0043 -0.0180 -0.0012 0.0102 0.0046 0.0013 0.0191
Employer sponsored -0.0157 0.0043 -0.0241 -0.0073 0.0168 0.0045 0.0079 0.0256

Other private -0.0178 0.0047 -0.0270 -0.0086 0.0190 0.0050 0.0091 0.0287
Occupation

Managerial 0.0108 0.0101 -0.0099 0.0310 -0.0115 0.0108 -0.0330 0.0107
Sales 0.0341 0.0119 0.0105 0.0564 -0.0365 0.0128 -0.0606 -0.0111

Clerical and administrative 0.0169 0.0108 -0.0042 0.0374 -0.0180 0.0115 -0.0402 0.0045
Service 0.0807 0.0114 0.0594 0.1030 -0.0866 0.0122 -0.1105 -0.0637

Farming and fishing 0.1028 0.0172 0.0686 0.1353 -0.1109 0.0187 -0.1467 -0.0738
Mechanical 0.0772 0.0117 0.0544 0.0997 -0.0829 0.0126 -0.1071 -0.0582

Operator 0.1116 0.0104 0.0914 0.1315 -0.1205 0.0113 -0.1422 -0.0986
Employment status

Employed part-time -0.0029 0.0067 -0.0161 0.0100 0.0030 0.0071 -0.0109 0.0172
Not employed/not retired -0.0163 0.0154 -0.0469 0.0137 0.0173 0.0163 -0.0144 0.0497

Retired 0.0051 0.0041 -0.0028 0.0132 -0.0054 0.0044 -0.0142 0.0030
Household wealth -0.0018 0.0005 -0.0028 -0.0008 0.0019 0.0005 0.0009 0.0030
Household income -0.0040 0.0012 -0.0063 -0.0018 0.0043 0.0013 0.0019 0.0067
BMI 0.0038 0.0005 0.0028 0.0047 -0.0040 0.0005 -0.0050 -0.0030
Exercise -0.0678 0.0034 -0.0743 -0.0613 0.0725 0.0036 0.0657 0.0796
CESD 0.0412 0.0010 0.0394 0.0431 -0.0441 0.0011 -0.0462 -0.0421
Chronic diseases 0.1181 0.0022 0.1139 0.1223 -0.1274 0.0025 -0.1322 -0.1226

Table 3.16: Analysis3 (Wave2-7): Average partial effects on poor and excellent self-
rated health
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Poor self-rated health Excellent self-rated health
(Baseline) mean std 95%HPDI mean std 95%HPDI

Age (years) 0.1700 0.0407 0.0930 0.2490 -0.1906 0.0453 -0.2781 -0.1060
Female -0.0371 0.0091 -0.0551 -0.0197 0.0416 0.0101 0.0222 0.0618
Not married/partnered -0.0075 0.0089 -0.0245 0.0100 0.0084 0.0100 -0.0112 0.0276
Black 0.1015 0.0104 0.0807 0.1212 -0.1113 0.0110 -0.1323 -0.0892
Hispanic 0.1185 0.0137 0.0906 0.1446 -0.1299 0.0145 -0.1579 -0.1006
Education (years) -0.0190 0.0015 -0.0218 -0.0161 0.0214 0.0017 0.0181 0.0247
Drinking -0.0415 0.0090 -0.0590 -0.0238 0.0470 0.0102 0.0266 0.0672
Smoking 0.0467 0.0078 0.0316 0.0622 -0.0522 0.0087 -0.0694 -0.0354
Health insurance

Government sponsored 0.0895 0.0112 0.0676 0.1119 -0.0971 0.0118 -0.1201 -0.0745
Employer sponsored -0.0278 0.0074 -0.0421 -0.0135 0.0312 0.0083 0.0150 0.0473

Other private -0.0039 0.0097 -0.0232 0.0154 0.0044 0.0109 -0.0174 0.0262
Occupation

Managerial 0.0181 0.0135 -0.0083 0.0452 -0.0201 0.0150 -0.0501 0.0092
Sales 0.0524 0.0164 0.0196 0.0835 -0.0580 0.0178 -0.0918 -0.0218

Clerical and administrative 0.0344 0.0141 0.0073 0.0614 -0.0383 0.0155 -0.0682 -0.0083
Service 0.0812 0.0148 0.0529 0.1101 -0.0896 0.0160 -0.1207 -0.0589

Farming and fishing 0.1260 0.0247 0.0761 0.1742 -0.1358 0.0255 -0.1859 -0.0837
Mechanical 0.0979 0.0155 0.0694 0.1285 -0.1077 0.0166 -0.1400 -0.0767

Operator 0.1357 0.0143 0.1086 0.1643 -0.1493 0.0151 -0.1788 -0.1199
Employment status

Employed part-time 0.0043 0.0106 -0.0170 0.0256 -0.0048 0.0119 -0.0285 0.0191
Not employed/not retired -0.0051 0.0197 -0.0444 0.0329 0.0058 0.0221 -0.0372 0.0503

Retired 0.0624 0.0090 0.0454 0.0803 -0.0690 0.0098 -0.0883 -0.0503
Household wealth -0.0012 0.0022 -0.0055 0.0031 0.0014 0.0025 -0.0034 0.0062
Household income -0.0233 0.0041 -0.0315 -0.0154 0.0262 0.0046 0.0173 0.0352
BMI 0.0052 0.0007 0.0038 0.0065 -0.0058 0.0008 -0.0073 -0.0043
Exercise -0.0671 0.0079 -0.0830 -0.0518 0.0767 0.0092 0.0591 0.0951
CESD 0.0432 0.0019 0.0395 0.0468 -0.0478 0.0020 -0.0516 -0.0439
Chronic diseases 0.1814 0.0034 0.1748 0.1879 -0.1914 0.0037 -0.1985 -0.1840

Table 3.17: Analysis3 (Baseline): Average partial effects on poor and excellent self-rated
health
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Chapter 4

Time-series Characteristics and Lead-lag Relations of

Credit Default Swap, S&P500, and Overnight Federal

Funds Rate during the Great Recession

4.1 Introduction

In this paper, I analyze, first, the time-series characteristics of the credit default swap

(CDS), stock, and federal funds rate during the Great Recession, 2007− 2009. Second,

the lead-lag relationship between the CDS and stock markets are examined.

In 2008, we observed the collapse of the financial institutions: Bear sterns was ac-

quired for $2 a share by J.P.Morgan Chase; Merrill Lynch was sold to Bank of America;

Lehman Brothers declared bankruptcy with $690 billion in assets; the leading insurance

company AIG, the leading bank Citigroup, and the two largest mortgage companies

were bailed out by the government. Economists refer such financial market turmoils as

the worst financial crisis since the Great Depression of the 1930s. The main cause of the

crisis was claimed as the collapse of the United States housing bubble that peaked in

2006. Moreover, credit default swap (CDS) exacerbated the credit crisis by hastening

the demise of the financial companies.

While CDS has existed in the past, the beginning of the modern form was created

by a team of J.P.Morgan in 1997. Although CDS notional outstanding was about $632

million in 2001, it expanded to $62 trillion at the end of 2007 (International Swap

and Derivatives Association (ISDA)). The expansion of the CDS market was in line

with that of structured credit products such as mortgage-backed security (MBS), asset-

backed security (ABS), and collateralized debt obligation (CDO). The expansion was
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based on a trend of the low interest rate caused by large inflows of foreign funds and

the lax interest rate policy by the Federal Reserve. The low interest rate environment

created easy credit conditions for years prior to the crisis, and moreover easy credit

conditions promoted a housing construction, debt-financed consumption, and easily

achievable mortgage loans.

At the same time, the banking system underwent an important transformation such

that banks pooled and tranched various types of loans (e.g., mortgages, corporate bonds,

credit card loans, etc), and resold loans via securitization instead of holding loans on

banks’ balance sheets until maturity. Through securitization, banks could sheft risk to

those who wish to bear it, and it allowed banks to relax the credit requirement. Indi-

vidual low-rated loans were transformed into investment-grade structured products via

securitization. However, the complicated process of securitization has a drawback that

investors cannot obtain any information about the reference entities on these structured

credit products except credit grades. The drawback seemed to be relieved by insur-

ing against the default of the structured products or a particular bond by purchasing

CDSs. That is one reason that a growth of CDS has been accompanied with that of

the structured products.

Although there has been criticism about CDS that exacerbated the credit crunch

of 2008, it is also true that CDS brings investors enormous benefits through reducing

their exposure on default of the underlying entities. This benefit has carried a great

weight on making investors hard to disregard the CDS market, and the CDS market

still live and active today. For example, the overall amount of insurance on Greek debt

hit $85 billion in February 2010, up from $38 billion a year ago, against Greece default

on debt through CDS according to the Depository Trust and Clearing Corporation.

