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ABSTRACT OF THE DISSERTATION

Molecular Simulation of Simple Fluids and Polymers in Nanoconfinement

By CHRISTOPHER JOHN RASMUSSEN

Dissertation Director:

Alexander V. Neimark

Prediction of phase behavior and transport properties of simple fluids and polymers

confined to nanoscale pores is important to a wide range of chemical and biochemical en-

gineering processes. A practical approach to investigate nanoscale systems is molecular

simulation, specifically Monte Carlo (MC) methods. One of the most challenging problems

is the need to calculate chemical potentials in simulated phases. Through the seminal work

of Widom, practitioners have a powerful method for calculating chemical potentials. Yet,

this method fails for dense and inhomogeneous systems, as well as for complex molecules

such as polymers. In this dissertation, the gauge cell MC method, which had previously

been successfully applied to confined simple fluids, was employed and extended to investigate

nanoscale fluids in several key areas. Firstly, the process of cavitation (the formation and

growth of bubbles) during desorption of fluids from nanopores was investigated. The depen-

dence of cavitation pressure on pore size was determined with gauge cell MC calculations

of the nucleation barriers correlated with experimental data. Additional computational

studies elucidated the role of surface defects and pore connectivity in the formation of cav-

itation bubbles. Secondly, the gauge cell method was extended to polymers. The method

was verified against the literature results and found significantly more efficient. It was used

to examine adsorption of polymers in nanopores. These results were applied to model the

dynamics of translocation, the act of a polymer threading through a small opening, which is

implicated in drug packaging and delivery, and DNA sequencing. Translocation dynamics

was studied as diffusion along the free energy landscape. Thirdly, we show how computer

simulation of polymer adsorption could shed light on the specifics of polymer chromatog-

raphy, which is a key tool for the analysis and purification of polymers. The quality of

separation depends on the physico-chemical mechanisms of polymer/pore interaction. We
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considered liquid chromatography at critical conditions, and calculated the dependence of

the partition coefficient on chain length. Finally, solvent-gradient chromatography was

modeled using a statistical model of polymer adsorption. A model for predicting separation

of complex polymers (with functional groups or copolymers) was developed for practical

use in chromatographic separations.
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Chapter 1

Introduction
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1.1 Motivation

Fluids confined to nanoscale pores exhibit very different physics and thermodynamics than

their bulk counterpart. This is due in part to strong adsorptive forces (which give rise to

the capillary effect [5, 6]), and high surface to volume aspect ratio [7]. Understanding how

these factors affect macroscale properties of materials is crucial for their successful design,

characterization, and production. Because of the characteristic scale of such systems (≤ 1

nm to 50 nm is typical), is difficult to observe the relevant mechanics that are necessary to

fully describe and understand such systems. Atomistic simulation can help fill this gap of

knowledge. Methods such as molecular dynamics (MD) and Monte Carlo (MC) simulations

model atoms or groups of atoms as particles that obey classical mechanics, and interact with

each other by empirical potentials. These methods give immense detail on the mechanics

and thermodynamics of nanoscale systems.

A primary goal of molecular simulation is the calculation of a component’s chemical

potential and free energy. The free energy is a thermodynamic state function, and its minima

define stable and metastable states within the system. Thus, its prediction is crucial when

dealing with vapor-liquid phase equilibria, nucleation, protein folding, crystal topography,

and polymer chromatography and other physio-chemical separation techniques. Widom [8]

formulated a powerful method to “measure” the chemical potential in molecular simulation.

However, this method fails at high densities and for extremely inhomogeneous phases, as

well as for complex molecules such as polymers. One method developed to overcome this

drawback is the mesocanonical ensemble, also known as the gauge cell method [9, 10]. It is

the application and extension of the gauge cell method that is the key to this dissertation

work.

The first part of this dissertation focuses on the behavior of fluids in nanopores, specifi-

cally relating to the formation of cavitation bubbles and their role in the desorption of fluid

from pores. Cavitation is the spontaneous formation and growth of bubbles in a liquid.

It is observed when a confined liquid is significantly blocked upon desorption, as occurs in

pores with very narrow connecting necks; as the external pressure is reduced, the confined

liquid becomes metastable and eventually reaches its fracture point. This is characterized
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by a specific desorption pressure on the isotherm. In this work, a combined experimen-

tal and simulation approach studies the relationship of pore size on the pressure at which

cavitation occurs. Gauge cell MC studies determine the nucleation barrier of the critical

cavitation bubble. Additional computational studies examine the role of heterogeneous de-

fects of the pore wall on the cavitation pressure, and how overlapping spherical pores affect

the mechanism of desorption and pressure of cavitation.

The second part of this dissertation extends the gauge cell to polymer chains. Be-

cause of the general complexity of a polymer molecule, the Widom method fails completely.

Many ingenious approaches have been suggested to overcome this, but they each have draw-

backs. We extend the gauge cell method by utilizing the incremental approach of Kumar et

al. [11], which calculates the chemical potential in increments of single monomers. Kumar’s

approach enables calculation of the chemical potential for chain molecules, but with the

same caveats as Widom’s method, i.e. it fails for high density and highly structured fluids.

The gauge cell helps overcome these problems. The new method, called the incremental

gauge cell, is derived, implemented, and validated, and found to be an order of magnitude

more efficient. We use the new method to study the adsorption of chains in nanopores.

This study is further extended to investigate translocation, or the threading of a polymer

chain through a very small hole. Translocation is implicated in many important biological

processes, such as DNA/RNA transport, movement of proteins and polypeptides through

membranes, the mechanism of viral attack on cells, advanced drug packaging and deliv-

ery, and DNA and protein sequencing. We study translocation dynamics by modeling it

as one-dimensional diffusion along the free energy landscape, which is calculated by the

incremental gauge cell method.

The third part of this dissertation deals with the practical problem of polymer separa-

tion. A common technique for polymer purification and separation is polymer chromatog-

raphy [12]. Traditionally, separation is achieved by steric interaction of dissolved polymers

with a porous substrate. Thus, polymers are separated according to their hydrodynamic

volume. Interaction chromatography, which separates by their adsorptive interaction with

the substrate, is limited to relatively short chains, as the interaction scales strongly with

length. When these two phenomena (steric repulsion of large molecules in pores, and en-
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thalpic attraction to the porous substrate) are balanced, the critical point of adsorption

(CPA) is reached. At CPA, molecules are not separated by size (i.e. length), but by more

subtle structural motifs, such as topology, the presence of functional groups, and monomer

composition. Operating a chromatography column at such conditions (called liquid chro-

matography at critical conditions, or LCCC) is difficult, and there are no general models

capable of predicting a polymer’s CPA given solvent, substrate, and temperature. To this

end, we show how the incremental gauge cell method might be used to predict CPA for a

given set of conditions. A practical alternative to LCCC is the so-called gradient-elution at

critical point of adsorption (GE-CPA) chromatography [13]. In this approach, the solvent

quality is varied at a know rate, so that the dissolved polymers pass through the critical

point. Using this method, one can separate complex polymers by structure and not weight.

However, because a detailed theory of the separation mechanism does not exist, interpreting

results is ambiguous, and designing experiments is a difficult, trial-by-error process. For

these reasons, an extension of Brun’s GE-CPA model [14, 15] was developed for complex

polymers, and was tested against experimental results for functionalized polymers.

The rest of this dissertation is organized as follows. A short, general background on

adsorption phenomena, polymer science, and molecular simulation is given in Section 1.2.

Chapter 2 is a review of previous methods used to calculate the chemical potential of poly-

mers in MC simulation, and their respective strengths and weaknesses. Chapter 3 contains

three works on cavitation in nanopores: Section 3.1 details a combined experimental and

simulation approach that determined the dependence of nitrogen cavitation pressures on

the size of spherical silica pores, while gauge cell MC studies estimated the corresponding

nucleation barrier. Section 3.2 uses a heterogeneous adsorption potential to model a surface

defect, and the effect of the defect’s size on cavitation pressure is discussed. Section 3.3

connects two adjacent spherical pores, and quantifies how the degree of their overlap af-

fects cavitation as the desorption mechanism. Chapter 4 focuses on a new method that

was developed to calculate the chemical potential of polymers, the incremental gauge cell

method, and its practical applications. Section 4.1 gives a detailed derivation and discusses

its foundation in the gauge cell method, and initial results of polymer adsorption in spher-

ical pores. Section 4.2 examines polymer translocation into an adsorbing pore using the
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new method. Section 4.3 uses a statical model for the adsorption of complex polymers to

model gradient-elution chromatography. Conclusions and the potential for future work is

discussed in Chapter 5. Finally, the appendices give additional, detailed derivations of the

incremental gauge cell method (A), as well as the code used for most MC work (B) and for

the gradient-elution work (C).

1.2 Background

1.2.1 Behavior of fluids in nanoconfinement

The physics of nanoconfined fluids has been a long and well studied problem [16–20]. This

work centers around the physical process known as adsorption, the accumulation of fluid

particles from one phase onto a solid that is in contact with said phase. There are many

practical consequences of this process, such as separations, purification, catalysis, nanoflu-

idics and drug delivery. The primary application, and the motivation for much of the

scientific research on the topic, is material characterization. When a fluid is in contact with

a most solids, the fluid is adsorbs onto the solid’s surface. A volume where the adsorbed

fluid (adsorbate) is surrounded by at least two solid walls is considered a pore (the material

containing pores is the adsorbent). Adsorption in pores is more energetically favorable, as

the surface area of attractive pore walls increases. As the pore volume decreases (e.g. the

two walls are brought closer to each other), the more strongly the fluid adsorbs, for the

same reason. The interest in nanopores (where the distance between pore walls, or the pore

diameter, is ∼0.5–100 nm) is due to the fact that at this scale, the number of molecules at

the solid-fluid interface is on the same order as total molecules in the system, and thus its

thermodynamic properties can be expected to deviate markedly from the bulk properties.

Because these properties are a product of the solid-fluid interface, the pore’s geometry and

size can be expected to influence the final state of the system as well.

The amount of fluid adsorbed depends on the compositions of the adsorbate and ad-

sorbent, as well as the temperature and partial pressure of the external bulk fluid which is

in contact with the porous material. Generally speaking, as gas molecules are adsorbed, a

liquid film forms on the pore walls. This is indicated on an isotherm by a step up in density
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at low pressures. This layer grows thicker as external pressure increases. Though the layer

is considered a liquid, thermodynamically speaking, the fluid in the pore is considered as a

“vapor-like” state or a low-density state. At some point, the fluid condenses, and a sharp

step is observed on the isotherm. The fluid in the pore is then in a “liquid-like” state (see

Fig. 1.2 and 1.5).

Because of the attractive pore walls, the condensation of the adsorbate will occur below

the saturation pressure of the bulk fluid and is called ‘capillary condensation.’ The shifted

pressure of condensation (pc) is a hallmark of finite volume systems. This pressure pc

occurs higher than the vapor-liquid equilibrium pressure (pe), but lower than the vapor

phase limit of stability (vapor spinodal point, pSV ). In this region of pe < p < pSV , the

vapor is considered in a metastable state. Once the fluid has condensed and filled the pore,

we can begin to lower the external pressure. Before the fluid evaporates back to a vapor state

(desorption) at some pressure pd, we observe a liquid metastable state. For an illustration

of these regimes, see Figures 1.2 and 1.5, and a further description in §1.2.4. Together,

these phenomena (capillary condensation and delayed desorption) produce a reproducible

hysteresis in phase transition pressures that is characteristic of porous materials [21, 22].

That is to say, these metastable states delay condensation and evaporation from the true

vapor-liquid equilibrium (VLE). A metastable liquid is essentially overstretched, and is

stabilized (on the time scale of experiments) by the strong attractive potential of the pore

wall. The extent of hysteretic behavior, as well as other isotherm features, can be used to

characterize the porous solid [23].

1.2.2 Porous materials

Porous solids encompass a huge cross section of materials. These range from natural mate-

rials such as coal, zeolites, and pumice stone to highly ordered synthetic materials derived

from template chemistry. Any solid material with a large fraction of void space can be con-

sidered a porous solid. These materials have uses that are too numerous to count. This work

will focus on two applications that are fundamental to both theory and practice: porous

material characterization and chromatographic stationary phase.

A single sample of porous material can contain a wide distribution of pore sizes, as well
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as differing geometries. Structures can vary from amorphous crystalline materials where

the pore volume is highly irregular voids between crystals, to symmetric, uniform pore

size distributions possible through precursor chemical templates [24, 25]. The latter class

of materials is of high interest. This is because materials with a very narrow pore size

distribution come close to the theoretically ideal case of a single pore in simple geometry.

Thus, with the discovery of such uniform structures, theoretical and computational methods

can be tested and verified experimentally.

dp = 5 to 30 nm

dn < 5 nm

Wide

spheroidal 

pore

Narrow

cylindrical 

neck

Figure 1.1: A schematic of a pore network
with ink-bottle type pores where cavitation
occurs.

p/p0

A
d

so
rb

ed
 f

lu
id

 d
en

si
ty

, 
ρ

cavitation

pore 

blocking

capillary 

condensation

vapor-liquid 

equilibrium

formation of 

monolayer

Figure 1.2: Sketch of an isotherm with ap-
proximate pressures of condensation, equilib-
rium and evaporation.

A tool central to the characterization of such materials is adsorption measurement. A

small amount of a porous material is placed in an enclosed glass sample vial. The sample

is then heated to de-gas it, and flushed with an inert gas such as helium, then placed in

a heat bath. Each point on the isotherm is measured by introducing a known amount of

adsorbate gas and measuring the pressure in the sample vial after an equilibration period.

The resulting isotherms can reveal a great deal of information about the materials’ porous

structure. Early methods used to interpret these isotherms, such as BET surface area [26],

were based on classical thermodynamic theory and idealized Langmuir isotherms. Recently,

more accurate methods based on non-local density functional theory (NLDFT) have been
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introduced [23, 27–29] and have enjoyed widespread use, as well as a recent inclusion to the

ISO standards for porous materials characterization [30]. This method involves creation

of a kernel of isotherms of many pore sizes, for a given solid and geometry using NLDFT.

The pore size distribution (PSD) can be back-calculated by comparing an experimental

isotherm to the NLDFT kernel. Porous materials are classified by their nominal pore

diameter; according to IUPAC standards [31], a micropore is defined where dp < 2 nm, and

mesopore is where 2 nm < dp < 50 nm, and a macropore is where dp > 50 nm.

The mechanism by which desorption occurs depends mainly on geometry of the pore.

In long, cylindrical pores open to the bulk, desorption occurs at pe via a receding meniscus.

In materials with so-called “ink-bottle pores,” the pore structure is usually a complicated

network of small channels (“necks”) connecting larger cavities to each other (Fig. 1.1). In

such a system, desorption primarily occurs by two mechanisms: pore blocking percolation

or cavitation. The evaporation of the condensate from a network of ink-bottle pores is

hindered by the interconnected pore passages. In this case, desorption from the pore body

may occur only after emptying of its neck. In other words, desorption from the neck triggers

evaporation in the blocked pore. Thus, the pressure pd of desorption from the pore body

depends on the neck size and network connectivity. The onset of evaporation from the

pore network is associated with the percolation threshold and the formation of a continuous

cluster of pores open to the external surface [32–34]. The percolation mechanism is observed

in pore networks with sufficiently large necks. Theoretical and experimental studies [35, 36]

have revealed that if the neck diameter is smaller than a certain critical size (estimated to be

ca. 5 nm for nitrogen at 77.4 K), the mechanism of desorption from the pore body involves

cavitation, the spontaneous nucleation and growth of gas bubbles in the metastable fluid

condensed in the pore, while the neck remains filled. In this case, the desorption transition

pressure pd does not depend on the size of pore necks and is determined by the properties

of the adsorbate, and the size and shape of the pore body. Both desorption mechanisms,

percolation and cavitation, originate from geometrical pore blocking; however, the physical

mechanisms and the pore size dependence are quite distinct. The pore blocking effects

cause a “delay” in desorption (Fig. 1.2), i.e., desorption occurs at vapor pressure below

that of the equilibrium vapor-liquid transition in the given pore (pd < pe). Thus, in the
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course of desorption, one observes long-living metastable states of condensed fluid that is

overstretched due to the action of capillary pressure.

1.2.3 Polymer physics

Polymer physics encompasses several fields and many decades of work. However, in light of

this thesis, we are mainly interested in the statistical mechanical branch of polymer theory,

and its application to the adsorption of polymers, i.e. in chromatography.

Freely-jointed chains

A freely-jointed ideal, or Gaussian, chain is the simplest model one can use when describing

the statistical nature of chain molecules [37]. It consists of n monomer units connected with

rigid bonds of the same length l. The polymer is assumed to behave as a random walk. No

restrictions are placed on bond angles or torsion angles. Monomers are non-interacting, and

can occupy the same volume. Although simple, this model is crucial to the field of statistical

polymer physics, and several important results follow from the model in the thermodynamic

limit. The most relevant to this work is relation of a chain’s end-to-end distance and its

radius of gyration to its chain length n,

〈
R2
E

〉
= nl2 (1.1)〈

R2
G

〉
=
〈
R2
E

〉
/6 (1.2)

where end-to-end distance and radius of gyration are defined respectively as

R2
E = (r1 − rn)2 (1.3)

R2
G =

1

2n2

∑
i,j

(ri − rj)
2 (1.4)

The freely-jointed ideal chain was mainly derived as statistical model that characterizes

polymers at certain length scales, not give specific information regarding any particular poly-

mer species. A modification of the freely-joined chain is to assign potentials to monomers,

such as hard core, square well or Lennard-Jones. This work will use the Lennard-Jones
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variant, since the goal is to produce realistic molecular models.

Theta transition

Long polymer chains exist freely in two states: the globule and the random coil [38]. A

globular state occurs when intra-molecular (monomer-monomer) attraction is greater than

the entropic penalty for a collapse to a denser state. Conversely, a random coil is observed

when thermal motion overcomes the attraction between monomers. A random coil can be

modeled as a self avoiding walk in the athermal limit [39]. A globular polymer is the chain

molecule analogy to a simple fluid condensing into a droplet, while the random coil would

be gaseous if the monomers were not tethered together. A state exists between these two

extremes where attractive interactions are balanced by entropic repulsions; it is called the

theta (θ) point. The state a chain assumes is determined by its temperature, and if in

solution, by its solvent.

Theta transitions can be characterized by how a chain’s radius of gyration (Eq. 1.4) scales

with increasing chain length n [37]. In higher temperature systems, chains are well above the

θ transition, which means that the chain accepts a self-avoiding random coil configuration

manifested by the RG ∝ (n − 1)0.59 dependence between the radius of gyration RG and

the chain length n. In other words, we can say that the polymer is dissolved in a good

solvent. For chains below the θ point, which means that polymer-polymer interactions are

more favorable than polymer-solvent ones; this effective attraction between the monomers

prevails over the entropic penalty for collapse, and the polymer comprises into a globule with

RG ∝ (n − 1)1/3. At the θ temperature, the entropic contribution (favoring an expansion

into a self-avoiding coil) and enthalpic contribution (favoring a contraction into a globule)

approximately cancel each other, and the polymer effectively behaves like a Gaussian chain

(one with no intermolecular potential), RG ∝ (n − 1)1/2. The θ temperature for a freely-

jointed LJ polymer is estimated as T ∗ = 3.18 when considering short range interactions

(rc < 2.5σ) [39].
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Adsorption and chromatography

Polymer adsorption is observed in a wide range of fields, for example in hydrocarbon sep-

arations, biological systems (protein and DNA translocation), colloidal stabilization and

surfactants, just to name a few. However, a main interest of this thesis is separations via

chromatography. Chromatography is a technique based on the differing interactions of cer-

tain components in a mixture with some stationary phase. A very general description of

a separation using chromatography follows: the target mixture (called the solute) is added

to a solvent (the eluent). The eluent is then injected into a chromatographic column con-

taining the stationary phase. This is can be some adsorbent material such as silica particles

or highly cross-linked polymers, and is selected based on operating parameters and known

chemistry of the solute and solvent. A pressure gradient is then applied to the column.

Each component of the original mixture is eluted (expelled from the column) at a different

rate depending on its interaction with the stationary phase. The time each component

spent in the column is called the retention time. Chromatography is an important tool

in biochemical and analytical chemistry, as well as in the petrochemical industry a unit

process.

Many different varieties of chromatography are in use, depending on experimental setup

and substance under analysis. Separation of polymers by molecular weight is performed

using size-exclusion chromatography (SEC). This method does not depend on adsorption

interactions between the mobile and stationary phase, but only the entropic replusion of

confining a polymer in pores (found in the stationary phase). If the desired separation mode

is not molecular weight, one must utilize adsorptive chromatagraphy. In this method, the

solute does interact with the stationary phase, and this interaction can be tailored using

several parameters such as type and concentration of solvent [14, 15] (see Fig. 1.3).

The transition from SEC (dominate repulsive forces) to adsorptive chromaography (dom-

inate adsorption forces) is called the critical point of adsorption (CPA) [12]. CPA is defined

as the point where steric, entropic forces are balanced by attractive, enthalpic attractive

forces. With liquid chromatography at the critical conditions (LCCC), retention times do

not depend on the molecular weight of the solutes. Thus, the process can be tailored to
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Figure 2: Isocratic elution of narrow polystyrenes at Nova-Pak® C18 column (numbers correspond to 

               molecular weights of the polymers). Mobile phase: (a) THF, (b) THF – ACN (45/55, v/v).  
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Figure 1.3: Effects of solvent on polymer chromatography. Changing solvent in the mobile
phase can result in (a) the largest MW to be eluted first, (b) the smallest MW to be eluted
first, or (c) no dependance on MW. Data from Ref. [13]
.

separate components based on chemical composition and other structural properties. A

major obsticle for widespread implementation of CPA based chromatography is the inablity

to predict under which conditions it will occur.

1.2.4 Computational methods of study

A nanopore (of say dp ≈ 10 nm) filled with an adsorbing fluid such as nitrogen or argon

would contain up to 10,000 molecules. The tools relevant to the scale of such a problem

would be molecular dynamics (MD) or Monte Carlo (MC) simulations. These methods

employ an either an atomistic or united-atom model. For adsorption studies, MD is often

of little use. This is because MD can only sample a finite time frame, and one that is

usually very short (on the order of picoseconds). To reach an equilibrium point on an

adsorption isotherm, long experimental times are required (at least several minutes). Thus,

we choose MC to simulate the adsorbate/pore system. In general, an adsorbate is modeled

as a Lennard-Jones (LJ) sphere, and the pore body is modeled as a single pore with a

simple geometry (sphere, cylinder, etc.) that interacts with the adsorbate molecules via a

mean-field type, integrated LJ potential [27, 40].

Because our goal is a detailed understanding of equilibrium phase of confined fluid,

knowledge of the system’s free energy is crucial. Free energy and chemical potential are

considered thermal quantities, rather than mechanical quantities [41]. In general, mechan-

ical properties such as pressure and internal energy are relatively simple to calculate in a
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computer program. Thermal quantities such as entropy, free energy and chemical potential,

are much more difficult as they are usually functions of the partition function and thus

of the system’s phase space. Although they cannot be directly calculated, many innova-

tive methods are available for the practical calculation of free energy or chemical potential.

Several basic ones are described below.

Thermodynamic integration

Perhaps the most straight-forward approach to the calculation of thermal quantities is

thermodynamic integration. To calculate free energy by thermodynamic integration, one

must construct a reversible path from a state with known free energy (the reference state),

and integrate along it. It is useful to see the derivation. In an adsorption system, the fluid

confined in the pore is (i) in equilibrium with a fixed bulk fluid phase (constant µ), (ii) held

at a constant temperature as an isotherm is measured (constant T ) (iii) in a pore where the

walls are assumed to be rigid (constant V ). This is considered a grand canonical ensemble

(see Fig. 1.4, top, for a schematic), and the applicable thermal quantity (the value that

will be minimized to obtain an equilibrium state) is the grand potential Ω. Written as a

Fundamental Equation,

Ω = U − TS − µN = F − µN (1.5)

This can be written in the differential form as

dΩ = −SdT − pdV −Ndµ (1.6)

Applying the conditions mentioned above (constant V, T ) results in the Gibbs adsorption

equation:

N = −
(
∂Ω

∂µ

)
V,T

(1.7)

Thus, if an isotherm N(µ) has a continuous path from some known reference state r to

some other point of interest a, we can easily calculate the grand potential along this path,

Ω(µa)− Ω(µr) = −
∫ µa

µr

N(µ)dµ (1.8)
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A similar approach is used to determine the phase coexistence. Thermodynamic inte-

gration along the continuous isotherm N(µ), and the vapor-liquid equilibrium (line B − F

in Figure 1.5) is determined Maxwell’s rule of equal areas,

∮
µe

N(µ) = 0 (1.9)

In other words, if line B−F is the equilibrium point, areasD−SL−F−D and B−SV −D−B

of Fig. 1.5 must be equal. Maxwell’s rule has been proven to be legitimate for bulk phase

equilibrium [42].

Chemical potential in Monte Carlo

Above, it is shown that the ability to calculate a continuous pathway from a reference to

a target state allows for the determination of the free energy at that point. For the case

we’re interested in, it is most useful to calculate the Gibbs isotherm (Eq. 1.7). One of

the first and simplest methods for meansuring chemical potential in MC simulations was

introduced by Widom in 1963 [8]. It involves inserting a trial or test particle that interacts

with the system, but not allowing that test particle to influence the system. The chemical

potential potential is then related to the average potential energy interaction ‘felt’ by the

test particles. As this method is basis for the gauge cell method, a short derivation follows:

To derive the expression for chemical potential for a simple fluid MC system, we begin

with the canonical (constant NV T ) partition function,

Q(N,V, T ) =
1

Λ3NN !

∫
(V )
drN exp

[
−βΦ(rN )

]
, (1.10)

where N is the number of indistinguishable molecules, V and T are the system’s volume

and temperature respectfully, β = 1/kBT is the inverse temperature, Λ is the thermal

de Broglie wavelength, Φ is the sum of the various potential energy contributions (such

as intermolecular [LJ] and external [attractive pore walls]), and r is the set of position

vectors for the system in phase space. The so called “bridge” equation links the microscopic

partition function to the macroscopic quantity Helmholtz free energy (the thermal quantity
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relevant to this ensemble),

F (N,V, T ) = −kBT lnQ(N,V, T ). (1.11)

The applicable Fundamental Equation in differential form for this ensemble is

dF = −SdT − pdV + µdN (1.12)

Separating chemical potential from the Fundamental Equation gives us

µ(N) =

(
∂F

∂N

)
V,T

(1.13)

at constant V, T and in the thermodynamic limit N → ∞. For large N , this value can be

approximated by a finite difference:

µ(N) = F (N + 1, V, T )− F (N,V, T ). (1.14)

Note that either a forward or reverse difference is technically correct, however this choice

has serious practical consequences. Substituting Eq. 1.11 into Eq. 1.14 gives

µ(N) = −kBT ln[Q(N + 1, V, T )/Q(N,V, T )] (1.15)

Substituting the partition function (Eq. 1.10) into Eq. 1.15 and rearranging gives us

µ = −kBT ln

(
V/Λ3

N + 1

)
− kBT ln

[
1

V

∫
drN+1 exp

(
−βΦ(rN+1)

)∫
drN exp (−βΦ(rN ))

]
(1.16)

= µid + µex (1.17)

where the first part of Eq. 1.17 is the ideal chemical potential and the second is the excess

chemical potential, which is calculated by Widom’s method. If we define ∆φ = Φ(rN+1)−
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Φ(rN ), or the interaction energy of the N + 1 particle, we can finally rewrite Eq. 1.16 as

µex = −kBT ln

[
1

V

∫
V
drN+1 〈exp(−β∆φ)〉N

]
(1.18)

= −kBT ln 〈exp(−β∆φ)〉N (1.19)

where 〈· · · 〉 represents a canonical average, and the subscript N signifies constant N (in that

the test N+1 particle never influences the system). The integral in Eq. 1.18 means we must

compute the average over all particle positions for N+1 in volume V . Equation 1.19 is easily

calculated in the course of an MC simulation. The main disadvantage of Widom’s particle

insertion method is its failure at high molecular densities and with inhomogeneous systems.

At high densities, trial insertions are much more likely to overlap with another molecule,

thus contributing zero to the running average (as ∆φ is increasingly large, exp(−β∆φ) goes

to zero).

Many methods that expanded on Widom’s have been proposed, such as particle deletions

(the reverse difference of Eq. 1.14), multi-staged particle deletions [43], the bicanonical

ensemble [44], the overlapping distribution method [45], the multiple histogram method

[46], the acceptance ratio method [45], umbrella sampling [47], the method of expanded

ensembles [48], and others. Although Widom’s method is technically correct for dense or

inhomogeneous systems, it is practically unfeasible, as simulation times grow too large and

still result in large statistical uncertainties.

The gauge cell method

The mesocanonical ensemble, also known as the gauge cell method [9, 10, 49], models

equilibrium between the fluid in a pore sample system and a finite size reservoir of a limited

capacity; the so-called gauge cell. The two cells of constant volume are considered in thermal

and chemical equilibrium, maintained using particle exchange between them, somewhat

similar to grand canonical MC, where the system is allowed to exchange particles with an

infinite bulk at a constant chemical potential (Fig. 1.4). In the gauge cell, the total number

of particles, NΣ = Npore + Ngauge, is conserved. The gauge cell MC setup is referred

to as the mesocanonical ensemble; it approaches the canonical ensemble when the gauge
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cell is infinitely small (Vgauge = 0) and the grand ensemble at the infinitely large gauge

cell (Vgauge → ∞). The gauge cell fulfills two purposes: its limited size restricts density

fluctuations in the system, and it serves as a reference for finding the chemical potential

of the pore fluid (since the condition of equilibrium between the pore and the gauge is

the equality of chemical potentials). The suppression of fluctuations allows for simulations

of metastable and labile states, resulting in a continuous van der Waals’s type isotherm

that can be thermodynamically integrated. The backwards trajectory of unstable states

corresponds to unstable bubbles, which would spontaneously evaporate in an open system.

The gauge cell found numerous applications in simulation studies of phase transitions in

strongly heterogeneous systems. It has been employed in studies of capillary condensation in

various geometries [50–52], liquid bridge [53] and droplet nucleation [54], bubble cavitation

in metastable liquid [55], adsorption deformation [56] and the adsorption of surfactants

[57]. The gauge cell has been extended from its original formulation [9] to extremely small

confinements with the ideal gas gauge cell (IGGC) method [10], multi-component gauge cell

method for mixtures [49], coupling with Widom insertions [58], configurational bias [59, 60],

and more [61].

Grand canonical ensemble: µ, V, T are 

constant.  Fluctuations in N are not limited.

Gauge cell method: N + Ng, V, Vg, T are 

constant. Fluctuations in N are limited to N±Ng.

µ ~ ln(Ng/Vg)

Figure 1.4: Diagram comparing grand canon-
ical and gauge cell Monte Carlo.

µ
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H

Figure 1.5: Sketch of a canonical isotherm,
which can be calculated using the gauge cell
method.



18

The main advantage of the gauge cell is relatively efficient calculation of the canonical

isotherm. Recall from §1.2.4 with the isotherm N(µ) one can calculate the free energy

difference between two states with relative ease. Figure 1.5 shows a sketch of a canonical

isotherm that summarizes the preceding sections. At low µ, the pore is empty (point

A). Increasing µ (by increasing the external bulk fluid’s pressure) forms the monolayer of

adsorbed fluid (A − I). Adsorbate density continues increasing with µ. When µe < µ <

µSV , the fluid is in a metastable vapor-like phase (line B − SV ). In other words, in the

region of chemical potential greater than the vapor-liquid equilibrium, but before capillary

condensation, the adsorbate is in a metastable state. Capillary condensation occurs at

µc, or line C − G, in grand canonical ensemble MC (GCMC). By using the gauge cell,

the metastable branch can be extended to the limit of stability, the spinodal, where the

condensation barrier is zero. From the vapor spinodal, N(µ) follows a backward trajectory of

unstable, or labile, states (line SV −SL). Any of these states would immediately transition

to the vapor or liquid branch in an open system. From the liquid spidonal SL to the

equilibrium F is a liquid metastable state, followed by the stable liquid state (F −H). The

spontaneous desorption µd observed in GCMC is represented by line E − I.
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Chapter 2

Methods of Calculating Chemical

Potential of Polymers
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2.1 Introduction

Atomic-scale simulation of macromolecules has been a challenge spanning decades of work.

A particular difficulty is the calculation of a chain molecule’s chemical potential, and thus

the system’s free energy. The free energy is a crucial thermodynamic quantity that deter-

mines the system’s stability. Determining the free energy is necessary for many current

problems involving structured polymer systems. Examples of problems that require deter-

mination of polymeric chemical potential are numerous and wide-reaching. The prediction

of vapor-liquid equilibrium [62, 63] and thus development of an equations of state is a

classic example. Separation and purification of polymer is usually achieved by chromatog-

raphy, the theory of which is based on the free energy difference of dissolved and adsorbed

polymers [64]. Knowledge of the free energy is crucial when predicting the morphology of

nanostructured systems such as micelles, polymer brushes, and systems where self assembly

is key. Translocation, or the process by which a polymer moves through a small opening,

is implicated in many important biological phenomena such as DNA transport, viral in-

jection mechanisms, trans-membrane protein transport, and DNA sequencing. Theoretical

studies require the free energy landscape to model translocation [65]. The field of protein

folding and denaturing depends on highly accurate calculations to probe large free energy

landscape and find likely structures [66]. Advanced drugs and drug delivery and implicated

as well; biological drugs are proteinous in nature, and their stability in processing, storage,

and in vivo is crucial to their efficacy and marketability. Clearly, simulation of polymers

and calculation of their free energy encompasses many of today’s challenging problems.

One inherent difficulty encountered when modeling a polymeric system is large range of

relaxation times. For a typical polymer chain in noncritical conditions, pertinent relaxation

times range from 10−15 s for bond vibrations to 10−4 s for conformation change [67]. For this

reason, Metropolis algorithm [68] Monte Carlo (MC) simulations are well-suited to study

polymers. The stochastic nature of MC allows convergence to equilibrium state without

visiting every relaxation state along the way. Careful implementation allows for study of

dynamics as well [67].

In many cases of practical problems, a relatively detailed continuum model is required
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is capture relevant properties. As complexity increases, obtaining the chemical potential

and free energy from simulations becomes more challenging. The chemical potential of

a thermodynamic system is a thermal quantity, and cannot be measured directly (unlike

mechanical properties, such as pressure, volume, and particle count). Obtaining chemical

potential from simulation thus requires a diligent approach on part of the researcher. Due

to the large number of conformations a single molecule can attain, standard MC tools such

as Widom trial insertions are insufficient due to poor sampling. The need for sophisticated

equilibration and relative flexible that MC permits has led to a wealth of clever algorithms

in the literature over the last 30 years.

The goal of this work is to provide the reader with all available techniques for the

calculation (or equilibration) of chemical potential of polymer molecules in off-lattice MC

simulations. An emphasis is placed on standard models, i.e. pseudo-atomistic force fields

such as OPLS [62] or TraPPE [63], and for polymers in the melt or dilute solution limit.

The focus will be on standard ensembles: canonical (constant N, V, T ), grand canonical

(constant µ, V, T ), and the Gibbs ensemble [69] for vapor-liquid equilibrium. This paper

is not a comprehensive history of polymer simulation, which is far too rich and varied for

a single paper, nor is it a guide for the successful simulation and equilibration of polymers.

For that, the reader is referred to Refs [41, 67, 70, 71] as a practical starting point.

The rest of this chapter is organized as follows: Section 2.2 presents a short review

of calculating the chemical potential of simple fluids in MC simulations. This serves as a

basis for most of the methods that follow. Section 2.3 details all of the different approaches

to calculating the chemical potential of polymers, organized by the type of method. A

summary and outlook is presented in Section 2.4.

2.2 Chemical Potential in Computer Simulation

2.2.1 Widom’s Insertion Method

he chemical potential of a given species is defined as the change of free energy with respect

to the number of particles of that species. It can be obtained from the fundamental equation
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of thermodynamics, displayed here in terms of the Helmholtz free energy F,

dF = −SdT − pdV +
∑
i

µidNi (2.1)

For the canonical variables N, V, T, the representative free energy quantity is the Helmholtz

free energy. Chemical potential is a thermodynamic potential in that a system tends to

minimize its chemical potential. Fixing the canonical ensemble variables Nj 6=i, V, T, an

expression for the chemical potential of a given species i is obtained, as the partial derivative

of F with respect the number of particles of species i,

µi =
∂F

∂Ni

∣∣∣∣
T,V,Nj 6=i

(2.2)

Equation (2.2) is the basis for most computational algorithms designed to calculate µ.

The first and most common approach to calculating chemical potential in MC is Widom’s

method [8]. In this approach, Equation (2.2) is considered a finite difference in the thermo-

dynamic limit,

µ(N) = F (N + 1)− F (N), (2.3)

where the subscript i is dropped to focus on single species systems. Note the use of a

forward or backward difference makes practical difference, and will be illustrated below.

The classical partition function for a canonical system (fixed N, V, T ) is given by [41],

Q(N,V, T ) =
1

Λ3NN !

∫
(V N )

drN exp
[
−Φ

(
rN
) /
kBT

]
, (2.4)

where rN is the position vector of all N particles and Φ(rN ) is their potential energy.

From statistical thermodynamics, we know that the Helmholtz free energy is related to the

partition function,

F (N,V, T ) = −kBT lnQ(N,V, T ) (2.5)

Substituting Equation (2.4) into (2.5) gives the free energy in terms of the Boltzmann
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function,

F (N,V, T )=−kBT ln

(
V N

Λ3NN !

)
− kBT ln

(
1

V N

∫
drN exp

[
−Φ

(
rN
) /
kBT

])
(2.6a)

=Fid(N,V, T ) + Fex(N,V, T ). (2.6b)

The free energy is represented as a combination of two terms, the ideal and excess free

energy (2.6b). The ideal free energy serves as a reference state is the free energy of an ideal

gas at N, V, T. The excess free energy can be calculated from MC averaging. Combining

Equations (2.3) and (2.5), we obtain an expression for chemical potential in terms of the

partition function,

µ(N) = −kBT ln

[
Q(N + 1, V, T )

Q(N,V, T )

]
(2.7)

It follows then that,

µ(N)

kBT
=− ln

[
V

Λ3(N + 1)

]
− ln

[∫
drN+1 exp

[
−Φ

(
rN+1

) /
kBT

]∫
drN exp

[
−Φ (rN )

/
kBT

] ]
(2.8a)

=− ln

[
V

Λ3(N + 1)

]
− ln

[∫
drN+1 exp [−φ (rN+1) /kBT ] drN exp

[
−Φ

(
rN
) /
kBT

]∫
drN exp

[
−Φ (rN )

/
kBT

] ]
(2.8b)

=
1

kBT
(µid(N) + µex(N)) (2.8c)

where the subscript N +1 refers to a single particle, and φ is its interaction energy with

the remaining N particles. Realizing the second term in Equation (2.8b) is the definition

of a canonical average, we obtain an expression applicable to a computer simulation,

µex(N) = −kBT ln 〈exp [−φ(rN+1)/kBT ]〉N (2.9)

where the angle brackets refer to a canonical average, and the subscript N denotes the

average is taken over N particles. In other words, the Boltzmann factor of the N +1 particle

is averaged over the ensemble of N particles, at constant volume and temperature. Crucially,

the system of N particles does not interact with the N +1 particle, hence its designation

as the “trial,” “probe,” or “ghost” particle. In practice, one simply inserts a molecule at
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a uniformly random position in the system during the simulation run. The Boltzmann

factor of these insertions is then averaged over the insertion volume. Equation (2.9) is the

most common and straightforward approach to calculating the chemical potential of simple

molecular fluids. However, it suffers significantly at high density, especially in crowded and

confined systems. As the likelihood of overlap between the monomers or with the confining

boundaries increases, the chance of a statistically significant insertion grows small. Thus

for dense fluids, prohibitively long simulations are required to obtain reasonable results.

2.2.2 Extension to Polymers

Extension of Equation (2.9) to a polymer chain is straightforward. For ease, we will focus

of a fluid of monodisperse fluid of N polymers of length n (although it is relatively simple

to consider a polydisperse fluid instead [1]). The partition function for such a case is

Q(N,n, V, T ) =
1

Λ3NnN !

∫
(V Nn)

drNn exp
[
−Φ

(
rNn

) /
kBT

]
(2.10)

Note that no restrictions for connectivity are made. Again using a finite difference for

Equation (2.2), the chemical polymer is the increase in free energy from the addition of

another n-mer,

µ(N) = F (N + 1, n, V, T )− F (N,V, T ) (2.11)

Following the same approach as Widom’s method above, we can obtain the equivalent

expression for a fluid of chains,

µ(N)

kBT
=− ln

[
Q(N + 1, n, V, T )

Q(N,n, V, T )

]
(2.12a)

=− ln

[
V

Λ3n(N + 1)

]
− ln (〈exp [−φ (rN+1) /kBT ]〉Nn) (2.12b)

=
1

kBT
(µid(N) + µex(N)) . (2.12c)

The primary differences between Equations (2.9) and (2.12) is the reference state is a gas

of ideal n-mers, and rN+1 is a vector of n coordinates for the inserted test chain.

However, for all but the shortest chains (length n ≤ 5), a random insertion would most
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likely encounter significant overlap with itself or neighboring fluid particles of confining

boundaries. This results in a Boltzmann factor of zero, and no contribution to the average.

A similar effect is found in grand canonical simulations; successful insertions of chains

are extremely rare, and thus 〈N〉 is poorly sampled. The likelihood of overlap increases

exponentially with chain length n, and with the density of fluid. Thus, a simulation, even

with very long length, has extremely poor statistics. The main goal of the works mentioned

below is to alleviate this problem. The great flexibility of MC techniques has allowed for

many ingenious approaches.

A typical molecular model for a polymer consists of internal and external potentials.

Internal, or intramolecular, potentials impart connectivity and rigidity to a chain. Atoms

and/or pseudoatoms are connected with rod or harmonic bonds. Rigidity can be imbued

by harmonic angle bonds, 1—3 harmonic bonds, and torsion potentials (typically a cosine

series). A chain’s external, or intermolecular, potential usually refers to all non-bonded

contributions to its potential energy. This can include monomer-monomer interactions such

as the Lennard-Jones (LJ), electrostatic, or adsorption potentials. LJ or other repulsive

potentials account for excluded volume of real chains. The internal potential energy is

another important distinction from simple fluids, whose internal energy is zero or fixed for

most MC simulations. This also complicates the reference state of a chain fluid. It is typical

to use a fluid of non-interacting chains as a reference state; that is, a chain with its internal

interactions only. Without monomer-monomer interactions, overlap of particles is allowed

and the chain has no excluded volume. In the case of a flexible chain (no rigidity) with

stiff, fixed length bonds, the reference state is a fluid of ideal, or Gaussian chains [37]. If

the bonds were modeled instead as a harmonic well, the reference state would be a fluid of

Rouse chains [38]. For clarity, variable references are standardized to the above notation

whenever possible: N is the number of chains in a system, n is their length in effective

monomers, and Φ their potential energy.
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2.3 Methods of Calculating Chemical Potential

We will now present a collection of approaches available in the literature that circumvent

the poor insertion probabilities mentioned above. The sections below are roughly ordered

by time of introduction. Note that their effectiveness and usefulness is highly dependent on

the specific application.

2.3.1 Simple Insertions

For the reasons mentioned above, simple Widom insertions (2.9) are not feasible for polymers

and even most oligomers. Kumar et al. [11] used simple insertions for chains n ≤ 10 inserted

into free space, at low (globular) and high (random-coil) temperatures. They found poor

statistics for the low temperature case at n ≥ 5, and at n ≥ 8 for the high temperature case.

This is displayed in Figure 2.2 as filled triangles and circles for low and high temperatures,

respectfully. They found at lengths longer than 10 monomers, the simple insertions were

too inefficient to use at all. Similarly, Frenkel et al. [72] found that simple insertions failed

completely for n > 3.

Although some earlier studies made use of simple insertions [73–75], they focused mainly

on lower dimensions, and hard-core models.

2.3.2 Thermodynamic integration

The thermodynamic integration approach is perhaps the simplest idea to overcome insertion

overlap. It is based on the idea that the chemical potential is equivalent to the reversible

work of inserting a molecule into a fluid. There is no requirement that this insertion occur

in one physical step, only a continuous, reversible path. If a molecule can be inserted

gradually, the total work of insertion would be the integral over the path taken. A simple

method was proposed by Mon and Griffiths [76]. Although their implementation was on a

2D lattice, their approach is easily transferable to continuum studies. A set of “weakened”

increments is introduced,

Ψλ =

N∑
i=1

Φλ (|rN+1 − ri|) (2.13)
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where Φλ is the weakened interaction energy of an N + 1 molecule inserted into a system

at constant N,V, T , and ri is the position of particle i in the system. It varies as Φλ=0 = 0

to Φλ=1 = Φ. The average of an observable A in an ensemble with the N + 1 particle

interacting through a weakened potential is

〈A〉 =

∫
dr1 · · · drN+1A exp [−β(UN + Ψλ)]∫
dr1 · · · drN+1 exp [−β(UN + Ψλ)]

(2.14)

Note that λ = 0 and λ = 1 refers to ensembles of N and N + 1, respectively. If we let λ

vary continuously, it can be shown that the chemical potential is

µ =

∫ 1

0

〈
dΨλ

dλ

〉
N+λ

dλ (2.15)

There is flexibility in how λ is implemented. Initially, the authors [76] used λ as a propor-

tionality coefficient, such that

Φ(r) = ε

[(σ
r

)12
−
(σ
r

)6
]

(2.16)

and

Φλ = λΦ (2.17)

This worked poorly, as overlap causes Equation (2.16) increases rapidly, even at very small

values of λ. To alleviate this, they implemented a step-wise potential, shown in Figure 2.1.

As λ increases, the repulsive part of the LJ potential is increased in discreet ‘jumps.’

Using Equation (2.15), Mon and Griffiths [76] calculated the chemical potentials of LJ

15- and 35-mers on a 2D lattice. Their approach is a straight-forward and robust method

for calculating chemical potential of polymers.

A similar approach was followed Müller and Paul [77] chose the excluded volume in-

teraction as the path variable. This is achieved by gradual inclusion of the intermolecular

potential. In this way, a full chain can be inserted (initially), experiencing no resistance

from the fluid molecules. In their work [77], the excess chemical potential was calculated for

bond fluctuation model [78], which is a type of lattice model. The inserted chain is called a
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Figure 2.1: Diagram of progressively weakened potentials for insertion. The solid line is
the LJ pair potential, and the dashed lines are successively weaker potentials Φλ. From
Ref. [76].

“ghost-polymer,” and obeys the internal bond restrictions, as well as hard-sphere repulsion

of its constituent monomers. Note that latter is not necessary, but aids in efficiency of the

algorithm; the ghost-polymer starts as self-avoiding before the excluded volume interaction

is increased in subsequent simulations. The authors used this method to calculate µex of

bond-fluctuation polymer melts with chains of length n = 20, 50, 80 on a 403 lattice, at

densities of 0.1 to 0.5. The ghost-polymer method was later extended by Wilding and

Müller [79] to the method of expanded ensembles. This allows calculation of µex in a single

simulation.

The method of thermodynamic integration over ‘partially’ inserted chains provides an

accurate, chain length-independent approach to calculating chemical potential. It is also

quite flexible; varying excluded volume interaction or intermolecular potential are only two

choices for the reversible path. The obvious disadvantage is the need for many simulations

to obtain one state point. This is confounded by the non-physicality of the intermediate

states; they provide no useful information in and of themselves.
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2.3.3 Incremental Insertion

Rather than insert an entire non-interacting chain, the approach of Kumar et al. [11] ob-

tained chemical potential by incrementing an existing chain with a trial particle and mea-

suring its interaction with the rest of the system. A similar method was described by Mon

and Griffiths [76], where increments where included gradually by varying their interactional

potential, but only applied to 2D fluid. Kumar el al. called their approach the “modi-

fied Widom method.” In a sense, it can be thought of as thermodynamic integration over

the chain length coordinate. By insertion of only a single monomer, the statistics become

as reliable as traditional Widom insertions. Of course, this scheme does not calculate the

chemical potential, but the incremental chemical potential, that is, the difference in chemical

potential between an i -mer and an (i+1)-mer in a solution of N chains of length n,

µinc(n+ 1) ≡ µ({N − 1, n}, {1, n+ 1})− µ(N,n) (2.18a)

= F ({N − 1, n}, {1, n+ 1})− F (N,n) (2.18b)

Equation (2.18) describes the difference between a system of N n-mers and an identical

system where one n-mer is incremented by one. Note the chemical potentials in Equa-

tion (2.18a) are calculated with a backwards finite difference. With the definition presented

in Equation (2.18b), parallels with the Widom test are obvious. The modified Widom

method then calculates the incremental chemical potential by

µinc = −kBT ln

(
Vins
Λ3

)
− kBT ln (〈exp [−φ (rins) /kBT ]〉Nn) (2.19)

where rins are the coordinates a monomer inserted into a volume Vins as the end of an

n-mer. The chemical potential of the n-mer is then sum of its incremental values. The

incremental chemical potential is well-defined thermodynamic quantity, with no restricting

assumptions used in its derivation [18]. This can be illustrated by expanding terms in the

definition of the chemical potential of a chain (Equation (2.11)),

exp

(
− µ

kBT

)
=

Q(N + 1, n)

Q({N,n}, {1, n− 1})
Q({N,n}, {1, n− 1})
Q({N,n}, {1, n− 2}) . . .

Q({N,n}, {1, 1})
Q(N,n)

(2.20)
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Applying the definition of the incremental chemical potential (2.18b), and (2.5),

µ = µinc(n) + µinc(n− 1) + . . .+ µ0 (2.21)

Here, µ0 refers to the chemical potential of a monomer (i.e. the first bead of the chain)

which is inserted into the system.

The advantage of the modified Widom method is that it returns the effectiveness of sam-

pling statistics back to that of Widom insertions into a simple fluid. There is no length re-

striction on incremental chemical potential, only the same density limitations that Widom’s

method suffers. A significant disadvantage is the fact that one must construct n simulations

for the rigorous determinations of the chemical potential of an n-mer. This is somewhat

alleviated by the fact that the shorter chain systems are physically relevant systems; chain

length dependence of the incremental potential can be predicted in certain situations [80],

and smart interpolation lessens the computational burden.

Kumar et al. used the modified Widom method to calculate the chemical potential

and pressure for melts of 20-mers at varying density and temperature [11]. In addition,

incremental chemical potential was calculated as a function of chain length (Figure 2.2).

The authors asserted that the incremental chemical potential did not depend on chain length

for long enough chains. They proposed that the chemical potential of a polymer could be

calculated in a single simulation, with several small “short-chain” corrections for increased

accuracy,

µ =

nshort∑
i

µshort
inc (n) + (n− nshort)µinc (2.22)

In this way, the required number of simulations is greatly reduced. This assumption of

chain length independence became known as the “chain increment ansatz” [81] and was

sharply contested [82, 83]. Kumar later clarifies [80] the ansatz to include only chains over

their θ temperature, that is, synonymously “swollen,” “random coil,” or “good-solvent”

chains. This condition occurs when monomer-monomer interactions are less favorable than

monomer-solvent (or in this case, when thermal motion supersedes attractive monomer

interactions). Above the θ temperature, a polymer chain behaves as a self-avoiding random
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walk. Kumar reported the threshold reduced temperature T ∗ ≥ 3, however this is likely

too low for longer chains. Literature values range from 2.0 [84] to 4.3 [85], for flexible LJ

chains. The collapse of θ chains is a widely studied topic (see [86] and references therein).

In a study of ultra-long chains (up to n = 106) using the PERM method (see Section 2.3.5

below), Grassberger [85] calculated the θ temperature to be at least T ∗ = 4.3. Spyriouni

et al. [81] performed a detailed work testing the accuracy of the modified Widom method

with configurational bias insertions for realistic n-alkanes up to n = 16. They confirmed

the increment ansatz was valid for the temperature tested (which was in the good-solvent

regime).

Figure 2.2: The excess incremental chemical potential of free chains at T ∗ = 2 (triangles)
and T ∗ = 8, as function of chain length. From Ref. [11].

The modified Widom method suffers from three primary disadvantages. First is the afore-

mentioned need for n independent simulations to rigorously calculate an n-mer. Second

is poor sampling at high density, due to Widom-type trial insertions. Finally, the method

is limited to linear chains, as complex branching morphologies would be CPU prohibitive

using an incrementing strategy.

The modified Widom method is widely used, especially for conditions where the chain

length ansatz is valid. Spyriouni et al. [81] calculated the chemical potential n-alkanes

from 6 to 16 in length in n-hexadecane, in both vapor and liquid states. Vega et al. [87]
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calculated isotherms of polymers confined in very narrow slit pores. The method has been

extended to linear chains with monomers of arbitrary complexity, as well as a molecular

dynamics implementation [88]. This was done by using configurational bias insertions of

trial-monomers. Sheng et al. studied the vapor-liquid equilibrium of 20, 50, and 100-mers

by extending the modified Widom method to the Gibbs ensemble [89].

2.3.4 Rosenbluth Insertion

The primary drawback to the previously mentioned methods is the requirement of multiple

simulations to determine the chemical potential of a given state. This can be addressed, to

a degree, by schemes that allow for insertion of the entire chain. To achieve this, knowledge

of the system’s current configuration is used to insert the molecule step-wise, with a bias to

guide the chain to low-energy conformation. When used as a sampling scheme, the bias is

then removed with an appropriate MC acceptance rule. This method is collectively termed

configurational bias [72, 90, 91], and is quite useful, and popular, for effectively equilibrating

a polymeric system in MC. Trial insertions based on this method sample the Rosenbluth

distribution [92], and are thus termed Rosenbluth insertions, and with careful implemen-

tation, can accurately determine the chemical potential of oligomers and moderate-length

chain molecules.

The basis of configurational bias is the Rosenbluth and Rosenbluth [92] algorithm for

construction of random-walk self-avoiding polymer chains. If sampled randomly, the failure

to grow a self-avoiding random-walk increases exponentially with the length of the walk.

Rosenbluth and Rosenbluth used a bias sampling to strongly reduce the attrition rate of

random-walks. The bias was then corrected by associating a weight to each generated con-

figuration. This basis was extended to calculated the chemical potential of lattice polymers

in a dense monolayer by Siepmann [93]. It was extended again to off-lattice polymers soon

after by Frenkel et al. [72, 82] and de Pablo et al. [90]. Configurational bias generates the

trial polymer step-by-step, recording the bias weights for each monomer. These weights,

called Rosenbluth weights, are related to the excess chemical potential of the fully inserted

chain. As with Widom methods, the generated chain is never accepted into the system

configuration. To generate a trial chain [41], first a random monomer is inserted into the



33

system, and serves as one terminal end of the trial chain. Its Rosenbluth weight is recorded

as

wext1 = k exp
[
−βφ(1)

ext(1)
]
, (2.23)

where ext refers to the external potential energy (i.e. non-bonded contributions from the

fluid or external fields), as opposed to internal potential energy (int, the contributions

from bonds and stiffness), φext is the potential energy interaction of the inserted monomer,

and k is the number of trials per subsequent monomer. The next step is to generate k

trial positions for following monomer. These trials should be distributed by their internal

Boltzmann factor, exp(βφint), to improve sampling. Next the external Boltzmann factor is

calculated for all k trials, and its sum is the monomer’s Rosenbluth weight,

wexti =
k∑
j=1

exp
[
−βφ(i)

ext(j)
]

(2.24)

One of the trials is selected with the probability

p(i)(m) =
exp

[
−βφ(i)

ext(m)
]

wexti

(2.25)

The selected segment m is then added to the trial chain. The sequence is repeated until the

entire n-mer is generated. The scheme is illustrated in Figure 2.3. Once the entire length

of chain is generated, its normalized Rosenbluth factor is given by

W ext =

n∏
i=1

wexti

k
(2.26)

The excess chemical potential can be calculated by

µex = −kBT ln

〈
W ext

〉〈
W ext

id

〉 , (2.27)

where W ext
id is the normalized Rosenbluth factor (2.26) of an isolated chain with its in-

tramolecular non-bonded potential. This must be calculated from a separation simulation,

usually at little computational cost.
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Figure 2.3: Schematic of a growing chain by configurational bias insertion. Adapted from
Ref. [72].

The number of positions k is a tunable parameter; using more trials increases the likeli-

hood of “finding” a low energy state, yet also increases computation by O(kNn). There is

a practical limit to increasing the number of trial moves. For a chain of 20 units, Frenkel et

al. calculated an “acceptance” rate (i.e. a non-zero Rosenbluth factor) of 2.0% using 100

trials per monomer. It is generally accepted that the method is inefficient for chains longer

than this.

One important consideration is that generated conformations are always “accepted,”

however unlikely (that is, a chain is always generated to completion). This does not sample

the Boltzmann distribution [94, 95]. Only approach true Boltzmann sampling in the limit

of an infinitely long simulation. Results are accurate only if distributions overlap; long

chains/short simulations will have systematic error. This was illustrated clearly in the work

of Batoulis and Kremer [36]; see Figure 2.4 for details.

An obvious advantages of Rosenbluth insertions is that the chemical potential of the

entire molecule can be calculated in one step. This is because the entire chain inserted into

the system, rather than only incrementally as in the modified Widom approach, or over a

range of parameters as with thermodynamic integration and staged particle deletion. For

this reason, Rosenbluth insertions are very efficient for chains of moderate length.
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Figure 2.4: Comparison of Boltzmann (square) and Rosenbluth (circle) distributions, ob-
tained by sampling the radius of gyration for (a) chains of length n = 120 and (b) n = 240.
From Ref. [95].

However, Rosenbluth insertions are still limited by chain length. The longer an inserted

chain is, the highly the probability it will ‘grow’ into a dead end or intersect itself. Frenkel

calculated the maximum length for this method as n = 20, and this required a large number

of trials. This is obviously affected negatively by increasing fluid densities. Another disad-

vantage is the fact that the scheme does not sample the Boltzmann distribution, but rather

the Rosenbluth distribution. Figure 2.4 shows the difference between the distributions when

sampling a chain’s radius of gyration RG. The correct chemical potential is only recovered

when the two distributions have significant overlap.

Several improvements to the configurational bias scheme have been suggested: over-

lapping distribution Rosenbluth method [96] extends histogram reweighing to obtain more

accurate estimation of the chemical potential. Recoil growth [97, 98] provides a framework

for “restarting” a failed insertion by recoiling to previous successfully inserted monomers.

Finally, early rejection [41] reduces computational time by abandoning insertions with zero

weight before the full chain is generated.

There are numerous extensions of configurational bias to other methods and ensembles.

Grand canonical MC [99–101] simulations was used to calculate the adsorption isotherms
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of alkanes and other chain molecules. Jiang et al. and Mota et al. [59–61] extended the

gauge cell to include configurationally bias insertions from the gauge cell to the system

cell. Similarly, Gibbs ensemble MC was extended [102] to include biased insertions between

vapor and liquid phases. Finally, the modified Widom method was extended [88] to include

biased insertions of arbitrarily complex monomers, i.e. monomers with side chains.

Configuration bias Rosenbluth insertion has found widespread use. Some useful exam-

ples of its application include: adsorption of alkanes in slit pores [103], polymer films [104,

105], vapor-liquid equilibria of alkanes [63, 100, 106], with many more examples available

in the literature.

Recently, Garberoglio et al. introduced a Boltzmann bias [107] scheme. This method

involves insertion of pre-equilibrated images. It was applied to H2 in strong confinement,

and is general suited for cases where the Boltzmann distribution is very narrow and standard

sampling methods fail, such as very low temperatures. Although it has not been generalized

to polymers, the authors suggest it is straightforward and advantageous to do so [108].

2.3.5 Recursive Methods

A significant drawback to the Rosenbluth-Rosenbluth algorithm [92] is the distinct possi-

bility that a partially inserted chain is discarded. In other words, there is no foresight when

growing a chain; very often it may grow into a location where no further trials are permis-

sible, i.e. a “dead-end.” Although there are direct ways to alleviate this (e.g. the scanning

method [97], mentioned above), the computational expense increases exponentially the fur-

ther ahead one probes. The recursive methods of this section offer a different approach; they

sample populations of chains, rather than follow a Markovian chain through phase-space.

This allows for enrichment of probable (non dead-end) configurations. Improbable chain

configurations “die,” while chains that are more probable (and thus contribute more to the

Boltzmann average) take their place.

The idea of using enrichment to counter attrition due to discarded Rosenbluth chains

is an old one, first suggested and implemented by Wall and Erpenbeck in 1959 [109]. In

their method, partially grown chains are duplicated as starting configurations for more

samples. Although similar algorithms have been proposed (e.g., Grishman [110], Garel and
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Orland [111], Higgs and Orland [112], and Velikson et al. [113]), we will focus on those

proposed by Hegger and Grassberger [114, 115] and Grassberger [116] for several reasons.

These algorithms search populations of chains depth first, rather than breadth first. This

results the ability to call the main function recursively, and thus is very efficient. Also,

depth first searching requires the storage of only one conformation at a time, enabling

calculation of very long chains. Finally, these methods are well established in the literature,

with several extensions and many practical applications reported.

This method of recursive sampling by depth for off-lattice polymers was proposed by

Grassberger and Hegger [115]. Various earlier works detail lattice models, see Refs. [86,

86, 116, 117], and references therein. The goal of this method is to calculate a Monte

Carlo estimate of the partial partition function. The configurational part of the canonical

partition function (2.3) is

ZN =

∫
dr1 . . . drN exp

[
−Φ

(
rN
) /
kBT

]
(2.28)

As above, r refers to either a vector or matrix of coordinates, with a subscript referring

to the coordinates for a given particle, and the superscript denoting a collection particle

coordinates, and Φ is the potential energy of the system. To write the partition function

recursively, we consider a partial partition function that describes a system of Ni particles

interacting with a fixed background of the first i + 1 particles,

ZN−i|i(r1, . . . , ri) =

∫
dri+1 . . . drN exp

− N∑
j=i+1

φj(r1 . . . rj)

/
kBT

 (2.29)

This can be written recursively as

ZN−i+1|i−1(r1, . . . , ri−1) =

∫
dri exp [−φi(r1 . . . ri)/kBT ]ZN−i|i(r1, . . . , ri) (2.30)

Note that Z0|N (r1, . . . , rN ) ≡ 1 and ZN |0(r1, . . . , rN ) ≡ ZN . Equation (2.30) is the basis

of recursive sampling. The goal is to calculate estimates of the partial partition function

using this relation. This is done by averaging states at the end of the chain first, while
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working back towards start. The partial partition function is sampled after decomposing

the potential energy φi into ideal φ(0) and excess ∆φi contributions, where the ideal partition

function Z (0) can be determined analytically (or at least independent of the current sampling

scheme),

ZN−i+1|i−1(r1, . . . , ri−1) =

Z
(0)
N−i+1|i−1 lim

M→∞

1

M

M∑
k=1

exp [−∆φi(r1 . . . ri−1, ξk)/kBT ]
ZN−i|i(r1, . . . , ri−1, ξk)

Z
(0)
N−i|i(r1, . . . , ri−1, ξk)

(2.31)

where ξk is a randomly generated trial distributed according the internal Boltzmann weights.

To compute (2.31) in an MC scheme, a weight wi should be assigned to ξk to remove the

bias from its selection. Alternatively, one could replace ξk with piwi copies of itself (labeled

α below), each counted with a unit weight. pi is an arbitrary parameter that controls the

resulting size of the population. Note that pi is independent of ri and ξk, and need not be

constant during the simulation. Under this scheme, Equation (2.31) reduces to

ZN−i+1|i−1(r1, . . . , ri−1) ≈ 1

pi

M∑
k=1

∑
replicasα

Z
[α]
N−i|i−1(r1, . . . , ri−1, ξk) (2.32)

In this way, the resulting population of chains will be correctly weighed relative to the

partition function. Thermodynamic properties can be obtained during growth, or from

the statistics of surviving chains. Selection of the parameter pi is critical; too large and

the population size will grow quickly, and too small will lead to poor sample sizes. As a

heuristic, the authors [115] suggest the following for selecting the population parameter:

set piwi(ξk) = k + η, where k is an integer and η ∈ [0, 1), the algorithm should be called

recursively k times, with one additional call with the probability η. In this way, improbable

configurations with low weights wi will ‘die’, and probable configurations will replicate.

In practice, the recursive enrichment method is implemented by a single recursive func-

tion, which is called with a position and current position along the chain i. It generates a

new position at i+1, and is called with this position approximately k times, or dies, with

weights as described above. The chemical potential is obtained from the average number of
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surviving chains at the end of the n-th step,

µex(n) = −kBT ln

( 〈Nn〉∏n
i=0 pi

)
(2.33)

Here, Nn is the average number of surviving chains after i = n steps. The recursive algorithm

is quite efficient; computation scales with chain length n as O(n2) [115], and the recursive

structure only requires that the chain’s configuration up to the current point i is stored.

Memory requirements are minimal and thus very long chains can be calculated. Finally,

the algorithm generates a population of chains by their Boltzmann weight, and not their

Rosenbluth weight as with configurational bias insertions.

Figure 2.5: Averaged squared end-to-end distances of free chains calculated using the recur-
sive enrichment algorithm, for inverse temperatures β = 0.175 to 0.375 (with ∆β = 0.025),
and 0.4, 0.6, and 0.833. Theta collapse is evident at β ≥ 0.25 (T ∗ = 4). From Ref. [115].

A significant extension to the recursive enrichment algorithm is call pruned-enriched

Rosenbluth method, or PERM [85, 118]. PERM is a strategy for managing the population

of chains so that they optimally cover phase space. It does so by adding additional tuning
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Figure 2.6: Incremental chemical potential of free chains calculated using the recursive
enrichment algorithm, for inverse temperatures β = 0.175 to 0.375 (with ∆β = 0.025). The
chain increment ansatz is found to be valid for β ≥ 0.225 (T ∗ ≥ 4.44). From Ref. [115].
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parameters to the recursive scheme that favor high-Boltzmann weight chains and having low-

weight chain have a high probability of dying. This is done without adding bias: favorable

chains are “enriched” by adding multiple copies and reducing their weight proportionally,

while unfavorable chains are “pruned” by discarding half, while doubling the remaining

chain’s weight. The tuning parameters that PERM introduces are a high limit for the

weight of a current replica, a corresponding low limit, and the number of copies that the

enrichment portion should create.

The primary drawbacks of this approach is the fact it is a static MC algorithm. This

means the chain cannot interact with another (non-fixed) atoms or molecules. In other

words, only isolated chains with fixed external interactions can be calculating using recur-

sive/PERM methods. The obvious benefit is that the algorithm generates uncorrelated

configurations for each sample, as opposed to importance sampling, where successive sam-

ples are highly correlated. Attempts to extend PERM to traditional dynamic Markov chain

MC [119, 120] showed no benefit over a comparable configurational bias scheme. Another

disadvantage is the need for selection of tuning parameters, although several methods of

dynamic generation are suggested by the authors [115]. Finally, the method is designed for

linear chains, and an extension to branched polymers is not straightforward.

The recursive-enrichment algorithms have been applied to several important problems,

beginning with extensive studies of the θ chain collapse [85, 86] (see Figure 2.5 for example of

off-lattice collapse). Recent work includes extending to simple models of protein folding [66,

121]. For a recent review of work using PERM, see Ref. [122].

2.3.6 Expanded Ensembles

Attempting to combine the advantages of several of the schemes above, Escobedo and de

Pablo introduced the expanded variable-length chain method (EVALENCH) [123]. This

approach utilizes the expanded ensemble ideology introduced by Lyubartsev et al. ear-

lier [124], which allows for the accurate determination of a full chains chemical potential

in a single simulation. The basic methodology of EVALENCH is the insertion and dele-

tion of subchains using a configurational bias technique onto a tagged chain. A preselected

number of component subchains of the tagged chain are allowed, which are then defined as
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different states of the expanded ensemble and can be combined in a rigorous fashion. Thus

the system configuration and test chain can change in course of simulation. In this fashion,

incremental [11], configurational bias [72, 91], and expanded ensemble [124] methods are

combined to calculate the chemical potential of arbitrary polymers. A brief overview of

expanded ensembles and implementation of EVALENCH follows [123].

