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By MICHAEL WALKER SEILER

Dissertation Director:

Gyan Bhanot

Successful cancer treatment is based on our understanding of a number of 

biological considerations such as its mechanisms for survival, evasion of tumor 

suppressor programs, and proliferation. Unfortunately, cancer evolution is often 

chaotic and a single tumor may exhibit many different methods for achieving its 

goals, such as direct mutation of tumor suppressor genes, over-expression of 

genes which target tumor suppressors, or both. With that in mind, it is crucial for 

clinicians and researchers to be able to distinguish the properties of each tumor 

and identify similarities between them, so that broad-impact treatments can be 
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devised. Recently, a number of advances have been made which allow 

researchers to gather more detailed information in a high-throughput manner on 

the behavior of individual tumors. Where once only gross gene expression 

information could be gleaned using a microarray chip, now sequencing 

technology enables us to understand what individual isoforms of genes are being 

expressed, and in what abundance. Sequencing technology advances have also 

enabled us to find novel sites of expression on the genome which do not 

correspond to known proteins, and in fact provide evidence of a new class of 

large non-coding RNA molecules with functional consequences for cancer 

tumors. In this thesis, we present novel methodologies for the identification of 

alternative transcript as well as non-coding RNA usage in subgroups of breast 

cancer tumors using data from next generation transcriptome sequencing. Using 

these methods, we have identified genes which are differentially spliced between 

breast cancer tumors belonging to estrogen positive (ER+) and negative (ER-) 

sets, as well as in novel subgroups, and validated the existence of these 

transcripts in tumor tissue RNA using RT-PCR. Additionally, we present evidence 

of non-coding RNA transcripts which are aberrantly expressed based on 

estrogen status, and validate these in a similar way. These discoveries and new 

methodologies will help elucidate the biological differences between these 

subgroups of breast cancer, and will assist ongoing research into transcriptome 

abnormalities in other cancers as sequencing data become available.
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Chapter 1: Background of High-Throughput Analysis of 

Breast Cancer

1.1 Origins of breast cancer

Cancer is the result of a series of “hallmark” cellular changes that result in a 

proliferative phenotype which can evade signaling mechanisms that would 

normally result in cell cycle arrest and/or programmed cell suicide (apoptosis) [1, 

2]. As the tumor cell population grows, additional driver mutations emerge which 

promote the ability to invade other tissue (metastasis) which eventually allows 

the tumor to form masses of cells in distant locations in a patient's body. Primary 

tumors rarely kill patients; instead, most patients die from tumor metastases. 

Tumors are a tremendous drain on biological resources necessary for normal 

function, because of their incessant demand for biomaterials to sustain their 

growth. This demand, coupled with the compromised function of organs 

harboring metastatic lesions, causes multiple organ failure and eventually, death.

Most breast cancers arise in cells that make up the epithelial lining of the milk 

ducts, branches in breast tissue which carry milk from milk glands (lobules) to the 
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nipple. Breast cancer which has not acquired the invasive phenotype may be 

confined to the ducts or the lobules, referred to as ductal carcinoma in situ 

(DCIS) or lobular carcinoma in situ (LCIS), respectively. Once the tumor invades 

outside the basement membrane, the tumor is metastatic and is referred to as 

infiltrating ductal carcinoma (IDC). Often, progression of DCIS to IDC is 

accompanied by metastatic invasion to bone and brain. Whereas in the DCIS 

stage tumors are often curable, once the tumor is classifiable as IDC, it becomes 

difficult to treat with prognosis dependent on a variety of factors, not all of which 

are completely understood. 

The estrogen receptor (ER) protein is found to be overexpressed in ~70% of all 

breast cancer tumors [3], which are then referred to as “estrogen postive” (ER+). 

By itself, the estrogen receptor is a transcription factor which becomes activated 

in the presence of the hormone estradiol [4]. Upon ligand binding, ER dimerizes 

and is relocalized to the nucleus, where it acts as a transcription factor that binds 

to a 13bp palindromic sequence in promoter regions of DNA called the estrogen 

response element (ERE). This binding induces transcription of downstream 

genomic targets, some of which include genes involved in cell cycle progression, 

making it an attractive target for over-expression in cancer. It has been shown 

that the serine/threonine kinase CDK1 can cause the estrogen receptor to 

promote transcription even in the absence of estradiol [4, 5]. As a result, CDK1 is 
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often found to be upregulated in breast cancers. Estrogen receptor positive 

tumors are generally treated with the drug Tamoxifen, an ER antagonist, to which 

roughly half of ER+ tumors respond [3]. Tumors that do not express ER are 

referred to as estrogen negative (ER-). 

The oncogene ERBB2 (also referred to as HER2/neu) is upregulated in 15-20% 

of breast tumors [6, 7], and these tumors are called HER2+. ERBB2 is a receptor 

tyrosine kinase which is responsible for both a proliferative signaling cascade as 

well as the promotion of anti-apoptotic factors in these tumors. Overexpression of 

ERBB2 is strongly associated with disease progression and recurrence after 

treatment. There is currently a monoclonal antibody treatment for HER2+ 

patients called Herceptin, which inhibits ERBB2-related signaling in cancer cells 

[8]. There is an overlap of ER+ and HER2+ tumors, however there is no clinical 

evidence to suggest that overall survival is different between ER+/HER2+ and 

ER-/HER2+ subsets [9].  

Under current protocols for treatment of breast cancer patients, clinicians classify 

breast cancers into four distinct classes: ER+/HER2-, ER+/HER2+, ER-/HER2- 

and ER-/HER2+. This classification, combined with information on the stage and 

grade of tumor, patient’s age and medical history, family history of cancer, 

Oncotype DX score [10] etc. are combined into a risk profile which is used to 
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determine therapy.

1.2 Breast cancer classification

The most significant technological advance in the analysis of cancer was the 

advent of the microarray, a technology that allows researchers to simultaneously 

interrogate the expression levels of thousands of genes. Microarrays are 

constructed by binding DNA probes to a substrate, each composed with a 

complementary sequence to the target gene of interest. Labeled cDNA from the 

sample of interest is then washed over the chip, causing cDNA with 

complementary sequences to bind to the appropriate probes. The labels are read 

and summarized into a raw score for each probe. The technology has now 

matured so that multiple probes are used to measure the expression of different 

parts of the same gene, the scores from which can be combined to estimate not 

only the the relative concentration of the gene in that sample [11] but also 

potential splice variants [12, 13].

Where previously researchers could only measure the expression of a few genes 

in parallel, microarray technology opened new doors to whole-genome 

measurement. For example, in knockdown experiments, a biologist would need 
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to anticipate the effects of their knockdowns and measure the results individually. 

With the microarray chip, the relative expression of every known gene could be 

measured before and after knockdown, allowing for the interrogation of the whole 

cascade of gene-level changes. Transcriptome changes over time, such as 

through growth and differentiation, could be measured by extracting RNA from a 

cell population in each stage of growth and performing a microarray experiment.

However, microarray technology did more than just make previous experiments 

easier and more wide-ranging. It also enabled de novo classification of a sample 

within a population based solely on the pattern of genome-wide expression [14]. 

This was made possible using “clustering,” a family of computational algorithms 

designed to find sets of samples (“clusters”) within a population that maximize 

intra-cluster similarity and minimize inter-cluster similarity, based on a sample-

sample distance function specified by the user [15-18]. With a microarray chip, 

this is typically an appropriately chosen distance or correlation function across 

genes or samples. With sufficient sample sizes, it is possible to distinguish 

subsets of samples which have similar patterns of gene expression, allowing an 

unsupervised and unbiased analysis of molecularly distinct disease subtypes for 

tumors which look similar under histological and pathological analysis.

Such studies have shown that even within the clinically identifiable subtypes, 
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breast cancer is a heterogeneous disease, composed of a number of disease 

subtypes. These have been identified over the last ten years as a result of the 

analysis of many large gene expression datasets of RNA extracted from breast 

cancer tumor samples [9, 14, 19-22]. In general, these molecular subtypes 

expand upon known breast cancer biology by splitting ER+, ER-, and HER2+ 

tumors into molecular subclasses which cannot be identified by histopathology. In 

many cases, these subclasses correlate with overall prognosis and/or treatment 

efficacy. This is potentially of great benefit to patients and of value to clinicians. 

Tumor with a molecular signature associated with poor outcome can be identified 

and treated aggressively, while patients whose tumors are unlikely to progress to 

metastasis have the option of less aggressive treatment. Given the high toxicity 

of many chemotherapeutic agents, reducing a patient's exposure when the 

outcome will be favorable, regardless of aggressive treatment is extremely 

desirable.

A recent successful clustering method known as “consensus ensemble 

clustering” is widely used in the bioinformatics community because of the 

robustness of its classification. The method is based on the idea that combining 

clustering information from several different clustering methods and multiple 

bootstraps of of the data results in a more stable (robust) set of clusters [23, 24]. 

The rationale for using many clustering algorithms is that every clustering 



7

algorithms has some built in assumptions which the data may not support. For 

instance, the well-known k-means algorithm expects to find spherical subsets, 

and hierarchical clustering [15] is easily misled by outliers [18]. Algorithms such 

as k-means and Self-Organizing Map [17] are also stochastic in that their results 

are partially dependent on random initial conditions. However, these problems 

can be reduced by running each algorithm multiple times on the same dataset 

and pooling the results (see Appendix: ConsensusCluster) [25]. Consensus 

clustering has been successfully applied to stratify data from breast cancer tumor 

microarray experiments [9, 25] as well as RNA sequencing (RNA-Seq). It has 

also found applications in identifying biologically-significant subsets of clear cell 

renal cell carcinoma [26].

1.3 Biomarker discovery

Although the potential clinical benefits of tumor classification are clear, it is not 

immediately apparent how to go about classifying new tumors into the previously 

discovered subtypes. The challenge, then, is to find a set of measurements 

which can uniquely indicate its subtype so that accurate treatment can be 

effected, which are collectively known as a “biomarkers.” Factors in the selection 

of effective biomarkers for clinical treatment include sensitivity and specificity, 
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ease of measurement, and the cost of measurement. Tests which are both 

sensitive (fewer false positives) and specific (fewer false negatives) are clearly 

better choices for biomarker selection. In the clinic, it is imperative that tests for 

clinical tumor type be accurate. Otherwise, there are legal and ethical issues to 

performing treatment for a disease the patient does not carry which may be at 

best ineffective and at worst hazardous. Ease of measurement is another strong 

factor in biomarker selection. A blood test is a simple procedure which can be 

performed in any general practitioner's examination room, while a test which 

requires the tumor to be surgically removed, followed by additional tissue 

processing, RNA extraction, and microarray measurement of a panel of target 

genes, requires hospitalization and extensive time and effort. The last, but not 

least important factor of biomarker selection is the cost. This can be related to 

ease of measurement in that a prohibitively expensive test can prevent patients 

from receiving accurate treatment, especially those from underprivileged 

countries. For example, the Oncotype DX platform, a popular diagnostic test for 

breast cancer which relies on a panel of 21 genes to determine the likelihood of 

recurrence within 10 years [10], is currently priced over $4000.

Apart from their role in the clinical management of patients, biomarkers are also 

useful in elucidating the unique biology of a tumor subtype, which can then be 

used to identify a potential therapeutic target gene and thus aid in the discovery 
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of novel drugs. Since the driving factors in tumorigenesis are largely unknown for 

many cancers, the identification of any unique aspects of a given subset of 

tumors, such as altered gene expression, altered DNA methylation, or altered 

transcription factor binding, can help to gain a clearer understanding of the 

dysregulated pathways which contribute to disease progression. For example, 

the oncogene GRB7 is a biomarker for HER2+ cancers. GRB7 lies proximally to 

ERBB2, an oncogene associated with poor prognosis that promotes proliferation 

and tumorigenesis. Given that genes in this region are always co-amplified in this 

subset of cancers, it is reasonable to suspect the entire genomic region may be 

copied multiple times, a chromosomal aberration known as copy number 

variation (CNV). Indeed, it has been shown that the copy number of this region, 

now known as the HER2 amplicon, is increased in HER2+ cancers [27].

As additional disease subtypes are discovered and our understanding of their 

underlying biology increases, we move closer to the ultimate goal of being able to 

target therapy to treating the precise disease present in each patient. Combined 

with the new movement towards collecting other nonclinical attributes that may 

alter treatment effectiveness (race, genomic traits, etc), we can envision a future 

of “personalized medicine.” In this future, treatment is based on a holistic 

knowledge of disease and the genomic attributes of each patient, leading 

towards more accurate treatment with fewer side effects. Towards this future, in 
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this thesis, we will present results from the analysis of breast cancer tumor RNA 

sequencing (RNA-Seq) data which helps to elucidate novel biological 

underpinnings of breast cancer. 

1.4 RNA sequencing

As evidenced by the existence of copy number variation in HER2+ cancers, the 

data that can be gleaned from DNA microarrays paints an incomplete picture of 

the biological interactions that give rise to the driving systems promoting 

tumorigenesis. A novel technology called RNA-Seq [28, 29] has recently become 

available to interrogate other genomic features of tumors, such as altered gene 

splicing patterns or alternative promoter usage. In contrast to interrogating gene 

association through probe binding, RNA-Seq gives a complete snapshot of the 

transcriptome by directly measuring the amount (expression level) and the 

sequence of fragments of mRNA in a sample [28, 30]. Briefly, the Illumina RNA-

Seq protocol is as follows. Messenger RNA is first isolated from total RNA using 

a poly-T bead purification step, where strings of Thymine bases are bound to a 

substrate and the total RNA solution washed over it, causing mature mRNA, 

which possesses a poly-A tail, to bind to it. Next, the mRNA is sheared to ~150bp 

for sequencing, and a cDNA library is created for each sample by adding random 
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6-nucleotide primers (“hexamers”) to the sample, followed by polymerase chain 

reaction (PCR). During this step, hexamers anneal to the nucleotide fragments 

created in the previous step, which causes DNA polymerase to elongate them 

into double-stranded DNA (see PCR in Appendix: Methods). Adapter labels are 

then ligated to the ends of these fragments, and the nucleotide bases of each 

fragment are read by the sequencer in parallel.

Once these fragments of the original mRNA sequence are obtained, there 

remains the computational task of reconstructing the original. This can be done in 

two ways: with, and without, a genomic DNA reference sequence. Without a 

reference, sequence fragments are aligned to one another to form sequence 

“contigs” in a process referred to as de novo sequence alignment [31]. In order to 

make an accurate prediction of the original mRNA sequence, a sufficient 

coverage of sequence fragments are required for species with complex 

genomes, such as the human genome. Especially in cases where the original 

gene is not heavily expressed, a lesser fraction of the available sequence pool 

will be available to represent the transcript, and it is much less likely that 

sufficient sequence coverage will be available to predict the entire transcript after 

alignment. The total coverage necessary to accurately reflect genomic diversity 

at a given locus varies, though Robertson et al [31] reported success in loci with 

20x sequence coverage. With a reference genome, however, sequence 
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fragments can be aligned to the reference instead, negating the need for high 

coverage. This success of this method depends largely on the accuracy of the 

reference genome, as well as the concordance between it and the sample's 

genomic DNA sequence. Most software utilities designed to align sequence 

fragments to a reference genome, such as the popular package Bowtie [32], 

allow fragments to contain errors, whether from genomic DNA mutation or from 

the sequencer itself.

The primary advantage of RNA-Seq over DNA microarray technology is that the 

number of genomic loci measurable using RNA-Seq is not limited to the number 

of probes bound to a substrate. All aspects of the transcriptome are interrogated 

at once, providing a high-resolution picture of expression activity. In particular, 

whereas microarrays are typically designed to measure the expression of an 

entire gene, RNA-Seq can produce fragments from all parts of the gene 

individually. This illuminates more esoteric features of the genome, such as 

retained introns, alternative splicing, and the use of alternative promoters [30]. It 

is impractical to design microarray probes which can test these features of the 

transcriptome. Currently, the largest commercially available microarray is the 

HuEx exon array from Affymetrix [12, 13], which can interrogate ~550000 

genomic features, using 4 probes each. However, the small number of probes 

per feature greatly increases noise [33], and this is still a relatively small fraction 
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of the human genome which necessarily excludes novel features unsupported by 

reference annotations. RNA sequencing is the first genome-wide high-throughput 

technology to measure all transcriptomic features. However, given the relative 

novelty of the technology and the difficulties of analyzing the vast quantities of 

data it generates, many of these informative features of tumors are not yet 

available in current annotations of the human genome.

1.5 Alternative splicing

Alternative splicing is a biological process which generates transcript diversity at 

a given genomic locus. When genomic DNA is transcribed to become pre-mRNA, 

some parts of the sequence, called introns, are excised from the final product. 

Segments of mRNA (called exons) which form the sequences between one intron 

and the next, are retained and ligated together to create the final mRNA 

transcript, which is either used in its mRNA form directly or translated into 

protein. The set of proteins and small ribonucleoproteins (snRNPs) that performs 

the task of splicing out the introns, ligating the exons, adding a poly-A tail to form 

a mature mRNA is called the spliceosome [34]. Components of the spliceosome 

bind exons at their boundaries and perform a transesterification reaction to 

ensure that the two sequence fragments remain together. The intron is then 
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excised, released and its components are recycled.

Spliceosome assembly at an exon junction begins with a snRNP called U1 which 

binds to the sequence GU on the mRNA transcript at the 5' splice site [35]. The 

snRNP U2 binds the “branch point,” an adenosine base located within the intron, 

assisted by the U2 auxiliary factor (U2AF) snRNP, which binds to the 3' splice 

acceptor site, AG. The GT-AG dinucleotide pair is sometimes called the 

canonical splice junction, since 98.71% of known mammalian splice junctions 

follow this pattern [36]. Following this, additional snRNPs U4, U5, and U6 are 

recruited, and U1 and U4 dissociate before the complex becomes catalytically 

active. Spliceosome formation, and subsequent intron excision, are primarily 

controlled by splicing regulatory proteins which bind to specific exonic and 

intronic splicing enhancers (ESEs and ISEs) as well as exonic and intronic 

splicing silencers (ESSs and ISSs, respectively) [35].