In spite of significance of the CDS market, previous studies have been addressed

the time-series properties of CDS only in a cursory manner. My study focuses carefully

on 1) time-series characteristics of financial markets including CDS, stock, and federal

funds markets in the U.S., and 2) intertemporal relations between the CDS and stock

markets in the U.S.
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This empirical study has the following significant implications. First, with the

index-level data rather than firm-specific data, I examine the time-series characteris-

tics of each market and information flow between the CDS and stock markets driven

by market-wide risk. Movements in the individual CDS and stock prices can be ana-

lyzed with two layers, the systematic1 and idiosyncratic risk. Hence, price changes in

individual CDS or stock (i.e., the firm level) can be explained as a response of the indi-

vidual security to changes in the market-wide systematic risk and/or the nonsystematic

shocks such as individual corporate events. By using index-level data, I can smooth

the disturbances attributed to firm-specific risk, and it allows us to observe time-series

characteristics and intertemporal relationship only driven by the market-wide risk. In

addition, each market index can be regarded as a representative of investors’ prediction

to the aggregate market risk since indices represent a standardized portfolio of single

CDSs or stocks. Hence, this study about indices would provide information on the port-

folio level. Since modelling and forecasting portfolios are crucial for risk management,

the study using the indices has significance on risk management.

Especially using the CDX index, this study has some advantages compared to studies

using single-name CDSs. Firstly, empirical studies of single-name CDSs tend to be

distorted by the liquidity problem on each firm-specific level. However, this study

would be free of the bias problem induced by liquidity since market liquidity tends to

be more concentrated on the CDX indices, which are traded in higher volumes than the

individual CDS. In addition, more liquid CDX index is more appropriate to reflect the

arrival of credit information than the individual CDS. Secondly, Acharya and Johnson

(2007) present evidence of insider trading in the CDS market. Since most of the major

players are insiders in the CDS market, it should not be overlooked that asymmetric

information and insider trading problems cause studies about the single-name CDS

to be biased. By using the CDX index, this study needs not consider idiosyncrasies

arising from insider trading; therefore, I might reduce the bias problem induced by

1In finance, systematic risk, also called market risk, or undiversifiable risk, is the risk associated
with the overall aggregate market return. Systematic risk is a risk of security that cannot be reduced
through diversification. It should not be confused with systemic risk, which is the risk that the entire
financial system will collapse as a result of some catastrophic event, not to any individual’s entity.
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insider trading.

Second important implication of this study is a model specification. In order to

examine the time-series characteristics of the CDS, stock, and federal funds markets, the

CKLS model (Chan et al. (1992)) is employed. In original CKLS model, the conditional

variance of changes in the interest rate depends on the level of the interest rate. Since

the conditional variance is constant and depends on the interest rate, the original CKLS

model is considered to be restrictive. Rather than following the original CKLS model,

I use the CKLS model allowing both GARCH and level effects by employing CKLS-

ARMA-GARCH-EPD model, which is developed by Li (2009). By letting the error

terms to follow an exponential power distribution, the CKLS model in this study allows

us to estimate excess kurtosis of the residuals. Using the CKLS-ARMA-GARCH-EPD

model allows us to compare the markets with respect to time-series properties such as

volatility, mean reversion, and kurtosis.

In addition, in order to examine intertemporal relations between the markets, the

CKLS-ARMA-GARCH-EPD model is modified to employ multivariables as a vector

autoregression model (VAR). The modified CKLS model is different from the VAR

model in three aspects: (1) the error term follows ARMA-GARCH processes, (2) the

error term is specified by CDSct−1ut, not by ut, and (3) the error term, ut, follows

the exponential power distribution. In general, our specification become more general

than the original CKLS and VAR models by specifying the heteroscedastic conditional

variance and level effects by employing GARCH and ARMA processes and allowing

excess kurtosis of the residuals by allowing the error term to follow the exponential

power distribution.

Third implication is about intertemporal relationship between the CDS and stock

market during the sample period of this study during the credit crunch in 2008. Empir-

ical studies have provided mixed results showing a leading role between the CDS and

stock markets. With the sophisticated model specification rather than the VAR model

and the time-series samples for highly volatile periods from 2007 to 2009, I could observe

that the CDS market leads the stock market in the U.S. The result is comparable with
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a result from Fung et al. (2008). Fung et al. (2008) examine the market-wide relations

between the CDS and stock markets in the U.S. during the period of 2001 to 2007,

which does not cover the period of the credit crunch. By employing two different CDS

indices, investment grade CDX (CDX.NA.IG) and high yield CDX (CDX.NA.HY), they

distinguish respective information flows according to credit qualities. They find that

the stock market leads less risky CDX.NA.IG market, whereas more risky CDX.NA.HY

market leads the stock market. Interestingly, I find the same result by employing invest-

ment grade CDX index during the credit crunch as Fung et al. (2008), which employs

high yield CDX index during the period before the credit crunch. The relationship is

that credit information arrives first in the CDS market and the changes in the CDS

index affect the stock market next. This can be a distinct characteristic of lead-lag

relations between the markets during the financial crisis.

Organization of this paper is as follows. In Section 2, the CKLS-ARMA-GARCH-

EPD model is introduced and the empirical results are explained. In Section 3, the

modified CKLS model is introduced and the following results are described. In Section

4, I discuss further study in the future and conclude the paper. In the appendix, MCMC

algorithms employed in this study are presented, and a brief history of regulations of

the U.S. financial market is examined.

4.2 Time-series analysis

In this section, I use the CKLS-ARMA-GARCH-EPD model and MCMC algorithms to

make Bayesian inference on CDX.NA.IG index, S&P500 index, and federal funds rate.

MCMC algorithms employed are explained in the appendix.

4.2.1 CKLS-ARMA-GARCH-EPD model

Given the CKLS model

yt = a+ byt−1 + yct−1ut (4.1)
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we specify the error term ut to follow an ARMA(p, q) process

ut =

p∑
j=1

φjut−j + et +

q∑
j=1

θjet−j (4.2)

and {et} is given by an exponential power distribution (EPD) with a GARCH(r, s)

process

et = σtεt (4.3)

σ2t = α0 +
r∑
i=1

αie
2
t−i +

s∑
i=1

βiσ
2
t−i (4.4)

α0 > 0, αi > 0, i = 1, ...r

βi ≥ 0, i = 1, ..., s

1 ≥
max(r,s)∑
i=1

(αi + βi)

where εt follows the exponential power distribution (EPD) with variance normalized to

be unity. The probability density function of εt is given by

f (εt|Y,X) =
1

λ21+
1
αΓ
(
1 + 1

α

) exp

[
−1

2

∣∣∣εt
λ

∣∣∣α] (4.5)

λ =

√√√√2−
2
αΓ
(
1
α

)
Γ
(
3
α

) (4.6)

λ is a constant to make the variance of εt as unity.

Let

Θ = [a, b, c, {φi}pi=1 , {θi}
q
i=1 , {αi}

r
i=0 , {βi}

s
i=1 , α] .

The posterior distribution for Θ is

p (Θ|Y,X) ∝ p(Θ)

T∏
t=1

y−ct−1 σ
−1
t

λ21+
1
αΓ
(
1 + 1

α

) exp

[
−1

2

∣∣∣εt
λ

∣∣∣α] p (Θ) (4.7)

where

εt =
et
σt

(4.8)

et =
yt − (a+ byt−1)

yct−1
−

p∑
j=1

φjut−j −
q∑
j=1

θjet−j

and the prior is given by
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p (Θ) = p [a, b, c, {φi}pi=1 , {θi}
q
i=1 , {αi}

r
i=0 , {βi}

s
i=1 , α] (4.9)

= p(a)p(b)p(c)

p∏
i=1

p {φi}
q∏
i=1

p {θi}
r∏
i=0

p {αi}
s∏
i=1

p {βi} p(α)

= Na (µa,Σa)Nb (µb,Σb)Nc (µc,Σc)

p∏
i=1

Nφi(µφi ,Σφi)

q∏
i=1

Nθi (µθi ,Σθi)

r∏
i=0

Nαi(µαi ,Σαi)

s∏
i=1

Nβi(µβi ,Σβi) Nα(µα,Σα)

4.2.2 Empirical Results

Using the daily sample from January 2007 to September 2009, I estimate the CKLS-

ARMA-GARCH-EPD model for each of the CDX.NA.IG index, S&P500 index, and

federal funds rate using MCMC algorithms that are explained in the appendix.

I ran 50, 000 MCMC iterations, discarded the first 10, 000 draws and kept every 20th

draw. The acceptance rates are higher than 0.2006 for the S&P500 index; 0.4625 for the

CDX index; and 0.2545 for federal funds rates. The convergence of the MCMC draws

was judged first by checking that the plots of the MCMC draws for each parameter

exhibits randomness without drift. Then I applied the filtered fluctuation test (FT)

and the filtered Kolmogorov-Smirnov test (KST). I accepted the null hypothesis of

convergence at the 5% significance level. The summary statistics are given in Table 1.

Table 4.1 Here.