An expanded ensemble is used to calculate the ratio of partition functions. A convenient

case is the ratio of Q(N + 1) and Q(N), which is of course the definition of the chemical

potential (2.8a), (2.12a). The expanded canonical ensemble can be written as

Ω =
M∑
m=1

Q(N,V, γm) exp(ψm) (2.34)

where γm is an adjustable parameter that characterizes the m-h state, and ψm is a positive

weight factor. The canonical ensemble partition function is recovered when summation of

states m = 1 to M is along a continuous path in m. To sample along this path, transitions

between neighboring states are allowed. The probability of observing a given state is

p(m) = p(γm) =
Q(N,V, γm)

Ω
exp(ψm) (2.35)

Note that this quantity can be easily tabulated during simulation making a histogram of

transitions between states. The ratio between two states m1 and m2 is given by

Q(N,V, γm1)

Q(N,V, γm2)
=
p(m1) exp(−ψm1)

p(m2) exp(−ψm2)
(2.36)

The above ratio of partition functions can be used to determine chemical potential if m2

characterizes a system of N particles at constant V , T , and m1 an otherwise identical

system with N + 1 particles. The expanded ensemble is realized if γ allows these two states

to be connected in a smooth fashion. Thus, the expression for chemical potential from an

expanded ensemble is,

µex = −kBT ln

[
Q(N,V, T, γM )

Q(N,V, T, γ1)

]
= kBT ln

[
p(1)

p(M)

]
+ ψM − ψ1 (2.37)
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The above expression can be directly applied to a polymeric system by constructing a system

with a gradually inserted chain, where γ1 represents a system of N polymer chains with 1

tagged non-interacting system, and γM a system with the fully interacting tagged chain,

i.e. N+1, similar to the thermodynamic integration method described above. This method

was applied by Wilding and Müller for the lattice-based bond-fluctuation model [79]. Note

that the preweights ψi must be specified before the simulation starts.

The EVALENCH method extends the expanded ensemble approach to off-lattice chains

with arbitrary connectivity by utilizing the incrementing strategy of Kumar [11] and the

efficient insertions of short chains with configurational bias [72, 91]. This is accomplished

by first rewriting Equation (2.34) in terms of an incremental chain,

Ω =
M∑
k=1

Q(N,V,mk) exp(ψk) (2.38)

where m is the current length of an additional tagged n-mer in an N , V , T system; m1

= 0 and mM = n. Note that the incremented amount need not be a single monomer.

Transitions between neighboring states (e.g. mk → mk + 1 and mk → mk1) are permitted.

Insertions are selected from a set of Nsamp according to configurational bias rules,

Wi =
wi∑Nsamp

j=1 wj
(2.39)

where wj is the Boltzmann factor of the j-th trial configuration (as in Equation (2.24)). The

probability of transitions between neighboring states is determined by the detail balance,

Pacc(my → mx) = min

[
1,
T (x→ y)

T (y → x)

p(x)

p(y)

]
(2.40)

where p(x) is the probability of observing a system at state x (2.35), and T (x → y) is the

probability of initiating a transition from state x to y. The ratio p(x)/p(y) is

p(x)

p(y)
= exp

[
−φ(mx)− φ(my)

kBT

]
exp (ψx − ψy) (2.41)

where φ is the interaction energy of the tagged chain with the rest of the system. Finally,
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the general expressions for the transition probabilities T is given by

T (b→ a) =
1

Kb

ma∏
j=mb

NsampWj (2.42)

T (a→ b) =
1

Ka
(2.43)

given ma > mb so that (2.42) represents an incremental insertion, and (2.43) a similar

deletion. The variable Ki describes the connectivity, the i-th section having Ki number of

neighboring states (a linear homopolymer would also have Ki = 2, except for states 1 and

M , the beginning and end of the chain). The incremental chemical potential is then given

by

µinc
ex (mα → mω) = kBT ln

[
p(mα)

p(mω)

]
+ ψω − ψα (2.44)

The chemical potential of the entire chain is determined by setting α = 1 and ω = M .

The primary advantage of EVALENCH is that the chemical potential of an n-mer can

be calculated in a single simulation. Also, as formulated [123], there is no restriction to

linear chains. However, EVALENCH does require a preliminary calculation to obtain the

preweight parameters ψi. Careful selection of the preweights is necessary. Improperly chosen

weights would negatively affect sampling, for example, by not allowing a chain to grow to

its finished state. Assuming a uniform distribution of p(m), it follows from Equation (2.44)

that ψω − ψα = µωex(mα → mω). Thus a single short simulation can usually determine

adequate preweight values.

EVALENCH was used to study the purely-repulsive case of hard core chain fluids [123],

for lengths of 4, 8, 16 and 32 in packing fractions up to 0.4. It was extended to open systems

in the grand canonical and Gibbs ensemble [125]. Recently, it was rigorously optimized in

closed and open systems [126, 127] and extended to transition matrix MC [128].

2.3.7 Scanning Methods

The scanning method was introduced by Meirovitch and calculates the entropy directly

by recording the transition probabilities to a future (finished) system [129]. In this way,

the probability P of a given configuration is known (as it is the product of the transition
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probabilities), and thus its entropy is known (since S ∼ lnP ). Pressure and chemical

potential can then be easily calculated from standard thermodynamic relationships. This

method was initially applied to a self-avoiding polymer melt on a lattice [129]. However,

application of the scanning method is limited to static system that can easily constructed.

To overcome this, Meirovitch developed the hypothetical scanning (HS) method to couple

entropy prediction of the scanning method with the flexibility of the Metropolis Monte

Carlo method [130]. HS assumes a large system in equilibrium and produces an estimate

of P by sampling the MC transition probabilities. The HS method was later extended to

continuum chain models using configurational bias with an incremental approach [131] for

efficient simulation of chain molecules.

The hypothetical scanning method was rigorously extended to LJ MC systems [129, 130]

and MD systems [132]. The primary advantage of scanning methods is the wealth of detailed

thermodynamic information a single simulation can produce. Quantitative knowledge of

absolute entropy allows for exact values of pressure and chemical potential. A significant

disadvantage is the requirement of new formulation of HS for different MC moves. New,

complex moves that are needed to equilibrate polymer systems would require independent

implementation and validation of the HS method.

2.3.8 Staged Particle Deletion

The standard implementation of the Widom method is based on a forward-difference def-

inition of the chemical potential (2.3). As discussed above, it is progressively difficult to

sample dense fluids with some Widom trial insertions. The “reverse” or “inverse” Widom

method is mathematically identical (in the thermodynamic limit) [133]. Instead of insert-

ing a trial particle to measure ∆F (N + 1), a random particle is “removed” to calculate

∆F (N − 1). Of course, this particle is not actually removed. The inverse Widom method

suffers from poor statistics as the removed particle is necessarily in local equilibrium with its

surroundings; thus it is difficult to fully sample phase space. In other words, the removal of

a particle as a trial creates a volume bias (the “hole” the trial particle was occupying) in the

system during sampling. Boulougouris et al. developed a rigorous approach to account for

this bias called the “staged particle deletion” method [43]. This is done not by comparing
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the N and N − 1 systems, but including an intermediate system with N − 1 particles and

a hard sphere of radius rcore in place of the removed particle. The free energy difference

between the N and N − 1 systems is then the calculated by the free energy differences

between N and N − 1 with the intermediate system (see Figure 2.7). Their method was

tested successfully for a system of hard spheres (for which the Widom method as derived

above would fail), and an LJ fluid [43], and found to be efficient and accurate.

 

Figure 2.7: Schematic of the staged particle deletion method that calculates the chemical
potential of dense fluids by the inverse Widom method. From Ref. [43].

The staged particle deletion method was extended to chain molecules by Boulougouris

et al. [134]. Their implementation included two additional methods to improve efficiency:

excluded volume map sampling method [86], and analytical calculation of the accessible vol-

ume [135]. The former increases the likelihood of efficient insertions, while the latter quickly

calculates the free energy of cavity formation, i.e. the contribution from the intermediate

system (panel II in Figure 2.7). The extension to chain molecules is straightforward; the

volume contribution from a chain removal is sampled by the generation of a hard sphere

chain. See Ref. [134] for a thorough derivation in the isothermal-isobaric ensemble. The

authors used their method to calculate the equation of state for LJ dimers, and found it

quite efficient, using about a tenth of CPU time that a similar Widom method would take.
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The staged particle deletion method is most applicable to dense fluids and in fact suffers at

low densities when sampling the volume contribution takes an appreciable amount of time.

It is best suited to chains of modest length in melt conditions. Recently application of

the method was found in the study of competitive adsorption of carbon monoxide, carbon

dioxide, and methane on activated carbon [136].

2.4 Summary

The calculation of polymer chemical potential and free energy is a practically important

problem, whose significance is continually rising. In light of current biology problems, and

the requirement of complex phase predictions of nano-structured systems, the need for a

clear understanding of suitable methods is obvious. Many approaches to the calculation of

chemical potential of polymer chains have been suggested. However, each method has its

respective advantages and disadvantages. It is the goal of the MC practitioner to successful

apply the correct method to their specific problem.
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Chapter 3

Monte Carlo Studies of Cavitation

in Nanopores
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3.1 Cavitation in Metastable Liquid Nitrogen Confined to

Nanoscale Pores

3.1.1 Introduction

Behavior of fluids confined to nanoscale pores has been attracting considerable interest

among several generations of chemists, physicists, and materials scientists [17–20, 137, 138].

Starting from the seminal works of Zigmondi in the beginning of 20th century [16], this

interest was triggered mainly by the use of physical adsorption and capillary condensation

phenomena for characterization of surface area and porosity of adsorbents and catalysts.

Recent discoveries in nanotechnology and biomedicine have significantly expanded the area

of practical applications of confined fluids to the nanomaterials synthesis, nanofluidics,

and drug delivery. At the same time, the availability of novel materials with controlled

pore structures has opened up new opportunities for detailed experimental studies of the

mechanisms of phase transformations in confined fluids.

Major progress has been achieved in the understanding of adsorption, capillary conden-

sation and desorption phenomena in highly ordered mesoporous materials with simple pore

geometries, such as MCM and SBA mesoporous crystals [25, 139, 140]. However, there are

still many open questions concerning adsorption-desorption mechanisms in more complex

porous systems. Fluids adsorbed in hierarchically structured micro-mesoporous materials

exhibit great a variety of hys-teretic adsorption-desorption isotherms with multiple steps re-

lated to phase transformations in adsorbed phases. Adsorption-desorption processes involve

a combination of physical mechanisms, such as delayed condensation, advanced condensa-

tion, cavitation induced evaporation, pore blocking, and percolation, which are reflected in

characteristic types of the hysteresis loops formed by adsorption and desorption isotherms

[21, 35, 141]. The complexity of hysteresis loops causes a considerable complication for the

pore stucture characterization; but if interpreted correctly, they provide important infor-

mation about the pore network morphology, which is crucial for discriminating physical

mechanisms of phase transformation [36, 142].

On the pore level, capillary condensation hysteresis can be regarded as an intrinsic prop-
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erty of vapor-liquid phase transitions in finite volume systems [20, 21]. A classical scenario

of capillary condensation implies that the vapor-liquid transition occures at a vapor pressure

pcc that exceeds the pressure pe of vapor-liquid equilibrium in the pore, but is below the

limit of stability for the vapor-like states (a.k.a. vapor-like spinodal pSV). At pe < p < pSV,

vapor-like states are metastable, and condensation is associated with a certain nucleation

barrier, which cannot be overcome within the timeframe of experiment. In relatively nar-

row pores, where the nucleation barrier is low, pcond ≈ pe, while in wider pores with high

barriers, condensation occures close to the spinodal pressure p ≈ pSV. According to the

classification [21], the former regime is called the regime of reversible condensation, and the

latter, the regime of developed hysteresis. The hysteresis type depends on the pore size and

shape. In particular, for nitrogen adsorption at at 77.4 K, reversible condensation occurs in

cylindrical pores smaller than ∼4 nm, and developed hysteresis occurs in cylindrical pores

wider than ∼ 5 nm. In intermediate pores, the width of the hysteresis loop gradually in-

creases and the position of condensation shifts from pe to pSV. This regime is known as the

regime of developing hysteresis. In open uniform cylindrical or slit-like pores, desorption

occurs without nucleation at pc = pe via the meniscus receding from an open pore end,

and therefore, no metastability is observed. This scenario is not valid for more complex

pore structures, such as SBA-16, KIT-5 silicas, etc., where wider pores are connected by

narrower pores or “necks” [35, 36].

Two basic mechanisms of desorption in pore networks are distinquished as pore blocking

percolation and cavitation. The former mechanism was introduced in the early studies of

capillary hysteresis, and is referred to as “ink-bottle” or “classical pore blocking” mechanism

[20, 137]. It is well understood that evaporation of the capillary condensate from a network

of ink-bottle pores is hindered by the pore constrictions. In this case, desorption from the

pore body may occur only after emptying of its neck. In other words, desorption from the

neck triggers evaporation in the blocked pore. Thus, the vapor pressure d of desorption

from the pore body depends on the neck size and network connectivity. The onset of

evaporation from the pore network is associated with the percolation threshhold and the

formation of a continuous cluster of pores open to the external surface [32, 33, 141, 143,

144]. The percolation mechanism is observed in pore networks with sufficiently large necks.
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Theoretical and experimental studies [35, 36] have revealed that if the neck diameter is

smaller than a certain critical size (estimated to be ca. 5 nm for nitrogen at 77.4 K),

the mechanism of desorption from the pore body involves cavitation — the spontaneous

nucleation and growth of gas bubbles in the metastable fluid condensed in the pore — while

the neck remains filled. In this case, the desorption transition pressure pd does not depend on

the size of pore necks and is determined by the properties of the adsorbate, and as we show

below by the size and shape of the pore body. Both desorption mechanisms, percolation and

cavitation, originate from geometrical pore blocking; however, the physical mechanisms and

the pore size dependence are quite distinct. The pore blocking effects cause a “delay” in

desorption, i.e., desorption occures at vapor pressure below that of the equilibrium vapor-

liquid transition in the given pore (pd < pe). Thus, in the course of desorption, one observes

long-living metastable states of condensed fluid that is overstretched due to the action of

capillary pressure.

In this section, we focus on the cavitation mechanism of desorption. Cavitation is

broadly defined as spontaneous formation and activity of bubbles in metastable liquids

[145]. In the process of desorption, a critically sized bubble serves as a nucleus for forming

the vapor-like phase in a metastable (overstretched) liquid. In this light, cavitation is a

nucleation phenomenon. In other words, evaporation must be preceded by the formation of

a critical cavity (bubble) [55]. Creation of a critical cavity is associated with a free energy

barrier to overcome, i.e., the nucleation barrier. Cavities smaller than a certain critical size

collapse back into the liquid state. Cavities that reach the critical size grow spontaneously

and initiate a transition from liquid state to vapor state, since the latter is thermodynami-

cally more stable. This process is similar to cavitation processes in bulk liquids, which are

widespread in nature, physiology, and technology. Historically, cavitation has been viewed

as a negative effect of bubble formation in flow fields, particularly concerning the design

of impellers. It is also the culprit of “diver’s sickness”, caused by formation of nitrogen

bubbles in the blood during decompression. Nowadays, cavitation is widely employed in

technology and medicine. Stable, non-transient cavitation via a lithotripter is used to break

kidney and gall bladder stones [146]. Recently, it has been suggested that a similar method

can be used to non-invasively treat solid tumors [147]. Sonophoresis, a technique that in-
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creases permeability of lipid bilayer membranes to drugs, is also based on cavitation [148].

A better understanding of the formation of critical nuclei that precede cavitation is vitally

important for the design and practical implementation of these and other cavitation-based

technologies.

The study of nucleation in bulk liquids is notoriously difficult; although a metastable

liquid phase can be achieved via superheating, measurements of the energetics and the

rate of formation of critical nuclei is challenging due to natural fluctuations and impurities.

Capillary evaporation of fluids from mesoporous materials offers a unique opportunity to

monitor the very onset of cavitation. Firstly, a confining solid matrix limits temperature

and pressure fluctuations that are always present in macroscopic systems. Secondly, the

adsorbing pore walls are covered by liquid-like adsorbed films, which protect the interior of

the pores (where cavitation takes place) from surface pollutants and irregularities that serve

as nucleation centers and thus as facilitators of spontaneous heterogeneous cavitation in bulk

liquids. The creation of nuclei occurs without heterogeneous nucleation sites and is purely

driven by thermal fluctuations at given external thermodynamic conditions, thus cavitation

in desorbing fluids is homogeneous. A thorough understanding of cavitation phenomena

involved in desorption of fluids from pores and pore networks is not only of interest for

characterization of nanoporous materials, as mentioned above, but it can provide useful

insight to the nature of cavitation events. Since cavitation is a widespread phenomenon, an

improving knowledge of cavitation onset and energetics may have far-reaching implications.

In a continuation of our previous work [27, 35, 36, 52, 55, 142, 149] we study here

the cavitation of nitrogen condensed in pores of well characterized mesoporous silicas of

two types: ordered mesoporous crystals (SBA-16) and hierarchically structured materials

(KLE, KLE/IL and SLN-326). Well-defined pore morphologies of these samples, uniformity

of pores, and high precision of the measurements enable quantitative insights into cavitation

from a comparison of the experimental isotherms on different samples with the results of

molecular simulation of fluid desorption from individual spherical pores. The focus is made

on establishing relations between the conditions of cavitation and the pore size and shape.
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3.1.2 Methods and Materials

Materials

SBA-16 is a member of the SBA-n family [25]. It is a 3D silica mesoporous crystal that

is comprised of a network of cage-like pores placed at the sites of a body-centered cubic

lattice [150], which belongs to the Im3m space group. Its pore structure can be described,

according to electron crystallographic studies, as being wrapped by a periodic minimal I-WP

surface of Schoen [151], where regularly spaced cages are connected by significantly smaller

windows (pore entrances) [150, 152]; each cage has eight entrances. SBA-16 materials are

generally prepared via templated synthesis from segregated non-ionic tri-block copolymers

and are characterized by uniform pore size distributions (PSD) with tunable pore dimensions

(ranging from 6 to 12 nm), high surface area, and good thermal and mechanical stabilities

[153, 154]. SBA-16 intrinsically possesses complementary micro- and narrow meso- pores in

its wall structure, in addition to the network of mesopores ordered with Im3m symmetry

[155]. For our study, we selected SBA-16 materials with pore diameters varying from 6.5 to

12 nm. Nitrogen adsorption-desorption isotherms for these materials were either obtained

from literature (see Table 3.1), or measured on freshly synthesized SBA-16 samples [156].

Pore size information was obtained by first measuring high-resolution nitrogen sorption

isotherms, and then by applying a hybrid NLDFT method [36] to the adsorption branch

of the isotherm which takes into account the effect of delayed capillary condensation in the

metastable pore fluid (see also section 3.1.4).

Hierarchically structured silica materials of KLE type were prepared according to the

synthesis scheme described previously [157]. In aqueous solutions, KLE block copolymer

forms an FCC lattice of isolated spherical micelles. In templated silica matrix, these micelles

produce spherical mesopores that are connected through small micropores, originating from

the hydrophilic poly(ethylene oxide) blocks penetrating the silica matrix. The pore structure

of KLE silica, as confirmed by SAXS and TEM studies [36, 157], can be described as

spherical mesopores with a pore diameter of ca. 14 nm, connected via narrow (∼ 1 nm)

micropores in the pore walls. This represents an ideal morphology to study the adsorption

and desorption phenomena.
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KLE/IL silica was synthesized using the same block copolymer as in the case of KLE-

silica with an ionic liquid used as a second template [158]. This leads a trimodal pore size

distribution. KLE/IL silica contains main spheroidal mesopores of 11-14 nm in diameter

connected by micropores of ∼1 nm in diameter similar to those in KLE-silica’s. In addition,

there are narrow cylindrical mesopores of 2-3 nm in diameter (from the ionic liquid). The

compositions of the parental solutions used for KLE and KLE/IL silica were optimized to

ensure accessibility of mesopores [36, 158, 159]. KLE-C23 has a pore structure similar to

that of KLE/IL silica, but with spheroidal pores in the range of 24 nm [160].

A novel SLN-326 silica material with a hierarchical pore structure was prepared by

employing a copolymer mixture of SE1010 (“SE” = (poly(styrene)-(poly(ethylenoxide)) +

STEOM (Poly (styrene)539-co-poly((3triethoxysilyl)propylmethacrylate)73) as a template

(a ratio of STEOM /SE1010 = 0.75 was used). SLN-326 silica consists of spherical meso-

pores of diameter ∼35 nm, which are connected through ∼5 nm worm-like mesopores and

additional micropores [159].

3.1.3 High-resolution adsorption measurement

Nitrogen (77.4 K) and argon (77.4 K, and 87.3 K) adsorption/desorption isotherm mea-

surements were performed with an Autosorb-I-MP adsorption instrument (Quantachrome

Instruments, Boynton Beach, FL) in the relative pressure range from 1 × 10−6 to 1. The

analysis station of the volumetric adsorption apparatus was equipped with both the stan-

dard pressure transducers, in the dosing volume (manifold) of the apparatus, and with high

precision pressure transducers (Baratron MKS), dedicated to read the pressure in the sam-

ple cell itself. Hence, the sample cell is isolated during equilibration, which ensures a very

small effective dead volume and therefore a highly accurate determination of the adsorbed

amount. The saturation pressure p0 is measured throughout the entire analysis by means of

a dedicated saturation pressure transducer, which allows the vapor pressure to be monitored

for each data point. This improves the precision in determination of p/p0 and the accuracy

of the adsorption measurements. The samples were out-gassed overnight at 150 ◦C prior to

the adsorption analysis.
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3.1.4 NLDFT method for pore size characterization

The adsorption data were analyzed using a hybrid NLDFT approach that allows quan-

tification of both micro- and mesopores [36]. The hybrid NLDFT method allows one to

calculate PSDs in materials containing pores of different geometry. The method is applied

to the complete range of micro- and mesopores. Calculations of PSDs are performed from

the adsorption branch of the isotherm. For materials with spheroidal pores, the method

uses the spherical pore model in the region of hysteresis, and the cylindrical pore model

in the region of reversible filling of micropores and narrow mesopores. In the region of

hysteresis, the method takes into account the effect of delayed condensation, and uses the

NLDFT metastable adsorption isotherms, while in the region of reversible capillary conden-

sation/desorption the method uses NLDFT equilibrium isotherms. We have demonstrated

successful application of this method in previous works [27, 28, 162, 163].

3.1.5 Monte Carlo simulation studies

Monte Carlo (MC) simulations were carried out to model N2 adsorption in spherical silica

pores of 5.54 nm, 7.22 nm, 8.02 nm, 8.29 nm, 9.02 nm, and 9.56 nm in accessible diameter.

These sizes correspond to internal pore diameters of selected SBA-16 samples studied exper-

imentally (Table 3.1). Nitrogen was modeled as a spherical Lennard Jones (LJ) particle of

effective diameter σFF = 0.36154 nm and LJ energy parameter εFF/kB = 101.5 K [162]. The

fluid-fluid potential was truncated at rc = 5σFF. The solid-fluid interaction was modeled as

mean-field “smeared-out” LJ potential [27], with parameters [164] of σSF = 0.317 nm and

εSF/kB = 147.3 K, and the effective surface density of adsorption sites was ρS = 15.3 nm−2.

The chemical potential µ was converted to the bulk vapor pressure p using the Johnson-

Zollweg-Gubbins (JZG) equation of state for LJ fluid [165]. Each system was held at the

constant temperature T = 77.4 K of experimental measurements.

The accessible pore diameter is defined as the diameter of the pore interior that is avail-

able for adsorbed molecules. This differs from the internal diameter, used in calculation of

pore diameter via the NLDFT method, and the external, or center-to-center diameter. This

definition of accessible diameter provides the correct asymptotic value of the fluid density in
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the pore to the equation of state. The accessible diameter omits the volume excluded due to

LJ repulsion between the adsorbate and the pore wall. For the model utilized, the difference

in external and accessible diameters is 0.18 nm, which is the difference between the center

of a hypothetical solid particle in the pore wall with the edge of nitrogen (adsorbing) par-

ticle, found when USF(r) = 0. Therefore, the external pore sizes calculated were 5.72 nm,

7.40 nm, etc. To avoid confusion, we will only refer to the accessible pore diameters when

referring to simulation, and internal diameters when referring to experimentally determined

pore diameters.

Simulations were performed using grand canonical ensemble (GCMC) and gauge cell MC

simulation methods. Standard algorithms [10, 166] were employed with simulation runs of

at least 300,000 MC steps per molecule. Each step included an attempt of a molecule

displacement in each cell or attempts of molecule removal, insertion, or transfer between

the cells (where applicable). The maximum number of molecules in the largest pore was

about 7,600.

The Gauge Cell method [9, 10] models equilibrium between the fluid in a pore sample

system and a finite size reservoir of a limited capacity; the so-called gauge cell. The two

cells of constant volume are considered in thermal and chemical equilibrium, maintained

using particle exchange between them, somewhat similar to GCMC. The total number of

particles, Ntotal = Npore + Ngauge, is conserved. The gauge cell MC setup is referred to

as the mesocanonical ensemble [9]; it approaches the canonical ensemble when the gauge

cell is infinitely small (Vgauge = 0) and the grand ensemble at the infinitely large gauge

cell (Vgauge → ∞). The gauge cell fulfills two purposes: its limited size restricts density

fluctuations in the system, and it serves as a reference for finding the chemical potential

of the pore fluid (since the condition of equilibrium between the pore and the gauge is

the equality of chemical potentials). The suppression of fluctuations allows for simulations

of metastable and labile states, resulting in a continuous van der Waals’s type isotherm

that can be thermodynamically integrated. The backwards trajectory of unstable states

corresponds to critically sized bubbles, which would spontaneously evaporate in an open

system. The number of simulations was increased near spinodal conditions to improve

statistics. For further details of the gauge cell method, see Ref. [9, 10, 49].
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The simulated isotherms were compared to the experimental isotherms to ensure the

model’s validity. This was achieved through fitting simulated data to two characteristic

experimental points at p/p0 = 0.95 (complete filling of all pores) and p/p0 = 0.40 (complete

filling of connecting pores prior to capillary condensation in main mesopores). The simu-

lated isotherms corresponded to spheroidal pores of diameter equal to the mean mesopore

diameter determined from the experimental adsorption isotherms. The general fit used was

Nexp/Nexp(0.95) = (Nsim + ∆N)/(Nsim(0.95) + ∆N). This fit implies that both simula-

tion and experimental adsorption isotherms are normalized at p/p0 = 0.95 to ensure the

same pore volume. The value of ∆N was determined to ensure the same adsorption at

p/p0 = 0.40. In so doing, the gauge cell canonical isotherm was then mapped onto the

corresponding experimental isotherm.

3.1.6 Experimental Results

We have studied the pore size dependence of the cavitation pressure on a series of well-

characterized samples with the mean diameter of spheriodal mesopores ranging from 6.9 nm

to 35 nm. Selected adsorption/desorption isotherms are presented in Figures 3.1, 3.2,

and 3.3. All isotherms display a characteristic sharp step on the desorption branch, which

is associated with cavitation-induced spontaneous evaporation from mesopores. The mean

pore diameters and the relative pressures of cavitation are given in Table 3.1. The mean

pore diameter was determined with the hybrid NLDFT method applied to the adsorption

branch (section 3.1.4) [28]. Since the experimental desorption steps are never vertical due

to the distribution of pore sizes and other sample non-idealities, the reported pressures

of cavitation were defined in the middle of the desorption steps. Thus for a quantitative

analysis, we assumed that the middle of the desorption step corresponded to the onset of

cavitation in pores of the mean diameter. This assumption seems reasonable, yet it implies

a some uncertainty in the reported values.

As clearly seen from Figure 3.1, there is a little difference in the positions of cavitation

for samples with pores larger than ∼11 nm disregarding the sample nature. The cavitation

in KLE/IL, KLE-C23, SLN-326, and SBA-16 (11.7 nm) samples occurs essentially at the

same relative pressure of p/p0 = 0.48 ± 0.01. At the same time, the cavitation step for
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Figure 3.1: Nitrogen adsorption (at T = 77.4 K) in SBA-16 and hierarchically structured
silica samples with pore main cavity diameters > 9.4 nm.

9.4 nm pore sample of SBA-16 is noticeably shifted to lower pressures. To show that this

shift was not caused by the difference in the sizes of connecting pores, we plot PSDs for

SBA-16 (9.4 nm), KLE-C23 and KLE/IL samples in Figure 3.2. These distributions show

two groups of pores: spheroidal mesopores, in which cavitation occurs, and connecting

channels, or necks. While the sizes of mesopores are significantly different, the sizes of

connecting pores in all samples are essentially the same. Thus, the shift in the cavitation

pressure cannot be explained by the classical pore blocking effect, which would imply the

difference in the size of connecting pores.

The pore size dependence of the cavitation pressure is demonstrated in Figure 3.3 with

a series of SBA-16 samples with the main mean pore diameter ranging from 6.5 nm to

10.5 nm. To make a visualization comparison easier and to an avoid overlap of desorption

steps, the isotherms are presented in reduced adsorption units (reduced to the adsorption

at p/p0 = 0.95) and the isotherms for 7.8, 8.8 and 10.5 nm samples are shifted upwards by

0.25, 0.50, and 1.0, respectively. The unmodified isotherms are available in Supplementary

Information. The isotherm on 9.4 and 11.7 nm SBA-16 samples given in Figure 3.1 fit nicely

into this trend.
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Figure 3.2: Selected NLDFT pore size distribution curves

The pore size dependence of the cavitation pressure is summarized in Figure 3.4. In

addition to the data for SBA-16, KLE-type silica and SLN-326 silica, which are materials

with cage-like (spheroidal) mesopores, we also added two data points reflecting cavitation

in wormlike (cylindrical) pores. The data point for ∼ 5 nm pore corresponds to SLN 326

sample discussed below, and the data point for 9.4 nm pore refers to SE3030 silica that was

addressed in our previous work [36]. The cavitation pressure in spheroidal pores increases

almost linearly from ∼ 0.42 to ∼ 0.49 with the increase of pore diameters from ∼ 7 to

∼11 nm and then saturates at ∼0.49 in the range of pore diameters from ∼11 to 35 nm.

It is well understood that as the confinement size decreases, the liquid spinodal, which

determines the limit of metastability and the conditions of cavitation, shifts to lower pressure

[21, 50, 51, 167]. On the other hand, one can hypothesize that the observed saturation of

the pore size dependency on the cavitation pressure observed in pores of 11 — 35 nm

corresponds to the achievement of the limit of stability in metastable bulk liquid due to

homogeneous nucleation. If this were true, one could offer an efficient method for studies

of the limits of cavitation stability in metastable bulk liquids by measuring desorption

isotherms on materials with large mesopores.

The pressure at which cavitation occurs is determined by the probability of nucleation in
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Figure 3.3: Nitrogen adsorption/desorption isotherms in SBA-16 silica materials with pore
diameters < 11 nm. The shift of the cavitation step can be clearly seen. The isotherms are
presented in reduced adsorption units (reduced to the adsorption at p/p0 = 0.95); they are
shifted upwards progressively by 0.25 to avoid overlap of desorption steps to illustrate the
dependence of cavitation pressure on pore size. The original non-normalized isotherms are
given in Supplementary Information.

a pore of a given size during the observation time. It is proportional to exp(∆Ωcav(d)/kBT ),

where ∆Ωcav(d) is the nucleation barrier associated with the formation of a critical cavity

in a pore of diameter d [55]. The pore size dependence (Figure 3.4) suggests that the

nucleation barrier should depend strongly on the pore size at d < 11 nm and show little

or no dependence afterwards, while the fluid state in the central part of the pore gradually

approaches that of the bulk liquid. We therefore may assume that in pores larger than

14 nm the cavitation barrier approximately equals that for the homogeneous nucleation in

the bulk liquid nitrogen. This hypothesis is confirmed in MC simulation described below.

It is worth noting that metastable states and associated cavitation and hysteresis be-

haviors can be observed for nitrogen adsorption at 77.4 K in SBA-16 and other mesoporous

silicas with spheroidal pores only when the pore diameter exceeds ca. 5 nm. Samples with

smaller pores exhibit reversible adsorption-desorption isotherms [155, 161]. The isotherm

reversibility in explained by a decrease of the nucleation barriers down to ∼30kBT , which

are easily crossed due to thermal and other fluctuations in adsorption experiments. Note

that since the hysteresis behavior depends on the pore shape as well, the isotherm reversibil-

ity in cylindrical pores is limited by ∼4 nm that corresponds to the lowest relative pressure
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Figure 3.4: Effect of pore diameter on cavitation pressure. Experimental data for the sam-
ples with spheroidal pores are in red and with cylindrical pores in blue. Sample denotation
is given in the insert. The cylindrical pore d ≈ 5 nm refers to the wormlike channels in
SLN-326, while the cylindrical pore at d ≈ 9 nm is SE3030.

of hysteresis of ∼0.42 [21].

The difference in cavitation pressure in spherical and cylindrical pores can be shown

with the isotherm on SLN-326 sample, which exhibits a two-step desorption branch and a

pronounced inflection of the adsorption branch far below the main capillary condensation

step. As seen in Figure 3.5, where we present a series of scanning desorption isotherms,

the hysteresis loop can be decomposed into two non-overlapping loops, which correspond to

two different groups of pores: large spheroidal pores with the mean diameter of ∼ 35 nm

and cylindrical worm-like channels with the mean diameter of ∼ 5 nm. The existence of

these two groups of pores is confirmed by the argon isotherms presented in Figure 3.6. The

Ar isotherm at 87.3 K has similar features as the N2 isotherm at 77 K. The Ar isotherm

at 77.4 K has only one hysteresis loop that corresponds to the smaller pores, since at this

low temperature (6.5 degrees below the argon triple point) the pores larger than ∼ 18 nm

cannot be filled from the vapor phase anymore by capillary condensation [139, 168, 169].

While the cavitation mechanism of desorption from large pores is obvious, the mecha-

nism of desorption from smaller pores requires an additional consideration. Indeed, it may

be driven either by cavitation or by pore blocking. In order to detect which mechanism

is dominant, we applied a test suggested in our previous work [36]. This test is based on
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Figure 3.5: Nitrogen adsorption in SLN-326 silica at 77.4 K. Scanning isotherms demon-
strate two groups of mesopores: cages of size 35±3 nm and worm-like channels of 5±1 nm.
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Figure 3.6: Argon adsorption at 87.3 and 77.4 K
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Figure 3.7: NLDFT PSDs of worm-like channels calculated from the scanning isotherms of
N2 and Ar

measuring adsorption isotherms with different adsorbates (such as nitrogen and argon here)

and/or at different temperature and comparing PSDs calculated from the data obtained

at these different conditions. In the case of pore blocking, the pressure of evaporation is

controlled by the size of connecting pores. Therefore, PSDs calculated from the desorption

branches should be independent of the choice of the adsorbate or temperature. In the case of

cavitation, the pressure of desorption depends on the adsorbate and temperature and is not

correlated with the size of connecting pores. Hence, PSDs calculated from the desorption

branch of the hysteresis loop are artificial; they do not reflect the real pore sizes and they

should depend on the choice of the adsorbate and/or temperature. This is exactly what is

seen in Figure 3.7, where we present the PSDs calculated from the nitrogen at 77.4 K and

argon at 87.3 K isotherms in the range from 2 to 10 nm. The PSDs calculated from the

desorption branches are significantly different. At the same time, the PSDs calculated from

the adsorption branches agree nicely and reflect the real sizes of connecting pores. This

analysis confirms that (i) desorption from the cylindrical mesopores of SLN-326 is induced

by cavitation and (ii) cavitation pressures in spherical and cylindrical pores are different.
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3.1.7 Results of Monte Carlo Simulations and Comparison with Experi-

ment

Monte Carlo simulation results for pores of different diameters (from 5.54 to 9.56 nm) are

shown in Figure 3.8a. These isotherms combine the data obtained in the GCMC and gauge

cell simulations as the particle density Nσ3/V versus the bulk relative pressure, p/p0. The

isotherms determined in the gauge cell simulations are the canonical isotherms that would

be obtained with the Widom particle insertion method [8] in the canonical ensemble [9]. The

canonical isotherms are continuous and have a sigmoid shape resembling van der Waals’s

loops typical for mean field theories of first order phase transitions. It is important to

recognize that the sigmoid shape comes here from the finite size of the system rather than

from a mean field approximation [51]. The canonical isotherm is composed of three parts:

(i) adsorption branch of low density vapor-like states that terminates at a vapor spinodal SV;

(ii) desorption branch of high density liquid-like states that terminates at a liquid spinodal

SL; and (iii) backward trajectory of labile states connecting the vapor and liquid spinodals;

these states of negative compressibility would be totally unstable in experiment or the grand

canonical ensemble. The metastable and labile states that are not achievable in the grand

canonical ensemble were sampled as the mesoscopic canonical ensemble conditions of the

gauge cell MC simulation [9].

The position of vapor-liquid equilibrium (vertical line BF) is determined from the con-

dition of the condition of the nil work of the transition between equilibrium vapor-like

and liquid-like states. This condition is equivalent to the Maxwell rule of equal areas (area

BSVD = area FSLD, D is the intersection of lines BF and SVSL). The corresponding equilib-

rium chemical potential, µe, is found using thermodynamic integration along the canonical

isotherm: ∮
µe

N dµ = 0 (3.1)

The states on the adsorption branch at µ > µe and desorption branch at µ < µe of the

canonical isotherm are metastable, and the spinodal points represent the thermodynamic

limits of metastability.

GCMC adsorption-desorption isotherms form hysteresis loops like the one (ACGEA)
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Figure 3.8: (a) Simulated nitrogen isotherms in pores of different sizes on SBA-16 silica
at T = 77.4 K. Vertical line EA corresponds to cavitation in a metastable liquid state
in GCMC simulation. Line FB represents vapor-liquid equilibrium. Line CG represents
capillary condensation in GCMC. SL and SV are the limits of stability in the liquid and
vapor states, as calculated by the gauge cell method. (b) Summary of calculated spinodal
points, (� red squares: vapor spinodals, � blue diamonds: liquid spinodals). In systems
d > 8 nm, nearly identical values of spinodals are calculated, corresponding closely to the
JZG equation prediction of the bulk value of p/p0 = 0.268. This value corresponds to the
horizontal line.

shown on the 5.54 nm isotherm. The abrupt steps CG and EA correspond to the sponta-

neous capillary condensation and desorption/cavitation transitions observed in the GCMC

simulation, below and above the respective spinodals. Virtual experiments of GCMC sim-

ulations mimic experimental conditions of real adsorption measurements: the sample is set

in equilibrium with a macroscopically large (thermodynamically infinite) reservoir of vapor

kept at given vapor pressure and temperature. However, the positions of spontaneous capil-

lary condensation and desorption in simulations may differ significantly from those observed

experimentally. The spontaneous transition in a metastable phase is a fluctuation driven

process that requires formation of a critical nucleus. The probability of nucleation at given

conditions depends on the level of natural thermal fluctuations and the observation time,

which in real experiments is significantly larger than in simulations. Thus, spontaneous

transitions in GCMC simulations occurs closer to the spinodals that in real experiments.

Naturally, the locations of VLE and both spinodals shifts to higher pressures as pore

width increases; however, while the vapor spinodal continues to increase steadily with the

pore diameter, the liquid spinodal reaches a plateau of p/p0 ≈ 0.270 (see Figure 3.8b). This
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supports our hypothesis that cavitation in large pores occurs at conditions near that of a

bulk fluid. The JZG equation predicts a nearly identical bulk liquid spinodal of p/p0 =

0.268. However, this comparison must be treated with caution as this equation was not

explicitly designed to calculate spinodals [165]. Also noteworthy is that for the condensation

transition the situation is qulitatively different. The vapor spinodal pressure monotonically

increases with the pore size but the fluid always condenses at pressures lower than the bulk

VLE pressure p0. The condensation transition has no relevance to the bulk vapor spinodal,

which occurs at oversaturated conditions (at p/p0 = 6.94, according to the JZG equation).
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Figure 3.9: Comparison of MC simulations and experiments. (a) 9.4 nm SBA16-100C (exp)
and 9.56 nm gauge cell (sim), and (b) 7.1 nm SBA16-60C (exp) and 7.22 nm gauge cell
(sim). Isotherms are fitted to 2 points, one near saturation and another in the linear region
of the vapor-like branch. The calculated isotherm is shifted up to account for adsorption
in connecting and matrix pores. This shift is indicated by × on the y-axis. Note that the
liquid spinodal is far removed from the point of experimental desorption (cavitation).

The MC simulated isotherms are generally in good agreement with the experimental

isotherms given in Figures 3.1 and 3.3. In Figure 3.9, we present two typical examples for

SBA-16 samples, where the experimental isotherm is compared with the simulated canon-

ical isotherm in the spherical pore of the mean diameter for the given sample. To display

simulated data as functions of the vapor pressure the JZG equation of state was employed

to relate the vapor pressure and the respective chemical potential. One cannot expect to

get the exact agreement since the samples contain mesopores of different sizes (see pore

size distributions in Figure 3.2) that is not captured in single-pore simulations. Most im-

portantly, the samples contain additional micropores that are filled at pressures below the
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condensation region for the main spherical mesopores. For the purpose of comparison, the

experimental and simulated isotherms were normalized at p/p0 = 0.95, and in order to

account for real adsorption of the micropores, the simulated isotherm was shifted up to fit

the experimental isotherm prior to the region of capillary condensation in mesopores. The

quantitative value of this shift is displayed as a crosshair on the y-axis of Figure 3.9.

The simulated and experimental isotherms overlay nicely, indicating that the simulations

correctly describe the physics of adsorption/desorption processes. The compressibility of

the condensed fluid (the slope of the desorption isotherms prior to cavitation) aligns in

experiments and simulations, as well as the slopes of the adsorption isotherms prior to the

capillary condensation. As expected, capillary condensation in experiments occurred near

the position of the vapor spinodal SV. At the same time, cavitation in experiments occurred

prior to the achievement of the liquid spinodal SL, and the difference in the respective

relative pressures is significant.

To get a better understanding on the conditions of the cavitation onset in experiments,

we calculated the nucleation barriers in metastable condensed fluid from the canonical

isotherms. The continuity of the canonical isotherm allows one to employ the thermody-

namic integration to calculate the grand thermodynamic potential, Ω(µ, T ),

Ω(µ, T )− Ω(µr, T ) = −
∫ µ

µr

N(µ, T ) dµ (3.2)

where µr is an ideal reference state with sufficiently low pressure. The states on the back-

ward branch between the vapor spinodal and the vapor-liquid equilibrium correspond to

the critical nuclei (cavities, or bubbles) that should be formed to trigger cavitation in the

metastable condensed liquid [9, 55]. The nucleation barrier at a given chemical potential

µ < µe represents the work of formation of the critical nucleus. The latter equals to the

difference of the grand thermodynamic potentials of respective liquid and “bubble” states,

∆Ωcav = Wc = Ωl(µ, V, T ) − Ωb(µ, V, T ). Here, Ωl and Ωb are the grand thermodynamic

potentials along the liquid and backward branches of the canonical isotherm. This is graph-

ically represented by the area from SL to F (or any other desirable µ), between the unstable

and liquid branches in Figure 3.8a.
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Figure 3.10: Calculated nucleation barriers of nitrogen at 77.4 K confined to spherical
silica pores of different sizes. The solid blue curve corresponds to the classical nucleation
theory estimate of the barrier. Solid vertical lines show the positions of cavitation observed
experimentally (See Figure 3.4 and Table 3.1). The calculated curves are terminated at the
respective pressures of equilibrium vapor-liquid transition.

The nucleation barrier of cavitation Wc as a function of the vapor pressure is plotted

in Figure 3.10 for different pore sizes. The nucleation barrier monotonically increases from

the liquid spinodal (where it is zero by definition) to the vapor-liquid equilibrium, where

the nucleation barrier of evaporation reaches a maximum equaled to the nucleation barrier

of condensation defined as ∆Ωcond = Ωv(µ, V, T ) − Ωb(µ, V, T ) (due to the Maxwell rule).

The nucleation barriers for condensation are shown by dotted lines. Most remarkably, the

nucleation barriers in pores larger than 8 nm at relative pressures larger than ∼0.5 collapse

on one universal dependence. This finding suggests that the conditions of bubble nucleation

in sufficiently large mesopores does not depend on the size of confinement, and thus, are

characteristic to homogeneous nucleation in the bulk liquid.

For comparison, we also calculated the nucleation barriers using the classical nucleation

theory (CNT). According to CNT [170], the work of critical bubble formation equals

Wc =
4π

3
r2

s γs (3.3)

where γs is the surface tension of a bubble with radius rs. The radius of a critical nucleus
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is then approximated using the Laplace equation,

rs =
2γs

pl − pv
(3.4)

where pl and pv are the pressures of bulk liquid and vapor corresponding to the same

chemical potential µ via the bulk equation of state, and also assuming the ideal vapor phase

and non-compressible liquid phase. The surface tension of the LJ model of nitrogen was

estimated from simulation data reported in the literature [171]. A value of γσ2/ε = 0.922

was obtained by interpolation using kBT/ε = 0.762 and rc/σ = 5. CNT has several severe

drawbacks, namely the assumption that cavities are spherical and that the fluid outside the

cavities represents a uniform liquid phase [172]. Also, CNT does not predict nil nucleation

barriers at the spinodal. However, CNT is expected to provide correct asymptotic values

as the bubble size increases. The CNT result for the LJ model of nitrogen is displayed as a

solid line in Figure 3.10. As expected, CNT largely overestimates the nucleation barriers in

nanometer-sized pores in the practical region of cavitation pressures (p/p0 < 0.5). However,

the MC calculated barrier of the largest pore of 9.56 nm asymptotically approaches the CNT

value at high relative pressures. This observation suggests that the latter dependence can

be employed for predicting nucleation barriers in larger pores and making extrapolations

for the bulk liquid.

For the smallest of the simulated pores (5.54 nm), experimental desorption (HMM-3

sample) occurred at the vapor-liquid equilibrium without any hysteresis. The corresponding

nucleation barrier is only 32 kBT , which is easily crossed by thermal fluctuations at the

conditions of standard adsorption experiments. As seen in Figure 3.10, the nucleation

barrier at the equilibrium sharply increases with the pore size from ∼ 75 kBT in 7.22

nm pore to ∼ 175 kBT in 9.56 nm pore. These barriers are insurmountable during the

experiments, and thus the adsorption-desorption isotherms exhibit prominent hysteresis.

The position of desorption in these samples is determined by the conditions of cavitation.

From the comparison of simulated and experimental data, we evaluated the nucleation

barriers that corresponded to the experimentally observed cavitation in pores of difference

sizes. The nucleation barriers were determined at the experimental cavitation pressures
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Figure 3.11: The pore size dependance of the nucleation barrier of cavitation. Nucleation
barriers in large pores that cannot be adequately sampled with Monte Carlo simulations
were extrapolated from the nucleation barrier relationship for a 9.56 nm pore (see Fig-
ure 3.10). They are shown by red squares.

reported in Table 3.1 and shown by solid vertical lines in Figure 3.10. Cavitation pres-

sures were adjusted slightly by interpolation to correct for the minor differences between

experimentally measured NLDFT diameters and the internal diameters used in simulation.

The pore size dependence of the nucleation barriers is given in Figure 3.11. The nucleation

barrier is plotted against the mean diameter of main mesopores of the samples explored

experimentally. For pores d > 10 nm, the nucleation barrier was obtained from the results

of simulation in 9.56 nm pore.

As the pore size increases, so does the nucleation barrier of cavitation from ∼ 40 kBT

at 7 nm to 70 kBT at 11 nm. In larger pores up to 35 nm, the nucleation barrier varies

insignificantly in the diapason of 70 − 75 kBT that corresponds to minor variations of the

cavitation pressure in large pore samples (Figure 3.5). It is worth noting that nucleation

barriers of ∼70 kBT correspond to the largest degrees of metastability achievable in macro-

scopic experiments with overheated cryogenic liquids like nitrogen and argon prior to their

spontaneous boiling [173]. This estimate suggests that (i) the results of simulations of nu-

cleation barriers for confined fluids can be extrapolated to the bulk systems, and (ii) the

conditions of cavitation in large mesopores are similar to the conditions of homogeneous

cavitation in bulk metastable liquids.
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3.1.8 Discussion and Conclusions

By means of high-resolution adsorption-desorption experiments with specially prepared

mesoporous silica materials, we studied cavitation in metastable liquid nitrogen at its boiling

temperature of 77.4 K. Complementary experiments were performed with argon at 77.4 K

and 87.3 K (argon boiling temperature). All samples possessed 3D pore networks with

uniform cage-like spheroidal mesopores connected by more narrow channels. Two classes

of samples were explored: ordered mesoporous crystals SBA-16 with the Im3m cubic pore

network and hierarchically structured silicas of KLE, KLE/IL, and SLN-326 types. The

samples were characterized by the mean internal diameter of spheroidal mesopores, which

varied from sample to sample in the range 6 – 35 nm. The pore size distributions were

determined by the NLDFT hybrid method [36].

The cavitation mechanism of evaporation of condensed nitrogen confined to cage-like

pores is displayed by a sharp step on the desorption isotherm. This mechanism was con-

firmed by the independence of the desorption step position of the size of connecting pores,

as well as by a comparative analysis of adsorption-desorption isotherms of nitrogen and

argon at the normal boiling temperatures of nitrogen and argon. It is well-understood from

earlier studies that the onset of cavitation is related to the achievement of the limit of stress

stability in the metastable condensed liquid. The so-called limiting stress hypothesis was

suggested in the seminal works of Everett [174] and Dubinin [175] to explain the position

of the lower closure point of the hysteresis loop formed by the adsorption and desorption

isotherms. However, it is generally assumed that the cavitation pressure depends on the

adsorbate and is independent of structural and chemical properties of the porous solid [20].

In contrast to this classical viewpoint, our data shows that the vapor pressure at the onset

of cavitation does depend on the pore size for the samples with pores smaller than ∼11 nm

and remains practically unchanged for the samples with larger pores.

We have found the difference in the cavitation pressure in spherical and cylindrical

pores of the same diameter. This conclusion was confirmed by a detailed analysis of the

characteristic hysteretic behavior observed in SE3030 silica, which consists of wormlike

pores of diameter 9.4 nm, and SLN-326 silica, which contains extra-large cage-like pores
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with the mean diameter of 35 nm and worm-like cylindrical channels of ∼ 5 nm. By

measuring scanning desorption isotherms and, in addition, Ar adsorption at 87.3 K and

77.4 K, we showed that two characteristic steps on the desorption branch corresponded

to two independent cavitation processes in spheroidal and cylindrical pores. Within this

context, it is worth restating that cavitation occurs in the materials containing mesopores

accessible only through narrow channels (necks/windows smaller than ∼ 4 nm) that are

remained filled at the pressure characteristic to the onset of cavitation, which depends on

the mesopore shape and size.

The onset of cavitation is preceded by the formation of a critical nucleus of the vapor

phase in the metastable liquid. Thus, the position of cavitation is determined by the

nucleation barrier, defined as the critical nucleus free energy, which depends on the degree

of metastability. We suggest that the observed independence of the cavitation pressure of

the size of confinement indicates that the conditions of bubble nucleation in pores larger

than ∼11 nm approach the nucleation conditions in the bulk liquid. In smaller pores, the

nucleation barrier depends on the pore size and shape: the smaller the pore, the smaller

the barrier, and thus the vapor pressure of cavitation increases with the pore size, from

∼0.42 to ∼0.49 (for spheroidal mesopores). According to this consideration, the absence of

experimentally observed hysteresis in cage-like pores smaller than ∼ 6 nm is explained by

low nucleation barriers that can be overcome at the conditions of vapor-liquid equilibrium.

To test this hypothesis and to evaluate the nucleation barriers, we performed grand

canonical Monte Carlo and gauge cell Monte Carlo simulations of nitrogen adsorption and

desorption in spherical silica pores ranging from 5.54 nm to 9.56 nm in diameter. Simulated

and experimental adsorption isotherms were in good agreement. Exploiting the correlation

between the experimental cavitation pressure and the simulated nucleation barrier, we found

that the nucleation barrier increased almost linearly from ∼ 40 to ∼ 70 kBT in the range

of pores from ∼ 7 to ∼ 11 nm, and varied in narrow diapason of 70 − 75 kBT in larger

pores (up to 35 nm). The nucleation barriers of this magnitude correspond to the limit of

sustainable metastability and the onset of spontaneous boiling in macroscopic metastable

nitrogen droplets [173]. This coincidence confirms that the conditions of cavitation in pores

larger than 11 nm are similar to the conditions of homogeneous nucleation in the bulk.
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The conclusion that cavitation in sufficiently large pores does not depend on the size of

confinement is supported by calculated density profiles of condensed nitrogen (see Supple-

mentary Information). As the pore size increases, the density in the pore center approaches

the density of metastable liquid nitrogen, and the size of critical nucleus becomes pro-

gressively smaller than the pore diameter; respectively, the stabilizing effect of fluid-solid

attractive interactions diminishes. An additional confirmation comes from the fact that

the constructed dependence of the nucleation barrier on the vapor pressure asymptotically

approaches the predictions of the classical nucleation theory in the bulk at the relative

pressures larger ∼0.6.

The established correlation between the nucleation barrier at the onset of cavitation

and the pore size gives a rough quantitative estimate for the criterion of adsorption hystere-

sis. The nucleation barrier of ∼ 40 kBT , which corresponds to the smallest pore in which

we observed adsorption hysteresis (∼7 nm), can be regarded as a boundary of sustainable

metastability in condensed nitrogen at the standard conditions of adsorption measurements.

The absence of hysteresis in smaller pores suggests that nucleation barriers smaller that

∼40 kBT are overcome due to natural thermal fluctuations and temperature and pressure

variations during the equilibration time set by the experimental protocol. It is worth under-

scoring that the conditions of sustainable metastability in experiments and simulations are

significantly distinct. Nucleation barriers insurmountable in simulations are significantly

smaller due to the smaller observation times and the lack of natural variations of external

thermodynamic parameters inherent to real experiments [50].

In conclusion, our study provides new insights into the origin of adsorption-desorption

hysteresis in nanoporous materials, which is crucial for a correct and comprehensive struc-

tural characterization of advanced nanomaterials with hierarchical pore structure. The

established relationship between the cavitation pressure and the pore size may be instru-

mental in discriminating and validating pore network morphologies and pore shapes. Our

findings imply that there is a limit to the influence of the confinement on the onset of cav-

itation, and thus, cavitation of nanoconfined fluids may be employed to explore cavitation

in macroscopic systems. This is an important outcome, which may give rise to novel experi-

mental techniques for measuring limiting tensile stresses, nucleation barriers, and conditions
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of cavitation in metastable liquids.

Supplementary Information
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Figure 3.12: Nitrogen adsorption/desorption isotherms in SBA-16 silica materials with pore
diameters < 11 nm. These data were presented in Figure 3.3 with scaled and shifted adsorp-
tion coordinates. Notice the cavitation pressure (taken at the mid-point of the desorption
transition) decreases with mean pore size.

3.2 Monte Carlo Simulation of Cavitation in Pores with Non-

wetting Defects

3.2.1 Introduction

The role of cavitation during the evaporation of a fluid from porous materials has been a

much discussed topic [1, 35, 36, 176–181]. When the formation of an equilibrium meniscus

at the vapor-liquid interface is somehow hindered, desorption occurs at a pressure less than

the vapor-liquid equilibrium (VLE) pressure for the pore of a given size. In particular,

there is much interest in so-called “ink-bottle” mesopores, where a pore body is connected

to other pores by smaller channels or necks. As known from the experiments and respective

theories, the neck diameter has a profound effect on the position of the evaporation pressure

[35]. The smaller is the neck diameter, the smaller is the relative pressure of desorption
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(a) Pore, d (accessible) = 5.54 nm
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(c) Pore, d (accessible) = 9.56 nm

Figure 3.13: Density profiles from selected simulations. Densities measured at µ/εFF = −9.5
(p/p0 = 0.821) and correspond to a liquid-filled pore. The red horizontal line is the value
of the bulk density at the same chemical potential (pressure). Values were sampled equi-
radially, so small radii have larger statistical error. Note that R = d (external)/2, where d
(external) = d (accessible) + 0.18 nm. Sharp layering appears close to the adsorbing wall.
In small pores, the oscillating layers are still present at considerable amplitude in the pore
center. Larger pores exhibit a fluid of near bulk density at their centers.



77

pdes/p0, (p0 is the vapor pressure of the bulk). This is referred to as the pore blocking regime

of desorption. However, below a certain critical neck diameter, which is about 4–5 nm in

the case of nitrogen adsorption at 77.4 K, the experimental relative desorption pressure no

longer depends on the neck size and varies in a narrow interval (pdes/p0 = 0.47± 0.03) [1].

This regime of desorption is related to the cavitation of metastable fluid in the pore body.

As the external vapor pressure is lowered, the fluid in the pore body becomes over-stretched

(metastable), and eventually, unstable. As the limit of fluid stability is approached (near

the spinodal point), a critically sized bubble nucleus forms, which grows rapidly causing

spontaneous desorption of the fluid from the pore body, despite the pore neck remaining

filled.

Although the importance of the cavitation phenomenon in the process of capillary evap-

oration was well understood [182–185], only during the last decade has it been studied

extensively, both experimentally [1, 35, 36, 152, 155, 176, 177, 181, 186–188] and with com-

puter simulation [1, 52, 55, 178, 180, 189–193]. Sarkisov and Monson first implemented

grand canonical molecular dynamics in a slit-shaped pore geometry and observed emptying

of the main pore body while the connecting necks remained filled [192, 193]. Quantitative

experimental studies of cavitation [35] became possible with the advent of highly-ordered,

templated mesoporous silicas [25]. These are designer materials with a narrow, uniform

distribution of pore sizes that can be tailored to desired sizes [155]. These materials provide

an opportunity for direct comparison of the results of theoretical and simulation approaches

to experimental data. A comprehensive study of cavitation in ordered 3D cage-like struc-

tures of SBA-16 and FDU-1 materials was performed by Ravikovich and Neimark [35], who

combined the adsorption measurements with non-local density functional theory (DFT)

calculations to determine the pore dimensions. They found that the transition from the

cavitation regime of desorption to the pore blocking regime occurs not only with the in-

crease of the pore neck size, but also with a temperature decrease for a given pore geome-

try. With similar methods, Thommes et al. [36] explored cavitation on mesoporous silicas

of hierarchical structure. Morishige et al. [181] also observed desorption pressures near

p/p0 = 0.47 for nitrogen in silica ink-bottle pores, and found that increasing temperatures

allows for cavitation in pores with larger connecting necks. Vishnyakov and Neimark [52]



78

studied the transition from pore blocking to cavitation with a decrease of the neck size

using Monte Carlo (MC) simulations. Libby and Monson [191] modeled desorption from

ink-bottle pores with lattice DFT and MC and confirmed that the transition from the pore

blocking to cavitation regimes depends on the pore geometry and temperature. Rasmussen

et al. [1] studied the effect of the pore body size on the onset of cavitation. Based on

MC simulations performed for a variety of experimentally studied systems, they found that

the cavitation pressure increases with the increase of the pore body size from 7 to 10 nm,

but in a very narrow range of relative pressures from ∼0.45 to ∼0.5. In pores larger than

∼10 nm the cavitation pressure did not depend on the pore size and the cavitation occurs

similarly to that in the bulk fluid. As such, it was concluded that the cavitation of nitrogen

at its boiling temperature cannot occur at p/p0 > 0.50–0.52. More recent molecular sim-

ulation studies of cavitation [178, 180, 191, 194], as well as multiple experimental studies

[36, 152, 176, 187, 188], confirm the main features of this phenomenon described above.

The current work has been triggered by a discussion in the literature about the mecha-

nism of desorption of fluids confined to porous silicon (PSi), a material with non-intersecting

hexagonally ordered unidirectional pore channels. In PSi samples prepared and studied by

different groups, a sharp desorption step is observed at relative pressures significantly larger

that the range of cavitation pressures in other mesoporous materials, e.g. at pdes/p0 > 0.6–

0.7, for the case of nitrogen [177, 195–197]. At the same time, this pressure is smaller than

the equilibrium vapor pressure characteristic for the pore channels of given size that would

be expected of the desorption pressure in open-ended cylindrical channels [28]. Moreover,

with experiments performed with specially designed, deposited and layered PSi samples,

the authors of refs [177, 196, 197] did not find sizable variations of the desorption pressure

in the open-ended channels, channels closed at the bottom, and ink-bottled channels thus

posing a question about the validity of the basic concepts of the mechanisms of capillary

condensation hysteresis accepted in the literature [18, 19]. One explanation for these phe-

nomena is a corrugation of pore channels leading to pore blocking effects [196]. This was

confirmed by computational studies by modeling linear pores with mesoscopic roughness

[195, 198]. In addition, chemical smoothing of PSi channels appears to shift the desorp-

tion mechanism towards near-equilibrium desorption, suggesting roughness is responsible



79

for characteristic desorption pressure [199]. However, Grosman and Ortega [177], as well as

Naumov et al. [195, 198], suggested that desorption in PSi channels may exhibit cavitation.

The main obstacle for accepting cavitation as the primary mechanism of desorption in PSi

is the conclusion derived in our previous paper [1] that the cavitation cannot occur at such

large relative pressures. However, this conclusion entails that the pore walls are wetting,

and as such, the cavitation occurs in a homogeneous fashion, with the critical bubble more

likely formed at the pore center rather than at the solid surface. To support the cavitation

hypothesis, Grosman and Ortega [177] suggested that the cavitation of metastable nitrogen

in PSi channels occurs at some heterogeneities on the pore walls, and it is a heterogeneous,

rather than homogeneous, process, which due to smaller nucleation barriers may take place

at respectively larger vapor pressures.

In this work, as a continuation of our previous studies of homogeneous cavitation [1],

we evaluated the influence of a heterogeneity of the pore wall on the vapor pressure at

which cavitation occurs. We considered the heterogeneous defects on the pore wall as non-

wetting spots of molecular size. We applied two approaches for quantitative estimates,

the macroscopic classical nucleation theory (CNT) and detailed MC simulation in grand

canonical (GCMC) and mesocanonical (MCMC) ensembles. As an instructive example, we

model the behavior of a Lennard-Jones (LJ) fluid in a spherical pore with wetting LJ walls,

which contained a single circular non-wetting defect. To provide quantitative relevance to

experimental studies and earlier simulations, the potential parameters for the LJ model of

nitrogen adsorption on silica at nitrogen’s normal boiling temperature of 77.36 K employed

in previous work were used here [163, 164]. We found that as the size of the non-wetting

defect increases, the mechanism of cavitation changes from homogeneous to heterogeneous.

Since it is doubtful that defects, which would be non-wetting to condensed nitrogen, exist in

PSi, the results of this work cannot be immediately applied to the PSi desorption pressure

enigma discussed above. However, the phenomenon of heterogeneous cavitation cannot be

ruled out for other systems with polar fluids, such as water.
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3.2.2 Heterogeneous vs Homogeneous – Classical Nucleation Theory Ap-

proach

Cavitation is necessarily preceded by the formation of a critically sized bubble, or nucleus.

Bubbles smaller than the critical size collapse back into the fluid state. Once a critically

sized bubble nucleates, thermal fluctuations can increase the bubble’s size to a point where

it grows irreversibly and displaces the adsorbed fluid; this is desorption by cavitation. CNT

[200, 201] describes the thermodynamics of formation of a nucleus in the bulk system. Since

CNT operates with macroscopic values, it cannot give reliable quantitative predictions when

applied in the nanoscale [202]. However, CNT allows one to obtain a transparent qualitative

description of the nucleation phenomenon. We use CNT to estimate the work of bubble

formation for two different nucleation events: homogeneous nucleation—when the bubble

forms in presumably uniform fluid inside the pore and thus does not depend on the pore

size and surface chemistry, and heterogeneous nucleation—when the bubble nucleates on

the pore wall and does depend on the surface defects.

According to CNT, the work of homogeneous nucleation of a critical vapor bubble of

spherical shape is determined by the Gibbs equation, as the difference between the work of

surface formation and the work of compression,

Whomo(rb) = 4πr2
bγ −

4

3
πr3

b∆p, (3.5)

where γ is the liquid-vapor surface tension, and rb is the radius of critical bubble, and ∆p

is the capillary pressure, or the pressure difference between the vapor inside the bubble and

the liquid outside the bubble,

∆p = pl − pv =
2γ

rb
, (3.6)

where pv and pl are the pressures of equilibrium liquid and vapor phases determined for

a given chemical potential through a bulk equation of state. A standard assumption of

ideal vapor and incompressible liquid is usually used to relate the capillary pressure and,

respectively, the radius of the critical bubble, to the relative vapor pressure, p/p0, through
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the Kelvin-Laplace equation,

2γ

rb
= −RGT

Vm
ln

p

p0
, (3.7)

where RG is the gas constant and Vm is the molar volume of the liquid adsorbate. In

our previous work, we found that eq (3.5) correctly predicts the asymptotic value of the

nucleation barrier calculated by MC simulation for a LJ fluid confined to spherical nanopores

as the pore size increases, but it becomes progressively inaccurate for pores smaller that

10 nm [1]. For the convenience of dimensionless analysis, all scales can be reduced to the

fluid molecular diameter σ, and eq (3.7) can be re-written as

rb

σ
=

χc

ln (p/p0)
, (3.8)

where χc = 2γVm/RGT is the dimensionless parameter that relates the theoretical nucleus

size, ac = 2γσVm/RGT , at a characteristic pressure p/p0 = 1/e = 0.37, to the molecular

diameter σ. For nitrogen at its normal boiling temperature T = 77.4 K (the experimental

standard in adsorption measurements), σ = 0.36 nm, ac = 0.96 nm, and χc = 2.7. These

numbers give the reader the characteristic scale of the phenomenon we are concern with.

It is worth noting that we use the bulk values of surface tension γ without Tolman-type

corrections [203] for the bubble’s curvature; this simple model is sufficient for demonstration

of qualitative mechanisms of cavitation.

To investigate heterogeneous bubble nucleation, we consider a spherical pore of radius

R with a non-wetting defect of radius rdef . The bubble must be pinned to the defect

perimeter, which represents the three phase contact line, see schematics in Figure 3.14, top.

Note that because in this case the contact line cannot move, the concept of the contact

angle in not applicable. The bubble pinned to the defect boundary exists even at the

saturation conditions, p/p0 = 1, when the bubble interface is flat (e.g. rb → ∞) and the

bubble forms a spherical cap. Upon desorption, as the relative pressure decreases, the

equilibrium bubble grows maintaining a spherical vapor-liquid interface of radius rb, which

decreases with pressure according to eq (3.7). The pinned bubble is bound by two coinciding

spherical caps of radii R and rb; its volume through simple geometrical relationships, see



82

footnote 1. It is important to note that at a given relative pressure there are two equilibrium

configurations, small and large, for the bubble of given size rb, provided the bubble radius

rb is larger than the defect radius rdef and smaller than the pore radius R, rdef < rb < R. It

is easily seen that the small bubble is stable against variations of its volume at given vapor

pressure, and large bubble is unstable. In other words, the unstable large bubble represents

the critical nucleus that should be formed due to thermal fluctuations.

In the bottom of Figure 3.14, we present the desorption isotherm that corresponds to the

growing bubble pinned at the defect, calculated according to the Kelvin-Laplace equation

(eq (3.7)). It represents the normalized fraction of the pore volume filled by condensed fluid

(i.e. the relative fluid volume outside the bubble, [(4/3)πR3 − V (rb)]/[(4/3)πR3]). This

isotherm has two branches: the upper branch is that of the stable bubbles with the radius

varying from R at p/p0 = exp(−ac/R) to rdef at p/p0 = exp(−ac/rdef). Note that for clarity

the isotherms were continued to p/p0 = 1, corresponding to the flat liquid-vapor interface.

In this case, the radius of the stable bubble exceeds the radius of the pore, rb > R. The

lower backward branch is that of the unstable bubble, or critical nuclei, with the radius

varying from rdef to R. The leftmost turnover point corresponds to the spinodal, at which

the stable and unstable bubble configurations merge; the radius of such spinodal bubble

equals to the radius of the defect, rb = rdef . Calculations in Figure 3.14 were performed

for the pore of R = 7.36σ, to correspond with MC calculations presented below, and with

defects of several sizes. As the defect size increases, the spinodal point moves towards larger

vapor pressures.

