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ABSTRACT OF THE DISSERTATION
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Continuous Glucose Monitoring

by Tingni Sun

Dissertation Director: Professor Cun-Hui Zhang

This thesis contains two parts. The first part concerns three connected problems with

high-dimensional data in Chapters 2-4. The second part, Chapter 5, provides dynamic

Bayes models to improve the continuous glucose monitoring.

In the first part, we propose a unified scale invariant method for the estimation of

parameters in linear regression, precision matrix and partial correlation. In Chapter

2, scaled Lasso is introduced to jointly estimate regression coefficients and noise

level with a gradient descent algorithm. Under mild regularity conditions, we derive

oracle inequalities for the prediction and estimation of the noise level and regression

coefficients. These oracle inequalities provide sufficient conditions for the consistency

and asymptotic normality of the noise level estimator, including certain cases where

the number of variables is of greater order than the sample size. Chapter 3 considers

the estimation of precision matrix, which is closely related to linear regression. The
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proposed estimator is constructed via the scaled Lasso, and guarantees the fastest

convergence rate under the spectrum norm. Besides the estimation of high-dimensional

objects, the estimation of low-dimensional functionals of high-dimensional objects is

also of great interest. A rate minimax estimator of a high-dimensional parameter does

not automatically yield rate minimax estimates of its low-dimensional functionals. We

consider efficient estimation of partial correlation between individual pairs of variables

in Chapter 4. Numerical results demonstrate the superior performance of the proposed

methods.

In the second part, we develop statistical methods to produce more accurate and

precise estimates for continuous glucose monitoring. The continuous glucose monitor

measures the glucose level via an electrochemical glucose biosensor, inserted into

subcutaneous fat tissue, called interstitial space. We use dynamic Bayes models to

incorporate the linear relationship between the blood glucose level and interstitial

signal, the time series aspects of the data, and the variability depending on sensor

age. The Bayes method has been tested and evaluated with an important large dataset,

called “Star I”, from Medtronic, Inc., composed of continuous monitoring of glucose

and other measurements. The results show that the Bayesian blood glucose prediction

outperforms the output of the continuous glucose monitor in the STAR 1 trial.
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Chapter 1

Introduction

1.1 Statistical Inference with High-dimensional Data

The first part of this thesis concerns three connected problems in estimation and

statistical inference with high dimensional data: linear regression with unknown

variance, precision matrix as a high-dimensional object, and low-dimensional

functionals of high-dimensional parameters.

With the development of information technologies, high-dimensional data analysis

has become very important in many fields of scientific research and knowledge

discovery. Linear regression, as one of simplest statistical models, has been intensively

studied in certain high-dimensional settings. A focus of recent research of high-

dimensional linear regression has been on the performance of penalization methods,

e.g. Lasso, smoothly clipped absolute deviation (SCAD) and minimax concave (MC)

penalties, etc. These studies usually require the knowledge of the noise level in linear

model. However, it is non-trivial to estimate the variance of the noise when the number

of covariates p is larger than the sample size n. In Chapter 2, we propose a “scaled

Lasso” methodology to simultaneously estimate the regression coefficients and noise

level in linear regression. It chooses an equilibrium with a sparse regression method

by iteratively estimating the noise level via the mean residual square and scaling

the penalty in proportion to the estimated noise level. The iterative algorithm costs

little beyond the computation of a path or grid of the sparse regression estimator

for penalty levels above a proper threshold. For the scaled lasso, the algorithm is a
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gradient descent in a convex minimization of a penalized joint loss function for the

regression coefficients and noise level. Under mild regularity conditions, we derive

oracle inequalities for the prediction and estimation performances of the noise level

and regression coefficients. These inequalities provide sufficient conditions for the

consistency and asymptotic normality of the noise level estimator.

Estimation of inverse covariance matrix, also known as the precision matrix

or concentration matrix, is one of the classic problems in multivariate statistics,

since the precision matrix has an interpretation in terms of partial correlation. The

partial correlation is used to measure the conditional dependency in Gaussian-Markov

graphical models that are widely used in network problems of dependencies among

variables. Due to the rapid advances of technologies, precision matrix estimation is

also a topic of great interests in high-dimensional network problems, such as gene

association, social network, etc. In Chapter 3, we propose to estimate each column

of the target matrix based on the scaled Lasso, by taking advantage of the relation

between linear regression and precision matrix. Under the sparsity condition on matrix

degree and mild regularity conditions, we prove that the proposed estimator guarantees

the fastest rate of convergence under the spectrum norm in certain high-dimensional

settings where the number of variables is of greater order than the sample size. In

addition, since the scaled Lasso algorithm provides a fully specified map from the space

of nonnegative-definite matrices to the space of symmetric matrices, this estimator

could be extended to generate an approximate inverse of a nonnegative data matrix in

a general setting.