This study examined the time-series characteristics such as volatility, mean rever-

sion, and kurtosis. The parameter α0 for the GARCH process in equation (4.4) indicates

volatility: the larger the value of α0, the larger is the conditional variance, σ2t . The sum

of αi and βi indicates the persistence of shocks: if
∑max(r,s)

i=1 (αi + βi) is unity, then we

have an I-GARCH process. The regression coefficient b in equation (4.1) shows whether

yt is mean reversion or not. The parameter c determines if the short run asset price

yt follows a particular process. For example, if c = 0.5, then we have the CIR process.
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The parameter α of the EPD distribution shows if we have a leptokurtic, mesokurtic,

or platykurtic process.

Let me examine volatility in terms of α0. The summary statistics for α0 are given

as

Summary Statistics for α0

Mean Std 95% HPDI

CDX .6601 .2130 (.2737, .9969)

S&P500 .8437 .2178 (.3142, .9989)

FFR .0036 .0024 (.0002, .0083)

Notes CDX =Credit default swap index

FFR = federal funds rate

Mean = Posterior mean

Std = Posterior standard deviation

95% HPDI = 95% highest posterior density interval

The posterior mean of α0 for S&P500 is 0.8437 that is larger than the posterior mean

of α0 for CDX. The 95% HPDI for S&P500 overlaps with that for CDX. However, the

majority of the posterior pdf of α0 for S&P500 lies to the right of that for CDX shown

in Figure ??.

Figure 4.1 Here.

According to the results, the stock market is the most volatile, the CDS market

is next, and federal funds market is the least volatile during the credit crunch. The

result is surprising in that I expected that the CDS market that mainly caused the

market turmoil would be the most volatile during the credit crunch. The reason that

the CDS market is less volatile than the stock market during the credit crunch would

be found in the opposite characteristics between the stock and CDS. During the credit

crunch, the credit risk became high across all financial markets. When a probability

of default on a firm increases, the stock price of the firm falls, however, the spread of

the CDS of the firm increases. It is because an investor who holds the stock has no
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value, but an investor who holds the CDS is repaid with a notional amount without a

loss when the firm bankrupts or defaults. Hence, during the financial market turmoil,

CDSs become relatively safe assets to stocks. We can observe it in our results that the

price fluctuation of stock is more volatile than that of CDS during the credit crunch.

The posterior mean of α0 for the federal funds rates is close to zero indicating that

volatility of the federal fund rate is very low.

Duffie and Duffie (1999) argues that the failure of incorporating a GARCH effect has

resulted in model specification errors for credit spreads. In order to observe a GARCH

effect, I examine the posterior pdf’s of

αβ =

max(r,s)∑
i=1

(αi + βi) (4.10)

αβ indicates the persistence in volatility. The posterior pdf’s of αβ for CDX and

S&P500 are given in Figure ??.

Figure 4.2 Here.

The posterior means of αβ are 0.9521, 0.8397, and 0.8494 for CDX, S&P500, and

federal funds rates, respectively. Judged by Figure 4.14, we see that αβ is positive and

there are high probabilities that the GARCH processes are I-GARCH processes for all

three time series.

The following table gives the posterior means, standard deviations, and the 95%

HPDI’s of the regression coefficient b.

Summary Statistics for b

Mean Std 95% HPDI

CDX .997 .0026 (.9918, 1.0)

S&P500 −1.3048 1.6622 (−3.2642, 1.0)

FFR .9984 .0035 (.9946, 1.0)
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Notes CDX =Credit default swap index

FFR = federal funds rate

Mean = Posterior mean

Std = Posterior standard deviation

95% HPDI = 95% highest posterior density interval

We see that the posterior pdf of b for S&P500 is centered around −1.3048 with

a large posterior standard deviation. It indicates that S&P500 index is not a mean-

reverting process. The pdf’s of b for CDX and federal funds rate series are tightly

distributed around 1.0 and clearly the CDX and federal funds rate series are also not

mean-reverting.

The parameters of the ARMA (p, q) error process indicate that the AR process is

stationary and the MA process is invertible.

The posterior means, standard deviations, and 95% HPDI’s for c are given in the

table below.

Summary Statistics for c

Mean Std 95% HPDI

CDX .1633 .1107 (.0001, .3651)

S&P500 .4949 .1703 (.0720, .8447)

FFR .4168 .1454 (.1283, .7024)

Notes CDX =Credit default swap index

FFR = federal funds rate

Mean = Posterior mean

Std = Posterior standard deviation

95% HPDI = 95% highest posterior density interval

The value of c determines the type of the spot asset price model. For example, if

c = 0, then it is the Vasecek model; if c = 0.5, then it is the CIR model. If c = 1, then it

is the geometric Brownian motion model of Black and Scholes (1974). The dynamics of
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each time-series volatility are comparable through a parameter c in the original CKLS

model. The original CKLS model is following:

dy = (a+ by)dt+ σycdZ

Chan et al. (1992) empirically compare alternative short-term interest rate models

based on c, which indicates an elasticity of volatility in interest rate changes. A term of

σ2y2c presents the variance of unexpected interest rate changes. It is well known that the

volatility of the short-term interest rates, i.e. the conditional variance of changes in the

interest rate, is sensitive to its level. The Cox-Ingersoll-Ross square root process (CIR

SR) model implies that the conditional volatility of changes in y is proportional to y,

i.e. c is 0.5. The Dothan, Geometric Brownian motion (GBM), and Brennan-Schwartz

models indicate that the conditional volatility of changes in y is proportional to y2,

i.e. estimated c is 1. The CIR variable-rate (VR) model shows that the conditional

volatility of changes in y is proportional to y3, i.e. c is estimated to be 3
2 .

Since I specify the spot asset rate model that follows the GARCH process, I cannot

exactly examine whether conditional volatility is proportional to a power transformation

of time series. I examine only which nested model in the CKLS can explain each time

series well. For S&P500, the posterior mean of c is 0.4949 and 95% HPDI is from 0.0720

to 0.8447. Although the posterior mean is not exactly 0.5, the value of 0.5 included in

95% HPDI indicates that S&P500 follows Cox-Ingersoll-Ross (1985) square root process

(CIR SR). Interestingly, 95% HPDI for c for federal funds rate also contains 0.5. Hence,

both S&P500 and federal funds rate share the same model, which follows Cox-Ingersoll-

Ross square root process nested in the CKLS model. However, in the case of CDX, the

posterior mean of c is 0.1633 and 95% HPDI is from 0.0001 to 0.3651.

Finally, we look at a parameter α in equation (4.5), an exponential power distri-

bution (EPD). The following table presents the posterior means, standard deviations,

and 95% HPDI’s for α:
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Summary Statistics for α

Mean Std 95% HPDI

CDX .7962 .0767 (.6403, .9422)

S&P500 .4141 .0811 (.2516, .5814)

FFR .5037 .0815 (.3493, .6703)

Notes CDX =Credit default swap index

FFR = federal funds rate

Mean = Posterior mean

Std = Posterior standard deviation

95% HPDI = 95% highest posterior density interval

By allowing the error terms to follow an EPD instead of a normal distribution, we

can examine the kurtosis: if α = 2, the distribution is mesokurtic. The parameter α

can be transformed into the kurtosis, γ4 :

γ4 =
Γ
(
5
α

)
Γ
(
1
α

)
Γ
(
3
α

)2 (4.11)

Table below presents the posterior means, standard deviations, and 95% HPDI’s of γ4

for CDX, S&P500, and federal funds rate.

Summary Statistics for γ4

Mean Std 95% HPDI

CDX 8.955 1.8398 (6.0247, 12.7238)

S&P500 91.9734 204.6683 (13.989, 295.8221)

Fed 29.512 15.5826 (7.0578, 57.073)

Notes CDX =Credit default swap index

Fed = federal funds rate

Mean = Posterior mean

Std = Posterior standard deviation

95% HPDI = 95% highest posterior density interval

After the parameter α is drawn by the MCMC algorithm, we transform α into

kurtosis through equation (4.11) and the posterior pdf’s of kurtosis are estimated. For
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S&P500, the posterior mean of α is 0.4141, and the posterior mean of its kurtosis is

transformed as 91.9734, which is much greater than 3. From the results, we observe that

the S&P500 is not normally distributed and it represents leptokurtic characteristic. For

CDX, the posterior mean of α is 0.7962 and the posterior mean of its kurtosis is 8.9549,

which is also leptokurtic. The posterior mean of α for federal fund rates is 0.5037 and

that of its kurtosis is 29.512. From the results of posterior pdf’s of kurtosis, it shows

that the stock market shows the strongest leptokurtic behavior, then the federal funds

market is followed, and the CDS market shows the modest leptokurtic behavior.