Nucleation of the critical bubble is a fluctuation-driven event. The probability to form a

critical bubble depends on the work of its formation from the stable bubble at given vapor

pressure, or the nucleation barrier that is determined by the work of surface formation

and the work of compression. Thus, the nucleation barrier of heterogeneous cavitation is

determined by the differences of surface areas and volumes of unstable and stable bubbles

1The volume of each bubble corresponds to the difference in volumes of intersecting spherical caps, one
cap being the bubble, a sphere of radius rb and second the pore, a sphere of radius R. The height of the cap
is governed by the whether the bubble is the small or large configuration, and the size of the defect, rdef . The
volume of the stable (smaller) bubble is Vs = π

3

[
R3(cos3 α− 3 cosα+ 2) + r3

b(cos3 β − 3 cosβ + 2)
]

and the
larger, unstable bubble is Vu = π

3

[
R3(cos3 α− 3 cosα+ 2) − r3

b(cos3 β − 3 cosβ − 2)
]
, where α and β are

α = arcsin (rdef/R) and β = arcsin (rdef/rb). Similarly, the surface areas of the stable and unstable bubble
are Ss = 2πr2

b(1 − cosβ) and Su = 2πr2
b(1 + cosβ), respectively.
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Figure 3.14: Top: Schematics of heterogeneous bubble growth at the circular non-wetting
defect in the spherical pore. The bubble is pinned to the defect; equilibrium conditions per-
mit two solutions, the smaller stable bubble, and the larger unstable bubble. Note that the
radius rb is identical for these two configurations and it is determined by eq (3.6). Bottom:
Isotherms calculated using eq (3.8) and the appropriate bubble volume (see footnote 1),
displayed as the fraction of pore volume filled by liquid condensate versus the relative pres-
sure. The ascending, upper branch corresponds to the stable bubble, and the descending,
lower branch to the unstable bubble. The branches meet at a spinodal-type point where
their respective bubbles’ volumes are equal and the work of formation vanishes; at this point
rb = rdef and the bubble is semi-spherical. The work of formation of an unstable bubble is
related to the area between the two branches at a given pressure.
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by the analog to eq (3.5), as

Whetero(rb, rdef) = γ(Su − Ss)−
2γ

rb
(Vu − Vs) (3.9)

where the subscript s, u refers to the stable or unstable bubble of given radius rb. At the

spinodal (rb = rdef), the nucleation barrier vanishes. At rb > rdef , the nucleation barrier

can be calculated by integrating the adsorption isotherm between stable and unstable states

along the chemical potential, as indicated by the shaded area in Figure 3.14, bottom.

Either heterogeneous or homogeneous nucleation in condensed fluid is possible at given

external conditions. It is obvious that the energy barrier of heterogeneous nucleation is

always smaller than that of homogeneous nucleation, Whetero(p/p0) < Whomo(p/p0). How-

ever, to compare the relative probabilities of homogeneous and heterogeneous nucleation,

one has to take into account not only the difference in nucleation barriers but also the

volume factor, which increases the probability of homogeneous nucleation. To trigger het-

erogeneous cavitation, the critical bubble may nucleate only at the site of the defect. To

trigger homogeneous cavitation, the critical bubble has the whole volume of liquid as po-

tential nucleation ‘sites’. Assuming that the homogeneous critical nucleus of radius rb can

be formed with its center located within the spherical core of the pore of radius R− rb, the

volume factor can be estimated as the ideal term in the nucleus free energy,

Fid = −kBT ln

[
4
3π(R− rb)3

Λ3

]
, (3.10)

where kB is the Boltzmann constant and Λ is the de Broglie length of a fluid molecule.

As such, the ratio of probabilities of a homogeneous nucleation event as opposed to a

heterogeneous one at given external conditions can be evaluated as

Phomo(rb)

Phetero(rb, rdef)
=

4
3π(R− rb)3

Λ3
exp

[
−Whomo(rb)−Whetero(rb, rdef)

kBT

]
, (3.11)

where Whomo and Whetero are determined by eq (3.5) and (3.9), respectively, for a given rb.

The prefactor reflects the entropic contribution given by eq (3.9). This term can be thought

of as the number of potential microscopic nucleation sites in the volume of condensed
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Figure 3.15: The CNT ratio of probabilities of homogeneous and heterogeneous nucleation
as a function of the defect size for a spherical pore R/σ = 7.36, at several characteristic
pressures. Small defects do not influence nucleation. Defects larger than rdef/σ ∼ 1.5
present a large enough free energy benefit for heterogeneous nucleation to overcome the
entropic advantage of homogeneous nucleation.

fluid. Equation (3.11) predicts a transition from homogeneous cavitation to heterogeneous

cavitation as the diameter of the defect grows, and is illustrated in Figure 3.15. The

ratio of nucleation probabilities was calculated at various defect sizes for the pore R =

7.36σ, at several typical external pressures. The transition from homogeneous nucleation

to heterogeneous nucleation is observed when the diameter of the defect is about 3σ. It is

important to remember that although the predictions of CNT are qualitatively correct, they

cannot be taken as quantitative estimates due to the macroscopic nature of CNT. A more

precise description can be achieved by using MC simulation of the adsorption-desorption

process that is described below.

3.2.3 MC Model and Simulation Details

Monte Carlo simulations were used to model cavitation of Lennard-Jones (LJ) fluid in a

spherical pore. The pore wall interacts with the adsorbate particles via a continuous, site-

averaged LJ potential. We tested a pore with external diameter (distance between the

centers of two opposing LJ solid particles) dext = 2R = 5.72 nm = 15.82σ and accessible
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diameter (diameter of the volume in which Uadsorption > 0) [204] dacc = 5.54 nm = 14.72σ.

The size of the defect, in diameter, was varied from 0 to 2.21 nm (6.12σ). The calculations

were done for the LJ model of nitrogen with fluid-fluid interaction parameters of εFF/kB =

101.5 K and σFF = σ = 0.36154 nm [162]. The potential energy was truncated when

inter-particle distance was greater than 10σ. The solid-fluid LJ potential was calculated by

integral average over the pore wall surface [27, 205]. The solid-fluid interaction parameters

were selected to emulate adsorption of nitrogen on silica glass (energy parameter εSF/kB =

147.3 K, size parameter σSF = 0.317 nm and surface density of adsorption sites ρS =

15.3 nm−2) [164]. For all simulations, temperature was set to the normal boiling point of

liquid nitrogen, T = 77.36 K. The Johnson-Zollweg-Gubbins (JZG) equation of state for LJ

fluids was used to relate the chemical potential to the relative vapor pressure [165].

A non-wetting defect of variable size was introduced as a round spot on the pore wall

which does not exert the attractive potential. Utilizing the cylindrical symmetry of the

system, the adsorption potential inside the pore at a point characterized by the distance

from the pore center r and the polar angle θ can be expressed as the integral over the sphere

surface excluding the surface of spherical cap occupied by the defect,

USF(r, θ, δ, R) = 4εSFρSR
2

∫ 2π

0

∫ π

δ

(
σ12

SF

ξ12
− σ6

SF

ξ6

)
sin θ0 dθ0 dφ0 (3.12)

where r and θ are radius and inclination of a point within the sphere, 2δ is the apex angle

of the defect, and subscript “0” indicates integration variables over the spherical surface.

Figure 3.16 illustrates the geometry of the pore/defect system. The distance from a point

within the sphere (e.g. an adsorbate molecule) and on the sphere (e.g. an adsorption site)

is given by the following:

ξ2 = R2 + r2 − 2Rr [sin θ sin θ0 cos(φ0 − φ) + cos θ cos θ0] (3.13)

By performing the integration in θ0 from δ to π, rather than 0 to π, a conical volume is

introduced with no contribution to the potential. A potential energy map of the xz -plane of

a system with a relatively large defect is presented in Figure 3.16. A simple trigonometric
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equation relates δ to the radius of the defect,

rdef = R sin δ (3.14)

The value rdef in eq (3.14) specifies the external, center to center radius of a spherical defect

on the pore wall. The accessible diameter of the defect can be estimated by subtracting

σSF/σFF from ddef = 2rdef . For convenience, all diameters herein will refer to the accessible

volume. Increasing the defect diameter reduces the total adsorption potential, which affects

the condensation and desorption pressures [1]. However, because the defect is not-wetting,

its surface will always be a more favorable nucleation site; thus its area rather than the

relative difference in adsorption potential is the primary variable we are concerned with.
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Figure 3.16: The solid-fluid potential energy map on the xz -plane of a 5.54 nm pore with a
2.21 nm non-wetting defect introduced. Overlay: geometry of eq (3.12) and (3.14).

The adsorption potential (eq (3.12)) is a continuous function of two position variables,

r and θ. It was integrated numerically and tabulated on a grid of 2000× 500, respectively.

The spherical-linear interpolation method [206] was used to calculate the potential energy

from the tabulated values. Boundary conditions at the non-wetting defect were set as hard-

wall repulsion. In general, it is possible to extend this model to a partial wetting defect

by adding the integrated LJ potential of the conical defect, but with a value of solid-fluid

interaction potential smaller than εSF.
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Monte Carlo simulations were performed using the grand canonical ensemble (GCMC)

[166] and the mesocanonical ensemble (MCMC) [9, 10]. The MCMC method, also known

as the gauge cell method, introduces a fixed reservoir of particles (called the gauge cell)

that are permitted to be exchanged with the system cell (the pore). The MCMC method

is instrumental in calculating chemical potentials in small and inhomogeneous system [10].

It has been extended since its original formulation [9] to multi-component fluids [49] and

polymer chains [207, 208]. The MCMC method allows one to efficiently simulate nucleation

phenomena and generate unstable, intermediate states by suppressing fluctuations that

would, if unconstrained, facilitate a spontaneous phase change in an open system. As

such, MCMC makes possible a continuous, backwards trajectory of the adsorption isotherm

that corresponds to the unstable bubbles, or nuclei, qualitatively similar to the theoretical

isotherm shown in Figure 3.14. Once such a continuous canonical isotherm is generated,

the nucleation barrier at given vapor pressure can be calculated as the work of formation

of the unstable bubble from the stable one by thermodynamic integration [1, 54, 55, 209].

GCMC was used to emulate experimental adsorption conditions of constant chemical po-

tential, volume and temperature. Because nucleation of the critical bubble is a fluctuation-

driven process, the cavitation events are distributed over a certain range of pressures. To

obtain this distribution, a number of sequential GCMC desorption trajectories were per-

formed in the following manner:

1. A true random seed [210] is used to build a random, independent configuration of

particles at a given stable liquid density.

2. The configuration is equilibrated using a canonical ensemble (NVT) MC simulation.

3. The equilibrated configuration is used as the initial configuration for GCMC simula-

tion at µ� µcav.

4. If the simulation undergoes phase change to the vapor-like state, the simulation is

stopped and bulk chemical potential is recorded as 1 sample in the distribution of

cavitation chemical potentials. If the simulation finishes in the liquid state, µ is

decreased by a small amount and a new GCMC simulation is started.
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5. Step 4 is repeated until the simulation reaches a low-density, vapor-like state, the last

value of µ is taken as the chemical potential of cavitation µcav.

Multiple desorption trajectories are calculated independently for a given system, and the

distribution of cavitation chemical potential is obtained and analyzed using traditional

statistical methods. All simulations used the same number of MC steps so they can be

compared to each other; 300,000 MC steps (each step a single attempt to displace or ex-

change a particle, with equal probability) of 500 equilibrating sets that are discarded, and

500 production sets that are averaged and used as the result. It has been shown that the

width of GCMC hysteresis (and thus, the cavitation pressure) is affected by the length of

the underlying Markov chain [211]. Therefore, comparisons are only made between average

cavitation pressures calculated using equal length GCMC runs.

3.2.4 Results

We calculated grand canonical and gauge cell canonical isotherms for LJ nitrogen at 77.36 K

adsorbing in a silica pore of diameter 5.54 nm with a single non-wetting heterogeneous defect

with diameters ranging from 0 to 2.12 nm. The MC isotherms are displayed in Figure 3.17.

On the vapor branch of the canonical isotherms that corresponds to the formation of the

adsorbed film, the adsorption depends on the size of the defect. As the defect size increases,

the averaged adsorption potential, as well as the surface available for the film formation,

decreases, resulting in a lower adsorption relative to the defect-free pore at the same vapor

pressure. This trend continues with the position of the vapor spinodal, the maximum

chemical potential of the vapor branch that reflects the limit of stability of the adsorbed

film. However, the position of the liquid spinodal (the minimum chemical potential of the

liquid branch that reflects the limit of stability of the liquid phase) shows two distinct

behaviors, depending on the size of the defect. When the defect is less than 1.41 nm,

the position of the liquid spinodal increases only slightly with the size of the defect. At

larger defects, the spinodal shifts to higher pressures, progressively with the size of the

defect. A similar dependence on the defect size is observed on the GCMC isotherms. The

condensation pressure increases with defect size, but the cavitation pressure remains mostly
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unchanged, for defects smaller that 1.41 nm. With larger defects, the cavitation pressure

increases progressively with the defect size.

600 

700 

800 

900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

0.1 0.2 0.3 0.4 0.5 

<
N

>
 

p/p0 

None 

0.04 

0.22 

0.40 

0.75 

1.09 

1.41 

1.85 

2.21 

600 

700 

800 

900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

0.1 0.2 0.3 0.4 0.5 

<
N

>
 

p/p0 

Figure 3.17: MCMC isotherms (left) and GCMC isotherms (right) for LJ nitrogen adsorbing
in a silica pore of 5.54 nm at 77.36 K, with a heterogeneous defect of varying diameter in
nm.

To estimate the distribution of cavitation pressure in GCMC simulations, we performed

a series of parallel GCMC desorption runs starting from randomly chosen initial configura-

tions equilibrated at a fluid density known a pirori to be a stable liquid. Standard statistical

methods where used to obtain the mean cavitation pressure and its dispersion. The cavita-

tion pressures were calculated for the defects of 0, 0.40, 1.41, 1.47, 1.61, 1.85 and 2.21 nm

in diameter. Selected distributions from this study are presented in Figure 3.18. The dis-

tributions are bell-shaped. In the pores with larger defects that exhibit predominantly

heterogeneous mechanism of cavitation, the distribution of cavitation pressures appears to

be narrower than that in the pores with small defects and the homogeneous mechanism

of cavitation. The averaged results of these desorption trajectories are displayed in Fig-

ure 3.19. The data can be divided into two regimes of weak and strong dependence on

the defect size. From 0 to 1.41 nm diameter of the defect, the average cavitation pressure

marginally increases. The increase is small but statistically significant (see Figure 3.19,

inset). For defects larger than 1.41 nm, a strong dependence is observed. It is important

to remember that the reported cavitation pressures should not correspond to experimental

values. The conditions of a MC simulation represent a “perfect” situation of fixed tempera-
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ture and vapor pressure and with significantly smaller fluctuations than in real experiments.

However, relative comparisons between calculated GCMC pressures are permissible.
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Figure 3.18: Selected distributions for the pressure of cavitation calculated from a series
of independent GCMC desorption paths: pores with no defect (diamond), ddef = 1.41 nm
(square), 1.85 nm (triangle), and 2.21 nm (cross).

Determination of the type of nucleation was done by tracing the progress of each MC

simulation for states near the point of desorption. During the MC simulation, the coordi-

nates of each successful MC move were saved, up to 825,000 moves total. At a specified fluid

density (small enough to ensure a phase change occurred; Nσ3/V = 0.4 for this study), the

tracking was stopped and the current configuration written to disk. With this information,

the original system (up to 825,000 successful moves ago) can be fully recreated, and exam-

ined step-by-step. Figure 3.20 shows several intermediate states along a desorption path for

the pore with none, small (0.40 nm) and large (1.85 nm) defect. The snapshots were created

by dividing the available trajectory into 20 frames, and calculating the average particle po-

sitions of each frame using 40 equal-spaced samples from the configuration trajectory. Thus,

the color intensity indicates the probability of a particle intersecting the xz -plane for a given

span of simulation time. With configuration snapshots available, formation of the critical

nuclei can be observed as fluid particles ‘desorb’ from the pore body. We found that if the

defect is larger than 1.41 nm, all nucleation appears to be heterogeneous, that is, the critical
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Figure 3.19: The average pressure of cavitation calculated in a series of independent GCMC
simulations. The sharp change of slope indicates the transition from homogeneous to het-
erogeneous nucleation, determined by examination of particle configurations. Inset zooms
on the small defect regime of homogeneous cavitation; error bars represent the standard
error of the distribution.

nuclei forms at the site of defect and expands from that point, as illustrated in Figure 3.20.

Below this defect size, nucleation is almost always homogeneous; forming at or near the

center of the pore. Interestingly, the location of the critical bubble varies on the xz -plane

more than expected. In pores with a defect, the location of the critical cavity varied from

the center of the pore to near the defect (but still entirely within the liquid) to the site of

the defect. Even in the no-defect system, the cavity forms near the center, but not always at

the center. The relative frequency of each type of cavitation is presented in Figure 3.21. To

compile the statistics of homogeneous and heterogeneous cavitation events from MC runs,

trajectories from 30 desorption runs were stored and analyzed. The CNT prediction is also

displayed in Figure 3.21 for comparison. The CNT curve in Figure 3.21 was obtained with

eq (3.11) by interpolating the cavitation pressure for a given ddef , and then calculating the

critical bubble radius (eq (3.6)) from that pressure. Instead of using the Kelvin-Laplace

relation as above, the equilibrium liquid and vapor pressures were obtained through the

JZG equation of state for LJ fluid [165]. The liquid-vapor surface tension (γσ2/ε = 1.022

for infinite cutoff LJ fluid) was calculated by linear interpolation at T ∗ = 0.762 from three
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Figure 3.20: Snapshots of growing bubbles quantified by the particle probabilities on the xz -
plane during desorption; yellow indicates the probability of unity and black the probability
of zero. a.) Pore without defect shows the nucleation of the critical cavity at the center
of the pore. b.) Pore with a small defect (0.40 nm) still exhibits homogeneous nucleation.
c.) Pore with 1.85 nm defect exhibits a flat interface at complete pore filling, followed by
the growth the bubble pinned to the defect; this bubble grows until the vapor-like state is
reached.

studies of LJ surface tension [171, 212, 213], and then averaged. The same qualitative shape

of the probability curve is obtained using both CNT and MC. CNT predicts the critical

defect size to be ∼1.0 nm (∼2.8σ, very close the prediction in Fig. 3.15 of ∼3σ), while the

MC transition to heterogeneous cavitation takes place at ddef ∼ 1.5 nm, or about 4σ. This

quantitative discrepancy between MC and CNT predictions is expected.

Nucleation barriers were calculated via thermodynamic integration of the canonical

isotherm from gauge cell calculations to yield the difference in grand thermodynamic po-

tential,

Ω(µ)− Ω(µref) = −
∫ µ

µref

N(µ) dµ (3.15)
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Figure 3.21: Ratio of the probability of homogeneous nucleation opposed to heterogeneous
nucleation. The solid line indicates the prediction from CNT for a system similar to that
studied by MC (LJ nitrogen using JZG equation [165]). The squares are the results from
MC simulation trajectories, discussed below.

Since cavitation is a nucleation based phenomenon, an energy barrier must be crossed for it

to occur. The calculated nucleation barriers are presented in Figure 3.22. Systems exhibit-

ing homogeneous cavitation (i.e., ddefect/nm = 0, 0.40, and 1.41) are found to have nearly

identical nucleation barriers. This is expected, as systems with cavitation at similar pres-

sures would be crossing the same energy barrier. When heterogeneous cavitation is found to

be the dominant mechanism, the nucleation barrier for a given pressure shifts significantly

to lower values. In other words, for a given nucleation barrier, the pressure is found to

be constant for homogeneous cavitation, and increasing with defect size for heterogeneous

cavitation. Observed cavitations pressures (Fig. 3.19) indicate that the thermal barrier to

overcome for GCMC nucleation, regardless of its nature, is 8–10 kBT , which is in an ac-

ceptable range comparing to literature results [172]. For comparison, results from CNT are

included as well on the right hand side of Fig. 3.22. The CNT curves were calculated using

a similar method as described for Fig. 3.212. We see that a defect of ddef/nm = 0.90 is

2It is worth noting that the numerical results of CNT and GCMC calculations for no defect pores differ
somewhat from the data in our previous paper because of the different value of the LJ potential cut-off of
10σ instead 5σ. This also affected the CNT calculations by altering the equation of state and the surface
tension value (1.022 vs. 0.922).
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the critical size where the predominant nucleation mechanism changes from homogeneous

to heterogeneous. The smallest defect (0.72 nm) has a larger barrier than the homogeneous

fluid, while the largest defect (1.08 nm) has a smaller barrier, thus dictating the nature of

nucleation. The intermediate curve (0.90 nm) is similar in value to the homogeneous curve;

at low pressures (small critical bubble), homogeneous nucleation would be more likely, and

at higher pressures (larger critical bubble), heterogeneous nucleation would be more likely.

As above, the overall transition occurs at a smaller ddef than observed in MC simulations,

as expected.

0 

10 

20 

30 

40 

50 

60 

70 

0.2 0.3 0.4 0.5 

Δ
Ω
/k

T
 

p/p0 

2.21 nm 

1.85 nm 

1.41 nm 

0.40 nm 

No defect 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

0.25 0.3 0.35 0.4 

Δ
Ω
/k

T
 

p/p0 

CNT (No defect) 

CNT (1.08nm defect) 

CNT (0.90nm defect) 

CNT (0.72nm defect) 

Figure 3.22: The work of formation of the critical nuclei calculated by thermodynamic inte-
gration of the canonical MC isotherms (left) and using the CNT equations for homogeneous
and heterogeneous cavitation (right). For comparison of the rates of homogeneous and het-
erogeneous cavitation, the work of homogeneous cavitation (eq (3.5)) was corrected by the
volume factor (eq (3.10)). CNT predicts that the transition to heterogeneous cavitation
occurs at a defect ddef = 0.90 nm, while MC simulations indicate ddef ∼ 1.40 nm. Note
the large difference in the nucleation barriers calculated with CNT and MC simulations;
the reason for this discrepancy is that the size of nuclei in this example does not exceed
d ∼ 0.90 nm, which is too small for the CNT theory to be quantitatively accurate.

3.2.5 Conclusions

We investigated a possible scenario of heterogeneous cavitation of metastable fluid in the

process of desorption from mesoporous materials. As a model system, we considered an

LJ fluid confined to spherical pores with non-wetting surface defects. We showed that the

non-wetting defect facilitates the formation of heterogeneous nuclei, and the probability of
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heterogeneous cavitation increases with the defect size. As such, the transition from the

homogeneous to heterogeneous cavitation occurs in pores with sufficiently large defects.

We employed the classical nucleation theory (CNT) and Monte Carlo (MC) simulations to

quantify the impact of surface defects on the mechanism of cavitation.

The CNT model was modified to account for heterogeneous nucleation of bubbles at

the non-wetting defect. We found that the CNT model describes the transition from the

homogeneous to heterogeneous cavitation at sufficiently large surface defects. In such pores,

the vapor pressure of cavitation exceeds the vapor pressure characteristic of homogeneous

cavitation. The results of the CNT model were examined with the MC simulation study

using the mesocanonical ensemble for generating the critical nuclei configurations and de-

termining the nucleation barriers, and the grand canonical ensemble for calculating the

distribution of pressures at which cavitation occurs in simulation. The MC results are qual-

itatively similar to that predicted by CNT and provide a more reliable quantitative estimate

of the pressures of cavitation presented in Figure 3.19. We found that defects smaller than

1.41 nm (or about 5 molecular diameters) in diameter do not change the nature of bubble

nucleation from the homogeneous case with no defect present. Conversely, surface defects

larger than 1.41 nm facilitate competitive heterogeneous nucleation. This leads to a sharp

increase in the cavitation pressure with the size of the defect, as the nucleation barrier for

forming a heterogeneous bubble pinned to the defect becomes progressively smaller than

the nucleation barrier of homogeneous cavitation.

It is worth to note that although the experimental motivation of this work was a series

of papers on the mechanism of nitrogen and argon adsorption on porous silicon samples

[177, 195, 196], our conclusions cannot be applied to this particular system, since it is

unlikely that non-wetting (to nitrogen) defects may be present on a silicon surface. At

the same time, the scenario of heterogeneous cavitation may be an important factor in

adsorption of water and other polar vapors [214]. To consider these systems, it will be

necessary to perform a similar simulation study with forcefields adequate for water and

water-substrate interaction. Among the other physical processes for which heterogeneous

nucleation of bubbles in pores may be an important factor are: drying of porous and

fibrous materials [183], sap breakage in plants [215], fluid flow in soil and rock [216], as well
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as physiological phenomena such as decompression sickness.

3.3 Capillary Condensation Hysteresis in Overlapping Spher-

ical Pores

3.3.1 Introduction

Gas adsorption is a standard technique for characterization of porous materials. Often ex-

perimental adsorption isotherms are irreversible, showing adsorption-desorption hysteresis.

Proper interpretation of the physical mechanisms of hysteresis is crucial for assessment of

the pore size distributions from adsorption isotherms [29, 217–219]. For a number of mate-

rials, predicting hysteresis when modeling adsorption requires taking into account not just

pore geometry, but pore connectivity [180, 189, 220] and/or morphological defects [194, 221].

Recent developments in material science [25] enabled fabrication of mesoporous silicas

and carbons with three-dimensional regular and hierarchical pore networks and tunable pore

size distributions [155]. Usually, the cage-like wider mesopores are connected by narrower

channels; such pores are called “ink-bottle” pores [137], referring to larger pores as cavities

and to smaller connecting channels as necks, as illustrated in Figure 3.23a. Ink-bottle pores

are of interest due to the unique confinement effects observed upon adsorption depending

on the ranges of cavity and neck sizes [1, 27, 36].

While the capillary condensation process upon adsorption in ink-bottle pores is deter-

mined by the size of the cavity and takes place near the vapor spinodal of the confined fluid

[18], the desorption (evaporation) process is more complicated. Experimental observations

with specially designed ordered materials and respective theoretical analysis [27] revealed

three different mechanisms of evaporation from cage-like mesopores: (i) pore blocking con-

trolled desorption, (ii) spontaneous evaporation due to cavitation, and (iii) near-equilibrium

desorption. The prevalence of a given mechanism, and thus the pressure pd at which des-

orption occurs, depends mainly on the relation between the size of the cavity and the size

of the necks [1, 27, 36]. Near-equilibrium desorption is possible from the cavities that have

immediate access to the vapor phase through relatively wide openings, and thus are ef-
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fectively unblocked. Once the vapor pressure reaches the vapor-liquid equilibrium (VLE)

pressure pcavity
e , desorption from the main cavity proceeds via a receding meniscus; therefore

pd ≈ pe. However, if wide cavities are connected with narrower necks, so that the fluid in

the neck has a lower VLE pressure pneck
e than that of the fluid in the cavity, the neck effec-

tively “blocks” desorption from the cavity. Emptying of the pores occurs at the pressure of

equilibrium desorption of the neck, and as such pd = pneck
e and becomes a function of the

neck size. Finally, if the connecting necks are even narrower, the fluid in the cavity becomes

substantially metastable, and the vapor pressure may reach the spinodal point of the con-

fined liquid before the equilibrium meniscus can form in the neck. Thus, the fluid desorbs

from the pore by the cavitation mechanism, which involves fluctuation-driven formation

and growth of a bubble [193]. In this scenario, pd � pe, and pd has little or no dependence

on the size of the necks [1]. Available models of pore blocking [52] and cavitation [1] (which

represent the pores as spheres connected with cylinders) describe adsorption in materials

like FDU-1 [222] or SBA-16 [150] silicas reasonably well.

However, there exist mesoporous materials with cage-like pores, which likely overlap

rather than connect by narrow channels. One such class of materials are the novel three-

dimensional ordered mesoporous (3DOm) carbons [223], synthesized by templating densely

packed spherical nanoparticles. Nitrogen adsorption experiments in 3DOm carbons have

revealed the IUPAC H1 type of hysteresis [18]. While experimental values of capillary

condensation pressures are in good agreement with predictions from density functional

theory (DFT) [224], the values of capillary evaporation pressures (pd/p0 ∼ 0.6–0.7, p0 is

the bulk VLE pressure) [223, 225] cannot be explained either as homogeneous cavitation or

as equilibrium desorption. Other novel materials possessing similar structure and revealing

similar capillary condensation hysteresis are ultraporous DVB resins [226].

In order to reveal the possible mechanisms of evaporation in such a “neckless” ink-bottle

pore, we modeled a system of two overlapping spheres (Figure 3.23b). We should emphasize

that we do not consider classical ink-bottle pores with connecting channels (necks), depicted

in Figure 3.23a. Adsorption and confinement effects were modeled with Lennard-Jones

(LJ) particles using grand canonical Monte Carlo (GCMC) [166] and mesocanonical Monte

Carlo (MCMC) simulations techniques [9, 10]. The fluid-solid interaction was treated as
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(a.) (b.)

Figure 3.23: Models of interconnected spherical pores: (a.) Classical ink-bottle pore (b.)
Overlapping pores, considered in the current work.

an integration of the LJ potential over two spherical layers, where the degree of overlap is

set before integration. The resulting potential is continuous and depends on the window

size. The goal of our simulations is to estimate the influence of the window size on the

capillary condensation and evaporation pressures. In the current work we do not consider

explicitly the connection of the pore with external reservoir, but a closed system of two

pores, representing a characteristic element of the pore network. However, such model is

sufficient to reveal the role of the window size.

The structure of the rest of the section is the following. The pore model and MC methods

used are described in Section 3.3.2. Section 3.3.3 presents results of MC simulations, its

comparison to previous models, and discussion. Conclusions are given in Section 3.3.4.

3.3.2 Model and Simulation Details

Monte Carlo simulations were used to model adsorption/desorption in the two-pore model,

Figure 3.23b, with external pore diameter (the diameter of the sphere as the distance of a

line drawn through the centers of solid atoms at opposite pore wall surfaces) dext = 5.72

nm = 15.82σFF and internal diameter, defined as the distance encompassing two opposite

fluid particles whose adsorption potential is zero. For the solid-fluid potential used, dint =

dext − 1.7168σSF + σFF, so dint = 5.54 nm = 15.32σFF. We considered two characteristic

values of the window size, 5σFF and 10σFF. The adsorbing fluid was LJ nitrogen, with fluid-

fluid interaction parameters of εFF/kB = 101.5 K and σFF = 0.36154 nm [162]. The potential

energy was truncated when inter-particle distance was greater than 5σFF. A spherical-

integrated, site-averaged LJ potential was used to model the attractive adsorption potential

[27, 205]. The solid-fluid interaction parameters were selected to emulate adsorption of
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nitrogen on silica (energy parameter εSF/kB = 147.3 K, size parameter σSF = 0.317 nm and

surface density of adsorption sites ρS = 15.3 nm−2) [164]. For all simulations, temperature

was set to the normal boiling point of liquid nitrogen, T = 77.36 K. The dimensions and

chemistry of the model system were selected for quantitative comparison to the single-sphere

pore model, for which there are published results [1, 55].

 

Figure 3.24: Model of the spherical pore with a window

The interaction potential between a fluid particle and the substrate was obtained by

the superposition of potentials from a sphere with a window. The latter can be obtained

by partial integration of LJ potential over the spherical domain depicted in Figure 3.24.

The interaction potential between a fluid particle and the pore wall at a given point with

spherical coordinates (r, θ, φ) is given by equation

USF(r, θ, δ, R) = 4εSFρSR
2

∫ 2π

0

∫ π

δ

(
σ12

SF

ξ12
− σ6

SF

ξ6

)
sin θ0 dθ0 dφ0 (3.16)

where δ is size of the polar angle that contributes to the window, R is the external radius

of the pore body, and subscript 0 indicates integration variables over the spherical surface.

The distance ξ from a given point within the sphere (e.g. an adsorbate molecule) to a point

on the surface of the sphere (e.g. an adsorption site) is

ξ2 = R2 + r2 − 2Rr [sin θ sin θ0 cos(φ0 − φ) + cos θ cos θ0] (3.17)
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Equation (3.16) does not depend on the azimuth coordinate φ due to the axial symmetry

of the sphere with a round window. A simple trigonometric equation relates δ to the size

(diameter) of the window, as shown in Figure 3.24. The value dop specifies the external

(center to center) diameter of the circular window between the two spheres. An interaction

potential map of the considered systems is displayed in Figure 3.25. Equation (3.16) was

integrated numerically over 200 bins in the (θ0, φ0) coordinates. We found that additional

bins did not reduce integration error. The resulting function was stored in a 2001 × 2001

lookup table, and bilinear interpolation was used to compute the solid-fluid interaction

energy for a given particle in cylindrical coordinates (ρ, z).
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Figure 3.25: The solid-fluid potential energy map of a system of two spheres of 15.82σFF

each with (a) 5σFF window (b) 10σFF window. Both distance and potential are given in LJ
units.

Monte Carlo simulations were performed in the grand canonical ensemble (GCMC) [166]

and the mesocanonical ensemble (MCMC), also known as the gauge cell method [9, 10]. The

MCMC method is instrumental in calculating chemical potentials in small and inhomoge-

neous system [10], and analysis of metastable and labile states inside the hysteresis loop

[167]. It has been extended since its original formulation [9] to multi-component fluids [49]
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and polymer chains [207, 208]. MCMC introduces a fixed reservoir of particles (gauge cell)

that is permitted to exchange fluid with the system cell (pore). Use of the gauge cell allows

for efficient calculation of the chemical potential µ at given adsorption N (up to an order of

magnitude faster than traditional Widom insertions) [208], as well as suppressing fluctua-

tions that would, if unconstrained, facilitate a phase change in an open system. Therefore,

the gauge cell allows for stabilization in the system cell of metastable and labile states, like

critical nuclei, since the combined system (system cell + gauge cell) is thermodynamically

stable. As such, the MCMC simulation enables generation of a continuous canonical ad-

sorption isotherm N(µ) of van der Waals type with a backwards trajectory that connects

the vapor and liquid spinodals. In doing so, the Helmholtz free energy, and respectively,

the work of formation of the critical nuclei that precedes cavitation desorption, can be

calculated using thermodynamic integration.

GCMC was used to emulate experimental adsorption conditions; that is, constant chem-

ical potential, volume and temperature in an open system. GCMC in this sense was used

to test the stability of a given configuration of particles. The final configuration from a

MCMC simulation, which can exist as a stable, metastable or unstable system, was used

as the initial configuration for a GCMC simulation. The chemical potential was set from

previous MCMC simulations as well. The stability of a state generated in MCMC can be

verified in GCMC simulation started that particular configuration. Labile configurations

cannot be stabilized in the open system implied by GCMC.

3.3.3 Results and Discussion

Using GCMC and MCMC simulations we have studied adsorption of LJ nitrogen in the

two-pore system constructed of overlapping spheres of 15.82σFF diameter with two window

sizes: 5σFF and 10σFF. Adsorption isotherms for both systems are presented in Figure 3.26,

along with the canonical isotherm obtained from MCMC and the GCMC isotherm for a

single spherical pore of the same size from Ref. [1]. Adsorption amounts were normalized

as dimensionless fluid density ρ = Nσ3
FF/V , where V is the total volume of the system

calculated with the internal diameter.

Figure 3.26a demonstrates a qualitative difference between the canonical isotherms for
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Figure 3.26: Isotherms calculated by MCMC (lines with points) and GCMC (solid lines
without points) from simulations in the system with (a) 5σFF window and (b) 10σFF window.
Green solid lines on both figures represents the adsorption isotherm for the single spherical
pore of the same size from Ref. [1]. One of the desorption steps for the two-pore system
in Fig. 3.26a coincides with the desorption transition for a single pore. Vertical dash lines
indicate the positions of vapor-liquid equilibrium chemical potentials calculated for each
system by applying the Maxwell rule to continuous canonical isotherms.

a single spherical pore and a two-pore system. The two-pore system isotherm has an

intermediate loop, which is indicative of dissimilar phase behavior in the connected pores.

The physical states of the two-pores system corresponding to the characteristic points of the

isotherm are revealed from the snapshots in Figure 3.27. Line AB corresponds to growth

of the film on the pore walls (vapor-like state), and does not differ from the analogous

branch of the isotherm for a single pore. At the point B the film reaches the limit of its

stability and capillary condensation takes place in one of the pores (point C). Thus, the

fluid in one of the pores is in liquid-like state, while the other remains in the vapor-like

state; this is clearly seen on the snapshot for the point C in Figure 3.27. Line CD presents

a number of quasi-equilibrium states, similar to the one presented by point C. These states

do not represent truly equilibrium configurations, but exist because of the stabilization by

the gauge cell. At the point D, the second pore fills, except for a bubble in it; such states

present till the point E, where the bubble disappears. Line EF, where both pores are in

liquid-like state, does not differ from the corresponding part of the isotherm for a single

pore.

The MCMC method allows one to construct a continuous function of N(µ), which can be
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thermodynamically integrated to determine the grand potential. The chemical potential at

which VLE occurs can then be found where the grand potentials of the filled pore and pore

with the adsorbed film are equal. We calculated the values of such equilibrium chemical

potentials µe for each system by application of Maxwell’s rule of equal areas, applied to the

grand potential [51] ∮
µe

N dµ = 0 (3.18)

Corresponding hypothetical VLE transitions are presented as vertical dash lines in Fig-

ure 3.26. These calculations reveal that for the small window size (5σFF) the position of

equilibrium transition does not deviate substantially from the one for the single sphere.

The adsorption branch of GCMC isotherm for the two-pore model with 5σFF window,

presented in Figure 3.26a, almost coincide with the isotherm for a single pore; the capil-

lary condensation takes place at approximately the same chemical potential. However, the

desorption branch of the GCMC isotherm has qualitatively different behavior than the one

for a single pore. The two-steps desorption shows that emptying of the neighboring pores

in the two-pore model does not take place simultaneously, but the cavitation events are

subsequent. One of the desorption steps for the two-pore system in Figure 3.26a coincides

with the desorption transition for a single pore. Intermediate states between two cavitation

events correspond to the quasi-equilibrium states on the CD branch of MCMC isotherm.

Overall, since for a two-pore system with a small window, we observe small deviations in

equilibrium, condensation, and cavitation pressures, one should expect that the experimen-

tal behavior of the pore network with small windows should be similar to that in the system

of independent spherical pores.

The MCMC isotherm for the two-pore system with the large window (10σFF) is presented

in Figure 3.26b, the snapshots for selected points on this isotherm are given in Figure 3.28.

The MCMC isotherm has an intermediate loop, however this loop is much less pronounced

than the one for the 5σFF window. Therefore, the range of chemical potential corresponding

to quasi-equilibrium states, when the fluid in one of the pores is in liquid-like state and the

other remains in the vapor-like state (line CD), is narrower than for the system with small

window.
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Figure 3.27: Snapshots of the molecules adsorbing in a system of two spheres with 5σFF

window. The number of molecules in the system and corresponding point on the isotherm
in Figure 3.26a are (top to bottom): 1325 – A, 2200 – B, 2225 – C, 2625 – D and 2785 – E.
Only molecules with centers located within 1σ slice parallel to the plane of the picture are
shown.



106

For the system with the large window, a meniscus on the window between the pores in

the region CD is revealed in the snapshots (see snapshots for points C and C1 in Figure 3.28).

The proximity of the limit of stability of these states (point C) to the condition of equilibrium

in the one-pore system (dotted line in Figure 3.26b), suggests that desorption from the

partially saturated state may occur near the equilibrium. This scenario was first reported

in Ref. [35], as an explanation for the sub-steps on experimental scanning isotherms.

Snapshots for points C and C1, D1 and D2 are presented in Figure 3.28 to reveal an in-

teresting “flip-flop” behavior, when the pore in the vapor state changes with the pore in the

liquid state (C and C1), or the bubble “moves” from one pore to another (D1 and D2). Ap-

parently, since the pores are equivalent, such flip-flop is not reflected in the thermodynamic

state of the system.

Both the capillary condensation and cavitation transitions predicted by GCMC isotherm

for the two-pore model with 10σFF window (Figure 3.26b) are shifted to higher chemical

potentials, relative to the isotherm for a single pore. The hypothetical equilibrium VLE

transition, calculated from MCMC isotherm, using the Maxwell rule (3.18) is represented

by the dash line, which is also shifted to higher chemical potentials. These observations

suggest that experimental behavior of the pore network with large windows might deviate

from that in the system of independent pores.

Another set of GCMC simulations were performed to test the stability of the quasi-

equilibrium states branch (CDE in Figure 3.26) on the canonical ensemble MCMC isotherm

[227]. In a single pore model, any states between the vapor and liquid spinodal points (B and

E, respectively) are known to be labile states, and exist in the canonical ensemble on a single,

backwards trajectory between the two points (i.e. the chemical potential on this trajectory

decreases with the increase of number of molecules). However, the canonical isotherm of

the two-sphere model presents three branches between the spinodals, two backwards (BC

and DE) and one forward (CE). To test the stability of these intermediate states, we take

canonical ensemble configurations, set them in an open system as starting configurations

for GCMC simulations by removing the gauge cell and fixing the chemical potential to the

value of the previous simulation. The results of this study are presented in Figure 3.29.

We found a significant range of stable one-sphere filled states (e.g. points C and C1), for
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Figure 3.28: Snapshots of the molecules adsorbing in a system of two spheres with 10σFF

window. The number of molecules in the system and corresponding point in Figure 3.26b
are: 2150 – B, 2200 – C, 2275 – C1, 2625 – D1, 2650 – D2, and 2705 – E. Only molecules
with centers located within 1σ slice parallel to the plane of the picture are shown.
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both 10σFF and 5σFF systems on the forward-trajectory branch CD. Any system starting

on the backward-trajectory branch DE were found to be unstable, as density fluctuations

pushed the system to either a liquid-like or vapor-like state. There were no states observed

on the MCMC isotherms between points B and C. It confirms that the states when the

fluid in one of the pores is in liquid-like state, and in the other it is in the vapor-like state

(i.e. a filled sphere in contact with an empty sphere via a meniscus) can be a stable, and

further suggests the possibility of step-wise adsorption and desorption in such systems. It

is important to note that although these intermediate states may be stable, that does not

necessarily mean they will be observed in experiment. The incremental increase of external

pressure during adsorption measurements (and corresponding decrease during desorption)

would not permit access to the mid-density region we observe in simulation. However,

careful scanning isotherms could hypothetically probe this region.
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Figure 3.29: States stable in GCMC simulation. Heavy dash line is the MCMC canonical
isotherm for the 10σFF window, fine dash line for the 5σFF window. Circles and diamonds
(10σFF and 5σFF, respectively) represent the 〈N〉 from a GCMC run using configurations
from MCMC simulations as the initial state.

Finally, to demonstrate the difference between desorption in the system with 5σFF win-

dow and the system with 10σFF window, we ran another series of GCMC simulations. We

calculated the scanning desorption isotherms starting from the points obtained by MCMC

within the CD region (see Figure 3.26). The stability of these points was revealed above,
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now we test the limits of stability. Starting from a configuration when the fluid in one pore

is in liquid state and in the other is in vapor state, and sequentially decreasing the chemi-

cal potential, we monitor when the evaporation takes place in the filled pore. Results are

presented in Figure 3.30, scanning desorption isotherms are displayed with solid black lines

connecting branches of corresponding MCMC isotherms. Thus, for the system with 5σFF

window, emptying of the filled pore takes place close to the liquid-vapor spinodal, while

for the system with 10σFF window we should expect evaporation at substantially higher

chemical potential, close to the equilibrium value for the single spherical pore. It confirms

that the pores with large windows should evaporate in experiment at higher pressures than

the pores with small windows.
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Figure 3.30: Scanning desorption isotherms for (a) 5σFF window and (b) 10σFF window.
Scanning desorption isotherms are displayed with solid black lines connecting branches of
corresponding gauge cell isotherms. Starting from a configuration when the fluid in one
pore is in liquid state and in the other is in vapor state, and sequentially decreasing the
chemical potential, we monitor the chemical potential at which evaporation takes place in
the filled pore. Results for several runs are presented. Emptying of the filled pore in the
system with 10σFF window takes place at substantially higher chemical potential then in
the system with 5σFF window.

3.3.4 Conclusions

The adsorption and desorption of Lennard-Jones fluid in the system of two overlapping

spherical pores was modeled using mesocanonical and grand canonical Monte Carlo simula-

tions. The system under consideration differed from the classical ink-bottle pore model in
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that it did not have connecting channels, which provide an additional adsorption capacity.

To reveal the role of the window size between the pores, we ran simulations for pores of

the same diameter, but with two different sizes of the window. This was compared with

published results of simulations for the single spherical pore of the same diameter and ad-

sorption potential. For the system with the small window, the values of chemical potential

at capillary condensation and evaporation predicted by GCMC simulations almost coincide

with that of the single sphere of the same size. For the system with the large window, the

positions of both capillary condensation and evaporation are noticeably shifted to higher

values, reflecting the reduction of confinement effects.

Mesocanonical simulations allowed for trajectories of metastable and unstable states in

the systems under consideration. In particular, we revealed points that correspond to the

limit of stability of metastable configurations, when the fluid in one pore is in a liquid state

and in the other is in a vapor state with the meniscus at the window. For the system with

the small window, the chemical potential of such a configuration is close to that of the

liquid-like spinodal obtained in GCMC calculations. This implies that the vapor pressure

at which the capillary evaporation takes place in a system of overlapping spherical pores is

close to the characteristic pressure of a single spherical pore, given a small degree of overlap.

For the system with the large window, the limit of stability of one-pore-filled configura-

tions corresponds to a chemical potential substantially higher than that of the liquid-vapor

spinodal, and closer to the true vapor-liquid equilibrium determined by the Maxwell rule.

This observation suggests that in a partially filled pore network with relatively large overlap

of pores, the evaporation along a scanning desorption isotherm may proceed at least par-

tially in a near-equilibrium fashion. This conclusion complies with the earlier experimental

studies of scanning desorption isotherms in FDU-1 materials with cage-like pore networks

[194].

The substantial difference between the mechanism of emptying the system with the small

window and the large one was also revealed by simulating scanning desorption isotherms.

Simulations of desorption starting from a stable mid-density states revealed that pores with

small window empty close to the vapor-liquid spinodal, while the pores with large window

empty at higher chemical-potential, close to the equilibrium value of the single spherical
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pore.

Overall, we can make an analogy between the considered model and the classical ink-

bottle pore: for both models the capillary condensation pressure is determined by the

diameter of the main cavity, but the mechanism of desorption is controlled by the diameter

of the necks/windows. The results can be used for understanding desorption mechanism in

ordered materials with cage-like pores [223, 226] or in some disordered materials [189, 228,

229]. The presented model of interconnected pores can be implemented for DFT calculations

of adsorption/desorption isotherms, to make a kernel for materials characterization.



112

Chapter 4

Modeling Confined Polymers: New

Method and its Applications
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4.1 Calculation of Chemical Potentials of Chain Molecules

by the Incremental Gauge Cell Method

4.1.1 Introduction

The determination of the chemical potential of chain molecules in Monte Carlo (MC) sim-

ulations is a long studied and difficult problem. Chemical potential in homogeneous simple

fluids is readily calculated using Widom’s particle insertion technique [8]. However, for

moderately complex molecules (such as chains of 3 or more monomers), the probabilities of

non-overlapping insertions are very low, resulting in long simulations with large statistical

errors. Application of the Rosenbluth and Rosenbluth configurational bias [92] to test-chain

insertions was used by Harris and Rice [230], and then by Siepmann [93] to calculate the

chemical potential of chains on a lattice. Biased insertions were later generalized to con-

tinuously deforming molecules by Frenkel et al. [72] and later by de Pablo et al. [90].

Insertion of configurationally biased molecules overcomes the sampling issues mentioned

above, however the likelihood of an acceptable biased insertion in a dense fluid decreases

greatly when chain length n exceeds 20. Various computational strategies were designed

to improve this limit [98, 123, 231], most notably the pruned-enriched Rosenbluth method

(PERM) of Grassberger [85]. This method involves generating populations of configura-

tions, then periodically ‘pruning’ them by discarding the most improbable, and ‘enriching’

by duplicating the most favorable. Using this method one can obtain an accurate measure

of the chemical potential for very long chains; however, this approach is only valid for so

called ‘static’ Monte Carlo [85] (i.e., only one molecule’s conformation is sampled, and the

simulation does not involve a Markov chain). An attempt to extend PERM to conventional

‘dynamic’ Markov chain MC did not show an improvement over the simple Rosenbluth

insertions [119]. Another method of overcoming this finite chain-length drawback was pro-

posed by Kumar et al. [11] Instead of inserting the entire chain in one step, this method,

called the modified Widom (MW) method, is based on “incrementing” the chain (testing

insertions of monomers added to the chain end) to calculate the incremental chemical po-

tential of the monomer µincr. The chemical potential of the chain is then the sum of the
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incremental chemical potentials of the monomers that the chain is comprised of. The ob-

vious drawback of the MW method is that rigorously, one requires n MC simulations for a

single chain of n monomers. Other methods for the calculation of chemical potential include

thermodynamic integration over the chain with variable interaction potentials [77], reverse

Widom method via staged particle deletions [134], extension of the expanded ensemble to

chains of variable length [123], grand canonical simulation of configurationally biased chains

[99], and a hybrid method of biased Widom insertions with the scanning method [131]. The

technique proposed in this work is based on the “incremental” strategy [11], as we found

this approach the most suitable for modeling nanoconfined polymeric systems that we are

interested in. To this end, the MW method served as the reference technique for validation

and justification of the proposed method.

The dependence of the incremental chemical potential µincr on the chain length n is a

much-debated topic [80–83, 232]. It was originally asserted [11] that µincr depends on n only

for short chains, n < 5, and is essentially independent of the chain length for long chains, but

this conclusion was made within computational constraints which allowed for calculations of

chains shorter than 30 monomers. This conclusion of the independence of the incremental

chemical potential on the chain length became known as the “chain increment ansatz” [233].

Kumar later refined [80] the initial assumption of µincr independence on n to include only

“coil” polymers that are well above their θ temperature, where the chain configuration may

be reasonably approximated by a self-avoiding random walk. The original assumption [11]

was concluded to be invalid for globular polymers, i.e. chains below their θ temperature.

At the θ temperature, the attractive and repulsive parts of monomer-monomer interactions

effectively cancel out, and the real chain exhibits some characteristics similar to a free

Gaussian (ideal) chain. Above the θ temperature, the chain increment ansatz says that the

chemical potential of a coil polymer can essentially be calculated in a single simulation, by

trial monomer insertions at the end of one chain in the system. The resulting incremental

chemical potential can then be multiplied by the number of monomers in the chain and

corrected for short-chain behavior, to obtain the total chemical potential of the chain in

very few simulations. The ansatz was tested for free chains up to 30 monomers using the

modified Widom method [11], for long chains (∼100 monomers) by using PERM [115], and
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thoroughly with fluids of short n-alkanes (n = 6 to 16) at high densities by comparing the

modified Widom method with Rosenbluth insertions [81].

In this work, we extend the gauge cell MC method [9, 10] introduced for calculating

chemical potentials in dense and confined simple fluids to polymeric systems via the in-

crementing strategy. In the gauge cell method, the simulation system is constructed as

follows: a system of interest, or sample cell, is placed in chemical equilibrium with a ref-

erence control volume, or gauge cell. The gauge cell brings two advantages: it serves as a

meter of the chemical potential, and its limited volume restricts density fluctuations in the

sample cell. This schematic corresponds to a mesocanonical ensemble [49]: it is equivalent

to the canonical ensemble in the target cell if the gauge cell volume is infinitely small, and is

equivalent to the grand canonical ensemble if the gauge cell volume is infinitely large. The

gauge cell method finds numerous applications in simulation studies of phase transitions

in strongly heterogeneous systems. It has been employed in studies of capillary conden-

sation in various geometries [50–52], liquid bridge [53] and droplet nucleation [54], bubble

cavitation in metastable liquid [1, 55], adsorption deformation [56] and the segregation of

surfactants [57]. The gauge cell method has been extended from its original formulation [9]

to extremely small confinements with the ideal gas gauge cell (IGGC) method [10], mix-

tures with multi-component gauge cell method [49], coupling with Widom insertions [234],

configurational bias [59, 60], and simplified insertions using explicit chemical potential [61].

To extend the gauge cell method to linear homopolymers, we begin by considering a

system cell that contains a polymeric fluid of one or more chains of identical monomers,

and a gauge cell that contains a fluid of ideal non-bonded monomers. Standard MC moves

are used to sample state space in the system cell; this work includes monomer displacement

and reptation of the chain (but can also include configurationally-biased regrowth or any

other canonical ensemble move to equilibrate the chain in the system cell), particle insertion

from the gauge into the sample cell, and particle removal from the sample cell to the gauge

cell. On an attempted insertion, the particle removed from the gauge cell is attached to an

end of the polymer chain. Correspondingly, on an attempt of removal, a terminal monomer

is detached from the polymer chain and placed into the gauge cell. Thus, in contrast

with the Widom method, the gauge cell method deals with real insertion and removal of
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particles. Particle insertions and removals allow the chain to grow or shrink according to

given equilibrium conditions and allowed thermal fluctuations. Since the equation of state

of the reference ideal gas of monomers in the gauge cell is known, we can also calculate

the chemical potential of the chain in the sample cell. Preliminary results and a short

derivation of the incremental gauge cell method for a fluid of chains with identical lengths

was presented in Ref. [207], and will be expanded and generalized in this work.

The rest of the section is structured as follows: in Section 4.1.2, we formulate the gauge

cell method for a mixture of chains of various lengths, and give its statistical mechanical

derivation. In Section 4.1.3, we discuss its practical implementation. Simulation details

are provided in Section 4.1.4. In Section 4.1.5, we apply the suggested method to a single

isolated polymeric chain of LJ particles connected by harmonic spring bonds and compare

our results to the literature data. Results obtained for single chains in a nano-confinement

are presented in Sec 4.1.6 and 4.1.7. A comparison of the computational efficiency of the

incremental gauge cell method and the MW method is presented in Section 4.1.8. Finally,

conclusions and a critical discussion of the method are presented in Section 4.1.9.

4.1.2 The Incremental Gauge Cell Method

Definition of the incremental chemical potential

To derive the statistical mechanical basis for the incremental gauge cell method, we start

from the definitions of the chemical potential and the incremental chemical potential in

a general case of a mixture of homopolymer chains of various lengths. Consider a three-

dimensional canonical system of constant volume V at temperature T . Let Ni be the

number of chains of length i (that is, N1 refers to the number of monomers, N2 to the

number of dimers, and so on). The mixture is then described by the set of all chains,

{Nα} = {N1, N2, · · · , Ni, Ni+1, · · · }. The total number of chains is

M =

∞∑
i=1

Ni (4.1)
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Similarly, the total number of monomers is

m =

∞∑
i=1

iNi (4.2)

A general description of the canonical partition function for such a system, with no restric-

tions for intra-molecular connectivity, is

Q({Nα}, V, T ) =
1

Λ3m
∏∞
i=1(Ni!)

∫
V

drm exp

[
−Φ(rm)

kBT

]
(4.3)

where Λ is the thermal de Broglie wavelength of the monomers, rm is the set of m position

vectors describing the location of each monomer, and the total potential energy φ is the sum

of monomer-monomer interactions, intramolecular interactions (such as bond-stretching,

angle-bending, or torsion potentials), and external potentials such as an adsorption poten-

tial. The Helmholtz free energy of such a system can be described in terms of the canonical

partition function,

F ({Nα}, V, T ) = −kBT lnQ({Nα}, V, T ) (4.4)

If the system is large, and its Helmholtz free energy F is continuous and differentiated

function of N , the chemical potential of chains of length ν at constant {Nα 6=ν}, volume and

temperature is

µν({Nα}) =
∂F

∂Nν

∣∣∣∣
{Nα6=ν},V,T

(4.5)

Following the approach of Widom [8], this expression can be approximated as a finite

difference, and the chemical potential can be defined as the difference of the free energy of



118

a system with {Nν + 1} and Nν molecules,

µν({Nα}) = F ({N1, · · · , Nν + 1, · · · }, V, T )− F ({N1, · · · , Nν , · · · }, V, T (4.6a)

µν({Nα}) = −kBT ln

[
Q({N1, · · · , Nν + 1, · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )

]
(4.6b)

= −kBT ln

[
V ν

Λ3ν (Nν + 1)

]
− kBT ln

 1

V ν

∫
(V ν)

drνins〈exp [−φ(rνins, r
m)/kBT ]〉{N1,··· ,Nν ,··· }


(4.6c)

Correspondingly, the chemical potential of (ν + 1)-mers is

µν+1({Nα}) = F ({N1, · · · , Nν+1 + 1, · · · }, V, T )− F ({N1, · · · , Nν+1, · · · }, V, T ) (4.7a)

µν+1({Nα}) = −kBT ln

[
Q({N1, · · · , Nν+1 + 1, · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )

]
(4.7b)

=− kBT ln

[
V ν+1

Λ3ν+3 (Nν+1 + 1)

]

− kBT ln

 1

V ν+1

∫
(V ν+1)

drν+1
ins 〈exp

[
−φ(rν+1

ins , r
m)/kBT

]
〉{N1,··· ,Nν ,··· }

 (4.7c)

In Equations (4.6c) and (4.7c), the RHS is divided into the ideal and excess terms. As

such, the excess chemical potential of a ν-mer can be determined by random insertion of ν

monomers in volume V , and averaging the Boltzmann probability that these ν monomers

may be bound in one chain with given bonded and non-bonded interaction potentials. If

this approach were practical, it would represent a direct extension of the Widom insertion

method to chain molecules.

We can now define the incremental chemical potential µinc(ν, {Nα}) as the difference of

chemical potentials for the chains of ν + 1 monomers and ν monomers, with all else held

equal, by subtracting Equation (4.6a) from (4.7a):

µinc(ν, {Nα}) ≡ µν+1({Nα})− µν({Nα}) =

F ({N1, · · · , Nν+1 + 1, · · · }, V, T )− F ({N1, · · · , Nν + 1, · · · }, V, T ) (4.8)
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given ν > 0. Equation (4.8) is the foundation of the MW method [11] and represents the

incremental chemical potential of a ν-mer in a mixture of {Nα} chains. Determination of

the chain chemical potential µν({Nα}) is simply a matter of summing all incremental values.

As described in Ref. [232], µinc is a well-defined thermodynamic quantity. Analogously to

the Widom insertion method, Equation (4.4) is substituted into (4.8) to obtain a ratio of

partition functions, as the difference between Equations (4.6c) and (4.7c),

µinc(ν, {Nα}) = −kBT ln

[
Q({N1, · · · , Nν+1 + 1, · · · }, V, T )

Q({N1, · · · , Nν + 1, · · · }, V, T )

]
=− kBT ln

[
V (Nν + 1)

Λ3 (Nν+1 + 1)

]

− kBT ln

 1

V

∫
(V )

drins〈exp
[
−φ(rins(ν + 1), rm+ν)/kBT

]
〉{N1,··· ,Nν+1,··· }


(4.9)

given ν > 0, and where φ(rins(ν + 1), rm+ν) is the total interaction potential energy of the

ν + 1 trial monomer, located at rins, with the rest of the system. This trial monomer is

positioned by incrementing a ν-mer chain by one monomer. The angle brackets denote the

canonical average over all particle positions rm+ν . To make the calculations more efficient,

we assume that monomer ν+1 can only be inserted in a limited volume Vins around monomer

ν. As such, we assume infinite bond energy between the monomers if the bond length is

too large or too small. This assumption is reasonable, since if the bond energy is large,

this configuration will not contribute to the Boltzmann factor that is being sampled. By

averaging only over the volume Vins, rather than over the entire volume V , Equation (4.9)

then becomes

µinc(ν, {Nα}) = −kBT ln

[
V (Nν + 1)

Λ3 (Nν+1 + 1)

]
− kBT ln

[
Vins

V
〈exp

[
−φ(rins(ν + 1), rm+ν)/kBT

]
〉{N1,··· ,Nν+1,··· },Vins

]
= µid

inc(ν, {Nα}) + µex
inc(ν, {Nα}) (4.10)

Here, we defined the ideal µid
inc(ν, {Nα}) and excess µex

inc(ν, {Nα}) contributions into the

incremental chemical potential. The excess incremental chemical potential µex
inc(ν, {Nα})
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defined in Equation (4.10) can be calculated by inserting a trial monomer in the insertion

volume Vins at the chain end and averaging the respective Boltzmann probability. This

constitutes the rigorous basis for the MW method [11] that is used for comparison with the

incremental gauge cell method described below.

The case of ν = 0 is determined in a similar fashion, with the ratio in Equation (4.9)

equal to Q({N1 + 1, · · · }, V, T )/Q({Nα}, V, T ). It represents the chemical potential of a

monomer inserted into the mixture of {Nα} chains, µ0({Nα}) = µinc(0, {Nα}), and is ex-

pressed as

µ0({Nα}) =− kBT ln

[
V

Λ3(N1 + 1)

]
− kBT ln

[
〈exp [−φ(r0, r

m)/kBT ]〉{N1,··· ,Nν ,··· },V
]

=µid
0 ({Nα}) + µex

0 ({Nα})

(4.11)

where r0 is the position vector of a trial monomer in the system. Because the first monomer

of a chain has no bond potential, the average of Equation (4.10) is calculated over the entire

system volume V , and expression similar to the standard Widom insertion is found. By sum-

mation of the incremental chemical potentials, and grouping the terms of Equations (4.10)

and (4.11), we obtain an expression for the chemical potential of a ν-mer:

µν({Nα}) = −kBT ln

[
V ν

Λ3ν(Nν + 1)

]
− kBT ln

[
〈exp [−φ(r0, r

m)/kBT ]〉{Nα},V
]
−

kBT

ν−1∑
i=1

ln

[
Vins

V
〈exp

[
−φ(rins(i+ 1), rm+i)/kBT

]
〉{N1,··· ,Ni+1,··· },Vins

]
(4.12)

where rins(i+1) is position of the i+1 trial particle. The first term is the reference state for

the ν-mer component of the mixture, an ideal gas of non-interacting ν-mer chains with no

non-bonded intramolecular potential. The second term is the excess chemical potential of

inserting a single monomer into the system (exactly the equation for the Widom method);

the last term is the sum of the excess incremental chemical potentials starting from the

previously inserted monomer. Note that the volume ratio represents a correction for the

insertion volume being different from the system volume. Upon summation over i, the

ideal term in (4.10) gives the ideal part of the chain chemical potential. The incremental
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ratios of µid
inc in Equation (4.10) cancel in the summation, with only (Nν + 1) remaining in

the denominator. Also note that although Vins appears explicitly in Equation (4.12), there

is no dependence on it, as long as it is chosen large enough to sample all non-negligible

conformations and small enough to allow adequate sampling. Equation (4.12) can be written

in terms of ideal and excess chemical potentials,

µν({Nα}) = µid
ν + µex

ν = µid
ν + µex

0 ({Nα}) +
ν−1∑
i=1

µex
inc(i, {Nα}) (4.13)

It is worth noticing that the excess incremental chemical potential µex
inc(i, {Nα}) depends on

the composition {Nα}, but it does not depend on the length ν of the inserted chain. Thus,

the incremental insertion of the longest chain present in the mixture (that is, calculating

the canonical average in Equation (4.10) for each monomer of the longest chain) yields

all incremental chemical potential values needed for calculating the chemical potentials of

remaining chains of any length. The chain increment ansatz involves the excess incremental

chemical potential defined by Equation (4.10) and yields that µex
inc(ν, {Nα}) u µex

inc(ν +

1, {Nα}) for ν � 1.

For single chain systems considered below, Equation (4.10) reduces to

µinc(ν) = −kBT ln

[
Vins

Λ3
〈exp [−φ (rins(ν + 1)/kBT )]〉{N1,··· ,Nν+1,··· },Vins

]
(4.10′)

In examples shown below, we report the values of µinc given by Equation (4.10′) with Λ set

to unity for the sake of comparison to literature results.

Alternate and extended derivations for the incremental chemical potential can be found

in Appendix A.

Foundations of the gauge cell method

The gauge cell method was originally introduced as a computational method to measure

chemical potential in dense fluids confined by external potentials. Use of the gauge cell

brings several advantages to the simulation. First, it serves as a meter of chemical potential

of the fluid in the main cell. Second, its finite volume suppresses fluctuations and allows
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the stabilization of metastable and unstable states in the sample cell. And third, it’s

computationally more efficient than Widom trial insertions, as the exchange of particles

from gauge cell to sample cell and back facilitates mixing of the particles in the sample cell.

The simulation scheme is constructed as follows: a sample cell of volume V containing the

mixture of {Nα} chains is placed in contact with a gauge cell of volume Vg, and both are

immersed in a heat bath of temperature T . Exchange of particles between the main and

gauge cells is permitted by allowing the ends of a designated “test” chain to accept or send

monomers to gauge cell. Note the test chain is in addition to the existing mixture {Nα}. The

total number of particles between the test chain and the gauge cell nΣ = nt +ng is constant.

Thermodynamically, equilibration of this construction corresponds to the minimization of

the total free energy of the test chain and the gauge cell,

FΣ(nΣ, {Nα}, V, Vg, T ) = Ft(nt, {Nα}, V, T ) + Fg(ng, Vg, T )⇒ min (4.14)

where Ft is the free energy of the test chain, Fg is the free energy of the fluid in the gauge

cell, and FΣ is their sum. The minimization implies equality of the partial derivatives,

∂Ft

∂nt

∣∣∣∣
{Nα},V,T

=
∂Fg

∂ng

∣∣∣∣
Vg,T

(4.15)

The finite difference approximation of the left hand side of Equation (4.15) is in fact the

incremental chemical potential of the test chain, as defined in Equation (4.8), and is equal

to the chemical potential of gauge,

Ft(nt + 1, {Nα}, V, T )− Ft(nt, {Nα}, V, T ) =
∂Fg

∂ng

∣∣∣∣
Vg,T

= µinc(nt, {Nα}) = µg(ng) (4.16)

This is the basis of the so called mean density gauge cell (MDGC) method [9]. After an

equilibrium distribution is reached, the average number of monomers ng in gauge cell can be

used to compute the incremental chemical potential of a chain of length nΣ− ng, assuming

the equation of state of the reference fluid in the gauge cell is known. It is important to

note that Equations (4.15), (4.16) are an approximation, which is only valid if the numbers

of molecules of both cell are large enough [10]. Strictly, the chemical potentials can be
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calculated from the probabilities of observing a specific ng on any given step. This ideology

was implemented in the ideal gas gauge cell (IGGC) version of the gauge method [10], where

the reference fluid was chosen to be an ideal gas.

To extend the IGGC formalism to chain molecules, we begin with the system defined

above, a system {Nα} chains in volume V , with an additional single test chain of nt

monomers present. A gauge cell containing a fluid of ng monomers with volume of Vg

is allowed to exchange particles with the test chain only. Similar restrictions as the original

gauge cell are applied: nΣ = nt + ng, V , Vg and T are all held constant. Given some

number of monomers in the gauge, the probability to observe a test chain of nt and gauge

cell containing ng = nΣ − nt is proportional to,

Pnt = Png ∝ exp

{
− 1

kBT
[Ft(nt, {Nα}, V, T ) + Fg(ng, Vg, T )]

}
(4.17)

Similarly, if the test chain is incremented by one monomer, the probability to observe such

a system is proportional to,

Pnt+1 = Png−1 ∝ exp

{
− 1

kBT
[Ft(nt + 1, {Nα}, V, T ) + Fg(ng − 1, Vg, T )]

}
(4.18)

By taking the ratio of Equations (4.17) and (4.18), the incremental chemical potential (as

defined in Equations (4.8) and (4.16)) emerges,

Pnt+1

Pnt

=
Png−1

Png

∝ exp

{
− 1

kBT
[µinc(nt) + µg(ng − 1)]

}
(4.19)

where µg is the chemical potential of the gauge cell, defined traditionally as Fg(ng)−Fg(ng−

1). Rearranging in terms of incremental chemical potential, we obtain:

µinc(nt) = µg(ng − 1) + kBT ln

(
Png

Png−1

)
(4.20)

Equation (4.20) is the basis for calculation of the incremental chemical potential via the

gauge cell method. It relates the incremental chemical potential of the test chain to the

chemical potential of gauge cell. Because nt+ng is finite, the probabilities Png and Png−1 can
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be recorded during simulation. So far, no assumption has been made regarding the nature

of the gauge cell fluid. The most useful choice is an ideal gas. The chemical potential of an

ideal gas (as defined with a finite difference) in the gauge cell is

µig(i) = −kBT ln

(
V

Λ3(i+ 1)

)
(4.21)

Substituting Equation (4.21) into (4.20) and simplifying, we obtain

µinc(nt, {Nα}) = −kBT ln

(
V

Λ3ng

)
+ kBT ln

(
Png

Png−1

)
(4.22)

This is the main equation used for calculating µinc via the IGGC method. Correspondingly,

if nt is large enough, Equation (4.22) simplifies to the equation for the MDGC method,

µinc(nt, {Nα}) = kBT ln
( ρg

Λ3

)
(4.23)

where ρg is the monomer density in the gauge cell. In practice, they are calculated simulta-

neously; the IGGC yielding several points of decreasing statistical accuracy of µinc(nt), and

MDGC yielding one point per simulation. In both cases, to quantitatively compare with

Equation (4.10′), the term 1/Λ3 is moved to the reference chemical potential.

Similarly to the grand canonical MC simulation, the probability of attempting an in-

sertion is equal to that of a removal, in order to preserve the symmetry of the underlying

Markov chain. Acceptance probabilities for insertions and removals are derived from the

detailed balance condition. The probability of accepting an insertion to a randomly selected

end of the test chain is

acc(nt → nt + 1) = min

{
1,
Vinsng

Vg
exp

[
−φins(nt + 1)

kBT

]}
(4.24)

where φins(nt + 1) is the potential energy of the trial inserted monomer. There are two

notable differences between Equation 4.24 and its corresponding simple-fluid equivalent [10].