Most of the recent advances in high-dimensional data have been focused on the

estimation of high-dimensional objects as in Chapters 2 and 3. However, the estimation

of low-dimensional functionals of high-dimensional parameters is also of great interest.

For example, instead of the covariance matrix or its inverse as linear operators, one

might be more interested in the relationship between individual pairs of variables.
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In Chapter 4, we consider efficient estimation and confidence interval for the partial

correlation with high-dimensional Gaussian data.

1.2 Dynamic Bayes Models for Continuous Glucose Monitoring

Closed-loop diabetes control, or artificial pancreas, is a new technology that will

revolutionize diabetes management. Although the current technology is mostly

developed by electronic and biomedical engineers, statistics will play an ever important

role in controlling the accuracy and precision of such systems. Chapter 5 concerns

the estimation problem of continuous glucose monitoring, which is one of essential

components in artificial pancreas system.

The continuous glucose monitor measures the glucose level via an electrochemical

glucose biosensor, inserted into subcutaneous fat tissue, called interstitial space.

Motivated by the mechanism of glucose sensor and continuous blood glucose monitor,

we propose a statistical framework for modeling the dynamic relationship between the

blood glucose level and interstitial signal. At the current stage, our Bayes model also

incorporates the time series aspects of the data and the variability depending on sensor

age.

The Bayes method has been developed and evaluated with an important large

dataset, called “Star I”, from Medtronic, Inc., composed of continuous monitoring of

glucose and other measurements. The analysis shows that our blood glucose prediction

outperforms the output of the continuous glucose monitor in the STAR 1 trial.
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Chapter 2

Scaled Sparse Linear Regression

2.1 Introduction

This chapter concerns the simultaneous estimation of the regression coefficients and

noise level in a high-dimensional linear model. High-dimensional data analysis is a

topic of great current interest due to the growth of applications where the number of

unknowns far exceeds the number of data points. Among statistical models arising

from such applications, linear regression is one of the best understood. Penalization,

convex minimization and thresholding methods have been proposed, tested with real

and simulated data, and proved to control errors in prediction, estimation and variable

selection under various sets of regularity conditions. These methods typically require

an appropriate penalty or threshold level. A larger penalty level may lead to a simple

model with large bias, while a smaller penalty level may lead to a complex noisy model

due to overfitting. Scale-invariance considerations and existing theory suggest that

the penalty level should be proportional to the noise level of the regression model.

In the absence of knowledge of the latter level, cross-validation is commonly used

to determine the former. However, cross-validation is computationally costly and

theoretically poorly understood, especially for the purpose of variable selection and

the estimation of regression coefficients. The penalty level selected by cross-validation

is called the prediction-oracle in Meinshausen & Bühlmann (2006), which gave an

example to show that the prediction-oracle solution does not lead to consistent model

selection for the Lasso.
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Estimation of the noise level in high-dimensional regression is interesting in its

own right. Examples include quality control in manufacturing and volatility control in

finance.

Our study is motivated by Städler et al. (2010). They proposed to estimate the

regression coefficients and noise level by maximizing their joint log-likelihood with an

`1 penalty on the regression coefficients. Their method has a unique solution due to

the joint concavity of the log-likelihood under a certain transformation of the unknown

parameters. However, we prove that this penalized joint maximum likelihood estimator

may result in a positive bias for the estimation of the noise level. We propose an

iterative algorithm that alternates between estimating the noise level via the mean

residual square and scaling the penalty level in a predetermined proportion to the

estimated noise level in the Lasso or minimax concave penalized selection paths. This

part of results has been published in our discussion article, Sun & Zhang (2010).

In the meanwhile, Antoniadis (2010) commented on the same problem from a

different perspective by raising the possibility of adding an `1 penalty to Huber’s

concomitant joint loss function. See, for example section 7.7 of Huber & Ronchetti

(2009). Interestingly, the minimizer of this penalized joint convex loss is identical to

the equilibrium of the iterative algorithm for the Lasso path. Thus, the convergence

of the iterative algorithm is guaranteed by the convexity. For simplicity, we call the

equilibrium of this algorithm the scaled version of the penalized regression method, for

example the scaled Lasso or scaled minimax concave penalized selection, depending

on the choice of penalty function. Under mild regularity conditions, we prove oracle

inequalities for prediction and the joint estimation of the noise level and regression

coefficients for the scaled Lasso, that imply the consistency and asymptotic normality

of the scaled Lasso estimator for the noise level. We report numerical results on the

performance of scaled Lasso and other scaled penalized methods. These theoretical and

numerical results strongly support the use of the proposed method for high-dimensional
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regression.

This chapter is organized as follows. In Section 2.2, we describe the iterative

algorithm and its connection to convex minimization. In Section 2.3, we provide oracle

inequalities for the scaled Lasso and prove the consistency and asymptotic normality

of the estimator for the noise level. In Section 2.4, we present numerical results.