4.3 Lead-Lag Relationship

So far, we have examined time-series characteristics of the CDX.NA.IG index, S&P500

index, and the federal funds rates respectively. In this section, I analyze the intertempo-

ral relationship among the markets. Recently, the market participants have addressed

the intertemporal relations between the corporate bond or stock markets and the credit

derivatives market. In studying lead-lag relations, Longstaff et al. (2003) quotes the

December 5, 2002 Wall Street Journal: ”then, because the young market has something

of a reputation as an early warning signal for spotting corporate debt problems, the

higher insurance prices can cause other investors to worry and thus push a company’s

bond and share prices even lower.”

There can be two hypotheses: all financial markets react instantaneously when

information on credit conditions of the firms arrives, or the credit derivatives market will

respond to the credit (or default) information earlier than other financial markets. The

idea that credit derivatives market will react before other bond and stock markets react

can be induced because credit derivatives are determined solely by credit risk, and the

credit derivatives market is comprised of a large number of sophisticated participants,

dominated largely by banks and hedge funds. However, empirical studies have provided

mixed results showing a leading role of the credit derivatives market.

Longstaff et al. (2003) examines the lead-lag relations between the credit derivatives,
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corporate bond, and equity markets in the U.S. based on weekly observations of 67

single-name CDSs for March 2001 to October 2002. Using a vector autoregression

(VAR) framework employing the three variables with two lags, the corporate bond

spread is predictable for 37 out of the 67 cases. However, the number of the cases to

significantly predict the CDS premium is reduced to 12 and to significantly predict the

stock return is also decreased to 7 out of the 67 cases. Interestingly, among the three

variables, the CDS premium frequently leads the corporate bond spread, specifically 21

of the 67 firms; and the stock return leads the corporate bond spread for also 21 of the

67 firms. In addition, the CDS premium leads the stock return for 10 out of the 67

firms; and the stock return leads the CDS premium for 12 out of the 67 firms. Hence,

they conclude that credit information tends to flow first into the credit derivatives and

equity markets, and then into the corporate bond markets for the period from 2001 to

2002.

Norden and Weber (2004) analyze the empirical relationship among CDS, bond, and

stock markets during the period 2000 to 2002. They apply the same VAR framework as

Longstaff et al. (2003) to weekly and daily time series of 58 international firms. Using

the VAR framework with the daily data, the number of firms whose lagged stock returns

significantly explain changes in the CDS spread are 39 of the 58 firms, while changes in

the CDS spread Granger-cause stock returns for the 5 firms. With regard to changes in

the bond spread, the lagged CDS spreads lead changes in the bond spread for 33 of the

58 firms, and with the lagged stock returns it reduces to 21 firms. Norden and Weber

find that changes in the CDS spread are frequently able to forecast bond spread, which

is the same as findings in Longstaff et al. However, Norden and Weber (2004) find a

definite lead of the stock market relative to the CDS market and this is in opposition

to the findings in Longstaff et al. Norden and Weber explain that one reason for this

difference may be the sample composition. Longstaff et al. (2003) exclusively analyze

the 67 U.S. firms, whereas Norden and Weber (2004) use an international sample in

which 35 out of 58 firms are European firms and remaining 23 are the U.S. firms.

Interestingly, the evidence for the leading role of the CDS market with respect to the
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bond market is stronger in the case of the U.S. companies than in the case of European

companies.

Forte and Pena (2006) construct homogeneous measures of credit risk for each bond,

CDS, and stock, and the measures are based on bond spreads, CDS spreads, and implied

stock market credit spreads, respectively. Then, they employ a VAR model to analyze

the lead-lag relations among the changes in the measures. For the stock market, the

lagged CDSs Granger-cause the current changes in the stock returns for 5 of the 65

firms. However, the lagged changes in the stock returns Granger-cause the CDSs in 24

of the 65 firms. Overall, they conclude that the stock market is leading the corporate

bond and CDS markets in most cases. Their results are for international markets;

therefore, it is not clear if their findings are applicable to the U.S. market.

Fung et al. (2008) examine the market-wide relations between the U.S. stock and

the CDS market during the period of 2001 to 2007. Unlike the previous three studies,

Fung et al. (2008) employ the indices from the stock and CDS markets and focus on the

information flow by the market-wide risk. In addition, they construct new stock indices.

Although the S&P 500 index is comprised of companies that are generally of high qual-

ity credit, there could be a mismatch of credit quality of the index components between

the S&P 500 and CDX indices. The new stock indices that Fung et al. construct are

based on the returns of the matching firms of the CDX IG and HY index components.

Since the CDX indices are equally weighted by their underlying single name CDS con-

tracts, the new stock indices with the investment grade and high yield grade are also

constructed equally weighted. Through constructing the new stock indices with match-

ing firms as in the CDX indices, they differentiate credit information content according

to the credit quality. The results draw different conclusions depending on the credit

quality. First, the stock market leads the investment grade CDS market. In contrast,

more importantly, the high yield CDS market has the ability to lead the stock market

first; then, the stock market has affected the CDS market. They find the two-way inter-

action between the stock and high yield CDS markets. The result is consistent with the

notion that the stock and high yield CDS markets provide complementary information,
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which is subsequently incorporated in the other market.complementary information,

which is subsequently incorporated in the other market.

4.3.1 Model

I analyze the intertemporal relationship between the CDS and stock markets by employ-

ing multivariables in the CKLS model. Although time-series characteristics have been

examined in the previous section with respect to the three markets with CDX.NA.IG

index, S&P500 index, and the federal funds rate, lead-lag relations in this section will

be analyzed with only two markets such as the CDS and stock markets. The federal

funds market is excluded because I found in the preliminary analysis that federal funds

rate was too stable to be affected by information flow. Hence, I could not find any

significant lead-lag relationship among the markets when employing federal funds rate.

The CKLS models incorporating both stock and CDS markets are the following:

CDSt = ac + bcCDSt−1 +
l∑

i=1

bsiStockt−1 + CDScct−1ut (4.12)

Stockt = as +

k∑
i=1

bciCDSt−1 + bsStockt−1 + Stockcst−1ut (4.13)

The CKLS model is different from the VAR model in three aspects: (1) the error

term follows an ARMA-GARCH processes, (2) the error term is specified by CDSct−1ut,

not by ut and (3) the error term, εt in equation (3), follows the EPD distribution.

If the CDS market has affected the stock market, the coefficients on the lagged CDS

in equation (4.13) will be significantly different from zero. However, if the stock market

leads the CDS market, then the coefficients on the lagged Stock in equation (4.12) will

be significant. In addition, both of the coefficients will be significantly different from

zero when the markets have a two-way interaction.

4.3.2 Empirical Results

Using the same sample as before from January 2007 to September 2009, I have estimated

the CKLS model employing the two variables, CDX.NA.IG index and S&P500 index.
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By using daily data, I hope to see if different markets may respond differently to new

information. I ran 50,000 MCMC iterations, discarded the first 10,000 draws and kept

every 20th draw. The convergence of the MCMC draws was checked by same methods

as in the previous section. The posterior summary statistics of the coefficients are given

in Table 2.

Table 4.2 Here.

In Norden and Weber (2004), they indicate that a maximal lag of order 5 (indicating

one week) seems reasonable for the daily data. As suggested by the study, I estimate

each model in (4.12) and (4.13) with different lags from order 5 to order 1. Then, I

choose a lag of order 1 for the case of the CDS market of (4.12), and a lag of order 3

for the stock market of (4.13).

During the sample period from 2007 to 2009, the relationship between the CDS and

stock markets is different from what the previous studies have found: (1) the posterior

mean of bs on the lagged stock in (4.12) is −0.0006, which is not significantly different

from zero. The posterior density for bs is highly skewed to the left: a probability for

the coefficient on the lagged stock to be less than or equal to zero is about 75 percent

i.e. prob(bs ≤ 0) = 0.7495. (2) The posterior mean of bc1 on the first lagged CDS

in (≥) is 0.0178, which is close to zero. However, the posterior mean of bc2 on the

second lagged CDS is 0.4001 and that of bc3 on the third lagged CDS is 0.3432, both of

which are much greater than zero. The posterior distribution for the sum of the three

coefficients (bc1 + bc2 + bc3) is highly skewed to the right of zero with a probability of

about 77 percent i.e. prob((bc1 + bc2 + bc3) ≥ 0) = 0.769. This result indicates that the

CDS market led the stock market in the U.S. during the credit crunch from 2007 to

2009, and the result is different from the previous studies. For example, Longstaff et al.

(2003) do not find any clear lead-lag relations between the CDS and stock markets of

the U.S. Norden and Weber (2004), and Forte and Pena (2006) find that individual

stock returns significantly lead CDS spread, and Fung et al. (2008) find that there are

lead-lag relations such that the stock market leads the CDS market in terms of the

CDX.NA.IG index. However, although this study employs the CDX.NA.IG index, the
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result supports a finding of the Fung et al. with respect to the CDX.NA.HY index

that credit information arrives first in the high yield CDX market, and affects the stock

market after.