Alternative splicing is the process where exons are joined in multiple 

arrangements, leading to different genetic transcripts (“isoforms”) from the same 

genomic sequence of DNA.  Alternative splicing can have far-reaching effects on 

the transcripts generated. For example, if the transcript codes for a protein, 

whole strings of amino acids may be gained or lost in the splice variant upon 

translation. These segments may form active domains, or structures which 
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obstruct active sites. Exon splicing may also cause a frame-shift, which can 

result in a premature stop codon in the open reading frame and early protein 

termination. In non-coding areas of the transcript, in particular the 5' or 3' 

untranslated region (UTR), post-transcriptional regulatory domains are often 

found. Splicing in these domains can affect mRNA stability, or restrict translation. 

This sort of transcript diversity has been found to be pervasive in the human 

genome [37]. In a recent study, it was found that 92-94% of polled transcripts 

exhibited alternative splicing over 15 human cell lines, and that approximately 

86% of those transcripts also showed minor isoform frequency of at least 15% 

[30]. 

A specific example of the kind of combinatorial diversity possible at a given locus 

is the gene EPB41, which codes for an array of cytoskeletal proteins. EPB41 

displays an impressive array of tissue-specific alternative start sites and 

alternative exon use, including 10 exons differentially spliced in various tissues, 

which could combine to form over 1000 transcript combinations [38]. Additionally, 

EPB41 has three related proteins in the human genome (EPB41L1, EPB41L2, 

EPB41L3) which have similar properties. This shows the enormous potential 

diversity of human transcripts and implies that perhaps the importance of the 

“gene” is overstated, and that the true unit of genomic information is the 

transcript.
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Given the profound functional diversity of spliced transcript usage in cells, it is 

unsurprising that many such events are implicated both in tumorigenesis and the 

suppression of cancer progression. The gene survivin, commonly over-

expressed in cancer for its anti-apoptotic properties, has three known variants 

[39, 40], two of which (survivin-dEx3 and survivin-3B) contribute to poor 

prognosis in both breast and prostate cancers [39]. However, the third variant, 

survivin-2B, is actually pro-apoptotic and may in fact be a naturally occurring 

antagonist [35, 40]. Other important variants in cancer include those in the 

Caspase family, many of which are known for their promotional roles in apoptotic 

pathways, which make them important targets for regulation in cancer 

progression. A shorter variant of Caspase-2, created when the inclusion of an 

extra exon causes a frameshift and subsequent inclusion of an early stop codon, 

was shown by Jiang et al [41] to inhibit cell death, whereas the proapoptotic long 

form has been shown to function as a tumor suppressor [42, 43]. Importantly, 

despite the fact that gene-level measurement (such as a DNA microarray) is 

broadly assumed to correlate with “gene activity,” such analysis would not be 

able to discern relative levels of the two isoforms, which presents misleading 

results.

Studies of alternative splicing in breast cancer have, in general, focused on 
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tumor samples versus normal tissue [44, 45]. Venables et al [44] presented a 

parallel RT-PCR approach to identifying variants, running an average of 30 

experiments to poll 600 genes previously associated with cancer. They identified 

a panel of 41 genes (only 12 of which were required) to classify tumors from 

normal tissue, indicating there are specific splicing changes which either effect or 

are the direct result of tumorigenesis.   Another study used the exon array 

ExonHit to identify putative variants [45] differentially expressed over 120 

malignant and 45 benign breast tumors with the goal of developing a clinical 

assay to determine whether new breast lesions were cancerous. An astonishing 

37,858 exonic probe sets were found differentially expressed, of which 1228 

made up a molecular classifier which might be used clinically. Among the genes 

surveyed, ACOX2 was identified as having a strong splice index (higher exonic 

variability) in malignant tumors, which parallels our own results showing that the 

full-length transcript of ACOX2 is heavily expressed in normal breast tissue from 

reduction surgery, however a shorter intronic-start version is present in all tumor 

samples and heavily upregulated in ER+ tumors.

Two studies of breast cancer alternative splicing between tumor subtypes have 

recently been published, forgoing comparison with non-malignant tissue and 

focusing on inter-subset variability [46, 47]. The primary benefit to this type of 

study is that breast tissue is highly heterogeneous, containing lobules, ductal 
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tissue, connective tissue, and fatty tissue [48]. As such, RNA obtained from most 

normal breast tissue necessarily originates from a variety of sources, which may 

have highly variable transcriptome profiles. Wang et al [47] showed that when 

counting exon skipping events in tumor samples, a panel of 4 ER+ and 4 ER- 

tumors and cell lines could be separated via PCA and clustering. Another study, 

run on a custom Affymetrix exon array, compared exon expression levels on a 

wide panel of breast cancer tumor cell lines, separated by tumor subtype. 

Intriguingly, they reported that alternative variants associated with a rare ER- 

subclass referred to as Claudin-low [22] were significantly associated with the 

Fox2 splicing factor, and that upon Fox2 knockdown these variants were 

reduced.

In order to poll alternative splicing using RNA-Seq, splicing-aware alignment 

software must be used, such as the TopHat [49] software package. TopHat works 

by saving all fragments which do not align end-to-end to the reference genome, 

and splitting them into smaller pieces. If these smaller pieces can be aligned to 

the genome near to each other, TopHat records a putative exon-exon splice 

junction at that locus. Finally, using the novel junction database generated in the 

previous step, TopHat once again aligns the leftover fragments to the genome. 

Alternative splicing appears as differential junction usage at the same locus, such 

as a splice junction skipping an exon present in another transcript. Once noted, 
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assembly can be accomplished through manual annotation or using a 

referenced-based whole transcript assembler such as Cufflinks [37]. Also visible 

using this method are retained introns. Intronic regions are sometimes retained 

post-splicing, but these regions usually contain stop codons, and thus result in 

truncated proteins during translation. Some intronic regions contain microRNAs 

(miRNAs), small RNA (~70bp) which can promote gene silencing by inhibiting 

translation or causing direct mRNA degradation, depending on sequence 

complementarity. Specific proteins bind to these introns in pre-mRNA, preventing 

immediate splicing so that the miRNA can be processed separately. RNA-Seq 

can provide clues to the existence of this process and other examples of retained 

introns through sequence fragments which align to intronic regions otherwise 

spliced in alternate transcripts.

As previously mentioned, another prominent method of promoting transcript 

diversity is alternative start exons. This has also been shown in the EPB41 family 

of genes, which each have ~3 potential start sites. Another example is the gene 

lactotransferrin (LTF), which has two alternative start sites. One start site 

encodes a 44 amino acid sequence that marks the resultant protein for 

extracellular secretion, where it has antiseptic properties. Without this first exon, 

the protein (referred to as dLTF) localizes to the nucleus, where it becomes a 

transcription factor [50-53]. It was recently shown by Pal et al that alternative 
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start sites tend to result in larger changes in expression, i.e., the bulk of 

differential transcript usage in tissues is due to start exon variation [54]. Indeed, 

dLTF has been shown to be almost entirely absent in breast cancer [50, 51]. 

These changes most likely result from the use of an alternative promoter, which 

could be due to many factors, including occlusion of the original promoter 

through methylation or protein binding, activation of transcription factors that bind 

to the new promoter, and chromatin remodeling that results in exposing different 

parts of the genome to transcription. Taken together, alternative splicing and 

promoter usage combine to effect vast genomic diversity. For example, although 

the human genome has approximately 23,000 genes, in the most current human 

genome annotation in ENSEMBL, there are ~196,000 known transcripts, of which 

~56,000 are known to code for proteins [55].

A significant fraction of the transcriptome, however, does not code for protein. 

This class, collectively referred to as non-coding RNA (ncRNA), includes, but is 

not limited to, microRNA, short-interfering RNA (siRNA), transfer RNA (tRNA), 

ribosomal RNA, and long, intergenic non-coding RNA (lincRNA). While tRNA and 

ribosomal RNA have been well known to biologists for their activity during the 

process of translation, knowledge of lincRNAs as a whole is in its infancy. A 

prominent example in this class is XIST, a large (~19kb) stretch of alternatively 

spliced RNA which coats the unused female X chromosome to prevent 
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transcription. XIST expression is absent in some breast, ovarian, and cervical 

cancer cell lines, indicating it may play some role in tumorigenesis [56]. The 

lincRNA HOTAIR was recently discovered to be responsible for the repression of 

hundreds of genes by associating with the Polycomb Repressive Complex 2 

(PRC2) [57]. PRC2 alters histone methylation in such a way that transcription is 

reduced or impossible. The occupation pattern of PRC2 genome-wide was found 

to resemble that of embryonic fibroblasts in tumor cell lines with upregulated 

HOTAIR, and these cell lines grew aggressively with enhanced metastatic 

capability [57]. HOTAIR has been found to be a driving force to malignancy in 

many human cancers including breast cancer [57], gastrointestinal tumors [58], 

and hepatocellular carcinoma [59]. Estimates of the total number of ncRNA in the 

human genome (ignoring alternative transcripts) put the number at approximately 

~6700 [60], though it remains unclear how many are also conserved in 

mammalian genomes. RNA-Seq has played a pivotal role in ncRNA discovery, 

used previously in concert with immunoprecipitation to identify the sequences of 

ncRNA bound to PRC2 [61]. We demonstrate a method to identify novel ncRNA 

using RNA sequencing data, and have discovered a number of ncRNA which are 

associated with ER status in breast cancer tumor tissue.

RNA sequencing can also be used to identify mutations in transcriptome coding 

sequences, such as single nucleotide polymorphisms (SNPs) and small 
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insertions and deletions (indels). Mutations of this nature in protein-coding 

sequences can cause missense errors which change the amino acid being 

produced, or replace an amino acid with a stop codon, referred to as a nonsense 

mutation. The latter causes the production of a truncated protein which may not 

retain normal function. Both of these types of mutations are of particular interest 

in cancer, as tumor suppressor genes are frequently the target of errors resulting 

in a loss of function. A prominent example is the well-known tumor suppressor 

gene p53, which is found to be mutated in roughly 50% of human cancers and for 

which now more than 35,000 mutations contributing to tumorigenesis have been 

found and cataloged [62]. Unfortunately, many important types of genomic 

mutation, such as errors in promoter sequences or splice sites, are invisible to 

RNA sequencing. These types of errors are only apparent following genomic 

DNA sequencing, though changes in RNA expression in certain samples may 

provide clues as to the existence of such errors in nearby DNA, reducing the 

search space considerably.

RNA sequencing does have limitations, mutations in DNA promoting 

transcriptome changes being just one example. Other epigenetic changes which 

require specialized experiments to discern include DNA methylation, which is 

used in mammalian genomes to silence transcription. Histone methylation, 

another epigenetic modification, alters the accessibility of chromatin to 
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transcription factors. Methods to determine these changes have been used 

previously to identify novel regions of transcription in the mouse genome, leading 

to the discovery of thousands of highly-conserved ncRNA, many of which were 

also found to have potential regulatory roles due to their association with PRC2 

[63, 64]. There are bioinformatic limitations as well, especially if a reference 

genome is not available. In one study, more than 7.4 GB of high-quality 

sequence data was obtained from mouse liver RNA, and using a state-of-the-art 

de novo alignment software package the authors were only able to match the 

transcriptome assembly results of the reference-based transcript assembler utility 

Cufflinks [31]. Such a study may prove cost-prohibitive for many researchers at 

present, as current pricing for high quality RNA-Seq data is roughly 10x that of a 

microarray experiment per sample, which makes studies with very large numbers 

of biological replicates intractable.

To date, no large-scale studies of human breast tumors using RNA sequencing 

have been published, though RNA-Seq data from some breast cancer tumor cell 

lines have appeared in a study of transcriptome changes by Wang et al [30]. The 

splicing-aware alignment software package MapSplice was validated on breast 

cancer tissue RNA-Seq data [47], however these data were not made publicly-

available. In this thesis, we present analysis of RNA-Seq data from 53 primary 

breast tumors. Novel transcriptome changes among established and non-
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canonical subsets of breast cancer are studied, as well as the identification of 

novel non-coding RNA. We present methods both to classify breast cancer RNA-

Seq data based on consensus clustering and identify these transcriptome 

changes.
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Chapter 2: Thesis Goals

2.1 Show RNA-Seq is an effective way to study breast cancer 

biology

RNA sequencing has previously been shown to be an effective method for 

measuring the expression of transcripts in total RNA samples [28, 37], as well as 

the differential expression of these transcripts between two or more samples [37, 

65]. It has also been used to identify novel alternative splicing patterns in tumor 

and normal tissue [30, 37]. One would therefore expect that RNA-seq data 

should be able to classify breast cancers into clinical subclasses (such as by ER 

and HER2 status). Furthermore, because RNA-seq presents a more complete 

picture of the transcriptome, more subtle differences between subclasses, such 

as alternative splicing and alternative promoter usage, should also be accessible 

using this technology.  It may also be possible to identify novel coding and non-

coding transcripts which are differentially expressed in breast cancer subtypes.
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2.2 Develop methods to identify new breast cancer biology

In order to separate breast cancer tumor RNA-Seq samples into clinically-

relevant subtypes, we will describe a suite of clustering software called 

ConsensusCluster [25] which we have developed and made freely available. 

ConsensusCluster uses the consensus ensemble clustering method [23, 24] to 

identify robust, reproducible subclasses in data which are resistant both to 

sample and feature perturbations and to biases present in the clustering 

algorithms used. This method combines results from many iterations of well-

established clustering algorithms such as k-means and self-organizing map [17], 

reducing the effect of bias from each algorithm used, such as spherical clusters 

in the case of k-means [18], as well as stochastic variance from random initial 

conditions. Each iteration involves a fraction of the total sample and feature set, 

mitigating the effects of outliers and ensuring the resulting clusters are robust. 

We also developed and released CudaConsensusCluster [66], a powerful 

extension to ConsensusCluster which enables offloading of computationally-

intensive clustering algorithms to graphics processing units (GPUs), using 

NVIDIA's C for CUDA architecture [67, 68]. Due to the inherently parallel nature 

of graphics processing, modern GPUs have a massively parallel architecture. 

This is particularly advantageous to consensus clustering, given that several 

steps, namely subsampling sample and feature data, the clustering iterations, 
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and several steps within the algorithms themselves, are all “embarrassingly” 

parallel operations, resulting in significant speedup in overall runtime (see 

Appendix: ConsensusCluster). 

Identifying alternative splicing and alternative start site usage in breast cancer 

subtypes is a challenging task, requiring the identification of differential transcript 

usage both in known transcript isoforms and novel ones. To accomplish this, we 

have developed a method for identifying regions of putative differential splicing in 

known transcripts, which can then be rigorously annotated using manual and 

computational methods to identify the underlying transcript changes. This method 

identifies changes in the ratios of exon expression between two sets of samples 

within a known transcript. In other words, it can determine whether there are two 

exons in a given transcript which have vastly different expression ratios between 

the two subsets (details in Chapter 3.10). Significantly large differences indicate 

potential splicing, which can then be identified by assembling sequence 

fragments at that locus, followed by in vitro validation. We have discovered and 

validated transcripts which are alternatively spliced, or the result of alternative 

promoters, in known clinical breast cancer subtypes. We examine the results of 

this study in Chapter 4.

We also developed a second method to identify alternative splicing in sets of 
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samples unassociated with clinical subtype. This allows us to render a more 

complete picture of variation within the samples, uncovering new subclasses with 

alternatively spliced biomarkers. We first scale the total expression of all exons in 

a transcript to be the same over all samples, i.e., a scaling factor is determined 

by dividing whole transcript expression by the mean over all samples. The 

expression of each exon is then multiplied by this scaling factor (See Chapter 

3.11), which allows for direct comparison of exonic expression between samples, 

irrespective of overall differences in transcript abundance. The exome is then 

screened for highly variant expression in re-scaled exons, which indicates 

putative transcript variation at that locus. As before, this is followed with an 

assembly step using manual and computational methods to identify novel 

transcripts responsible for the observed variation. We identify a number of these 

alternative variants and examine the results in Chapter 4.

Finally, we demonstrate a novel method to discover long, intergenic non-coding 

RNA (lincRNA) by comparing expression data in intergenic regions between 

breast cancer subtypes. Total expression in small, tiled “windows” across all 

unannotated regions of the genome is tabulated for each subtype, and compared 

directly using a signal-to-noise ratio, a strict method for identifying changes in 

mean intensity while being robust to sample variation [69]. These regions are 

then annotated and compared to known ncRNA collections [55, 60, 70, 71]. While 
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previous studies have successfully identified ncRNA in mammalian genomes [63, 

64], the challenge to identify functional transcripts remains difficult. We propose 

that long non-coding RNA robustly expressed in a set of breast cancer tumors 

that share clinical characteristics, and absent or nearly absent in others, are very 

likely to be relevant, though further experimental validation is necessary to 

confirm this assertion. Additionally, we show in Chapter 5 that 

2.3 Identify novel transcriptome variation in breast cancer tumor 

subsets

We will demonstrate that ConsensusCluster is a powerful tool to distinguish 

breast cancer subtypes based on ER and HER2 status using RNA-seq data, with 

excellent concordance to labeling using standard clinical protocols (See Chapter 

4.1 for method description and figures). The clusters identified in this way form 

the foundation on which the other discoveries of splice variants and non-coding 

RNA is based. Using methods outlined above, we observed differential splicing in 

subclasses of our tumor sample sets. Specifically, 7 alternative splicing and 

alternative start site variants were observed to be differentially expressed 

between ER+/HER2- and ER+/HER2- samples, 2 of which were entirely novel, 

and a total of 4 had not been previously associated with breast cancer. We also 
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observed an additional 6 highly differentially expressed variants in subsets of 

breast cancer unassociated with ER or HER2 status. These may be biomarkers 

for as yet unknown breast cancer subsets, though further study of their 

association to clinical parameters is needed. Lastly, we identify a total of 14 

ncRNA variously expressed in ER+/HER2- and ER-/HER2- breast cancer tumors, 

4 of which are entirely novel, and 2 of which have transcript assemblies vastly 

different from previous annotations (See Chapters 5 and 6 for detailed results).