First, the volume term in the numerator is the only volume in which the nt + 1 monomer is

allowed to be placed (Vins), rather than the entire system volume (V ). Second, there is no
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N term in the numerator, as the number of molecules in the system does not change due

to a monomer insertion (unless it is the first monomer of the chain). The corresponding

equation for removal is

acc(nt → nt − 1) = min

{
1,

Vg

Vins(ng + 1)
exp

[
−φrem(nt − 1)

kBT

]}
(4.25)

where φrem(nt−1) is the potential energy of the terminal monomer selected for trial removal.

Similarly to what is described in Equation (4.12), a special case exists for nt = 0. The

insertion for (0 → 1) and removal of (1 → 0) monomers of the test chain are governed

by the original gauge cell acceptance equations [10]. Together, these equations sample the

mesocanonical ensemble distribution of particles for the test chain in contact with a gauge

cell as described above.

4.1.3 Implementation

Practical implementation of the incremental gauge cell method is straightforward. Starting

from a validated canonical ensemble MC algorithm, only one extra subroutine (particle

exchange with the gauge cell) and several variables (ng and Vg) need to be added. In the

exchange routine, removal or insertion is selected with equal probability, as is which end of

the chain to exchange with. For removal, the potential energy of the terminal monomer on

the chain is calculated, and the probability of its removal is calculated using Equation (4.25)

and accepted if greater than a random number on [0, 1). Likewise, if insertion is selected,

a new particle is generated at random in the insertion volume at the end of the chain, and

its potential energy calculated. The probability of accepting it into the configuration of the

main cell is calculated using Equation (4.24) and accepted similarly to particle removal.

If the exchange move is accepted, the global potential energy is updated and the particle

added (or removed) to the array of current coordinates. Care must be taken for the limiting

cases of nt = 0 or 1; in these situations, exchange probabilities are calculated using the

original gauge cell equations [10].

It is important to note that the particles contained in the gauge cell do not need to have

coordinates or energy recorded because we assumed the gauge fluid is ideal gas. Therefore,
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we only have to additionally track the current number of particles in the gauge and the

volume of the gauge cell. The selection of the gauge cell volume is crucial to obtain results

for a desired value of µinc(nt). A gauge cell that is too small will not be able to obtain

sufficient statistics as particles will tend to stay on the test chain; and if the volume is too

large, the particles will tend to stay in the gauge cell and the test chain will not exist in

the system cell. The size of the gauge cell can be calculated from an a priori estimate

of chemical potential using Equation (4.23). In practice, it is useful to calculate the most

suitable gauge cell volume during the simulation. Of course, for the mesocanonical ensemble

to be valid, the gauge cell volume must be constant. But during the equilibration phase

of the simulation (i.e. the discarded steps), no such restriction exists. The gauge volume

can thus be adjusted using the simple relation, Vg = ntarget
g /ρg, where ntarget

g is the desired

average number of particles in the gauge cell and ρg = ng/Vg. Before the averaging (i.e.

production) segment of the simulation commences, a final gauge volume is selected by

either averaging previous volumes or using the last computed one. For this work, ntarget
g

was selected as 10, a comprise of reasonable statistics and short simulations.

4.1.4 Simulation Details

A single freely-jointed linear Lennard-Jones (LJ) chain of length n = 2 to 500 was considered

in two situations: in free spaces (approximating the zero-density limit) and confined in a

spherical pore. Monomers were modeled as LJ beads that interact with all other nonbonded

monomers. LJ parameters were selected to roughly mimic methylene monomers (ε/kB =

49.3 K, σ = 0.394 nm) [235]. The LJ potential was truncated at 10σ. Covalent bonds were

modeled using a bounded harmonic spring potential:

Ubond(r) =


1
2κb(r − r0)2 for 0.5 ≤ r/σ ≤ 1.5

∞ otherwise

(4.26)

where r is the distance between bonded beads, r0 is the equilibrium bond length, here equal

to 1σ, and κb is the spring constant, taken to be 400ε/σ2 [236]. The insertion volume

(Vins) is the volume where this potential is bounded (here between rmin = 0.5σ and rmax =
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1.5σ). Confinement effects were tested by utilizing a spherical enclosure of dacc = 10.05σ,

with either an attractive adsorption potential of LJ type, or a hard wall repulsion. Here,

dacc refers to the diameter of the pore that is accessible to the monomers, specifically the

volume where the solid-fluid potential is less than zero [204]. Adsorption was modeled

as an interaction between each monomer with a solid wall that was formed by a uniform

layer of “smeared-out” LJ atoms. These solid-fluid interactions were integrated over the

spherical surface to obtain a one-dimensional external potential, Uadsorption = Uwall(r),

where r is the distance between a given monomer and the pore wall. Parameters for the

adsorption potential were solid-fluid LJ energy (εSF/kB = 100.0 K), solid-fluid LJ diameter

(σSF = 0.33 nm), and the surface density of the LJ atoms in the wall (15.3 nm−2), chosen

to approximate alkane interactions with an amorphous silica surface. Free chains were

simulated in a box with periodic boundary conditions, with volume selected so that density

was not greater than 1× 10−8. Simulations lengths were at least 108 MC steps, with each

move an attempted displacement or exchange. This relatively long simulation time ensured

equilibration of the chain.

In addition to the monomer insertions and removals from/to the gauge, described by

Equations (4.24) and (4.25), the system in the target cell was equilibrated using standard

canonical MC moves that included random monomer displacement in the target cell, and

chain reptation. On displacement, a randomly selected monomer was displaced in a random

direction. Maximum displacement distance was selected so that the move is accepted ∼50%

of attempts. Reptation, or the “slithering snake” move, involves growing the chain at one

end while removing the opposite end [237]. Sampling of polymeric systems is often facilitated

using other canonical moves, such as crankshaft type moves [238], partial regrowth via

configurational bias [91, 239], and concerted rotation [240], just to name a few. Generally

speaking, these additional moves are necessary to ensure reasonable sampling of state space

for polymeric systems.
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4.1.5 Single Chain in the Zero-Density Limit: Comparison to Previous

Methods

Using MDGC, IGGC and MW trial particle technique, we calculated the incremental chem-

ical potential (µinc) for chains of harmonically bonded LJ beads from n = 2 to 30 in a

10003σ3 periodic box to approximate the zero density limit, that is, at the same conditions

that were studied by the MW method [11]. These authors considered two temperatures,

kBT/ε = 2 and kBT/ε = 8. The higher temperature kBT/ε = 8 is well above the θ-point,

which means that the chain accepts a self-avoiding random coil configuration characterized

by the RG ∝ (n−1)0.59 dependence between the radius of gyration RG and the chain length

n. This condition is analogous to the polymer being dissolved in a “good” solvent. On the

contrary, kBT/ε = 2 is below the θ-point [115], which means that polymer-polymer inter-

actions are more favorable than polymer-solvent ones; this effective attraction between the

beads prevails over the entropic desire for a disordered (highly random) chain, and the poly-

mer “condenses” into a globule with RG ∝ (n − 1)1/3. At the θ temperature, the entropic

contribution (favoring chain expansion into a self-avoiding coil) and enthalpic contribution

(favoring chain contraction into a globule) approximately cancel each other, and the poly-

mer effectively behaves like a Gaussian chain with RG ∝ (n− 1)1/2. The θ temperature for

a stiff-jointed LJ polymer was earlier estimated as kBT/ε = 3.18 when considering short

range interactions with LJ potential cut off at rcut = 2.5σ [39], and approximately kBT/ε

= 4 with rcut =∞ [115].

Our results for n < 30 are displayed in Figure 4.1, along with the original MW results

[11]. Our results agree quantitatively with the MW method (a difference of less than

0.01kBT was observed) at n > 10. Both MDGC and IGGC results agree when n > 10. For

shorter chains, the results of the IGGC and MW are in good agreement, while the chemical

potentials obtained by MDGC deviate. This problem is similar to the one faced by very

small non-polymer systems [10], since Equation (4.23), upon which the MDGC method is

based, is itself an approximation truly valid only for large systems approaching the bulk

limit. The MDGC method is reliable when the average number of particles in the gauge cell

does not differ (within given accuracy) from the most probable number. In practice, this
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Figure 4.1: Comparison of the gauge cell and MW methods for calculating the incremental
chemical potential µinc in dilute bulk solution. Triangles are data from Ref. [11], calculated
by using MW insertions at the end of the chain (to compare with published data, the
term ln(Vins) was subtracted from referenced data). Open circles correspond to IGGC
method, and closed circles to MDGC method. The deviations between the IGGC and MW
calculations of µinc do not exceed 0.01kBT . Note that IGGC provides at least two values
of µinc at given n, calculated from the overlapping histograms of IGGC simulations. As
expected, µinc calculated by MDGC method diverges for short chains of n < 10, when
〈n〉 < 〈ng〉, and agrees with IGGC method for longer chains. The IGGC method should be
used for short chains (n < 10), while MDGC method is sufficient at n > 10.
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occurs when 〈n〉 (the average chain length) is larger than 〈ng〉. If this condition is not met,

the ideal gas gauge cell (IGGC) method should be used. The IGGC method calculates µinc

from individual (statistically significant) histogram density bins rather than the average

density of the gauge cell and therefore the results do not depend on the gauge size. In this

calculation, the gauge volume was selected to have an average particle number of 10 in the

gauge cell. Each IGGC simulation, therefore, yields several points (of varying statistical

certainty) in a plot of µinc versus n. In fact, multiple overlapping points in Figure 4.1 were

determined from distinct gauge cell particle distributions from IGGC method. With either

method, the feature of interest is the dependence of µinc with the chain length. For the high

temperature case, µinc does not depend on n, for chains n > 10. This behavior is expected

by the chain increment ansatz [80, 81, 115].At kBT/ε = 2, µinc monotonically decreases with

n, albeit slowly, and the ansatz does not hold.
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Figure 4.2: Chain length dependence of µinc at different temperatures, calculated by MDGC
method. Larger statistical variation is present for long chains at the lowest temperature due
to sampling inefficiencies. At temperatures below the θ-point, µinc decreases with the chain
length, since larger globules have larger surface that favors additional monomer insertions.

To further investigate the chain length dependence, we used the incremental gauge cell

method to study the behavior of long chains. Chains from n = 10 to 500 were simulated in

free space at low (kBT/ε= 1), intermediate (kBT/ε= 2) and high (kBT/ε= 8) temperatures.

A semi-log µinc(n) plot is presented in Figure 4.2. It is clear that the chain increment ansatz
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holds for very long chains in the high temperature (that is, for a self-avoiding coil type of

configuration) case with a reasonable precision. The standard deviation in µinc from n =

15 to 500 is 1.49 × 10−3, with a mean value of −1.265kBT , indicating little variation of

µinc over a long range of chain lengths. At both intermediate and low temperatures, µinc

decreases monotonically with the length. Since both intermediate and low temperatures

are below the θ-point the chain increment ansatz is not expected to hold. As the polymer

globule grows, there is an increase in the attractive potential experienced by each new bead

inserted. As a result, the incremental chemical potential decreases monotonically, and at a

greater rate for a lower temperature (where attractive monomer-monomer interactions are

stronger). The situation is similar to that in a liquid droplet of a small-molecule fluid in

its equilibrium vapor: as the droplet grows, the fraction of molecules located at the droplet

surface decreases, as hence the chemical potential decreases. For both low temperature

cases, the incremental activity has an approximate power law dependence on the chain

length, exp(−µinc/kBT ) ∼ bna; for kBT/ε = 1, b = 0.8593 and a = 0.4008, with correlation

coefficient R2 = 0.9913, and for kBT/ε = 2, b = 0.8408 and a = 0.0836, with correlation

coefficient R2 = 0.9924. The exponent a diminishes as the temperature increases, however,

in order to draw any conclusions on its temperature dependence, additional simulations are

needed.

As an additional test of the employed equilibration scheme, and to determine the θ

temperature in our model, we studied how the length of free chains affects the coil-globule

transition temperature. To this end, we calculated the chain expansion ratio at various

temperatures, kBT/ε = 1 to 100, to investigate the globular to self-avoiding random coil

transition. The chain expansion ratio is defined as the ratio of the radius of gyration

squared and the radius of gyration squared of an ideal Gaussian chain. The results for

various chain lengths are displayed in Figure 4.3. Short chains (n = 20) are compared to

previous work [80]. Finite chain effects are immediately observed, as the transition from

poor to good solvents occurs over a range of temperatures, rather than a first-order type

transition expected from an infinite length chain [241]. Two longer chains, n = 50 and

n = 410, showed sequentially sharper transitions. Chains at their θ temperature would

be realized as exhibiting a chain expansion ratio of unity. From the three chain lengths
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Figure 4.3: Temperature dependence of the chain expansion ratio, RG/R
θ
G (RθG is the

gyration radius of an ideal chain), for various chain lengths. The incremental gauge cell
method replicates previous MW calculations for the shortest chain [80]. As the chain length
increases, the transition between globular and random coils becomes sharper. Note that,
even for the longest chain of 410 monomers, this transition is far from a stepwise one.

studied, we observe the temperature at which the expansion ratio is equal to unity increase

with chain length. For the last case of n = 410, this temperature is ∼3.3ε/kB, which is

within the expected range for the θ transition of finite chains [80, 115, 242]. If their trend is

extrapolated, the curves seem to approach the infinite length θ temperature value of ∼4ε/kB

[115].

4.1.6 Single Chain Confined to 7.5σ Nanopore

To observe the balance of entropic and enthalpic effects, we varied the temperature from

T ∗ = 1 to T ∗ = 8. For single free chains, it is well known that below the θ temperature,

monomer-monomer interactions dominate and chain collapses into a condensed form called

a globule. Similarly, we know that above this temperature, thermal motion dominates and

the chain behaves as a random coil [37]. The theta temperature of an LJ chain is between

T ∗θ = 3 and 4, depending the potential cut-off radius [39, 86] and chain length. Therefore,

we selected cases below (T ∗ = 1), near (T ∗ = 2), in (T ∗ = 3.2), and above (T ∗ = 8) the θ

transition temperature. To compare the structure of each system, we calculate the radius
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of gyration, RG,

R2
G =

n∑
i

(ri − rcm)2 (4.27)

All values of RG discussed are reduced by σ. To compare chains from all systems, the figures

below plot all curves in terms of monomer density, that is, ρσ3 = nσ3/Vacc, including the

free chain, which is actually calculated in the limit of zero density. However, because they

are all reduced by the same volume, chain length effects are numerical comparable.
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Figure 4.4: Incremental chemical potential (left) and radius of gryation results (right) for
T ∗ = 8.0

The first case is the high temperature, T ∗ = 8. The incremental chemical potential for

all three confinement cases is presented in Figure 4.4a, and their corresponding radius of

gyration in Figure 4.4b. As predicted, µinc of a free chain (no confinement) does not depend

on chain length once the limiting chain length is reached (n ∼ 5). Once the chain is confined,

it encounters an immediate entropic penalty. Where the unconfined chain’s incremental

chemical potential has no dependence on chain length, it becomes a strong function of

pore filling when confined. The incremental chemical potential increases monotonically

with density (chain length). The inclusion of an attractive adsorption potential does not

significantly alter the behavior of the curve, suggesting that the entropic effects at such a

temperature outweigh both the internal and external attractive potentials. The relatively

constant shift between the confined hard wall and confined adsorbing walls is indicative of

the strength of adsorption potential. The structure, as described by the radius of gyration,
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of the free chain is that of a random, self-avoiding walk. We found that for the free chain,

RG ∝ n0.590 (tested up to n = 500). This scaling exponent is very close the most accurate

literature result of 0.5877 by Li et al. [243], further validating the algorithm. The RG of

the confined, hard-wall pore show that only for very short chains (n < 15) does confinement

not impact the RG of the polymer. After that, the RG approaches a value representative

of the filled pore. When the adsorption potential is present, the RG reaches a plateau

quickly (n ∼ 50). This indicates that the chain is evenly distributed in the pore volume,

and increasing the density does not change the distribution of mass in the pore. Essentially,

this is the equivalent to the adsorption of a super-critical fluid.
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Figure 4.5: Incremental chemical potential (left) and radius of gryation results (right) for
T ∗ = 3.2

The next temperature, T ∗ = 3.2 is close to the θ temperature calculated by Graessley

[39] using a cut-off radius of 2.5 and a shifted potential, which was T ∗ = 3.18. Our results

for this system are displayed in Figure 4.5. The incremental chemical potential of the free

chain and hard-wall confined chain are qualitatively similar to the higher temperature case.

The radius of gyrations are quite similar to the T ∗ = 8 case, with the free chain following a

power scaling and the confined case following a logarithm-type scaling. This suggests that

the thermal motion is still the dominant force. However, with the inclusion of the adsorptive

force, two interesting effects can be observed. First, the incremental chemical potential is

no longer a smooth exponential curve like the hard-walled confined chain, but has a weak
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inflection around a density of 0.4. Second, the RG of the confined with adsorption chain now

has a maximum, where the high temperature RG had a plateau. The maximum indicates

that there is a tendency (albeit a slight one) for the chains to exist closer to the radius of

the pore. While no distinct layering is observed, this tells us that the average density of

monomers is higher closer to the adsorbing wall.
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Figure 4.6: Incremental chemical potential (left) and radius of gryation results (right) for
T ∗ = 2.0

Below the θ temperature, we have calculated two systems at T ∗ = 2 and 1. The former

is closer to the transition point. Figure 4.6 shows the results for T ∗ = 2. The free chain

incremental chemical potential is now clearly dependant on chain length. This dependence

is logarithm in nature, and results from the net attractive potential of the growing globule

in space. When the chain is placed in the hard-walled pore, confinement effects are observed

for chains ∼50 monomers long. After this point, the incremental potential increases quick

as in the previous cases. The RG of free and confined chains is now comparable, as they

both exhibit a logarithm characteristic, but the free chain is shifted to higher RG (the free

chain is above 3 times larger at n = 200). However, the adsorbing chain now begins to

show distinct regions in incremental chemical as a function of chain length. First, at low

densities, a monolayer adsorbs onto the pore wall, and µinc is relatively constant. This is also

observed as a clear maximum of RG with respect to chain length, reflecting the tendency of

the mass in the system to be located near the radius of the pore (the attractive pore wall).
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As the chain length grows, it must fill the available volume of the pore, and RG decreases

and approaches the value of the hard-wall confined polymer. Second, after the monolayer

is formed, another transition is observed as the chain fills the pore. Once the pore is filled,

adding additional monomers has a large energetic penalty, and the incremental chemical

potential again increases rapidly. The shape of the incremental chemical potential curve is

similar to an isotherm of an adsorbing critical fluid.
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Figure 4.7: Incremental chemical potential (left) and radius of gryation results (right) for
T ∗ = 1.0

The final case studied in this work is well below the θ temperature, where the bulk chain

behaves as tightly condensed globule. The results for this case (T ∗ = 1) are presented in

Figure 4.7. The confinement penalty for such a condensed chain is low—both the incremen-

tal chemical potential and the RG of the chain confined to a hard-walled pore and the free

chain are very similar to moderate lengths of n ∼ 100. Even for long chains, when the pore

is nearly filled at n = 190 (ρσ3 = 0.86), the RG of the confined pore is only fractionally

smaller than an unconfined pore (2.7 and 3.0, respectively). As before, when the confined

chain is subjected to an adsorption potential, a peak in the RG is observed, relating to the

formation of a monolayer of monomers on the pore wall. A regime of nearly constant µinc

is again observed from n = 2 to ∼80. Unlike the previous case, the transition to a filled

pore appears to have a sigmoidal shape reminiscent of a van der Waals loop in a canonical

isotherm. The physical phenomenon associated with this characteristic is capillary conden-
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sation. As with physisorption of fluids, the lower branch is a layered fluid adsorbed onto

the pore wall (having zero density at the center of the pore), and the upper branch has a

nonzero density from the pore center to the pore wall. It’s important to remember we are

observing one single molecule in these systems, and what interesting is that many of the

same physical insights from adsorption isotherms (µ vs N) are present in these single chain

systems (chain length n vs µinc).

4.1.7 Single Chain Confined to 10σ Nanopore

The incremental gauge cell method was developed with further studies of adsorbed and

confined chains in mind. Accurate prediction of partitioning (such as in polymer chro-

matography) and chain translocation through an opening (e.g. DNA/RNA transport) are

examples of situations where the thermodynamics of confined polymers is important. To

illustrate the potential uses of our method for confined polymers, a series of single chains

were simulated in the nanopores with and without adsorption potential. As an instruc-

tive example, the confinement was chosen as a spherical pore of 10σ in diameter that may

accommodate approximately 525 LJ particles either as a dense fluid or connected in the

chain. For the rest of this section, ‘confined’ refers to a single LJ chain in a pore with no

adsorption potential (i.e. only the hardcore repulsion between the beads and the wall), and

‘adsorbed’ refers to a chain subjected to the mean-field spherically integrated LJ potential

[27] exerted by the pore wall. High, intermediate, and low temperatures, (kBT/ε = 8, 2, and

1), were examined, representing the conditions of good and poor solvents. The dependence

of µinc on chain length for free, confined, and adsorbed polymers at all three temperatures

is presented in Figure 4.8. As mentioned before, confinement has a double influence on

the free energy and behavior of the chain in that (1) it imposes limitations on the possible

conformations of the chain, which diminishes the entropy; this effect becomes more impor-

tant as the temperature increases, and (2) the adsorption field reduces the configurational

energy of the polymer as its monomers are adsorbed on the wall; this effect becomes less im-

portant as the temperature increases. As Figure 4.8a shows, at kBT/ε = 8 the confinement

severely constricts conformations, as µinc increases dramatically with n when confined. The

inclusion of an adsorption potential reduces µinc, but does not change its overall behavior,
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as µinc increases exponentially with the chain length. This is also reflected in the density

profiles (Figure 4.9), as the monomer density ρσ3 remains relatively constant in the pore,

with only a slight increase near the adsorbing wall. Note that while the chain increment

ansatz holds for the free chains it fails for confined and adsorbed chains, for which the in-

cremental chemical potential increases with the chain length in a non-linear fashion similar

to an adsorption isotherm at supercritical (for confined LJ fluid) conditions that would be

measured for non-bonded monomers.
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Figure 4.8: Chain length dependence of the incremental chemical potential of free, confined,
and adsorbed chains at different temperatures, kBT/ε = (a) 8, (b) 2, (c) 1. Green triangles
(N)—free chain (no confinement), red squares (�)—chain confined to the spherical pore of
volume V/σ3 = 523 with hard non-adsorbing walls, and blue diamonds (�)—chain in the
same pore, but with adsorbing LJ walls.

When the temperature of this system is reduced below the θ temperature to kBT/ε = 2,

the behavior of the incremental chemical potential in confinement becomes more complex;

see Figure 4.8b. In the case of hard wall potential, µinc, is similar to the free chain up a

certain length. After this point, confinement effects manifest as steric restrictions, and µinc

begins to increase exponentially as in the high temperature case. Because the incremental

chemical potential for free chains decreases while below the θ temperature, µinc for confined

chains has a minimum at some chain length. This effect is more pronounced at lower

temperate of kBT/ε = 2 where the minimum is achieved at n ∼ 100. When the adsorption

potential is applied, a clear shift of µinc is observed. Unlike the high temperature case,

below the θ temperature the adsorption force mostly overcomes the entropic effects of

confinement. A large shift, ∆µinc ≈ −3kBT , occurs at kBT/ε = 2 for short chains as they

are predominately adsorbed onto the pore walls. As chain length increases, the thickness
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of the adsorbed layer grows and µinc increases gradually. An inflection point is observed at

n = 275, at approximately µinc = −3.6kBT . Near this density, the pore becomes filled as

can be seen from the increase in density as well as the local density profiles, see Figure 4.9.

The polymer chain now occupies all available volume in the pore. This is analogous to

phase change in a pore filled with a simple fluid [244]. When a pore is filling with a simple

fluid, a transition is observed from a vapor-like state to a liquid-like state at the vapor-liquid

equilibrium pressure. In this study, a single LJ chain is observed transitioning from layering

to filling, which occurs at some characteristic incremental chemical potential. To be clear,

this is not a phase change, but a conformation change. Although adsorbed layers are sharp,

all mass is not tightly bound in this layer. The selected density profiles (Figure 4.9) show a

slight ‘tail’ towards the center of the pore, suggesting the system contains enough thermal

energy for loops or pending ends of the chain to exist unadsorbed for an appreciable amount

of simulation time.

The low temperature case was simulated at kBT/ε = 1, a temperature well below the

θ temperature of the globule transition point in the bulk. A plot of µinc versus 〈n〉 is

presented in Figure 4.8c. Confinement without adsorption potential has little effect on

µinc until high densities; the chain exists as a tight globule with monomer interactions

dominating whether confined or free. Confinement effects are not ‘felt’ until the globule’s

radius of gyration approaches the size of the pore. In the adsorption case, layering is strong,

as the polymer chain strongly adsorbs to the pore wall. Unlike the previous thermal cases,

µinc as a function of chain length is not monotonic increasing. At small chain lengths, it

is nearly constant, decreasing from −6.7 to −6.9kBT , from n = 5 to 170. In this range,

the chain is adsorbed in a growing monolayer. At n ∼ 170, µinc begins to increase, and the

second adsorbed layer starts to grow. A transition region, from n = 250 to n = 410, exhibits

a negative trend of µinc. In this region, the second and third layers grow until transition to

a filled pore is observed. Plots of the density profile (Figure 4.10) confirm what is observed

in behavior of µinc; sharp peaks of high local densities indicate distinct layering occurring

in the pore.

The influence of adsorption can also be noticed when comparing the radius of gyration

RG of free and confined chains. Figure 4.9 displays RG as a function of the chain length for
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Figure 4.9: Chain length dependence of the radius of gyration of free, confined without
adsorption, and confined with adsorption chains at temperatures, kBT/ε = (a) 8, (b) 2,
(c) 1. Green triangles (N)—free chain (no confinement), red squares (�)—chain confined to
the spherical pore of volume V/σ3 = 523 with hard non-adsorbing walls, and blue diamonds
(�)—chain in the same pore, but with adsorbing LJ walls. The solid horizontal line indicates
the radius of gyration for a hypothetical case of the uniform mass distribution within the
pore of radius R, RG = 3R2/5.
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Figure 4.10: Density profiles of chains in adsorbing pores at different temperatures. Top
plot—chains of n = 260 (pore filling density of ∼0.5); bottom plot—chains of n = 105 (pore
filling density of ∼0.2). The maximum density (ρσ3) for this pore is ∼10. Note a distinct
layering at low temperatures.
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all three temperatures, and for each type of confinement. In the high temperature case, µinc

for both the adsorbing pore and hard-wall pore shows an asymptotic approach to the limiting

value of RG for a uniform density distribution, 3R2/5, in a spherical pore with radius R. The

value of the adsorbing and hard-wall nearly coincide, which strongly suggests no appreciable

adsorption and thus negligible effect of adsorption potential. However, when temperature

is decreased, two important effects are noticed: (1) RG of the free chain approaches that of

hard-wall confined chain, and (2) RG of the adsorbing chain has a maximum, with a value

larger than the limiting case of uniform density, at a relatively small chain length. The first

point has already been made above; as the temperature is reduced, the polymer globule

is more tightly condensed, and can be smaller than the pore containing it, resulting in no

or little confinement effects. The second point reflects the creation of an adsorbed layer

at the wall; in this case, the adsorbed chain exhibits RG larger than that of the uniform

density. The location of the maximum of RG helps to identify transitions from growing

adsorbed film to volume pore filling. The adsorption curve on the low temperature subplot

Figure 4.9c has a broader curve than the intermediate case of Figure 4.9b. This suggests

that at the lower temperature, the chain remains in an adsorbed, film-like conformation for

longer chain lengths then that of the middle temperature, before transitioning to a pore

volume filling conformation. The evolution of the chain conformation from adsorbed film

to pore filling is illustrated on selected snapshots presented in Figure 4.11.

When in contact with an attractive substrate, many features of µinc(n) are analogous to

adsorption isotherms of simple fluids confined to nanopores. For comparison with the chain

adsorption isotherms, µ = µ(N), the canonical isotherms of non-bonded LJ particles were

calculated using the gauge cell method and are displayed in Figure 4.12. All parameters

(e.g. the fluid-fluid and fluid-solid interaction) were the same as for the chains, with the

exception of the absence of the harmonic bond potential (Equation (4.26)). Panel A of

Figure 4.12 gives an example of typical fluid behavior when confined to nanopores. The left-

most curve, kBT/ε = 0.7, is a subcritical fluid that would exhibit hysteresis on absorption

and desorption. It is characterized by an S-shaped, van der Waals type loop [50, 167]. The

lower branch (ρσ3 < 0.4) indicates a vapor-like phase, while the upper branch (ρσ3 > 0.7)

shows a liquid-like phase. They are joined at their respective spinodal points by an unstable
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Figure 4.11: Selected snapshots of chain conformations for an adsorbing chain at kBT/ε = 1.
Red balls indicate the monomers in contact with the pore wall (i.e., monolayer adsorption),
yellow indicates the second adsorbed layer, and the remaining monomers are colored blue
(green ball is indicator of pore center). From left to right, n = 55, a short chain fully
adsorbed; n = 209, near the monolayer capacity (several short ‘loops’ are visible); n = 295,
full monolayer plus a more weakly adsorbed second layer; n = 392, a pore volume filling
conformation. Rendered using VMD software [245].
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branch. Thermodynamic integration of the isotherm and application of Maxwell’s rule yield

the position of the vapor-liquid equilibrium. The grand canonical isotherm of this system

would exhibit hysteresis between the spinodal pressures of condensation and evaporation.

The next isotherm, kBT/ε = 1.0, is close to a critical fluid (the critical temperature of an

LJ fluid is ∼1.3ε/kB) [246]. In this case, the pore contains a growing film at low chemical

potentials, and exhibits a sharp yet reversible transition to a liquid-like state at µ ∼ 5.2kBT .

The last two temperatures considered are supercritical, and the adsorption isotherms reflect

a pore volume filling with fluid density increasing monotonically with µ.
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Figure 4.12: Comparison of the monomer isotherms and the incremental chemical potential
of LJ chains in a 10σ adsorbing pore at various temperatures. Panel A: Red squares (�)
report the incremental chemical potential of the LJ chain, using Equation (4.10′). Blue
diamonds (�) represent the isotherm of a monomer fluid. Panel B: Red squares report the
incremental chemical potential subtracted by the average contribution of a harmonic bond,
Equation (4.28). Blue diamonds represent the excess isotherm by excluding the ideal term,
kBT ln[(N+1)/V ] from the “true” isotherm. At the lowest temperatures (leftmost subplot),
the isotherm is subcritical, with metastable and labile states connecting the stable vapor
branch to the stable liquid branch. Increasing temperature forces a transition to a critical
fluid, and finally, to a supercritical fluid.

Except for significantly more gradual formation of the monolayer, the monomer adsorp-

tion isotherm resembles the chain length dependence of the incremental chemical potential.
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The apparent distinction prior to the monolayer formation is not surprising, since there

are two factors affecting the difference of free energies between free and bonded monomers.

The main difference between the monomer and incremental chemical potentials comes from

the loss of translational degrees of freedom of bonded monomers due compared to free

monomers. There is also a loss of free energy by removal of the harmonic bond between

consecutive monomers. Panel B shows the same data as panel A, but the monomer ad-

sorption isotherms are presented as functions of the reduced chemical potential with the

characteristic contributions from these two factors subtracted: the monomer chemical po-

tential is reduced by the ideal contribution, kBT ln[(N+1)/V ] and the incremental chemical

potential is reduced by the average bond energy contribution per monomer,

µbond
inr = −kBT ln

[
4
√

2π3(κbr
2
0 + kBT )

κb

√
κb/kBT

]
(4.28)

In doing so, one can quantitatively compare the monomer isotherm to the chain incremental

chemical potential isotherm and find the two strikingly similar, albeit somewhat superfi-

cially. While one can distinguish on the S-shaped isotherms the regions of metastable and

labile states separated by turn-over points of “spinodals”, and also indentify the “critical”

temperature above which the isotherms are monotonic, this physical picture is applicable

only for the phase behavior of simple fluids. Such behavior of the chain incremental chemical

potential cannot be treated in terms of phase equilibrium and criticality, yet it clearly re-

flects the variation of the chain conformations from an adsorbed state to a pore filling state

as the chain length increases. A similar behavior is expected for the chain of given length

with the decrease of the adsorption potential at fixed temperature or with the increase of

temperature at fixed adsorption potential.

4.1.8 Computational Efficiency

We tested the efficiency of incremental gauge cell relative to that of the MW method by

comparing the length of simulation time of each method to arrive at a statistically equivalent

average of incremental chemical potential. The simulation was ended when a desired level

of precision was obtained in the averaging of chemical potential. To estimate the standard
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deviation of such correlated samples, we applied the standard blocking method of Flyvberg

and Petersen [247]. In this method, the trajectory is divided into smaller and smaller

“blocks,” and the results for each block are compared. We implemented the algorithm of

Kent et al. [248] to calculate these quantities as the simulation progressed. The simulation

was considered converged in µ when two conditions were met: first, if the blocking procedure

produces a valid estimate of variance (where variance is approximately constant over blocks

with more than 10 samples), and second, if the estimated standard deviation was less than a

specified value and within an acceptable error range. For the MW method, the Boltzmann

factor of the trial insertions was sampled. Once the first criterion above was met, the

resulting standard deviation was used to calculate the precision in chemical potential. The

same method was used with the gauge cell, but the monitored quantity was the number

of particles in the gauge. In both cases, the simulation was stopped after a certainty of

±0.01kBT in chemical potential was obtained. The system considered was the same model

as described above, with chain length varying from n = 10 to 300, confined in a hard wall

sphere of d = 10σ, at temperature kBT/ε = 1, calculated using either the canonical ensemble

with Widom insertions, or the mesocanonical ensemble using the gauge cell method. Each

MC step corresponds to one attempted monomer displacement and either one trial monomer

insertion or attempted gauge monomer exchange, depending on the method of chemical

potential calculation. Therefore each step (in both canonical and mesocanonical ensembles)

requires O(2n) calculations to complete.

The results of this approach are displayed in Figure 4.13. We normalized the number

of steps in each simulation by

teff = tactual

(
δactual

δspecified

)2

(4.29)

where t is the number of MC steps, either “effective” or actual, and δ is the error in chemical

potential. This was necessary because of the nature of equilibration of long chains using

only local moves. In some cases, it takes many local moves for the transition to the next

global conformation, and many unique conformations are required to achieve a suitably

converged average. In such a case, the resulting error becomes much lower than initially
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Figure 4.13: Comparison of the computational efficiency between the incremental gauge
cell and MW methods for a single chain confined in a hard wall sphere of diameter 10σ at
kBT/ε = 1. The vertical axis represents normalized length of simulation required to reach
an acceptable level of error in the chemical potential calculation, chosen to be ±0.01kBT .
The relative efficiency of the gauge cell method increases with the chain length.

specified. The error bars in Figure 4.13 were calculated simply by averaging the estimated

error of the standard deviation in the blocking plateau region. Using the gauge cell method

brings approximately an order of magnitude decrease in the number of steps required to

equilibrate and collect a significant average. By allowing the exchange of particles, the

configuration is allowed more degrees of freedom than a constant length chain, where the

trial Widom insertion by definition cannot influence system. The exchange move combines

both equilibration and “measurement” of chemical potential in one MC move, and as such

it facilitates further mixing of the system. This results in significantly shorter simulations

than using the conventional Widom trial particle insertion to calculate chemical potential.

It is worth noting that the most efficient algorithm for calculation of this particular

system (a single LJ chain) may be Grassberger’s PERM [85]. However, the incremental

gauge cell method is intended to be a general methodology for calculation of chemical

potential in the complex and confined systems, which require the traditional Markov chain

MC approach. PERM is a static method not capable of calculating complex systems (e.g.

multiple chains or chains in an explicit solvent), whereas the simple fluid gauge cell method
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has already been extended to mixtures, and generally only requires an additional gauge cell

per extra component [49].

4.1.9 Discussion and Conclusion

The gauge cell method suggested in this work offers substantial advantages in calculating

the chain chemical potential over the two most popular strategies, namely the insertion of

the entire chain via various configurational bias methods [72, 91, 93] and the incremental

insertion according to the MW scheme [11]. Following the work of Kumar et al. [11], we

exploited the concept of the incremental chemical potential as the increase of the chain free

energy upon its growth by one monomer, as shown by Equation (4.8). This strategy avoids

relying on the insertions of the entire chain in one MC move, whose probability even using

customized bias schemes becomes very rare as the chain length increases. The use of the

gauge cell offers several advantages over the trial monomer insertion strategy of the MW

method: first, several points of the µinc–n dependence may be calculated in a single simula-

tion via the IGGC framework (Equation (4.22)), with the size of the gauge cell dictating the

level of density fluctuations in the system; and second, replacement of the trial chain growth

by real increment and decrement of the chain by one monomer provides additional “mix-

ing,” thereby facilitating the equilibration of the system and making the simulation more

efficient, especially for inhomogeneous and dense systems. We quantitatively validated our

method against the published data of the MW method. At the same time, we estimated the

sampling efficiency gain as approximately one order of magnitude when utilizing the gauge

cell method over the MW method. Further progress in efficiency in dense environments

may be achieved by using advanced MC move types developed for chain molecules within

the configurational bias technique [97, 231, 239, 249].

The suggested method was applied for calculations of the chemical potentials of free

chains in a wider range of the chain lengths, up to n = 500, that was studied before by

traditional MC. We confirmed that above the θ temperature, the incremental chemical

potential of sufficiently long random coils is constant in accord with the chain increment

ansatz [81]. For globular chains below the θ temperature, the chain increment ansatz

progressively fails and requires a logarithmic correction. This dependence hinders the main
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advantage of the chain increment ansatz that the chain chemical potential can be calculated

from few simulations with short chains. As such, the computational advantages of the

incremental gauge cell method, combined with interpolation opportunities provided by the

established logarithmic correction, seem to be especially important in studies of globular

polymers, for which the chain increment ansatz is not valid.

We explored the effects of confinement on the incremental chemical potential of a single

chain, focusing our attention on the competition of steric restrictions imposed by confine-

ment of the polymer and attractive adsorption forces between individual monomers and the

substrate. These two factors determine the free energy difference of confined polymers and

thus govern polymer sorption from dilute solution, which is of significant practical impor-

tance in polymer chromatography. At good solvent conditions, the steric restrictions are

considerable even for relatively short chains. As the chain length increases, sorption of a

polymer quickly becomes unfavorable due to the loss of entropy, which overcomes the gain

of enthalpy due to the adsorption attraction that is limited to the chain fragments being in

the immediate vicinity of the pore walls. Entropic effects are leveled and may be even over-

come by enthalpic adsorption effects. At sufficiently low temperatures, entropic effects are

completely masked by adsorption, and short polymer chains are strongly adsorbed to the

pore wall forming a monolayer film. The incremental chemical potential decreases slightly

as a monolayer is formed. Only when the chain length exceeds the monolayer capacity do

some fragments of the chain protrude into the pore volume forming floating loops. Upon

further increase of the chain length, the whole pore volume becomes gradually filled, how-

ever the monomer density distribution at the pore walls is always larger than in the pore

center.

The dependence of the incremental chemical potential on the chain length resembles the

canonical ensemble isotherm of capillary condensation of a fluid of free monomers and has

a characteristic S-shape of van der Waals isotherms. After the formation of the monolayer,

µinc as the function of the chain length first increases up to a certain maximum and then

decreases down a certain minimum and further monotonically increases. This behavior is

limited by a certain temperature, above which the incremental chemical potential mono-

tonically yet non-linearly increases with the chain length. The turnover points of S-shape
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Figure 4.14: Selected snapshots of chain conformations for the adsorbing chain of length
n = 200, illustrating the transition from adsorbed film to pore filling conformation upon
the increase of temperature, kBT/ε = 1 (left), 2 (center) and 8 (right). Red balls indicate
the monomers in contact with the pore wall (i.e., monolayer adsorption), yellow indicates
the second adsorbed layer, and the remaining monomers are colored blue. Rendered using
VMD software [245].

µinc(n) dependencies are apparently analogous to the spinodals on the vapor-liquid phase

diagram of subcritical fluids, as the limiting temperature of S-shape behavior is to the crit-

ical temperature. However, this analogy should not be extended to the description of the

chain length dependence of the incremental chemical potential as characteristic to phase

transition. At the same time, we envision that the adsorption behavior of the chain of a

given length upon increase of the temperature, or upon the decrease of adsorption potential,

can exhibit transitions between adsorbed film and pore filing conformations. In this case,

the analogy with the vapor-liquid transition may be useful. A series of snapshots illustrat-

ing the transition from adsorbed film to pore filling conformation of the chain of length n

= 200 with the temperature increase is given in Figure 4.14.

We provided a rigorous statistical mechanical derivation of the definition of the incremen-

tal chemical potential in the general case of a polymer melt consisting of a mixture of chain

lengths, as well as the foundations of the gauge cell MC scheme. Although the validation

of the proposed method and the presented applications are limited to single chain systems,

this general approach can be further advanced to include multi-component, copolymers, and

polymer/solvent systems. Immediate practical applications of the proposed method worth

noting are the problem of polymer partitioning on porous substrates between size-exclusion,

critical adsorption, and adsorption chromatography, and the dynamics of translocation of
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chain molecules through nanopores in biological and solid-state membranes.

4.2 Translocation

4.2.1 Introduction

Polymer translocation is the process of chain movement from one compartment to another

through a narrow opening that is significantly smaller than the chain itself [250]. Translo-

cation is implicated in many physical phenomena of scientific interest, including diffusion

of DNA out of the cell nucleus [251], injection of viral genetic material into a host cell

[252], transport of proteins and polypeptides across openings [253], and drug delivery [254].

Recent interest in computational translocation studies has been fueled partly by the de-

sire for fast and accurate nucleotide sequencing using biological and solid-state membrane

nanopores [255]. Translocation may also be an important mechanism in chromatography

of macromolecules. Nanoporous adsorbents are widely employed for separation of synthetic

and biological polymers [12].

Translocation has been a classic problem in polymer physics for some time. Polymer

translocation can be either unforced or forced. Unforced translocation is due to diffusion of

constituent monomers through the opening. An entropic barrier that is associated with the

reduction of chain conformations as the polymer threads the opening must be overcome for

translocation to be successful. Forced translocation is facilitated by applied driving forces,

such as electrostatic [256, 257], hydrodynamic [258], or adsorption fields [259–262]. The

existence of free energy barriers makes the translocation problem reminiscent to the classical

problem of nucleation that is solved employing the Fokker-Plank (FP) formalism [65, 250].

The pioneering works of Park and Sung [259, 263] utilized the Gaussian chain model to

obtain the free energy landscape during the translocation of ideal chains permeating a pore

within a non-interacting membrane. It was assumed that the free energy landscape could

parameterized by the single coordinate, the degree of translocation defined as the number

of monomers that have successfully translocated from one side of the membrane to the

other. The translocation dynamics was modeled by the FP equation, more specifically,

by the 1d Smoluchowski equation of diffusion along this coordinate, with the free energy
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gradient acting as a driving or resisting force depending on its sign. Muthukumar [65]

has combined the FP approach with the scaling theory for the free energy landscape of

translocating chains. The primary assumption of the FP approach is that translocation

proceeds significantly slower than the relaxation time of the chain on either side of the

membrane. Although this has been questioned using scaling arguments [264, 265], the

approach captures the essential physics of the translocation process and the main results

compare favorable with experiment [250]. Recently, Mirigian et al. found good agreement

between the FP approach and detailed Langevin Dynamics (LD) studies, even in complex

polyelectrolyte systems [266]. Kong and Muthukumar [267] extended the FP approach

to unforced translocation of non-ideal polymers using self consistent field theory (SCFT).

Several attempts to better fit the one-dimension dynamical approach to observed anomalous

diffusion behavior has led to application of the fractional Fokker-Planck equation [268].

Translocation dynamics of both forced and unforced systems have been studied directly in

simulations using LD [269–271], Brownian Dynamics [272, 273], Molecular Dynamics (MD)

[274], Dissipative Particle Dynamics [275], and dynamical Monte Carlo (MC) techniques

[262, 276–278]. Such studies range from relatively simple, lattice models to large-scale MD

systems modeling the translocation of DNA through biological pores [279]. These simulation

studies suggest a rich variety of environments where translocation is relevant. For a recent

review of these theoretical and simulation methods, see ref [280].

Previous studies suggest that forced translocation encompasses weak and strong regimes,

with different scaling relationships [65, 262, 281]. A strong driving force masks entropic

confinement effects, thus the translocation can be a function of the applied force alone

[65]. Conversely, in the weak regime, the driving force is on the same order as the entropic

resistance, and the translocation times depend on both factors. A system of interest that

exemplifies this interplay is translocation into an adsorbing pore. The attractive adsorption

potential favors translocation, yet the chain suffers an entropic penalty due to confinement

in the pore. The balance of these enthalpic and entropic free energy contributions is critical

in many polymer systems, such as theta chain transitions [282] and the critical point of

adsorption in polymer chromatography [13]. Adsorption effects on translocation through a

membrane pore have been studied in several papers [260, 262]. Recently, Yang and Neimark



152

[261] employed the FP approach combined with the SCFT calculations of the free energy

landscape for studies of translocation into adsorbing pores and performed a detailed study of

the competition of surface adsorption and confinement effects in the process of translocation

into a pore. This work increases the level of details from the mean field SCFT resolution

to the molecular level of Monte Carlo (MC) simulations. Although the MC simulation

operates with entirely different and more realistic chain models, the results obtained below

generally confirm the conclusions drawn from SCFT. We found a non-monotonic dependence

on translocation times as a function of adsorption potential that can be divided into three

regimes: weak potentials garner fast but improbable translocation, moderate potentials give

slow translocation, and large potentials yield fast translocation.

In our MC simulations, we employ a freely jointed chain model with Lennard-Jones

(LJ) non-bonded interactions that is standard in molecular modeling of polymers. As a

reference, the ideal freely jointed chain model is used, in which the absence of non-bonded

interactions allows for the monomer overlap. The MC simulation similarly to SCFT enables

calculations of the free energies of equilibrated states at given thermodynamic conditions

and constraints. The translocation dynamics is not monitored explicitly; rather it is studied

by solution of the FP equation of diffusion along the free energy landscape determined in

MC simulation as a function of the degree of translocation. To calculate the free energy,

we apply the incremental gauge cell (IGC) method suggested by us recently [208]. This

method is based on the mesocanonical ensemble, which considers the system of interest

in thermodynamic equilibrium with a finite reservoir called the gauge cell [9, 10]. IGC

“measures” the incremental chemical potential [11] (the difference of the chemical potential

between an n-mer and an (n+1)-mer) by allowing the chain to grow or shrink by exchanging

the terminal monomers of the chain with the free monomers in the gauge cell. The chain

free energy represents the sum of the incremental chemical potentials. The IGC method was

found [208] to be an order of magnitude more efficient than the modified Widom approach

[11]. It has been used to study adsorption effects of confined polymers [207, 208].

The rest of this section is structured as follows. In Section 4.2.2, we describe the sys-

tems considered, the molecular model and simulation parameters, and the FP approach to

translocation dynamics. Section 4.2.3 presents the results of free energy landscape calcu-
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lations from MC simulation, and discusses its implication on translocation. Section 4.2.4

details the analysis of translocation dynamics obtained from the integration of the FP

equation. In Section 4.2.5, we present our conclusions and critical analysis of the suggested

approach.

4.2.2 Model

We model the translocation of a homopolymer chain into an adsorbing spherical pore (trans

compartment) through a narrow window from a dilute solution (cis compartment) using off-

lattice Monte Carlo simulations. The progress of the translocation process is characterized

by the degree of translocation s representing the number of chain segments in the trans

compartment. The goal of MC simulation is to determine the variation of free energy of

the translocating chain F as a function of the degree of translocation s. The cis and trans

compartments are modeled as independent subsystems (Figure 4.15), following the classical

approach [65, 263]. The cis compartment represents a semi-infinite space limited by the hard

non-adsorbing wall, and cis sub-chain of length N − s is considered as tethered to the wall

at the pore opening, whose size is neglected. The trans compartment represents a spherical

pore of radius R with adsorbing walls, and trans sub-chain of length s is tethered to the

pore wall at the pore opening. The initial condition is chosen as the chain of length N in the

cis compartment tethered to the pore opening. As the translocation progresses the chain

is modeled as a composite of cis and trans sub-chains tethered to the pore opening. The

behavior of the chain within the pore opening is not considered, since the chain fragment in

the pore is assumed to contribute a constant part into the total chain free energy. Within

these assumptions, the free energy of the translocating chain is the sum of the free energies

of the tethered chains in the cis and trans compartments,

F(N, s) = Fcis(N − s) + Ftrans(s) (4.30)

As such, the simulation problem is reduced to modeling and calculating the free energy

of tethered chains in cis and trans compartments independently, as shown in Figure 4.15.

Equation (4.30) determines the driving force for translocation, which is proportional to the
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gradient of F(N, s) with respect to the translocation coordinate and is supplied to the FP

equation as the external potential.

Fwall(N−s = 10) 

+ 

Fpore(s = 10) 

= 

ℱ  (N = 20,  

s = 10) 

cis 
trans 

Figure 4.15: Schematic of free energy calculations. Two subsystems are simulated
separately—a chain tethered to a hard wall, and a chain tethered in a spherical pore. The
free energy of the translocating chain (of length N , and translocation coordinate s) is the
combination of the free energy of the two sub-chains. Filled circles indicate the tethered,
immovable monomer.

Simulations were performed in the mesocanonical ensemble (MCMC) [9, 10] using the

incremental gauge cell method [208]. MCMC introduces a finite volume reservoir of non-

bonded monomers (called the gauge cell) that exchange with the system cell by addition and

deletion of monomers at the free end of the tethered chain. Use of the gauge cell method

brings about two main advantages: accurate determination of the chemical potential (and

thus the free energy), and more efficient sampling of the phase space. Additionally, the

gauge cell limits fluctuations that would otherwise result in phase changes characteristic

to an open system with unconstrained fluctuations. As such, a continuous trajectory of

metastable and labile states can be stabilized, and the free energy difference can be ob-

tained by integrating along this trajectory [1]. For this reason, MCMC has become a useful

tool for studying nucleation phenomena [1, 53–55, 209], confined fluid phase behavior [50–

52, 167], and adsorption deformation [56]. Chains are equilibrated with three types of MC

moves: local monomer displacement, configurational bias regrow [91], and exchange with

the gauge cell. The simulation scheme consisted of 400 discarded equilibration sets and 500

averaged production sets, each of 850,000 attempted MC moves. Convergence was tested

by monitoring error estimates in the chemical potential using blocked statistics [247] with

a runtime algorithm [248]. A detailed description of the incremental gauge cell method is

given in our recent paper [208].

The polymer is modeled as a freely-jointed chain. Sequential monomers are bonded with
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a harmonic potential,

Ubond(r) =


1
2κb(r − r0)2 for 0.5 ≤ r/σ ≤ 1.5

∞ otherwise

(4.31)

where r is the distance between bonded monomers, r0 is the equilibrium bond length set to

σMM, and κb is the spring constant, taken as 400ε/σ2 [236]. The excluded volume effect is

modeled by setting non-bonded monomers to interact via the LJ potential with monomer-

monomer parameters εMM/kB = 49.3 K, σMM = 0.394 nm, and no cut-off distance. In

order to mimic good solvent conditions [80], the simulations were performed at kBT/εMM =

T ∗ = 8, which is well above the theta transition temperature of LJ chains (of about 5ε/kB)

[115]. To demonstrate the effects of confinement on the chains of maximum length of 200

monomers the pore diameter was set to 2R = 10σMM, which is approximately the radius

of gyration of a free chain of the maximum length considered in this work. To restrict the

chain’s conformations in the cis compartment, the terminal monomer was fixed at (0, 0,

0.5σMM), and a hard wall repulsion is implemented by rejecting the moves where monomers

crossed the plane z = 0. Adsorption in the trans compartment is captured using the

site averaged solid-monomer LJ potential integrated over the spherical layer of adsorption

centers [205], with σSM = 0.33 nm. The interaction strength between the pore wall and the

monomer units was varied as the ratio of solid-monomer and monomer-monomer interaction

energies ξ = εSM/εMM = 0, 0.5, 1, 1.1, 1.3, 1.6, 2.0, 2.5, and 3.0. This range covers the

regions of steric repulsion, weak adsorption, and strong adsorption. At ξ ∼ 2, the interaction

parameters roughly correspond to alkane adsorption on a silica surface [81, 164]. Because

the free energy is the sum of the incremental chemical values, it is sensitive to these values

for short chains. For this reason, a more detailed potential was used for short chains, n =

1 to 20. This potential explicitly accounts for the translocation opening in the pore wall by

partially integrating over the pore spherical surface [2]. An opening of 1σMM was created,

and the terminal bead of the chain tethered a distance of 0.5σMM from the system boundary.

This potential is shown as an xz -plane projection in Figure 4.16. The value of incremental

chemical potential calculated with the more detailed and simple solid-monomer potentials
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are asymptotically identical for n > 10, thus the more detailed potential implements short

chain “corrections” to the free energy.
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Figure 4.16: Map of solid-monomer potential energy on the y = 0 plane, for ξ = 1.6. One
end of the chain is tethered at (0, 0, R/σ − 0.5), which corresponds to the small attractive
opening at the top of this plot.

Translocation dynamics are studied using the FP formalism following the approach of

Sung and Park [263], and Muthukumar [65], as implemented in our recent theoretical work

[261]. We assume that chain relaxation times are shorter than translocation times (i.e. that

the cis and trans sub-chains can be considered as independent, equilibrated chains). In

this case, we assume that the chain diffuses between the cis and trans compartments with

the drift term proportional to the free energy gradient. The FP equation governing the

translocation dynamics is

∂

∂τ
W (s, τ) =

∂

∂s

[
∂F(N, s)

∂s
W (s, τ) +

∂

∂s
W (s, τ)

]
(4.32)

where W (s, τ) is the probability of a polymer chain of length N , with one initial segment

in the trans compartment (and N − 1 segments in cis compartment) at time τ = 0, to

have s segments in trans compartment at time τ . Note that τ is the dimensionless time;

it is proportional to the local friction coefficient k0, which for a homopolymer is assumed

to be independent of the degree of translocation [263]. For a complete discussion of Equa-

tion (4.32), see Ref. [261].
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4.2.3 Results: Free Energy

The incremental chemical potential, µinc, of two subsystems: a chain tethered to a hard

wall and a chain tethered in a spherical adsorbing pore (Figure 4.15), was calculated using

the IGC method [208]. The adsorption potential of the pore was varied from weak to

strong interaction. The values of µinc as a function of chain length are shown in Figure 4.17

(top). These values were reduced by the reference state, an ideal chain with only harmonic

bonds in the same system (i.e. tethered in cis/trans compartment), to better illustrate

confinement effects on free energy. The dashed line indicates the hard wall cis sub-chain.

For long chains of n > 10, µinc is constant, as is expected for expanded coil chains well

above the theta temperature [80]. The adsorption potential of was varied from ξ = 0

to 3.0. The incremental chemical potential of the trans chains rises exponentially with

chain length because of increasing steric hindrance. The absolute values of µinc shift to

more negative values at adsorption strength increases, as favorable adsorption interactions

offset the confinement entropy loss. To obtain the free energy of the tethered chain, the

incremental chemical potential is summed over the chain length n [208]. The result is shown

in Figure (4.17) (bottom). The cis sub-chain reduced free energy profile is increasing and

linear, because of its positive and constant incremental chemical potential. The shape of the

reduced free energy of the tethered chain in the adsorbing pore is more complex: depending

on the adsorption potential strength, the free energy can be an increasing, decreasing, or

non-monotonic (i.e. with a minimum) function of the chain length. Since the incremental

chemical potentials always increases with the chain length, the minimum is due to the

negative contribution from short chains. For the weak adsorption potentials up to ξ =

0.5 the free energy is increasing, as the respective incremental chemical potentials are all

positive. As the adsorption potential increases, the free energy becomes non-monotonic:

most of monomers of the short tethered chains are adsorbed at the pore wall, and the gain

in enthalpy compensates for the loss of entropy. For chains shorter than 200, this regime

is seen in the range of adsorption potentials 1.0 to 2.5. At the strongest potential of ξ

= 3.0 considered, the free energy is still decreasing at n = 200, but it would achieve a

minimum and then increase as the chain grows further and the pore becomes crowded with
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monomers. One of the important qualitative conclusions derived from these calculations is

the observation that in contrast to the chains tethered to non-adsorbing hard wall, the free

energy of chains confined to the adsorbing and confining pore is a non-linear function of the

chain length.
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Figure 4.17: (Top) The reduced incremental chemical potential of tethered chains in pores
of varying adsorptive strength, as a function of chain length n. (Bottom) The reduced
free energy of the same chains. Adsorptive strength is described as ξ, which is the ratio
of solid-monomer LJ parameter to the monomer-monomer parameter. Solids lines indicate
chains in pores with ξ = 0, 0.5, 1, 1.1, 1.3, 1.6, 2, 2.5, and 3, from most positive to most
negative, respectively. Dashed lines indicate a chain tethered to a hard wall (i.e. the cis
subsystem).

The free energy landscape of the translocating chain is calculated according to Equa-

tion (4.30) as the sum of cis- and trans- subchain free energies shown in Figure 4.17. The

free energy landscape of the chain with N = 200 total monomers is plotted as function of

the degree of translocation in Figure 4.18. Note that the free energy terms Fcis and Ftrans of

Equation (4.30) include the contribution from the harmonic bonds; that is, they are not the

reduced values. As such, the values of F in Figure 4.18 were shifted upwards by Fcis(N) so

that the depth of the free energy wells can be clearly discerned. For the weakest confinement
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interactions of 0 and 0.5, the free energy is positive and monotonically increases forming

an uphill landscape. This suggests unfavorable conditions for translocation, which is in-

tuitively obvious (ξ = 0 refers to a spherical pore with no favorable enthalpic interactions

at all; a chain translocating into this pore would lose entropy and thus be unfavorable).

Increasing the interaction potential to the range of 1.0 to 1.6, the free energy landscape

becomes broader, and exhibits a minimum. Minima of ξ = 1 and 1.1 occur for short trans

sub-chains (s ¡ 20), while 1.3 and 1.6 have a more broad landscape, and significantly more

negative minima. The minima correspond to a metastable chain configuration composed of

trans- and cis- fragments, which we call a flower configuration. In such a configuration the

enthalpic gain and entropic loss balance each other. As we show below, these metastable

configurations represent the stall points and play an important role in translocation dynam-

ics by fsignificantly increasing the translocation time. Above this range (2 ≤ ξ ≤ 3), the

favorable adsorption interactions are dominant and the free energy monotonically decreases

forming a downhill landscape, which favors translocation, up to the length of 200 tested in

our simulations. However, additional loading would begin to increase chemical potential as

steric hindrance rises.

0 50 100 150 200
s

150

100

50

0

50

100

F
(s

)/
k

B
T

0 50 100 150 200
s

15

10

5

0

5

F
(s

)/
k

B
T

1.6

1.3

1.1

1.0

Figure 4.18: (Left) The free energy landscape for an N = 200 chain translocating into the
pore, as function of length of chain on the trans side s, calculated from Equation (4.30).
The free energy here includes the harmonic bond contribution, and is shifted by Fcis(N)
for clarity. Lines correspond to ξ = 0 to 3 from top to bottom. (Right) Scaled to highlight
free energy minima.



160

4.2.4 Results: Translocation Dynamics

The dynamics of translocation was determined by numerical solution of Equation (4.32).

Several relevant quantities can be extracted from Equation (4.32). Of particular interest is

the translocation time probability distribution. The distribution of translocation times is a

measurable experimental quantity, and can be interpreted to gain knowledge of the nature

of translocation [283]. When using the FP formalism, it is found from the corresponding

probability flux,

Pin(τ) = J |s=N = −
[
k0
∂F(N, s)

∂s
W (s, τ) + k0

∂

∂s
W (s, τ)

]
s=N

(4.33)

where k0 is the local friction coefficient. Similarly, the probability distribution of failed

translocation events, when the chain comes out of the pore, is represented by the negative

flux at s = 0. The normalized probability distributions are displayed in Figure 4.19. The

normalizing factor is the total probability of successful translocation into the pore, given by

P total
in =

∫ ∞
0
Pin(τ) dτ (4.34)

In practice, this is calculated by summation of the resulting series, multiplied by the selected

dτ . The lengths of the series were chosen so that final value can be approximated as zero.

The first and sharpest peak is that of the strong adsorption case, ξ = 3, followed by 2.5.

This is expected, as the strong adsorption potential forces quick translocation. However,

the next two peaks are the weakest adsorption cases of ξ = 0 and 0.5, followed by the

strong 2.0, and then by very broad distributions of the intermediate cases. This behavior is

clearly governed by the shape of free energy profile (Figure 4.18). The broad distributions

are the result of the minima, or stall points, found in the free energy profile. At the

translocation coordinate where the minimum is found, the chain is in a metastable state,

partially threaded through the translocation pore with s monomers in the adsorbing pore

and N−s monomers outside. With no driving force, a successful translocation must rely on

stochastic fluctuations to escape the metastable position; the time required is proportional

to exp(−∆F/kBT ), where here ∆F = Fmin − F(s = N). Thus, the deeper the free energy
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well, the longer the polymer will take to escape it and complete translocation. This results

in the very broad time distributions for potentials where a minimum is found, namely ξ =

1, 1.1, 1.3, and 1.6. Interestingly, we find that when the adsorption potential is nonexistent

or very weak, successful translocation still occurs fairly quickly (the peaks of ξ = 0 and

0.5 are both at a smaller time than ξ = 2). This effect was also observed in our previous

theoretical work [261]. These weak potentials both present a monotonically increasing free

energy profile; translocation occurs quickly because there is no energetic advantage to slow

translocation. Even though the unfavorable translocation is fast, its total probability is

quite low (Figure 4.20). It is worth to note that the solution to the FP equation (4.32) is

the same for monotonically decreasing and monotonically increasing free energy, save for

the prefactor [261]. This produces probability distributions of the same shape for the weak

potential cases of ξ = 0, 0.5 and the strong potentials ξ = 2, 2.5, 3, albeit with a much

different prefactor.
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Figure 4.19: The normalized probability distribution function of 200-mer chain translocating
into the adsorbing pore. The inset is a magnified view of two systems: ξ = 1.3 and 1.6,
which have extremely broad distributions.

It is important to note that the distributions presented in Figure 4.19 are normalized

by the total translocation probability (given in Equation (4.34)). These values are given

as a function of the length of the translocating chain for the various adsorption potentials

in Figure 4.20. Short chains have a high probability of translocation for all potentials.
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Similarly, increasing adsorption potential always increases translocation probability. As

the chain length increases for translocation into pores with weak or no potential, the total

probability of transition approaches zero. Chains driven by intermediate adsorption poten-

tials (1.6, 2) have approximately constant total probability with respect to chain length,

while the strongest potentials’ (2.5, 3.0) total probability increases with chain length. This

effect is found when the adsorption enthalpy is the dominate contribution to the free en-

ergy, provided the availability an excess of adsorption sites per monomer [207]. In this

case, the adsorption force is strong enough that adding additional monomers (i.e. increas-

ing the length of translocating chain) decreases the total free energy, resulting in a more

likely translocation. A similar effect is found in interaction polymer chromatography, where

retention increases with chain length because of increasing favorable interaction with the

substrate [284]. For chains with broad time distributions at N = 200 (Figure 4.19), most

have a total probability of success of zero. The exception is ξ = 1.6, whose overall proba-

bility of translocation is ∼0.14. This suggests that broad translocation time distributions

do not necessarily prevent a successful translocation event.

The most experimentally relevant property of a translocation process is the average time

of successful translocation. This is given by

〈τin〉 =

∫∞
0 τPin(τ) dτ∫∞
0 Pin(τ) dτ

(4.35)

The average translocation times of the LJ chain moving into an adsorbing pore are shown in

Figure 4.21. The three regimes of adsorption strength are reflected. The strongly adsorbing

pores exhibit translocation times that are exponential in nature, with a scaling exponent of

∼1.37. Similarly detailed LD studies found nearly identical scaling exponents for transloca-

tion with strong forcing [285]. It is important to realize that if simulations of longer chains

were performed, the scaling relation would no longer apply. For a 10σMM diameter pore, full

surface coverage is achieved with about 220 adsorbed monomers [208]. If a chain longer than

this were translocating into the strongly adsorbing pore, the additional beads would experi-

ence a higher incremental chemical potential as they fill the pore volume, as they no longer

directly interact with the adsorptive walls. Translocation into a weakly adsorbing pore ex-
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Figure 4.20: The total probability of success for N -mers translocating into the adsorbing
pore (Equation (4.34)). Note that for long chains with unfavorable adsorption potentials,
the probability tends to zero. Legend indicates adsorptive strength of spherical pore, ξ.

hibits a similar scaling behavior for the range of chain lengths tested, albeit with a smaller

exponent. In addition to the faster per-monomer translocation in these weakly adsorbing

systems, the prefactor is the same order as the strongly adsorbing systems. As Figure 4.19

also indicates, unforced chains may translocate faster than strongly forced chains. This

apparent contradiction can be explained with two points: first, it is important to remember

that the data presented represents the average times of successful translocations, and that

the probability of such an event is still quite low for unforced or weakly forced systems (see

Figure 4.20). Second, as time increases, there are significantly more chances for the chain

to escape back to the lower energy cis state. In other words, if a successful translocation is

to occur, it would have the best odds if it proceeded quickly. For the intermediate systems

of ξ = 1.3 and 1.6, i.e. the ones exhibiting a significant free energy minimum for the N =

200 chain, the average translocation time shows a slow then a fast regime (as measure of

translocation time per monomer scaling). The slow regime corresponds to a downhill free

energy profile, akin to ξ = 2–3 in Figure 4.18. At these shorter chain lengths, there are
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no minima present on the free energy landscape, and translocation proceeds as with the

strongly forced chains. This is followed by the fast regime plateau at larger N , representing

translocation against an entropic barrier. The transition between these regimes is marked

by even slower translocation times (between N = 115–160 for ξ = 1.3 and N = 170–200 for

ξ = 1.6). In this range, a surmountable free energy minimum is present. In other words,

the chain reached a length where a minimum is present; however the probability of random

fluctuations pushing the translocation to competition is nonzero. The chain is metastable at

the minimum, and translocation times go up accordingly. The plateau in average transloca-

tion times begins were the total probability of successful translocation (Figure 4.20) goes to

zero, and the previous ‘uphill’ arguments apply. The two smaller values of the intermediate

range (ξ = 1, 1.1) appear similar to the ‘uphill’ translocations times of ξ = 0, 0.5, but with

a larger prefactor. The minima in these two systems are relatively small, and occur at short

chain length (Figure 4.18, right). In all cases of the ‘fast’ translocation against a large free

barrier, the probability of a successful translocation approaches zero (see Figure 4.20).
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Figure 4.21: Average translocation time into adsorbing pore of varying adsorption strength
ξ, as function of chain length N . Refer to the legend of Figure 4.20.

The non-monotonic behavior of translocation times with respect to adsorption strength

is an interesting observation of this work. Figure 4.22 plots the average translocation time

as a function of adsorption strength for several lengths of chains. A prominent peak in
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translocation time is clear for long chains in pores in the intermediate range of potentials,

where the free energy profile has a local minima corresponding to a transient metastable

state. The effect is more pronounced for longer chains, since such chains must move further

from the metastable state to fully translocate. Short chains are not affected because they

successfully translocate before they reach the minimum. The peak arises due to the long

time needed to escape the stall point at the free energy well. It falls as the adsorption

potential increases, as expected. For the longest simulated chain of N = 200, the strongest

metastable state (i.e. with the deepest free energy well along the translocation coordinate

s) is found between 1.3 < ξ < 1.6. As the chain length decreases, the position of the minima

shifts to lower ξ, with N = 150 exhibiting a maxima near ξ = 1.3, and N = 100 at ξ = 1.3.

The shift in the maximum for τ with changing chain length is due the additional entropic

penalty from confinement of longer chains. In other words, for a given chain to reach its

partially threaded metastable state, increasing length must be compensated by increasing

adsorption potential. The collapse of the long chain length translocation-in times at similar

values occurs where conditions are unfavorable to translocation, ξ < 1.0. Figure 4.23 shows

the probability of successful translocation for the same chains as shown in Figure 4.22. We

see that the probabilities of successful translocation into weakly adsorbing pores are mere

zero for all but the shortest chains. As the likelihood of translocation begins to increase, so

does the time required for successful translocation. After the adsorption potential reaches a

certain strength (which depends on chain length), translocation times fall as the potential

increases, as expected. This is the strong adsorption region.