In order to examine the specific reason why this study draws different results from

the studies of Norden and Weber (2004), and Forte and Pena (2006), I need to consider

special characteristics of the CDS. One of the important characteristics is that CDS

is basically an insurance contract on corporate default. We can infer that informed

traders who would like to make profits from the likelihood of default on a company’s

bonds or to insure against such default may prefer to hold CDS instead of stocks. In

other words, the higher is likelihood of default on a company, the more informed traders

who have prior knowledge on the default do investment on CDS of the company. In

addition, since CDS is a contract rather than a security, the notional amount of CDS is

not limited by supply and demand, i.e. CDS can be created as long as market makers

exist. It is important to note here that CDS trade refers to a notional, the quantity

of the underlying asset or benchmark to which the derivatives contract applies. It is

similar as the amount of insurance bought, not the premium paid. In sum, if informed

traders in aggregate tend to trade CDSs than stocks without limitation of the notional

amount, then CDS spread should lead the stock prices. In this study, I observe the

circumstance that the CDS market leads the stock market, but Norden and Weber

(2004), and Forte and Pena (2006) observe the opposite circumstance that the stock

market leads the CDS market.

I could find one possible reason in Fung et al. (2008) that explain about the different

results. The result of the study of Fung et al. (2008) shows that lead-lag relationship

between two markets are contingent upon the credit quality of the underlying entities.

Fung et al. (2008) examine lead-lag relations between the stock index and two CDX

indices differentiated by credit qualities: CDX.NA.IG and CDX.NA.HY. First in the

case of the investment grade CDX, their result is same as the previous studies that a

price movement in the stock market has an ability to affect the CDS market. However,

in the case of high yield grade CDX, the result shows the CDS market leads the stock
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market. These different results contingent upon credit qualities of the underlying en-

tities might explain the different results drawn between this study and the studies of

Norden and Weber (2004), and Forte and Pena (2006). During a stable period as in

Norden and Weber (2004), 2000-02, and Forte and Pena (2006), 2001-03, investors have

less incentive to insure against corporate default and prefer stocks to CDSs. It might

cause the stock market to reflect information earlier than the CDS market.

However, my sample period includes the credit crunch starting from 2007. The finan-

cial market turmoil led by the credit crunch caused most of the companies, regardless

of their credit grades, to be at risk of degrading credit qualities. Hence, investors would

have liked to prevent the degrade risk or bet on the risk by holding CDS. In other

words, during the period, speculative traders might prefer the CDS market to the stock

market in order to bet on the likelihood of default on corporate bonds. And traders who

held corporate bonds might prefer to insure those against default risk that became very

high during the credit crunch. It might cause the CDS market to be faster to reflect

information than the stock market. This is why we can see the results that investment

grade CDX index leads the stock index in our study. In sum, different sample periods

might allow the result of Fung et al. that can be observed with low quality CDSs to

appear in our study in which high quality CDSs are used. Hence, different sample

periods might be one reason why our study and the studies of Norden and Weber, and

Forte and Fena have the opposite results.

Another possible reason rather than the sample periods could be due to model

specification or estimation used in the studies. In order to see differences induced by

the different model specification, I compare the results between the modified CKLS and

VAR models. I run the VAR model with the same samples employing 1 and 3 lags,

respectively. The following is the VAR model when k = 1 or 3:

CDSt = c1 +

k∑
j=1

b1jCDSt−j +

k∑
j=1

c1jStockt−j + e1 (4.14)

Stockt = c2 +

k∑
j=1

b2jCDSt−j +

k∑
j=1

c2jStockt−j + e2 (4.15)
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where the error terms in the VAR model, e1 and e2, are normally distributed such that

E (ei) = 0 and var(ei) = σ2i , i = 1 or 2. The results are provided in Tables 4.3 and 4.4.

Table 4.3 and 4.4 Here.

According to the results from equation (4.14) in Table 3, the t-value of the coefficient

on the lagged Stock is 0.33, and the t-value of the coefficient on the lagged CDS in

equation (4.15) is 1.07. When one lag is employed, both t-values confirm that the lagged

Stock and CDS variables are not significant to explain the paired variables, which are

CDS and Stock respectively. However, when 3 lags are employed, the t-values in Table

4 show that each of the CDSt−2 and CDSt−3 is significant to predict the current value

of Stock. But any of the lagged Stock do not have an impact on explaining CDS.

For testing the Granger causality, I also conduct the Wald test that the coefficients

on other lagged variables are jointly different from zero, that is, we can exam whether

the individual markets have predictive power by applying the Wald test to the sets of

parameter restrictions, for example, c11 = c12 = c13 = 0 and/or b21 = b22 = b23 = 0 if

k = 3. With one lag, both hypotheses that the stock market does not Granger-cause the

CDX market and vice versa cannot be rejected. However, when employing 3 lags, the

hypothesis that the CDX market does not Granger-cause the stock market is strongly

rejected at the 5% significance level with p-value of 0.0084. The reverse case that the

stock market does not Granger-cause the CDX market cannot be rejected with p-value

of 0.84. In sum, the results from the VAR model indicate that the CDX market leads

the stock market, which is same as the results from the modified CKLS model. Hence, I

can conclude that the model specification between the VAR and modified CKLS models

cannot be the reason why our study and the studies of Norden and Weber, and Forte

and Fena have the opposite results.

Last, but not least, we need to observe signs on the coefficients of bc2 and bc3, and bs

in (4.13). In the stock market, the coefficient on the lagged stock index itself displays

a negative value. However, both of the coefficients on the lagged CDX index display

positive values. During the credit crunch, the lagged stock index negatively correlated
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with the current stock index, but the lagged CDX indices are positively correlated with

the current stock index. We can observe that the lagged stock and CDX indices have

opposite impacts on the stock market.

4.4 Conclusions

This study investigated (1) the time-series characteristics of the CDS, stock, and federal

funds markets and (2) the market-wide relations between the CDS and stock markets,

using daily index data from January 2007 to September 2009.

First, this study examined the distinct dynamic movements of each time series

through estimating the CKLS model by employing the MCMC method. Since the

original CKLS model is considered to be restricted in terms of the constant conditional

variance, we generalize the model by allowing the error term to have level and time-

varying conditional heteroscedasticity effects by employing ARMA-GARCH processes.

Especially by employing GARCH process, my modified CKLS model allows volatility

to be more general and flexible rather than fixed as a constant. In addition, by allowing

the error term to be followed by the exponential power distribution (EPD), I specify the

excess kurtosis of the data instead of fixing with mesokurtic from a normal distribution.

Importantly, the modified CKLS model is estimated by MCMC algorithms based on

the Bayesian method. Employing MCMC methods might provide more significant

estimators than GMM, originally used in Chan et al. (1992), since Qian and Tsurumi

(2005) prove that the Bayesian and MLE estimators dominate GMM estimator with

respect to the mean absolute deviation (MAD) and the sums of relative mean absolute

deviation (SMAD).

The time-series characteristics of the three distinct markets show the similar move-

ments during the sample period except volatility according to a constant parameter α0

in the GARCH process 4.4. Given the three time-series data, the stock market is most

volatile and the CDS market is followed. However, all three time series show a simi-

lar pattern on the persistence of volatility: according to equation 4.10, there are high

probabilities that all three series have I-GARCH processes. In terms of c in equation
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4.1, both stock and federal funds markets share the same process, Cox-Ingersoll-Ross

square root process nested in the CKLS model. Finally, the MCMC results show that

all of the three market show the strong leptokurtic behavior. Among them, the stock

market shows the strongest leptokurtic behavior, them the federal funds market is next,

and the CDS market is the least.

Second, this study analyzed the intertemporal relationship between the CDS and

stock markets in the U.S. through estimating the CKLS-ARMA-GARCH-EPD model

employing multivariables as a vector autoregression model (VAR). There have been

several studies to examine the lead-lag relations between the markets employing the

VAR framework. However, I examine the market-wide relations by employing more

sophisticated model specification of the modified CKLS model instead of the VAR

framework.

Results from the CKLS model show that the CDS market appears to lead the

investment grade CDX market. Focusing on the sample period including the credit

crunch of 2008, the results imply that when the market is highly volatile, informed

traders have affected the CDS market first, and then information on credit risk arrives at

the stock market later. The significant interaction between investment grade CDS index

and stock index suggests that investors should examine more carefully the dynamic

information between the CDS and stock markets when the credit market is in a credit

and liquidity crunch as 2008.

Usually, economic time series exhibit dramatic breaks in the behavior when it is

associated with events such as financial crisis or abrupt changes in government policy.

The CDX index, stock index, and federal funds rate also show breaks caused by the

credit crunch of 2008. The time series have become volatile in an oscillatory manner

and there may be some regime changes. While the modified CKLS model captures

the behaviors of the time series reasonably well, we need to compare the model with

models incorporating regime changes especially since the sample periods contain the

highly volatile years of 2007-08.
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Alexander and Kaeck (2008) indicate that CDS spreads display a pronounced regime-

specific behavior. Based on this observation, they employ a Markov switching model

using the iTraxx Europe indices in order to examine the determinants of changes of the

indices at each regime.