2.4 Extensions of the presented work

We have developed and applied methods to identify transcriptome changes in 

breast cancer tumor subsets, however, it is unclear what the significance of these 

changes may be. What is clear is that these changes are biomarkers, strong, 

unique indicators of the presence of representative subsets of the breast cancer 

population, which may be treated in a specialized manner. There are two clear 

follow up directions in which we can proceed: 1) Determine the biological basis of 

these alternative splicings and ncRNA within and between breast cancer 

subtypes. 2) Determine whether their inhibition or promotion has a measurable 

phenotype and whether this may suggest novel therapeutic targets.
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In order to determine the functional annotations for discovered transcriptome 

variation, the integration of additional sources of information is crucial. The web 

of causal interactions that give rise to observed changes can be explored in a 

number of different ways. For instance, changes in splicing are likely either the 

result of a specific splicing factor acting in concert with  enzyme activity 

associated with ER status, or epigenetic changes which enhance or silence 

splicing factors at that locus. The former might be accomplished by knockdowns 

of known splice factor genes and observing whether alternative splicing 

continues, however the latter requires a detailed investigation of the epitome at 

that locus, including methylation and splice promoter sequence mutations. 

Alternative start sites are generally the result of variation in promoter usage, 

which implies that in differentially expressed samples there exists epigenetic 

silencing of one promoter and exposure of another. These changes may be a 

result of histone methylation changes [54], and as such, genome-wide chromatin 

state maps would be extremely useful in this study. Alternative promoters may 

also be the result of transcription factor binding, which can be elucidated using a 

ChIP-Seq approach [72]. Similarly, many long non-coding RNA have been 

recently implicated in association with the polycomb repressive complex (PRC2), 

which causes targeted downregulation [57, 61, 63, 64]. In [61], RNA-PRC2 

complexes were precipitated, followed by sequencing of the complete mRNA 

transcript bound to PRC2. Their method resulted in the identification of over 9000 
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bound RNA transcripts in mouse cells, and can be used to determine which of 

the ER status-dependent ncRNA are actively involved in downregulation.

The possibility of using the splice variants for therapeutics is always a primary 

consideration when novel biomarkers are discovered. Though ER+ tumors are 

treated with Tamoxifen, only ~40-60% respond [3]. Similarly, ER- tumors have no 

known therapeutic target. Therefore there is still a pressing need for additional 

targets for cancer therapy. Through knockdown experiments on tumor cell lines, 

each of these variants and ncRNA can be assessed for their ability to repress 

growth and metastasis of tumor cells. In addition, other clinical factors such as 

abnormal cell morphology can give clues as to the potency of these 

transcriptome changes as targets. By enumerating the transcriptional variability 

that distinguishes breast cancer tumor subpopulations, we hope to have 

identified key features which either form the underpinnings of known disease 

pathways, or represent the lynchpins of disease phenotypes, which can be 

targeted in the clinic to reduce recurrence and improve survival.
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Chapter 3: Data Description, Methods, and the State of 

the Art

3.1 Sample data

Total RNA from primary breast tumors, which was collected from patients treated 

at the Cancer Institute of New Jersey (CINJ) and the Norwegian Radium Hospital 

in Oslo, Norway, was used in our sequencing study. These RNA samples were 

analyzed in two separate sets which differed in the style and quality of 

sequencing. RNA for the first sequencing set, referred to as sample set A, came 

from a cohort of 13 patients from CINJ and 16 from Radium Hospital. RNA for the 

second set, sample set B, came from a cohort of 24 patients from CINJ and an 

additional 6 “normal RNA samples” from reduction mammoplasty patients from 

Radium Hospital. RNA was extracted using the Trizol reagent [73], which is used 

to capture total RNA and DNA from cell lysate. Trizol extraction is more difficult 

than column-based methods, however many column methods filter sequences 

smaller than 200bp, resulting in an incomplete RNA pool. Total DNA was also 

extracted from each sample for follow-up research purposes.
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The standard RNA-Seq protocol recommended by Illumina was used to 

sequence the total RNA from each sample. First, mRNA was isolated from total 

RNA using poly-T bead purification, which is used to purify polyadenylated RNA 

fragments in a sample, removing ribosomal RNA as well as immature pre-mRNA. 

Purified mRNA fragments were sonicated to shear into fragments of ~150bp. A 

cDNA library for the sheared fragments in each sample was created using PCR 

and random hexamer primers. Hexamers are 6 nucleotide fragments which 

anneal to the RNA in a sample and provide a basis for elongation using DNA 

polymerase. All possible combinations of 6 nucleotide fragments are used to 

provide a consistent amplification. Following this, 50bp adapter fragments were 

ligated to cDNA in the sample in order to label the DNA as belonging to each 

sample, and all cDNA plus adapter sequences were run through agarose gel. 

The gel was cut at approximately 200bp to ensure that the captured fragments 

were the appropriate size for sequencing. A second amplification step was then 

performed using adapter-specific primers, amplifying fragments that underwent 

successful ligation. A third and final amplification step was performed on an 

Illumina cluster station, to hybridize target DNA fragments to a “flow cell,” on 

which they become amplified to form surface-bound “clusters.” Clusters on the 

flow cell surface were then read by the sequencer. Samples from sample set A 

were then sequenced using an Illumina Genome Analyzer IIx at a read length of 

29bp, whereas sample set B fragments were sequenced on an Illumina HiSeq 
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2000 at 100bp. All samples were sequenced at the Mount Sinai School of 

Medicine (MSSM), in Dr. Ravi Sachidanandam's laboratory. Samples from both 

datasets were sequenced using a single-end, unstranded protocol.

Because of the short read length limitations of current RNA sequencing 

technology, certain protocols have previously employed a “paired-end” 

sequencing method [31, 37]. The method itself is identical to a single-end 

sequencing protocol, however following initial sequencing the fragments are then 

reversed and sequenced from the opposite end of the fragment, leading to 

sequence reads from both ends of the same RNA. Paired-end sequencing 

provides an abundance of useful assembly information, including not only the 

additional sequence configuration but also physical location as well. Since the 

RNA was sheared after purification, mate pairs must come from loci ~200bp 

apart, falling into a Gaussian distribution of distances with mean 200. This 

information can dramatically reduce ambiguity regarding complex transcriptome 

structure resulting from sequence inversions, alternative splicing, and 

chromosome fusions among others.

Another class of sequencing protocols which are increasing in popularity are 

strand-specific protocols, reviewed in [74]. In contrast to unstranded sequencing, 

where the 5' and 3' end orientation is lost during cDNA library generation, in 
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these experiments strand information is preserved before sequencing, such as 

through 5'/3'-specific adapter ligation to the mRNA transcript. In many complex 

genomic loci, such as the GNAS locus in the mouse and human genomes [75], 

there exists multiple transcripts which have alternate orientations with respect to 

the genome, i.e., a “sense” transcript and an “anti-sense” transcript. A strand-

specific protocol would assist post-sequencing alignment in resolving the 

assignment of fragments to transcripts even if these sense and anti-sense 

transcripts directly overlapped. During novel transcript annotation, unstranded 

protocols can lead to ambiguity as to the orientation of the transcript. Stranded 

protocols also substantially reduce the work involved in de novo sequence 

assembly, since the assembler only need consider a single orientation when 

attempting to align each fragment to assembled contigs [76].

3.2 Sequence assembly

Once sequence fragments are obtained, the task becomes to assemble these 

fragments into a cohesive picture of the transcriptome. As previously discussed, 

there are two primary ways to perform sequence assembly: with, and without a 

reference. Transcriptome assembly without a reference genome sequence 

requires significant resources to ensure that there is sufficient coverage over all 
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relevant loci, that is, enough fragments overlap a region to call the sequence with 

some measure of confidence. This is especially important where sequences 

diverge, such as at exon-exon splice junctions, where the sequence following 

some common exon might be selected from a large pool of follow-up exons. Two 

popular options for de novo sequence alignment are Abyss [31] and Trinity [76]. 

Both methods assemble fragment reads into unique contigs of size k (k-mers), 

and then compile a de Bruijn graph of the resulting dataset. Following this, the 

graph is trimmed to remove errors stemming from imperfect sequence 

information by filtering short contigs that end prematurely, and complete 

sequences are assembled from connections along the graph. Using a de Bruijn 

graph to store sequence information has the advantage that computational 

memory usage is proportional to the size of the genome, rather than the sample 

libraries themselves, which are in general substantially larger. Both utilities can 

also take advantage of paired-end and strand-specific protocols, which provide 

useful additional information to guide assembly.

Reference-based transcript assembly makes use of a reference genomic DNA 

sequence common to the species from which the target sample was obtained. 

Assembly begins with an alignment step to map sequenced transcripts to their 

locations on the reference genome. This is done using a splicing-aware utility 

such as TopHat [49] or MapSplice [47]. In general, these utilities operate by 
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dividing sequence fragments into smaller pieces, which are aligned individually to 

the reference genome using an end-to-end alignment utility such as Bowtie [32]. 

Fragments which are separated by smaller physical genomic distances (typically 

less than 500kb) become candidates for putative spliced alignment. From here, 

alignment software utilities may either attempt to discover the splice junction via 

sequential search over the intervening region, or instead, restrict the search to 

known (canonical) junctions. A splice site usually begins with bases GT and ends 

with AG with respect to genomic DNA (5' to 3'). In mammals, 98.71% of known 

splice junctions are GT-AG [36]. Both guanine bases are part of the coding 

sequence, transcribed at the edges of the two exons of the splice junction. The 

thymine and adenosine bases of the GT-AG junction form the 5' and 3' 

boundaries of the intron, respectively. Non-canonical junctions include GC-AC 

(0.56%) and other junctions that are found even more rarely. By restricting 

search to canonical junctions, spliced alignment can proceed rapidly.

Once all junctions are defined, transcript assembly can be carried out manually 

or using a dedicated transcript assembler, the most popular of which is Cufflinks 

[37]. Cufflinks follows contiguous sequences as long as there is sufficient 

coverage along every base of the transcript, and where gaps in the transcript 

sequence are present, the program will leverage paired-end fragment information 

to guide assembly. Since paired-end protocols involve sequencing at both ends 
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of a longer cDNA fragment, fragment pairs are guaranteed to have originated in 

the same mRNA transcript, and thus the assembler can safely join contigs to 

which each fragment belongs. By the same token, single-end reads provide no 

additional location information, and any gaps in coverage will cause Cufflinks to 

assume the transcript does not cover these portions. This can pose serious 

challenges during assembly, since a novel transcript with low coverage might 

appear to be “broken up” into separate transcripts. This necessitates manual 

annotation, i.e., joining nearby transcripts based on assumptions of missing 

coverage, or prior knowledge, such as the observation that the region is 

ungapped in other samples. Cufflinks can also take advantage of strand-specific 

sequence information to resolve loci with overlapping transcripts of different 

orientations.

3.3 Abundance estimation

When the completed transcriptome is assembled, the total abundance of each 

isoform, or any transcriptome element, can be estimated on a per-sample basis. 

This process typically involves first counting the number of sequence fragments 

in a given sample which align to the target features, followed by normalization. A 

number of accepted methods for fragment counting exist, the simplest of which 
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was introduced by Cloonan et al [29]. This methodology involved simply counting 

all fragments which aligned end-to-end entirely within an exon as a hit, and 

ignoring all others. It can be argued that counts generated using this method are 

incomplete, since fragments that align across splice junctions are not considered. 

A more complex counting method, employed by both HTSeq [77] and BEDTools 

[78], requires spliced alignment data. This method counts all features overlapped 

by any portion of a sequence fragment, which improves counting accuracy over 

the previous method. Unfortunately, neither counting method attempts to identify 

the transcript of origin for each fragment. The software utility Cufflinks [37, 79] 

attempts to estimate the abundance of a transcript by calculating the likelihood of 

an abundance value given the fragments in the sample and the known assembly 

information at that locus. This method is much more effective with higher quality 

sequences, especially paired-end sequence information [79], since fragments 

can then be assigned more accurately to transcripts, which increases the 

robustness of the results.

3.4 Normalization

Normalization of count data is a necessary step in order to accurately gauge the 

relative abundance of transcripts among two or more samples. Recent RNA-Seq 
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analysis protocols begin this step by scaling the counts in each sample by the 

total number of fragments in a sample, referred to as the sequence depth [28, 29, 

79]. It has been argued that this parameter is more accurately defined by the 

number of fragments that align anywhere on the genome [37, 65], as this will 

reduce error due to systematic sequencing errors or sample contamination. 

However, Robinson and Oshlack [80] noted that this value is artificially inflated by 

heavily overexpressed transcripts. For example, HER2+ cancers have extremely 

high expression of genes in the HER2 amplicon due to high copy number at this 

locus, such as ERBB2. In these samples, ERBB2 occupies a large proportion of 

the total sequencing “real-estate,” which artificially depresses the proportion of 

transcripts in those samples which belong to other genes. The solution is to 

utilize an “effective” sequence depth based on the total sum of all fragments that 

align to transcripts that occupy the middle 75% of the expression curve, chosen 

using a trimmed mean approach. Similar solutions are employed by both DESeq 

[65] and Cufflinks [37] in their normalization protocols.

Additional confounding factors which require normalization are feature length and 

biases introduced by the sequencing protocol itself, namely the use of random 

hexamer priming. As expected from experiments in which fragments are selected 

randomly from the transcriptome, the expected count of any feature is 

proportional to the length of the feature in question. Thus, it is natural to scale the 
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count data for each feature based on the relative length [28, 29, 37]. However, it 

has been shown by Oshlack and Wakefield [81] that this introduces a bias to 

subsequent data modeling in that the variance of the gene is no longer 

equivalent to the mean, as expected from a Poisson process. As a result, genes 

which are longer are more likely to be found to be differentially expressed 

regardless of the statistical method or cutoff chosen. Bullard et al [82] pointed out 

by scaling the test statistic by the square root of the length this effect disappears, 

though Type I error is increased in the process.

Random hexamer priming is used in many RNA-Seq protocols to convert the 

fragmented RNA library into cDNA. Because the cDNA library must provide an 

accurate representation of the transcript abundances present in the original 

sample, it is imperative that cDNA library generation be an unbiased sampling of 

the total mRNA pool. Hansen et al [83] showed that strong biases exist in the 

likelihood of observing a given base in a given position at the start of each 

sequence fragment which were significantly greater than the background 

distribution. Intriguingly, the bias fell off as a function of the distance from the 

start of each fragment. The authors also showed that this effect was reproducible 

across several studies, among which the most common factor was the use of 

random hexamer priming. It was concluded that a preference for elongation 

exists for hexamers of a certain configuration, and that this effect could be 
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accounted for using a simple linear weighting of each fragment towards the total 

count based on the relative proportion of its starting 6-mer against the 

background. This bias can be optionally accounted for in the Cufflinks utility 

during transcript abundance estimation [37].

3.5 Differential expression

In order to extract meaningful conclusions from feature abundance comparisons 

between samples, an appropriate statistical model of the data is necessary. RNA-

Seq fragments are discreet counts resulting from a sampling of the total mRNA 

pool, and as such are frequently modeled as a Poisson process [84, 85]. 

Researchers Marioni et al [84] showed that the count distribution was effectively 

modeled using a Poisson distribution, and used this assumption to identify 

variability across technical replicates. However, over multiple biological replicates 

gene-level count data often shows high variance compared to the mean, which is 

not what is expected for a Poisson process [37, 65]. This indicated that additional 

parameters are needed to account for this over-dispersion. To date, methods 

have been suggested to model the count data include using a generalized 

Poisson model [86] or a negative binomial distribution [37, 65, 87], which results 

in greater statistical power to detect differential expression over the naïve 
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Poisson model. Software utilities which employ these methods include DESeq 

[65] and EdgeR [87].

These models are appropriate for gene-level count data, however, they cannot 

be used for isoform differential expression. The reason for this is that fragments 

which align to a region which is overlapped by multiple transcripts at a given 

locus cannot be assigned to the correct transcript, and thus isoform-level count 

data at each locus is inaccurate. As previously discussed, paired-end and strand-

specific sequencing protocols are both RNA-Seq methodologies which provide 

additional transcript-specific information, both of which can be utilized by the 

software utility Cufflinks [37]. Cufflinks attempts to assign relative abundance 

estimates (fragment counts) to known transcripts using assembly information by 

calculating the maximum likelihood of these estimates given observed fragment 

count data at that locus. It can therefore perform differential expression analysis 

of individual transcripts using RNA-Seq data, which is done by modeling 

estimated counts as a negative binomial distribution and calculating a test 

statistic similarly to DESeq [65]. Though this method is appropriate for low 

numbers of samples, the uncertainty of isoform abundance estimation through 

this method is large, especially for data from single-ended protocols. The result is 

that the total variance of a comparison between two large sample pools must be 

the sum of both biological variation and the uncertainty of isoform abundance 
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measurements. This variance becomes intractable at high numbers of samples, 

which prevents accurate assessment of differential expression. We present a 

method in Chapter 3.10 which addresses these concerns.