4.2.5 Conclusions

We studied the dynamics of a single chain translocating into an adsorbing pore by Monte

Carlo calculation of its free energy landscape using the incremental gauge cell method [208],

and application of the Fokker-Planck equation that mimics the translocation process as the

diffusion along the free energy landscape. The respective free energy landscape for partially

translocated chains was obtained by combining two independent cis- and trans- tethered

chains. It was found that the free energy landscape of a translocating chain exhibits three

characteristic behaviors: ‘uphill,’ or monotonically increasing free energy as translocation
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Figure 4.22: Average translocation time into adsorbing pore, as function of adsorption
strength for several fixed lengths N . Legend indicates chain length of translocation, N .
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Figure 4.23: The total probability of successful translocation for various chain lengths, as
a function of adsorption strength.
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proceeds, ‘downhill,’ or decreasing free energy, and “concave” with a local minimum. This

free energy minimum corresponds to a transient metastable state, where the chain comfort-

ably balances adsorption and confinement in a flower configuration being partially adsorbed

in the pore. These three energy regimes translate into very different translocation behaviors.

Uphill diffusion, being unfavorable, has a very low probability of completing translocation,

except for the shortest chains. However, translocation proceeds quickly if it does occur. To

conceptualize this phenomenon, we can invoke a momentum analogy. One can imagine a

steep hill (the energy barrier) with two climbers, one fast and one slow. The faster climber is

more likely to succeed, as the slower climber has more chances to fall backwards. Downhill

diffusion results in more intuitive results, with translocation times increasing with adsorp-

tion strength. This region of strong forcing was predicted quantitatively by Muthukumar

[65]. The work of Krasilnikov et al. [286] finds experimental evidence of the non-monotonic

dependence of residence times on molecular weight: they found that polyethylene glycol

(PEG) residence times in an α-hemolysin pore increased with chain length, up to a molec-

ular weight of 3000, and then decreased.

Concave translocation landscapes with free energy minima result in a very broad time

distribution, up to several orders of magnitude more broad than a simple uphill or downhill

case (see Figure 4.19, inset). When a chain that is favorably moving towards the pore

reaches its free energy minimum, forward progress effectively stops as the chain fluctuates

within its free energy well. At this point, successful translocation means overcoming the

energy barrier from the minimum to F(s = N). Time for successful translocation slows

accordingly. Though slow, broad translocation time distributions were found to have a non-

zero probability, suggesting that addition complexities may arise in experimental systems.

These phenomena highlight the importance of the interplay between enthalpy and entropy

during the adsorption of polymers.

Recently the validity of the FP method (and its assumptions) has been questioned

[264, 265, 273, 278]. The main concern is the result that unforced FP translocation scales

as N2, the same as (or less than) the Rouse time (the characteristic time for a free ideal

chain to diffuse a distance of the order of its radius of gyration) [287], which scales as N2ν+1,

with ν being the Flory exponent (0.5 for an ideal chain and 0.588 for a random coil). We
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don’t believe this scaling interpretation is particularly useful for the system considered in

this work. First, chain lengths considered only span two orders of magnitude, hardly the

length scales relevant for true scaling analysis. Where scaling laws could fit translocation

data, i.e. the downhill free energy regime created by strong adsorption potential, the free

energy cannot scale with N , as continued pore loading will result in a dramatic increase

in free energy. In addition, previous work has found the FP approach [65] to accurately

describe forced translocation values in experiment [283, 288, 289].

The results of this MC study are qualitatively similar to previous work where the free

energy landscape was calculating using self-consistent field theory (SCFT) [261]. Most no-

tably, the prediction of free energy minima, and the corresponding increase of translocation

times, was found using SCFT. One notable difference is our previous work with SCFT

did not probe overly strong adsorption potentials, where translocation times of strongly-

adsorbing systems are faster than the translocation time of the weakly-adsorbing systems.

While SCFT can make many useful predictions of ideal and excluded volume chains, the

real strength of the current approach is the use of a chemically accurate model, which can

be upgraded for more complex pore geometries and inhomogeneous polymers, including

random and block copolymers. Many factors influence translocation in experiment: tem-

perature, chemical and substrate heterogeneities, solvent composition, hydrodynamic and

electrostatic effects, and so on. Many of these variables can be incorporated with relative

ease into a molecular simulation. Use of such accurate and realistic potentials may help to

resolve the many still open questions about polymer translocation.

The main methodological outcome of this work is the demonstration of the efficiency

of the suggested simulation technique (a combination of MC calculation of the free energy

landscape by use of the incremental gauge cell method, coupled with application of the FP

equation) for modeling translocation dynamics. This technique can be applied not only to

adsorption driven translocation, but also to any forced or diffusive translocation process in

various confining geometries, including the escape of initially confined chain from a small

cis compartment to a large trans compartment. This is enforced by the fact that two

entirely different simulation techniques, SCFT in Ref. [261], and incremental gauge cell MC

simulation in this work, bring about similar quantitative conclusions about the specifics of



169

the adsorption-driven translocation is by itself a valuable theoretical result.

Finally, these results suggest an interesting complication to the traditional picture of

polymer chromatography. The retention time of a polymer in a column, and thus the

quality of chromatographic separation, is found by determining the partition coefficient for

a given polymer/solvent and substrate. Traditionally, the partition coefficient is modeled as

a function of the difference of free energy upon adsorption from the mobile “free” state to

the adsorbed state. When this difference is zero, steric repulsion is balanced by attractive

enthalpic interactions, and retention becomes independent of chain length. This condition

is called the critical point of adsorption and important in the separation of structured

polymers (e.g. functionalized polymers and copolymers) [284]. This work suggests that

an intermediate state, the partially adsorbed polymer, exist. If adsorption interactions are

favorable and the pore imposes a steric penalty as the polymer fills the pore, a metastable

partially adsorbed state is reached. This has clear implications in the separation of high

weight polymers. We intend to examine this scenario in future work.

4.3 Gradient Elution Polymer Chromatography

4.3.1 Introduction

The retention factor for polymeric solutes usually exponentially increases with the molar

mass as a result of multiple attachment mechanism of polymer adsorption (the so-called

Martin rule [290]). As the result, gradient elution should be a preferred way for separation

of such molecules. Nevertheless, until recently, two isocratic methods, SEC and liquid chro-

matography at critical conditions (LCCC), have been the most popular liquid chromatog-

raphy techniques employed for polymer characterization [12]. There are two main reasons

for such exception. First, both techniques do not follow the general rule: in SEC, elution

time decreases with molar mass (or, more precisely, molecular size), while in LCCC elution

time is molar mass-independent. Secondly, both approaches are supported by molecular-

statistical theory which provides a clear understanding of the separation mechanism and

can explain and sometimes even predict the selectivity of separation [291]. Thus, in SEC,

steric interaction alone produces a separation by molecular size and can be described by
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the conformational entropy loss of a polymer chain within a pore of a comparable size.

In LCCC, such a loss is exactly compensated by enthalpy gain of the chain subjected to

attractive interaction with a wall of the pore, which produces molar mass independent

retention [284]. Isocratic elution in any chromatographic mode including those employed

in SEC or LCCC, in principle, can be quantitatively described by a molecular-statistical

model of Gaussian polymer chain penetrating a pore with a simple geometry (e.g. slit-like

or cylindrical) without (SEC) or with (LCCC) attractive interaction with the walls [292].

Thus, the theory of LCCC relates the thermodynamic distribution coefficient K describing

such elution, to the molecular parameters of the polymer chain, geometry of the pore and

the chromatographic conditions affecting the energy of polymer-stationary phase interac-

tion. Such a theory was developed originally for homopolymers [293], and then extended

for polymers with more complex molecular structures such as telechelic linear [294] and

star-shaped [295, 296] polymers, block-copolymers [295–297], statistical copolymers [298]

and macrocycles with various topologies [299].

In spite of significant success in numerous applications (see [284] and references therein),

both isocratic techniques have obvious limitations. Thus, separation by molecular size

(SEC) does not provide information about various molecular heterogeneities of complex

polymers and copolymers, e.g. the distributions by chemical composition or functional

groups, while LCCC is effective mostly in characterization of oligomers. The generalization

of the theory to gradient elution would significantly extend the capability of liquid chro-

matography in characterization of polymers with complex molecular structure. It was done

for the first time in papers [13–15], where a simplified asymptotic equation for distribution

coefficient K was used in mass balance equation for gradient elution. The most important

result from the theory was the conclusion that in gradient mode polymer with high enough

molar mass can elute close to critical conditions, i.e., with eluent composition close to its

critical point of adsorption (CPA). In other words, a unique feature of LCCC, molar mass-

independent elution, can be inherent also in gradient mode, so that the benefits of LCCC

can be achieved without the limitation of the isocratic elution. This theoretical conclusion

was confirmed experimentally for homopolymers and statistical copolymers [13, 298]. A

similar result was obtained later in papers [300–302] using another asymptotic expression
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for K, which is valid only in case of wide pores (i.e. when a pore is wider than the size

of a polymer chain). In fact, this infers a conclusion that gradient elution at CPA (if such

a point exists for a given system) for high molar mass polymers has a general nature and

does not depend on a specific model of polymer retention.

So far, the efforts to extend the molecular-statistical theory to gradient elution have been

made only for the case of homopolymer and statistical copolymer which is described by the

same equations [298]. The goal of this section is to extend the theory to polymers with other

molecular structures, such as telechelic polymers (Section 4.3.3) and block copolymers (Sec-

tion 4.3.4). In the first section (4.3.2), we consider the most general approach to the theory

of gradient elution of homopolymers and analyze possible asymptotic approximations. The

theoretical results are compared with the experimental data for homopolymers.

4.3.2 General Approach for Homopolymers

Separations in polymer chromatography are governed by a simple “master” equation [303],

VR = Vi +KVp (4.36)

where VR is the retention volume, Vi is the interstitial volume, Vp is the pore volume available

for adsorption and K is the partition (distribution) coefficient. The value of K determines

the chromatographic regime: if K < 1, there is a free energy penalty for confinement of the

solute polymer, thus the solute elutes close to the solvent band and the column operates

in size-exclusion mode, if K = 1, the column is in the critical mode where exclusion and

adsorption are balanced, and if K > 1, the adsorption interactions are dominate and the

solute is retained longer [303]. Dividing Equation (4.36) by the eluent flow rate F yields

the analogous equation in time,

tR = ti +Ktp (4.37)

Together with an expression for K, Equation (4.36) or (4.37) is all that is needed to predict

or interpret isocratic separations.

Several models have been proposed for modeling gradient elution chromatography. The
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linear solvent strength model [304] and quadratic solvent strength model [305] assume a

direct dependence of the partition coefficient K on the solvent strength Φ (here, Φ is the

percentage of the strong solvent in a binary elution). More sound models are based on

the statistical theory of ideal chains (that is, random flight statistics). In these cases,

one can obtain a function for the partition coefficient that can be integrated over the

chromatographic column to find the time a solute takes to elute under a solvent gradient.

For a column operating with a linear solvent gradient, the velocity of a solute (whose position

is x in a column of L length) can be described using a simple balance equation,

dx

dt
=

L

tR
(4.38)

Equation (4.38) simply states that the retention time of a given solute with be reached at the

end of the column. Substituting in Equation (4.37) and taking the inverse, Equation (4.38)

becomes,

dt

dx̃
= ti +K(t, x̃)tp (4.39)

where the partition coefficient is shown as a function of time and position and x̃ = x/L is

the dimensionless distance along the column. This equation can be solved for as an ordinary

differential equation (ODE) where t goes from 0 to tG (the time of elution for a solute in a

gradient-mode column), and x̃ goes from 0 to 1. Equation (4.39) is well-suited to numerical

integration.

An expression for K can be obtained by selecting an appropriate model for the poly-

mer/solvent and polymer/substrate interaction. If we model the homopolymer as an ideal

(Gaussian) chain, the change of conformational energy can be determined by solving the

diffusion equation with appropriate boundary conditions [291]. Confinement and adsorption

effects are captured by applying “sticky walls” boundary condition. This model is advan-

tageous because is it an analog of the heat equation, and thus can utilize the considerable

amount of work done. Skvortsov and Gorbunov [293] obtained a general solution for this
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model. This expression for K is given as

K =

∞∑
m=1(m odd)

2λ2 exp
(
−α2

mg
2
)

α2
m [λ(λ+ 1) + α2

m]
(4.40)

where αm are the characteristic roots of

αm = arctan (λ/αm) + (m− 1)π/2 (4.41)

Here, g = 2RG/D, with RG the radius of gyration of the solute and D the mean pore

diameter, is the dimensionless size parameter; when g > 1, the polymer is larger than the

pore (e.g. in the narrow pore regime), and conversely, when g < 1, the polymer is smaller

than the pore and in the wide pore regime. λ is a dimensionless adsorption interaction

parameter; a negative value of λ indicates that the repeat polymer units are attracted to

the pore walls; and conversely repulsed when λ is positive. Thus, critical conditions occur

at λ = 0. Because of the relative complexity of Equation (4.53), asymptotic values in the

limits of strong adsorption, wide pores, or narrow pores are often used in analysis. In order

to apply Equation (4.53) to gradient elution chromatography, we must integrate the balance

ODE (Equation (4.39)) over the length of the column. Changing solvent conditions imply

that λ will vary over the length of the column. The choice of the solvent model is a complex

one; as the parameter λ captures the combined solvent/solute/substrate interaction and is

thus a function of many variables. The simplest approach is to assume a linear dependence

near the critical composition,

λ(Φ) ≈ λ(Φcr) +
dλ

dΦ

∣∣∣∣
Φcr

(Φ− Φcr) (4.42)

By definition, λ(Φcr) = 0, so the only remaining parameter is the derivative dλ/dΦ taken

at Φ = Φcr. Finally, we account for the solvent concentration difference along the length of

the column during the gradient elution,

Φ = Φ0 +
dΦ

dt
[(t− (ti + tp) x̃)] (4.43)
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Here, Φ0 is the initial solvent concentration at the start of the gradient and dΦ/dt is simply

the gradient rate. Together, Equations (4.39), (4.53), (4.42), and (4.43) can be solved

numerically to obtain the time of gradient elution, tG. Any standard ODE solver can be

used; we selected the Python extension SciPy and its integration pack [306]. A mesh of 500

points on the tildex coordinate was used. When integrating, the general solution for K is

solved to a precision of ≤ 10−4 for each step.

The benefits to solving the general equation directly are clear. Asymptotic equations

are useful as can be used to solve Equation (4.39) analytically. However, they are subject

to specific constraints. This is of concern during a gradient elution, as the polymer analyte

will transition from adsorption to exclusion regime. Brun [14, 15] proposed an asymptotic

expression for the partition coefficient as a first-order approximation of the statistical ideal

chain model of above, for polymer near the critical point of adsorption λ = 0. It can be

expressed as

K u exp
(
−λg2

)
(4.44)

When solved for a gradient elution using Equations (4.42) and (4.43), a simple analyti-

cal equation with two parameters, the critical composition and a lumped parameter that

describes how close a polymer is to the critical point, was obtained for the gradient time

of elution. This solution was found to accurately capture the elution times of polystyrene

and PMMA [13], as well as statistical copolymers when assuming a single effective critical

composition exists [298].

Recently, Bashir and coworkers obtained an analytical solution for adsorbing wide

pores [300]. Their solution is based on the partition coefficient for wide pores, RG < D/2,

found by Gorbunov and Skvortsov [295],

K u 1− 2√
π
g +

1

λ
[1− Y (λg)] (4.45)

Y (x) = exp
(
x2
)

erfc (−x) (4.46)

A solution to the ODE using this expression for K was found, although it is not a simple

expression. Note that both asymptotic cases above, near-critical (4.44) and wide-pore (4.45)
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can be solved numerical in the same fashion as the general solution (4.53); in both cases

the numerical approach was found to be identical to their respective analytical solutions.

This direct approach is a strength of this method; any expression for K, as long as it’s a

function of solvent strength, can be simply integrated. This approach of direct integration

of the general equation gives the most accurate prediction of tG, as its only limitations are

those of the model itself.

Additionally, an extra term can be included in (4.44). Gorbunov and Skvortsov [292]

determined this asymptotic condition, and is valid for near-critical adsorption, narrow pore

cases,

K u exp

(
λ2g2

3
− λg2

)
(4.47)

This equation was investigated for the possibility it may produce an analytical solution when

integrating Equation (4.39), since it is relatively simple, and increases accuracy over the

near-critical expression (4.44) (see Figure 4.25). However, a simple closed-form expression

could not be obtained.
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Figure 4.24: Dependence of partition coefficient K on polymer size g, calculated using the
near-critical expression (4.44), wide-pore expression (4.45), and the Skvortsov and Gor-
bunov’s general solution (4.53), for various values of λ. The approximate values are found
to coincide in the vicinity of λ ≈ 0.

We compared the near-critical and wide-pore asymptotic expressions for the partition
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coefficient to the accurate general solution of Skvortsov and Gorbunov, over a range of pore

sizes and adsorption strength in Figure 4.24. The wide-pore expression is found to coincide

with the general solution for most g < 1. As expected, it becomes progressively less accurate

as g increases (i.e. transitioning to a narrow-pore regime). The near-critical expression also

behaves as expected; it is least accurate in the wide pore regime, but becomes progressively

more accurate as λ approaches the critical point of adsorption. Its accuracy is much less

affected by pore size regime than the wide-pore expression, and remains close to the general

expression in the narrow-pore regime where λ ≈ 0± 0.2.

Figure 4.25: Calculated error in asymptotic expressions for K (4.53). (Left) Wide-pore
regime (4.45), (center) near-critical regime (4.44), and (right) critical-narrow-pore (4.47).

To further highlight the differences between the three asymptotic equations with the

general solution for K, the value of the error was calculated on a two dimensional grid.

This value,

Kerr =
Ki −Kgen

Kgen
(4.48)

where i is one of the three asymptotic equations, near-critical (4.44), wide-pore (4.45),

or critical-narrow-pore (4.47), and Kgen is Equation (4.53). Green represents quantitative

agreement with the general solution, gray represents an over-prediction of K, and black

an under-prediction. For gradient separations, we are most concerned with the agreement

in the vicinity of the critical point, λ = 0. As expected, the wide pore model is the best
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performing asymptotic function where g < 1. However, in a narrow pore situation, it

diverges rapidly away from the true value of K, as is seen from large gradient of K with

increasing λ. The near-critical approximate functions are quantitatively accurate in the

vicinity of the critical point, as well as having a smaller gradient in λ. We should expect

the two latter expressions to perform better in a gradient chromatography model where

narrow pores may be present.
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Figure 4.26: Solutions of the ODE using approximate, analytical expressions, and accurate
numerical integration, for various values of dλ/dΦ. From left to right, dλ/dΦ = 5×10−2, 5×
10−3, 5 × 10−4, and 5 × 10−5. Left, mean pore diameter is 1000, representing a wide-pore
case. Right, mean pore diameter is 10, representing a narrow-pore case.

To evaluate the effect of these differences between the approximate and accurate expres-

sions for K, the ODE describing gradient elution (4.39) was solved for using each expression.

That is, the GE-CPA performance of the various expressions for K were tested against Kgen.

These results are displayed in Figure 4.26. The y-axis is the composition of the elutant at

time of gradient elution of a polymer of a given weight (the x-axis). The concentration

can be converted to time of gradient elution with Equation (4.43). The curves represent

the separation potential for a given solvent-change parameter (dλ/dΦ), as a function of

molecular mass. The horizontal plateau indicates the CPA, as all polymers elute at the

same concentration, regardless of weight. The accuracy of the two asymptotic approaches

appears to depend only on the pore size regime. The near-critical expression fails consid-
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erably in the wide-pore regime, over-predicting the weight of eluting polymers by an order

of magnitude. However, at g ≥ 1, its predictions agree quantitatively with the general

solution. The wide-pore expression does not fail with such a large error, but appreciable

error is found when g ≥ 1.
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Figure 4.27: Comparison of general model to experimental data for various gradient rates.
From top to bottom, dΦ/dt = 30, 25, 20, 15, 10, and 5 minutes (0–100% THF). Only one
adjustable parameter (dλ/dΦ) is used for the entire figure. See text for details experiment
details.

The performance of the GE-CPA model was tested against experimental data. A range

of polystrene (PS) standards from Polymer Laboratories was used in normal-phase chro-

matographic with Waters 150 × 3.9 mm, 4 µm particle size Nova-Pak R© silica column with

60-Å media pore diameter. Various gradients of n-hexane–tetrachloroethane (THF) were

examined. The results of the 10 minute (0–100% THF) gradient were used to calculate the

only adjustable parameter in the model, dλ/dΦ. This parameter was then used to predict

elution at other gradient rates of 30, 25, 20, 15, and 5 minutes. The results are displayed

in Figure 4.27. Good agreement is found for all gradients. This suggests that the GE-CPA

model could be used to predict optimal separation by varying the gradient rate, or even

shape, given a known polymer/solvent/column interaction.
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4.3.3 Extention to Functionalized Polymers

To model a polymer with one or two terminal functional groups, we assumed the ideal

chain/slit pore model with point interaction groups that differ in adsorption characteris-

tic from the repeat monomer of the parent chain. This model was solved for exactly by

Gorbunov and Vakhrushev [299],

Kmono = Kgen + qapa (4.49)

Kdi = Kgen + qapa + qapa + qaqbpab (4.50)

where mono and di subscripts indicate one or two terminal groups, respectfully, qa and qb are

the reduced functional group interaction parameters, and pa, pb and pab are the one and two

point contact probabilities of the functional group with the pore wall. The value qi is the only

new parameter introduced in this model (relative to the homopolymer model); if qi = 0, the

functional groups have no effect, and the solution for a homopolymer is recovered. If qi > 0,

the functional groups adsorb more strongly than the repeat monomers, and conversely if

qi < 0, the functional groups adsorb less strongly than the repeat units. Kgen represents

the partition function of a chain without functional groups (e.g. the homopolymer case,

Equation (4.53)).

The solutions for the contact probabilities are

pa = pb =

∞∑
m=1(m odd)

λAm
α2
m

exp
(
−α2

mg
2
)

(4.51)

pab =

∞∑
m=1(m odd)

Am exp
(
−α2

mg
2
)

(4.52)

(4.53)

where

Am =
2α2

m

λ(λ+ 1) + α2
m

(4.54)

and αm are the characteristic roots of Equation (4.41).

Changing solvent conditions during the gradient elution imply that λ will vary over the
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length of the column. The choice of the solvent model is a complex one; as the parameter λ

captures the combined solvent/solute/substrate interaction and is thus a complex function.

The simplest approach is to assume a linear dependence near the critical composition, as

with the model for homopolymers in the previous section (4.3.3). The primary assumption

for the extention to functionalized polymers is the the functional group’s adsorption affinity

does not vary with solvent quality, although the repeat monomers do. In other words,

λ = λ(Φ), but qi 6= qi(Φ).

Although asymptotic solutions are available for Equations (4.49) and (4.50), even the

simplest solutions to (4.39) yield ungainly results, if an analytical solution was possible at

all. Thus, we chose to solve Equation (4.39) numerically to obtain the time of gradient

elution, tG. Numerical solution has other benefits as well:

1. Functions for K can be arbitrarily complex, as long as they are continuous in (t, x̃).

This allows for more detailed models of K, including the possibility atomistic simula-

tions.

2. More complex functions for the solvent/polymer/pore interaction can be used with

current models of K.

3. The ambiguity of asymptotic conditions is avoided.

4. Additional complexities such as dispersion, diffusion, non-linear gradients, etc. can

be relatively easily included.

Any standard ODE solver can be used; we selected the Python extension SciPy and its

integration pack [306]. A mesh of 500 points on the x̃ coordinate was used. When inte-

grating, the solutions for Kgen, pa, pb, and pab was solved to a precision of ≤ 10−4 for each

integration step.

A primary intention of this work is to predict whether functionalized polymer can be

separation by the number of identical group for molecules of similar weights. To test

this, the parameters from the previous experimental work (Figure 4.25) were used for the

repeat units, but one and then two functional groups added with interaction parameters

qa = qb = 1.0. The results are shown in Figure 4.28. Time of gradient elution is plotted



181

101 102 103 104 105 106 107 108

M

0

1

2

3

4

5

6

t g

# functional groups
0
1
2
0, Experiment

Figure 4.28: Comparison of functional group’s affect on the time of gradient elution tg,
versus molecular weight of the solute, with qa = qb = 1.0. Adsorption functional groups
delay elution of low molecular weight solutes. A maximum is found, were elution is later than
the critical point. This suggests that the resolution of separation by number of identical
functional groups could be increased in gradient mode, for a certain range of molecular
weights.

as a function of molecular mass. The addition of the strongly adsorbing functional groups

is predicted to increase the rentention time of short chains (MW < 105), with a longer

rentention for two groups rather than one. Interestingly, a maximum is found at ∼5× 104.

In other words, the model predicts the elution of low-weight polymers after the critical

point is reached and all high weight molecules are eluted. Current models for homopolymers

predict that no material will elute after the CPA. The difference between the three lines at

lower MW indicates that separation by number of functional groups is indeed possible with

GE-CPA.

Figure 4.29 shows the results of the monofunctional expression for K (4.49), after inte-

gration in the GE-CPA model (4.39). The strength of the adsorptive functional group qa is

varied from 0 to 3. Zero replications previous homopolymer results (Figure 4.27. Increas-

ing adsorptive strength leads to delayed elution of short chains. At CPA, the remaining

polymers are eluted regardless of the functional group’s strength. Before CPA is reached,

a maximum develops and increases with adsorptive strength.

Having two strongly adsorbing functional makes these effects significantly more pro-

nounced, as one might expect. Figure 4.30 and Figure 4.31 examines polymers with two

terminal functional groups, as described by Equation (4.50). Even smaller values of qi have
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Figure 4.29: Monofunctional polymers in gradient elution, effect of parameter functional
group strength

Figure 4.30: Difunctional polymers in gradient elution, effect of parameter functional group
strength
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Figure 4.31: Difunctional polymers in gradient elution with strongly adsorbing functional
groups. Large values of q force low MW polymers into an adsorbed state that cannot be
overcome by increasing Φ

a strong effect (Figure 4.30); at qa = qb = 3, the model predicts a complete reversal of

elution order, with no eluted polymers until the critical point, high weight mixture at CPA,

followed by descending MW. Further increasing qi predicts (Figure 4.31) that short chains

will become strongly adsorbed, and will not elute from the column even at 100% favorable

solvent.

To test the performance of the functional group model, and the primary assumption

that q does not vary with solvent Φ, two chromatography experiments were performed with

a polyethylene glycol (PEG) standard and mono-brominated PEG (PEG-Br) of the same

weight, in isocratic and gradient modes. 10-µL of a 20,000 Da PEG standard dissolved

at 1 mg/mL in H2O was injected into a Symmetry C4 (4.6×150mm, 3.5-µm, 300Å pore)

column, operating at a flow rate of 1 mL/min. The isocratic column was operated at

50% acetonitrile/H2O, very close the critical point for PEG. A second experiment with the

same operating procedure followed for PEG-Br. The isocratic chromatograms are shown in

Figure 4.32. If we assume that the standard elutes at the CPA, the value for qa is simply

∆t = 0.2 (since Kgen and pa in Equation (4.49) are equal to unity at the critical point).

Gradient elution of PEG and PEG-Br was predicted by integrating the balance equa-



184

 Brominated PEG 

 20k PEG Standard 

Minutes 
1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 

Δt = 0.2 

Figure 4.32: Experimental results for PEG and PEG-Br at LCCC
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Figure 4.33: Gradient model prediction for PEG (blue line) and PEG-Br (green dotted
line). Inset is zoomed for clarity.
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tion (4.39) using the monofunctional expression for the partition coefficient (4.49). The

results for PEG and PEG-Br are displayed in Figure 4.33. Since the bromine group inter-

acts very weakly, the results are similar. However, before the critical point of elution, a

slight maximum in elution time is observed for PEG-Br. The inset of Figure 4.33 shows

this in detail. The gradient elution model predicts an elution delay for PEG-Br of about

∆Φ = 1.0%, which for a 10 min gradient, corresponds to a ∼0.1 minute delay. This was

tested by performing the chromatography runs again, but in gradient mode. Similarly pre-

pared samples were injected into the same column, but with 100% H2O mobile phase from

t = 0–7 minutes, then a 10 minute linear gradient of acetonitrile (0–100%, from t = 7–17

minutes). The resulting chromatograms are shown in Figure 4.34. The brominated sample

elutes later than the standard, by ∆tg ≈ 0.1 minutes, exactly as the GE-CPA model had pre-

dicted. The interaction parameter dλ/dΦ was adjusted to 2× 10−3 so that M = 20, 000 Da

was near the maxima in tg. This is reasonable upon interpretation of the gradient-mode

chromatogram; if dλ/dΦ is large, both PEG and PEG-Br are predicted to elute at same

(critical-point) time, while a lower value predicts that PEG will elute well before the critical

point, which is also not observed in experiment.

Minutes 
11.00 11.50 12.00 12.50 13.00 13.50 

 Brominated PEG 

 20k PEG Standard 

Δt = 0.1 

Figure 4.34: Experimental results for PEG and PEG-Br at GE-CPA. The delay in elution
of PEG-Br was quantitatively predicted by the GE-CPA model. See text for experimental
details.
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4.3.4 Isocratic Results for Copolymers

The separation of copolymers is central to the emerging field of nanotechnology. Diblock

copolymers have become a basic building block for templating chemistry, drug packaging

and delivery, and many more. Separation and characterization of copolymers using chro-

matography is difficult. Often, components in copolymer mixtures have identical mass and

chemical composition. Separation is needed as a function of heterogeneity, or the relative

order of comonomers. This subtle difference limits the use of standard chromatographic

approaches. This section explores the possible approaches to copolymer separation.

To model copolymer elution, an expression for K using the statical theory of interaction

chromatography is found in the literature. The expression is a particular case of the general

expression of a long chain with independent monomers, found by Ennis and Jönsson [307],

K = 2m
∞∑
i1=1

· · ·
∞∑

im=1

exp

 m∑
j=1

−g2
jα

2
ij ,j

×
m∏
j=1

1

λ2
j + λj + α2

ij ,j

m−1∏
k=1

λk − λk−1

α2
ik,k
− α2

ik+1,k+1

m−1∏
p=2

α2
ip,p (4.55)

Here, m is total number of blocks of size gi and with interaction parameter λi, and αi,j are

the corresponding eigenvalues of the characteristic equation (4.41). In theory, this enables

us to test any copolymer. Unfortunately, this equation scales as the following: O(m) for

the sums of the first eigenvalue, O(2m) for the sums of the second, O(3m) for the third, and

so on. Luckily, in most cases, the first eigenvalue is the only significant contribution. The

accuracy of Equation (4.55) with limited number of eigenvalues was tested by calculating

the error for converged (err ≤ 10−2), and with using only the first eigenvalue. The results

are shown in Figure 4.35. Significant error was found only in the wide pore case. When

g ≥ 1, there is very little error introduced. Thus, the wide pore case requires the summation

of the second eigenvalue. Inclusion of the second eigenvalue reduced error to nearly zero.

Only very blocky (AB repeating), long chains in the wide-pore regime are unfeasible for

calculation by this method.

To understand the dependence of K on blockiness, an algorithm was developed to gen-



187

Figure 4.35: Error in calculation of K by using only summations of first eigenvalue, for
(left) g = 1, and (right) g = 0.5. Note that black represents at least 10% error. The error is
reduced to approximately zero if the summations are completed for the second eigenvalue.

erate a random chain using given probability distributions, based on a Markov method

described in Ref. [298]. Assuming a constant total ratio of monomers (PA = PB = 50%),

the probability of a certain type of monomer following another given type is assigned to vij

(e.g. vAB is the probability of a B monomer following an A monomer); this is the transition

matrix describing the chain. For a chain comprised of 2 species, only 2 of the 4 matrix

entries are independent, and the blockiness of the chain can be characterized as a function

of the remaining probabilities, v = vAB + vBA, the so called sequence heterogeneity index.

A value of v = 0 indicates a diblock copolymer, v = 1 a statistically random distribution of

monomers (so-called Bernoulli statistics [REF]), and v = 2 an alternating-type copolymer

(alternating monomers of A and B).

The following figures were calculated using a chain of 200 monomers (so blocks m is

always less than 200). This may not be sufficient to exceed the chemical correlation length,

but at least gives a first order approximation of retention time versus blockiness v. Ad-

ditionally, only one randomly-generated chain was sampled for a given point. Statistical

variability could be reduced by averaging over several generated chains for the point.

The above results predict that isocratic separation by blockiness is possible, if block B is

chromatographically invisible and a solvent/column is chosen to be in the adsorption mode.

In the narrow pore regime, retention becomes independent of blockiness, but not adsorption
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Figure 4.36: Dependence of chemical heterogeneity on λA, with λB = 0, for (left) g = 0.5
and (right) g = 1

Figure 4.37: Dependence of chemical heterogeneity on λA, with λB = 0, for (left) g = 2 and
(right) g = 5

interaction parameter. In fact, a steep gradient near the critical point of adsorption suggests

gradient elution would have good separation results, while isocratic separation would not.

4.3.5 Conclusions

A model for chromatography mode gradient-elution at critical conditions was developed.

The accuracy of competing models for the partition coefficient K was tested for homopoly-

mers by comparison to the general solution. We found the simplest expression, the “near-

critical” asymptotic expression of Brun [14, 15] (which allows for a closed-form analytical

expression of retention time in GE-CPA) is accurate for cases where the polymer’s radius
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Figure 4.38: Dependence of chemical heterogeneity on λA, with λB = 1000, for (left) g = 0.5
and (right) g = 1

of gyration is close to or larger than the mean pore size. The GE-CPA model has one

adjustable interaction parameter, and was used to quantitatively predict elution times for

various gradient rates.

The GE-CPA model was extended to functionalized polymers and copolymers, using ap-

propriate models for the partition coefficient from the literature. Functionalized polymers

are predicted to elute after the CPA for strongly-adsorbing functional groups. Experimental

comparison showed that the model produces quantitative retention times, once the func-

tional group parameter is fit from isocratic experiment. Application of the copolymer model

showed that separation by blockiness is possible, for a certain size range of polymers.
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Chapter 5

Conclusions
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Conclusions

This dissertation has covered many areas where improved knowledge of the thermodynam-

ics of fluids at the nanoscale are useful. This was achieved mainly through the tools of

molecular simulation. Through the strategic application of grand canonical, gauge cell, and

incremental gauge cell Monte Carlo, a clear picture of the systems under consideration was

developed.

The first part of the work examined the role of cavitation in the desorption of fluids

in nanoporous media. Experimental collaborators used detailed, highly-resolved adsorption

measurements to determine the pressure where evaporation occurs. Tabulated by primary

pore size, a dependence of the cavitation pressure on the pore size is found. A weak

dependence for pore diameter d < 10 nm is followed by a flat plateau for 10 < d < 35 nm,

suggesting an extent to adsorption influences on cavitation. This is confirmed by MC

simulation of similarly sized model systems, where the nucleation barrier is found to be

approximately constant for d > 10 nm. This implies homogeneous nucleation in bulk-like

conditions. A follow-up study used grand canonical and gauge cell MC to investigate the

role of a pore wall defect on the nucleation mechanism. A theoretical model based on

classical nucleation theory was developed, and predicted a transition from homogeneous

to heterogeneous nucleation for a certain defect size. This was qualitatively confirmed

with detailed MC studies that tracked the formation of the critical nucleus that precedes

cavitation. Finally, the influence of pore structure was studied by overlapping two spherical

pores. Depending on the degree of overlap, desorption occurred via cavitation (for a small

overlap that restricts mass transfer between the pores), or via a receding meniscus (for a

large overlap). Scanning isotherms were calculated and suggest a viable method to study

porous material with similar morphology via experiment.

The next chapter of this dissertation focuses on adsorption of polymer chains. A new

method to calculate the chemical potential of polymers in MC, the incremental gauge cell,

was developed and implemented. It was shown to be approximately one order of magnitude

faster than the previous method to reach the same statistical certainty in chemical potential.

The method was applied to long, single LJ chains in confinement and adsorption environ-
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ments. Adsorbing chains at low temperature were found to exhibit characteristics similar

to confined simple fluids—monolayer formation and a capillary condensation transition to a

volume-filling conformation. The dynamics of polymer translocation was studied by using

the incremental gauge cell to calculate the free energy landscape. This was applied as the

driving force in the Fokker-Planck equation to calculate dynamics. A non-monotonic de-

pendence of translocation times on adsorption potential was found; strong potentials yield

fast and probable translocation, while in systems exhibiting a free energy minima, the chain

reaches a partially-adsorbed metastable state and translocation slows considerably. For the

systems with an ‘uphill’ free energy, translocation was not likely, but proceeded quickly if

at all.

Finally, a model for gradient-elution critical point of adsorption chromatography was

developed and tested against experiment. Suitable models for the partition coefficient were

found and applied to complex polymers, such as homopolymers with functional groups, and

copolymers ranging from diblocks to statistical copolymers. The application of this model

has great practical value, as gradient elution is a key tool in the separation and character-

ization of such complex polymers, and there exists very little theoretical interpretation of

experimental results.

Continued and Future Work

There is great potential in continuation of the some of the work initiated in this dissertation.

We revealed that homogeneous cavitation can be experimentally observed at a reasonable

temperature and pressure, with no special experimental setup. Besides the obvious use

in characterizing porous materials, this work offers an approach to study the nature of

homogeneous cavitation itself. Homogeneous cavitation in the bulk is notoriously difficult to

study, as it requires supercooling metastable fluids. Observation of cavitation in mesopores

may lead to new a approach to study homogeneous nucleation.

Our work on heterogeneous cavitation showed that a large, non-wetting defect can signif-

icantly increase the observed cavitation pressure. However, fundamental questions regarding

the nature of fluid behavior in porous silicon still exists, since defects of that nature are
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not possible for liquid nitrogen on porous silicon. Continued work in this area offers a path

toward better understanding of nanoscale physics.

The incremental gauge cell method has been shown to be a powerful tool in the simula-

tion of polymers. The problems studied in this work, namely the critical point of adsorption

and translocation, can benefit greatly from new, detailed models. The critical point of ad-

sorption has a great practical application in the separation of complex polymer molecules;

however design and interpretation of experiments at the critical point are difficult and costly

due to the lack of an adequate model. Detailed simulations using the incremental gauge

cell can help eliminate many unnecessary experiments. In addition, theoretical study of

the critical point itself may challenge some long held assumptions in the chromatography

field. Similarly, study of translocation has been hampered by numerous conflicting models.

Accurate simulation of specific cases may help to answer questions regarding fundamental

translocation physics.

The model developed for gradient elution chromatography has a great potential for fur-

ther development. Many interesting polymer morphologies can be easily added, including

stars, theta-shaped loops, and functionalized stars. Additional physics can be included,

such as diffusion along the column, better solvent models, and excluded volume. Predic-

tive algorithms can change variables such as gradient rate and shape to give practitioners

operating parameters for optimal separation of a given sample. Finally, a detailed investi-

gation of isocratic and gradient separation by blockiness can shed light on new methods for

purification of copolymers by minute structural details.
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A Derivations of incremental chemical potential

Calculation of the incremental chemical potential (ICP) in Monte Carlo simulation was first

suggested by Kumar et al. [11] as a possible remedy to inefficient MC methods of the day

(such as Rosenbluth insertions). Physically, a system of chains is equilibrated and and a

test “ghost” monomer is inserted onto the end of chain. This procedure is reminencent of

the particle insertion method proposed by Widom [8]. To find the chemical potential of

an n-mer macromolecule, n individual simulations must be performed, although evidence

suggests that for chains in good solvent conditions, the incremental chemical potential has

little or no dependence on chain length [80, 81, 115]. While Kumar’s “modified Widom

insertion” is an improvement over primitive Rosenbluth insertions, the same drawbacks

that plague standard Widom insertions will affect this chain increment method. Specifically,

dense and/or inhomogeneous systems are not able to be sampled effectively. The gauge cell

method [9, 10, 49] provides an alternate means to calculating the chemical potential in

canonical systems. This is implemented by placing a gauge cell in contact with the system

cell. The gauge cell contains monomers which are allowed to be added or removed from a

target chain in the system cell. Thermodynamically, this system will minimize Helmholtz

free energy, with the implication that the system and gauge cell will have comparable

chemical potentials. The rest of this section will introduce the basic statistical mechanical

equations as well as notation used through out the document.

A.1 Modified Widom approach

To derive the expressions for general polymeric MC systems, we begin with the canonical

(constant NV T ) partition function,

Q({N,n}, V, T ) =
1

Λ3NnN !

∫
V

drNn exp
[
−βΦ(rNn)

]
, (A.1)

where N is the number of indistinguishable macromolecules (polymer chains), each n

monomers in length, V and T are the system’s volume and temperature respectfully,

β = 1/kBT is the inverse temperature, Λ is the thermal de Broglie wavelength of the
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monomers (assumed identical to each other), Φ is the sum of the various potential energy

contributions (such as intermolecular, intramolecular and external [attractive pore walls]),

and r is the set of position vectors for the system in phase space. This equation fully de-

scribes the system and makes no assumptions regarding the interconnectivity of the chain.

The so called “bridge” equation links the microscopic partition function to the macroscopic

quantity Helmholtz free energy,

F ({N,n}, V, T ) = −kBT lnQ({N,n}, V, T ). (A.2)

From the fundamental equation of thermodynamics, the chemical potential of a system is

µ(N,n) =

(
∂F

∂N

)
V,T

(A.3)

at constant V, T and in the thermodynamic limit N → ∞. For large N , this value can be

approximated by a finite difference:

µ(N,n) = F ({N + 1, n}, V, T )− F ({N,n}, V, T ). (A.4)

Note that either a forward or reverse difference is technically correct, however the choice

has serious practical consequences. In the derivations below, certain choices of forward or

reverse differences for chemical potential or incremental chemical potential may result in

non-cancelling terms that complicate practical calculations of these quantities.

Approach of Kumar et al.

The following approach calculation of ICP was proposed by Kumar et al. in [11]. First, the

chemical potential (Eq. A.4) is considered as a reverse finite difference rather than forward,

µ(N,n) = F ({N,n}, V, T )− F ({N − 1, n}, V, T ). (A.5)

Now consider the system described by Eq. A.1, that is N chains of n monomers. If one of

the chains in this system is incremented to n+ 1 monomers, the chemical potential of said
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chain would be:

µ(N − 1, n; 1, n+ 1) = F ({N − 1, n; 1, n+ 1}, V, T )− F ({N − 1, n}, V, T ). (A.6)

We can now define the incremental chemical potential as the difference of chemical potentials

between identical chains with a single monomer difference in length, and can be found by

subtracting Eq. A.5 from Eq. A.6,

µincr ≡ µ(N−1, n; 1, n+1)−µ(N,n) = F ({N−1, n; 1, n+1}, V, T )−F ({N,n}, V, T ). (A.7)

With this definition in hand, we can relate the Widom particle insertion method [8] to

incremental chemical potentials. Realizing that

Z({N−1, n; 1, n+1}, V, T ) =

∫
V
· · ·
∫
V
dr1 · · · drNndrn+1 exp (−β [U(r1, · · · , rNn) + U(rn+1)]) ,

(A.8)

where Z is the configurational integral of the canonical partition function,

Z({N,n}, V, T ) = Λ3NnN ! Q({N,n}, V, T ). (A.9)

In Eq. A.8, U(rn+1) is the interaction energy experienced by the (n + 1)th bead inserted

onto the end of a chain in the system. Combining Eqs. A.7 with A.1 and A.8, we obtain

exp(−βµexincr) =

∫
V · · ·

∫
V dr1 · · · drNn exp [−βU(r1, · · · , rNn)]

∫
V drn+1 exp [−βU(rn+1)]

Z({N,n}, V, T )
.

(A.10)

The ICP considered is an excess value, as we are only considering the configuration part of

the partition function. Equation A.10 contains a statistical average of the Boltzman factor

for the n+ 1 monomer, and simplifies to

−βµexincr = ln 〈exp [−βU(rn+1)]〉{N,n},V,T . (A.11)
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This is the main equation the work of Ref. [11] is based on. Chemical potential of the entire

chain is simply the sum of its incremental values. The incremental chemical potential is a

well-defined thermodynamic quantity, with no restricting assumptions used in its derivation.

This can be illustrated [232] by expanding terms in the definition of the chemical potential

of a chain, Eq. A.5, [232]

exp [−βµ(N,n)] =
Z(N,n)

Z(N − 1, n; 1, n− 1)

Z(N − 1, n; 1, n− 1)

Z(N − 1, n; 1, n− 2)
. . .

Z(N − 1, n, 1, 1)

Z(N − 1, n)
. (A.12)

Applying the definition of ICP (Eq. A.7) to this expansion, we see that

µ(n) = µincr(n− 1) + µincr(n− 2) + . . .+ µincr(0) (A.13)

where n is the length of a varying chain in an equilibriated system of N − 1 chains with n

monomers each, and µincr(0) is the chemical potential of inserting a single monomer into

the entire system volume.

Alternative Approach

Another approach to calculation of the incremental gauge cell is to utilize the forward finite-

difference definition of chemical potential, Eq. A.4, by calculating the chemical potential of

an additional n-mer. We begin with the same system of N chains of n monomers. We insert

a designed “test” chain of nt monomers. This configuration is described by the partition

function Q(N,n; 1, nt, V, T ). The chemical potential of the addition nt chain we included is

µ(nt) = F ({N,n; 1, nt}, V, T )− F ({N,n}, V, T ). (A.14)

Similarly, the chemical potential of an incremented test chain, nt + 1, is

µ(nt + 1) = F ({N,n; 1, nt + 1}, V, T )− F ({N,n}, V, T ). (A.15)
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We now define the incremental chemical potential as the difference in chemical potential of

two chains, one of which with an additional monomer,

µincr(nt) ≡ µ(nt + 1)− µ(nt) = F ({N,n; 1, nt + 1}, V, T )− F ({N,n; 1, nt}, V, T ). (A.16)

This is equilivent in principle to Eq. A.7. Using the definition of the Helmholtz free energy

(Eq. A.2), we obtain a ratio of partition functions,

µincr(nt) = −kBT ln

[
Q({N,n; 1, nt + 1}, V, T )

Q({N,n; 1, nt}, V, T )

]
(A.17)

= −kBT ln


1

Λ3Nn+3(nt+1)(N+1)

∫
V

drNn+nt+1 exp
[
−βΦ(rNn+nt+1)

]
1

Λ3Nn+3nt (N+1)

∫
V

drNn+nt exp [−βΦ(rNn+nt)]

 (A.18)

= −kBT ln

 1

Λ3

∫
V

drNn+nt exp
[
−βΦ(rNn+nt)

] ∫
V

drnt+1 exp [−βφ(rnt+1)]∫
V

drNn+nt exp [−βΦ(rNn+nt)]

 ,
(A.19)

where φ(rnt+1) is the interaction energy of the nt + 1 inserted monomer at the end of the

chain. Note Eq. A.17 is only valid if the number of molecule is the same (i.e. nt > 0).

Equation (A.19) is a thermal average of the partition function of the inserted monomer,

similar to the traditional Widom’s method. Thus, the average of the nt + 1 integral is

computed over configuration of {N,n; 1, nt} particles and volume V ,

µincr(nt) = −kBT ln

[
1

Λ3

]
− kBT ln

∫
V

drnt+1 〈exp−βφ(rnt+1)〉Nn+nt

 (A.20)

= −kBT ln

[
1

Λ3

]
− kBT ln

[
Vins 〈exp−βφ(rnt+1)〉Nn+nt,Vins

]
(A.21)

where Vins is a small volume at the end of the test chain where further insertions are allowed.

To arrive at a full expression for the chemical potential of the system, we must expand the

ratio presented in Eq. (A.4)

−kBT ln

[
Q({N,n; 1, nt}, V, T )

Q({N,n; 1, nt − 1}, V, T )

Q({N,n; 1, nt − 1}, V, T )

Q({N,n; 1, nt − 2}, V, T )
· · · Q({N,n; 1, 1}, V, T )

Q({N,n}, V, T )

]
,

(A.22)
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which becomes the expression for chemical potential if we set nt to n. Applying the definition

of incremental chemical potential above,

µ(N,n) = µincr(n− 1) + µincr(n− 2) + · · ·+ µmonomer, (A.23)

where µmonomer is the chemical potential of inserting a monomer into the system of chains.

It can be shown that this is simply Widom’s insertion method on the system of N,n chains.

Applying this, and the derivation of µincr above, Equation (A.23) becomes

− µ(N,n)

kBT
=

n−1∑
nt=1

ln

[
Vins
Λ3

〈
exp

(
−φ(rnt+1)

kBT

)〉
Nn+nt,Vins

]
+

ln

[
V

Λ3(N + 1)

〈
exp

(
−φ(r1)

kBT

)〉
Nn,V

]
, (A.24)

where rnt+1 and r1 are the position vectors for trial particles inserted into the biased

insertion volume or the system volume, respectfully. Seperating and rearranging,

− µ(N,n)

kBT
= ln

[
V

Λ3n(N + 1)

]
+ ln

[〈
exp

(
−φ(r1)

kBT

)〉
Nn,V

]
+

n−1∑
nt=1

ln

[
Vins

〈
exp

(
−φ(rnt+1)

kBT

)〉
Nn+nt,Vins

]
. (A.25)

We’ve defined the reference state as an ideal gas of non-selfinteracting n-mers. Alternatively,

we can include internal interactions and only report excess chemical potentials with external

(non-bonded) interactions (see Section A.4 for derivation). The final expression for the

chemical potential of a fluid composed of N n-mers is:

µ(N,n) = µigc + µexmonomer +
n−1∑
nt=1

µexincr(nt) (A.26)

Note the first and second terms can usually be calculated analytically. For chains well above

their θ point, the µincr is essentially constant with respect to nt, thus signifcantly reducing

computation needs.
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Polydisperse fluid

A more general approach is to consider a distribution of chain lengths rather than one

fixed length. Let Ni be the number of chains of length i in volume V , in a mixture

composed of {Nα}, where the {. . . } brackets represent the set of chain lengths, {Nα} =

N1, N2, N3, · · · , N∞. That is, N1 is number of monomers in the mixture, N2 is the number

of dimers, and so on. Let the subscript α represent all lengths of chains in the mixture.

The total number of molecules is

M =

∞∑
i=1

Ni. (A.27)

Similarly, the total number of monomers is

m =
∞∑
i=1

iNi. (A.28)

The partition function for the mixture is then

Q({Nα}, V, T ) =
1

Λ3m
∏∞
i=1(Ni!)

∫
V

drm exp

[
−Φ(rm)

kBT

]
. (A.29)

If an additional chain of length ν monomers were inserted into this system, the partition

function would then be

Q({N1, N2, · · · , Nν+1, · · · }, V, T ) =
1

Λ3(m+ν)(Nν + 1)
∏∞
i=1(Nα!)

∫
V

drm+ν exp

[
−Φ(rm+ν)

kBT

]
,

(A.30)

And thus the chemical potential of the ν component of the mixture would be the difference

of free energy upon inserting the Nν + 1 chain,

µν({Nα}) =

(
∂F

∂Nν

)
V,T,{Nα6=ν}

, (A.31)

and its finite difference,

µν({Nα}) ≈ F ({N1, · · · , Nν + 1, · · · }, V, T )− F ({N1, · · · , Nν , · · · }, V, T ). (A.32)
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Substituting in the bridge equation (Eq. A.2) for the Helmholtz free energy, we obtain a

ratio of partition functions,

exp

[
−µν({N1, · · · , Nν , · · · })

kBT

]
=
Q({N1, · · · , Nν + 1, · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )
=

Q({N1, · · · , Nν + 1, · · · }, V, T )

Q({N1, · · · , Nν−1 + 1, · · · }, V, T )

Q({N1, · · · , Nν−1 + 1, · · · }, V, T )

Q({N1, · · · , Nν−2 + 1, · · · }, V, T )
· · ·

Q({N1 + 1, N2, · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )
. (A.33)

Incremental chemical potential can now be defined as the contribution of each ratio between

systems with test chains of ν and ν − 1 beads,

µν({Nα}) = µincr(ν − 1, {Nα}) + µincr(ν − 2, {Nα}) + · · ·+ µ0({Nα}) (A.34)

=
ν−1∑
i=1

µincr(i, {Nα}) + µ0({Nα}), (A.35)

where µ0 is equivalent to the chemical potential of a monomer inserted into the mixture of

{Nα} chains, and µincr is defined as

µincr(ν, {Nα}) = −kBT ln

[
Q({N1, · · · , Nν , Nν+1 + 1, · · · }, V, T )

Q({N1, · · · , Nν + 1, Nν+1, · · · }, V, T )

]
(ν > 0) (A.36)

Note that this definition is the same as if we define µincr = µν+1 − µν .

We will treat the chemical potential of the monomer first, following the standard ap-

proach for calculation of chemical potentials via Widom insertions,

µ0({Nα}) = −kBT ln

[
Q({N1, · · · , N1 + 1, · · · }, V, T )

Q({Nα}, V, T )

]
(A.37a)

= −kBT ln

Λ3m
∏∞
i=1(Ni!)

∫
V

drmdr0 exp [−Φ(rm)/kBT ] exp [−φ(r0)/kBT ]

Λ3(m+1)(N1 + 1)
∏∞
i=1(Ni!)

∫
V

drm exp [−Φ(rm)/kBT ]


(A.37b)

= −kBT ln

 1

Λ3(N1 + 1)

∫
V

dr0 〈exp [−φ(r0)/kBT ]〉{Nα}

 , (A.37c)

where rm is a set of position vectors for all m particles, r0 is the position vector for a
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particle inserted at random into the system volume V , φ is the interaction potential energy

the particle at r0 experiences, and 〈· · · 〉 denotes the canonical average over a configuration

of {Nα} chains of all lengths α. Computing this average over the volume V gives

µ0({Nα}) = −kBT ln

[
V

Λ3(N1 + 1)

]
− kBT ln

[
〈exp [−φ(r0)/kBT ]〉{Nα},V

]
(A.38)

= µid0 + µex0 . (A.39)

This is equivalent to the standard Widom insertion equation.

The incremental chemical potential for each successive particle inserted is defined in

Eq. (A.36). To calculate a practical equation, we will follow the same approach as above.

exp

[
−µincr(ν, {Nα})

kBT

]
= (A.40a)

Λ3(m+ν)(Nν + 1)
∏∞
i=1(Ni!)

∫
V

drm+νdrincr exp [−Φ(rm+ν)/kBT ] exp [−φ(rincr)/kBT ]

Λ3(m+ν+1)(Nν+1 + 1)
∏∞
i=1(Ni!)

∫
V

drm+ν exp [−Φ(rm+ν)/kBT ]

(A.40b)

=
V (Nν + 1)

Λ3(Nν+1 + 1)

1

V

∫
V

drincr 〈exp [−φ(rincr)/kBT ]〉{N1,··· ,Nν+1,··· } , (A.40c)

where φ(rincr) is the interaction energy of a trial monomer inserted at the end of a ν-mer

chain (e.g., the ν + 1 monomer), in a system composed of {Nα} chains with one additional

ν-mer chain. Because of the bond potential, only a small volume at the end of a chain is

available for insertion. The rest of the volume of the system makes no contribution to the

Boltzmann average. Therefore, we will only average contributions from this biased volume,

Vins. The expression for incremental chemical potential becomes

µincr(ν, {Nα}) = −kBT ln

[
Vins(Nν + 1)

Λ3(Nν+1 + 1)
〈exp [−φ(rincr)/kBT ]〉{N1,··· ,Nν+1,··· },Vins

]
(A.41)

There are several important points to make regarding Eq. (A.40c). First, if a chain of ν

monomers is inserted incrementally into {Nα} chains, the terms in Eq. (A.41) refer to the

original system {Nα}, not the individual incremental system. Second, although the Vins
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appears explicitly, there is no dependence on it, provided it is selected small enough to not

exclude potentially favorable confirmations, and large enough to allow adequate sampling.

Applying the results above to Eq. (A.35) and rearranging terms, the full expression for

the chemical potential of a chain of ν monomers in a mixture of {Nα} chains is

µν({Nα}) = −kBT ln

[
V

Λ3ν(Nν + 1)

]
− kBT ln

[
〈exp [−φ(r0)/kBT ]〉{Nα},V

]
−
ν−1∑
i=1

{
kBT ln

[
Vins 〈exp [−φ(rincr)/kBT ]〉{N1,··· ,Ni+1,··· },Vins

]} (A.42)

µν({Nα}) = µidν ({Nα}) + µex0 ({Nα}) +
ν−1∑
i=1

µexincr(i, {Nα}) (A.43)

where µidν is an ideal reference state for the ν component, composed of Nν + 1 chains with

no external or internal interactions. Note that once the entire ν-mer chain is inserted, the

log[(Nν + 1)/(Nν+1 + 1)] terms from each incremental chemical potential cancel, except for

the final log(1/Nν) term which remains in the reference state.

A.2 Extension to the Mesocanonical Ensemble

Statistical Mechanical Background

Suppose a gauge cell of volume Vg is placed in contact with the system of volume V described

above. Both are held at a constant temperature T . The main cell contains N n-mers, plus

one test chain of nt particles, while the gauge contains a fluid of ideal monomers, with ng

particles. We allow the gauge to exchange particles with the terminal positions of the test

chain. The partition function for the main cell (QNV T ) and the gauge cell (Qg) are

QNV T ({N,n; 1, nt}, V, T ) =
1

Λ3(Nn+nt)(N + 1)!

∫
V

drNn+nt exp
[
−βΦ(rNn+nt)

]
, (A.44)

Qg(ng, Vg, T ) =
V
ng
g

Λ3ngng!
. (A.45)

It is important to note that the gauge cell fluid does not need to be ideal; the follow

derivations are completely valid for gauge fluids with intermolecular potentials. However,
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the ideal case is later applied for the ideal gas gauge cell (IGGC) method, and supposing

it here simplifies the expressions significantly. If we denote the composite system with

subscript Σ, and realizing that nΣ = nt + ng, we obtain the partition function for the

composite system,

QΣ({N,n; 1, nΣ}, V, Vg, T ) =

nΣ∑
nt=0

QNV T ({N,n; 1, nt}, V, T )Qg(nΣ − nt, Vg, T )

=

nΣ∑
nt=0

V nΣ−nt
g

Λ3(Nn+nΣ)(N + 1)!(nΣ − nt)!

∫
V

drNn+nt exp
[
−βΦ(rNn+nt)

]
. (A.46)

From this description of the composite system, equations for the chemical potential and

MC acceptance probabilities can be derived.

A.3 Mean Density Gauge Cell

Equilibrium of the two systems implies the minimization of the total Helmholtz free energy

of the two cells in the same fashion as the Gibbs ensemble method,[69], in this case the free

energy of test chain and the gauge cell,

Ft({N,n; 1, nt}, V, T ) + Fg(ng, V, T )⇒ min. (A.47)

Minimization of Eq. (A.47) leads to the equilibrium condition, given by

µincr =

(
∂Ft
∂nt

)
{N,n},V,T

=

(
∂Fg
∂ng

)
Vg ,T

. (A.48)

Thus, for large enough nt and ng, we can calculate the incremental chemical potential of

the test chain by using the gauge cell as reference. Once equilibrium is reached, we assume

there is an average number of particles in the test chain (nt) and a corresponding average

number of monomers in the gauge cell (ng). Since the gauge fluid is defined as an ideal gas,

the expression for the incremental chemical potential is

µincr(nt) = −kBT ln

(
Vg

Λ3(ng + 1)

)
. (A.49)
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A.4 Harmonic Bond Reference State

If bond contributions are not sampled during the simulation, a correction to the reference

state defined in Eq. (A.26) must be made. In this section, we assume the reference state is

an ideal gas of chains with only internal interactions, specifially harmonic bonds. We also

assume the monomers are independent of each other. The molecular partition function for

such a system is

q(n, V, T ) =
V

Λ3

 1

Λ3

∫
Vb

exp

(
−Ubond(r)

kBT

)
dr


n−1

. (A.50)

The first coefficient is contributed by insertion of a single ideal gas particle in a system with

volume V . The partition function for each of the remaining bonds is the product of the

integral of their Boltzmann factor over the volume the bond can occupy, Vb. The partition

function of the total gas of indistinguishable particles is then

Q({N,n}, V, T ) =
qN

N !
=

V N

Λ3NN !

 1

Λ3

∫
Vb

exp

(
−Ub(r)
kBT

)
dr


N(n−1)

. (A.51)

To calculate the chemical potential of this reference system, we proceed exactly as above,

by using Eq. (A.4) to define chemical potential and substituting Eq. (A.51) into Eq. A.2.

The ratio of the two partition functions is

− µ

kBT
= ln

[
Q({N + 1, n}, V, T )

Q({N,n}, V, T )

]
(A.52)

= ln

 V

Λ3(N + 1)

 1

Λ3

∫
Vb

exp

(
−Ub(r)
kBT

)
dr


n−1 (A.53)

= ln

[
V

Λ3n(N + 1)

]
+ (n− 1) ln

∫
Vb

exp

(
−Ub(r)
kBT

)
dr

 . (A.54)

We now arrive the reference state used above, the ideal gas of non-interacting chains (µigc),

plus n − 1 contributions of the bond potential. The bond is defined as a simple harmonic
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potential,

Ub =
κ

2
(r − `)2 , (A.55)

where κ is the spring constant, r is the distance between the i and i+1 monomers, and ` is the

equilibrium bond length. Next, we assume that the volume Vb contains all contributions

from the bonded potential; that is, Ub is rigorously zero for all of the system outside of

volume Vb. By supposing this, we can replace the finite bounds with infinite ones,

∫
Vb

exp

[
− κ

2kBT
(r − `)2

]
dr =

rmaxins∫
rminins

exp

[
− κ

2kBT
(r − `)2

]
dr (A.56)

= 4π

∞∫
−∞

r2 exp

[
− κ

2kBT
(r − `)2

]
dr (A.57)

= 4π

`2√2π√
κ

kBT

+

√
2πkBT

κ
√

κ
kBT

 . (A.58)

Although a closed-form solution is possible with finite bounds, the expression is very long

and complex. This yields identical results to the method above, provided that Vins when

sampling bonds is large enough to contain all contributions (this is especially relevant at

high temperatures when the average bond length is appreciably longer than the equilibrium

bond length). The final expressions for the chemical potential are

− µ

kBT
= ln

[
V

Λ3n(N + 1)

]
+ (n− 1) ln

4
√

2π3/2(κ`2 + kBT )

κ
√

κ
kBT

 (A.59)

µ = µigc + (n− 1)µbondincr , (A.60)

where the incremental chemical potential of the reference chain is

µbondincr = −kBT ln

4
√

2π3/2(κ`2 + kBT )

κ
√

κ
kBT

 . (A.61)
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A.5 Chain with rigid bonds

Particle Insertion Approach

Consider a system containing Ni linear chains each composed of i beads. All beads are

taken to be the same species. The number of chains of any length are contained in set

{Nα} = {N1, N2, · · · , Ni, Ni+1, · · · }, where N1 is the number of non-bonded monomers, N2

is the number of dimers, and so on. The total number of molecules (chains) in the system

is

M =
∞∑
i=1

Ni. (A.62)

Similarly, the total number of monomers (beads) in the system is

m =
∞∑
i=1

iNi. (A.63)

The beads interact though non-bonded potential functions and are rigidly bonded to the

subsequent monomer of a chain with a constant bond length `. This implies that each i+ 1

monomer can only exist on the surface of a sphere with radius `, centered at ~ri. The first

monomer of any chain (i = 1) can exist anywhere in the system volume V . The canonical

partition function for such a system is

Q({Nα}, V, T ) =
1∏∞

i=1(Λi
3NiNi!)

×
∫

(Dij)
m

exp

[
−U(rm)

kBT

]
drm (A.64)

where Λi =
√
h2/2π

∑i
j=1(mj)kBT is the thermal de Broglie wavelength of an i-mer and mj

is the mass of a constituent bead in the j-th position, rm is the set of all m position vectors

{~r1, · · · , ~rm}, (Dj
i ) is the domain of integration for a bead at position j of an i-mer, and U

is the potential energy of a given set of monomer positions, defined through non-bonded,

monomer interactions (e.g. the Lennard-Jones potential), external potential (an adsorption

or electrostatic potential), and internal stiffness potential (such as bond angle or torsion

potentials). Equation (A.64) fully describes the system of {Nα} chains in a constant volume

V at constant temperature T . The domain of integration for a given bead k (at position j
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on an i-mer) is determined by the connectivity of the chain,

(
Dj
i

)
k

=


V, for j = 1

Sk, otherwise

(A.65)

where Sk is the surface of a sphere of radius ` centered at ~rk−1. For example, suppose we

have a system composed of 2 monomers and 2 dimers (N1 = 2, N2 = 2), for a total of m = 6

beads. The configurational integration for this system would be

∫
V

∫
V

∫
V

∫
S4

∫
V

∫
S6

exp

[
−U(r6)

kBT

]
d~r1 d~r2 d~r3 d~r4 d~r5 d~r6.

By defining the integral domains as such, there is no loss of information compared to the

general approach of integration over the entire volume for all positions.

The Helmholtz free energy of the {Nα} system is related to the partition function by

F ({Nα}, V, T ) = −kBT lnQ({Nα}, V, T ). (A.66)

From the fundamental equation of thermodynamics, the chemical potential of a ν-mer is

the change in free energy per molecule at constant volume and temperature,

µν({Nα}) =
∂F

∂Nν

∣∣∣∣
{Nα6=ν},V,T

, (A.67)

which can be represented by a finite difference in the thermodynamic limit of Nν →∞,

µν({Nα}) = F ({N1, · · · , Nν + 1, · · · }, V, T )− F ({Nα}, V, T ). (A.68)

Equation (A.68) represents the chemical potential of an ν-mer in a fluid of {Nα} chains. Now

suppose a single chain of ν+1 monomer is inserted in the system described byQ({Nα}, V, T ).

The chemical potential of this addition would be

µν+1({Nα}) = F ({N1, · · · , Nν+1 + 1, · · · }, V, T )− F ({Nα}, V, T ). (A.69)
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Similarly, Eq. (A.69) represents the chemical potential of an (ν + 1)-mer in a fluid of {Nα}

chains. We can now define the difference of chemical potentials between a chain of ν

beads and a chain of ν + 1 beads as the incremental chemical potential, illustrated by

substracting Eq. (A.68) from (A.69),

µinc(ν) ≡ µν+1({Nα})− µν({Nα}) (A.70)

= F ({N1, · · · , Nν+1 + 1, · · · }, V, T )− F ({N1, · · · , Nν + 1, · · · }, V, T ) (A.71)

= −kBT ln

[
Q({N1, · · · , Nν+1 + 1, · · · }, V, T )

Q({N1, · · · , Nν + 1, · · · }, V, T )

]
. (A.72)

To obtain an expression for µν useful for molecular simulation, we begin by substituting

Eq. (A.66) into (A.68), and then expanding:

µν({Nα}) = −kBT ln

[
Q({N1, · · · , Nν + 1, · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )

]
(A.73)

= −kBT ln

[
Q({N1, · · · , Nν + 1, · · · }, V, T )

Q({N1, · · · , Nν−1 + 1, · · · }, V, T )
× Q({N1, · · · , Nν−1 + 1, · · · }, V, T )

Q({N1, · · · , Nν−2 + 1, · · · }, V, T )
× · · ·

×Q({N1 + 1, · · · , Nν , · · · }, V, T )

Q({N1, · · · , Nν , · · · }, V, T )

]
. (A.74)

By substituting the above definition of µinc, we see it is possible to realize the chemical

potential of chain by summing its incremental values. Rewriting Eq. (A.74) in terms of

incremental chemical potential as defined by Eq. (A.72),

µν({Nα}) =
ν−1∑
i=1

µinc(i) + µ0({Nα}), (A.75)

where µ0 is the chemical potential of a unbonded monomer inserted in the system of {Nα}

chains, emerging from the last term in Eq. (A.74). Treating this term first,

µ0({Nα}) = −kBT ln

[
Q({N1 + 1, · · · , Nν , · · · }, V, T )

Q({N1, · · · , Nν · · · }, V, T )

]
(A.76a)
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= −kBT ln

[ ∏∞
i=1(Λi

3NiNi!)

Λ1
3(N1 + 1)

∏∞
i=1(Λi

3NiNi!)
×∫

(Dji )1

· · ·
∫

(Dji )m

∫
(Dji )m+1

exp
[
−−U(rm)

kBT

]
exp

[
−U(~rm+1)

kBT

]
drm d~rm+1

∫
(Dji )1

· · ·
∫

(Dji )m

exp
[
−−U(rm)

kBT

]
drm

 . (A.76b)

Equation (A.76b) contains a thermal average of an integral. The domain for this integral

is (D1
1)m+1 = V , by Eq. (A.65), since it is known from the partition function ratio that the

m+ 1 bead is a non-bonded monomer. Thus, Eq. (A.76b) becomes

µ0({Nα}) = −kBT ln

[
V

Λi
3(N1 + 1)

]
− kBT ln

 1

V

∫
V

d~r0

〈
exp

[
−U(~r0)

kBT

]〉
{Nα}

 (A.77a)

= −kBT ln

[
V

Λi
3(N1 + 1)

]
− kBT ln

〈
exp

[
−U(~r0)

kBT

]〉
{Nα},V

(A.77b)

= µid0 ({Nα}) + µex0 ({Nα}), (A.77c)

where ~r0 replaces ~rm+1 and represents a bead randomly inserted into the volume V con-

taining {Nα} chains, and the brackets 〈· · · 〉 represent a canonical average. Equation (A.79)

an analog for the orginial Widom insertion method of mixtures.