Another way to specify the regime switching is through the threshold ARMA model

(TARMA). Using data on realized volatility, Goldman et al. (2009) show TARMA cap-

ture the high volatility regime well and that the persistence of volatility is short lived

compared to the persistence in the low volatility regime. The difference between the

Markov switching model and the TARMA model is that in the Markov switching model

the movement of the observation from the previous time to the current time is deter-

mined probabilistically, whereas in the TARMA model this movement is determined by

the threshold. It will be interesting to compare our model with the Markov switching

model and the TARMA model to see which model explains the time-series data well or

predicts better.
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Figure 4.1: Posterior pdf’s of α0 for S&P500 and CDX
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Figure 4.2: Posterior pdf’s of αβ
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Table 4.1: CKLS-ARMA-GARCH-EPD Models of CDX, SP500, and Federal Funds
rates

CDX SP500 FFR

a .2273 1.1805 .0022
(.2071) (7.3083) (.0067)

b .997 −1.3048 .9984
(.0026) (1.6622) (.0035)

c .1633 .4949 .4168
(.1107) (.1703) (.1454)

φ1 −.4085 .6482 −.4317
(.1146) (.6210) (.1280)

φ2 .2734
(.5830)

θ1 .4951 .5024 .4902
(.2769) (.2757) (.2649)

α0 .6601 .8437 .0036
(.2130) (.2178) (.0024)

α1 .4399 .5795 .6323
(.1154) (.1988) (.1696)

β1 .5122 .2601 .2171
(.1402) (.1544) (.1172)

α .7962 .4141 .5037
(.0767) (.0811) (.0815)

Kurtosis 8.9549 91.9734 29.5120
(1.8398) (204.6683) (15.5826)

Notes 1. Figures without parentheses are ”posterior means”
2. Figures in parentheses are ”posterior standard deviation”
3. FFR=federal funds rate
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Table 4.2: Adjusted CKLS model with two variables

CDX SP500

a 1.2602 5.5137
(1.5326) (10.452)

bc1 .9955 .0178
(.0039) (1.011)

bc2 .4001
(1.3341)

bc3 .3432
(1.5314)

bs −.0006 −1.0517
(.0009) (.9467)

c .1693 .4822
(.1348) (.1601)

φ1 −.401 .6709
(.1028) (.5901)

φ2 .3208
(.5727)

θ .4979 .5056
(.2758) (.2746)

α0 .5789 .88
(.2683) (.17)

α1 .4067 .5999
(.1208) (.1848)

β1 .5471 .2524
(.1485) (.1424)

α .806 .4207
(.0792) (.0762)

Note 1. Figures without parentheses are ”posterior means”
2. Figures in parentheses are ”posterior standard deviation”
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Table 4.3: VAR Models with one lag

CDXt SP500t
c −.147150 12.53797

(2.74299) (9.42582)
[−.05365] [1.33017]

CDXt−1 .996249 −.024833
(.00678) (.02331)
[146.877] [−1.06544]

SP500t−1 .000529 .992063
(.00159) (.00545)
[.33352] [182.136]

Note 1. Figures in parentheses ( ) are ”standard errors”
2. Figures in brackets [ ] are ”t-statistics”
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Table 4.4: VAR Model with 3 lags

CDXt SP500t
c .058891 16.50390

(2.76646) (9.32287)
[.02129] [1.77026]

CDXt−1 1.060621 −.181197
(.05170) (.17422)

[ 20.5162] [−1.04007]

CDXt−2 −.096338 .658071
(.07377) (.24859)

[−1.30601] [2.64725]

CDXt−3 .031218 −.514339
(.04996) (.16838)
[.62481] [−3.05469]

SP500t−1 −.013144 .789364
(.01515) (.05107)
[−.86741] [15.4579]

SP500t−2 .011101 .181122
(.01897) (.06391)
[.58529] [2.83382]

SP500t−3 .002471 .019506
(.01478) (.04979)
[.16725] [.39173]

Note 1. Figures in parentheses ( ) are ”standard errors”
2. Figures in brackets [ ] are ”t-statistics”
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Appendix

In this appendix, MCMC algorithms employed by this study are explained first. Also

the basic concepts of credit default swap and credit default swap index are explained,

and history of regulation and deregulation of the U.S. financial markets are presented.

A.1 MCMC Algorithms

The original CKLS (1992) model for the short-term interest rate is estimated by the

generalized methods of moments (GMM). In the Qian and Tsurumi (2005), the Bayesian

estimation methods for the CKLS model is presented, and the results from the Bayesian

method are compared with other estimation methods as Maximum Likelihood Estima-

tion (MLE) and GMM, which are widely used. Qian and Tsurumi (2005) obtain the

Bayesian inference of the parameters and conduct Monte Carlo experiments to compare

the proposed Bayesian estimator with MLE and GMM estimators. The simulation re-

sults show that Bayesian and MLE estimators dominate GMM estimator in terms of

the mean absolute deviation (MAD) and the sums of relative mean absolute deviation

(SMAD). Based on the study of Qian et al., Li (2009) developed the estimation method

for the modified CKLS model employed in my study. Since the original CKLS model is

approximated by a discrete-time process following a series of standard Gaussian vari-

ables, there is a limitation to capture the time-varying volatility changes. In order

to overcome the limitation, the modified CKLS model allows the error term to follow

ARMA-GARCH processes and the Bayesian estimation method is modified accordingly.

In Bayesian inference, we need to derive the marginal pdf of a parameter. How-

ever, it is difficult to evaluate the multiple integral analytically in our model. We

employ a numerical integration method since there is no closed form solution to the

multiple integration. There are various ways to carry out numerical integration, for

example, a quadrature formula, importance sampling, and Markov chain Monte Carlo

(MCMC) algorithm. Among them, we apply MCMC algorithms. MCMC algorithm is

a stochastic numerical integration method. It attempts to simulate direct draws from
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some complex distributions of interest. MCMC approaches are named because it is

based on the property of Markov chains, that is, one uses the previous sample values to

randomly generate the next sample value, generating a Markov chain as the transition

probabilities between sample values are only a function of the most recent sample value.

Then, Markov chains converge to steady state probabilities under certain conditions;

the steady state probabilities are the marginal distributions of our interest.

In order to achieve the proposal density for parameters (αi, βi), we follow the ap-

proximation of Nakatsuma (1998). They develop a new MCMC method for Bayesian

estimation and inference of the ARCH(p, q) − GARCH(r, s) model. To generate a

Monte Carlo sample from the joint posterior distribution, a Markov chain sampling

with the Metropolis-Hasting algorithm is employed. The proposal distributions for the

parameters are based on an approximated GARCH model:

ε2t = α0 +
l∑

i=1

(αi + βi) ε
2
t−i −

s∑
i=1

βiwt−i + wt, wt˜N
(
0, 2σ2t

)
(4.16)

where wt = ε2t − σ2t , l = max (r, s) , αi = 0 for i > r, βi = 0 for i > s, ε2t = 0

and wt = 0 for t ≤ 0. The proposal density (4.16) is derived by that GARCH (r,s)

model (4.4) is expressed as an ARMA (l,s) process of
{
ε2t
}n
t=1

:

e2t = α0 +
l∑

j=1

(αj + βj) e
2
t−j + w̃t −

s∑
j=1

βjw̃t−j (4.17)

w̃ = e2t − σ2t

Since w̃t =
(
e2t
σ2
t
− 1
)
σ2t =

(
χ2 (1)− 1

)
σ2t , the conditional mean of w̃t is E [w̃|Ft−1] = 0,

and the conditional variance is var [w̃t|Ft−1] = 2σ4t . By replacing w̃t with wt˜N
(
0, 2σ4t

)
,

(4.16) is derived.

Nakatsuma (1998) uses non-linear least square estimation to draw parameters in

MA and GARCH processes. Qian and Tsurumi (2005) use random walk draws for

all parameters. Li (2009) generally follows Qian and Tsurumi (2005)’s modification.

Different from Nakatsuma (1998), who uses the linear regression model, we need to

draw both non-linear parameters c in the CKLS model and the parameter α in EPD.

Different from Qian and Tsurumi (2005) whose model is the CKLS with normally
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distributed error terms, we use efficient jump algorithms to draw {θi}qi=1 , parameters

of MA process, {β}si=1, parameters for GARCH error term, and also α in EPD.

I follow the methods of Li (2009):

1. To draw c in the CKLS model, the modified efficient jump method proposed in

Tsurumi and Shimizu (2008) is employed.

2. While Qian and Tsurumi (2005) use random walk draws for all parameters in the

CKLS model with errors following a normal distribution, this study employs effi-

cient jump algorithms for {θi}qi=1 , parameters of MA process, {β}si=1, parameters

for GARCH error term, and also α in EPD.