Given the limitations inherent in fragment assignment to specific transcripts 

especially at complex loci, alternative experiments to quantify transcript 

abundances should be considered. The most popular method is quantitative real-

time PCR (qRT-PCR) [88-90]. Quantitative PCR is an experiment wherein a 

specific transcript is amplified using a PCR reaction in solution with a double-

stranded DNA-binding dye, which fluoresces upon binding. This fluorescence is 

measured over a number of PCR cycles which form an exponential curve based 

on both the abundance of the target transcript in the sample and how efficiently 

the primer is elongated [90]. After properly normalizing for the total cDNA in the 

sample and the primer efficiency (assessed on a per-plate basis using a standard 

dilution curve [88]), the number of cycles required before the rate begins to decay 

(called Ct), is proportional to the relative abundance of the target transcript. In 

order to control for experimental error, Gutierrez et al [89] recommend at least 3 

technical replicates of each sample be performed and their results averaged. 

Finally, differences in RNA/cDNA quality may cause large changes in expression 

from sample to sample, and so when assessing differential expression, stable, 

highly-expressed “housekeeping” genes must be included as a control in each 
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experiment [91].

3.6 Identifying alternative splicing in RNA-Seq data

Currently, several methods exist for identification of alternative transcript variants 

in RNA Sequencing experiments. The basic steps include obtaining a reference 

annotation of transcript variants in a sample, followed by estimation of 

abundance and testing for differential expression. Compiled annotations exist for 

several genomes, including the human genome, provided by ENSEMBL [55] and 

RefSeq [70]. ENSEMBL combines annotation information from a wide variety of 

sources, including the Vertibrate Genome Annotation (VEGA) project [71], which 

provides manual annotation of novel transcripts over various species, and the 

ENCODE project [92], which aims to enumerate all functional aspects of the 

human genome. RefSeq is a heavily curated database which also combines 

transcript information from these and other sources, however, transcripts are only 

included in the RefSeq annotation if there is substantial evidence to validate their 

existence. Thus, RefSeq provides fewer transcripts than ENSEMBL, though the 

annotation is probably more robust [70]. Reference annotations can also be 

generated on a per-sample basis using the transcript assembly methods 

described above, which may reveal novel transcripts not present in currently 
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available databases. Alternatively, the RABT assembler, provided with Cufflinks 

[93] can improve the accuracy of assembly by combining novel transcript 

information with a supplied reference annotation from other sources.

Once annotation is complete, abundance is calculated and normalized as 

previously described. If subsets are predefined in a given sample pool, and 

sufficient biological replicates are included which represent these subsets, a 

differential expression calculation is all that is required to identify differential 

alternative splicing between these subsets. Unfortunately, the problems in 

abundance estimation described above are still present in that fragments cannot 

be easily assigned to their transcripts of origin. In single-ended, strand non-

specific RNA-Seq protocols, as is the case in the present study, this problem is 

even more pronounced. While these concerns might be alleviated using a paired-

end protocol and higher read depth, these procedures are considerably more 

expensive at present and may make studies with large numbers of biological 

replicates cost-prohibitive. The only currently-available method for identifying 

isoform-level differential expression across subsets is the software package 

Cufflinks [37]. Due to the large number of samples in our dataset and the 

uncertainty inherent in Cufflinks' method of isoform abundance, Cufflinks failed to 

identify any differentially expressed alternative transcripts across ER+/HER2- 

and ER-/HER2- samples in the present study. By contrast, our method (Chapter 
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3.10) was able to identify a number of putative variants alternatively expressed in 

these subtypes, two of which were chosen for and subsequently validated with 

RT-PCR (Chapter 4).

Another method previously used in RNA-Seq experiments to identify variants is 

alternative expression analysis by sequencing (ALEXA-Seq) [134]. ALEXA-Seq is 

a method that works by first creating a database of possible transcriptome 

expression variations by starting with ENSEMBL [55] and annotating and 

enumerating all possible features using known exon information, e.g., all introns, 

exons, alternative exon boundaries, and all possible exon-exon junctions 

including those which are unsupported in current annotations. Variant features 

are then determined by measuring the expression of individual features in each 

transcript from the assembly, and then identifying potential variants by attempting 

to find outlying feature expression levels in each transcript. When comparing 

transcripts between two sample libraries, feature expression is normalized to the 

total transcript expression level, which allows direct comparison of feature 

expression to determine changes. Large changes in exon measurements 

indicate, for example, the presence of exon-skipping events between two 

libraries. This process can be repeated for intronic features as well as splice site 

usage to enumerate all notable transcriptomic changes. ALEXA-Seq does not 

allow for multi-sample comparisons, and is thus inappropriate for identifying 
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variants across large studies with multiple biological replicates. We will show in 

Chapter 4, however, that a similar method can be used to identify variants that 

are differentially expressed in novel subsets of breast cancer, by normalizing 

exonic expression in all samples to a common total transcript expression level 

and then searching for outliers in individual exons.

3.7 Identifying ncRNA in RNA-Seq data

A completed transcriptome assembly, generated using one or more of the 

methods described above, will necessarily contain transcripts that map to non-

coding regions of the genome. In an intensive study of the mouse transcriptome, 

Carninci et al [94] showed that over half of the transcriptional units (TUs) 

surveyed mapped to non-coding regions. In order to distinguish between RNA 

from coding and non-coding regions, sequence classification methods must be 

employed. In the most complete annotation of non-coding sources to date, Jia et 

al [60] employed an open reading frame (ORF) and BLASTP predictor to filter 

non-coding transcripts from expressed sequence tags (ESTs), short (500-800bp) 

fragments sequenced from tissue cDNA libraries, obtained from an earlier study 

of human transcriptome features [95]. Transcripts were screened for ORFs that 

did not contain stop codons, indicating they could be protein coding. Additionally, 
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the putative amino acid sequences of all ORFs found in the data were compared 

against known protein databases using the BLASTP tool [96], which searches for 

sequence conservation over various species. Amino acid conservation in an 

open reading frame indicates coded protein functionality, which were removed 

from consideration in their ncRNA database. In total, 5446 RNAs from ESTs were 

predicted to be non-coding, of which only a small number overlapped with ncRNA 

from previous annotations [60]. An alternate method was suggested by Kong et 

al [97], which utilizes a support vector machine (SVM) trained on sequence 

features in both coding and non-coding sequences, such as the number of open 

reading frames, the length of each frame, the presence of a start codon, and the 

presence of conserved protein domains. This SVM can be used to classify new 

sequences into coding/non-coding with high computational efficiency.

RNA sequencing studies which identify putative non-coding RNA transcripts can 

utilize these pipelines to verify that their transcripts do not code for protein. 

However, while much of the transcriptome is non-coding, early reports showed 

that many ESTs mapped to the human transcriptome showed weak sequence 

conservation over multiple species, leaving the functionality of these transcripts 

in doubt [63]. In two studies, specific histone modifications were shown to 

correlate with conserved regions of the genome [63, 64], indicating they served 

functional purposes. In the present study (Chapter 5), we will show that some 
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non-coding transcripts differentially expressed between subtypes of breast 

cancer are also heavily conserved over mammalian genomes, implying they are 

functional.

3.8 Problems with state of the art methods for identifying 

alternative splicing

The most pressing challenge for current research into transcriptome variation is 

the dependence of both reference-based and de novo assemblers on very high 

quality sequence information. For example, Robertson et al [31] used 174 million 

50bp paired-end sequencing reads in order to assemble a mammalian 

transcriptome using the ABySS [98] software utility to the level of reference-

based assembler Cufflinks [37]. The previously-unprecedented sequence depth 

used has a current list price of ~$5400 a sample [99]. The cost of such a study 

with multiple biological replicates, such as would be necessary to quantify splice 

variants in cancer samples (which have high heterogeneity), would be prohibitive. 

Cufflinks itself has only been shown to provide cohesive annotation using 

samples of ~60 million 75bp paired-end reads [37], which would cost in excess of 

$2000 a sample (price based from a listing at Otogenetics [99] for 40 million 50bp 

paired-end sequence reads). In experiments which utilize lower quality 
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sequencing information for larger sample pools, such as single-ended read 

protocols, there is a need to develop novel methods identify potential variants.

The other current state of the art method for identifying novel potential transcript 

variants, ALEXA-Seq [134], suffers from the same stringent sequence quality 

requirements as Cufflinks and de novo assemblers. In this method, a library of 

putative transcriptome features is first created from known annotations. Following 

this, a list of all features that are supported by the sample library and their 

expression is created, after which the expression of each feature can be pairwise 

compared between samples. ALEXA-Seq has a number of important drawbacks, 

most notable of which is that differential expression is only possible between two 

samples, which precludes the use of biological replicates. The software as 

currently available also does not support data from single-end read RNA-Seq 

experiments. However, the methodology is simply implemented, and we discuss 

a method in Chapter 3.12 which extends their algorithm to multi-sample 

comparisons.

3.9 Gaps in our knowledge of differential breast cancer 

transcriptome changes across subtypes
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While many studies have presented splicing changes in breast cancer tumor 

samples [44-47, 100, 101], fundamental questions still remain. The most 

significant advances in our understanding of alternative splicing in breast cancer 

have come from studies of changes from normal tissue or benign lesions to 

malignancy [44, 45] and from tumors with poor metastatic capability to more 

aggressive phenotypes [100]. However, recent studies have shown that “breast 

cancer” is not simply one disease but a highly heterogeneous population, 

composed of the clinical subdivisions ER+/HER2-, ER-/HER2-, and HER2+ 

tumors, as well as further subsets of these with distinct molecular and phenotypic 

signatures [9, 14, 19, 20, 22]. These subclasses also have very different survival 

rates and response to treatment [9], suggesting that the biological changes 

underpinning these subclasses represent important targets for future therapeutic 

intervention. At the same time, “normal” breast tissue is generally highly 

heterogeneous as well [48], and is composed of milk ducts, lobules, connective 

tissue, and fat. It is therefore prudent when conducting a study of molecular 

changes, including alternative splicing, to reduce heterogeneity among sample 

populations to obtain a clearer picture of the biological changes taking place. We 

propose to do this by focusing on the differences between breast cancer disease 

subpopulations, which are less heterogeneous overall.

Two studies analyzed alternative splicing changes between breast cancer tumor 
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subtypes [46, 47]. Wang et al [47] counted exon skipping events on four ER+ and 

four ER- samples, composed of two tissue and two cell lines, each. The authors 

only showed that the quantity and location of some exon skipping events varied 

between the two subtypes, and did not report genes differentially regulated. 

Furthermore, these data were not made available to the public. Lapuk et al [46] is 

the only comprehensive study using multiple biological replicates which attempts 

to elucidate splicing changes between breast cancer subtypes, which was 

accomplished using an Affymetrix Human Junction Array, a custom, non-

commercial array which was developed specially to tile across known exon-exon 

junctions in the human genome. However, this study has several shortcomings. 

First, while human breast cancer cell lines are a popular surrogate for cancer 

cells in vivo, there are marked differences in gene-level expression as well as 

copy number variation between cell lines and tissue samples. Using DNA 

microarray data Ertel et al [102] showed significant differences in genes relating 

to a number of pathways, including energy production, cell communication, cell 

cycle, and metabolism of nucleotide and cell signaling molecules. To date, no 

studies have been published comparing splicing changes between cell lines and 

tissue samples, which may impact results. Additionally, many genomic copy 

number changes are associated with cell lines that occur rarely in tissue samples 

[103]. Given these differences, a study of alternative splicing changes using 

breast tumor tissue samples (such as presented here) seems both warranted 
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and relevant. Another challenge to interpretation of results from Lapuk et al [46] 

is in regard to the use of a microarray for analysis. Microarrays are limited to 

predefined probesets, and thus cannot capture all aspects of the transcriptome, 

especially those resulting from novel changes. Microarray analyses are also 

hampered by cross-hybridization between probes [33], which contribute to 

difficulties reconstructing isoform models from data [104]. A previous study has 

also directly compared the Affymetrix HuEx exon array [12] with RNA sequencing 

data using proteomic results as a standard, and reported that RNA sequencing 

results better estimated absolute isoform abundances in their samples [105].

3.10 A novel method to identify differential alternative splicing in 

sample subsets

We present novel algorithms for locating putative differential splicing changes 

across and within subtypes in a sample population. Each method begins with raw 

fragment sequence information from both sample set A (29bp reads) and sample 

set B (100 bp reads - see Chapter 3.1). These data originated from Illumina 

sequencing of total RNA using single-end, strand non-specific sequence 

fragments. These fragments were aligned to the human reference genome, 

revision hg19 [106], using the TopHat spliced sequence alignment software 
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package [49]. TopHat aligns sequence fragments to reference exon junctions. 

When fragments fail to align contiguously and are not in the RefSeq annotation, 

they are identified as putative novel splice junctions. Reference splice junctions 

were provided to TopHat from the most current UCSC RefSeq human genome 

annotation [70], which is a curated database of known transcriptome annotations. 

For each sample, the coverageBed utility [78] is used to count all reads which 

overlap exonic features from the RefSeq annotation. Reads which span exon-

exon junctions are counted as a hit for both features, ensuring count information 

most closely represents actual coverage.

Normalization of raw count information is an important step to being able to 

compare feature abundance levels between multiple sample libraries. First, 

counts are scaled linearly to account for preferential elongation of certain 6-mers 

during cDNA library generation, as suggested by [83]. All count data is then 

scaled by the total number of fragments in each sample which align to the human 

genome (sequence depth). The depth parameter in this calculation is adjusted 

using a trimming method suggested by Robinson and Oshlack [80] to remove 

biases due to heavily overexpressed transcripts. Each exon is then normalized 

by its length due to the increased likelihood for a random sampling of sequence 

fragments to originate in longer transcript features, proportional to their length 

[82]. Finally, the counts are log2 re-expressed [29, 31, 84]. It should be noted that 
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each of these normalization methods were also used to calculate isoform 

abundance in results which utilize Cufflinks' [37] estimation method, though these 

results were not used to calculate differentially expressed isoforms except to 

compare the success of these methods.

To identify potential differential alternative splicing between known subclasses, 

we developed a test statistic based on the observation that transcript exonic 

expression is correlated in these subsets if the ratio of composite transcripts for 

that gene is the same in both sets. This can be intuitively described with the 

following Gedanken experiment: A genetic locus with uniform fragment coverage 

from RNA sequencing experiments contains two transcripts, Alpha and Beta. 

Alpha and Beta exhibit alternative splicing, which indicates each contain an exon 

or exons which overlap similar exon(s) on the other transcript on the same 

strand. These transcripts are present in a sample in a certain relative, nonzero 

proportion. Suppose Alpha and Beta each contain one exon which is identical in 

the other, that is, they occupy the same genomic location and are the same 

length. After normalization by exon length, the abundance of each exon in Alpha 

is proportional to the total abundance of Alpha, except for the exon which is 

shared by Beta, which is increased in RNA-Seq expression due to fragments 

originating from the Beta transcript in that sample. Thus, given the relative 

proportion of Alpha and Beta and total gene-level expression at this locus (the 
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sum of fragment coverage for both transcripts), this sample would have an 

exonic pattern of expression for each transcript as described above.

Now, suppose the same conditions exist for a second sample, however, the total 

expression at this locus, the gene-level expression, is significantly larger. In this 

case, the exonic expression of both Alpha and Beta would be perfectly correlated 

between samples, having the same pattern produced by the identical relative 

proportion of transcripts. This indicates that no differential splicing has taken 

place between the two samples; instead, the locus itself is differentially 

expressed. It follows that the ratio of exon abundance between the two samples 

will be identical for all exons. To test for differential splicing, then, all exon 

abundance ratios in a transcript are compared between two samples, or sets of 

samples, and the existence of a high difference in ratios for any pair of exons in a 

transcript indicates that it is a potential candidate for splice variation. For sets of 

samples, the mean difference is normalized by the square root of the total 

variance for all exon measurements (eq 1), which reduces the influence of intra-

subtype variability on the splicing score, S.

Eq 1
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Where s and t denote subsets of samples in a population, m is an isoform 

containing exons i and j, and μ refers to the mean expression values for each 

exon i and j, respectively. The exon ratio (ER) is the difference in the difference of 

means for any pair of exons in a transcript, normalized by the variance of all four 

exon measurements. This value is conceptually related to the signal-to-noise 

ratio (SNR) [69], which has been used in microarray experiments as a strict 

measurement of the difference in means between two sets [9]. Since the data are 

log2 re-expressed, this translates to the difference of exon expression ratios 

between the two sets. The splicing score, S, is the maximum exon ratio for all 

pairs of exons in the transcript. Higher values indicate higher divergence from 

perfectly correlated exonic expression behavior, and may indicate changes in the 

relative proportion of transcripts present in these two sets.

Two potential drawbacks of this method which result in higher scores for false 

positive transcripts can be reduced or eliminated using a number of data filtering 

procedures as discussed below. The method assumes that gene-level 

expression at a given genetic locus is non-zero for a given subset. If this 

assumption is violated, the exon ratio will be equal to the largest difference in 
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exonic expression within the expressed subset alone. To alleviate this, transcripts 

for which the average exon expression for either subset does not exceed a 

certain threshold (at least 1.0) are removed from further analysis. Another special 

case which will result in a false positive occurs in transcripts which contain exons 

that are entirely unexpressed in both subsets while the locus as a whole (gene-

level expression) is increased in one subset versus the other. This can occur in 

many cases, such as if transcript diversity at a given locus is due to an 

alternative starting exon and only one transcript is in fact expressed in either 

subset. For the absent transcripts at this locus, a false positive will be generated 

and the exon ratio will be equal to the difference in gene-level expression 

between the two subsets. Other instances where a false positive will occur 

include exon-skipping events wherein the annotated transcript contains an extra 

exon, and this exon is absent in all samples. This can be due to incorrect 

annotation, universal exon skipping in breast cancer samples, or if transcript 

diversity at that locus is entirely the result of exon-skipping events and only one 

transcript is expressed in either subset. To eliminate this, we use a simple filter 

for the total average expression over both subsets in a single exon. Any exons 

which are effectively unexpressed for both subsets (below 1.0 after 

normalization) are not considered in the exon ratio.