An expression for µinc can be obtained in a similar fashion. Beginning with the definition

presented in Eq. (A.72),

µinc(ν) = −kBT ln

[
Q({N1, · · · , Nν+1 + 1, · · · }, V, T )

Q({N1, · · · , Nν + 1, · · · }, V, T )

]
(A.78a)

= −kBT ln

[
Λν

3(Nν + 1)
∏∞
i=1(Λi

3NiNi!)

Λν+1
3(Nν+1 + 1)

∏∞
i=1(Λi

3NiNi!)
×∫

(Dji )1

· · ·
∫

(Dji )m+ν

∫
(Dji )m+ν+1

exp
[
−−U(rm+ν)

kBT

]
exp

[
−U(~rm+ν+1)

kBT

]
drm+ν d~rm+ν+1

∫
(Dji )1

· · ·
∫

(Dji )m+ν

exp
[
−−U(rm+ν)

kBT

]
drm+ν

 . (A.78b)

Just as with the non-bonded monomer case of µ0, there is a thermal average in Eq. (A.78b).

However, the domain is not the system volume V . Instead , the domain (Dj
i )m+ν+1 =
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Sm+ν+1, and is the surface of a sphere centered at the terminal monomer in the ν-th position

of the additional ν-mer chain in the system {Nα}. Thus, Eq. (A.78b) can be reduced to

µinc(ν) = −kBT ln

[
Λν

3(Nν + 1)

Λν+1
3(Nν+1 + 1)

]
− kBT ln

 ∫
Sins

d~rins

〈
exp

[
−U(~rins)

kBT

]〉
{N1,··· ,Nν+1,··· }


(A.79a)

= −kBT ln

[
Λν

3(Nν + 1)

Λν+1
3(Nν+1 + 1)

]
− kBT ln

〈
exp

[
−U(~rins)

kBT

]〉
{N1,··· ,Nν+1,··· },Sins

(A.79b)

= µidinc(ν) + µexinc(ν), (A.79c)

where ~rins is the position of an inserted bead on the surface of a surface of a sphere Sins

with radius ` centered at ~rm+ν , the termainl bead of the inserted ν-mer. The canonical

average in Eq. (A.79b) is the average Boltzmann factor of this insertion, over a system

of {N1, · · · , Nν + 1, · · · } chains and on the surface of the sphere Sins. Putting everything

together, a single expression for µν is obtained,

µν({Nα}) = −kBT ln

[
V

Λν
3(Nν + 1)

]
− kBT ln

〈
exp

[
−U(~r0)

kBT

]〉
{Nα},V

−
ν−1∑
i=1

kBT ln

〈
exp

[
−U(~rins)

kBT

]〉
{N1,··· ,Ni+1,··· },Sins

(A.80)

B CHAINBUILD code

CHAINBUILD is a FORTRAN90 program in which the incremental gauge cell method is

implemented. It was used for all work presented in this thesis, with the exception of the

first cavitation work (Section 3.1). It is capable of simulating single chains with harmonic or

rigid bonds, with the Lennard-Jones (LJ) potential and an externally supplied adsorption

potential. Additionally, it can simulate LJ fluids in bulk or spherical pores. Canonical,

grand canonical, and mesocanonical ensembles are implemented. The sections below refer

to individual files. The program is constantly evolving to meet current needs; as such, the

code below is a snapshot at the time of writing.
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B.1 main.f

cccccccccccccccccccccccccccccccccccccccccccccc

ccc MAIN - chainbuild ccc

ccc Calculate chemical potential in ccc

ccc chain molecules. ccc

cccccccccccccccccccccccccccccccccccccccccccccc

program chainbuild

use inputs !Contains system parameter variables and IO subroutines

use outputs !Contains subroutines to write at levels

use sample

use fort_rand !Contains random number function and initializer

use energy

use moves !Contains energy variables , and subroutines to

! calculate energies and preform MC move_pct

use constants

implicit none

integer INI_MOVES

parameter (INI_MOVES =200) ! Number of moves per bead to initialize

system

real*8 :: start_time ,finish_time ,runtime

real*8 :: xx,yy,zz

real*8 :: xn,yn,zn,dd,r,rr,theta

real*8 rnd_move

real*8 dBw ,pf1,pf2 !de Broglie wavelength

real*8 olduff , oldukbl , oldusf , efail !for testing conservation of E

real*8 Vg_avg !average of Vg used in equilbration phase

integer :: i,j,k,w,nset1,vg_avg_n,sets !counters

logical overlap

! Data for storing a sequence of moves

integer ,allocatable :: seq_mvtype (:), seq_molid (:)

real*8, allocatable :: seq_oldpos (:,:)

integer seq_step , seq_set , seq_steps

logical suc , exitnormal

!!!!!!!!!!!!!!!!!!!!!!!!!

!! Initialize !!

!!!!!!!!!!!!!!!!!!!!!!!!!

! Read in initial configuration and run settings

call readinput ()

! Intialize the random number generator

call rand_init(rseed)

call readcoor () !Read in coordinates

! Equations , constants , and variable initialization

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

n_dis=0; n_rep=0; mu=0; Eins =0; mu_avg=0

mu_set =0; mu_nid =0; Uff_avg =0; rho =0; Vg_avg=0

mass=mass/Na /1000. !kg/molecule

beta =1/T/eps

step_warning = .false.
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! insertion volume

select case (ins_geom)

case (1)

Vins =4.0*pi*(rins_max**3.- rins_min **3.) /3.0

case (3)

vins =8.0*( rins_max **3.)!-rins_min **3.)

case default

end select

sig=sqrt(T/(2.0* kb0_len)); aa=(r0+3.0* sig)**2 ! values relating to

generation of harmonic bonds

dBW=h/sqrt (2.0*pi*mass*kb*T*eps) !m

dBW=dBw*1e10/ sigma !per sigma (sigma in variable stored in Angstroms)

insprob =0.5

allocate( seq_mvtype(maxsavesteps), seq_molid(maxsavesteps) )

allocate( seq_oldpos(3, maxsavesteps) )

if (bonds) then !! .and. ensemble.ne.2

if (.not.ins_bias) Vins =1.0 ! "Fixed Distribution"

a=Vins/Vg

if (harm_len) then

mu_id=-T*log (4.0* pi*sqrt (2.0* pi)*(2.0* kb0_len*r0**2+T)/

& (2.0*kb0_len*sqrt (2.0*kb0_len/T))) !per epsilon

endif

if (ins_bias) mu_id=-T*log(Vins)

else

select case (ensemble)

case (2)

a=Volume/Vg

case (1)

a=Volume*exp(mu_bulk/T)/dBw**3

Ng=1

end select

mu_id=T*log(dBw **3)

endif

rcut2=rcut*rcut

if (hardbond) then

step_dis = 1.5

else

step_dis =0.1

endif

cs_stp =0.5

sets=(nset+neqset)

r=Li(1)/2.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

call initialize_system ()

call writecoor(coorfile)

! Print move matrix

print *, "Selected move percentages :"

do k=1,nmoves

write (* ,510) movename(k),move_pct(k), move_cumpct(k)

enddo

510 format(A20,F10.3,F10.3)

!!
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if (run_ini) then

!! MINIMIZATION --

call calc_energy (.false .)

Print *, ’Minimizing initial configuration ...’

print *, ’ Old System Energy = ’, Uext+Uint

do j=1,INI_MOVES

do i=1,n

call displacement(suc)

enddo

enddo

print *," Completed ",n*INI_MOVES ," minimiziation moves!"

endif

call calc_energy (.true.)

print *,’ Initial System Energy = ’,Uext+Uint

!call calc_energy (.true.) !Calculate initial energy

write(*,’(A,E13.6,a,F8.3,a,E13.6,a,F8.3,A)’)

& ’ Initial Configuration: Uff= ’,

& Uff ,’(’,Uff/float(n),’ per bead)’

write(*,’(A29,E13.6,A,F8.3,A)’) ’Usf= ’,Usf ,’(’,

& Usf/float(n),’ per bead)’

write(*,’(A29,E13.6,A,F8.3,A)’) ’Ukbl=’,Ukbl ,’(’,

& Ukbl/float(n),’ per bead)’

write(*,’(A29,E13.6,A,F8.3,A)’) ’Ukba=’,Ukba ,’(’,

& Ukba/float(n),’ per bead)’

do i=1,N

x_org(i)=x(i)

y_org(i)=y(i)

z_org(i)=z(i)

enddo

!End initialization

if (calc_traj) call writetraj (0)

if (bonds) print *,"RADIUS OF GRYATION = ",radius_gryation ()

write (*,*) ’Starting simulation . . .’

call cpu_time(start_time)

!!!!!!!!!!!!!!!!!!!!!!!!!

!! MAIN LOOP OVER SETS !!

!!!!!!!!!!!!!!!!!!!!!!!!!

vg_avg_n=0; seq_step =0;

do set=1,sets

!Initialize variables

!! MOVE COUNTERS !!

acc_dis=0; acc_rep =0; acc_cs=0; n_reg_acc=0

n_dis=0; n_rep=0; n_cs=0; n_reg=0

ng_rem =0; ng_rem_suc=0

ng_ins =0; ng_ins_suc=0

exitnormal =.false.

!! CHEM. POT. !!

mu=0.; Eins =0.

mu_set =0.; mu_nid =0.

rhogauge =0.; rho_set=0

U_set=0;
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UFF_Set=0; USF_Set=0

Ukbl_set =0; Ukba_set=0

n_widom =0; N_set=0

do step=1,nstep ! Loop over steps.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Randomly select one of the Monte -Carlo move_pct

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

500 continue

!print *, "UFF (from MAIN)", Uff

rnd_move=rnd()

if (rnd_move.lt.move_cumpct (1)) then

!Displace particle on chain

call displacement(suc)

k=1

elseif (rnd_move.lt.move_cumpct (2)) then

!Shift particles down the chain by 1

call reptation ()

k=2

elseif (rnd_move.lt.move_cumpct (3)) then

if (n.gt.cs_len) then

call crankshaft(cs_len)

k=5

else

goto 500

endif

elseif (rnd_move.lt.move_cumpct (4)) then

if (ensemble.ge.1) then

call gauge_exchange(suc)

k=3

else

!call bulk_exchange ()

!k=4

endif

elseif (rnd_move.lt.move_cumpct (5)) then

if (n.gt.3) then

call regrow_move(ktrials ,N-rndint(N/2+1))

else

goto 500

endif

k=6

else

write (*,*) "Error selecting MC move_pct!"

write (*,*) rnd_move

endif

! See if we ’re saving a trajectory of steps to contruct cavitation

event

if (suc .and. maxsavesteps > 0) then

seq_step = seq_step + 1

if (seq_step > maxsavesteps) then

seq_step = 1

end if

seq_mvtype(seq_step) = k ! Store type of move
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seq_molid(seq_step) = MOLID ! Store attempted move ’s molecule ID

seq_oldpos(:,seq_step) = (/ XOLD , YOLD , ZOLD /) ! Store

attempted move ’s previous position

seq_set=set

seq_steps=step

if (( rhorec_lt .and. N/Volume < rhostop) .or.

& (rhorec_gt .and. N/Volume > rhostop)) then

maxsavesteps =-1 ! minus one is sign to stop , but print

results later

call writecoor(trim(jobname)//". cavcoor ")

end if

end if

!! Test for conservation of energy , if requested

if (energy_conserve) call isenergyconserved(cons_type ,k)

! SAMPLING ----------------------------------------------------

! Tests and histograms if simulation is far enough along

if (set.gt.nEqSet) then

! Test insertion for NVT

if (calc_widom) call insert ()

! update N_gauge histogram if MCE

if (ensemble.ge.1) call samplegauge (.false .)

endif

! Update Energies

!U_SET=U_SET+(UFF+UKBl+UKBa+USF)

UFF_SET=UFF_SET+UFF

USF_SET=USF_SET+USF

if (bonds) Ukbl_SET=Ukbl_SET+Ukbl

if (bonds) UKBa_SET=UKBa_SET+UKBa

N_set=N_set+N

!if (ensemble.eq.2) rhogauge = rhogauge + dble(NG)/( nstep*VG)

if (rhostop_lt .and. N/Volume < rhostop) exit

if (rhostop_gt .and. N/Volume > rhostop) exit

enddo ! over steps ------------------------------------------

N_set=N_set/float(nstep)

rhogauge = (Ntotal - N_set) / VG

! Automatically adjust gauge -sze

! the equilibriation stage has three parts - adjust the gauge , no

averaging;

! adjust the gauge , with averaging; and take the average gauge and

set so simulation

! can start. This will hopefully even out some fluctuations

observed .

if (set.lt.neqset .and. autogauge) then

if (set.gt.( neqset /10).and.set.lt.neqset *9/10) then

Vg_avg=Vg_avg+Vg

vg_avg_n=vg_avg_n+1

if (rhogauge.gt.0) then

VG=float(NGTARGET)/( rhogauge)

else

VG=VG*100

endif

elseif (set.ge.neqset *3/4) then
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Vg=Vg_avg/vg_avg_n

elseif (set.lt.neqset /4) then

if (rhogauge.gt.0) then

VG=float(NGTARGET)/( rhogauge)

else

VG=VG*100

endif

endif

if (bonds) then

a=Vins/Vg

else

a=Volume/Vg

endif

endif

! Adjust step sizes for displacement

XX=(acc_dis *1.0)/(n_dis *1.0) !! FRACTION OF SUCCESSFUL move_pct

if (set.lt.neqset) then

iF (XX.LT.0.3) then

step_dis=step_dis /1.1

write (*,*) "NEW DISP STEP = ",step_dis

elseIF ((XX.gT.0.5).AND.(step_dis.LE.(Li(1) /2/1.1))) then

step_dis=step_dis *1.1

write (*,*) "NEW DISP STEP = ",step_dis

endif

endif

! Adjust step sizes for crankshaft MC move

XX=(acc_cs *1.0)/(n_cs*1.0) !! FRACTION OF SUCCESSFUL move_pct

if (set.lt.neqset) then

iF (XX.LT.0.5) then

cs_stp=cs_stp /1.1

write (*,*) "NEW CS STEP = ",cs_stp

elseIF (XX.gT.0.6) then

cs_stp=cs_stp *1.1

write (*,*) "NEW CS STEP = ",cs_stp

endif

endif

! Reduce Average set values

Uff_SET=UFF_SET/float(nstep)

Usf_SET=Usf_SET/float(nstep)

if (bonds) Ukbl_SET=Ukbl_SET/float(nstep)

if (bonds) Ukba_SET=Ukba_SET/float(nstep)

U_SET=Uff_set+Usf_set+Ukbl_set+Ukba_set

rho_set=N_set/Volume

if (set.eq.neqset) rho_g=0.0 ! Initialize the gauge density for MDGC

if (set.gt.nEqSet) then

! Calculate chemical potential

if (ensemble.eq.0) then

!!! widom insertion

mu=-T*log(mu_nid/n_widom)

rho_g = rho_g + mu_nid/n_widom ! rho_g is container for

<exp(-Uins/kT)> here

elseif (ensemble.eq.2) then

! from gauge density

rho_g=rho_g+rhogauge ! update the running average

mu=T*log(rhogauge)
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endif

mu_set=mu

! SAMPLING ----------------------------------------------

! Tests and histograms if simulation is far enough along

if (calc_bondl) call samplebonds (.false .)

!Includes bond len distribution , RMS , Tortousity , Random Coil &

radius of gyration

if (calc_bonda) call sampleangles (.false .) !Calculate bond angle

distribution

if (calc_gr) call sample_gr(.false .) !Calculate g(r)

if (calc_dens) call sample_density (.false .) !Calculate density

profile

!-------------------------------------------------------

!Update simulation averages

Uff_avg=Uff_avg+Uff_set

Usf_avg=Usf_avg+Usf_set

if (bonds) Ukba_avg=Ukba_avg+Ukba_set

if (bonds) Ukbl_avg=Ukbl_avg+Ukbl_set

if (ensemble.ge.0) rho=rho + rho_set

if (ensemble.ne.1) mu_avg=mu_avg+mu_set

endif

!DISPLAY AFTER SET COMPLETE

call set_output(iolev (1),iolev (2)) ! write output to screen and disk

call writecoor(coorfile) ! write coordinates to save file

if (calc_traj .and. mod(set ,trajfreq).eq.0) call writetraj (0)

if (bonds) print *,"RADIUS OF GRYATION = ",radius_gryation ()

if (rhostop_lt .and. N/Volume < rhostop) exit

if (rhostop_gt .and. N/Volume > rhostop) exit

exitnormal =.true.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

enddo ! loop over sets

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! END OF MAIN METROPOLIS ALGORITHIM

if (step_dis .lt. 1e-4) step_warning = .true.

if (exitnormal) then

set=set -1

step=step -1

end if

!! Averages !!

mu_avg=mu_avg/nset

Uff_avg=Uff_avg/nset

Usf_avg=Usf_avg/nset

if (bonds) Ukbl_avg=Ukbl_avg/nset

if (bonds) Ukba_avg=Ukba_avg/nset

rho=rho/nset

rho_g=rho_g/nset

!print *, mu_avg , -T*log(rho_g), mu_id

if (ensemble ==0) mu_avg = -T*log(Vins*rho_g) ! the PROPER averages

for mu...

if (ensemble >=2) mu_avg = T*log(rho_g)
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!reduce histograms , averages and write to disk

call samplegauge (.true.)

if (calc_bondl) call samplebonds (.true.)

if (calc_bonda) call sampleangles (.true.)

if (calc_gr) call sample_gr(.true.)

if (calc_dens) call sample_density (.true.)

! Simulation done , output duties

call writesummary(resfile)

call writeaverageenergies ()

call writefinalle ()

! Write out previous moves , if required

if (maxsavesteps /= 0) then

! print the coordinates , if not already done so

if (maxsavesteps /= -1) then

call writecoor(trim(jobname)//". cavcoor ")

else

set = seq_set

step = seq_steps

end if

open(file=trim(jobname)//’.cavtraj ’,unit =909)

write (909,’(A,I10,A,I10) ’) "# Finished on set ",set ,

& " at step ",step

write (909,’(A)’) "# MOVE_TYPE MOL_ID OLD_POS"

do i = seq_step , 1, -1

write (909 ,*) seq_mvtype(i), seq_molid(i), seq_oldpos(:,i)

end do

do i = maxsavesteps , seq_step+1, -1

write (909 ,*) seq_mvtype(i), seq_molid(i), seq_oldpos(:,i)

end do

close (909)

end if

call cpu_time(finish_time)

runtime=finish_time -start_time

write (*,*) ’ CPU Time: ’, time_str(runtime)

open(file=logfile ,position=’APPEND ’,unit =27)

write (27,*) ’ CPU Time: ’, time_str(runtime)

if (.not. exitnormal) then

write (*,*) "PROGRAM STOPPED BEFORE FINISHING ALL REQUESTED "//

& " SETS!"

write (27,*) "PROGRAM STOPPED BEFORE FINISHING ALL REQUESTED "//

& " SETS!"

end if

deallocate( move_pct , move_cumpct ,movename )

deallocate( seq_oldpos , seq_molid , seq_mvtype )

if (allocated(USF_band)) deallocate(USF_band)

close (27)

end program chainbuild

!! Recalculates U and compares new value to running value.

!! Stops program is value is less than specified amount.

subroutine isenergyconserved(set_or_step ,whichmove)
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use energy

use inputs

use outputs

implicit none

real*8 olduff , oldukbl , oldusf , efail !for testing conservation of E

integer set_or_step ,whichmove

select case (set_or_step)

case (1)

!Every set

if (step.ne.nstep) return

case (0)

!Every step

case default

write (*,*)

& "Invalid selection for ONSET or ONSTEP conservation !"

stop

end select

olduff=uff; oldusf=usf; oldukbl=ukbl

call calc_energy (.false .)

efail=abs(olduff -uff)+abs(oldukbl -ukbl)+abs(oldusf -usf)

if (efail.gt.cons_tol) then

select case (whichmove)

case (1)

write (*,*)

& ’Energy conservation fail on displacement step!’

case (2)

write (*,*)

& ’Energy conservation fail on reptation step!’

case (3)

write (*,*)

& ’Energy conservation fail on gauge exchange step!’

write (*,*) ’Accepted Gauge move_pct (I/R):’,

& ng_ins_suc ,ng_rem_suc

case (5)

write (*,*)

& ’Energy conservation fail on crankshaft step!’

case (6)

write (*,*)

& ’Energy conservation fail on CB regrow step!’

case default

write (*,*) "MC move not programmed for conservation ..."

stop

end select

write (*,*) ’ Uff(OLD), Uff(TRUE)=’,olduff ,uff

write (*,*) ’ Usf(OLD), Usf(TRUE)=’,oldusf ,usf

write (*,*) ’ Ukbl(OLD), Ukbl(TRUE)=’,oldukbl ,ukbl

write (*,*) ’ Current: N=’,N

call writecoor(coorfile) ! write coordinates to save file

stop
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endif

return

end subroutine isenergyconserved

B.2 inputs.f

module inputs

use constants

implicit none

! ### Compilier parameters ##

integer maxpart ,maxlines

parameter(MAXPART =10005 , MAXLINES =50)

!! MAXPART is the longest chain that can be generated

!! Program will probably segfault if N goes over this value.

!! MAXLINES is the most allowed

! ### INPUTS ###

! Job Details

integer :: nset ,nstep ,neqset ,rseed

real*8 :: cons_tol

logical energy_conserve , ready

! System Parameters

integer ensemble

real*8 :: T,mu_bulk ,beta ,gr_delr

real*8 :: rho ,rho_set ,temp , N_set

logical calc_widom ,calc_dens ,calc_hist ,calc_bonda ,calc_bondl

logical recordene , recordpos , recordcom , calc_gr,calc_traj

logical movesassigned , run_ini , autogauge ,tethered(MAXPART)

integer a_bins ,bl_bins ,dens_bins ,cons_type ,nmoves ,ktrials

integer gr_maxbin ,ba_bins ,n_max_regrow

real ,allocatable :: move_pct (:),move_cumpct (:)

character *14, allocatable :: movename (:)

character*3, allocatable :: mv_short (:)

character *4 :: trajtype

! Chain Parameters

integer :: Ni ,Nf ,Ncalc ,Ntotal ,Ng,ngtarget ,length

real*8 :: rins_max ,rins_min ,vins ,Vg,rhogauge ,rho_g,a

logical gauge_auto

!!!!! Potentials !!!!!

logical :: harm_len ,harm_3bond ,harm_ang ,angle ,cb_regrow

logical :: softcore ,lennjones ,wall_pot ,SetPBC (3)

logical :: hardbond ,hardcore ,bonds ,ins_bias

integer ncut , ins_geom , freq_widom , cs_len

real*8 :: the_max ,the_min ,kb0_len ,kb0_ang ,kb1_3bd,kb2_3bd

real*8 :: eps , sigma , r0,theta0,th1,th2,rcut ,rcut2,mass

real*8 :: hibnd_HB,lobnd_HB, lj_shift

logical tailcorr , hardwall , sphere

logical both_ends ! should we sample both ends of the chain?

! Solid Paramters - U=U(r)

integer geom ,layers ,bands !geometry of confinement ,# of layer

real*8 Li(3),Ri(3) !confinement dimensions (r) (r,z) or (x,y,z)

real*8 Volume

real*8, allocatable :: gr_hist (:),USF_Band (:,:) !tabbulated USF

potential

! Solid Parameters - U=U(r,theta)
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integer dens_type ,rlayers ,tlayers ,rad_bins ,ax_bins ! layers in radius

and theta

real*8 xz_dy,omega ! thinkness of XZ plane for planar dens ,

radians per tlayers

!----------------GG

real*8 Di(6) ! geometrical parameters:

! diameters D1, D2, opening size , distance between centers , l1, l2

real*8 rod_a,rod_b,rod_c,alpha ,beta ! values relating to

parallelogram PBC --

! tan(alpha)=b/c, c=Li(1) (x length of box), a+b=Li(2) (y length of box),

Li(3) = z length of box

!----------------GG

! ### OUTPUTS ###

integer :: iolev (2),trajfreq

integer :: maxsavesteps

character *80 :: logfile ,coorfile ,resfile ,trajfile

character *80 :: solfile ,inicoorfile ,comfile

character *80 :: enefile ,mufile ,densfile ,histfile ,bondlfile

character *80 :: bondafile ,jobname ,posfile !,jobrfile

! ### System Variables ###

real*8 :: x(MAXPART),y(MAXPART),z(MAXPART)

real*8 :: x_org(MAXPART),y_org(MAXPART),z_org(MAXPART)

integer :: n !current length of chain

! ----------- LATE ADDITIONS !! --------------__!

! ## functionalized polymers ##

integer func_loc

real*8 func_eps , eps_start ,eps_end ,eps_rep ,func_s1

logical func_chain (3), space

! ## trajectory tracing and cavitation halting ##

logical :: rhostop_lt , rhostop_gt , rhorec_lt, rhorec_gt

real*8 :: rhostop

contains

! Read in parameters for simulation

cccccccccccccccccccccccccccccccccccccc

subroutine readinput ()

character *50 filein

character *50 tmp(7)

character *80 str ,calcstr

character *1 first

integer i,j,k,ie ,linecount ,lpos ,ncalcs

real summoves

tmp (1:7)=’’ ! Clear temporary strings

!if (iargc().ge.1) then

! call getarg(1,filein)

! open(file=filein ,unit=10, status=’old ’)

!else

! open(file=’chainbuild.stdin ’,unit=10, status=’old ’)

! filein=’chainbuild.stdin ’

!endif

linecount =0
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rins_min =0.0 !Default value

inicoorfile=’NONE ’ !by default

resfile=’NONE ’

rseed =0

trajfreq =0; freq_widom =0

lj_shift =0.d0

ins_bias=. false.

movesassigned =. false.

ready =.false.

tethered =.false.

both_ends=.false.

harm_len=.false.

hardwall =.false.

rad_bins =0; ax_bins=0

maxsavesteps =0

rhostop_lt=. false.; rhostop_gt=.false.

rhorec_lt = .false .; rhorec_gt = .false.

rhostop = 0.d0

eps_start =1.d0; eps_end =1.d0; eps_rep =1.d0

func_chain =.false .; space = .false.

write (*,*) ’CHAINBUILD - MC simulation of flexible LJ chains ’

write (*,*) ’================================================ ’

!!!!!!!!! Read input file , ignoring comments !!!!!!!!!!!!!

do while (.not. ready)

first=’#’

do while (first.eq.’#’ .or. first.eq.’!’)

write(*,’(A)’,advance=’NO ’) "> "

read(*,’(A80) ’) str

first=str (1:1)

enddo

!str=takestr (10,ie ,linecount)

read(str ,*) tmp (1)

tmp(1)=trim(tmp (1))

tmp(1)=upcase(tmp (1))

c print *,i,str

CHECK_OPERATOR: SELECT CASE (tmp(1))

case (’HELP ’)

write (*,*) ’No help yet!’

case (’RUN ’)

write (*,*) ’Running simulation ...’

ready=.true.

case (’NAME ’)

read(str ,*) tmp (1),jobname

write (*,*) ’jobname= ’,jobname

case (’RSEED ’)

read(str ,*) tmp (1),rseed

write (*,*) ’random seed= ’,rseed

case (’TRACK ’) ! track level

read(str ,*) tmp (1),iolev (1),iolev (2)
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write (*,*) ’I/O tracking at levels ’,iolev (1),iolev (2)

case (’JOB ’)

read(str ,*) tmp (1),neqset ,nset ,nstep

write (*,*) ’eq.sets ,avg.sets ,steps/set= ’,neqset ,nset ,nstep

case (’ENS ’) ! ensemble

read(str ,*) tmp (1),tmp (2)

tmp(2)=trim(tmp (2))

tmp(2)=upcase(tmp (2))

CHECK_ENSEMBLE: SELECT CASE (tmp(2))

case (’NVT ’)

ensemble = 0 ! NVT ensemble

read(str ,*) tmp (1),tmp (2),length ,T

print *,’Canonical ensemble selected.’

print *,’ Monomers =’,length

write (*,*) ’ Temperature (K) =’,T

calc_widom=.true.

case (’GCE ’)

ensemble = 1 ! grand canonical

read(str ,*)

* tmp(1),tmp(2),mu_bulk ,T

print *,’Grand canonical ensemble selected.’

print *,’ Bulk chemical potential (in epsilon_FF) =’,

& mu_bulk

write (*,*) ’ Temperature (K) =’,T

case (’MCE ’)

ensemble = 2 ! gauge cell method

read(str ,*)

* tmp(1),tmp(2),Ntotal ,T,Vg

vg=vg*vg*vg

if (vg.eq.0) gauge_auto=.true.

print *,’Mesocanonical ensemble selected.’

print *,’ N_cage+N_gauge =’,Ntotal

write (*,*) ’ Temperature (K) =’,T

write (*,*)’ Gauge cell volume =’,Vg

calc_hist=.true.

case (’GAU ’)

ensemble = 2 ! gauge cell method , with automatic gauge

cell volume

read(str ,*)

* tmp(1),tmp(2),Ntotal ,T,Vg ,Ngtarget

Vg=Vg**3

Ntotal=Ntotal+Ngtarget ! this makes input for batch jobs much

easier. still have to update other comments and

documentation ...

write (*,*)’Mesocanonical ensemble selected.’

write (*,*)’ N_cage+N_gauge =’,Ntotal

write (*,*)’ Temperature (K) =’,T

write (*,*)’ Initial gauge volume =’,Vg

calc_hist=.true.

autogauge =.true.

case default
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print *,’Bad Ensemble Choice!’

print *,’Select NVT , GAU (Auto gauge cell), MCE (Ma ’//

& ’nual gauge), or GCE (Grand canonical) ensemble.’

stop

eND SELECT CHECK_ENSEMBLE

case(’TETHER ’)

! Tethering will only work on the 1st bead of the chain if using gauge or

CBMC

! To tether multiple beads , you must use NVT and displacement moves

(FE -CBMC will be capable of tethering both ends)

read(str ,*) tmp (1),i

both_ends=. false.

tethered(i)=.true.

write (*,*) "Will fix position of Mol -ID ",i

case (’RECORD ’)

read(str ,*) tmp (1),tmp (2)

tmp(2)=upcase(tmp (2))

CHECK_REC: select case (tmp(2))

case (’ENERGY ’)

recordene =.true.

write (*,*) ’Will record energy values.’

case (’POSITION ’)

recordpos =.true.

if (.not.calc_bondl) then

calc_bondl =.true.

bl_bins =100 !default value

endif

write (*,*) ’Will record position -related values.’

case (’COM ’)

recordcom =.true.

if (.not.calc_bondl) then

calc_bondl =.true.

bl_bins =100 !default value

endif

write (*,*) ’Will record center -of -mass coordinates.’

case (’TRAJECTORY ’)

read(str ,*) tmp (1),tmp (2),trajfreq ,trajtype

calc_traj=.true.

!trajtype = tidy(trajtype)

write (*,*)’Will record trajectory every ’,trajfreq ,

& ’sets as ’,trajtype

case (’CAVITATION ’)

read(str ,*) tmp (1),tmp (2),maxsavesteps

write (*,*)’Will save last ’,maxsavesteps ,’ moves.’

! Can then work backward through that number of moves

case default

write (*,*) ’WARNING: ’,trim(tmp(j)),

& ’ is not a valid selection for RECORD!’

stop

end select CHECK_REC

case (’SAMPLE ’)

read(str ,*) tmp (1),tmp (2)

tmp(2)=upcase(tmp (2))
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CHECK_CALC: select case (tmp(2))

case (’DENSITY ’)

read(str ,*) tmp (1),tmp (2),dens_type ,rad_bins ,xz_dy

calc_dens=.true.

dens_bins=rad_bins

if (dens_type.lt.4) ax_bins=int(xz_dy)

write (*,*) "Will sample density profile with bins=",

& dens_bins , ax_bins

case (’BONDLEN ’)

read(str ,*) tmp (1),tmp (2),bl_bins

calc_bondl=.true.

write (*,*) "Will sample bond lengths with bins=",

& bl_bins

case (’BONDANGLE ’)

read(str ,*) tmp (1),tmp (2),ba_bins

calc_bonda=.true.

write (*,*) "Will sample bond angles with bins=",

& ba_bins

case (’GR ’)

read(str ,*) tmp (1),tmp (2),gr_delr

calc_gr=.true.

write (*,*) "Will sample radial distribution with "//

& "delta_r=",gr_delr

case default

write (*,*) ’ERROR: ’,trim(tmp(2)),

& ’ is not a valid selection for SAMPLE!’

end select CHECK_CALC

case (’MODEL ’)

read(str ,*),tmp (1),tmp (2)

call readmol(tmp (2))

print *, "Read in ",trim(tmp(2)) ,"... OK!"

case (’HARDWALL ’) ! A replusive wall at z=0 (in any geometry)

! If selected , SPACE becomes BOX , so choose size appropriately.

wall_pot=.true.

hardwall =.true.

case (’SOLID ’)

read(str ,*),tmp (1),tmp (2)

tmp(2)=trim(tmp (2))

tmp(2)=upcase(tmp (2))

if (tmp (2) (1:4).eq.’BULK ’) then

read(str ,*)

* tmp(1),tmp(2),Li(1)

SetPBC =.true. !turn on periodic boundary conditions

Li(:)=Li(1)

Volume=product(Li)

geom=3

elseif (tmp (2) (1:5).eq.’SPACE ’) then

read(str ,*)

* tmp(1),tmp(2),Li(1)
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SetPBC =.false. !turn off periodic boundary conditions

Li(:)=Li(1)

layers =3

!! This is only necessary if user selects HARDWALL. Ignored otherwise

allocate ( USF_Band (4,4) )

USF_Band=0 ! zero interaction energy in box

!!!

Volume=product(Li)

geom=3

space = .true.

elseif (tmp (2) (1:3).eq.’BOX ’) then

read(str ,*)

* tmp(1),tmp(2),Li(1)

SetPBC =.false. !turn off periodic boundary conditions

layers =2

allocate ( USF_Band (4,4) )

USF_Band=0 ! zero interaction energy in box

wall_pot=.true. !turn on box (eg, reject move_pct outside

the box)

Li(:)=Li(1)

Volume=product(Li)

geom=3

elseif (tmp (2) (1:6).eq.’SPHERE ’) then

read(str ,*)

* tmp(1),tmp(2),Li(1)

SetPBC =.false. !turn off periodic boundary conditions

Li(1)=Li(1) -1.0 !Convert input to Dext (by subtracting 1

sigma. Algorithm computes hard wall for centers of beads ,

not the "surface ")

! Note for hard wall , Dint = Dext

layers =2

allocate ( USF_Band (1,4) )

USF_Band=0 ! zero interaction energy in box ,

wall_pot=.true. !turn on box (eg, reject move_pct outside

the box)

Li(:)=Li(1)

Volume=pi*Li(1) **3/6

geom=1

write(*,’(A,F8.2) ’) ’Spherical confinement , D_ext/sig=’,

& Li(1) +1.0

write(*,’(A33,F8.2) ’) ’D_int/sig=’,Li(1)

else ! Anything else will be interpeted as a

file name

read(str ,*) tmp (1),solfile

call readsol(solfile) !Read in solid geometry and sold -fluid

potential

print *, "Read in ",trim(tmp(2)) ,"... OK!"

endif

do i=1,3

if ( (rcut.gt.Li(i)/2).and.( SetPBC(i)) ) then

write (*,*)"STOPPING: PBC is greater than 1/2 box width!"

stop

endif

enddo
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c case (’SPHERE ’)

c ! Enables use of spherical geometry insertion shortcut

c ! Does NOT alter potential in any way

c sphere =.true.

c write (*,*) "Will use spherical shortcuts ."

case (’RHOSTOP ’)

read(str ,*),tmp (1),tmp (2),rhostop

if (tmp (2) ==" <") then

rhostop_lt=.true.

write (*,*) ’Will stop when rho is less than ’,rhostop

else if (tmp (2) ==" >") then

rhostop_gt=.true.

write (*,*) ’Will stop when rho is greater than ’,rhostop

else

write (*,*) ’On RHOSTOP command , unknown symbol ’,tmp(2)

stop

end if

case (’RHOSTOPTRAJ ’)

read(str ,*),tmp (1),tmp (2),rhostop

if (tmp (2) ==" <") then

rhorec_lt=.true.

write (*,*)

& ’Will stop recording cavtraj when rho is less than

’,rhostop

else if (tmp (2) ==" >") then

rhorec_gt=.true.

write (*,*)

& ’Will stop recording cavtrajwhen rho is greater than

’,rhostop

else

write (*,*) ’On RHOSTOP command , unknown symbol ’,tmp(2)

stop

end if

! QnD extension to functionalized polymers

case (’FUNC ’)

read(str ,*),tmp (1),func_loc ,func_eps ,func_s1

if (func_loc.eq.1) then ! epsilon value 1st bead in chain

eps_start = func_eps

func_chain (1)=.true.

! e_F1 is actually the ratio e_F1/e_FF

! e_S1 is actually the ratio e_S1/e_SF

write (*,*) ’Initial bead epsilon = e_F1*’, func_eps

write (*,*) ’Initial bead epsilon = e_S1*’, func_s1

c else if (func_loc.eq.2) then ! epsilon value , terminal bead

c eps_end = func_eps

c func_chain (2)=.true.

c write (*,*) ’Terminal bead epsilon = e_FF*’, func_eps

c else ! epsilon value

c eps_rep = func_eps

c func_chain (3)=.true.

c write (*,*) ’Repeat unit bead epsilon = e_FF*’, func_eps

else

print *," FUNCTIONALS CAN ONLY BE PLACED AT N=1 FOR NOW!"

STOP

end if

both_ends=. false.
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case (’INITIAL ’)

read(str ,’(A8,A80) ’),tmp (1),inicoorfile

inicoorfile=trim(inicoorfile)

write (*,*) ’initial coordinates= ’,inicoorfile

case (’SUMMARY ’)

read(str ,*),tmp (1),resfile

resfile=trim(resfile)

write (*,*) ’summary file= ’,resfile

case (’CONSERVE ’)

read(str ,*),tmp (1),tmp (2),cons_tol

tmp(2)=upcase(tmp (2))

tmp(2)=trim(tmp (2))

energy_conserve =.true.

if (tmp (2).eq.’ONSTEP ’) THEN

cons_type=0

write(*,’(A)’)

& "Will test conservation of energy every STEP."

elseif (tmp (2).eq.’ONSET ’) then

cons_type=1

write(*,’(A)’)

& "Will test conservation of energy every SET."

else

write (*,*) "Syntax Error!"

write (*,*) "CONserve [type] [absolute tolerance ]"

write (*,*)

& " [type] can be ONSET or ONSTEP; indicates when to

recalculate U"

write (*,*) " [absolute tolerance] is the difference in ",

& " U_old - U_true required to stop calculations ."

endif

case (’STOP ’)

stop

case (’EXIT ’)

stop

case (’QUIT ’)

stop

case default

write (*,*) ’ Invalid operator ’,tmp(1)

END SELECT CHECK_OPERATOR

end do ! i !

c goto 100

c99 write (*,*)

c & ’unable to read from the initial input file ’,linecount

c stop

c

c 100 close (10)

! add ability to resume stopped simulation

! add error catch if log run+debug output is requested
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!This will be the default move_pct

!Maybe put this in a configuration file later?

if ( .not.movesassigned) then

nmoves =5

allocate( move_pct(nmoves), move_cumpct(nmoves) )

move_pct (:)=1

if (ensemble.eq.0) then

! NVT , So no exchange

move_pct (4)=0

endif

if (.not.bonds) then

!No bonds , so no chain molecule move_pct

move_pct (2)=0 !Reptation

move_pct (3)=0 !Crankshaft

if (rins_max.ne.0) then

write (*,*) "Warning: Insertion bias selected with ",

& "unbonded particles ... turning off insertion bias!"

ins_bias=. false.

endif

endif

!! Normallize the move percentages

summoves=sum(move_pct)

do j=1,nmoves

move_pct(j)=move_pct(j)/summoves

enddo

!! Now store them as cumulative percentages for random selection in MC

algorithm

move_cumpct (1)=move_pct (1)

do j=2,nmoves

move_cumpct(j)=move_cumpct(j-1)+move_pct(j)

enddo

endif

! Move names (better place to put this?)

allocate (movename(nmoves),mv_short(nmoves))

movename (1)=" Displacement"

mv_short (1)="DIS"

movename (2)=" Reptation"

mv_short (2)="REP"

movename (3)=" Crankshaft"

mv_short (3)="CS"

movename (4)=" Exchange"

mv_short (4)="EXC"

movename (5)="CB Regrow"

mv_short (5)="CBR"

! Some errors I can think of -

if ( (ncut.lt.1).and.(bonds) ) then

write (*,*)’WARNING: nCut = 0 and bonded molecules! Continuing ...’

endif

if ( (ncut.ne.0).and .(. not.bonds) ) then

write (*,*) ’Nonbonded particles! Change nCut to 0!’

stop

endif

if (ensemble.ge.1 .and. move_pct (4).le.0) then
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write (*,*) ’You must exchange particles in this ensemble!’

stop

endif

if (ensemble.eq.0 .and. move_pct (4).gt.0) then

write (*,*) ’You cannot exchange particles in this ensemble!’

stop

endif

if (.not.bonds .and. (move_pct (2)+move_pct (3)).gt.0) then

write (*,*) ’Invalid move for system without bonds!’

stop

endif

if (ins_bias .and. hardbond) then

write (*,*) ’Cannot use an insertion bias with hard bonds!’

write (*,*) ’Will ignore this.’

ins_bias=. false.

endif

if (calc_dens .and. geom.eq.2 .and.

& dens_type.eq.1) then

write (*,*) "If using U=U(r,theta) external potential , please "//

& " sample density with DENS_TYPE=2 or 4 (RZ , or XZ;Y=0)"

stop

endif

if (ensemble.eq.1 .and. bonds) then

write (*,*) "GCMC calculates are not supported with chain mole "//

& "cules!"

stop

endif

! Output summary of potentials

write (*,*) ’Will use the following potentials/models:’

if (lennjones) write (*,*) ’ * Lennard -Jones ’

if (harm_ang) write (*,*) ’ * Harmonic Bond Angle (Bending)’

if (harm_len) write (*,*) ’ * Harmonic Bond Length (Stretching)’

if (hardbond) write (*,*) ’ * Hard Bonds ’

if (softcore) write (*,*) ’ * Soft Core ’

if (hardcore) write (*,*) ’ * Hard Core ’

if (harm_3bond) write (*,*) ’ * 1, 3 Harmonic Bond Angles ’

if (wall_pot) write (*,*) ’ * External potential from ’,solfile

!! PREPARE FILE NAMES

enefile=jobname

mufile=jobname

densfile=jobname

histfile=jobname

bondlfile=jobname

bondafile=jobname

trajfile=jobname

logfile=jobname

coorfile=jobname

posfile=jobname

comfile=jobname

!jobrfile=jobname

i=len_trim(jobname)

enefile(i+1:i+5)=’.ene ’ !appends

mufile(i+1:i+4)=’.mu’ !appends

densfile(i+1:i+6)=’.dens ’ !appends

histfile(i+1:i+6)=’.hist ’
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bondlfile(i+1:i+5)=’.bdl ’

bondafile(i+1:i+5)=’.bda ’

trajfile(i+1:i+1)=’.’ !appends

trajfile(i+2:i+6)=trajtype !appends

logfile(i+1:i+5)=’.log ’ !appends

coorfile(i+1:i+6)=’.coor ’

posfile(i+1:i+5)=’.pos ’ !appends

comfile(i+1:i+5)=’.com ’ !appends

!jobrfile(i+1:i+5)=’.jrs ’

! "Delete" files instead of appending

open(file=enefile ,unit =21)

close (21, status=’DELETE ’)

open(file=mufile ,unit =22)

close (22, status=’DELETE ’)

open(file=densfile ,unit =23)

close (23, status=’DELETE ’)

open(file=trajfile ,unit =24)

close (24, status=’DELETE ’)

open(file=trim(jobname)//’.gr’,unit =24)

close (24, status=’DELETE ’)

open(file=trim(jobname)//’.rg’,unit =24)

close (24, status=’DELETE ’)

c if (recordpos) then

c open(file=posfile ,unit =25)

c write (25,*) ’’

c close (25)

c endif

open(file=comfile ,unit =26)

close (26, status=’DELETE ’)

!open(file=jobrfile ,unit =27)

!close(27, status=’DELETE ’)

open(file=mufile ,unit=26, status=’NEW ’)

close (26)

!! If auto gauge is on, set 1st Vg to Volume

!if (autogauge) Vg=Volume

!! Set the maximum bin for g(r)

if (calc_gr) then

gr_maxbin=int(Li(1)/gr_delr)

allocate(gr_hist(gr_maxbin))

gr_hist=0

endif

if (sphere) Volume=pi*Li(1) **3/6

Ri=Li/2

T=T/eps

end subroutine readinput

! Read in coordinates

ccccccccccccccccccccccccccccccccccccccccc

subroutine readcoor ()

integer :: i

character *80 tmpstr

logical lexists
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if (upcase(inicoorfile).eq.’NONE ’) then

! no initial coordinates specified

n=0

!if (.not. hardbond) run_ini=.true. !run the initiallization sequence

return

else

if (ensemble.eq.0) N=length

if (ensemble.eq.1) N=MAXPART

if (ensemble.eq.2) N=Ntotal

endif

inquire(file=inicoorfile , exist=lexists)

if (.not. lexists) then

write (*,*) "Requested initial coordinate FILE NOT FOUND: ",

& inicoorfile

stop

end if

open(file=inicoorfile ,unit =101, status=’OLD ’)

! add - if no file , generate new coordinates

tmpstr=readline (101)

do i=1,N

if (tmpstr.eq."EOF") exit

read(tmpstr ,*) x(i),y(i),z(i)

tmpstr=readline (101)

enddo

N=i-1

close (101)

run_ini=. false.

write (*,*) "Read in ",n," beads from ", trim(inicoorfile),

% "... OK!"

end subroutine readcoor

! Read in solid (SOL) file

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine readsol(filename)

integer i,j,k

character *50 filename

character *80 tmpstr

real*8 temp

logical lexists

!---------------------------GG

real*8 rho_temp , z_temp ! to read U_sf from file

!---------------------------GG

inquire(file=filename , exist=lexists)

if (.not. lexists) then

write (*,*) "SOLID FILE NOT FOUND: ", filename

stop

end if

wall_pot=.true.

open(file=filename ,unit =102, status=’OLD ’)

tmpstr=readline (102)

read(tmpstr ,*) geom

tmpstr=readline (102)
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read(tmpstr ,*) Li(1),Li(2),Li(3)

tmpstr=readline (102)

select case (geom)

case (1) ! Spherical , U=U(r)

read(tmpstr ,*) layers ,bands

allocate ( USF_Band(1,layers) )

do i=1,layers ! Read in tabulated potential

tmpstr=readline (102)

read(tmpstr ,*) temp ,USF_Band(1,i)

enddo

! Misc settings

write (*,*) ’Spherical confinement , U=U(r), D_ext/sig=’,Li(1)

layers=layers -1 ! First layer is boundary , U(r=0)

Volume=pi*Li(1) **3/6

SetPBC =.false.

case (2) ! Spherical , U=U(r,theta)

read(tmpstr ,*) layers ,rlayers ,tlayers

allocate ( USF_Band(rlayers ,tlayers) )

do i=1,layers ! Read in tabulated potential

tmpstr=readline (102)

read(tmpstr ,*) j,k,temp !j==radius , k==theta

USF_Band(j,k)=temp

enddo

! Misc settings

write (*,*) ’Spherical confinement , U=U(r,theta), D_ext/sig=’

& ,Li(1)

rlayers=rlayers -1 ! First layer is boundary , U(r=0)

tlayers=tlayers -1 ! First layer is boundary , U(theta =0)

Volume=pi*Li(1) **3/6

SetPBC =.false.

omega=pi/tlayers

case (3)

read(tmpstr ,*) layers ,bands

allocate ( USF_Band(3,layers) )

do i=1,layers

tmpstr=readline (102)

read(tmpstr ,*) temp ,USF_Band(1,i),USF_Band(2,i),

& USF_Band(3,i)

enddo

write (*,*) ’Box confinement , Lx ,Ly ,Lz=’,Li

layers=layers -1 ! First layer is boundary , U(x,y,z=-L/2)

Volume=product(Li)

setPBC =.false.

c case (4)

c read(tmpstr ,*) layers ,bands

c allocate ( USF_Band(3,layers) )

c do i=1,layers

c tmpstr=readline (102)

c read(tmpstr ,*) temp ,USF_Band(1,i),USF_Band(2,i),

c & USF_Band(3,i)

c enddo

c write (*,*) ’Channel confinement , Lx ,Ly ,Lz=’,Li

c layers=layers -1 ! First layer is boundary , U(x,y,z=-L/2)

c Volume=product(Li)

c SetPBC (1)=.true.
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c setPBC (2:3)=. false.

case (4) ! Cylindrical , U=U(r)

read(tmpstr ,*) layers ,bands

allocate ( USF_Band(1,layers) )

do i=1,layers ! Read in tabulated potential

tmpstr=readline (102)

read(tmpstr ,*) temp ,USF_Band(1,i)

enddo

! Misc settings

write (*,*) ’Cylindrical confinement , U=U(r), ’ //

& ’D_ext/sig=’,Li(1) ,’, L/sig=’,Li(3)

layers=layers -1 ! First layer is boundary , U(r=0)

Volume=pi*Li(1) **2*Li(3)

SetPBC (1:2) = .false.

SetPBC (3) = .true.

!-------------------------------------GG

case (5) ! Cylindrical , U=U(z,rho)

read(tmpstr ,*) layers ,rlayers ,tlayers !rlayers = z, tlayers = rho

allocate ( USF_Band(rlayers ,tlayers) )

tmpstr=readline (102)

read(tmpstr ,*) Di(1),Di(2),Di(3),Di(4),Di(5),Di(6) ! Read the

additional geometry info

! diameters D1, D2, opening size , distance between centers , l1, l2

! Misc settings

write (*,*) ’Cylindrical confinement , U=U(z,rho)’

write (*,*) ’x, y, z (in sigma)=’, Li(1), Li(2), Li(3)

write (*,*) ’Additional: D1, D2, Op ’, Di(1), Di(2), Di(3)

write (*,*) ’Additional: Dist , l1, l2 ’, Di(4), Di(5), Di(6)

do i=1,layers ! Read in tabulated potential

tmpstr=readline (102)

read(tmpstr ,*) j,k,temp !j==z, k==rho

!write (*,*) "j, k: ", j, k

USF_Band(j+1,k+1)=temp

enddo

! do i=1,layers ! Read in tabulated potential

! tmpstr=readline (102)

! read(tmpstr ,*) z_temp ,rho_temp ,temp !j==z, k==rho

! j = (z_temp + Di(1))/2.d0/ rlayers + 1!((Di(1)+Di(2))/2.d0+Di(4))

! k = rho_temp/tlayers + 1

! ! Patch

! if ((j .le. rlayers) .and. (k .le. tlayers)) then

! write (*,*) "Getting U at (j,k) ", j, k

! USF_Band(j,k)=temp

! else

! write (*,*) "Allocation error at (j,k) ", j, k

! end if

! enddo

rlayers=rlayers -1 ! First layer is boundary , U(r=0)

tlayers=tlayers -1 ! First layer is boundary , U(theta =0)

! Volume=pi*Li(1)*(Li(2) **2) /4.0 !WRONG

if ((Di(1) .eq. Di(2)) .and. (Di(4) .lt. 1.0e-3)) then
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Volume = pi/6.0* Di(1) **3

write (*,*) "Limiting case for Volume"

else

write (*,*) "General case for Volume"

Volume = pi/6*(Di(1) **3 + Di(2) **3)

Volume = Volume -

& pi*((Di(1)+Di(2))/2.0-Di(4))**2*

& (Di(4)**2 + Di(4)*Di(2) - 3./4.* Di(2)**2 +

& Di(4)*Di(1) + 3.0/2.0* Di(1)*Di(2) - 3.0/4.0* Di(1) **2)/

& (12*Di(4))

endif

! eta=eta -pi*(r1+r2-dd)**2*(dd **2+2* dd*r2-3*r2**2 + 2*dd*r1 + 6*r1*r2 -

3*r1**2) /(12* dd)

SetPBC =.false.

! omega=pi/tlayers

!-------------------------------------GG

!-------------------------------------GG

! NEW

! A system of 7 rods

case (7)

read(tmpstr ,*) layers ,rlayers ,tlayers ! layers = x*y, rlayers = x,

tlayers = y

allocate ( USF_Band(rlayers ,tlayers) )

tmpstr=readline (102)

read(tmpstr ,*) Di(1),Di(2),Di(3) ! Read the additional geometry

info

read(tmpstr ,*) rod_a,rod_b,rod_c ! Read the additional geometry

info

! diameters D, L, cylD

! Misc settings

write (*,*) ’Box confinement , U=U(x,y), cylD/sig=’, Li(1) !

Diameter of the full cylinder

write (*,*) ’Box confinement , U=U(x,y), cylL/sig=’, Li(3) ! Length

of the cylinder = 2* cutoff = 10sigma

write (*,*) ’Additional: D, L, cylD ’, Di(1), Di(2), Di(3)

do i=1,layers ! Read in tabulated potential

tmpstr=readline (102)

read(tmpstr ,*) j,k,temp !j==x, k==y

USF_Band(j+1,k+1)=temp

enddo

rlayers=rlayers -1 ! First layer is boundary , U(r=0)

tlayers=tlayers -1 ! First layer is boundary , U(theta =0)

Volume=Li(1)*Li(2)*Li(3)

! Periodic boundary conditions on Z only

SetPBC (1:2) =.false.

SetPBC (3)=.true.

alpha = atan(rod_b/rod_c) ! parallelogram angle

beta = pi/2.0 - alpha

!-------------------------------------GG

case default

write (*,*) ’Potential not yet supported!’
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stop

end select

close (102)

end subroutine readsol

ccccccccccccccccccccccccccccccccccccccccccccccc

subroutine readmol(filename)

character *50 filename

character *80 txtin

character *50 tmp(3)

real summoves

integer i,j

logical lexists

inquire(file=filename , exist=lexists)

if (.not. lexists) then

write (*,*) "MODEL FILE NOT FOUND: ", filename

stop

end if

open(file=filename , unit =103, status=’OLD ’)

do i=1,maxlines

txtin=readline (103)

read(txtin ,*) tmp (1)

tmp(1)=trim(tmp (1))

select case (tmp (1))

case (" POTENTIAL ")

read(txtin ,*) tmp (1), tmp (2)

tmp (2)=trim(tmp (2))

select case (tmp (2))

case ("LJ")

lennjones =.true.

do j=1,9

txtin=readline (103)

read(txtin ,*) tmp (1), tmp (2)

tmp (1)=trim(tmp (1))

select case (tmp (1))

case("SIGMA ")

read(tmp (2) ,*) sigma

case(" EPSILON ")

read(tmp (2) ,*) eps

case("RCUT")

read(tmp (2) ,*) rcut

case("NCUT")

read(tmp (2) ,*) ncut

case("MASS")

read(tmp (2) ,*) mass

case(" TAILCORR ")

read(tmp (2) ,*) tailcorr

case("SHIFT ")

read(tmp (2) ,*) tmp (3)

if (tidy(tmp (3)).eq."ON".or.

& tidy(tmp(3)).eq."TRUE") then

lj_shift=rcut **( -6)-rcut **( -12)

print *, "USING LJ SHIFT ",lj_shift
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endif

case("END")

goto 290

CASE DEFAULT

WRITE (*,*) tmp(1) ," is not a valid LJ parameter !"

stop

end select

enddo

case ("IDEAL ")

do j=1,3

txtin=readline (103)

read(txtin ,*) tmp (1), tmp (2)

tmp (1)=trim(tmp (1))

select case (tmp (1))

case(" EPSILON ")

read(tmp (2) ,*) eps

case("MASS")

read(tmp (2) ,*) mass

case("END")

goto 290

CASE DEFAULT

WRITE (*,*) tmp(1) ," is not a valid IDEAL parameter !"

stop

end select

enddo

case (" HARMBOND ")

lobnd_HB=0

hibnd_HB =9999

harm_len=.true.

bonds=.true.

do j=1,5

txtin=readline (103)

read(txtin ,*) tmp (1), tmp (2)

tmp (1)=trim(tmp (1))

select case (tmp (1))

case("K")

read(tmp (2) ,*) kb0_len

kb0_len=kb0_len *0.5

case("L")

read(tmp (2) ,*) r0

case(" LOWBOUND ")

read(tmp (2) ,*) lobnd_HB

case(" HIGHBOUND ")

read(tmp (2) ,*) hibnd_HB

case("END")

goto 290

CASE DEFAULT

WRITE (*,*) tmp(1),

& " is not a valid HARMBOND parameter !"

stop

end select

enddo

case (" HARDBOND ")

hardbond =.true.

bonds=.true.

run_ini=.true.
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do j=1,5

txtin=readline (103)

read(txtin ,*) tmp (1), tmp (2)

tmp (1)=trim(tmp (1))

select case (tmp (1))

case("R")

read(tmp (2) ,*) r0

print *, r0

case("END")

goto 290

CASE DEFAULT

WRITE (*,*) trim(tmp(1)),

& " is not a valid HARDBOND parameter !"

stop

end select

enddo

case default

write (*,*) tmp(2) ," is not a valid potential !"

stop

end select

case (" INSERTION ")

ins_bias=.true.

rins_min=0

DO j=1,5

txtin=readline (103)

read(txtin ,*) tmp (1), tmp (2)

tmp(1)=trim(tmp (1))

select case (tmp (1))

case(" VOLUME ")

select case (tmp (2))

case (" SPHERE ")

ins_geom=1

case ("CUBE")

ins_geom=3

end select

case("RMAX")

read(tmp (2) ,*) rins_max

case("RMIN")

read(tmp (2) ,*) rins_min

case("END")

goto 290

CASE DEFAULT

WRITE (*,*) tmp(1),

& " is not a valid INSERTION parameter !"

stop

end select

enddo

if (rins_max.eq.999) then

print *, "Please select a valid Rins_max!"

stop

endif

if (ins_geom.eq.3 .and. rins_min.gt.0) then

print *, "Rins_min not supported in cube!"

stop

endif

case (" MOVES")
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movesassigned =.true.

nmoves =5

allocate( move_pct(nmoves), move_cumpct(nmoves) )

move_pct (:)=0

DO j=1,nmoves +2

txtin=readline (103)

read(txtin ,*,err=299,end =299) tmp (1), tmp (2)

tmp(1)=trim(tmp (1))

select case (tmp (1))

case(" DISPLACEMENT ")

read(tmp (2) ,*,err=299,end =299) move_pct (1)

case(" REPTATION ")

read(tmp (2) ,*,err=299,end =299) move_pct (2)

case(" REGROW ")

read(txtin ,*,err=299,end =299) tmp (3),move_pct (5),

& ktrials

case(" CRANKSHAFT ")

read(txtin ,*,err=299,end =299) tmp (3),move_pct (3), cs_len

if (cs_len.lt.2) then

write (*,*) "Crankshaft move needs a minimum of 2 ",

& "bond -lengths to perform !"

stop

endif

case(" EXCHANGE ")

read(tmp (2) ,*,err=299,end =299) move_pct (4)

case(" INSERTION ")

read(tmp (2) ,*,err=299,end =299) freq_widom

case("END")

goto 289

CASE DEFAULT

WRITE (*,*) tmp(1),

& " is not a valid move_pct parameter !"

stop

end select

enddo

case("EOF")

goto 291

case default

write (*,*) tmp(1) ," is not a valid operator in ",filename

stop

end select

289 continue

!! Normallize the move percentages

summoves=sum(move_pct)

do j=1,nmoves

move_pct(j)=move_pct(j)/summoves

enddo

!! Now store them as cumulative percentages for random selection in MC

algorithm

move_cumpct (1)=move_pct (1)

do j=2,nmoves

move_cumpct(j)=move_cumpct(j-1)+move_pct(j)

enddo

290 continue

enddo
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goto 291

299 continue

write (*,*) "Read error on ", tmp(1)

stop

291 continue

close (103)

end subroutine readmol

! ! Reads 1 line of a file at a time , ignoring comments.

! ! Also , capitalizes all inputs

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

character *80 function readline(io)

character *1 comment

integer io

comment ="#"

209 read(io ,’(A80) ’,err=210,end =220) readline

if (readline (1:1).eq."#") goto 209

readline=upcase(readline)

return

210 write (*,*) "File read error!"

return

220 readline ="EOF"

return

end function readline

! ! TakeStr - Reads a line from a file as 1 string

ccccccccccccccccccccccccccccccccccccccccc

CHARACTER *80 FUNCTION TAKESTR(KAN ,IE ,LINECOUNT)

INTEGER LINECOUNT

CHARACTER *80 AUX , FN*50

INTEGER *4 KAN , IE

SAVE AUX

IF(IE.EQ.99)GO TO 10

1 LINECOUNT=LINECOUNT +1

READ(KAN ,’(A80) ’,ERR=10,END =20) AUX

IF(AUX (1:1).EQ.’#’)GO TO 1

TAKESTR=AUX

IE=0

RETURN

10 WRITE (*,*) ’!!! ERROR IN INPUT FILE ’,LINECOUNT

IF(KAN.EQ.5) THEN

WRITE (*,*)’ STANDARD INPUT ’

ELSE

INQUIRE(UNIT=KAN ,NAME=FN)

WRITE (*,*)’ FILE ’,FN

END IF

WRITE (*,*)’ IN LINE ’,LINECOUNT +1

WRITE (*,*)AUX

STOP

20 IF(IE.GE.0) THEN

WRITE (*,*) ’!!! END OF FILE REACHED ’, LINECOUNT +1
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IF(KAN.EQ.5) THEN

WRITE (*,*)’ STANDARD INPUT ’

ELSE

INQUIRE(UNIT=KAN ,NAME=FN)

WRITE (*,*)’ FILE ’,FN

END IF

c STOP

END IF

TAKESTR=’ ’

IE=-1

RETURN

END FUNCTION

end module inputs

B.3 energy.f

! Calculates potential energy for CHAINBUILD program

! Organization: Subroutines calculate energy of a specific "situation"

(e.g. U of bead i)

! Functions calculate a type of potential (e.g. LJ , harmonic bond , etc.)

module energy

use inputs

use fort_rand

use constants

implicit none

! ### ENERGIES ###

! fluid -fluid , solid -fluid , and bond (kb): averages ,per set ,change on

step

real*8 Uff ,Usf ,Uff_avg ,Usf_avg ,Ukbl_avg ,Ukba_avg

real*8 Uff_set ,Usf_set ,Ukba_set ,Ukbl_set

real*8 Uext ,Uint ,U_SET

real*8 dUff ,dUsf ,Ukbl ,ukba ,dUkbl ,dukba ,dp

contains

! Calculate total system enegery

ccccccccccccccccccccccccccccccccccccccccccccccc

subroutine calc_energy(calc_esttime)

double precision rr

integer i,j,k

double precision begin_e,end_e,timeleft

double precision punit ,timepunit ,time_est ,movesper

logical calc_esttime

Uff =0.0D0

Usf =0.0d0

Ukbl =0.0D0

!Ukba =0.0d0

if (calc_esttime) then

call cpu_time(begin_e)

endif
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do I=1,N-1

if (harm_len) Ukbl = Ukbl + U_harmbond(i,i+1) ! Harmonic Bonds

if (lennjones) then

DO J=I+1,N

if (abs(j-i).gt.ncut) then ! Intra -chain cutoff

Uff=Uff+U_LJ(i,j) ! Lennard -Jones

endif

enddo

endif

enddo

if (wall_pot) then !External Potential

do i=1,n

Usf=Usf+U_SF(i)

enddo

endif

!cccccccccccccc

if (calc_esttime) then

! Small routine to estimate time of calculation

call cpu_time(end_e)

if (ensemble.eq.0) then

punit =0; movesper =0

if (harm_len) punit=N-1

If (lennjones) punit=punit+comb(n,2)

if (wall_pot) punit=punit+N

timeleft =(end_e-begin_e)

timepunit=timeleft/punit

if (lennjones) movesper=movesper+n

if (harm_len) movesper=movesper +2

if (wall_pot) movesper=movesper +1

movesper=movesper *2 !old and new images

time_est =(( neqset+nset)*nstep *(move_pct (1)*movesper+

& move_pct(2)*2* movesper+move_pct(3)*cs_len*movesper)+nstep*

& nset*( movesper /2))*timepunit

write (*,*) "Estimated time to complete: ",time_str(time_est)

call sleep (1)

else

write (*,*) "Estimated time to complete: unknown ."

endif

endif

Uext=Uff+Usf

Uint=Ukbl !+Ukba

return

end subroutine calc_energy

ccccccccccccccccccccccccccccccccccccccccccccccc

!

ccccccccccccccccccccccccccccccccccccccccccccccc
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real*8 function U_i(n1)

integer n1

U_i=Unb_i(n1)+Ubonds_i(n1,n1)

end function

! Calculation non -bonded potential energy of n=i

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function Unb_i(n1)

integer n1,i,j

dUff =0.0D0; dUsf =0.0D0

! Lennard -Jones

if (lennjones) then

do I=1,N

if (abs(n1-i).gt.ncut) then ! Intra -chain cutoff

dUff=dUff+U_LJ(i,n1) ! Lennard -Jones

endif

enddo

endif

!External Potential

if (wall_pot) then

dUsf=U_SF(N1)

endif

Unb_i = dUff + dUsf

end function Unb_i

ccccccccccccccccccccccccccccccccccccccccccccccc

! Calculate the bond energies for all bonds relevant to beads i to j

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function Ubonds_i(i_in,j_in)

integer i_in ,j_in ,k,i,j

dUkbl = 0.0

if (.not.harm_len) return

i = i_in

j = j_in

if (i_in.eq.1) i=2

if (i_in.eq.N) j=N-1

!print *,’pre loop J=’,j

do k=i-1,j !loop over bonds

! print *,’in loop ’,k,i-1,j

dukbl=dukbl+u_harmbond(k,k+1)

enddo

Ubonds_i = dukbl

end function Ubonds_i

! Calculation potential energy of particle at (x,y,z),

! that is bonded to n=N, ignoring the interaction of x,y,z and ii

! Specify ii=0 to count all LJ interactions (besides ones ignored by

ncut).

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function U_xyz(xx,yy,zz,ii)
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integer n1,i,j,ii

real*8 xx,yy,zz

n1=n+1

dUff =0.0D0

dUsf =0.0d0

dUkbl =0.0D0

!dUkba =0.0d0

!Assign a temporary bead

x(n1) = xx

y(n1) = yy

z(n1) = zz

! Harmonic Bonds

if (harm_len .and. n.ne.ii) dUkbl = U_harmbond(n,n1)

! Lennard -Jones

if (lennjones) then

do I=1,N

if ((n1-i).gt.ncut .and. i.ne.ii) then ! Intra -chain cutoff

if (ii.eq.1 .and. i.eq.2 .and. func_chain (1)) then ! case of

repatation with func. group at N=1

dUff=dUff+eps_start*U_LJ(i,n1) ! Lennard -Jones

else

dUff=dUff+U_LJ(i,n1) ! Lennard -Jones

end if

endif

enddo

endif

!External Potential

if (wall_pot) then

dUsf=U_SF(n1)

endif

U_xyz = dUff + dUsf + dUkbl

return

end function U_xyz

ccccccccccccccccccccccccccccccccccccccccccccccc

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! Calculate the harmonic energy between 2 beads

! ! U = 0.5*k*(r_ij - l)^2

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function U_harmbond(n1,n2)

integer n1, n2

real*8 dd

if (n1.eq.0 .or. n2.eq.0) then

U_harmbond = 0

return

endif

dd=r_ij(n1,n2)

if (dd.gt.hibnd_hb) then

U_harmbond = 1e38 !Outside the bound , U=inf
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elseif (dd.lt.lobnd_hb) then

U_harmbond = 1e38 !Outside the bound , U=inf

else

dd=dd-r0

U_harmbond = kb0_len*dd*dd

endif

return

end function U_harmbond

ccccccccccccccccccccccccccccccccccccccccccccccc

! ! Calculate the Lennard -Jones potential between 2 beads

! ! If rr is greater than 0, function calculates U using that distance

! ! U = 4*e*( (s/r)^12 - (s/r)^6)

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function U_LJ(n1,n2)

integer n1,n2

real*8 xr,yr,zr,rij2,irij6

U_LJ = 0

xr=x(n1)-x(n2)

yr=y(n1)-y(n2)

zr=z(n1)-z(n2)

if (SetPBC (1)) xr=xr - Li(1)*anint(xr/Li(1))

if (SetPBC (2)) yr=yr - Li(2)*anint(yr/Li(2))

if (SetPBC (3)) zr=zr - Li(3)*anint(zr/Li(3))

rij2=xr*xr + yr*yr + zr*zr

if (rij2.lt.rcut2) then

irij 6=1.0/( rij2*rij2*rij2)

U_LJ =4.0*( irij 6*( irij 6 -1.0)+lj_shift)

endif

! modification for functionalized polymers

if (func_chain (1)) then ! First bead is functionalized

if (n1.eq.1 .or. n2.eq.1) then

U_LJ = eps_start*U_LJ

endif

endif

return

end function U_LJ

ccccccccccccccccccccccccccccccccccccccccccccccc

! careful not to call this function from others that add 1 to particle array

real*8 function USF_xyz(xn,yn,zn,isFirst)

real*8 xn,yn,zn,xo,yo,zo

integer N1

logical ,optional :: isFirst

logical :: isFirst2

if (.not. present(isFirst)) then

isFirst2 = .false.

else

isFirst2 = isFirst

endif

if (isFirst 2) then

N1 = 1
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else

N1 = N+1

end if

! just in case ...

xo = x(N1)

yo = y(N1)

zo = z(N1)

x(N1) = xn

y(N1) = yn

z(N1) = zn

USF_xyz = U_SF(N1)

x(N1) = xo

y(N1) = yo

z(N1) = zo

end function

! ! Calculate solid -fluid interaction

cccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function U_SF(ii)

real*8 rw,rr,cband ,xn,yn,zn,y1,y2,rn(3)

real*8 r1,r2,t1,t2,t,p1,p2,cbr ,cbth ,rth ,theta ,tt

integer x1,x2,ri1,ri2,ti1,ti2

integer i,j,ii

!----------------------------------------GG

real*8 z0, rho ! cylindrical coordinates

real*8 z_step , rho_step , z_lower , z_higher , t_factor

real*8 rho_lower , rho_higher , u_factor , Ugrid

integer z_i_lower , z_i_higher ,rho_i_lower , rho_i_higher

!----------------------------------------GG

U_SF = 0.d0

xn = x(ii)

yn = y(ii)

zn = z(ii)

! hardwall - a solid replusive wall at z=0

if (hardwall) then

if (zn.le.0) U_SF=1e37

return

endif

if (space) return ! easy way out ...