3. All parameters, except c, {θi}qi=1 , {β}
s
i=1 , and α, are drawn by random walk

draws followed by Qian and Tsurumi (2005).
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A.2 Credit Default Swap

Experiences of credit events such as the 1997 Asian Financial Crisis, the Russian bond

default, the collapse of Long-Term Capital Management (LTCM), and the Enron and

WorldCom defaults highlighted importance of assessing and managing credit risk. And

moreover, the credit risk has been paid attention significantly through the recent large

scale incidents occurred in 2008 including the collapse of Bear Sterns, the bankruptcy of

Lehman Brothers, and a federal bailout plan for American International Group (AIG).

Although it is hard to avoid the blame that credit default swaps (CDSs) exacerbated

the 2008 credit crunch by hastening the demise of the financial companies, benefits from

credit derivatives also cannot be overlooked. With the benefits from credit derivatives

we can purchase, sell or restructure credit risk or credit default risk. And importantly

Credit Default Swap (CDS) is one of the tools to manage credit risk.

An original form of CDS had been existed in the past. However, a beginning of

the modern form of CDS was invented in 1997 by a team working for J.P.Morgan

Chase. Its invention was revolutionary in terms of a purpose of shifting risk out of

a company’s balance sheet by separating the default risk from the loans themselves.

The CDS market has grown dramatically over a short period of time. As shown in

Figure 4.3, the International Swap and Derivatives Association (ISDA) indicated that

the CDS notional outstanding was approximately $632 billion in 2001 and expanded to

$63 trillion in the second half of 2007. However, it is reduced to about $31 trillion in

mid of 2009 since the credit crunch of 2008.

As dealers serve the role of liquidity providers, the CDS market has been domi-

nated by the dealer community since an inception. Goldman Sacks, Deutsche Bank,

J.P.Morgan and Morgan Stanley are regarded as the dominant dealer participants in

the CDS market. As the CDS market evolved, insurance companies became the sec-

ond most active group of participants. During the past several years, the hedge fund

community has begun to play more significant role in the CDS market, supplanting the

role of the insurers.
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Figure 4.3: Semi-annual data for CDS notional amounts outstanding (Source: ISDA
2009)

CDS is basically an insurance contract. With the CDS contract, the protection

buyer pays a fee, the swap premium, to the protection seller in exchange for the right

to receive a payment conditional upon the occurrence of a credit event with respect

to a reference entity for which credit protection is being sold. The swap premium is

quoted in basis points per annum of the contract’s notional value and is usually paid

quarterly.

The definition of a credit event, the relevant obligations, and the settlement mech-

anism used to determine the contingent payment are flexible and determined by ne-

gotiation between counterparties at an inception of transactions as a characteristic of

the OTC market products. A credit event is most commonly defined as 1) bankruptcy

or insolvency of the reference entity, 2) failure to pay an amount above a specified

threshold over a specified period, and 3) financial or debt restructuring. In addition,

the CDSs are typically 5 year contracts although the range of the CDS maturities may

extend from six months to 3, 7, and 10 years.
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A single-name CDS has a single reference entity. If no credit event occurs over

the life of the swap, the protection buyer will make a swap premium payment until

maturity. If a certain pre-specified credit event occurs, first, the protection buyer pays

out the accrued premium from the last payment date to the time of the credit event, on

a days fraction basis. After that payment, there are no further payments of the swap

premium by the protection buyer to the protection seller. Second, a termination value

is determined for the swap, the procedure depending on the settlement terms specified

in the trade’s documentation. The contingent payments are either physical settlement

or cash settlement. With physical settlement the protection buyer delivers a specified

amount of the face value of bonds for the reference entity to the protection seller. Then,

the protection seller pays the protection buyer the face value of the bonds. With cash

settlement, the protection seller pays the protection buyer an amount equal to the

difference between the face value of bonds and their market value after the default.

A basket default swap has more than one reference entity. Based on when the

protection seller is obligated to make a payment to the protection buyer, different types

of basket default swap exist. These are classified as Nth-to-default swaps, subordinate

basket default swaps, and senior basket default swaps. For example, in a first-to-default

swap, the protection buyer is compensated if one asset in the basket default but receives

no compensation for any subsequent defaults. In addition, in an Nth-to-default swap,

the protection seller makes a payment to the protection buyer only after there has

been a default for the Nth reference entity and no payment for the defaults of the first

(N-1) reference entities. Once there is a payout for the Nth reference entity, the swap

terminates. That is, the protection buyer absorbs losses resulting from the first (N-1)

defaults and receives compensation only upon the occurrence of the Nth default.
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A.3 Credit Default Swap Index (CDX)

As the CDS market increased in importance and enlarged its portion in the deriva-

tives market, it became inevitable to provide the timely information for pricing and

measuring credit risk to investors. It became possible by the Credit Default Swap In-

dices which measure the average CDS spread of all the index dealers. There are two

primary tradable index families: CDX index and iTraxx index. Since the CDS indices

are tradable now, they allow players to trade a broader range of credits at a lower

cost. Both of the CDS indices are published by Markit. The CDX indices are the

actively traded indices based upon North American reference entities, and the iTraxx

indices are based upon European and Asian reference entities. For a transaction of

the CDX or iTraxx indices, one of the counterparties must hold a Markit index license.

The CDX indices have subindices as following: CDX North American Investment Grade

(CDX.NA.IG), CDX North American High Volatility, CDX North American High Yield

(CDX.NA.HY), CDX Crossover, CDX Emerging Market, etc.

As a synthetic collateralized debt obligation (CDO), a CDS index is also sliced

into standardized synthetic tranches. The reason for slicing risk is to provide institu-

tional investors with alternative vehicles for obtaining exposure to risk that are more

acceptable to them, given their investment objectives and contraints. For CDX North

American Investment Grade (CDX.NA.IG), there are five tranches: an equity tranche

0− 3%, a junior mezzanine 3− 7%, a senior mezzanine 7− 10%, a senior 10− 15%, and

a super senior tranche 15 − 30%. For example, suppose an investor holds a 7 − 10%

senior mezzanine tranche of CDX.NA.IG. If there are a sufficient number of defaults for

the losses to exceed the subordination of 7% over the life of the tranche, the investor

will only realize a principal loss and will lose all the principal when the losses reach the

upper limit of the tranche of 10%2.

2The indices trade at a fixed coupon, which is paid quarterly by the buyer of protection on the
index, i.e. a short index position, and upfront payment are made at initiaion and close of the trade to
reflect the change in price. Correspondingly, the protection seller, or buyer of the index, receives the
coupon. (Markit Credit Indices: A Primer)
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The composition of each index is reconstituted and determined by member banks on

March 20th and September 20th of each year semiannually. March 20th and September

20th are referred to as the index roll dates. The member banks which help compose

and price the index include thirteen major international banks: Bank of America, BNP

Paribas, Barclays Capital, Citibank, Credit Suisse, Duetsche Bank, Goldman Sacks,

HSBC, JPMorgan, Morgan Stanley, RBS, USB, and Well Fargo. The new rollout of

the CDX indices during September 2009 is designated as CDX Series 13. Although the

previous series continues to trade, most of the market liquidity tends to be concentrated

on the most recent series which is referred to as on-the-run. In addition, if a credit is

initially included in a series, the name is not removed from a given series as long as the

CDS protection credit event has not been triggered.

The most actively traded index among the CDX indices is the CDX North American

Investment Grade (CDX.NA.IG). The Investment Grade means that the companies

included in the index are highly expected to meet the payment obligations on their

outstanding debt. Basically, the index measures the average CDS spreads of all the

index dealers. CDX.NA.IG index consists of 125 CDSs of North American companies

with an investment-grade rating. The 125 corporate names in the index are equally

weighted within the index (i.e. 0.8%). If a name is excluded from a given series due to

a credit event, the weight may change.

The mechanism of the CDX indices is slightly different from that of a single name

CDS. In a single name CDS, a protection buyer pays a swap premium. If a credit event

occurs, the swap premium payment ceases in the case of a single name CDS. However,

in the CDX indices, the protection buyer also pays the protection seller the initial price

of the index on a given notional amount of the index. If the index value changes over the

next 90 days (a quarter), the protection buyer will make a payment to the protection

seller equal amount of the present value of change in the value of the index over the

remaining life of the contract. When a credit event happens, the protection buyer

continues to pay the swap premium but it is based on a reduced notional amount since

less reference entities are being protected, and there is typically physical settlement.
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The protection buyer gives the protection seller a face amount of the defaulted debt

which is equal to 0.8% of the original notional value of the index purchased, and then

the protection seller will deliver an equal amount of cash.