To assess the significance of splicing scores obtained using this method, a 
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permutation test is employed. The null hypothesis for each score is that it 

happened by chance given two random sets of breast cancer tumor samples of 

size equal to the sizes of the subsets being considered. The following procedure 

is used to calculate this probability, given a set of transcripts T of total number M:

All breast tumor RNA-Seq samples are combined into a single set N

 100 bins B representing discrete increments in splicing score space from a 

score S of 0.0 through 5.0 are created, each with an initial count C of 0

 1000 datasets are created by randomly partitioning N into new subsets of 

size equal to that of the clinical subsets for which differential splicing is 

being testing

 For each transcript t in each dataset, if the score St > Bi for any i in B, Ci is 

incremented

 The probability of seeing a score S by chance is given by Ci / (1000 * M) 

where i = maxi S > Bi

We account for multiple hypothesis testing to control the Type I error rate using 

the false discovery rate (FDR) correction suggested by Benjamini and Hochberg 

[107]. All p-values which correspond to a false discovery rate of less than 0.10 

after FDR correction are considered potentially significant and worth validating 

experimentally.
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Transcripts which display high putative splicing variation between breast cancer 

subsets are subjected to an independent review of their transcript annotations. 

Frequently, high splicing scores are due to the expression of novel transcripts, 

e.g., an alternative start beginning in intron 9 for an isoform of ACOX2 (see 

chapter 4) is differentially expressed in ER+ tumor cells, which results in 

increased expression of exons 10-15 while exons 1-9 are not differentially 

expressed between subsets. The intronic start is manually annotated based on 

coverage information from sequence fragment alignments provided by TopHat 

[49]. Where possible, a literature search is performed for each putatively spliced 

gene to identify independently validated assemblies. In transcripts where an exon 

is reported low in one subtype versus the other, implying a skipped cassette 

exon, spliced fragments from the surrounding exons are checked to ensure the 

change is due to an alternative exon junction event.

3.11 A novel approach to identifying potential variants in 

unknown subsets

There are many situations where sub-populations are not known in a sample set, 

such as if the set is extremely heterogeneous or if clustering fails to identify 
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robust subgroups due to noisy, uninformative features. In these cases, a 

methodology to identify differential alternative splicing without having prior 

knowledge of these classes becomes necessary. We present such a method 

which bears similarity to ALEXA-Seq [134], however the method can be used 

with any number of samples, rather than comparing two samples pairwise. As 

with our method to identify differential splicing between known subgroups, the 

data are first aligned to the reference genome using TopHat [49], and alignments 

within known RefSeq annotations [70] are counted using coverageBed [78]. Raw 

exon counts are then normalized to an effective sequence depth as suggested by 

Robinson and Oshlack [80]. These counts are then log2 re-expressed.

Both ALEXA-Seq [134] and our proposed method proceed by normalizing the 

exon count data by the total expression of the transcript in that sample. This is 

done to make exon expression directly comparable between two samples. We 

extend this over all samples, and perform a screen for highly variant exons over 

the entire dataset rather than comparing samples pairwise. The maximum exonic 

variance for a transcript defines the putative splicing score for that transcript in a 

subset of tumor samples. To reduce false positives, samples which have very low 

expression of the transcript (less than 1.0, average) are not considered when 

calculating this score. Transcripts with high putative splicing scores are manually 

annotated based on available splicing data provided by TopHat and compared to 
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other assemblies of that locus in the literature.

3.12 A method for discovering functional non-coding RNA 

differentially expressed between breast cancer subsets

It is estimated that more than half of the transcriptome consists of non-coding 

RNA (ncRNA) [94]. However, these ncRNA are not well annotated [60]. 

Furthermore, many of the non-coding transcripts discovered to date have very 

little conservation across species [64]. As a result, their functional relevance has 

been called into question. To ensure that ncRNA we discover are functional, we 

impose a strict measurement of differential expression between known clinical 

breast cancer tumor sub-populations, ensuring that the resulting transcripts are 

directly or indirectly the result of some systemic biological difference underlying 

these subtypes. Of these, roughly half also show sequence conservation over all 

mammals (Chapter 5). We have developed a novel method to identify these 

differentially expressed ncRNA which we now describe.

We define intergenic regions of the genome as those regions spanning genomic 

DNA which were not occupied by either exons or introns contained in the latest 

RefSeq [70] annotation of the human genome. These regions are split into 300bp 
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“windows” using the complement utility found in the BEDTools software package 

[78]. We then align RNA sequencing fragments from each sample to these 

intergenic regions, and the number of aligned fragments is counted for each 

window using the coverageBed utility [78]. These raw counts are normalized by 

the effective sequence depth [80] (based on alignments to the complete 

annotation, as calculated in Chapter 3.10) and log2 re-expressed.

To identify windows which are differentially expressed between subsets, we 

employ a signal-to-noise ratio (SNR) test [69], which has been shown to be a 

conservative measurement for selecting differentially expressed features 

between sample populations in microarray datasets [9]. Windows which 

represent an SNR ratio of expression between the two sets of at least 0.8 are 

considered to be putative locations for novel transcripts. To facilitate assembly of 

all non-coding transcripts that could be associated with differentially expressed 

windows, all fragments which align to the entire intergenic region which contains 

the window or windows are assembled separately using three complementary 

methods. First, the Cufflinks reference-based assembler [37] is used to assemble 

the combined pool of RNA-Seq fragments from all samples. Next, the Trinity de 

novo sequence assembler [76] is used to form complete sequence contigs from 

fragments in the same pool, and these contigs are mapped to the reference 

genome using both Bowtie [32] and TopHat [49]. Manual annotation is then 
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performed to disambiguate transcripts from these regions using information from 

raw fragment alignment, the Cufflinks assembly, and the Trinity assembly. Where 

possible, novel transcripts are compared to existing manual annotations of 

expressed sequence tags [55, 71] in order to provide evidence for exon junctions 

the data does not perfectly support, e.g., if fragments align to two separate novel 

exonic regions and database annotations provides a splice junction between 

them. However, novel features supported by sequence fragment information 

(exon junctions, exons) are considered canonical for assembly purposes and 

subsequent validation.

Recently, Jia et al [60] proposed a pipeline to discern non-coding RNA from 

translated sequences. We utilize this method to validate novel transcripts as non-

coding RNA, which begins by enumerating all possible open reading frames 

(ORFs) in each isoform of the gene assembly. These potential amino acid 

sequences―all sequences in each reading frame which end in a stop 

codon―are used as input in the BLAST [96] alignment tool to identify protein 

sequence conservation over a wide range of species. Sequences which lack 

significant homology to any known conserved protein domains are considered 

non-coding. We also compared these results to those obtained from the Coding 

Potential Calculator [97], which is a support vector machine (SVM) capable of 

identifying non-coding sequences based on sequence features such as the 
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number of open reading frames, the length of each frame, the presence of a start 

codon, and the presence of conserved protein domains. Each transcript 

sequence is then assigned a score based on this classification.

The completed assembly of transcript isoforms at each non-coding RNA gene 

can then be tested for differential expression between breast cancer tumor 

subtypes using the DESeq software package [65]. DESeq attempts to model 

gene-level count data as a negative binomial distribution, and tests for differential 

expression using overdispersed estimates of variance fitted to this distribution. To 

obtain count data for a completed genetic locus assembly, the program HTSeq-

count [77] is used. HTSeq-count assigns fragments to genes if their spliced 

alignments fall unambiguously within the gene annotation. These counts are then 

normalized by the sequence depth in each sample, which is adjusted using a 

methodology similar to [80]. After testing, the p-values are corrected for multiple 

testing using the false discovery rate (p < 0.10 after correction) [107]. The results 

of this analysis are given in Chapter 5.
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Chapter 4: Identification and Validation of Splice 

Variants in Breast Cancer Subsets

4.1 Classification of breast cancer subtypes using RNA-Seq

Breast cancer is a heterogeneous disease, and can be classified into a number 

of clinical subtypes with variable patient outcomes and response to therapy. The 

primary clinical subtypes are ER+/HER2-, ER-/HER2-, and HER2+ breast cancer 

tumors [9, 14]. In order to divide the 29 tumor samples from sample set A and 24 

tumor samples from sample set B into these subclasses, a multi-step method 

adhering to previous classification measures on DNA microarray analyses was 

performed [9]. First, HER2+ tumors were separated from other tumor samples 

based on overexpression of the ERBB2, GRB7, and PPARBP genes in the HER2 

amplicon (Figure 1B), which are part of a genomic locus with elevated copy 

number in HER2+ breast cancers. Expression of these genes was determined by 

counting sequence fragments which aligned to isoforms of genes at these loci, 

and then normalizing count data by the effective sequence depth and length of 

each feature, as described in Chapter 3. Consensus ensemble clustering [25] 

(see Appendix: ConsensusCluster) of these features was used to separate 
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samples into “high HER2 amplicon” and a “low HER2 amplicon” groups, which 

correspond to HER2+ and a combination of ER-/HER2- and ER+/HER2- 

samples, respectively. Sample set A contained 6 HER2+ tumors, whereas just 2 

HER2+ samples were found in sample set B, leaving 23 HER2- samples and 22 

HER2- samples in set A and set B, respectively. The rationale for first stratifying 

samples based on HER2 status and then applying clustering analysis is 

discussed in detail in [9]. Briefly, the logic is that HER2 status is a driver of 

disease that supersedes ER status (HER2+ tumors are always more aggressive). 

Hence, to identify clinically relevant features, one should worry about ER status 

only after stratifying by HER2 status. The HER2- samples were clustered using 

all informative RefSeq [70] exons as features, determined using PCA selection 

[25, 108]. This separated sample set A into 15 ER+ samples and 7 ER- samples, 

and also separated sample set B into 9 ER+ and 10 ER- samples (Figure 1).

Validation of this classification from RNA sequencing was accomplished by 

comparing with immunohistochemistry (IHC) and fluorescent in situ hybridization 

(FISH) status for the samples, which is a routine classification used by 

pathologists and was available for all the samples. IHC is a tissue staining 

process which uses a protein antibody to target the estrogen (ERa) and HER2 

receptors on breast cancer cells in separate experiments to identify ER+ and 

HER2+ samples, respectively. Secondary antibodies which bind to receptor-
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targeted antibodies are tagged with the enzyme peroxidase which catalyzes the 

production of a colored precipitate when the appropriate substrate is added. 

When viewed under microscopy, the level of precipitate production indicates 

relative expression of the target receptor. Fluorescent in situ hybridization is a 

method in which a polynucleotide probe is bound to a fluorescent dye, which is 

visible under a fluorescent microscope. Like IHC, FISH is used both to indicate 

the presence of a specific cellular component as well as the physical location 

within the cell. FISH is used in breast cancer classification to indicate the 

presence of copy number changes, specifically the amplification of the HER2 

genomic locus. Classification based on this protocol is necessarily subjective, 

since the decision is made partly by a trained (but not infallible) pathologist. 

Hence, one does not expect that RNA seq classification would agree 100% with 

IHC classification.  We found that annotation using FISH and IHC was in 88% 

agreement with ER status and 80% agreement with HER2 status over the 53 

samples when compared to classification based on RNA seq data. Where 

annotation disagreed between clustering and IHC/FISH, a separate clustering 

iteration was performed using all samples which were positively identified and 

each ambiguous sample independently. If the ambiguous sample did not 

associate with either ER+/HER2- or ER-/HER2- groups robustly, i.e., associated 

with either cluster with equal probability over multiple bootstraps of the data, it  

was removed from further analysis. In total, 1 sample was removed from sample 
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set A and 3 samples were removed from sample set B. 

Figure 1. A-C) The exonic overexpression of ESR1 and HER2 

(ERBB2) mRNA can be used to distinguish ER+ (A, C) and HER2+ 

(B) tumors, respectively. In figures A-C, the x-axis represents the 

canonical transcript exons in order, while the y-axis represents the 

normalized, log2 re-expressed expression of each feature averaged 

over all samples from sample set A, colored according to the 

assigned breast cancer tumor subtype. The error bars indicate 

standard error of sample expression. HER2+ samples are also 

separated by ER status for clarity, however, this classification was 

Figure 1
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not used for analysis. D) HER2- samples from set A (left) and set B 

(right) separate into ER+ and ER- subtypes when de novo 

consensus ensemble clustering is applied using all RefSeq exons 

as features. Figure 1D depicts a consensus matrix, which is a 

symmetric sample by sample representation of cluster association. 

Lighter squares represent a higher likelihood of row and column 

samples being clustered together over 1000 k-means iterations 

applied to bootstrapped sample and feature data. The final matrix is 

used as a distance matrix for single-link hierarchical clustering, 

which is used to produce the cluster tree. The cluster tree is colored 

according to final subtype association. Figure 1D was produced 

using the ConsensusCluster software utility [25].

4.2 Differentially expressed alternative transcripts in ER+/HER2- 

and ER-/HER2- breast cancers

We focused on the identification of splice variants differentially enriched in tumor 

samples based on their ER status, restricting ourselves only to the HER2- 

sample set. We applied a novel method based on the difference of normalized 

exon measurement ratios between ER+ and ER- subclasses, which is further 

normalized by the sample variance, as discussed in Chapter 3.10. This difference 

is used as a test statistic, the significance of which is measured using a 

permutation test. Application of this method to the combined HER2- sample pool 
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from both datasets (24 ER+, 17 ER-), resulted in 301 putative differentially 

expressed alternative transcripts that distinguished ER+ samples from ER- 

samples (after false discovery rate or FDR correction). These transcripts were 

then manually curated and isoform-level quantification was performed using the 

Cufflinks software package [37]. The top 7 biologically-motivated genes which we 

identified are presented in Table 1.

Table 1. The top biologically-motivated genes which contain 

differentially expressed transcripts between ER+/HER2- and 

ER-/HER2- breast cancer tumor samples. In column 2, the type of 

alternative splicing, identified during manual curation, is given. Log2 

fold changes of the variant transcripts in set A and set B were 

estimated independently using Cufflinks [37]. The adjusted p-value 

for each transcript using a permutation test is also given. P-values 

corresponding to FDR less than 0.10 were considered significant.

Table 1
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One of the most promising transcripts identified in our study is an alternative start 

variant of Tumor Protein D52 (TPD52), which is a putative oncogene located on 

8q21. This chromosomal region is often increased in copy number in breast 

tumors, and may in fact be the “driving” gene selected for in these chromosome 

changes [109]. Copy number variability in breast cancer has been previously 

implicated in aggressive phenotypes such as drug resistance [110]. We find that 

a specific alternative start isoform of TPD52 is upregulated in ER+ cancers, 

whereas a separate “canonical” transcript is expressed equally in both subtypes 

(Figure 2A-B). This raises the possibility of different phenotypic “goals” for 

increased copy number in this region depending on tumor subtype. Other 

researchers have shown that this variant is expressed in the ER+ breast cancer 

cell line MCF7 in response to estradiol [111], which implies that this product is the 

result of alternative promoter usage by the estrogen receptor. This alternative 

start variant has been previously described as an androgen-regulated prostate 

cancer gene [112], which protects cancer cells from apoptosis when 

overexpressed [113]. We validated the existence of this transcript in a subset of 

tissue samples from sample set A and a panel of cell lines (Figure 2). We also 

validated the significant association of ER status to its expression on a subset of 

clinical tissue samples from sample set B using quantitative RT-PCR (p-value 

0.022, Figure 10), and measured the expression of this transcript on a panel of 
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breast cancer cell lines (Figure 11).

Figure 2. Validation of TPD52 isoforms via gel PCR. We designed 

primers to exons 1-3 (P1) of the variant to assay its presence in 

tissues (top) and cell lines (bottom). Both GAPDH and the presence 

of exons 2-4 were used as a control. The exon chart shows the 

normalized expression in both ER- (red) and ER+ (blue) samples 

over all exons.

Figure 2
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Another transcript significantly differentially expressed in ER+/HER2- samples 

was a variant of the acyl-CoA oxidase 2 gene (ACOX2), which is involved in the 

metabolism of long, branched-chain fatty acids and the synthesis of bile acid 

precursor molecules in peroxisomes [114]. Peroxisomes, primarily responsible for 

metabolizing long chain fatty acids for transport into the mitochondria and 

eventual breakdown, have been previously shown to have reduced activity in 

breast tumor cells [115], though the mechanism for this phenotype is unknown. 