!! IMPORTANT NOTE!!

! This program uses tabulated data for external potential. Care must be

taken

! when specifying the bounds of the system. The file with the potential

should

! have N+1 layers , with the first line the potential of the LEFT wall , or

the

! value of U(r=0) if spherical. Each line after that is the value of the

! potential at the UPPER bound of that particular bin.

select case (geom)

case (1) ! Spherical , U=U(r)

rw=dsqrt(xn*xn+yn*yn+zn*zn)

rr=rw/Ri(1) !relative distance
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cband=layers*rr+1 !closest band (plus 1 since array starts at

index 1)

if (cband.gt.layers +1 .or. cband.lt.1) then

U_SF=1e37 !Particle is outside system , U=+Inf

return

endif

x1=int(cband)

x2=x1+1

y1=USF_Band(1,x1)

y2=USF_Band(1,x2)

U_SF=interpolate(cband ,dble(x2),dble(x1),y2,y1)

case (2) ! Spherical , U=U(r,theta)

rw=dsqrt(xn*xn+yn*yn+zn*zn)

if (rw.eq.0) then

theta =0

else

theta=acos(zn/rw)

endif

rr=rw/Ri(1) !relative distance

cbr=rlayers*rr+1 !closest band in r

if (cbr.gt.rlayers .or. cbr.lt.1) then

U_SF=1e37 !Particle is outside system , U=+Inf

return

endif

rth=theta/pi !relative theta

cbth=tlayers*rth+1 !closest band in theta

r1=int(cbr); r2=cbr+1; t1=int(cbth); t2=t1+1 ! Reals

ri1=int(r1); ri2=int(r2); ti1=int(t1); ti2=int(t2) ! Integers

!! Spherical Linear Interpolation (SLERP)

p1= interpolate(cbr ,r2,r1,USF_Band(ri2,ti1),

& USF_Band(ri1,ti1))

p2= interpolate(cbr ,r2,r1,USF_Band(ri2,ti2),

& USF_Band(ri1,ti2))

tt=cbth -t1

U_SF=sin((1-tt)*omega)*p1/sin(omega) +

& sin(tt*omega)*p2/sin(omega)

case (3) ! Cartesian

U_SF=0

rn=(/xn,yn,zn/)

do j=1,3

rw=rn(j)

rr=(rw+Ri(j))/Li(j) !relative distance (USF grid is not

symmetric ...)

cband=layers*rr+1 !closest band (plus 1 since array starts at

index 1)

if (cband.gt.layers .or. cband.lt.1) then

U_SF=1e37 !Particle is outside system , U=+Inf

return

endif

x1=int(cband)

x2=x1+1

y1=USF_Band(j,x1)

y2=USF_Band(j,x2)

U_SF=U_SF+interpolate(cband ,dble(x2),dble(x1),y2,y1)

end do

case (4) ! Cylindrical , U=U(r)
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rw=dsqrt(xn*xn+yn*yn)

rr=rw/Ri(1) !relative distance

cband=layers*rr+1 !closest band (plus 1 since array starts at

index 1)

if (cband.gt.layers +1 .or. cband.lt.1) then

U_SF=1e37 !Particle is outside system , U=+Inf

return

endif

x1 = int(cband)

x2 = x1+1

y1 = USF_Band(1,x1)

y2 = USF_Band(1,x2)

U_SF = interpolate(cband ,dble(x2),dble(x1),y2,y1)

!---------------------------------------------------GG

case (5) ! Cylindrical , U=U(z,rho)

! We need only z and rho , z = z, rho = sqrt

rho=dsqrt(xn*xn+yn*yn)

! rr=rho/Ri(1) ! I don ’t need relative distance! Check?!

z_step = ((Di(1)+Di(2))/2.d0 + Di(4))/dble(rlayers)

! = z_length/dble(zlayers)

rho_step = Di(1) /2.d0/dble(tlayers)

! = rho_length/dble(rholayers)

z_i_lower = int((zn+Di(1)/2.d0)/z_step) + 1 !

z_i_higher = z_i_lower + 1 !

z_lower = (dble(z_i_lower) - 1)*z_step - Di(1)/2.d0 !

z_higher = (dble(z_i_higher) -1)*z_step - Di(1)/2.d0 !

t_factor = (zn - z_lower)/(z_higher - z_lower) !

rho_i_lower = int(rho/rho_step) + 1 !

rho_i_higher = rho_i_lower + 1 !

rho_lower = (dble(rho_i_lower) - 1)*rho_step !

rho_higher = (dble(rho_i_higher) - 1)*rho_step !

u_factor = (rho - rho_lower)/(rho_higher - rho_lower) !

!write (*,*) "rho , r_l, tlayers", rho , rho_i_lower , tlayers

if (z_i_lower .gt. rlayers .or. rho_i_lower.gt.tlayers) then

!rlayers = z, tlayers = rho

! write (*,*) "!: ",z_i_lower ,rlayers ,rho_i_lower ,tlayers

U_SF=1e37 !Particle is outside system , U=+Inf

return

endif

Ugrid = 0.d0

Ugrid = Ugrid + (1.d0 - t_factor)*(1.d0 - u_factor)

& *USF_Band(z_i_lower ,rho_i_lower)

Ugrid = Ugrid + t_factor *(1.d0 - u_factor)

& *USF_Band(z_i_higher ,rho_i_lower)

Ugrid = Ugrid + t_factor*u_factor

& *USF_Band(z_i_higher ,rho_i_higher)

Ugrid = Ugrid + (1.d0 - t_factor)*u_factor

& *USF_Band(z_i_lower ,rho_i_higher)
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! Here

U_SF = Ugrid !z_l+z_i,rho_l+rho_i

! write (*,*) "x=", xn , "y=", yn , "z=", zn , "rho=", rho

! write (*,*) "rho_i_lower=", rho_i_lower

! write (*,*) "z_i_lower=", z_i_lower

! write (*,*) "rho_lower=", rho_lower , "z_lower=", z_lower

! write (*,*) "U_sf=", U_SF

! STOP

!---------------------------------------------------GG

case default

print *,"This type of interaction is not yet supported !"

stop

end select

if (func_chain (1)) then ! First bead is functionalized

if (ii.eq.1) then

U_SF = func_S1*U_SF

endif

endif

end function U_SF

cccccccccccccccccccccccccccccccccccccccccccccccc

! ! Returns the (closest periodic) distance between two beads

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function r_ij(n1,n2)

integer n1,n2

real*8 xr,yr,zr

xr=x(n1)-x(n2)

yr=y(n1)-y(n2)

zr=z(n1)-z(n2)

if (SetPBC (1)) xr=xr - Li(1)*anint(xr/Li(1))

if (SetPBC (2)) yr=yr - Li(2)*anint(yr/Li(2))

if (SetPBC (3)) zr=zr - Li(3)*anint(zr/Li(3))

r_ij=dsqrt(xr*xr+yr*yr+zr*zr)

return

end function r_ij

ccccccccccccccccccccccccccccccccccccccccccccccc

! ! Returns the (closest periodic) distance between two coordinates

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function r_xyz(x1,y1,z1,x2,y2,z2)

real*8 x1,y1,z1,x2,y2,z2

real*8 xr,yr,zr

xr=x1-x2

yr=y1-y2

zr=z1-z2
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if (SetPBC (1)) xr=xr - Li(1)*anint(xr/Li(1))

if (SetPBC (2)) yr=yr - Li(2)*anint(yr/Li(2))

if (SetPBC (3)) zr=zr - Li(3)*anint(zr/Li(3))

r_xyz=dsqrt(xr*xr + yr*yr + zr*zr)

return

end function r_xyz

ccccccccccccccccccccccccccccccccccccccccccccccc

! ! Returns the (closest periodic) distance squared between two

coordinates

ccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function r2_xyz(x1,y1,z1,x2,y2,z2)

real*8 x1,y1,z1,x2,y2,z2

real*8 xr,yr,zr

xr=x1-x2

yr=y1-y2

zr=z1-z2

if (SetPBC (1)) xr=xr + Li(1)*nint(xr/Li(1))

if (SetPBC (2)) yr=yr + Li(2)*nint(yr/Li(2))

if (SetPBC (3)) zr=zr + Li(3)*nint(zr/Li(3))

r2_xyz=(xr*xr + yr*yr + zr*zr)

return

end function r2_xyz

ccccccccccccccccccccccccccccccccccccccccccccccc

! ! Calculate bond angle between 3 beads

cccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function bond_angle(n1,n2,n3) result(theta)

integer n1,n2,n3

real*8 d12x,d12y,d12z,d23x,d23y,d23z,d12,d23

real*8,dimension (3) :: d12xyz ,d23xyz

!Calculate straight -line distances

d12x=x(n1)-x(n2)

d12y=y(n1)-y(n2)

d12z=z(n1)-z(n2)

d23x=x(n2)-x(n3)

d23y=y(n2)-y(n3)

d23z=z(n2)-z(n3)

d12= sqrt(d12x*d12x+d12y*d12y+d12z*d12z)

d23= sqrt(d23x*d23x+d23y*d23y+d23z*d23z)

d12xyz=(/d12x,d12y,d12z/) !vector

d23xyz=(/d23x,d23y,d23z/) !

d12xyz=d12xyz/d12 !normalize vector

d23xyz=d23xyz/d23 !

theta=acos(dot_product(d12xyz ,d23xyz))

end function bond_angle

cccccccccccccccccccccccccccccccccccccccccccccccc
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end module

B.4 moves.f

module moves

use inputs

use energy

use fort_rand

use constants

implicit none

! # Counters #

! number of moves accepted; displacement ,repetition

integer :: acc_dis ,acc_rep ,acc_cs,n_dis ,n_rep ,set ,step ,n_cs

integer :: ng_ins ,ng_rem ,ng_ins_suc ,ng_rem_suc ,n_reg ,n_reg_acc

real*8 :: step_dis , cs_stp , sig , aa

! chemical potential related

real*8 :: mu,mu_set ,mu_nid ,mu_avg ,mu_id,mu_ex

real*8 :: Wext_o(MAXPART)

real*8 Wold ,Wavg

integer n_widom

integer MOLID ! the last particle acted on

real*8 XOLD ,YOLD ,ZOLD ! the last particle acted on’s original

position

! Misc.

real*8 samp ,Eins ,Ravg ,insprob

contains

subroutine initialize_system ()

integer i,j,w

real*8 dd,xx,yy,zz,xn,yn,zn,r

real*8 du, maxu

logical overlap , suc

!! --- Initialization ---

!! NVT ENSEMBLE

r=Li(1)/2.

if (ensemble.eq.0) then

if (n.lt.length) then

!If there are no bonds , place all particles in pore

do while (n.lt.length)

maxU = 100; dU = maxU + 1

do while (dU > maxU)

maxU = maxU *1.5

call insert_into_volume(xx,yy,zz)

x(n+1)=xx; y(n+1)=yy; z(n+1)=zz

dU = Unb_i(n+1)

end do

n=n+1

enddo

elseif (length.lt.n) then !Too many beads given in coordinates
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print *,’Removing ’,(n-length),

& ’ beads from end of initial chain...’

endif

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!! GRAND CAN. ENSEMBLE

elseif (ensemble.eq.1) then

do i=1,MAXPART

call gauge_exchange(suc)

enddo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!! GAUGE

elseif (ensemble.eq.2) then

!! Build gauge cell and place particles inside

if (n.eq.0) then

n=ntotal -ngtarget

n_reg_acc=0; i=0

if (move_pct (5).gt.0) then

write (*,*) "Attempting to grow a chain in the pore ..."

do while (n_reg_acc.eq.0)

i=i+1

call regrow_move(ktrials ,0)

if (i.gt.25) then

write (*,*) "Could not grow chain in pore , starti "//

& "ng with Ng=N..."

Ng=ntotal

n=0

exit

endif

enddo

ng=ntotal -n

else

ng=ntotal

n=0

endif

else

ng=ntotal -n

endif

print *,’N,Ng=’,n,ng

print *,’V_gauge=’,Vg

!Fail

else

write (*,*) ’Bad ensemble selection.’

stop

endif

end subroutine initialize_system

! Randomly swap end of chain to test insertion

cccccccccccccccccccccccccccccccccccccccccccccc

subroutine swapends ()

real*8 :: xx,yy,zz

integer :: i,j,k

if (rnd().lt .0.5) then
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k=N/2

do i=1,k

J=N-I+1

XX=X(I); YY=Y(I); ZZ=Z(I)

X(I)=X(J); Y(I)=Y(J); Z(I)=Z(J)

X(J)=XX; Y(J)=YY; Z(J)=ZZ

enddo

endif

end subroutine

ccccccccccccccccccccccccccccccccccccccccccccccc

! Exchange particles from gauge to pore

cccccccccccccccccccccccccccccccccccccccccccccccc

subroutine gauge_exchange(success)

real*8 xnew ,ynew ,znew ,unew

real*8 xx,yy,zz,rr,dd,nv(3)

real*8 Erem ,theta ,r6

integer i,j,k

logical success

success =. false.

dp=0

if (both_ends) call swapends () !Randomly swap end of chains

if (rnd().lt.insprob) then

!Insert ....................................................

!..........................................................

MOLID = N+1

XOLD=1e36; YOLD=1e36; ZOLD=1e36 ! AKA , the gauge cell

if (ng.eq.0) return !Nothing in gauge to exchange

ng_ins=ng_ins+1

if (tethered(n+1)) then

x(n+1)=x_org(n+1)

y(n+1)=y_org(n+1)

z(n+1)=z_org(n+1)

else

call insert_into_volume(x(n+1),y(n+1),z(n+1))

endif

if (ins_bias) then

Eins=Unb_i(n+1)+U_harmbond(n+1,n)

else

Eins=Unb_i(n+1)

endif

if (bonds.and.Eins.lt .88.7) then

if (N.gt.0) then

dp=exp(-Eins/T)*Ng*a ! a=1/Vg or Vins/Vg

else

dp=exp(-Eins/T)*Ng*a*Volume ! a=1/Vg

endif

elseif (Eins.lt .88.7) then

dp=exp(-Eins/T)*a*Ng/(n+1) !a=volume/Vg

!ELSE dp still 0

endif
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if (iolev (1).ge.4) print *,’i’,Eins ,dp,a

if (iolev (1).ge.5) print *,duff ,dusf ,dukbl

if (rnd().lt.dp) then

c if (abs(dukbl).ge.1e10) then

c stop

c endif

!Insertion Successful

ng_ins_suc=ng_ins_suc+1

success = .true.

if (ensemble.eq.2) Ng=Ng -1

N=N+1

!x(n)=xnew

!y(n)=ynew

!z(n)=znew

Uff=Uff+DUFF !! UPDATING ENERGIES

!Ukba=Ukba+dUkba

Usf=Usf+dUsf

if (harm_len) Ukbl=Ukbl+U_harmbond(n-1,n)

Uint=Ukbl+Ukba

else

success = .false.

endif

return

else

!!!!!!!!! REMOVAL !!!!!!!!!!!!!!!!!!!!!!!!

if (n.eq.0) return ! Nothing in pore to remove

ng_rem=ng_rem+1

if (bonds) then

! Remove last bead from chain

k=n

!Calculate energy of removal

if (ins_bias) then

Erem=unb_i(k)+u_harmbond(k,k-1)

else

Erem = Unb_i(k)

endif

else !NONbonded: select a random bead.

k=int(rnd()*n)+1

Erem = Unb_i(k)

endif

MOLID=k

XOLD=x(k); YOLD=y(k); ZOLD=z(k)

if (tethered(k)) return

! Gauge: incremental chain

if (bonds .and. N.gt.1) then

dp=dexp(Erem/T)/(Ng+1)/a ! a=Vins/Vg

!Gauge: Simple fluid/Removal of last particle

! True because N = 1 = number of polymer chains

elseif (ensemble.eq.2 .or. (bonds .and. N.eq.1)) then

dp=dexp(Erem/T)*N/(Ng+1)/a !a=Volume/Vg

!GCMC

elseif (ensemble.eq.1) then

dp=dexp(Erem/T)*N/a !a=V/l^3* exp(mu/kT)

endif
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!if (iolev (1).ge.4) print *,’r’,Erem ,dp ,dd

!if (iolev (1).ge.5) print *,duff ,dusf ,dukbl

if (rnd().lt.dp) then

!Removal Successful

ng_rem_suc=ng_rem_suc+1

success = .true.

if (.not.bonds) then

do i=k,n ! Fill in gap left by removal ...

x(i)=x(i+1)

y(i)=y(i+1)

z(i)=z(i+1)

enddo

endif

if (ensemble.eq.2) Ng=Ng+1

N=N-1

Uff=Uff -DUFF !! UPDATING ENERGIES

Ukba=Ukba -dUkba

Usf=Usf -dUsf

if (harm_len) Ukbl=Ukbl -U_harmbond(n,n+1)

Uint=Ukbl+Ukba

else

success = .false.

endif

endif

end subroutine gauge_exchange

! Displace particles in chain (Main MC move)

cccccccccccccccccccccccccccccccccccccccccccccccc

subroutine displacement(success)

integer i,j

real*8 xnew ,ynew ,znew ,rr,nv(3)

real*8 Unew ,Uold ,duffo ,dusfo ,dukblo ,du

real*8 ud,vd,wd,rd,theta ,a,b,c,sinth ,costh ,L ! rotation vars

logical success

success = .false.

if (n.eq.0) return !No particles to move.

n_dis=n_dis+1

1010 continue

MOLID=rndint(N) !! bead to displace

XOLD=x(MOLID); YOLD=y(MOLID); ZOLD=z(MOLID)

if (tethered(MOLID)) return !!

! hardbond case , perform a kink -jump move

if (hardbond) then

! one end of the chain selected , generate random vector

if (MOLID == 1) then

call ran_nxyz( nv )

XNEW = X(2) + nv(1)*r0

YNEW = Y(2) + nv(2)*r0

ZNEW = Z(2) + nv(3)*r0

elseif (MOLID == N) then

call ran_nxyz( nv )

XNEW = X(N-1) + nv(1)*r0

YNEW = Y(N-1) + nv(2)*r0
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ZNEW = Z(N-1) + nv(3)*r0

! Pivot an inner -bead

else

! direction vector for rotation -axis

! from http :// inside.mines.edu/~ gmurray/ArbitraryAxisRotation/

ud = x(MOLID +1) - x(MOLID -1)

vd = y(MOLID +1) - y(MOLID -1)

wd = z(MOLID +1) - z(MOLID -1)

L = ud*ud+vd*vd+wd*wd

rd = sqrt(L)

ud = ud / rd ! unit vector <u,v,w> between i-1 and i+1

vd = vd / rd

wd = wd / rd

a = X(MOLID -1)

b = Y(MOLID -1)

c = Z(MOLID -1)

theta = rndz()*step_dis

costh = cos(theta)

sinth = sin(theta)

XNEW = ((a*(vd*vd+wd*wd)-ud*(b*vd+c*wd-ud*XOLD -vd*YOLD -wd*

& ZOLD))*(1- costh)+XOLD*costh+(-c*vd+b*wd -

& wd*YOLD+vd*ZOLD)*sinth)

YNEW = ((b*(ud*ud+wd*wd)-vd*(a*ud+c*wd-ud*XOLD -vd*YOLD -wd*

& ZOLD))*(1- costh)+YOLD*costh+(c*ud -a*wd+

& wd*XOLD -ud*ZOLD)*sinth)

ZNEW = ((c*(ud*ud+vd*vd)-wd*(a*ud+b*vd-ud*XOLD -vd*YOLD -wd*

& ZOLD))*(1- costh)+ZOLD*costh+(-b*ud+a*vd -

& vd*XOLD+ud*YOLD)*sinth)

endif

! soft -bond case , perform a monomer displacement

else

XNEW=X(MOLID)+rndz()*step_dis !! NEW COORDINATES

YNEW=Y(MOLID)+rndz()*step_dis !!

ZNEW=Z(MOLID)+rndz()*step_dis !!

end if

!! Old position energy

Uold=Unb_i(MOLID)+Ubonds_i(MOLID ,MOLID)

duffo=duff; dusfo=dusf; dukblo=dukbl

x(MOLID)=xnew; y(MOLID)=ynew; z(MOLID)=znew

!! New position energy

Unew=Unb_i(MOLID)+Ubonds_i(MOLID ,MOLID)

duff=duff -duffo; dusf=dusf -dusfo; dukbl=dukbl -dukblo

du = duff+dusf+dukbl

DP=EXP(-du/T)

!print *, du , dp

!print *, XOLD , YOLD , ZOLD

!print *, XNEW , YNEW , ZNEW

if (rnd().lt.dp) then

acc_dis=acc_dis+1 !! ACCEPTED MOVES COUNTER ++

success = .true.

if (SetPBC (1)) x(MOLID)=x(MOLID)-Li(1)*anint(x(MOLID)/Li(1))

if (SetPBC (2)) y(MOLID)=y(MOLID)-Li(2)*anint(y(MOLID)/Li(2))

if (SetPBC (3)) z(MOLID)=z(MOLID)-Li(3)*anint(z(MOLID)/Li(3))

Uff=Uff+DUFF !! UPDATING ENERGIES
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Ukbl=Ukbl+dUkbl

Ukba=Ukba+dUkba

Usf=Usf+dUsf

Uint=Ukbl+Ukba

else

success = .false.

x(MOLID)=xold

y(MOLID)=yold

z(MOLID)=zold

endif

end subroutine displacement

c Attempt a CBMC regrow

ccccccccccccccccccccccccccccccccccccccccccccccc

subroutine regrow_move(ks ,k)

integer ks ,k,i,j,tlen

real*8 Wold ,Wnew ,dp

real*8,dimension(n-k+1) :: xn,yn,zn

logical new_conf

n_reg=n_reg+1

tlen=n-k+1 ! length of regrown chain

if (both_ends) call swapends ()

! First calculation old Rosenbulth factor , then regrow a new chain.

new_conf=. false.

call regrow_chain(ks,k,Wold ,new_conf ,xn,yn,zn)

new_conf=.true.

call regrow_chain(ks,k,Wnew ,new_conf ,xn,yn,zn)

!if (isnan(wnew).or.isnan(wold)) return ! and the world is safe for another

cycle ...

! Rigorously , should NaN appear in this calculation? Probably not..

dp=Wnew/Wold

!if (isnan(dp)) return

!print ’(F8.3,2F12.6) ’,dp ,wnew ,wold

if (rnd().lt.dp) then ! Accept move

n_reg_acc=n_reg_acc+1

! First , calculation of old energies

dukbl=0

!! Calculate the LJ energy of the unperturbed section of chain.

if (lennjones) then

do i=1,k-1

do j=i+1,k

if (abs(j-i).gt.ncut) then

duff=duff+u_LJ(i,j)

endif

enddo

enddo

endif

! Energy of old bonds

if (harm_len) then

do i=k+1,n

dUKBL=dUkbl -u_harmbond(i-1,i)
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enddo

endif

! Solid -fluid energy of old configuration of chain

if (wall_pot) then

do i=k+1,n

dusf=dusf -u_sf(i)

enddo

endif

! Change coordinates

do i=2,tlen

j=i+k-1 ! on chain position

x(j)=xn(i)

y(j)=yn(i)

z(j)=zn(i)

enddo

! Now find bond energy of new configuration

if (harm_len) then

do i=k+1,n

dUKBL=dUkbl+u_harmbond(i-1,i)

enddo

endif

goto 919

if (abs(duff).gt.abs (10* uff)) then

print *, "Warning !! High UFF move accepted !"

print *, "U_FF (OLD) = ",uff

print *, "U_FF (NEW) = ",duff

print *, "set ,step= ", set ,step

print *, "wold ,wnew= ",wold ,wnew

print *, "dp = ",dp

print *, "n,ng= ",n,ng

open (file="UFF_COOR.DUMP",unit =299, position=’APPEND ’)

write (299 ,*) set ,step

do i=1,N

write (299 ,*) x(i),y(i),z(i)

enddo

close (299)

endif

if (abs(Usf+dUsf).gt.abs (10* usf)) then

print *, "Warning !! High USF move accepted !"

print *, "U_SF (OLD) = ",usf

print *, "U_SF (NEW) = ",dusf+usf

print *, "set ,step= ", set ,step

print *, "wold ,wnew= ",wold ,wnew

print *, "dp = ",dp

print *, "n,ng= ",n,ng

open (file="USF_COOR.DUMP",unit =299, position=’APPEND ’)

write (299 ,*) set ,step

do i=1,N

write (299 ,*) x(i),y(i),z(i)

enddo

close (299)

endif

919 continue

! UPDATING ENERGIES
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Wavg=Wnew+Wavg

Uff=DUFF

Ukbl=Ukbl+dukbl

Usf=Usf+dUsf

endif

end subroutine regrow_move

! calculate the Rosenbluth factor of a chain

cccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine regrow_chain(ks ,k,W,regrow ,xrg ,yrg ,zrg)

!ks = number of trial segments to calculate per bead

!k = location to begin calculation

integer i,j,k,nn ,ks ,tlen ,im1,onc

real*8,dimension(n-k+1) :: xrg ,yrg ,zrg ,wext ! coordinates of regrown

chain

real*8,dimension(ks) :: xt,yt,zt,wtext ,dulj ,duext ! coordinates of

trial segments

real*8 xnew ,ynew ,znew ,drr ,rr,ir6,nv(3),duffo

real*8 W,dp,cumw ,ws,prefactor

logical ready ,regrow

tlen=n-k+1 ! Length of regrown chain + 1

!allocate( xrg(tlen),yrg(tlen),zrg(tlen),wext(tlen) ) !trial chain

!allocate( wext(tlen) ) !trial chain

wext =0.0; duff =0.d0; dusf =0.d0; W=1

if (k.eq.0 .and. (tethered (1).or.func_chain (1))) k=1 !This means the

first bead will never be moved if tethering is enabled , or if

functional chains are involved

if (k.eq.0) then

if (ins_bias) then

ins_bias=. false. ! To insert into system , not bias , volume

call insert_into_volume(xrg (1),yrg (1),zrg (1))

ins_bias=.true.

else

call insert_into_volume(xrg (1),yrg (1),zrg (1))

endif ! ugly , i know ...

if (wall_pot) dusf=USF_xyz(xrg (1),yrg (1),zrg (1) ,.true.)

!solid -fluid only , nothing else in system

wext (1)=ks*exp(-dusf/T)

else

xrg(1)=x(k); yrg (1)=y(k); zrg (1)=z(k)

endif

do i=2,tlen ! Loop over TEST chain

im1=i-1

onc=i+k-1 ! position on chain

do j=1,ks ! Loop over trial segments per bead

wtext(j)=0.d0

dulj(j)=0.d0; duext(j)=0.d0

if (.not.regrow .and. j.eq.1) then

xt(j)=x(onc)

yt(j)=y(onc)

zt(j)=z(onc)

else

if (harm_len) then
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rr=gen_bond_len()

elseif (hardbond) then

rr=r0

endif

call ran_nxyz(nv)

xt(j)=xrg(im1)+nv(1)*rr

yt(j)=yrg(im1)+nv(2)*rr

zt(j)=zrg(im1)+nv(3)*rr

rr=sqrt((xt(j)-xrg(im1))**2+( yt(j)-yrg(im1))**2+

& (zt(j)-zrg(im1))**2)

!if (rr.lt .0.99999 .or. rr.gt .1.0001) then

! write (998 ,*) i,j,rr ,r0

!endif ! I don ’t know what this is here for...

endif

! Now calculate external boltzman weight

if (wall_pot) duext(j)=USF_xyz(xt(j),yt(j),zt(j)) !solid -fluid

if (lennjones) then

do nn=1,k-1 !LJ with origial chain (k-1 since k is

included in loop below [n(k)=n_rg(1)])

if (abs(onc -nn).gt.ncut) then !apply ncut to trial chain

rr=r2_xyz(xt(j),yt(j),zt(j),x(nn),y(nn),z(nn))

!print ’(A,2I2,f12.4) ’,’Orr ’,onc ,nn ,sqrt(rr)

!print *,xt(j),yt(j),zt(j),x(nn),y(nn),z(nn)

if (rr.lt.rcut2) then

ir6=1.d0/(rr*rr*rr)

if (nn.eq.1 .and. func_chain (1)) then

prefactor = 4.0* eps_start

else

prefactor = 4.0

end if

dulj(j)=dulj(j)+prefactor *(ir6*(ir6 - 1.0) +

& lj_shift)

endif

endif

enddo

do nn=1,i !LJ in trial chains

if (abs(i-nn).gt.ncut) then

rr=r2_xyz(xt(j),yt(j),zt(j),xrg(nn),yrg(nn),zrg(nn))

!print ’(A,2I2,f12.4) ’,’RGrr ’,i,nn ,sqrt(rr)

if (rr.lt.rcut2) then

ir6=1.d0/(rr*rr*rr)

dulj(j)=dulj(j)+4.0*( ir6*(ir6 - 1.0) + lj_shift)

endif

endif

enddo

endif

wtext(j)=exp(-(dulj(j)+duext(j))/T) !external Rosenbluth weight

for trial j of ks

wext(i)=wext(i)+wtext(j)

enddo !over trial segments ks

!print *,regrow ,onc ,i,wext(i)/ks ,dulj (1)

! Now , select a trial segment (from Frenkel&Smit)

if (regrow) then

ws=rnd()*wext(i)

cumw=wtext (1)

nn=1

do while (cumw.lt.ws)
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nn=nn+1

cumw=cumw+wtext(nn)

enddo

! EARLY REJECTION CRITERION (DO NOT USE THIS FEATURE)

!if (regrow.and.rnd().gt.wtext(nn)) return

! store trial move into test chain

xrg(i)=xt(nn)

yrg(i)=yt(nn)

zrg(i)=zt(nn)

duff=duff+dulj(nn) ! Update fluid -fluid energy , in case trial

chain is accepted

dusf=dusf+duext(nn) ! Update solid -fluid energy , in case trial

chain is accepted

else

xrg(i)=x(onc)

yrg(i)=y(onc)

zrg(i)=z(onc)

endif

W=W*(wext(i)/ks) ! Calculate normalized Rosenbluth factor of

the trial chain

enddo !over trial chain

end subroutine regrow_chain

! Move particles down chain

! Only works for a 1 chain system (which is this program , so that ’s ok)

cccccccccccccccccccccccccccccccccccccccccccccccc

subroutine reptation ()

integer i,j,k

real*8 xn,yn,zn,nv(3)

real*8 Uold , Unew , dp

real*8 duff_tmp , dusf_tmp , dukbl_tmp , dukba_tmp

if (n.lt.1) return

n_rep=n_rep+1

if (n.eq.1) then ! only one particle , randomly displace in

volume

Uold = U_SF(1)

call insert_into_volume(xn,yn,zn)

Unew=USF_xyz(xn,yn,zn) ! only SF interaction remains

else

if (both_ends) call swapends ()

!! Calculate energy of N=1

if (harm_len) then

dukbl_tmp=u_harmbond (1,2)

else

dukbl_tmp =0.0

endif

Uold=Unb_i(1)+dukbl_tmp

duff_tmp=duff ! store dU’s for updating U’s if accepted

dusf_tmp=dusf

dukbl_tmp=dukbl

call insert_into_volume(xn,yn,zn)

Unew=U_xyz(xn ,yn,zn ,1)
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end if

dp = exp((Uold -Unew)/T)

if (rnd().lt.dp) then

acc_rep=acc_rep+1

!! Accepted , update coordinates

do i=1,N-1

x(i)=x(i+1)

y(i)=y(i+1)

z(i)=z(i+1)

enddo

x(n)=xn; y(n)=yn; z(n)=zn

! Update energies

if (N .eq. 1) then

Usf = Unew

else

Uff=Uff -duff_tmp+duff

Usf=Usf -dusf_tmp+dusf

if (harm_len) Ukbl=Ukbl -dukbl_tmp+dukbl

end if

endif

end subroutine reptation

cccccccccccccccccccccccccccccccccccccccccccccccc

! Perform a crankshaft move , with nb bonds being rotated.

cccccccccccccccccccccccccccccccccccccccccccccccc

subroutine crankshaft(nb)

real*8, allocatable :: xn(:),yn(:),zn(:), xo(:),yo(:),zo(:)

real*8 px, py, pz, theta , uold , unew , dp

real*8 duff_cs,dusf_cs,dukbl_cs,dukba_cs

real*8 duff_ol,dusf_ol,dukbl_ol,dukba_ol

real a,b,c,u2,v2,w2,sqrt_u2v2w2,sum_u2v2w2,

& au ,av ,aw ,bu ,bv ,bw ,cu ,cv ,cw ,ux ,uy ,uz ,vx ,vy ,vz ,wx ,wy ,wz

integer i,j,k,nb ,np

np=nb -1 ! number of particles we are going to move

allocate ( xn(np),yn(np),zn(np),xo(np),yo(np),zo(np) )

duff_cs=0; dusf_cs=0; dukbl_cs=0; dukba_cs=0

duff_ol=0; dusf_ol=0; dukbl_ol=0; dukba_ol=0

unew =0; uold =0; dp=0

n_cs=n_cs+1

k=rndint(n-nb) ! 1st bead in crankshaft

!Orientation vector

px = x(k+nb) - x(k) !u

py = y(k+nb) - y(k) !v

pz = z(k+nb) - z(k) !w

!! Rotation matrices components

a=x(k); b=y(k); c=z(k)

u2=px*px; v2=py*py; w2=pz*pz

sum_u2v2w2=u2+v2+w2

sqrt_u2v2w2=sqrt(sum_u2v2w2)

au=a*px; av=a*py; aw=a*pz
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bu=b*px; bv=b*py; bw=b*pz

cu=c*px; cv=c*py; cw=c*pz

theta = cs_stp *2.0*pi*(rnd() -0.5) ! random angle of rotation , from

-pi to pi, times cs_stp

! Store old configuration ’s energies

do i = 1,nb -1 !Loop over beads being rotated

j=k+i !Index in positional array

if (harm_len) dukbl_ol=dukbl_ol+u_harmbond(j-1,j)

uold=uold+unb_i(j)

duff_ol=duff_ol+duff

dusf_ol=dusf_ol+dusf

enddo

if (harm_len) dukbl_ol=dukbl_ol+u_harmbond(j,j+1) !count last bond ,

not counted in loop

uold=uold+dukbl_ol

! Store old configuration ’s coordinates

do i = 1,nb -1

j=k+i

xo(i)=x(j)

yo(i)=y(j)

zo(i)=z(j)

enddo

! Calculate new configuration ’s coordinates

do i = 1,nb -1 ! loop over points to be rotated.

j=k+i ! index of point being tried.

! More rotation matrices components

ux=px*x(j); uy=px*y(j); uz=px*z(j)

vx=py*x(j); vy=py*y(j); vz=py*y(j)

wx=pz*x(j); wy=pz*y(j); wz=pz*z(j)

! Rotated coordinates

xn(i) = (a*(v2+w2)+px*(-bv-cw+ux+vy+wz)+(-a*(v2+w2)+px*(bv+cw-

& vy -wz)+(v2+w2)*x(j))*cos(theta)+sqrt_u2v2w2*(-cv+bw -wy+vz)*

& sin(theta)) / (sum_u2v2w2)

yn(i) = (b*(u2+w2)+py*(-au-cw+ux+vy+wz)+(-b*(u2+w2)+py*(au+cw-

& ux -wz)+(u2+w2)*y(j))*cos(theta)+sqrt_u2v2w2*(cu -aw+wx -uz)*

& sin(theta)) / (sum_u2v2w2)

zn(i) = (c*(u2+v2)+pz*(-au-bv+ux+vy+wz)+(-c*(u2+v2)+pz*(au+bv-

& ux -vy)+(u2+v2)*z(j))*cos(theta)+sqrt_u2v2w2*(-bu+av -vx+uy)*

& sin(theta)) / (sum_u2v2w2)

x(j)=xn(i) ! store new coordinates into position array

y(j)=yn(i) !

z(j)=zn(i) !

enddo

!Calculate new configuration ’s energy

do i = 1,nb -1

j=k+i

if (harm_len) dukbl_cs = dukbl_cs+u_harmbond(j-1,j)

unew=unew+unb_i(j)

duff_cs=duff_cs+duff

dusf_cs=dusf_cs+dusf

enddo
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if (harm_len) then

dukbl_cs=dukbl_cs+u_harmbond(j,j+1) !count last bond , not counted

in loop

unew=unew+dukbl_cs

endif

! Acceptance probability

dp=exp((uold -unew)/T)

!print *,’dp ’,dp ,unew ,uold

!print *,’dukbl_cs ,dukbl_ol ’,dukbl_cs ,dukbl_ol

if (rnd().lt.dp) then

! Success , update counter and energies

acc_cs=acc_cs+1

uff=uff -duff_ol+duff_cs

usf=usf -dusf_ol+dusf_cs

if (harm_len) ukbl=ukbl -dukbl_ol+dukbl_cs

if (harm_ang) ukba=ukba -dukba_ol+dukba_cs

else

! Fail , restore original coordinates

do i=1,nb -1

j=k+i

x(j)=xo(i)

y(j)=yo(i)

z(j)=zo(i)

enddo

endif

deallocate( xn ,yn ,zn , xo ,yo ,zo )

endsubroutine crankshaft

cccccccccccccccccccccccccccccccccccccccccccccccc

! Trial insertion to measure chemical potential

cccccccccccccccccccccccccccccccccccccccccccccccc

subroutine insert ()

real*8 :: xnew ,ynew ,znew

if (both_ends) call swapends ()

n_widom=n_widom+1

call insert_into_volume(x(n+1),y(n+1),z(n+1))

!write (999 ,*) x(n+1),y(n+1),z(n+1)

!! Calculate insertion energy

if (ins_bias) then ! If insertion bias is on, measure total

energy

Eins = Unb_i(n+1)+U_harmbond(n+1,n)

else ! If insertion bias is off , measure

non -bonded energy

Eins = Unb_i(n+1)

endif

mu_nid=exp(-Eins/T)+mu_nid

end subroutine insert

cccccccccccccccccccccccccccccccccccccccccccccccc

function gen_bond_len() result (rr)

real*8 rr
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if (harm_len) then

ready=. false.

do while (.not.ready)

rr=rndgauss(sig ,r0)

if (rnd().le.rr*rr/aa .and.

& (rr.lt.hibnd_hb.and.rr.gt.lobnd_hb)) then

ready=.true.

endif

enddo

elseif (hardbond) then

rr=r0

endif

end function

subroutine insert_into_volume(xnew ,ynew ,znew)

real*8 xnew ,ynew ,znew ,rr,nv(3)

!------------------GG

real*8 znew2, rr2

znew2 = 0.d0

rr2=1e30 ! distance in second sphere coord

!------------------GG

rr=1e30

!! CASE: Solid Bonds. Generate random coordinate on sphere face

if (hardbond) then

if (n.gt.0) then

call ran_nxyz(nv)

xnew = x(n)+r0*nv(1)

ynew = y(n)+r0*nv(2)

znew = z(n)+r0*nv(3)

return

elseif (n.eq.0) then ! No chain , insert into system

if (geom.le.2) then ! sphere

do while (rr.gt.Li(1) /2.)

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(1) /2.

znew =(2* rnd() -1.)*Li(1) /2.

rr=sqrt(xnew*xnew+ynew*ynew+znew*znew)

enddo

elseif (geom.eq.3) then ! bulk

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(2) /2.

znew =(2* rnd() -1.)*Li(3) /2.

elseif (geom.eq.4) then ! cyl

do while (rr.gt.Li(1) /2.)

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(2) /2.

znew =(2* rnd() -1.)*Li(3) /2.

rr = sqrt(xnew*xnew+ynew*ynew)

enddo

endif

return

endif

endif

!! Insertion particle into random volume center at n=N
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!! Using the specified insertion volume in the model file.

!! Not the prettiest implimentation ..

if (ins_bias.and.n.gt.0) then

401 continue

xnew = (2.0* rnd() -1.0)*rins_max+x(n)

ynew = (2.0* rnd() -1.0)*rins_max+y(n)

znew = (2.0* rnd() -1.0)*rins_max+z(n)

rr = sqrt((xnew -x(n))**2+( ynew -y(n))**2+( znew -z(n))**2)

if (ins_geom.eq.1 .and. rr.gt.rins_max) goto 401 !new particle is

outside pore.

if (ins_geom.eq.1 .and. rr.lt.rins_min) goto 401 !new particle not

in annulus.

elseif (bonds .and. n.gt.0) then ! No bias

if (harm_len) then

rr=gen_bond_len()

elseif (hardbond) then

rr=r0

endif

call ran_nxyz(nv)

xnew=x(n)+rr*nv(1)

ynew=y(n)+rr*nv(2)

znew=z(n)+rr*nv(3)

else ! No chain , insert into system

if (geom.le.2) then ! sphere

do while (rr.gt.Li(1) /2.)

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(1) /2.

znew =(2* rnd() -1.)*Li(1) /2.

rr=sqrt(xnew*xnew+ynew*ynew+znew*znew)

enddo

elseif (geom.eq.3) then ! bulk

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(2) /2.

znew =(2* rnd() -1.)*Li(3) /2.

elseif (geom.eq.4) then ! cyl

do while (rr.gt.Li(1) /2.)

xnew =(2* rnd() -1.)*Li(1) /2.

ynew =(2* rnd() -1.)*Li(2) /2.

znew =(2* rnd() -1.)*Li(3) /2.

rr = sqrt(xnew*xnew+ynew*ynew)

enddo

!-------------------------------------GG

elseif (geom .eq. 5) then ! cylinder , U=U(r,z)

do while ( (rr.gt.Di(1) /2.).and.(rr2.gt.Di(2) /2.))

xnew =(2* rnd() -1.)*Di(1) /2.

ynew =(2* rnd() -1.)*Di(1) /2.

znew=rnd()*Li(3) - Di(1) /2.

znew2 = znew - Di(4)

rr=sqrt(xnew*xnew+ynew*ynew+znew*znew)

rr2=sqrt(xnew*xnew+ynew*ynew+znew2*znew2)

enddo
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!-------------------------------------GG

elseif (geom .eq. 7) then ! periodic parallelogram

! quick n dirty , not efficient at all...

in_box = .false.

do while ( .not. in_box )

xnew = (2* rnd() -1.) * Li(1) /2.

ynew = (2* rnd() -1.) * Li(2) /2.

znew = (2* rnd() -1.) * Li(3) /2.

xscaled = xnew + Li(1) /2.0

yscaled = ynew + Li(2) /2.0

if ( yscaled > rod_a ) then

height = Li(2) - xscaled*tan(alpha)

if (yscaled < height) in_box = .true.

elseif ( yscaled < rod_b ) then

height = rod_b - xscaled/tan(beta)

if (yscaled > height) in_box = .true.

else

in_box = .true.

end if

enddo

endif

endif

endif

end subroutine insert_into_volume

end module moves

B.5 sample.f

!!! SAMPLE MODULE !!!!

! Includes subroutines for calculation/ensemble sampling.

module sample

use inputs

use moves

use constants

use energy

use fort_rand

implicit none

DOUBLE PRECISION ,dimension(MAXPART) :: nh_ng

DOUBLE PRECISION ,dimension(MAXPART -1) :: bl

DOUBLE PRECISION ,dimension (:),allocatable :: nh_bl,h_bl

DOUBLE PRECISION ,allocatable :: nh_den(:,:),h_den (:),ends_den (:)

DOUBLE PRECISION ,dimension (:),allocatable :: nh_ba,h_ba

real*8 :: RMS ,tort ,rg2,rg

real*8 :: rg2_avg ,rg_avg ,tort_avg ,RMS_avg

real*8 :: bl_set ,bl_avg , ba_set ,ba_avg

real*8 :: chlen , blmin , blmax

real*8 :: a_stiff , contour_len

real*8 RMS_1N,RMS_1N_avg

!integer counter1
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contains

!! Sampling related to bonds and molecular positions

!! Includes RMS , Radius of Gyration , Bond Lengths , etc.

subroutine samplebonds(output)

logical output

integer bins ,i,j

real histmax , histmin , histlen , dx

real*8 x12,y12,z12,rk

real*8 xm,ym,zm,xr,yr,zr

!Clear variables

bl_set =0; RMS =0; rg2=0

chlen =0; tort=0

xm=0; ym=0; zm=0;

if (set.eq.neqset +1) then

!clear averages

rg2_avg =0; bl_avg =0; tort_avg=0

RMS_1N_avg=0; RMS_avg=0

allocate( nh_bl(bl_bins),h_bl(bl_bins) )

nh_bl(:) =0; bl(:)=0

open(file=posfile ,unit =77)

write(77,’(A8,A15,A15,A15,A15,A15,A15,A15) ’)

& ’#(1)set ,’,’(2)bond len ,’,’(3)chain len ,’,’(4)tort ,’,

& ’(5)<R_mean >,’,’(6)sqrt <S2>,’,’(7)sqrt <R2>,’, ’(8)<S2>/<R2>’

close (77)

endif

if (n.lt.2) return ! Not enough bonds to sample!

if (.not.output) then

do i=1,N !Loop over all particles

if (i.lt.N) then

x12=x(i)-x(i+1)

y12=y(i)-y(i+1)

z12=z(i)-z(i+1)

bl(i)=sqrt(x12*x12+y12*y12+z12*z12)

bl_set=bl_set+bl(i) !Calculate mean bond

chlen=bl(i)+chlen !Total chain length

endif

! Calculate mean position

xm= xm+x(i)

ym= ym+y(i)

zm= zm+z(i)

enddo

if (N.gt.0) then

xm= xm/N

ym= ym/N

zm= zm/N

rms=xm*xm+ym*ym+zm*zm

else

rms=0

endif

RMS_avg= RMS+RMS_avg

if (recordcom) then !append the center com to file
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open(file=comfile ,unit=27, position=’append ’)

write (27,*) xm ,ym ,zm

close (27)

endif

! Initiallize the bond length histogram

if (set.eq.neqset +1) then

histmax=maxval(bl)

histmin=minval(bl)

histlen=histmax -histmin

dx =2.0* histlen/float(bl_bins)

histmin=histmin -0.25* histlen

!NOTE: the initial bins here are the range of bond lengths of the first

averaging set ,

! times 2. So the distribution will have a length of L, with 0.5L of 0

weight on each side.

! If the system fluxuates past this , some will not be counted. The program

will warn a user

! when this happens , but it will not stop and distribution will not reflect

those missed points.

do i=1,bl_bins

h_bl(i)=dx*i+histmin !assign bin ’names ’

enddo

endif

! Sample bond lengths

bl_set= bl_set/dble(N-1)

bl_avg= bl_set+bl_avg

do i=1,N-1 !Loop over bonds

do j=1,bl_bins !Loop over bins

if (bl(i).le.h_bl(j)) then

nh_bl(j)=nh_bl(j)+1

goto 151 !bin placement successful , go to next bond

endif

enddo

151 continue

enddo

! Calculation of Tortuosity

if (N.gt.0) then

xr=x(1)-x(N)

yr=y(1)-y(N)

zr=z(1)-z(N)

RMS_1N= xr*xr+yr*yr+zr*zr

tort= chlen/sqrt(RMS_1N)

else

tort=0

RMS_1N=0

endif

tort_avg= tort+tort_avg

RMS_1N_avg=RMS_1N+RMS_1N_avg

! Calculate radius of gyration

do i=1,N

xr=x(i)-xm

yr=y(i)-ym

zr=z(i)-zm

rg2= rg2+(xr*xr+yr*yr+zr*zr)

enddo
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if (N.gt.0) then

rg2=rg2/dble(N)

else

rg2=0

endif

rg2_avg= rg2+rg2_avg

rg_avg=rg_avg+sqrt(rg2)

if (recordpos) then

open(file=posfile ,unit=77, position=’append ’)

open(file=trim(jobname)//’.rg’,unit=78, position=’append ’)

write (77 ,7701) set ,bl_set ,chlen ,tort ,sqrt(RMS),sqrt(rg2),

& sqrt(RMS_1N),rg2/RMS_1N

!For a random coil , ^ these ^ should be equal

write (78,*) set ,N,sqrt(rg2),rg2

7701 format(I8,F15.3,F15.3,F15.3,F15.3,F15.3,F15.3,F15.4)

close (77)

close (78)

endif

!Reduce and write variables

else

! Reduce averages

bl_avg=bl_avg/nset

RMS_avg=sqrt(RMS_avg/nset)

rg2_avg=rg2_avg/nset

rg_avg=rg_avg/nset

tort_avg=tort_avg/nset

RMS_1N_avg=sqrt(RMS_1N_avg/nset)

! Reduce bond length histogram and write to disk

open(file=bondlfile , unit =25)

do i=1,bl_bins

nh_bl(i)=nh_bl(i)/dble(nset)

write (25, *) h_bl(i),nh_bl(i)

enddo

close (25)

endif

end subroutine samplebonds

!!!!!!!!!!!

!!!!!!!!!!!

subroutine sample_density(output)

integer i,j,k,g

real*8 ii,ii1

real*8 rr,rw,vs,rdist ,zdist ,theta ,rz,zr,rx,xr

real*8 r1,r2,h1,h2,h,rr1,rr2

logical output

if (.not.output) then

if (set.eq.neqset +1) then

if (dens_type.eq.1) then ! R

allocate( nh_den(1,dens_bins),h_den(dens_bins),

& ends_den(dens_bins) )

nh_den =0; h_den =0; ends_den=0
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elseif (dens_type.eq.2) then ! RZ

allocate( nh_den(rad_bins ,ax_bins) )

nh_den=0

elseif (dens_type.eq.3) then !XYZ

allocate( nh_den(3,dens_bins),h_den(dens_bins),

& ends_den(dens_bins) )

nh_den =0; h_den =0; ends_den=0

elseif (dens_type.eq.4) then ! XZ,y=0

allocate( nh_den(dens_bins ,dens_bins) )

nh_den=0

endif

ENDIF

if (n.le.0) return

if (dens_type.eq.1) then ! rho(r)

do j=1,N

rr=sqrt(x(j)*x(j)+y(j)*y(j)+z(j)*z(j))

! Now "bin" the distances into a histogram

i = int(rr*dens_bins)+1

if (i.le.dens_bins) then ! don ’t count particles out of box

nh_den(1,i)=nh_den(1,i)+1

endif

enddo

else if (dens_type.eq.2) then ! rho(r,theta)

do j=1,N

! First calculate distances respective of system geometry

rr=sqrt(x(j)*x(j)+y(j)*y(j)+z(j)*z(j))

theta=acos(z(j)/rr)

rz=rr*sin(theta)/Ri(1)

rr=rr/Ri(1)

! Now "bin" the distances into a histogram

i = int(rz*rad_bins)+1

zr=(z(j)+Ri(1))/Li(1)

k = int(zr*ax_bins)+1 ! z+R so bins are from 0-->D rather

!print *, rz ,zr

if (i.le.rad_bins.and.k.le.ax_bins) then ! than -R --> R

nh_den(i,k)=nh_den(i,k)+1

endif

enddo

else if (dens_type.eq.3) then ! rho(x,y,z) (NOT TESTED)

do j=1,N

do g=1,3

select case (g)

case (1)

rr=(x(j)+Ri(g))/Li(g)

case (2)

rr=(y(j)+Ri(g))/Li(g)

case (3)

rr=(z(j)+Ri(g))/Li(g)

end select

! Now "bin" the distances into a histogram

i = int(rr*dens_bins)+1

if (i.le.dens_bins) then ! don ’t count particles out of

box

nh_den(g,i)=nh_den(g,i)+1

endif

enddo
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enddo

else if (dens_type.eq.4) then ! rho(x,y=0,z)

do j=1,N

if (abs(y(j)).lt.xz_dy) then ! see if particle is in XZ plane

rx=(x(j)+Ri(1))/Li(1) ! relative distance in X

rz=(z(j)+Ri(1))/Li(1) ! relative distance in Z

i=int(rx*dens_bins)+1

k=int(rz*dens_bins)+1

if (i.le.dens_bins.and.k.le.dens_bins) then

nh_den(i,k)=nh_den(i,k)+1

endif

endif

enddo

endif

else !! --- Output --- !!

open(file=densfile ,unit =230)

!! Reduce the hystograms and write to disk

if (dens_type.eq.1) then

rw=Ri(1)

do i=1,dens_bins

ii = float(i)/dens_bins*rw

ii1 = float(i-1)/dens_bins*rw

vs = 4*pi*(ii**3 - ii1**3) /3 ! Volume of slice

nh_den(1,i) = nh_den(1,i)/nset/vs

ends_den(i) = ends_den(i)/nset

enddo

do i=1,dens_bins

h_den(i)=float(i)/dens_bins !assign the profile ’s index ,

relative distance

write (230 ,*) h_den(i),nh_den(1,i),ends_den(i)

enddo

elseif (dens_type.eq.2) then

rw=Ri(1)

do i=1,rad_bins

rr2=dble(i)/rad_bins*rw

rr1=dble(i-1)/rad_bins*rw

vs=pi*(rr2**2-rr1**2) *(Li(1)/ax_bins) ! pi*r^2*dz

do j=1,ax_bins

nh_den(i,j) = nh_den(i,j)/nset/vs

enddo

enddo

do i=1,ax_bins

zdist=dble(i)/ax_bins*Li(1)

do j=1,rad_bins

rdist=dble(j)/rad_bins*Ri(1)

write (230 ,*) rdist ,zdist ,nh_den(j,i)

enddo

write (230 ,*)

enddo

elseif (dens_type.eq.3) then

do g=1,3

rw=Ri(g)

do i=1,dens_bins
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ii = float(i)/dens_bins*rw

ii1 = float(i-1)/dens_bins*rw

if (sphere) then

h1=rw -ii !! NOT TESTED !!

h2=rw -ii1

h=h1-h2

r1=sqrt(rw**2-h1**2)

r2=sqrt(rw**2-h1**2)

vs=pi /6*(3*r1**2+3*r2**2+h**2)*h ! Volume of a slice

of a sphere in the x,y, or z plane

else

vs = (ii -ii1)*product(Li)/Li(g) ! Volume of a slice of

the x,y or z plane

end if

nh_den(g,i) = nh_den(g,i)/nset/vs

ends_den(i) = ends_den(i)/nset

enddo

enddo

do i=1,dens_bins

h_den(i)=float(i)/dens_bins !assign the profile ’s index ,

relative distance

write (230 ,*) h_den(i),nh_den(1,i),nh_den(2,i),

& nh_den(3,i),ends_den(i)

enddo

else if (dens_type.eq.4) then

vs=pi*Ri(1) **2*(2.0* xz_dy)

do i=1,dens_bins

rx=dble(i)/dens_bins*li(1)

do j=1,dens_bins

rz=dble(j)/dens_bins*li(1)

nh_den(i,j) = nh_den(i,j)/nset/vs

write (230 ,*) rx ,rz ,nh_den(i,j)

enddo

write (230 ,*)

enddo

endif

close (230)

endif

end subroutine sample_density

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

function radius_gryation () result (radgry)

real*8 radgry ,xm,ym,zm,xr,yr,zr

integer i

if (N.lt.1) return

xm=0; ym=0; zm=0

do i=1,N !Loop over all particles

! Calculate mean position

xm= xm+x(i)

ym= ym+y(i)

zm= zm+z(i)
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enddo

xm= xm/N

ym= ym/N

zm= zm/N

! Calculate radius of gryation

radgry =0

do i=1,N

xr=x(i)-xm

yr=y(i)-ym

zr=z(i)-zm

radgry= radgry +(xr*xr+yr*yr+zr*zr)

enddo

radgry=radgry/dble(N)

radgry=sqrt(radgry)

end function radius_gryation

!! SAMPLE AND REDUCE GAUGE CELL HISTOGRAM

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine samplegauge(output)

logical output

integer i

real*8 P_ng,P_ng1 !gauge histogram probablities

real*8 mu_dist !chem. potential from gauge histogram

if (.not.output) then !no ouput , so sample instead.

!counter 1= counter 1+1

! Change this so it calculation can be resumed if simulation stops

if (ensemble.eq.1) nh_ng(n+1)=nh_ng(n+1) +1.0 !Note the indice is

shifted since Fortran arrays must start at 1

if (ensemble.eq.2) nh_ng(ng+1)=nh_ng(ng+1) +1.0 !Note the indice is

shifted since Fortran arrays must start at 1

else !Reduce N_G histogram and write to disk

!print *, counter1

open(file=histfile , unit =26)

if (ensemble.ge.1) then

if (ensemble.eq.2) write (26,’(A,ES12.4) ’) ’# Gauge Volume = ’,vg

do i=0,MAXPART -1

if (i.gt.0) then

P_ng1=P_ng !P(i-1)

else

P_ng1=0

endif

P_ng=nh_ng(i+1)/dble(nstep*nset) !P(i)

if (ensemble.eq.2) then

if (P_ng.eq.0 .or. P_ng1.eq.0) then

mu_dist=0

else

if (bonds) then
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mu_dist = T*log(dble(i)/Vg*P_ng/P_ng1)

else

mu_dist = T*log(dble(i)/Vg*P_ng/P_ng1)+mu_id

endif

endif

else

mu_dist=0

endif

if (P_ng.gt.1e-8) write (26 ,*) i,P_ng,mu_dist ,Ntotal -i

if (Ntotal -1.le.0) goto 775

enddo

endif

775 close (26)

endif

end subroutine samplegauge

!cccccccccccccccccccccccccccccccccccccccccc

subroutine sampleangles(output)

logical output

integer bins ,i,j

real histmax , histmin , histlen , dx

REAL ba(MAXPART -2)

!Clear variables

ba_set =0;

if (set.eq.neqset +1) then

!clear averages

ba_avg=0

allocate( nh_ba(ba_bins),h_ba(ba_bins) )

nh_ba(:) =0; ba(:)=0

endif

if (n.lt.3) return ! Less than 1 bond angle in the system

if (.not.output) then

do i=1,N-2 !Loop over all bond angles

ba(i)=bond_angle(i,i+1,i+2)

enddo

! Initiallize the bond angle histogram

if (set.eq.neqset +1) then

histmax=maxval(ba)

histmin=minval(ba)

histlen=histmax -histmin

dx=2* histlen/float(ba_bins)

histmin=histmin -0.25* histlen

!NOTE: the initial bins here are the range of bond lengths of the first

averaging set ,

! times 2. So the distribution will have a length of L, with 0.5L of 0

weight on each side.

! If the system fluxuations past this , some will not be counted. The

program will warn a user

! when this happens , but it will not stop and distribution will not reflect

those missed points.

do i=1,ba_bins

h_ba(i)=dx*i+histmin !assign bin ’names ’
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enddo

endif

! Sample bond angles

ba_set= ba_set/dble(N-2)

ba_avg= ba_set+ba_avg

do i=1,N-2 !Loop over angles

do j=1,ba_bins !Loop over bins

if (ba(i).le.h_ba(j)) then

nh_ba(j)=nh_ba(j)+1

goto 152 !bin placement successful , go to next bond

endif

enddo

152 continue

enddo

!Reduce and write variables

else

! Reduce averages

ba_avg=ba_avg/nset

! Reduce bond length histogram and write to disk

open(file=bondafile , unit =26)

do i=1,ba_bins

nh_ba(i)=nh_ba(i)/dble(nset)

write (26, *) h_ba(i),nh_ba(i)

enddo

close (26)

endif

end subroutine sampleangles

subroutine sample_gr(output)

real*8 constant ,n_avg ,r_low ,r_high ,n_id,const

integer bin ,i,j

logical output

if (.not.output) then !no ouput , so sample instead.

do i=1,N-1

do j=i+1,N

bin=int(r_ij(i,j)/gr_delr)+1

if (bin.le.gr_maxbin) then

gr_hist(bin)=gr_hist(bin)+2

endif

enddo

enddo

else !Reduce g(r) histogram and write to disk

constant =4.0* pi/3.0

n_avg=rho*Volume

open(file=trim(jobname)//’.gr’,unit =79)

do bin=1,gr_maxbin

r_low=float(bin -1)*gr_delr

r_high=r_low+gr_delr

n_id=constant *(r_high**3-r_low **3)

gr_hist(bin)=gr_hist(bin)/float(nset)/n_avg/n_id
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write (79,*) gr_delr*bin , gr_hist(bin)

enddo

close (79)

endif

end subroutine sample_gr

end module sample

B.6 output.f

module outputs

use inputs

use moves

use energy

use sample

implicit none

character *1 xmol (4)

logical step_warning

contains

! Write system values to terminal and disk at various levels

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine set_output(termlev ,disklev)

integer :: termlev ,disklev ,pct ,i

real dis_pct , rep_pct , cs_pct ,cbr_pct !percent of total moves

real dpct , rpct , cpct , ipct , rempct ,cbrpct ,expct !acceptance

percentage

real mv_pct(nmoves)

!logical AnyPBC

open(file=enefile ,unit =203, status=’NEW ’,ERR =333)

write (203,’(A1,A6,6A14) ’)

& "#"," SETS","N_SET","U_SET","U_FF","U_SF","U_KBL","U_KBA"

GOTO 334

333 continue

OPEN(FILE=enefile ,unit =203, position=’APPEND ’)

334 continue

open(file=mufile ,unit =204, position=’APPEND ’)

open(file=logfile ,unit =202, position=’APPEND ’)

dpct =0; rpct =0; ipct =0; rempct =0; cpct =0; cbrpct =0

pct = 100* set/(nset+neqset)

if (n_dis.gt.0) dpct = float(acc_dis)/float(n_dis)

dis_pct = float(n_dis)/float(nstep)

if (n_rep.gt.0) rpct = float(acc_rep)/float(n_rep)

rep_pct = float(n_rep)/float(nstep)

if (n_cs.gt.0) cpct = float(acc_cs)/float(n_cs)

cs_pct = float(n_cs)/float(nstep)

if (n_reg.gt.0) cbrpct=float(n_reg_acc)/float(n_reg)

cbr_pct = float(n_reg)/float(nstep)

if ((ng_ins+ng_rem).gt.0) then

expct = float(ng_ins_suc+ng_rem_suc)/float(ng_ins+ng_rem)
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endif

mv_pct (1)=dpct

mv_pct (2)=rpct

mv_pct (3)=cpct

mv_pct (4)=expct

mv_pct (5)=cbrpct

if (termlev.ge.1) then

write (* ,501) set ,nset+neqset ,pct

endif

if (disklev.ge.1) then

write (202 ,501) set ,nset+neqset ,pct

endif

if (termlev.ge.2) then

write(*,’(A8)’,advance=’no ’) "Mov Acc:"

do i=1,nmoves

if (move_pct(i).gt.0) then

write(*,’(A3)’,advance=’no ’) mv_short(i)

if (move_cumpct(i).lt.1) then

write(*,’(A1)’,advance=’no ’) ","

endif

endif

enddo

write(*,’(A2)’,advance=’no ’) ": "

do i=1,nmoves

if (move_pct(i).gt.0) then

write(*,’(ES8.2) ’,advance=’no ’) mv_pct(i)

if (move_cumpct(i).lt.1) then

write(*,’(A1)’,advance=’no ’) ","

endif

endif

enddo

write(*,’(A1) ’) "."

endif

if (disklev.ge.2) then

write (202,’(A8)’,advance=’no ’) "Mov Acc:"

do i=1,nmoves

if (move_pct(i).gt.0) then

write (202,’(A3)’,advance=’no ’) mv_short(i)

if (move_cumpct(i).lt.1) then

write (202,’(A1)’,advance=’no ’) ","

endif

endif

enddo

write (202,’(A2)’,advance=’no ’) ": "

do i=1,nmoves

if (move_pct(i).gt.0) then

write (202,’(ES8.2) ’,advance=’no ’) mv_pct(i)

if (move_cumpct(i).lt.1) then

write (202,’(A1)’,advance=’no ’) ","

endif

endif

enddo

write (202,’(A1) ’) "."

endif

if (termlev.ge.3) then

if (ensemble.eq.1) then
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write (* ,505) Uff_set ,Usf_set ,N_set

else

write (* ,503) Uff_set ,Ukbl_set+Ukba_set ,Usf_set ,mu_set

endif

endif

if (disklev.ge.3) then

if (ensemble.eq.1) then

write (202 ,505) Uff_set ,Usf_set ,rho_set*Volume

else

write (202 ,503) Uff_set ,Ukbl_set+Ukba_set ,Usf_set ,mu_set

endif

endif

if (recordene.and.set.gt.1) then

write (203,’(I7,E14.5 ,6E14.5) ’)

& set ,N_set ,U_SET ,Uff_set ,Usf_set ,Ukbl_set ,Ukba_set

write (204 ,*) set*(step -1),mu_set

endif

if (disklev.ge.5) then

endif

if (ensemble.eq.1) then

if (termlev.ge.3) then

write (* ,701) ng_ins ,ng_ins_suc ,

& ng_rem ,ng_rem_suc

endif

if (disklev.ge.3) then

write (202 ,701) ng_ins ,ng_ins_suc ,

& ng_rem ,ng_rem_suc

endif

elseif (ensemble.eq.2) then

if (termlev.ge.3) then

write (* ,504)’ N,Ng ,rho_g,V_g=’,n,ng ,rhogauge ,Vg

write (* ,701) ng_ins ,ng_ins_suc ,

& ng_rem ,ng_rem_suc

endif

if (disklev.ge.3) then

write (202 ,504)’ N,Ng ,rho_g,V_g=’,n,ng ,rhogauge ,Vg

write (202 ,701) ng_ins ,ng_ins_suc ,

& ng_rem ,ng_rem_suc

endif

endif

501 format(’Set ’,I8,’/’,I8,’ completed. ’,I3,’% done.’)

503 format(’ Uff=’,E12.4,’, Uint=’,E12.4,’, Usf=’,E12.4,

& ’, mu_ex=’,E12.4)

505 format(’ Uff=’,E12.4,’, Usf=’,E12.4,

& ’, N=’,F10.2)

504 format(A,I5,i5,es12.3,es 12.3)

701 format(’ Exchange attempts ,successes (i:r)=’,I9,’,’,

& I6,’ :’,I9,’,’,I6)

close (202);close (203);close (204)

end subroutine set_output

subroutine writecoor(filename)

integer :: i

character *50 filename

open(file=filename ,unit =11)
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do i=1,n

write (11,*) x(i),y(i),z(i)

enddo

close (11)

end subroutine writecoor

subroutine writetraj(formattype)

integer formattype ,i

real xcm(n),ycm(n),zcm(n)

real r,xm,ym,zm,rm

logical AnyPBC

if (n.le.0) return

!File format , 0=XMOL

XMOL (1)=’C’

XMOL (2)=’N’

XMOL (3)=’O’

XMOL (4)=’S’

! rescale coordinates so center of mass is at origin , if there are no

boundaries in the system.