If a new protection buyer enters into the existed CDX indices after an inception of

a new series of CDX, it requires the exchange of an up-front payment representing the

probability weighted present value difference between the current market value of the

CDX and the initial deal value of the CDX. In addition, upon entering the CDX the

protection seller pays the accrued premium from the last payment due to the settlement

date in order to receive a full 90 days of premium on the next payment date.
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A.4 History of Regulation and Deregulation of the U.S. Financial Mar-

kets

In 1863, the Federal Government which was short of cash as a result of Civil War formed

the National Bank Act, which established a system of national charters for banks that

would have authority to issue their own currency so long as it was backed by holdings

in U.S. Treasury bonds. The law was completely rewritten as the National Banking

Act of 1864 and the Act formed the Office of the Comptroller of the Currency (OCC)

with authority to charter and examine national banks.

In 1907, a failure of the scheme to corner United Copper Company via short-selling

led bank-run in the New York City banks which lent money for the scheme, and the

bank-run extended across the nation. As a response to the panic, the 1913 Federal

Reserve Act set the Federal Reserve System (Fed) as a central bank and lender of last

resort.

During the Great Depression, beginning in 1929 and bottoming in 1933, about 5000

banks failed and the U.S. stock market crashed. As a response to the failure of the finan-

cial market, the regulatory structures were erected by President Roosevelt–including

the creation of the Securities and Exchange Commission (SEC) as the primary regulator

of the U.S. security market, the establishment of banking oversight, the guaranteeing

of bank deposits by creating the Federal Deposit Insurance Corporation (FDIC) and

the passage of the Glass-Steagall Act.

The Glass-Steagall Act of 1933 was denoted as a comprehensive piece of regulation

reform which separated commercial banking from investment banking since the bankers

invested vigorously in the market, loaned money to speculators to invest, and even

loaned their depositors’ money to companies in which they were invested (Mullin).

Through several legislations mainly based on these regulatory structures, commercial

banks, investment banks, and insurance companies had been separate, and they had

oversight from separate regulators – the Fed and OCC for commercial banks, the SEC

for investment banks, and state regulators for insurance companies. The financial
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regulations did not clarify the definition of derivatives as securities 1) because during

the 1930’s, futures markets were not significant, and existed primarily for transacting

agricultural products, and 2) because the emergence of the active over-the-counter

(OTC) derivatives markets were not anticipated in that era.

As time went on, dramatic growth in the over-the-counter (OTC) derivatives market

induced a need for clarifying a regulatory authority to oversee the undefined OTC

derivatives market under the Glass-Steagall Act. A 1982 amendment to the Securities

Exchange Act of 1934, known as the Shad-Johnson Accord, specified that options on

securities or baskets of securities were to be regulated by the SEC; however, this left the

parts not regulated by the SEC such as forwards, swaps, derivatives on interest rates or

foreign exchange. The Commodity Futures Trading Commission (CFTC), which was

established under the 1974 Commodity Exchange Act (CEA), took a role to oversee

the left derivatives; forwards, swaps, derivatives on interest rates or foreign exchange.

The CFTC assumed exclusive jurisdiction to regulate commodity futures and options.

Hence, according to 1982 amendment, Congress clarified the jurisdictions of the SEC

and the CFTC over security-based options and futures. The accord granted to the

SEC sole authority to regulate options on securities, certificates of deposit and stock

groups, and to the CFTC an authority to regulate futures and options on futures on

exempted securities and broad-based indices. In spite of the expanded definition of a

commodity through the Accord, the SEC and the CFTC have still battled over holding

jurisdictional reins. Futures on individual stocks is one of examples which created a

conflict for jurisdictions for the SEC and the CFTC since futures on individual stocks

were not clearly defined in which institutions should oversee. In order to allow the SEC

and the CFTC the time to resolve regulatory and philosophical differences, the Accord

prohibited the sale of futures on single stocks and on narrow-based indices.

Since it has not been clear whether OTC financial derivatives fall under the juris-

diction of the CFTC, the CFTC hesitated to regulate the OTC derivatives market, and

the CFTC’s intervening to the market was not welcomed by market participants. In

the early 1990s, the CFTC exempted swaps from regulation; however, the questions
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from unclarified terms of the OTC derivatives was still not resolved.

As the financial market developed, not only did the OTC derivatives market ex-

plode, but the Glass-Steagall separation of investment and commercial banking was

also gradually eroded. By the Financial Services Modernization Act of 1999, known as

the Gramm-Leach-Bliley Act, the Act created Financial Holding Companies (FHCs)

which may hold commercial banks, investment banks and insurance companies. Re-

moving the barrier between investment and commercial banking, maintained since the

Glass-Steagall Act of 1933, was dramatic transformation; however, the regulatory trans-

formation to oversee the new structure was not created. With the previous acts, each

industry was under the regulation of separate regulators; however, under the act, instead

of a overall regulator which oversee the new FHCs that combined all three industries,

a functional approach was adopted. The Fed and OCC oversee the commercial bank-

ing functions of FHCs. The SEC oversees the investment banking function, and state

insurance regulators oversee the insurance functions.

Banning on the sale of single-stock futures and futures on narrow-based stock in-

dices since the Shad-Johnson Accord of 1982 led concerns that it would drive the market

overseas such as Sydney, Hong Kong, OM Stockholm and Montreal whose exchange of-

fered single stock futures products. And it needed to resolve the legal ambiguity of

jurisdictions between the SEC and the CFTC. In 2000, Congress passed the Commod-

ity Futures Modernization Act (CFMA) which provided resolutions for concerns about

the competitiveness of the U.S. financial market and the ambiguous jurisdictions. Most

importantly, the CFMA was from a call for setting out the liberated market conditions

under which derivative financial products could be legally traded in the OTC market

with lax regulations. The legislations have evolved through transforming markets into

regulated markets or free markets with reflecting different ideas between paternalism

and libertarianism repeatedly. When the Securities Act of 1933, the Securities Ex-

change Act of 1934, and the Glass-Steagall Act of 1933 were enacted during the Great

Depression, the market was more under the government’s protection; when the Gramm-

Leach-Bliley Act, which repealed the separation between commercial and investment
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banking since the Glass-Steagall Act, was signed into law during the boom of 1999, the

market was liberated from regulations. The Gramm-Leach-Bliley Act and the CFMA

were a result of reflecting the idea intrinsically that we can believe the market adjusts

itself.

The idea that the market can regulate itself goes back to the Reagan administration

which had a strong belief about the free market, deregulation, and balanced budgets.

The two representative acts of the deregulation in the financial market, the Gramm-

Leach-Billey Act of 1999 and the Commodity Futures Modernization Act (CFMA) of

2000, are the products reflecting the trend in economics and business philosophy that

the free market will bring efficiency and self-regulation through competition, and that

the regulation is an impediment to the working of the free market. Although the Garn-

St. Germain Depository Institutions Act, signed by Reagan, deregulating savings and

loan institutions and providing the institutions more flexibility in operations in order to

vitalize the depressed housing industry, turned out to be one of main factors that led to

the savings and loans crisis of the 1980s, the trend of the free market and deregulation

gained a great weight backed by many powerful people in the financial industry e.g.

Alan Greenspan, a former Chairman of the Federal Reserve, Arthur Levitt Jr., a former

Chairman of the SEC, Phil Gramm, a former U.S. senator, and so on.

The CFMA clarified the regulatory and supervisory roles of the SEC and the CFTC

by excluding all OTC derivatives from the CFTC’s jurisdiction. Hence, the OTC deriva-

tives market was to remain largely unregulated. The sale of single stock futures and

futures on narrow-based indices, prohibited by the Shad-Johnson Accord of 1982, was

allowed. In order to clarify the jurisdiction about security futures products, the CFMA

granted the SEC and the CFTC the joint rules over futures on single stocks and narrow-

based stock indices: futures contracts on broad-based indices remained under the ex-

clusive jurisdiction of the CFTC. It is obvious that the CFMA gave the derivatives

market flexibility that required to foster innovation: the total OTC derivatives market

had exploded to $ 600 trillion, increasing 826% in 10 years according to BIS statistics.
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The CFMA created a shadow banking system, which consists of non-banking fi-

nancial institutions outside the government oversight that play an increasingly critical

role in lending businesses the money necessary to operate. Shadow banking institu-

tions typically act as intermediaries between investors and borrowers. For example,

an institutional investor like a pension fund may be willing to lend money, while a

corporation may be searching for funds to borrow. The shadow banking institution

will channel funds from the investors to the corporation, profiting either from fees or

from the difference in interest rate. Since shadow institutions do not accept deposits

like a depository bank and therefore are not subject to the same regulation. Familiar

examples of shadow institutions are Bear Stearns and Lehman Brothers. Other com-

plex legal entities comprising the system include hedge funds, Securitized Investment

Vehicles, conduits, and investment banks. According to Mr. Geithner, a secretary of

the U.S. Treasury, by 2007 more than half of America’s banking was being handled by

a “shadow banking” of largely unregulated institutions. And the unregulated shadow

banking system, together with the CDSs which are the primary financial instruments

behind the near collapse of AIG and Bear Stearns, has been assumed to contribute to

the credit crunch.
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