Our methods showed an enrichment of exons 10-15 in RNA-Seq data from ER+ 

breast cancers (Figure 3). By manually annotating this region, we found 

enhanced expression of intronic fragments in intron 9 which formed a putative 

contig with exon 10, suggesting that a novel alternative start isoform of the 

ACOX2 gene beginning in intron 9 and extending through exon 15 (validated on 

gel PCR in Figure 3) was present and significantly overexpressed in these 

samples (Figure 5C-D). Previously, Hodo et al [116] demonstrated the existence 

of an ACOX2 transcript starting in intron 9 which was significantly upregulated in 

hepatocellular carcinomas. Intriguingly, estrogen receptor overexpression has 

been shown to be associated with some high-grade hepatocellular carcinomas 

[117], and Joseph et al [118] reported the existence of an estrogen receptor 

binding site in the presence of estradiol near exon 10 in the ER+ T47D breast 

cancer tumor-derived cell line, suggesting the estrogen receptor itself plays a 

part in regulating the intronic-start ACOX2 transcript. The predicted protein 
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sequence of this variant lacks a fatty-acid binding domain yet retains the domain 

responsible for bile acid precursor synthesis [119], which may negatively impact 

the metabolism of branched-chain fatty acids in breast tumor cells and contribute 

to reduced peroxisomal activity. We also found that the full-length ACOX2 

product was enriched in “normal” breast tissue from reduction mammoplasty with 

respect to ER+ tumor cells, and that these tissues also had on average a 3.4-fold 

reduction of intronic variant expression (Figure 6). We validated the association 

of the intronic variant of ACOX2 with ER+ samples using quantitative RT-PCR (p-

value 0.023, Figure 10), and also quantified the abundance both the intronic and 

full length variants in a panel of breast cancer cell lines (Figure 11).
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Figure 3. Validation of ACOX2 intronic variant on gel PCR. We 

assayed the intronic start i9 to exon 12 (P2) on a panel of tissues 

(top) and cell lines (bottom). GAPDH was used as a control (CON). 

The full product, represented by exons 9-12 (P1), was absent in all 

samples. The exon chart shows the normalized expression of each 

exon in ACOX2 in both ER- (red) and ER+ (red) samples.

Similarly to ACOX2, our analysis also found that exons 9-12 of the gene IQCG 

are overexpressed in ER- breast cancer tissue samples (Figure 4). Based on 

Figure 3
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amino acid sequence homology, IQCG is a putative calmodulin binding protein, 

though the true function is unknown. Manual annotation of IQCG in ER- breast 

cancer samples indicated high expression of intron 8 which formed a contig with 

exon 9, suggesting a novel potential alternative start intronic start, which was 

confirmed via gel PCR (Figure 4). Using Cufflinks' isoform-level quantitation [37], 

we found the full-length product to be weakly expressed in most tumor tissue 

samples, while the variant transcript was only heavily expressed in ER- samples 

(Figure 5F). Previously, Gorello et al [120] reported a fusion of exons 9-12 of 

IQCG with nuclear pore protein NUP98, which resulted in tumorigenesis in acute 

T-lymphoid/myeloid leukemia. This suggests that dysregulation of this region of 

IQCG may contribute to tumorigenesis in ER- breast cancer tumors. The 

predicted coding sequence of the intronic variant of IQCG retains the IQ coiled-

coiled domain which mediates interaction with calmodulin in a Ca++-independent 

manner in homologous proteins, which may contribute to enhanced calmodulin 

signaling. A similar protein, EWS (Ewing's Sarcoma), also contains an IQ domain 

critical for oncogenesis [121].
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Figure 4. Validation of IQCG intronic variant on gel PCR. We 

assayed the intronic start i8 to exon 10 (P2) on a panel of tissues 

(top) and cell lines (bottom). GAPDH was used as a control (CON). 

The full product, represented by exons 8-10 (P1), was absent or 

nearly absent in all samples. The exon chart shows the normalized 

expression of each exon in ACOX2 in both ER- (red) and ER+ (red) 

samples.

Figure 4
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Figure 5. TPD52, ACOX2, and IQCG are among the top hits for 

genes with differential alternative expression between ER+/HER2- 

(blue) and ER-/HER2- (red) breast cancer tissues. Figures 5A, C, 

and E show the normalized exonic expression of the labeled gene 

transcripts along the y-axis, while the x-axis represents the exons 

for each transcript, in order. Here TPD52 is depicted with both 

alternative starting exons to show the relative expression of the 

Figure 5
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“canonical” transcript (1A and exons 2-6) and the variant (1B and 

exons 2-6) in both tumor subtypes. Figures 5B, D, and F show the 

expression of the variant transcript as measured by Cufflinks' 

isoform-level quantification [37].

Figure 6. The intronic ACOX2 variant (left) is overexpressed in 

ER+/HER2- samples from set B, whereas normal breast tissues 

from reduction mammoplasty express this variant at an average 3.4 

fold smaller level. The full-length ACOX2 product (right) is clearly 

expressed in all normal tissue samples, and relatively absent in 

tumors. Relative isoform-level quantification was measured using 

Cufflinks [37].

Two more alternative start variants were identified, both by starting at a canonical 

exon downstream from the original promoter. The locus KRT18, an epithelial 

filament protein, has two known variants in RefSeq, both of which have an 

identical coding sequence, which implies their function is also identical. One 

variant (RefSeq ID NM_199187) has an additional non-coding starting exon, 

Figure 6
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which we find absent in ER+/HER2- tissue samples (Figure 7). This UTR likely 

functions as a regulatory mechanism, which may alter the abundance of the 

KRT18 protein in ER-/HER2- samples due to mRNA destabilization. The other 

alternative start variant, NET1, has been shown by other investigators to have 

two variants in the ER+ MCF7 breast cancer cell line, which they called a “long 

form” and a “short form” [111]. Intriguingly, Dutertre et al were able to show that, 

in MCF7 cells, the NET1 long form was increased in response to estradiol, and 

that at the same time short form expression was silenced, forming a “switch” 

mechanism. However, our results show significant upregulation of the NET1 long 

form in estrogen negative tumors (Figure 7), in apparent direct contradiction. 

Further studies are warranted, though it is possible that MCF7 represents a 

different cell of origin than other ER+ tumors, or that changes in the MCF7 cell 

line have caused estrogen receptor-mediated transcription to behave differently 

than many other ER+ tissue samples, as we show is the case with ACOX2 

(Figure 11).



84

Figure 7. KRT81 and NET1 are examples of alternative starts 

differentially expressed in ER- and ER+ tumor tissue samples. 

Each chart shows the normalized exonic expression of the labeled 

gene transcripts along the y-axis, while the x-axis represents the 

exons for each transcript, in order. Below each x-axis is a scale 

representation of the full-length and variant transcripts, where 

Figure 7
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vertical lines denote exons and horizontal lines represent introns.

Finally, two transcripts were identified as having been the result of cassette exon 

skipping. At the MYO6 locus, a shorter transcript with exons 29 and 30 missing 

was found to be expressed in ER-/HER2- tumor samples (Figure 8). MYO6 has 

previously been associated with the tumor suppressor gene p53 [122], where 

researchers found the absence of MYO6 prevented DNA damage-induced 

apoptosis in the breast cancer cell line MFC7. As this variant has not been 

previously reported, though Lapuk et al [46] showed that MYO6 was differentially 

spliced in an ER-dependent manner on an exon microarray, Cho et al [122] did 

not test whether p53 interaction was modified in the presence of the shorter 

variant. The EPB41L1 locus encodes a ubiquitously-expressed cytoskeletal 

protein that can result from a prodigious number of combinatorial permutations of 

alternative starting exons and exon-skipping events [38]. It has also been shown 

to be involved in cell membrane stability, as well as to mediate cell-cell 

interactions. We report a variant skipping exon 13 in ER+ samples (Figure 8), 

which has been previously reported by Parra et al [38] as a variant expressed in 

all tissues except brain, which retained the exon as ER- samples did in our study, 

over a wide range of tissues tested. This lends credence to the idea that ER+ 

and ER- samples may have different cells of origin.



86

Figure 8. KRT81 and NET1 are examples of alternative starts 

differentially expressed in ER- and ER+ tumor tissue samples. 

Each chart shows the normalized exonic expression of the labeled 

gene transcripts along the y-axis, while the x-axis represents the 

exons for each transcript, in order. Below each x-axis is a scale 

representation of the full-length and variant transcripts, where 

Figure 8
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vertical lines denote exons and horizontal lines represent introns.

4.3 Differentially expressed alternative transcripts in novel 

subsets of breast cancer independent of ER or HER2 

expression

Many predicted subtypes of breast cancer exist, based mainly on clinical 

annotations and patterns of gene expression from DNA microarrays [9, 14, 19-

22]. To date, no large-scale study of breast tumor classification has been made to 

discover novel subsets of breast cancers denoted by transcriptome variability. 

With that goal in mind, we developed a method inspired by ALEXA-Seq [134] 

which performs a screen for high exon variability in known RefSeq transcripts 

[70] over all samples following normalization (see Chapter 3.11). Once transcripts 

with variant exons are identified, a manual annotation process which combines 

assembly information from Cufflinks [37] and raw sequence fragment alignment 

information is used to elucidate the transcript changes responsible for the 

observed phenotype. Where available, we also perform a literature search to 

validate our assembly information against previous research. We chose a 

conservative threshold of exon variance (3.0) which identified 187 transcripts 

putatively spliced in individual breast tumor samples. The top 7 transcripts by 
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total variance are presented in Table 2, below.

Table 2. The top genes identified in a screen for highly variant 

exons over all samples, normalized by transcript expression. The 

type of transcript variant was identified during manual annotation, 

and is listed in column 2. Columns 3-5 indicate the overall 

frequency each variant was found to be overexpressed (total 

fraction of all transcripts at that locus > 75%) in each sample clinical 

subtype. Among the genes identified using this method and the 

previous method for identifying differential alternative splicing 

between ER+ and ER- samples, only TPD52 was found to be 

strongly indicated by both methods.

One example of a highly-scoring variant which is not directly associated with a 

known clinical subtype is GNAS. In the most current RefSeq human annotation, 

Table 2
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GNAS has 8 separate isoforms which are only variant in their first exons. We 

found that one of these variants, a transcript which encodes the protein NESP55, 

is heavily expressed in some breast cancer tumors and entirely absent in others 

(Figure 9B). NESP55 is a 55kd protein encoded entirely by a sequence present 

in its first exon, whereas the common downstream exons form the 3' UTR of this 

transcript [75]. By contrast, another alternative starting exon at this locus forms 

an in-frame transcript with these same downstream exons to encode G-protein 

alpha subunit 2 (GSa), which is a widely-expressed component of the cAMP 

response pathway and found in all breast tumor tissue samples surveyed (Figure 

9A). GNAS is a complex locus which undergoes both maternal and paternal 

imprinting [75], and the NESP55 transcript is itself expressed exclusively from the 

maternal allele. The NESP55 transcript product encodes a neuroendocrine 

secretory protein, which raises the possibility that breast tumors which 

overexpress NESP55 may be derived from neuroendocrine cells of origin. We 

have validated the RNA Sequencing-derived quantification of the variant 

transcript using quantitative RT-PCR (Figure 10), with excellent correlation 

(r=0.99).

Another variant found in subsets of all clinical subtypes of breast cancer tumors 

surveyed is found at the KRT81 locus. We observed highly variant expression of 

exons 5-9 in these tumors (Figure 9C-D), which suggested the presence of an 
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alternative transcript formed from these exons alone. KRT81 is a hair keratin 

constitutively expressed in human hair shafts, and also found in nails. Other 

investigators have previously reported that a truncated form of KRT81 was 

present in some human breast tumor carcinomas [123], and Boulay et al [124] 

showed that this truncated protein was the result of a cryptic alternative promoter 

present in intron 4 of this gene. Using a GFP-reporter bound to this variant and 

transfected into HeLa cells, Boulay et al also found that truncated KRT81 was 

integrated into the cytoskeletal keratin network, and that expression of this 

protein may alter the adhesive properties of these tumor cells.

Figures 9E and 9F describe a novel variant of the Lactoferrin (LTF) gene which 

lacks the canonical first exon, which we find expressed in some ER+ and ER- 

breast cancers. Lactoferrin is a secreted, iron-binding protein with antiseptic 

properties which is heavily expressed in breast tissues during pregnancy. 

However, an alternative first exon has been previously reported for LTF [50-52] 

which lacks a coding sequence, causing translation to begin at an alternative 

downstream ATG and resulting in a separate protein, referred to as dLTF. The 

dLTF variant lacks 44 amino acids at the 5' end, which form a signal peptide 

sequence required for secretion. Rather than being secreted following 

translation, dLTF has been shown to localize to the nucleus, where it functions as 

a transcription factor involved in cell cycle control [51-53]. However, our analysis 
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did not indicate expression of the alternative non-coding first exon which is 

unique to dLTF in breast tumor samples (consistent with prior reports of its 

absence in breast cancer [51, 52]), rather, we observed the independent absence 

of canonical LTF exon 1 in a number of samples. This would result in an identical 

coding sequence to the previously reported dLTF, which is associated with good 

prognosis when highly expressed [53]. We observed both LTF and dLTF 

transcripts in normal breast tissue samples, indicating that the absence of dLTF 

exon 1 is not caused by errors in sequencing.
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Figure 9. Variant isoforms of GNAS, KRT81, and LTF are heavily 

expressed in a subset of breast tumor samples and absent in 

others, regardless of clinical annotation. Figures 9A, C, and E 

depict the labeled gene's exonic expression in subsets which 

overexpress the variant versus those that do not. The y-axis 

represents mean normalized exon expression, while the x-axis 

represents the canonical transcript exons, in order. In each case, 

Figure 9
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the variant class is indicated by a dashed line. Figures 9B, D, and F 

show the relative expression of variant transcripts in each sample, 

labeled by clinical subtype. Isoform-level quantification for these 

images was estimated using Cufflinks [37].

4.4 Breast cancer cell lines express alternative splicing variants

While tumor-derived cell lines are not an ideal model of breast cancer in vivo 

[102, 103], they possess useful properties which encourage their use in research. 

Primarily, tumor cell lines are a renewable source of cancer cells which are 

completely homogeneous and can be manipulated freely, while being faster and 

easier to grow than animal models. Cell lines can be forced to overexpress 

genes of interest by transfecting them with plasmids containing a copy of the 

DNA transcript. This can be used to study the effects of alternative transcript 

expression on cell morphology, proliferative ability, and aggressiveness. Similarly, 

target transcripts can be silenced in cell lines using small interfering RNAs with 

complementary sequences to unique features on these transcripts, which 

promotes degradation via the RNA interference cellular pathway. The 

effectiveness of these studies is contingent on the similarity of basal 

transcriptomic and epigenetic factors to the tumor in question, and also on the 

cell's prior ability to produce the transcript. Therefore, it is beneficial to discover 
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whether cell lines express alternative transcript variants described in tumor tissue 

samples, so that the best model can be chosen for continued study.

Figure 10
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Figure 10.  The expression of GNAS (NESP55), TPD52, and 

ACOX2 variants is consistent with RNA-Seq results as measured 

by quantitative RT-PCR. Each chart shows the expression of the 

labeled variant as quantified using Cufflinks' isoform-level 

measurement versus quantitative RT-PCR on a subset of tissue 

samples from set B. The correlation coefficients between the two 

measurements are 0.99, 0.85, and 0.85, for NESP55, TPD52-1B, 

and ACOX2-i9, respectively. As measured by qRT-PCR, the p-value 

of association between variants of TPD52 and ACOX2 and the ER+ 

tumor tissues is 0.022 and 0.023, respectively, while the p-value for 

NESP55 is 0.208, which is consistent with the results of our 

method.
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Figure 11. Variants of TPD52 and ACOX2 are expressed in cell 

Figure 11
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lines.  Each chart depicts the qRT-PCR expression of the labeled 

TPD52 and ACOX2 transcripts over a number of breast cancer 

tumor-derived cell lines. TPD52 shows consistent association of 

ER+ cell lines with subtype, though the ACOX2 intronic variant is 

only found in the ER+ T47D cell line. The full-length transcript of 

ACOX2 was absent in all cell lines except the liver-derived control, 

HepG2.

We assessed a panel of 5 breast cancer cell lines using quantitative RT-PCR to 

determine whether the TPD52-1B (PrLZ) variant of TPD52 and both the full-

length and intronic products of ACOX2 were present, and whether the associated 

ER/HER2 status of these cell lines affected expression (Figure 11). For the two 

ACOX2 transcripts, an additional transformed “normal” human liver cell line, 

HepG2, was also used as a control to provide a reference for full-length transcript 

expression. In general, the variant TPD52 transcript was heavily expressed in 

ER+ cell lines (T47D, MCF7) and the ER+/HER2+ cell line BT474, and 

expressed to a lesser degree in ER- cell lines (MDA-MB-468, HCC70), or entirely 

absent (MDA-MB-231). The ACOX2 intronic variant was only heavily expressed 

in one ER+ cell line, T47D, relative to the control line HepG2. This implies that 

MCF7 may have a different cell of origin to other ER+ tumors, or that it 

represents a subdivision of ER+ tumors which does not also express ACOX2-i9. 

This is consistent with a previous study that places an estrogen receptor binding 

site in the presence of estradiol near the start of the intronic transcript in T47D 
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cells [118], which may enhance expression in this cell line. The same report did 

not identify estrogen receptor binding in the same location in MCF7 cells, which 

may explain its diminished intronic transcript expression.