AnyPBC =.false.

do i=1,3

if (SetPBC(i)) AnyPBC =.true.

enddo

if (geom.ge.3 .and. .not.AnyPBC .and. .not.tethered (1)) then

xm=0; ym=0; zm=0

do i=1,N

xm=xm+x(i)

ym=ym+y(i)

zm=zm+z(i)

enddo

!rm=sqrt(xm*xm+ym*ym+zm*zm)

xm=xm/n

ym=ym/n

zm=zm/n

do i=1,N

xcm(i)=x(i)-xm

ycm(i)=y(i)-ym

zcm(i)=z(i)-zm

enddo

else

do i=1,N

xcm(i)=x(i)

ycm(i)=y(i)

zcm(i)=z(i)

enddo

endif

r=Li(1)/2.

open(file=trajfile ,unit =101, position=’append ’)

IF (tidy(trajtype).eq.’XMOL ’) then

!if (geom.eq.3) write(29,’(I10) ’) N

write (101,’(I10) ’) N

write (101 ,*) ’After ’,(set)*(step -1) ,’ Steps ’

do i=1,N



283

if (i.eq.1 .or .i.eq.N) then

write (101,’(A,F10.3,F10.3,F10.3) ’) xmol (2),xcm(i),ycm(i),

& zcm(i)

else

write (101,’(A,F10.3,F10.3,F10.3) ’) xmol (1),xcm(i),ycm(i),

& zcm(i)

endif

enddo

if (geom.ge.3) then !draw in corners if cube

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4),r,r,r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4),r,r,-r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4),r,-r,-r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4) ,-r,-r,-r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4) ,-r,-r,r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4) ,-r,r,r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4) ,-r,r,-r

!~ write (29,’(A,F10.3,F10.3,F10.3) ’) xmol (4),r,-r,r

endif

ELSEIF (tidy(trajtype).eq.’VTF ’) then

! Make a VTF file

if (set.eq.0) then

! Write the structure block

write (101,’(2A)’) "atom 0 radius 1.00 name ",xmol (2)

do i=2,N-1

write (101,’(A,I6,2A)’) "atom ",i-1," radius 1.00 name ",

& xmol (1)

enddo

write (101,’(A,I6,2A)’) "atom ",N-1," radius 1.00 name ",

& xmol (2)

write (101 ,*)

do i=1,N-1

write (101,’(A,I6,A,I6) ’) "bond ",i-1,":",i

enddo

write (101 ,*)

endif

write (101,’(A)’) "timestep indexed"

write (101,’(A,3F10.1) ’) "pbc",Li(1),Li(2),Li(3)

do i=1,N

write (101,’(I6,3E15.5) ’) i,xcm(i),ycm(i),zcm(i)

enddo

write (101 ,*)

end if

close (101)

end subroutine writetraj

subroutine writesummary(filename)

character *15 filename

real*8 mu_f

if (filename == ’NONE ’) return

! Summary of results

open(file=filename , unit=25, status=’NEW ’, err =233)

write (25,’(A1,A9,A12,A6,A15,A12,A15,A15,A15,A15,A12) ’)
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& "#","N","RHO","T","RHO_G","MU","UFF","USF","UKBL","UKBA","RG"

GOTO 235

233 continue

open(file=filename , unit=25, position=’APPEND ’)

235 continue

SELECT CASE (ENSEMBLE)

case (0)

mu_f=-T*log(Vins*rho_g)

case (1)

mu_f=mu_bulk

case (2)

mu_f=T*log(rho_g)

end select

write (25 ,123)

& rho*volume ,rho ,T,rho_g,mu_f,

& Uff_avg ,Usf_avg ,Ukbl_avg ,Ukba_avg ,Rg_avg

123 Format(F10.3,F12.6,F6.3,E15.6,F12.6,E15.6,E15.6,

& E15.6,E15.6,F12.6)

close (25)

end subroutine writesummary

subroutine writeaverageenergies ()

open(file=logfile ,position=’APPEND ’,unit =26)

write (*,*)

write(*,’(A,E13.6,a,F8.3,a,E13.6,a,F8.3,A)’)

& ’ Average Energies: Uff= ’,

& Uff_avg ,’(’,Uff_avg/real(n),’ per bead)’

write(*,’(A26,E13.6,A,F8.3,A)’) ’Usf= ’,Usf_avg ,’(’,

& Usf_avg/real(n),’ per bead)’

write(*,’(A26,E13.6,A,F8.3,A)’) ’Ukbl=’,Ukbl_avg ,’(’,

& Ukbl_avg/real(n),’ per bead)’

write(*,’(A26,E13.6,A,F8.3,A)’) ’Ukba=’,Ukba_avg ,’(’,

& Ukba_avg/real(n),’ per bead)’

write (26,’(A,E13.6,a,F8.3,a,E13.6,a,F8.3,A)’)

& ’ Average Energies: Uff= ’,

& Uff_avg ,’(’,Uff_avg/real(n),’ per bead)’

write (26,’(A26,E13.6,A,F8.3,A)’) ’Usf= ’,Usf_avg ,’(’,

& Usf_avg/real(n),’ per bead)’

write (26,’(A26,E13.6,A,F8.3,A)’) ’Ukbl=’,Ukbl_avg ,’(’,

& Ukbl_avg/real(n),’ per bead)’

write (26,’(A26,E13.6,A,F8.3,A)’) ’Ukba=’,Ukba_avg ,’(’,

& Ukba_avg/real(n),’ per bead)’

close (26)

end subroutine writeaverageenergies

subroutine writefinalle ()

real*8 olduff , oldusf , oldukbl , mu_bond , dbw

dBW=h/sqrt (2.0*pi*mass*kb*T*eps) !m

dBW=dBw*1e10/ sigma !per sigma (sigma in variable stored in

Angstroms)

if (hardbond) then

mu_bond = 0.d0
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else

mu_bond = -T*log (4.0* pi*

& sqrt (2.0*pi)*(2.0* kb0_len*r0**2+T)/(2.0* kb0_len*sqrt (2.0*

& kb0_len/T)))

end if

open(file=logfile ,position=’APPEND ’,unit =26)

olduff=uff; oldusf=usf; oldukbl=ukbl

call calc_energy (.false .)

write (*,*)

Write (*,*) ’Uff: Running -Now:’, olduff -uff

Write (*,*) ’Usf: Running -Now:’, oldusf -usf

Write (*,*) ’Ukbl: Running -Now:’, oldukbl -ukbl

Write (*,*)

Write (*,*), ’SIMULATION COMPLETE!’

Write (*,*), ’ <N>=’,rho*volume

if (calc_bondl) Write (*,*), ’ <l>=’,bl_avg

!if (calc_bondl) print *, ’ RMS= ’,RMS_avg

if (calc_bondl) Write (*,*), ’ <L>/<R>=’,tort_avg

if (calc_bondl) Write (*,*), ’ sqrt(<S2>)=’,Rg_avg

if (calc_bondl) Write (*,*), ’ sqrt(<R2>)=’,RMS_1N_avg

if (calc_bondl) Write (*,*), ’ <S2>/<R2>=’,

& Rg_avg **2/ RMS_1N_avg**2

Write (*,*), ’ <rho >=’,rho

if (ensemble.eq.0) then

write (*,*), ’ <exp(-U/kT)>=’,rho_g

if (bonds) then

Write (*,*), ’ <mu_incr[bond]/e>= ’, mu_bond

if (ins_bias) then

write (*,*), ’ <mu_incr[ex]/e>=’,

& -T*log(Vins*rho_g)-mu_bond

write (*,*), ’ <mu_incr/e>=’, -T*log(Vins*rho_g)

else

write (*,*), ’ <mu_incr[ex]/e>=’, -T*log(Vins*rho_g)

write (*,*), ’ <mu_incr/e>=’,-T*log(Vins*rho_g)+

& mu_bond

end if

else

Write (*,*), ’ <mu_id/e>=’,mu_id

write (*,*), ’ <mu[ex]/e>=’,-T*log(rho_g)

write (*,*), ’ <mu/e>=’,-T*log(rho_g)+mu_id

end if

elseif (ensemble.eq.2) then

write (*,*), ’ <rho_g>=’,rho_g

if (bonds) then

Write (*,*), ’ <mu_incr[bond]/e>= ’, mu_bond

if (ins_bias) then

write (*,*), ’ <mu_incr[ex]/e>=’,

& -T*log(rho_g)-mu_bond

write (*,*), ’ <mu_incr/e>=’, T*log(rho_g)

else

write (*,*), ’ <mu_incr[ex]/e>=’, T*log(rho_g)

write (*,*), ’ <mu_incr/e>=’,T*log(rho_g)+

& mu_bond

end if

else

Write (*,*), ’ <mu_id/e>=’,mu_id

write (*,*), ’ <mu[ex]/e>=’,T*log(rho_g)
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write (*,*), ’ <mu/e>=’,T*log(rho_g)+mu_id

end if

elseif (ensemble.eq.1) then

Write (*,*), ’ mu/eps=’,mu_bulk

endif

Write (*,*), ’-----------------------------------------------’

! write to log

write (26,*)

Write (26,*) ’Uff: Running -Now:’, olduff -uff

Write (26,*) ’Usf: Running -Now:’, oldusf -usf

Write (26,*) ’Ukbl: Running -Now:’, oldukbl -ukbl

Write (26,*)

Write (26,*), ’SIMULATION COMPLETE!’

Write (26,*), ’ <N>=’,rho*volume

if (calc_bondl) Write (26 ,*), ’ <l>=’,bl_avg

!if (calc_bondl) print *, ’ RMS= ’,RMS_avg

if (calc_bondl) Write (26 ,*), ’ <L>/<R>=’,tort_avg

if (calc_bondl) Write (26 ,*), ’ <S>=’,Rg_avg

if (calc_bondl) Write (26 ,*), ’ <R>=’,RMS_1N_avg

if (calc_bondl) Write (26 ,*), ’ <S2>/<R2>=’,

& Rg_avg **2/ RMS_1N_avg**2

Write (26,*), ’ <rho >=’,rho

if (ensemble.eq.0) then

write (26,*), ’ <exp(-U/kT)>=’,rho_g

if (bonds) then

Write (26,*), ’ <mu_incr[bond]/e>= ’, mu_bond

if (ins_bias) then

write (26,*), ’ <mu_incr[ex]/e>=’,

& -T*log(Vins*rho_g)-mu_bond

write (26,*), ’ <mu_incr/e>=’, -T*log(Vins*rho_g)

else

write (26,*), ’ <mu_incr[ex]/e>=’, -T*log(Vins*rho_g)

write (26,*), ’ <mu_incr/e>=’,-T*log(Vins*rho_g)+

& mu_bond

end if

else

Write (26,*), ’ <mu_id/e>=’,T*log(dbw **3*(N+1)/volume)

write (26,*), ’ <mu[ex]/e>=’,-T*log(rho_g)

write (26,*), ’ <mu/e>=’,-T*log(rho_g)+mu_id

end if

elseif (ensemble.eq.2) then

write (26,*), ’ <rho_g>=’,rho_g

if (bonds) then

Write (26,*), ’ <mu_incr[bond]/e>= ’, mu_bond

if (ins_bias) then

write (26,*), ’ <mu_incr[ex]/e>=’,

& -T*log(Vins*rho_g)-mu_bond

write (26,*), ’ <mu_incr/e>=’, T*log(rho_g)

else

write (26,*), ’ <mu_incr[ex]/e>=’, T*log(rho_g)

write (26,*), ’ all vars: ’,T,Vins ,rho_g,mu_avg

write (26,*), ’ <mu_incr/e>=’, T*log(rho_g)+

& mu_bond

end if

else

Write (26,*), ’ <mu_id/e>=’,mu_id

write (26,*), ’ <mu[ex]/e>=’,T*log(rho_g)

write (26,*), ’ <mu/e>=’,T*log(rho_g)+mu_id
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end if

elseif (ensemble.eq.1) then

Write (26,*), ’ mu/eps=’,mu_bulk

endif

Write (26,*), ’-----------------------------------------------’

if (step_warning) then

write (*,*) ’WARNING: Step size was less than 1e-4. Poor ’//

& ’sampling may have occured!’

write (26,*) ’WARNING: Step size was less than 1e-4. Poor ’//

& ’sampling may have occured!’

endif

close (26)

end subroutine writefinalle

end module outputs

B.7 constants.f

module constants

implicit none

real*8 pi,kb,h,Na

parameter( pi =3.14159265358979323846264

& 33832795028841971693993751058209745 )

parameter( kb =1.3806503E-23 ) !(m2*kg/s-2*K-1) or (J/K)

parameter( h=6.62606896E-34 ) !(m2*kg/s) or (J*s)

parameter( Na =6.0221415e23 ) !per mole

contains

!!! Extra Math Functions

!! Linear Interpolation

real*8 function interpolate(t,x2,x1,y2,y1)

real*8 t,x1,x2,y1,y2

interpolate=y1+(t-x1)*(y2-y1)/(x2-x1)

end function

!! Factorial

integer *4 function fact(n_)

integer *4 n_

integer i

fact=1

do i=1,n_

fact=fact*i

enddo

end function fact

!! Combinatorial

INTEGER *4 function comb(n_,r_)

integer *4 n_, r_, a_

integer i

if (r_ > n_) then

comb=0

return

endif

a_ = (n_ - r_)+1
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comb=1

do i=a_, n_

comb=comb*i

enddo

comb = comb/fact(r_)

end function comb

!! Permutation

integer *4 function perm(n_,r_)

integer *4 n_, r_, a_

integer i

if (r_ > n_) then

perm=0

return

endif

a_ = (n_ - r_)+1

perm=1

do i=a_, n_

perm=perm*i

enddo

end function perm

! Estimate standard deviation using blocking method

subroutine blocking_avg(array ,samp ,start ,block_avg ,stddev ,conv)

integer ,intent(in) :: samp ,start

real blocks_ignored

real*8 :: array(samp)

real*8,intent(out) :: block_avg ,stddev

logical ,intent(out) :: conv

real*8 mean ,mean2,var ,bvar ,sd,evar ,esd ,fl,flm1

real*8, allocatable :: sdm (:),esdm (:),bl_max (:)

integer i,j,k,avg_set ,Mb ,l,lm1

! Calculate maximum number of blocks

avg_set=(samp -start +1)

Mb=0

do while (avg_set.gt.1)

Mb=Mb+1

avg_set=avg_set/2

enddo

allocate(sdm(Mb),esdm(Mb))

! Re -index the data array

mean =0.0; avg_set=0

do i=start ,samp

avg_set=avg_set+1

array(avg_set)=array(i)

enddo

! Calculate the total mean

mean =0.0

do i=1,avg_set

mean=mean+array(i)

enddo

mean=mean/dble(avg_set)

block_avg=mean

mean2=mean*mean

! Calculate total variance



289

bvar =0.d0; var =0.d0

do i=1,avg_set

bvar=bvar+( array(i)**2-mean2)

enddo

bvar=bvar/dble(avg_set)

var=bvar/dble(avg_set -1)

sd=sqrt(var)

evar=var*sqrt(dble (2)/dble(avg_set -1))

esd=sd *1.0/ sqrt (2.0* dble(avg_set -1))

sdm (1)=sd; esdm (1)=esd

! Begin blocking operations

l=avg_set

do j=2,Mb

l=l/2; lm1=l-1

fl=float(l); flm1=float(lm1)

do i=1,l

k=2*i

array(i)=0.5*( array(k-1)+array(k))

enddo

mean =0.d0

do i=1,l

mean=mean+array(i)

enddo

mean=mean/fl

mean2=mean*mean

bvar =0.d0

do i=1,l

bvar=bvar+(array(i)**2-mean2)

enddo

bvar=bvar/fl

var=bvar/flm1

sd=sqrt(var)

evar=var*sqrt (2.0/ flm1)

esd=sd *1.0/ sqrt (2.0* flm1)

sdm(j)=sd; esdm(j)=esd

enddo

! Estimate std. dev.

allocate( bl_max(Mb) )

do i=1,Mb

bl_max(i) = sdm(i)+esdm(i)

enddo

!stddev=max(bl_max(:))

! Check for convergence

conv=.false.

end subroutine blocking_avg

!! Handy Functions that FORTRAN left out!

function upcase(string) result(upper)

character(len=*), intent(in) :: string

character(len=len(string)) :: upper

integer :: j

do j = 1,len(string)

if(string(j:j) >= "a" .and. string(j:j) <= "z") then

upper(j:j) = achar(iachar(string(j:j)) - 32)
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else

upper(j:j) = string(j:j)

end if

end do

end function upcase

!! Tidy up long strings , e.g. make them upper case and remove

leading/trialing spaces

function tidy(string) result(output)

character(len=*), intent(in) :: string

character(len=len(string)) :: output

output=upcase(string)

output=trim(output)

end function tidy

!! Input time as seconds , returns neatly formated string in

days/hours/minutes/seconds.

function time_str(timein) result(timeout)

character *51 timeout

character *8 strint8

character *5 strint5

character *2 strint 2(2)

real*8 timein ,hours ,minutes ,days ,secs

integer i,j

if (timein.lt .0.01) then

timeout=’less than 1 second.’

return

endif

secs=timein

minutes=secs /60.

hours=minutes /60.

days=hours /24.

if (days.gt.1) then

write(strint8,’(I8) ’) int(days)

hours=(days -int(days))*24.

write(strint 2(1) ,’(I2) ’) int(hours)

minutes =(hours -int(hours))*60.

write(strint 2(2) ,’(I2) ’) int(minutes)

secs=(minutes -int(minutes))*60.

write(strint5,’(F5.2) ’) secs

timeout=strint 8//’ days , ’//strint 2(1)//’ hours , ’//

& strint 2(2)//’ minutes , ’//strint 5//’ seconds.’

return

endif

if (hours.gt.1) then

write(strint 2(1) ,’(I2) ’) int(hours)

minutes =(hours -int(hours))*60.

write(strint 2(2) ,’(I2) ’) int(minutes)

secs=(minutes -int(minutes))*60.

write(strint5,’(F5.2) ’) secs

timeout=strint 2(1)//’ hours , ’//strint 2(2)//’ minutes , ’//

& strint 5//’ seconds.’

return

endif

if (minutes.gt.1) then
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write(strint 2(2) ,’(I2) ’) int(minutes)

secs=(minutes -int(minutes))*60.

write(strint5,’(F5.2) ’) secs

timeout=strint 2(2)//’ minutes , ’//strint 5//’ seconds.’

return

endif

write(timeout ,’(F5.2,A)’) secs ,’ seconds. ’

return

end function time_str

subroutine timestamp ( )

!*************************************************************

!

! ! TIMESTAMP prints the current YMDHMS date as a time stamp.

!

! Example:

!

! May 31 2001 9:45:54.872 AM

!

! Licensing:

!

! This code is distributed under the GNU LGPL license.

!

! Modified:

!

! 31 May 2001

!

! Author:

!

! John Burkardt

!

! Parameters:

!

! None

!

implicit none

character ( len = 8 ) ampm

integer ( kind = 4 ) d

character ( len = 8 ) date

integer ( kind = 4 ) h

integer ( kind = 4 ) m

integer ( kind = 4 ) mm

character ( len = 9 ), parameter , dimension (12) :: month =

& (/ ’January ’, ’February ’, ’March ’, ’April ’,

& ’May ’, ’June ’, ’July ’, ’August ’,

& ’September ’, ’October ’, ’November ’, ’December ’ /)

integer ( kind = 4 ) n

integer ( kind = 4 ) s

character ( len = 10 ) time

integer ( kind = 4 ) values (8)

integer ( kind = 4 ) y

character ( len = 5 ) zone

call date_and_time ( date , time , zone , values )

y = values (1)

m = values (2)
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d = values (3)

h = values (5)

n = values (6)

s = values (7)

mm = values (8)

if ( h < 12 ) then

ampm = ’AM ’

else if ( h == 12 ) then

if ( n == 0 .and. s == 0 ) then

ampm = ’Noon ’

else

ampm = ’PM’

end if

else

h = h - 12

if ( h < 12 ) then

ampm = ’PM’

else if ( h == 12 ) then

if ( n == 0 .and. s == 0 ) then

ampm = ’Midnight ’

else

ampm = ’AM’

end if

end if

end if

write ( *,’(a,1x,i2,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)’

& ) trim ( month(m) ), d, y, h, ’:’, n, ’:’, s, ’.’, mm ,

& trim ( ampm )

return

end subroutine timestamp

end module constants

B.8 fort rand.f

module fort_rand

implicit none

contains

! Initialize FORTRAN random number generator

subroutine rand_init(rseed)

integer rseed ,k,q,clock

integer , dimension (:), allocatable :: seed

call random_seed(size = q)

allocate(seed(q))

if (rseed.eq.0) then

!If 0 is passed for rseed , use clock instead

call system_clock(count=clock)

else

clock=rseed

endif

seed = clock + 37 * (/ (k - 1, k = 1, q) /)

call random_seed(put = seed)

return

end subroutine rand_init
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! Function to call a random number from the subroutine

real*8 function rnd()

real*8 X

call RANDOM_NUMBER(X)

rnd=X

return

end function rnd

! Function to call a random number center around 0 [aka bound ( -0.5 ,0.5)]

real*8 function rndz()

real*8 X

call RANDOM_NUMBER(X)

rndz=X-0.5

return

end function rndz

! Random integer from 1 to i

integer function rndint(i)

integer i

real*8 X

call RANDOM_NUMBER(X)

rndint=int(X*i)+1

return

end function rndint

! Random number from Gaussian distribution

real*8 function rndgauss(sigma ,mean)

real*8 sigma , mean ,r,v1,v2,x

r=2.0

do while (r.ge .1.0)

call random_number(v1)

call random_number(v2)

v1 = 2.0*v1-1.0

v2 = 2.0*v2-1.0

r=v1*v1+v2*v2

enddo

x=v1* dsqrt ( -2.0*log(r)/r)

rndgauss=mean+sigma*x

return

end function rndgauss

!! Generates random unit vector on a sphere

!! Based on Algorithim 42 in Frenkel&Smit

subroutine ran_nxyz(nv)

real*8,dimension (3) :: nv !unit vector

real*8 :: ransq ,ran1,ran2,ranh

ransq =2.

do while (ransq.ge.1)

call random_number(ran1)

call random_number(ran2)

ran 1=1. -2.* ran1

ran 2=1. -2.* ran2

ransq=ran1*ran1+ran2*ran2

enddo
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ranh =2.* sqrt(1.-ransq)

nv(1)=ran1*ranh

nv(2)=ran2*ranh

nv(3) =(1 -2.* ransq)

return

end subroutine ran_nxyz

end module fort_rand

C gradientInt.py code

This section contains the code developed for gradient-elution chromatography, Section 4.3. It was developed
with Python and SciPy [306] with an object-oriented framework, allowing reusable scripts for different
project, and easy extension of Python’s many tools.

#!/usr/bin/env python

# GRADIENTINT.PY -- v1.2.0 beta

# Object-oriented framework for gradient elution integrator

# Consists of input and output objects user can create & modify

import sys, os

from scipy import *

from scipy.integrate import odeint, quad

from scipy.optimize import newton

import matplotlib as mpl

from matplotlib import pyplot as plot

from matplotlib import rc

import copy, random

from partitionFuncs import *

grid = 1000 # grid mesh for ODE solver, increase for accuracy, decrease

# for speed

narrowPore = 10 # when is a narrow pore a narrow pore?

# (when Rg/D/2 is <= to this value);

# used in hybrid mode to determine switch over to

# asymptotic values.

debug = False # print data during integration

models = {0:"Analytical", 1:"Near critical", 2:"General solution",

3:"General/NC hybrid", 4:"Adsorption", 5:"Narrow"}

# just a label for pretty formatting...

solvent = {0:"Constant", 1:"Linear Approx", 2:"Error Function"}

# Available solvent models

# INPUT CLASSES:

# Polymer classes

class polymer:

# generic class, create it with poylmerType as name of K_function

def __init__(self, polymerType, columnObj):

# bookkeeping

self.polymerModel = polymerType

self.partitionFunc = "K_" + polymerType

self.name = "polymer"

self.column = columnObj

self.MW = [3600] # list of molecular weights of polymers

self.g = [] # not yet used

self.tgSoln = [] # contains solution to above

self.Mi = [1] # MW of arms (normalized to 1)

# model parameters (gradient)
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self.Fcr = [40.7]

self.b = [1.0] # Radius of gyration coefficient

self.s = [0.5] # Radius of gyration scaling

self.dldF = [5e-5] # dlambda/dPhi

self.solventModel = [1] # which solvent model to use

# non-gradient parameters

self.lmbda = [-1.0]

self.qi = [0.0, 0.0] # functional group strength

self.Kmax = 1e10

self.erfRange = 100.

# plotting parameters

self.color = None

self.marker = None

self.style = ’-’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

# generate a Markovian statistical copolymer with given parameters

# Pi, lambda, dldF, solventModel must be lists the length of the

# number of species!

# Pi is the overall ratio of chemical species,

def stat_copolymer(Pi, vij, lmbda, dldF, solventModel, N, gChain):

if self.polymerModel != ’copolymer’:

print "Statistical copolymers must use the \’copolymer\’ type!"

return

gChain, backbone = generate_statistical_copolymer( Pi, vij,

range(len(lmbda)), N, gChain, silent=True )

self.Mi = gChain

self.lmbda = []

self.dldF = []

self.solventModel = []

for i in backbone:

self.lmbda.append( lmbda[i] )

self.dldF.append( dldF[i] )

self.solventModel( solventModel[i] )

self.normalize(silent=True)

def normalize(self, silent=False):

self.Mi = array(self.Mi,dtype=float32)**2 /

sum(array(self.Mi,dtype=float32)**2)

if not silent:

print "Normalized MW per arm, ", self.Mi

def Rg(self,M):

return self.b[0] * M**(self.s[0])

def Rg2(self,M):

return self.Rg(M)**2

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.currentFg(tg,1.0)



296

def info(self):

# prints information about this instance

print "\’polymer\’ class -- %s"%self.name

print " Model: %s (model=%i)"%(models[self.model],self.model)

print " Column: %s (column=columnObject)"%(self.column.name)

print " Scaling, R_g = b*M^s: b = %5.2f, s = %5.2f"%(self.b, self.s)

print " Critical composition: %5.2f %% (Fcr=%5.2f)"%(self.Fcr,self.Fcr)

print " Combined parameter: %5.3g 1/Da (A=%5.3g)"%(self.A,self.A)

print " Interaction energy per composition: %6.4g kT/%% (dedF=%6.4g)" %

(self.dedF,self.dedF)

print " Interaction distance: %5.3f nm (a = %5.3f)"%(self.a,self.a)

def tg(self, M):

# solve for t_g for a certain MW

xrange = linspace(0, 1, grid)

t0 = 0

ode = odeint(self.dtdx, t0, xrange, args=(M,), rtol=1e-5)

return ode[-1][0]

def K(self, t, x, M):

# Current solvent strength

F = self.column.currentFg(t[0],x)

g = [2.0*self.Rg(i*M)/self.column.D for i in self.Mi]

lmda = []

for block in range(len(self.Mi)):

# Constant, i.e. isocratic solvent model

if self.solventModel[block] == 0:

lmda.append( self.lmbda[block] )

# Linear approximation

elif self.solventModel[block] == 1:

lmda.append( self.dldF[block]*(F - self.Fcr[block]) )

elif self.solventModel[block] == 2:

lmda.append( self.erfRange*erf(self.dldF[block] *

(F - self.Fcr[block])) )

# return K from partitionFuncs

Ksum = returnKvalue(self.partitionFunc, g, lmda, self.qi)

#print min(Ksum, self.Kmax), lmda, g, F, t, x

return min(Ksum, self.Kmax)

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class homopolymer:

def __init__(self, columnObj):

# bookkeeping

self.model = 0

self.name = "PS"

self.column = columnObj

self.MW = [3600]

self.tgSoln = []

self.Mi = [1]

# model parameters

self.f = 1

self.A = 8.5e-5

self.Fcr = 40.7
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self.a = 0.1 #nm

self.b = 1.0

self.s = 0.5

self.dedF = 8.5e-5 * self.column.D *self.a / 2 / 5.0

# plotting parameters

self.color = None

self.marker = None

self.style = ’-’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

def normalize(self):

pass

def calcA(self, silent=False):

# calculate the fitting parameter A from other parameters

self.A = 2*self.dedF*self.column.Fpr/self.column.D/self.a

if not silent: print "A = %g"%self.A

def Rg(self,M,f=1):

return self.b * M**(self.s)

def Rg2(self,M):

return self.Rg(M)**2

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*(tg -

(self.column.t0 + self.column.tP))

def info(self):

# prints information about this instance

print "Homopolymer class -- %s"%self.name

print " Model: %s (model=%i)"%(models[self.model],self.model)

print " Column: %s (column=columnObject)"%(self.column.name)

print " Scaling, R_g = b*M^s: b = %5.2f, s = %5.2f"%(self.b, self.s)

print " Critical composition: %5.2f %% (Fcr=%5.2f)"%(self.Fcr,self.Fcr)

print " Combined parameter: %5.3g 1/Da (A=%5.3g)"%(self.A,self.A)

print " Interaction energy per composition: %6.4g kT/%% (dedF=%6.4g)" %

(self.dedF,self.dedF)

print " Interaction distance: %5.3f nm (a = %5.3f)"%(self.a,self.a)

def tg(self, M):

# solve for t_g for a certain MW

Q = self.A*M

if self.column.dFdt == 0: # isocratic case

tg = self.column.t0 + self.column.tP * self.K(1.0, 1.0, M)

# passed variables do not matter in isocratic case

return tg

if self.model in [0]:

Fg = self.Fcr + (self.column.Fpr/Q)*log(1-exp(-Q) +

exp(Q/self.column.Fpr*(self.column.Fi-self.Fcr)-Q))

return (Fg - self.column.Fi)/self.column.dFdt +

(self.column.t0 + self.column.tP)

if self.model in [1,2,3]:
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xrange = linspace(0, 1, grid)

t0 = 0

return odeint(self.dtdx, t0, xrange, args=(M,))[-1][0]

def K(self, t, x, M):

F = min(100,self.column.Fi + self.column.dFdt*

(t - (self.column.t0 + self.column.tP)*x))

g = 2.0*self.Rg(M)/self.column.D

if self.model in [1] or (self.model == 3 and g > narrowPore):

if self.column.Fpr == 0:

Ksum = exp( 2*self.Rg(M)**2/self.column.D/self.a*self.dedF *

(self.Fcr - F) )

else:

Ksum = exp(self.A*M/self.column.Fpr*(self.Fcr - F))

elif self.model in [2] or (self.model == 3 and g <= narrowPore):

lmbda = float(self.dedF*(F - self.Fcr)*(self.column.D/2/self.a))

Ksum = K_general(g, lmbda)

elif self.model == 4: # Radke’s model

Ksum = K_adsorption(g, lmbda)

elif self.model == 5: # Narrow pores

Ksum = K_narrow(g, lmbda)

else:

print "Model %i not found in homopolymer class" % self.model

sys.exit(1)

if Ksum > Kmax: Ksum = Kmax

return Ksum

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class functional:

def __init__(self, columnObj):

# bookkeeping

self.model = 2

self.name = "PS"

self.column = columnObj

self.MW = [3600]

self.tgSoln = []

self.Mi = [1]

# model parameters

self.f = 1

self.A = 8.5e-5

self.q = [1.0, 0.0]

self.Fcr = 40.7

self.a = 0.1 #nm

self.b = 1.0

self.s = 0.5

self.dedF = 8.5e-5 * self.column.D *self.a / 2 / 5.0

# plotting parameters

self.color = None

self.style = "-"

self.marker = ’None’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

def calcA(self):

# calculate the fitting parameter A from other parameters

self.A = 2*self.dedF*self.column.Fpr/self.column.D/self.a
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print "A = %g"%self.A

def normalize(self):

pass

def Rg(self,M,i=1):

return self.b * M**(self.s)

def Rg2(self,M):

return self.Rg(M)**2

def info(self):

# prints information about this instance

print "Functional class -- %s"%self.name

print " Model: %s (model=%i)"%(models[self.model],self.model)

print " Column: %s (column=columnObject)"%(self.column.name)

print " Scaling, R_g = b*M^s: b = %5.2f, s = %5.2f"%(self.b, self.s)

print " Critical composition: %5.2f %% (Fcr=%5.2f)"%(self.Fcr,self.Fcr)

print " Combined parameter: %5.3g 1/Da (A=%5.3g)"%(self.A,self.A)

print " Interaction energy per composition: %6.4g kT/%% (dedF=%6.4g)" %

(self.dedF,self.dedF)

print " Interaction distance: %5.3f nm (a = %5.3f)"%(self.a,self.a)

print " Functional parameter: %s (q = "%list2str(self.q),self.q,")"

def tg(self, M):

# solve for t_g for a certain MW

Q = self.A*M

if self.column.dFdt == 0: # isocratic case

solveMe = lambda t_R: self.column.t0 + self.column.tP *

self.K(t_R, 1.0, M) - t_R

guess = 1

t_R = newton(solveMe, guess)

return t_R

if self.model in [0]:

print "No analytical expression exists for functionalized polymers."

sys.exit(1)

if self.model in [1,2,3]:

xrange = linspace(0, 1, grid)

return odeint(self.dtdx, 0, xrange, args=(M,))[-1][0]

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*( tg -

(self.column.t0 + self.column.tP) )

def K(self, t, x, M):

F = min(100,self.column.Fi + self.column.dFdt*( t -

(self.column.t0 + self.column.tP)*x) )

# current composition

if self.model in [1]: # Near critical/narrow pore approximation

if self.column.Fpr == 0:

Ksum = exp(2*self.Rg(M)**2/self.column.D/self.a*self.dedF *

(self.Fcr - F)) * (1+self.q[0]*(1-(self.Fcr-F) *

self.dedF*self.column.D/6/self.a)) * (1+self.q[1] *

(1-(self.Fcr-F)*self.dedF*self.column.D/6/self.a))
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else:

Ksum = exp(self.A*M/self.column.Fpr*(self.Fcr - F)) *

(1+self.q[0] * (1-(self.Fcr-F)*self.dedF *

self.column.D/6/self.a))*(1+self.q[1] *

(1-(self.Fcr-F)*self.dedF*self.column.D/6/self.a))

elif self.model in [2]: # General solution

g = 2.0*self.Rg(M)/self.column.D

lmbda = float(self.dedF*(F - self.Fcr)*(self.column.D/2/self.a))

pa = 0; pb = 0; pab = 0

if self.q[0] != 0:

pa = p_a(g,lmbda)

if self.q[1] != 0:

pb = p_a(g,lmbda)

if prod(self.q) != 0:

pab = p_ab(g,lmbda)

Ksum = K_general(g,lmbda) + self.q[0]*pa + self.q[1]*pb +

prod(self.q)*pab

elif self.model in [3]: # General/narrow pore hybrid

g = 2.0*self.Rg(M)/self.column.D

if (g <= 1):

lmbda = float(self.dedF*(F - self.Fcr)*(self.column.D/2/self.a))

pa = 0; pb = 0; pab = 0

if self.q[0] != 0:

pa = p_a(g,lmbda)

if self.q[1] != 0:

pb = p_a(g,lmbda)

if prod(self.q) != 0:

pab = p_ab(g,lmbda)

Ksum = K_general(g,lmbda) + self.q[0]*pa + self.q[1]*pb +

prod(self.q)*pab

else:

if self.column.Fpr == 0:

Ksum = exp( 2*self.Rg(M)**2/self.column.D/self.a*self.dedF *

(self.Fcr - F)) * (1+self.q[0]*(1-(self.Fcr-F) *

self.dedF*self.column.D/6/self.a)) *

(1+self.q[1]*(1-(self.Fcr-F) * self.dedF *

self.column.D/6/self.a) )

else:

Ksum = exp( self.A*M/self.column.Fpr*(self.Fcr - F)) *

(1+self.q[0] * (1-(self.Fcr-F)*self.dedF *

self.column.D/6/self.a))*(1+self.q[1] *

(1-(self.Fcr-F)*self.dedF*self.column.D/6/self.a) )

else:

print "Model %i not found in functional class" % self.model

sys.exit(1)

if Ksum > Kmax: Ksum = Kmax

return Ksum

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class star_block:

def __init__(self, columnObj):

# bookkeeping

self.model = 2
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self.name = "Star block-copolymer"

self.column = columnObj

self.MW = [3600]

self.tgSoln = []

# model parameters

self.f = 4 # number of arms

self.A = [8.5e-5, 8.5e-5, 8.5e-5, 8.5e-5] # lumped parameter

self.Fcr = [40.7, 50.2, 40.7, 39.6]

# Critical elution compositions for each arm

self.Mi = [1.0, 1.0, 1.0, 1.0]

# Relative weight of each arm, normalized to 1

self.a = [0.1, 0.1, 0.1, 0.1] #nm

self.b = [1.0, 1.0, 1.0, 1.0]

self.s = [0.5, 0.5, 0.5, 0.5]

self.dedF = [8.5e-6, 8.5e-6, 8.5e-6, 8.5e-6]

# change of interaction energy per percent elutant, for each arm

# plotting parameters

self.color = None

self.style = "-"

self.marker = ’None’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

def arms(self,arms):

# resizes length of lists to specificed arms

# overwrites existing values with first value!!

self.f = arms

# convert any existing lists to floats.

# Assumes its already a float if not a list.

if isinstance(self.A,list): self.A = self.A[0]

if isinstance(self.Mi,list): self.Mi = self.Mi[0]

if isinstance(self.Fcr,list): self.Fcr = self.Fcr[0]

if isinstance(self.a,list): self.a = self.a[0]

if isinstance(self.b,list): self.b = self.b[0]

if isinstance(self.s,list): self.s = self.s[0]

if isinstance(self.dedF,list): self.dedF = self.dedF[0]

# Now set the list to proper size

self.A = [self.A for i in range(arms)]

self.Mi = [self.Mi for i in range(arms)]

self.Fcr = [self.Fcr for i in range(arms)]

self.a = [self.a for i in range(arms)]

self.b = [self.b for i in range(arms)]

self.s = [self.s for i in range(arms)]

self.dedF = [self.dedF for i in range(arms)]

def normalize(self):

self.Mi = array(self.Mi,dtype=float32)**2 /

sum(array(self.Mi,dtype=float32)**2)

print "Normalized MW per arm, ", self.Mi

def calcA(self):

# calculate the fitting parameter A from other parameters

self.A = [2*self.dedF[i]*self.column.Fpr/self.column.D/self.a[i]

for i in range(self.f)]

print "A = ", self.A

def Rg(self,M,f):

# radius of gyration of each arm

return self.b[f] * M**(self.s[f])
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def Rg2(self,M,f):

# radius of gyration squared

return self.Rg(M,f)**2

def info(self):

# prints information about this instance

print "Star block-copolymer class -- %s" % self.name

print " Model: %s (model=%i)" % (models[self.model],self.model)

print " Column: %s (column=columnObject)" % (self.column.name)

print " Scaling per arm, R_g = b*M^s: b = %s, s = %s" %

(list2str(self.b), list2str(self.s))

print " Critical composition per arm: %s %% (Fcr=[%s])" %

(list2str(self.Fcr),list2str(self.Fcr))

print " Combined parameter: %s 1/Da (A=[%s])" %

(list2str(self.A),list2str(self.A))

print " Interaction energy per composition: %s kT/%% (dedF=[%s])" %

(list2str(self.dedF),list2str(self.dedF))

print " Interaction distance: %s nm (a = [%s])" %

(list2str(self.a),list2str(self.a))

def tg(self, M):

# solve for t_g for a certain MW

#Q = [self.A[i]*M*Mi[i] for i in range(self.f)]

if self.column.dFdt == 0: # isocratic case

tg = self.column.t0 + self.column.tP * self.K(1.0, 1.0, M)

return tg

if self.model in [0]:

print "No analytical expression exists for star polymers."

sys.exit(1)

if self.model in [1,2,3]:

xrange = linspace(0, 1, grid)

return odeint(self.dtdx, 0, xrange, args=(M,), rtol=1e-4)[-1][0]

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*(tg -

(self.column.t0+self.column.tP))

def K(self, t, x, M):

F = min(100, self.column.Fi + self.column.dFdt*(t -

(self.column.t0 + self.column.tP)*x))

# current composition

Mi = M*array(self.Mi,dtype=float32)

if self.model in [1]: # Near critical/narrow pore approximation

if self.column.Fpr == 0:

for i in range(self.f):

Ksum = exp( 2*self.Rg2(Mi[i],i)/self.column.D/self.a[i] *

self.dedF[i] * (self.Fcr[i] - F) )

else:

for i in range(self.f):

Ksum = exp(self.A[i]*Mi[i]/self.column.Fpr*(self.Fcr[i]-F))

elif self.model in [2]: # General solution

g = [2.0*self.Rg(Mi[i],i)/self.column.D for i in range(self.f)]

lmbda = [ float(self.dedF[i]*(F-self.Fcr[i]) *
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(self.column.D/2/self.a[i])) for i in range(self.f) ]

Ksum = K_star_gen(g, lmbda, self.f)

else:

print "Model %i not found in star block-copolymer class"%self.model

sys.exit(1)

if Ksum > Kmax: Ksum = Kmax

return Ksum

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class star_functional:

def __init__(self, columnObj):

# bookkeeping

self.model = 2

self.name = "PEG star"

self.column = columnObj

self.MW = [3600]

self.tgSoln = []

# model parameters

self.f = 4 # number of arms

self.A = [8.5e-5,8.5e-5,8.5e-5,8.5e-5]

self.Mi = [1.0, 1.0, 1.0, 1.0]

# Distribution of g^2 per arm. Will be normallized.

self.q = [1.0, 0.0, 0.0, 1.0]

self.Fcr = [40.7, 40.7, 40.7, 40.7]

self.a = [0.1,0.1,0.1,0.1]

self.b = [1.0,0.1,0.1,0.1]

self.s = [0.5,0.5,0.5,0.5]

self.dedF = [8.5e-6,8.5e-6,8.5e-6,8.5e-6]

# plotting parameters

self.color = None

self.style = "-"

self.marker = ’None’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

def arms(self,arms):

# resizes length of lists to specificed arms

# overwrites existing values with first value!!

self.f = arms

# convert any existing lists to floats.

# Assumes its already a float if not a list.

if isinstance(self.A,list): self.A = self.A[0]

if isinstance(self.Mi,list): self.Mi = self.Mi[0]

if isinstance(self.q,list): self.q = self.q[0]

if isinstance(self.Fcr,list): self.Fcr = self.Fcr[0]

if isinstance(self.a,list): self.a = self.a[0]

if isinstance(self.b,list): self.b = self.b[0]

if isinstance(self.s,list): self.s = self.s[0]

if isinstance(self.dedF,list): self.dedF = self.dedF[0]

# Now set the list to proper size

self.A = [self.A for i in range(arms)]

self.q = [self.q for i in range(arms)]

self.Mi = [self.Mi for i in range(arms)]

self.Fcr = [self.Fcr for i in range(arms)]

self.a = [self.a for i in range(arms)]

self.b = [self.b for i in range(arms)]
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self.s = [self.s for i in range(arms)]

self.dedF = [self.dedF for i in range(arms)]

def calcA(self):

# calculate the fitting parameter A from other parameters

self.A = [ 2*self.dedF[i]*self.column.Fpr/self.column.D/self.a[i]

for i in range(self.f) ]

print "A = ", self.A

def normalize(self):

self.Mi = array( self.Mi,dtype=float32)**2 /

sum(array(self.Mi,dtype=float32)**2 )

print "Normalized MW per arm, ", self.Mi

def Rg(self,M,f):

return self.b[f] * M**(self.s[f])

def Rg2(self,M,f):

return self.Rg(M,f)**2

def info(self):

# prints information about this instance

print "Functionalized star class -- %s"%self.name

print " Model: %s (model=%i)"%(models[self.model],self.model)

print " Column: %s (column=columnObject)"%(self.column.name)

print " Scaling, R_g = b*M^s: b = %s, s = %s" %

(list2str(self.b), list2str(self.s))

print " Critical composition: %s %% (Fcr=[%s])" %

(list2str(self.Fcr),list2str(self.Fcr))

print " Combined parameter: %s 1/Da (A=[%s])" %

(list2str(self.A),list2str(self.A))

print " Interaction energy per composition: %s kT/%% (dedF=[%s])" %

(list2str(self.dedF),list2str(self.dedF))

print " Interaction distance: %s nm (a = [%s])" %

(list2str(self.a),list2str(self.a))

print " Functional parameter: %s (q = [%s])" %

(list2str(self.q),list2str(self.q))

def tg(self, M):

# solve for t_g for a certain MW

if self.column.dFdt == 0: # isocratic case

tg = self.column.t0 + self.column.tP * self.K(1.0, 1.0, M)

return tg

if self.model in [0]:

print "No analytical expression exists for functionalized polymers."

sys.exit(1)

if self.model in [1,2,3]:

xrange = linspace(0, 1, grid)

return odeint(self.dtdx, 0, xrange, args=(M,))[-1][0]

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*(tg -

(self.column.t0+self.column.tP))
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def K(self, t, x, M):

F = min(100, self.column.Fi + self.column.dFdt*(t -

(self.column.t0 + self.column.tP)*x))

# current composition

Mi = M*array(self.Mi,dtype=float32)

if self.model in [1]: # Near critical/narrow pore approximation

if self.column.Fpr == 0:

Kprod = 1

for i in range(self.f):

Kprod *= exp(2*self.Rg(Mi[i],i)**2/self.column.D/self.a[i] *

self.dedF[i]*(self.Fcr[i] - F))*(1+self.q[i] *

(1-(self.Fcr[i]-F)*self.dedF[i] * self.column.D/6/self.a[i]))

else:

Kprod = 1

for i in range(self.f):

Kprod *= exp(self.A[i]*M/self.column.Fpr*(self.Fcr[i]-F)) *

(1+self.q[i]*(1-(self.Fcr[i]-F)*self.dedF[i] *

self.column.D/6/self.a[i]))

elif self.model in [2]: # General solution

Kprod = 1

for i in range(self.f):

g = 2.0*self.Rg(Mi[i],i)/self.column.D

lmbda = float( self.dedF[i]*(F - self.Fcr[i]) *

(self.column.D/2/self.a[i]) )

pa = 0

if self.q[i] != 0:

pa = p_a(g,lmbda)

Kprod *= (K_general(g,lmbda) + self.q[i]*pa)

elif self.model in [3]: # General/narrow pore hybrid

print "Hybrid model not yet implimented for functionalized stars."

sys.exit(1)

else:

print "Model %i not found in functional class" % self.model

sys.exit(1)

if Kprod > Kmax: Kprod = Kmax

return Kprod

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class diblock:

def __init__(self, columnObj):

# bookkeeping

self.model = 2

self.name = "AB copolymer"

self.column = columnObj

self.MW = [3600]

self.tgSoln = []

# model parameters

self.f = 2

self.A = [8.5e-5,8.5e-5]

self.Mi = [1.0, 1.0] # Distribution of M per arm. Will be normallized.

self.Fcr = [40.7, 40.7]

self.a = [0.1,0.1]

self.b = [1.0,1.0]
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self.s = [0.5,0.5]

self.dedF = [8.5e-6,8.5e-6]

# plotting parameters

self.color = None

self.style = "-"

self.marker = ’None’

self.legend = 1

print "Created new %s in %s"%(self.name, self.column.name)

def normalize(self):

self.Mi = array( self.Mi,dtype=float32)**2 /

sum(array(self.Mi,dtype=float32)**2 )

print "Normalized MW per arm, ", self.Mi

def calcA(self):

# calculate the fitting parameter A from other parameters

self.A = [ 2*self.dedF[i]*self.column.Fpr/self.column.D/self.a[i]

for i in range(self.f) ]

print "A = ", self.A

def Rg(self,M,f=2):

return self.b[f] * M**(self.s[f])

def Rg2(self,M,f=2):

return self.Rg(M,f)**2

def info(self):

# prints information about this instance

print "Diblock copolymer -- %s" % self.name

print " Model: %s (model=%i)" % (models[self.model],self.model)

print " Column: %s (column=columnObject)" % (self.column.name)

print " Scaling, R_g = b*M^s: b = %s, s = %s" %

(list2str(self.b), list2str(self.s))

print " Critical composition: %s %% (Fcr=[%s])" %

(list2str(self.Fcr), list2str(self.Fcr))

print " Combined parameter: %s 1/Da (A=[%s])" %

(list2str(self.A),list2str(self.A))

print " Interaction energy per composition: %6s kT/%% (dedF=[%s])" %

(list2str(self.dedF),list2str(self.dedF))

print " Interaction distance: %s nm (a = [%s])" %

(list2str(self.a),list2str(self.a))

def tg(self, M, discard=True):

# solve for t_g for a certain MW

if self.column.dFdt == 0: # isocratic case

tg = self.column.t0 + self.column.tP * self.K(1.0, 1.0, M)

return tg

if self.model in [0]:

print "No analytical expression exists for copolymers."

sys.exit(1)

if self.model in [1,2,3]:

xrange = linspace(0, 1, grid)

odeRes = odeint(self.dtdx, 0, xrange, args=(M,))

if discard:

return odeRes[-1][0]

else:

return odeRes

def Vg(self, tg):
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# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*(tg -

(self.column.t0+self.column.tP))

def K(self, t, x, M):

F = min( 100,self.column.Fi + self.column.dFdt*(t -

(self.column.t0 + self.column.tP)*x) )

# current composition

Mi = array(self.Mi,dtype=float32)*M

if self.model in [1]: # Near critical/narrow pore approximation

if self.column.Fpr == 0:

Ksum = exp( sum([2*self.Rg(Mi[i],i)**2/self.column.D/self.a[i] *

self.dedF[i]*(self.Fcr[i] - F)

for i in range(self.f)]) )

else:

Ksum = exp( sum([self.A[i]*Mi[i]/self.column.Fpr*(self.Fcr[i]-F)

for i in range(self.f)]) )

elif self.model in [2]: # General solution

gi = [2.0*self.Rg(Mi[i],i)/self.column.D for i in range(self.f)]

print "gi=",gi

li = [float(self.dedF[i]*(F-self.Fcr[i])*(self.column.D/2/self.a[i]))

for i in range(self.f)]

Ksum = K_copolymer(gi,li)

if debug: print t,x,M,li,gi,Ksum

else:

print "Model %i not found in diblock copolymer class" % self.model

sys.exit(1)

if Ksum > Kmax: Ksum = Kmax

return Ksum

def dtdx(self, t, x, M):

# equation to integrate to find tg

return self.column.t0 + self.K(t, x, M)*self.column.tP

class column:

def __init__(self):

self.t0 = 0.5 # min

self.tP = 0.5 # min

self.Fi = [0] # %

self.FL = [100] # %

self.tF = [10.] # min

self.flow = 1 #mL/min

self.D = 10 #nm

self.dFdt = [(self.FL[-1] - self.Fi[-1])/self.tF[-1]]

self.Fpr = self.dFdt[-1]*self.tP

self.name = "Nova-Pak Silica"

self.solvent = "THF"

print "Created new column %s"%self.name

def info(self):

print "Column %s"%self.name

print " Void volume: %5.2f (t0=%5.2f)"%(self.t0*self.flow, self.t0)

print " Pore volume: %5.2f (tP=%5.2f)"%(self.tP*self.flow, self.tP)
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print " Flow rate: %5.2f mL/min (flow=%5.2f)"%(self.flow,self.flow)

print " Injection concentration: %5.2f %% (Fi=%5.2f)"%(self.Fi,self.Fi)

print " Final concentration: %5.2f %% (FL=%5.2f)"%(self.FL,self.FL)

print " Time of gradient run: %5.1f min (tF=%5.1f)"%(self.tF,self.tF)

print " Mean pore diameter: %4.1f nm (D=%4.1f)"%(self.D,self.D)

print " Solvent name: %s (solvent=’%s’)"%(self.solvent,self.solvent)

def gradient(self, Fi, FL, tF):

# add a linear gradient profile

self.tF.append(tF) # min

self.Fi.append(Fi)

self.FL.append(FL)

self.dFdt.append((FL - Fi)/tF)

self.Fpr.append(self.dFdt[-1]*self.tP)

print "Added gradient rate of %5.2f from %i to %i for column %s" %

(self.dFdt[-1],Fi, FL, self.name)

def clearGradients(self):

self.tF = []

self.Fi = []

self.FL = []

self.dFdt = []

self.Fpr = []

def currentFg(self,tg,x):

running = 0

last_tF = 0

for i,t in enumerate(self.tF):

running += t

if (tg <= running):

F = self.Fi[i] + self.dFdt[i]*((tg-last_tF) - x*(self.t0+self.tP))

return F

last_tF = t

# tg > tF, return last given concentration

return self.FL[-1]

def return_Fg_list(self,tg):

results = []

for ts in tg:

running = 0

last_tF = 0

thisF = -99

for i,t in enumerate(self.tF):

running += t

if (ts <= running):

F = self.Fi[i]+self.dFdt[i]*((ts-last_tF)-(self.t0+self.tP))

thisF = F

break

last_tF = t

# tg > tF, return last given concentration

if thisF == -99:

thisF = self.FL[-1]

# append results to array

results.append(thisF)

return results

def isocratic(self, conc):

self.Fi = self.FL = conc

self.dFdt = self.Fpr = 0
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print "Set column %s as isocratic with Phi=%5.2f%%" %

(self.name,self.Fi)

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.Fi + self.dFdt*(tg - (self.t0+self.tP))

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

class experdata:

# Input of experimental data

def __init__(self, columnObj, filename=None):

self.column = columnObj

self.b = 1.0

self.s = 0.5

self.color = ’black’

self.style = ’’

self.marker = ’o’

self.name = "Experimental data"

if filename == None:

print "Type MW [space] Phi_g [Enter]. Second [Enter] ends input mode."

rawInp = "999,111"

self.ExpM = []; self.ExpF = [];

while rawInp is not "":

rawInp = raw_input(">")

rawDat = rawInp.split()

self.ExpM.append(float(rawDat[0]))

self.ExpF.append(float(rawDat[1]))

else:

rawDat = loadtxt(filename)

self.ExpM = rawDat[:,0]

self.ExpF = rawDat[:,1]

self.MW = self.ExpM

self.tgSoln = self.tg(self.ExpF)

print "Created new %s"%self.name

def RSS(self,polymerObj):

# Calculate the residual sum of squares

#~ aCopy = copy.deepcopy(polymerObj)

#~ aCopy.MW = self.ExpM

#~ solver([aCopy], silent=True)

#~ RSS = 0

#~ for i in range(len(self.ExpM)):

#~ Fg = aCopy.Fg(aCopy.tgSoln[i])

#~ RSS += (self.ExpF[i] - Fg)**2

#~ print "Calculated RSS = ", RSS

#~ return RSS

return 0

def info():

print "Experimental data -- %s" % self.name

print " Scaling, R_g = b*M^s: b = %5.2f, s = %5.2f"%(self.b, self.s)

def Rg(self,M):

return self.b * M**(self.s)
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def Rg2(self,M):

return self.Rg(M)**2

def Vg(self, tg):

# return V_g from inputed t_g

return self.column.F * tg

def Fg(self, tg):

# return Phi_G from inputed t_g

return self.column.Fi + self.column.dFdt*(tg -

(self.column.t0+self.column.tP))

def tg(self, Fg):

return (Fg - self.column.Fi)/self.column.dFdt + self.column.t0 +

self.column.tP

# OUTPUT CLASSES:

# OUTPUT CLASSES:

class plotter:

# general plotter: plots solution to integration in various units

# At declaration, polymerObjs is a list of polymer objects to

# plot at the same time

labels = {"M":r’$M$’,"F":r’$\Phi_g$’,"Rg":r’$R_g$’,"Rg2":r’$R^2_g$’,

"V":r’$V_g$’,"t":r’$t_g$’,"g":r’$g$’}

def __init__(self,polymerObjs):

self.xunit = "M" # M, g, Rg or Rg2

self.yunit = "F" # F, V or t

self.xlimits = None

self.ylimits = None

self.type = "semilogx"

self.polymerObjs = polymerObjs

self.legend = True

self.legendText = None

self.legendtitle = None

def draw(self):

fig = plot.figure(1)

axes = fig.add_subplot(111)

for polymer in self.polymerObjs:

plotColor = ""; plotStyle = ""

if polymer.color: plotColor = ",color=’"+polymer.color+"’"

if polymer.style: plotStyle = ",ls=’"+polymer.style+"’"

if polymer.marker: plotStyle = ",marker=’"+polymer.marker+"’"

if self.xunit == "Rg":

xaxis = "polymer.Rg(polymer.MW)"

if self.xunit == "g":

xaxis = "polymer.Rg(polymer.MW)/polymer.column.D"

elif self.xunit == "Rg2":

xaxis = "polymer.Rg2(polymer.MW)"

elif self.xunit == "M":

xaxis = "polymer.MW"

else:

print "Unrecognized plotter.xunit: %s" % self.xunit

return 1

if self.yunit == "F":

yaxis = "polymer.column.return_Fg_list(polymer.tgSoln)"

elif self.yunit == "V":
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yaxis = "polymer.Vg(polymer.tgSoln)"

elif self.yunit == "t" or self.yunit == "tg" :

yaxis = "polymer.tgSoln"

else:

print "Unrecognized plotter.yunit: %s" % self.yunit

return 1

if isinstance(polymer,experdata):

plottype = "scatter"

else:

plottype = self.type

plotting = "axes." + plottype + "("+xaxis+","+yaxis+

",label=polymer.name" + plotColor + plotStyle + ")"

exec plotting

if self.xlimits: axes.set_xlim(self.xlimits)

if self.ylimits: axes.set_ylim(self.ylimits)

axes.set_xlabel(self.labels[self.xunit])

axes.set_ylabel(self.labels[self.yunit])

if self.legend: axes.legend(loc=0)

if self.legendText: axes.legend(self.legendText,loc=0)

if self.legendtitle: axes.legend(loc=0, title=self.legendtitle)

plot.draw()

def usetex():

rc(’text’, usetex=True)

params = {’axes.labelsize’: 15,

’text.fontsize’: 15,

’xtick.labelsize’: 15,

’ytick.labelsize’: 15,

’legend.pad’: 0.2,

’legend.fontsize’: 13,

’lines.markersize’: 3,

’font.size’: 18,

’font.family’:’serif’,

’font.weight’:’bolder’,

’font.stretch’:’expanded’}

pub = {’axes.labelsize’: 10,

’text.fontsize’: 10,

’xtick.labelsize’: 10,

’ytick.labelsize’: 10,

’legend.pad’: 0.2,

’legend.fontsize’: 10,

’lines.markersize’: 3,

’font.size’: 10,

’font.family’:’serif’,

’font.weight’:’bolder’,

’font.stretch’:’expanded’}

mpl.rcParams.update(params)

def show(self):

plot.show()

def fitter(polymerObj, expdataObj, fitVar =’ dedf’, fitRange = [0, 1],

fitIter = 100, fitTol = 1e-3):

# fit data to parameter. Could take a while depending on model choice

fRzero = [min(fitRange),max(fitRange)] - average(fitRange)

print fRzero

fitTol = log10(min(fitRange))*fitTol
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# save old MW stored in class

oldMW = polymerObj.MW

polymerObj.MW = expdataObj.MW

lastR2 = 0.0

bestR2 = 0.0

converged = False

oldVar = polymerObj.dedF

newVar = oldVar

bestdedF = oldVar

for i in range(fitIter):

solver(polymerObj, silent=True)

# calculate the error

SSerr = 0

SStot = 0

for j in range(len(expdataObj.ExpM)):

Fg = polymerObj.Fg(polymerObj.tgSoln[j])

SStot += (expdataObj.ExpF[j] - polymerObj.Fcr)**2

SSerr += (expdataObj.ExpF[j] - Fg)**2

R2 = 1.0 - SSerr/SStot

# set a floor value for R2

if R2 < 0:

R2 = 0

oldVar = average(fitRange) # No fit, try random guess

if (R2 > bestR2):

bestR2 = R2

bestdedF = oldVar

else:

oldVar = bestdedF

# generate a new value to test

newVar = oldVar + (1.0-R2)*random.uniform(fRzero[0],fRzero[1])

while newVar < min(fitRange) and newVar > max(fitRange):

newVar = oldVar + (1.0-R2)*random.uniform(fRzero[0],fRzero[1])

if abs(oldVar-newVar) <= fitTol and R2 >= lastR2:

converged = True

break

if (lastR2 < R2):

oldVar = newVar

lastR2 = R2

polymerObj.dedF = newVar

print "R2, dedF = ",R2,newVar

if (converged):

print "After %i iterations, Converged with R2 = %5.3f"%(fitIter, R2)

else:

R2 = bestR2

polymerObj.dedF = bestdedF

print "After %i iterations, did not converge. Using best R2 = %5.3f" %

(fitIter, R2)

print "new dedF = ", polymerObj.dedF

polymerObj.calcA(silent=True)

polymerObj.MW = oldMW
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class chromatogram:

# virtual chromatogram, plots predicted retension from a ’sample’ of polymers

pass

class optimizer:

pass

class overcolumn:

# plots various information for a single MW, over the length of the column

def __init__(self, polymerObj):

self.polymer = polymerObj

if isinstance(self.polymer.MW, list):

self.MW = self.polymer.MW[-1]

# take the last MW in list, if list is specified

else:

self.MW = self.polymer.MW

# K, lambda, Phi,

self.y1 = "K"

self.y2 = "lambda"

def F(self,t,x):

return self.polymer.column.Fi + self.polymer.column.dFdt*(t -

x*(self.polymer.column.t0 + self.polymer.column.tP))

def show(self):

soln = self.polymer.tg(self.MW,False)

xgrid = linspace(0,1,grid)

#deriv = [dtdx(t_g[i], x, MW, Phi_i, grad) for i,x in enumerate(xrange)]

Kval = [self.polymer.K(soln[t][0], x, self.MW) for t,x in enumerate(xgrid)]

F = [self.F(soln[t][0],x) for t,x in enumerate(xgrid)]

eps = [[self.polymer.dedF[i]*(self.F(soln[t][0],x) - self.polymer.Fcr[i])

for i in range(self.polymer.f)] for t,x in enumerate(xgrid)]

# plot using the following parameters

fig = plot.figure()

axes1 = fig.add_subplot(111)

plot.ylabel(r’$\Phi$’)

plot.xlabel(r’$x$’)

axes2 = axes1.twinx()

plot.ylabel(r’$(\epsilon-\epsilon_{cr})/kT$’)

axes1.plot(xgrid, F, label=r’$\Phi_g(t,x)$’, color=’red’)

#axes1.set_ylim(0,10)

#axes1.plot(xrange, deriv, label=r’£dt/dx£’)

axes2.plot(xgrid, eps)

#axes2.plot(xrange, Kgen, color=’green’, label=’K (Gen)’)

axes1.legend(loc=6)

axes2.legend((’A’,’B’),loc=5)

plot.show()

def solver(listOfPolymers, silent=False):

if not isinstance(listOfPolymers, list):

listOfPolymers = [listOfPolymers]

# updates the solution to t_g(M) for each polymer object in list

for polymer in listOfPolymers:

if not silent:

print "Solving %i points for %s"%(len(polymer.MW),polymer.name)

polymer.normalize()

polymer.tgSoln = array([],dtype=float32)

for i,M in enumerate(polymer.MW):

polymer.tgSoln = append(polymer.tgSoln,polymer.tg(M))
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if not silent:

print "Done."

def tabulator(polymerObjs):

# prints solved info to terminal

for polymer in polymerObjs:

print polymer.name + " in " + polymer.column.name

print "%10s %11s %11s %11s"%("MW","R_g,i","t_g","Phi_g")

for i,M in enumerate(polymer.MW):

print "%10.3g %s %10g %10g"%(M,list2str([polymer.Rg(polymer.Mi[j],j)

for j in range(len(polymer.Mi))]),polymer.tgSoln[i],

polymer.Fg(polymer.tgSoln[i]))

def plotpartition(listOfKfuns,listOfLambdas):

# plot the partition function, in terms of g=R/d and lambda=D/2a * (e-e_cr)/kT

# Not really developed

grange = linspace(0,3,100) # g = R/d

lmbda = listOfLambdas

colors = {0:"blue",1:"red",2:"green"}

Kfuns = {0:"K_nearcrit",1:"K_general"}#,2:"K_AB",3:"K_star_gen"}

for i,model in enumerate(listOfKfuns):

thisColor = colors[i]

for l in listOfLambdas:

Kplot = []

for g in grange:

exec("Kplot.append("+Kfuns[model]+"("+repr(g)+","+repr(l)+"))")

plot.plot(grange,Kplot,color=thisColor)

plot.xlabel(r’$g=R_g/d$’)

plot.ylabel(r’$K$’)

plot.show()

def list2str(listIn, roundoff=2):

formatStr = "%"+str(3+roundoff)+"."+str(roundoff)+"g"

listIn = list(listIn)

string = str(formatStr%listIn[0])

for each in listIn[1:]:

string = string + "," + str(formatStr%each)

return string

if __name__ == ’__main__’:

print "To use gradientInt.py, load it in an interactive enviroment or at ",

"the start of a new script."
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[169] M. Thommes, R. Köhn, and M. Fröba, “Sorption and pore condensation behavior of pure fluids in
mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures
above and below the bulk triple point,” Applied Surface Science, vol. 196, pp. 239–249, Aug. 2002.

[170] J. W. Gibbs, The Scientific Papers of J. Willard Gibbs. New York: Dover, 1961.

[171] M. Mecke, J. Winkelmann, and J. Fischer, “Molecular dynamics simulation of the liquid–vapor inter-
face: The Lennard-Jones fluid,” Journal of Chemical Physics, vol. 107, pp. 9264–9270, Dec. 1997.

[172] S. Punnathanam and D. S. Corti, “Homogeneous bubble nucleation in stretched fluids: Cavity forma-
tion in the superheated Lennard-Jones liquid,” Industrial & Engineering Chemistry Research, vol. 41,
pp. 1113–1121, Mar. 2002.

[173] V. G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquid. Weinheim, Germany: WILEY-
VCH GmbH & Co. KGaA, 2007.

[174] C. G. V. Burgess and D. H. Everett, “The lower closure point in adsorption hysteresis of the capillary
condensation type,” Journal of Colloid and Interface Science, vol. 33, pp. 611–614, Aug. 1970.

[175] O. Kadlec and M. M. Dubinin, “Comments on the limits of applicability of the mechanism of capillary
condensation,” Journal of Colloid and Interface Science, vol. 31, pp. 479–489, Dec. 1969.

[176] C. Reichenbach, G. Kalies, D. Enke, and D. Klank, “Cavitation and pore blocking in nanoporous
glasses,” Langmuir, vol. 27, no. 17, pp. 10699–10704, 2011.

[177] A. Grosman and C. Ortega, “Cavitation in metastable fluids confined to linear mesopores,” Langmuir,
vol. 27, pp. 2364–2374, Mar. 2011.

[178] C. Fan, D. D. Do, and D. Nicholson, “On the cavitation and pore blocking in slit-shaped ink-bottle
pores,” Langmuir, vol. 27, pp. 3511–3526, Apr. 2011.

[179] P. A. Monson, “Fluids confined in porous materials: Towards a unified understanding of thermody-
namics and dynamics,” Chemie Ingenieur Technik, vol. 83, pp. 143–151, Jan. 2011.

[180] P. T. M. Nguyen, D. D. Do, and D. Nicholson, “On the cavitation and pore blocking in cylindrical
pores with simple connectivity,” Journal of Physical Chemistry B, vol. 115, no. 42, pp. 12160–12172,
2011.

[181] K. Morishige, M. Tateishi, F. Hirose, and K. Aramaki, “Change in desorption mechanism from pore
blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores,” Langmuir,
vol. 22, pp. 9220–9224, Oct. 2006.

[182] A. Sarkar, S. R. Chaudhuri, S. Wang, F. Kirkbir, and H. Murata, “Drying of alkoxide gels – observation
of an alternate phenomenology,” Journal of Sol-Gel Science and Technology, vol. 2, no. 1-3, pp. 865–
870, 1994.

[183] G. W. Scherer and D. M. Smith, “Cavitation during drying of a gel,” Journal of Non-Crystalline
Solids, vol. 189, pp. 197–211, Sept. 1995.

[184] M. Parlar and Y. Yortsos, “Nucleation and pore geometry effects in capillary desorption processes in
porous media,” Journal of Colloid and Interface Science, vol. 132, pp. 425–443, Oct. 1989.

[185] M. Parlar and Y. Yortsos, “Percolation theory of vapor adsorption—desorption processes in porous
materials,” Journal of Colloid and Interface Science, vol. 124, pp. 162–176, July 1988.



326

[186] J. Esparza, M. Ojeda, A. Campero, G. Hernández, C. Felipe, M. Asomoza, S. Cordero, I. Kornhauser,
and F. Rojas, “Development and sorption characterization of some model mesoporous and microporous
silica adsorbents,” Journal of Molecular Catalysis A: Chemical, vol. 228, pp. 97–110, Mar. 2005.
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[241] K. Kremer, A. Baumgärtner, and K. Binder, “Collapse transition and crossover scaling for self-avoiding
walks on the diamond lattice,” Journal of Physics A: Mathematical and General, vol. 15, no. 9,
pp. 2879–2897, 1982.
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