4.5 Normal breast tissues from reduction mammoplasty 

procedures express alternative splicing variants

Normal breast tissue is composed of a number of heterogeneous cell 

populations, including containing lobules, ductal tissue, connective tissue, and 

fatty tissue [48]. This presents a challenge to researchers attempting to locate 

cellular changes that promote tumorigenesis. We sequenced 6 additional breast 

tissue samples from Radium Hosptial in Norway which were obtained from 

reduction mammoplasty procedures using the same 100bp single-end read 

protocol used for sample set B. We found evidence of most tested variants, 

including TPD52, NESP55, IQCG, LTF, and KRT81, with no discernible pattern of 

expression that would indicate the presence of a specific “ER+” or “ER-” 

subpopulation of normal cells. This suggests many of these changes can also be 

the result of shifting regulatory programs that occur naturally in breast tissue, 

which become dysregulated in tumor cells. We found that, consistent with 

previous studies [51, 52], normal cells did exhibit the first non-coding exon of 
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dLTF, unlike any tumor samples surveyed. Also, normal samples overexpressed 

the full-length transcript of ACOX2 (Figure 3), whereas this transcript was heavily 

downregulated in tumor samples. Other investigators have shown that later 

exons of the ACOX2 transcript were differentially expressed between normal and 

tumor breast tissues on custom exon arrays [45], consistent with our results.
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Chapter 5: Identification and Validation of Long 

Intergenic Non-Coding RNA in Breast Cancer Subsets

5.1 Identifying long non-coding RNA in intergenic regions

One of the primary benefits of RNA-Seq over traditional DNA microarrays is the 

ability to interrogate expression in unannotated areas of the transcriptome. At the 

present time, methods for identifying novel genes in genomic DNA sequence 

generally depend on features such as an open reading frame and conserved 

functional protein elements [60]. However, non-coding RNA structures are more 

difficult to detect, and most of our knowledge comes from expressed sequence 

tags (ESTs), which are large, sequenced contigs from transcriptome cDNA 

libraries. Carninci et al [94] showed that over half of these sequences appear to 

originate from non-coding sources, though very few are annotated. Moreover, 

many of these non-coding sources are poorly conserved over multiple species 

[63], indicating that these transcripts may not be functional, but instead, may be 

the result of “random” transcription. To avoid this problem, we took the approach 

of annotating non-coding transcripts, identified using RNA sequencing, which 

were differentially expressed between breast cancer tumor subtypes. We reason 
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that such transcription is more likely to be the result of selective dysregulation in 

tumors as they progress from normal tissue to distinct subtypes of disease. 

Hence, such non-coding RNA are more likely to be either functional themselves 

or the result of a functional change in some regulatory pathway (e.g., induction of 

a promoter suppressed in normal tissue), and therefore useful as a biomarker.  

Our results show that unlike the ncRNA identified previously [63] some of the 

non-coding RNA we identified are evolutionarily conserved, suggesting that they 

may indeed be functional.

In order to systematically assemble differentially expressed non-coding 

transcripts, we first identified all regions of transcriptome expression where the 

number of sequence fragments in a window passed a signal-to-noise ratio test 

[69] between two breast cancer subtypes (see Chapter 3.12 for detailed 

methodology) in intergenic regions.  Briefly, we compared the mean and variance 

of fragment expression in intergenic windows of 300 base pairs over 24 

ER+/HER2- and 17 ER-/HER2- samples from set A and set B. If the signal-to-

noise ratio exceeded 0.8, the region was considered a putative locus for a non-

coding RNA. These transcripts were assembled using reference-based 

assembler Cufflinks [37], the de novo transcript assembler Trinity [76], and 

manual annotation. This procedure identified 59 intergenic regions representing a 

total of 132 300 bp which were differentially expressed between ER+/HER2- and 
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ER-/HER2- breast cancers. Of these, 19 transcripts were spurious fragment 

alignment caused by sequence homology to other annotated genes 

(pseudogenes), 6 were unannotated exons associated with known transcripts, 24 

were unannotated longer UTRs associated with known transcripts, and 10 

contained putative RNA transcripts. One region was removed because of low 

fragment coverage, which produced an inconsistent annotation. Of the remaining 

9 locations, one was found to contain both sense and anti-sense transcripts, 

which we considered to be separate genes for the purposes of annotation. This 

resulted in 4 potential non-coding genes associated with ER-/HER2- tumors, and 

6 potential non-coding genes associated with ER+/HER2- tumors, containing a 

total of 30 transcript isoforms. The results of this survey are given in Table 3, 

below.

Table 3. Non-coding RNA found to be differentially expressed 

Table 3
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between ER+/HER2- and ER-/HER2- breast tumor tissue samples. 

Conservation was determined using the program phastCons [125] 

on a multiple alignment of 46 vertebrate species to the most current 

human annotation, which uses a phylo-HMM to estimate regional 

selection given a neutral model of evolution. The FDR-adjusted p-

value was given by DESeq [65]. We considered p-values less than 

0.05 to be significant, and these are indicated in red. The non-

coding RNA found on chromosome 15 was found to have an anti-

sense transcript, denoted by an asterisk, and this gene was 

analyzed separately.

5.2 Putative intergenic genes do not code for protein

To assert the intergenic transcripts identified were untranslated, we utilized two 

separate methods. The first, used by Jia et al [60] to identify non-coding ESTs in 

the human genome, can be described as a ORF predictor/BLASTP pipeline to 

decide the coding status of transcripts. In this method, all six possible protein 

coding sequences were enumerated for each transcript sequence from three 

possible reading frames in two directions (sense and anti-sense with respect to 

genomic DNA). These amino acid sequences were aligned to conserved 

functional domain and full protein sequences from known species using the 

protein BLAST tool [96]. The mean maximum ORF length over all 30 transcripts 

was 84.4 amino acids, with a maximum of 202 (both transcripts from chr5). None 
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of the transcript ORFs contained significant homology to known functional 

domains, and only one sequence contained significant homology to a known 

gene. Approximately 19% of this transcript, part the conserved estrogen positive 

associated RNA found on chromosome 10 (Figure 12), contained a small region 

of human aminophospholipid transporter, class I, member 2 (ATP8A2) with 89% 

sequence identity. This suggests this ncRNA originated as part of a recent gene 

duplication event and subsequently evolved separate functionality. Based on the 

lack of homology to known functional protein sequence domains, all transcripts 

were classified as non-coding using this method.

The second method, based on work by Kong et al [97], utilizes a support vector 

machine (SVM) trained on features from coding and non-coding sequences to 

make a classification decision. This method, called the coding potential calculator 

(CPC), attempts to predict a likely open reading frame while taking into account 

possible sequencing errors. The length of the open reading frame, the 

“correctness” of the ORF (reduced by point mutations or small indels), and 

whether or not the ORF begins with a start codon form the “frame score,” three 

points of data used to train the SVM. The “hit score” is calculated from a BLAST 

search for homology to the predicted ORF, and takes into account the number of 

protein sequence hits, the quality (E score) [96], and the enrichment of his in the 

predicted ORF versus other available open reading frames. The CPC classified 
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all putative transcripts as non-coding except for the putative gene on chr5, which 

was classified as “weakly coding” (within SVM margin) due to having a long ORF 

(202 aa) and a present start codon. However, there were no significant BLAST 

hits which indicated homology to known proteins, which reduced its coding score. 

Given these results, we concluded 9 of the 10 potential genes contained non-

coding sequences, and that 1 gene remained ambiguous.

Figure 12. Gene-level expression of putative non-coding RNA on 

chromosome 10 and chromosome 22 are significantly associated 

with breast cancer tumor subtype. The y-axis represents 

normalized gene-level fragment counts, while the x-axis represents 

24 ER+/HER2- (blue) and 17 ER-/HER2- (red) breast tumor tissue 

samples. Putative non-coding genes sequences on both chr10 and 

chr22 were found to be conserved over multiple species.

Figure 12
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5.3 Transcripts associated with differentially expressed genomic 

windows are themselves differentially expressed

We used the DESeq software package [65] to examine whether count levels in 

our putative non-coding RNA gene assemblies were significantly different 

between breast tumor subtypes. DESeq models fragment count data as a 

negative binomial distribution to accurately estimate the individual variance of 

each gene in each sample, then performs a significance test based on the 

difference of means between samples in each subtype given the total biological 

and fragment count variances. These p-values are then FDR adjusted to give a 

final result. Using this method, we found that 8 of the 10 putative ncRNA were 

significantly differentially expressed (p < 0.05 after adjustment, Table 3), 

demonstrating that it is possible to identify differentially expressed transcripts 

from examining count data in windows as we have suggested (Figures 12 and 

13).
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Figure 13. Gene-level count data from 6 non-conserved gene 

sources are differentially expressed between ER+/HER2- and 

ER-/HER2- breast tumor samples. The expression level of each 

gene, given on the y-axis, was calculated by normalizing the 

number of fragments which aligned to any exonic region with the 

putative genes by the sequence depth as well as the total length of 

Figure 13
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the gene.

5.4 Non-coding RNA gene sequences on chromosomes 4, 8, 10, 

and 22 contain elements conserved over multiple species

Though many non-coding transcriptome elements have been discovered, many 

are not evolutionarily conserved, which casts doubt on their functional 

significance [63]. Transcript sequence conservation implies that selective 

pressures are at play to ensure the survival of specific sequence elements, 

implying that sequence confers an evolutionary advantage. Although lack of 

conservation does not necessarily mean the transcript is non-functional (e.g., the 

well-known X-chromosome silencing regulator, XIST, is poorly conserved [126]), 

additional study is warranted. We examined conservation in putative non-coding 

gene regions over 46 species using phastCons [125], using data made available 

from the UCSC genome browser. PhastCons uses a phylo-HMM algorithm to 

decide whether a genomic region of arbitrary size evolved less rapidly than would 

be expected assuming a neutral model of evolution, given a multiple alignment of 

whole species genomes and the estimated phylogenetic branch lengths between 

them. We found evidence of conserved elements in multiple genes, two of which 

(chr10 and chr22) were also differentially expressed between ER+/HER2- and 

ER-/HER2- breast tumor samples (Figure 14). Evidence of sequence 
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conservation was weak for non-coding genes on chromosomes 1, 5, 6, 11, and 

15, though significant differential expression with low variability indicates 

transcriptional programs actively dysregulated by these cancers are promoting 

expression in these regions either directly or indirectly, and that even if these 

transcripts prove non-functional they may be used as a biomarker for these 

disease populations.

Figure 14. Putative non-coding regions on chromosomes 10 and 

22 show regions of conservation over 46 diverse species genomes, 

as measured by phastCons [125]. Conservation (in red) is 

Figure 14
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measured as 1 – p, where p is the probability of conservation based 

on a neutral model of evolution. Regions corresponding to p < 0.05 

are shown in green. Below the conservation graph for each gene is 

a scale representation of multiple transcript assemblies at the given 

locus. Transcripts belonging to the non-coding locus on 

chromosome 10 are presented up to the first 30,000 bases for 

clarity.

5.5 Validation of putative non-coding RNA on chromosome 10

We chose to validate our discovery of novel non-coding RNA on chromosome 10 

using a gel PCR assay. This gene made an ideal candidate for validation due to 

heavy, consistent expression in ER+/HER2- tissues (Figure 12), which were also 

conserved (Figure 14), and therefore likely to be functional. With respect to the 

primary transcript (arbitrarily chosen), we designed primers to exons 1-2, 1-3, 

and 6-9, which are listed below in Table 4.

Table 2. Forward and reverse PCR primers for validation of putative 

Table 4
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non-coding RNA located on chromosome 10.

Primers were chosen to encompass multiple exons to prevent contamination 

from genomic DNA from being amplified in the PCR process, which would result 

in an inaccurate gel band. We ran two separate gel PCR experiments on a single 

ER+/HER2- tissue sample from set A, and used GAPDH as a control. We first 

verified transcript regions from exons 1-2 and 6-9 (Figure 15), which produced 

bands close to 310bp and 286 bp as expected, respectively. Figure 15 provides a 

scaled representation of the genome track containing 3 example transcript 

assemblies of the putative non-coding RNA located on chromosome 10 (of a total 

of 9 isoforms), and shows the forward and reverse primer locations for both 

regions and their gel products. The second validation experiment focused on 

exons 1-3 (Figure 16), which produced   a band close to 343 (exons 1-3, with an 

additional exon present in isoform 2) and 245 bp (exons 1-3, inclusive) as 

predicted by our assemblies. The existence of a longer product band was 

unexpected and indicates the presence of an additional splice variant at that 

locus, likely due to intron retention, which was observed at this locus in RNA-Seq 

data from tissue samples.
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Figure 15. Gel PCR validation of putative ncRNA transcript 

assemblies at the chr10 locus on ER+ tissue sample RNA. Both 

bands at exons 1-2 and 6-9 were close to their expected sizes of 

310 and 286 bp, respectively.

Figure 15
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Figure 16. Gel PCR validation of exons 1-3 reveals multiple 

splicing isoforms, one of which is predicted by our assemblies. An 

unexpected longer product is likely the result of intron retention.

Ongoing studies to ascertain the function aspects of putative non-coding 

sources, especially those with conserved elements (Figure 14), should continue 

by investigating whether ER+/HER2- or ER-/HER2- tumor-derived cell lines 

express the variants we have discovered. Short hairpin RNA (shRNA) with 

sequence complementarity to common exons in ncRNA gene transcripts can be 

used to silence expression, and tumor cells can be interrogated both for genome-

wide expression changes (by performing DNA microarray or RNA-Seq before 

and after knockdown) and changes in morphology, proliferative capability, and 

metastatic aggressiveness. Recent publications [61, 63, 64] have shown that 

Figure 16
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more than half of identified long, intergenic non-coding RNA transcripts are 

directly responsible for genome-wide transcriptional repression programs initiated 

by interaction with the polycomb repressive complex (PRC2). To identify whether 

identified non-coding RNA are functionally involved in this manner, ChIP-Seq 

experiments [61] can identify RNA bound to PRC2 and other repressive protein 

complexes. Another recent study [57] studied the effects of the non-coding RNA 

HOTAIR by examining histone modification maps before and after expression. 

This experiment can be adapted to the present work by transfecting plasmids 

which contain our ncRNA into cell lines which do not express them natively, and 

observing the effects of this transfection on chromatin state.
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Chapter 6: Discussion and Future Directions

6.1 Benefits of transcriptome research to our understanding of 

breast cancer biology

Therapeutic treatment of breast cancer is currently based on our limited 

understanding of the foundations of breast cancer biology. Namely, that “estrogen 

positive” tumors over-express the estrogen receptor, and that estrogen receptor 

antagonism, in the form of Tamoxifen or other treatments, results in effective 

treatment response (lower recurrence, higher five-year survival) in ~50% of these 

patients [3]. Also, “HER2 positive” tumors over-express HER2/Neu, and that 

treatment via a monoclonal antibody which causes immuno-targeting of this 

receptor results in better prognosis [8]. At present, studies of the underlying 

biological pathways activated in these cancers are based mainly on gene-level 

dysregulation of expression [14]. However, as we have shown in this thesis, the 

“gene” is in many cases made up of diverse transcriptional elements and 

regulation. Through careful, systematic study of the disease transcriptome, we 

can increase our understanding of the specific changes which result in 

tumorigenesis, and use this information to assist in designing additional 
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therapeutic measures that combat these changes.

Towards this future, the present study presents the transcriptional alternative 

splicing changes which distinguish clinical subtypes of breast cancer. Our 

analysis identified several genes previously shown to be involved in 

tumorigenesis, such as TPD52 [109, 112, 113], LTF [50, 52, 53], and ACOX2 

[116] which were found to be differentially spliced across tumor subclasses, 

implying that the resulting proteins may have altered activity or function in 

different disease profiles. Some of the alternative transcripts identified here are 

known to have very specific functions. For instance the GNAS transcripts [75] 

can alternately produce a secreted neuroendocrine protein or a G-coupled 

protein receptor, and the LTF transcripts [53] can alternately produce a secreted 

iron-binding protein with antiseptic ability or a nuclear transcription factor involved 

in cell cycle control. 

Alternative transcripts have also previously shown to have directly opposing 

functions, as in the case of the anti-apoptotic gene survivin, which has a 

transcript variant that promotes apoptosis, and may be a naturally-occurring 

antagonist [35, 40]. Alternative splicing variants identified in this study may yet 

prove to be important contributors to disease phenotypes such as proliferative 

potential or aggressiveness, whereas other, ubiquitously-expressed transcripts at 
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the same locus do not. To determine this, a rigorous functional annotation must 

be undertaken, which is discussed below (Section 6.3).

We have also made a systematic study of potential non-coding RNAs which are 

differentially expressed in breast cancer tumor subclasses. Non-coding RNA has 

been previously implicated in various functional roles in cancers. For example, 

the large, non-coding RNA XIST is used to silence the extra X chromosome in 

females. However it is notably absent in various breast, ovarian and cervical 

cancer cell lines [56], suggesting that it has a potential role in tumorigenesis. 

Recently, the non-coding RNA HOTAIR has been shown to “reprogram” hundreds 

of genes in epithelial cancer cells, causing them to adopt a polycomb repressive 

complex 2 (PRC2) occupation pattern resembling embryonic fibroblast cells [57]. 

HOTAIR has since been shown to increase metastasis and promote growth in 

many cancers, including breast [57], gastrointestinal [58], and hepatocellular 

carcinoma [59]. Human non-coding RNA are poorly annotated [60], despite the 

fact that the majority of transcription originates in non-coding sources [94]. Like 

HOTAIR, many of these non-coding RNA have been shown to associate with the 

PRC2 complex to silence gene expression in mouse cells [61, 63, 64], implying 

active functional roles in gene regulation. We have discovered 9 non-coding RNA 

differentially expressed between ER+ and ER- breast cancers, none of which had 

been previously published (though 5 had been predicted from sequence 
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composition and EST support) of which 4 show clear sequence conservation 

over mammalian genomes, which is direct evidence for a functional role. In 

continuing experiments, we will elucidate the roles these non-coding RNA play in 

their respective disease classes.

6.2 Continuing studies

As sequencing technology continues to improve and sequencing costs decrease, 

we expect that our understanding of cancer will improve. The methods and 

research we have presented here were borne of necessity; the most current 

annotations of the human transcriptome are incomplete in terms of combinatorial 

splicing of known genes, as well as the relatively unknown gulf of non-coding 

genes and their variants. Thus, our methods are designed to incorporate the 

identification of novel variants and non-coding RNA. With powerful, cheaper RNA 

sequencing it will be possible to make complete tumor transcriptome annotations 

using deep, paired-end sequencing methods, an eventuality which some 

researchers have already begun to explore [31, 92]. With complete annotations, 

it will be easier to judge the origination of sequence fragments, or perhaps even 

develop a microarray chip (or chips) which can interrogate all known variations to 

gain a clear image of the isoform-level dysregulation present in individual tumors 
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[127]. With the knowledge gained in the present study and future work based on 

better transcriptome annotation, we will have gained a complete picture of 

isoform-level changes in breast cancer tumors.

At that point, continuing research should focus on two major paths: function, and 

epigenetic interaction. To determine the function of each ncRNA and alternative 

splicing variant, a systematic study of the effects of knock-down and knock-in 

experiments on changes in cell morphology, proliferative capability, and 

aggressiveness would be beneficial. In a cell line model, for instance, it is 

possible to knock down the splice variants we have discovered to identify 

functional consequences. For example, the expression of ACOX2 in the ER+ cell 

line T47D (Figure 6) can be accomplished with an shRNA designed to form a 

hairpin structure which binds with sequence complementarity to the target 

mRNA. This facilitates its degradation through the RNA interference cellular 

pathway. To upregulate a transcript in a cell line which otherwise does not 

express the variant, the transcript could be encoded in a plasmid, which is then 

transfected into the cell line. If changes in expression of these transcripts has an 

interesting phenotype, such as for instance cell death, change in drug response, 

reduced proliferative ability, or reduced metastatic potential, the transcript might 

be a biomarker or a target of therapeutic treatment.
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Functional roles might be ascertained for non-coding RNA by studying the effects 

these transcripts have on isoform expression levels elsewhere. Many ncRNA in 

mammalian cells are predicted to interact with PRC2 or other repressive 

complexes [64], and their global expression changes could be monitored before 

and after knock-in and knock-down experiments to identify their functional role, if 

any. Additionally, ChIP experiments could be performed to identify protein 

complexes to which each ncRNA is bound, which may identify those involved in 

regulatory functions from others which are expressed only incidentally (eg. from 

chance promoter up-regulation or histone modification of a regulatory locus 

inherited by humans but no longer functional). An RNA-FISH experiment could 

also be performed to examine the cellular localization of these ncRNA. A nuclear 

localization would suggest a regulatory role, while localization in other parts of 

the cell might suggest more exotic functionality.

The functional import of each transcriptome variant is a component of the whole 

interaction network which forms the backbone of the epitome. Differential 

alternative transcript variants are generally the result of alternative promoter 

usage [54], which implies changes in transcription factors, transcription co-

factors, or chromatin-level changes took place. Chromatin methylation markers 

have been previously shown to influence transcription, such as the H3K4Me 

marker which has been shown to be a marker for alternative promoter usage [54] 
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and also a marker for non-coding RNA transcriptional start sites [63, 64]. 

Similarly, transcriptional silencing due to the H3K27Me marker, maintained by the 

PRC2 complex [128], may have resulted in the absence of transcription in breast 

cancer subtypes which did not express the variants we observed. Thus, the 

integration of information from histone methylation maps may prove useful in 

determining the epigenetic changes which led to the observed phenotype. 

Transcription factor occupation maps, which can be determined through ChIP-

Seq experiments [118, 129], show where transcription factors and their co-factors 

bind to genomic DNA and initiate transcription. The transcription factor(s) 

responsible for alternative transcriptome variation, such as the estrogen receptor 

in the case of the intronic ACOX2 transcript in T47D cells, is a powerful 

determinate of the cellular changes which gave rise to these changes.

6.3 Conclusion

We have performed a study of the breast cancer tumor transcriptome by 

sequencing and analyzing RNA from 53 tumors. We developed two software 

utilities, ConsensusCluster and CUDAConsensusCluster, to differentiate between 

clinical disease subtypes. We found these tools to be accurate determinants of 

prior clinical subpopulations, and have used them to discover novel disease 
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classes in other tumors (see Appendix A: ConsensusCluster). We developed new 

methodology to identify alternative splicing variants in breast cancer subsets, 

both clinical and novel, and we identified novel intergenic non-coding RNA which 

are both evolutionarily conserved, and differentially expressed in these subsets. 

These we have shown to be effective and accurate biomarkers for the 

represented breast cancer disease subtypes. We have laid out a course of study 

which would elucidate the functionality of these transcriptome variants, and 

divine their place in the epigenetic landscape of cellular changes which give rise 

to these variants. It is our hope that we have contributed to our understanding of 

the underlying biology of breast cancer, and that our work will be used to develop 

future treatment for this disease.
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APPENDIX A: ConsensusCluster

A.1 Consensus ensemble clustering

Clustering is the process of finding related groups in an unlabeled sample pool, 

using some numeric metric of relatedness between samples. In general, 

clustering algorithms focus on maximizing intra-cluster similarity, and minimizing 

inter-cluster similarity. These methods have been used in diverse fields such as 

disease classification and mtDNA phylogeny [9, 19, 130]. In many popular 

algorithms, however, inherent biases or stochastic variance in the methods limit 

the robustness of cluster analysis. For example, the well known k-means 

algorithm relies on centroids to label clusters, and is thus assumes clusters in the 

input data are spherical [18]. The k-means and self-organizing map [17] methods 

both rely on random initial conditions, which can cause variable cluster output. To 

mitigate these concerns, the consensus clustering method [23-25] calculates the 

likelihood of two samples being clustered together over many bootstraps of both 

sample and feature data and multiple clustering methods, then uses this 

information as a robust distance metric. The resulting clusters are robust against 

outliers and data perturbations, and variance/bias in individual clustering 
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algorithms is reduced [9, 25].

To facilitate the use of consensus clustering, we developed and released a 

software utility titled ConsensusCluster [25], which is freely available from 

http://code.google.com/p/consensus-cluster/. ConsensusCluster is a multi-

platform package written in Python and C, distributed in both source and binary 

form. There is a simple Python API for developing data input parsers, and a 

parser for the simplest form (tab-delimited text file with headers in the first row 

and column) is provided. The data are stored internally as a 32-bit floating point 

matrix, along with any available sample metadata. ConsensusCluster also 

includes a number of methods for combining and filtering datasets from a Python 

console interface, making it a convenient tool for data manipulation.

A.2 Clustering steps

Each step in the ConsensusCluster process is documented both in the main 

window of ConsensusCluster and also in detailed log files. For each clustering 

iteration, performed on a given k-cluster value, each sample is assigned to one of 

k clusters and a log file is generated which presents the top genes separating 

each pair of clusters, as measured by signal-to-noise ratio (SNR) [69]. When all 

http://code.google.com/p/consensus-cluster/
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clustering iterations have completed for each k, the consensus matrix is created 

by calculating the fraction of clustering iterations each sample appeared in the 

same cluster as each other sample. This matrix serves as a distance matrix for a 

final clustering attempt using single-link hierarchical clustering [15], which is used 

to calculate a cluster dendrogram. An image containing the dendrogram and 

consensus matrix is output to provide a production-quality visual representation 

of clustering information (e.g., Figure 1).

1. PCA Feature Selection

Principal Components Analysis (PCA) [108] is a data analysis and visualization 

method which decomposes the input data into orthogonal eigenvectors (principal 

components) of the covariance matrix. Sorted by largest eigenvalue, these 

eigenvectors can be thought of as independent vectors representing variance in 

the input data, i.e., the component with the largest eigenvalue is the unit vector in 

feature space which has the highest variance. ConsensusCluster selects 

features by first enumerating principal components which make up a user-

specified fraction of the total variance. Then, features corresponding to the 

largest values in the selected eigenvectors (again, greater than a user-specified 

threshold) by absolute value are used in clustering. A PCA plot is produced and 

labeled based on sample metadata (Figure 17).
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Figure 17. Samples from the Human Genome Diversity Project 

[131] are clearly separated by PCA, as performed by 

ConsensusCluster. The data are composed of 938 autosomal SNP 

samples, each containing 650,000 features. Clusters are 

determined based on 300 k-means clustering iterations, k = 6, then 

labeled based on geographical location.

2. Sample and Feature Bootstrap

In order to reduce influence of outlier samples and features, we perform 

Figure 17
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bootstrap aggregation ('bagging') of both sample and feature input, which has 

been shown to reduce variability in classification algorithms [18]. At each cluster 

iteration, a new dataset composed of a random subset (with replacement) of both 

samples and features is created. This new dataset is then used for clustering. 

When the consensus matrix is created, only the number of times each pair of 

samples appeared in the same bootstrap dataset is used towards the sample-

sample cluster likelihood distance calculation. Bootstrapping also reduces the 

effects of sample perturbation, resulting in more robust clustering [9, 130].

3. Clustering Methods

ConsensusCluster implements four separate clustering algorithms, which can be 

selected through the Settings tab (Figure 18), or via the command line interface. 

The algorithms implemented are as follows:

 K-Means – k random initial centroids in feature space are iteratively 

moved towards local minima in sample density space. By running this 

algorithm many times (and many different initial conditions) and averaging 

the results, the expected value of the k-means algorithm can be found 

[18].

 Self-Organizing Map (SOM) – The SOM algorithm [17] is a simple neural 

network which proceeds by iteratively adjusting centroid “nodes” in feature 

space. These nodes are laid out in a multi-dimensional grid, and training 
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each node also adjusts other nodes based on physical grid distance, 

which results in a visual representation of the distance and relatedness 

between clusters. Once training is complete, the SOM network is used to 

classify each sample into a cluster assignment.

 Partition Around Medoids (PAM) – Rather than using centroids in feature 

space as in k-means, PAM [16] iteratively selects k samples as medoids, 

samples which represent the mean or median of each cluster. PAM 

requires only a distance matrix to function, which qualifies it to be used to 

cluster the consensus matrix after all iterations have completed.

 Hierarchical Clustering – Samples are iteratively assigned to clusters, and 

a new distance matrix is calculated at each iteration which includes the 

new “cluster” as a sample data point in place of the sample and sample(s) 

to which it is now joined [15]. This proceeds until all samples are assigned, 

and a min-cut to k clusters is performed. ConsensusCluster implements 

the “average,” “single,” and “complete” linkage options, which indicate how 

distance should be calculated from a sample to a cluster, based on the 

average of all samples in that cluster, the closest sample, and the farthest 

sample, respectively.

4. Building a Consensus

ConsensusCluster creates a new symmetric n x n matrix M, where each value 
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Mi,j is the fraction of times samples i and j were clustered together, divided by the 

number of times i and j appeared in a bootstrap. This measurement of similarity 

forms the likelihood that this pair of samples are clustered together. By reversing 

this value (1 – Mi,j), the similarity matrix becomes a distance matrix, and can be 

used to perform the final clustering. Whereas hierarchical clustering is used by 

default, PAM is also an option.

5. Reorder the Consensus Matrix

Simulated annealing, a local optimization method, is used to reorder the 

consensus matrix so that more similar samples are grouped near to each other 

[130]. This has the effect that clusters are then represented on the consensus 

matrix heatmap as “boxes” along the diagonal (Figure 19). Both the consensus 

matrix heatmap and dendrogram, if available, are output to the user.
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Figure 18. The settings available to the user in ConsensusCluster 

via the graphical user interface. A variety of simple input data 

normalization options are available, such as log2 re-expression, 

mean centering, and median subtraction. To change feature 

selection parameters, the total variance from selected principal 

components can be adjusted, as well as the absolute value of the 

weight of selected features from those eigenvectors. Four 

clustering algorithms are available to the user, and the distance 

metric for those methods can be changed from euclidean distance 

to sample correlation. ConsensusCluster will perform a complete 

run of the specified number of subsampled clustering iterations for 

each k value in the range entered here. All configuration options are 

Figure 18



131

available from the command line interface.

Figure 19. The consensus matrix generated after 300 k-means 

clustering iterations (k = 6) on 938 autosomal SNP samples from 

various geographical locations [131], with 650,000 measured SNPs 

in each sample. The consensus matrix is an n x n symmetric 

sample matrix, where each row and column represent the total 

fraction of times those samples were clustered together over all 

iterations. Brightness indicates the likelihood of cluster association, 

where lighter squares represent high association and darker 

squares less likely association.

Figure 19
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A.3 ConsensusCluster in current research

ConsensusCluster [25] has recently found applications in both disease 

classification and phylogenetic tree identification. The first published usage of 

ConsensusCluster was in a phylogenetic application, where it was shown that 

without consensus clustering it is not possible to identify robust signatures for 

phylogenetic tree branch polymorphisms [130]. Since then, it has found 

applications in cancer biology, as a method for finding unknown subsets of tumor 

samples with correlated gene expression. Most prominently, ConsensusCluster 

was used to identify robust subtypes of clear cell renal cell carcinomas [26]. In 

this analysis, clustering revealed two distinct subpopulations, termed ccA and 

ccB, which were validated in a separate cohort. Later meta-analysis of this work 

found that both subtypes were robust, but that with additional information ccA 

could be again split into gender-related phenotypes [132], a result which may 

affect therapeutic measures taken against the disease in the future. As described 

in the present thesis, ConsensusCluster was also used to robustly identify breast 

cancer tumor subtypes in RNA-Seq data.

A.4 CUDAConsensusCluster
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Consensus ensemble clustering is a method to utilize the information from many 

clustering methods and bootstraps of the data to form a more robust estimation 

of cluster association. The most significant limitation of this method is the time 

needed to run many clustering iterations, which increases linearly with the 

number of iterations run. To mitigate this, a separate version of 

ConsensusCluster, termed CUDAConsensusCluster, was created. This software 

utilizes the inherent massive parallelism of commodity computer graphics 

hardware to perform many clustering iterations simultaneously, resulting in high 

speed gains, especially over many clustering iterations. CUDAConsensusCluster 

is freely available from http://code.google.com/p/cuda-consensus-cluster/.

The Compute Unified Device Architecture (CUDA), developed by NVIDIA, is a 

parallel computing architecture which enables general purpose computation on 

graphics processing units (GPUs) [67]. Programming is generally accomplished 

using the “C for CUDA” language, though bindings to other languages, including 

Python, exist [68]. At present, the most powerful consumer GPU is the NVIDIA 

GTX 690, which contains 3072 processor cores [133]. An indefinite number of 

threads can be created for each task, and a hardware thread scheduler is 

responsible for ensuring processor cores are constantly in use if worker threads 

are available. Threads are split into a virtual “grid” to allow the user to specify 

which section of the grid is responsible for a given task. To that end, CUDA 

http://code.google.com/p/cuda-consensus-cluster/
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requires that programs use the Single Input, Multiple Data (SIMD) model, where 

a single program is sent to all threads and work can be divided based on thread 

location on the grid. Each GPU is provided with a large global memory bank 

which is accessible through random access by computation threads, however it 

has very high latency. To ameliorate this, threads must access memory 

sequentially and in parallel, and a large amount of computation should be 

performed to use the GPU effectively. Each section of the thread grid, called a 

warp, also has its own shared memory, which is two orders of magnitude faster 

on average. Thus, commonly software which makes use of GPU programming 

will perform a parallel read of a sequential memory space into shared memory, 

followed by computation.

CUDAConsensusCluster uses an identical overall approach to 

ConsensusCluster, however, it provides accelerated parallel implementations of 

both k-means and self-organizing map [17] in order to provide substantial gains 

in speed. The parallel k-means implementation proceeds in the following steps.

1. A parallel Mersenne Twister implementation is used to generate random 

numbers for both bootstrapping of samples and features, and also to 

provide the initial k centroids.

2. The samples are each compared to k centroids, also in parallel. During 

this step, each thread warp reads the centroid information into shared 
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memory, up to 6 centroids. The same threads then read each sample 

datapoint and calculate correlation or euclidean distance. This calculation 

is “embarrassingly parallel” and scales nearly linearly with the number of 

processors. This calculation is serial in k, however, k << n in most cases.

3.  The centroids are updated in parallel, however, k is generally much 

smaller than the number of processors, and this step is minimally 

accelerated.

4. Steps 1-3 repeat until the centroids are no longer changed in step 3.

Self-organizing map [17] is a simple neural network which is trained to learn 

unknown groups in a dataset, and this classifier is then used to assign the input 

samples to clusters. Similarly to k-means, comparing input samples to centroid 

nodes and updating centroids are inherently parallel steps. However, this step 

must be repeated iteratively many times to ensure that later classification is 

accurate, which is a serial step. The result is that a parallel implementation of the 

SOM algorithm itself provides very little gain over the conventional serial 

implementation, unless the number of nodes is extremely large (on the order of 

millions). To provide speedup in CUDAConsensusCluster, we run many separate 

SOM implementations, which is parallel in the number of subsamples specified 

by the user. In theory, this provides speed gains linearly according to the number 

of iterations divided by the number of processors.
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To complete the clustering task, CUDAConsensusCluster then calculates the 

consensus matrix in parallel. Further tasks, such as the final hierarchical 

clustering and consensus matrix reordering process, are accomplished using the 

same means present in ConsensusCluster. In practice, using an NVIDIA GTX 

260 GPU with 192 GPU cores on a dataset with 260 samples, we have observed 

speedups of upwards of three orders of magnitude over the single core 

implementation. As the number of cores in GPU processors continues to 

increase, CUDAConsensusCluster should continue to scale when using the k-

means algorithm on datasets with more samples than cores, and using the SOM 

algorithm if the number of subsamples is larger than the number of cores.
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APPENDIX B: Experimental Methods

B.1 qRT-PCR

Total RNA was first extracted from each sample using the Trizol [73] reagent 

according to the manufacturer’s protocol. A complementary DNA (cDNA) library 

was created for each sample using the Transcriptor First Strand Synthesis kit 

from Roche. The real-time polymerase chain reaction (RT-PCR) was run on the 

Mx3005p QPCR system using the SYBR Green dye for fluorescent detection. 

Each experiment was run in triplicate, and a dilution curve was run on each plate 

for each primer pair to assess primer efficiency. All expression levels were 

calculated relative to GAPDH mRNA expression, using the method suggested in 

[88]. Primers were designed using the Primer3 software package.

B.2 Alternative splicing validation primers
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