Section 2.5 contains some discussion, including oracle inequalities for the Lasso with

a predetermined penalty level. Section 2.6 provides all proofs.

We use the following notation throughout this chapter. For a vector v =

(v1, . . . , vp), ‖v‖q = (
∑

j |vj|q)1/q denotes the `q norm with the usual extensions

‖v‖∞ = maxj |vj| and ‖v‖0 = #{j : vj 6= 0}. For design matrices X and subsets A

of {1, . . . , p}, xj denotes column vectors of X and XA denotes the matrix composed

of columns with indices in set A. Moreover, x+ = max(x, 0).

2.2 An iterative algorithm

In this section, we describe the iterative algorithm for the joint estimation of regression

coefficients and noise level and its connection to convex minimization.

Suppose we observe a design matrix X = (x1, . . . ,xp) ∈ IRn×p and a response

vector y ∈ IRn. For penalty functions ρ(·), consider penalized loss functions of the

form

Lλ(β) =
‖y −Xβ‖22

2n
+ λ2

p∑
j=1

ρ(|βj|/λ) (2.1)

where β = (β1, . . . , βp)
′ is a vector of regression coefficients. Let the penalty ρ(t) be

standardized to ρ̇(0+) = 1, where ρ̇(t) = (d/dt)ρ(t). A vector β̂ = (β̂1, . . . , β̂p)
′ is a
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critical point of the penalized loss (2.1) if and only if


x′j(y −Xβ̂)/n = λsgn(β̂j)ρ̇(|β̂j|/λ), β̂j 6= 0,

x′j(y −Xβ̂)/n ∈ λ[−1, 1], β̂j = 0.

(2.2)

If the penalized loss (2.1) is convex in β, then (3.4) is the Karush–Kuhn–Tucker

condition for its minimization.

Given a penalty function ρ(·), one still has to choose a penalty level λ to arrive

at a solution of (3.4). Such a choice may depend on the purpose of estimation,

since variable selection may require a larger λ than does prediction. However, scale-

invariance considerations and theoretical results suggest a penalty level proportional

to the noise level σ. This motivates a scaled penalized least squares estimator as a

numerical equilibrium in the following iterative algorithm:

σ̂ ← ‖y −Xβ̂
old
‖2/{(1− a)n}1/2,

λ← σ̂λ0,

β̂ ← β̂
new
, Lλ(β̂

new) / Lλ(β̂
old),

(2.3)

where λ0 is a prefixed penalty level, not depending on σ, σ̂ estimates the noise level,

and a ≥ 0 provides an option for a degrees-of-freedom adjustment with a > 0. For

p < n and (a, λ0) = (p/n, 0), (2.3) initialized with the least squares estimator β̂
(lse)

is non-iterative and gives σ̂2 = ‖y −Xβ̂
(lse)
‖22/(n− p). For large data sets, one may

use a few passes of a gradient descent algorithm to compute β̂new from β̂old. In the

numerical experiments reported in Section 4, β̂new is a solution of (3.4) for the given

λ. We describe this implementation in the following two paragraphs.

The first step of our implementation is the computation of a solution path β̂(λ)

of (3.4) beginning from β̂(λ) = 0 for λ = |X ′y/n|∞. For quadratic spline penalties
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ρ(t) with m knots, Zhang (2010) developed an algorithm to compute a linear spline

path of solutions {λ(t) ⊕ β̂
(t)

: t ≥ 0} of (3.4) to cover the entire range of λ. This

extends the least angle regression solution or Lasso path (Osborne et al., 2000a,b; Efron

et al., 2004) from m = 1 and includes the minimax concave penalty for m = 2 and

the smoothly clipped absolute deviation penalty (Fan & Li, 2001) for m = 3. An R

package named plus is available for computing the solution paths for these penalties.

The second step of our implementation is the iteration (2.3) along the solution path

β(λ) computed in the first step. That is to use the already computed

β̂new = β̂(λ) (2.4)

in (2.3). For the scaled Lasso, we use a = 0 in (2.3) and ρ(t) = t in (2.1) and (3.4).

For the scaled minimax concave penalized selection, we use a = 0 and the minimax

concave penalty ρ(t) =
∫ t
0
(1 − x/γ)+dx, where γ > 0 regularizes the maximum

concavity of the penalty. When γ = ∞, it becomes the scaled Lasso. The algorithm

(2.3) can be easily implemented once a solution path is computed.

Consider the `1 penalty. As discussed in the introduction, (2.3) and (3.5) form an

alternating minimization algorithm for the penalized joint loss function

Lλ0(β, σ) =
‖y −Xβ‖22

2nσ
+

(1− a)σ

2
+ λ0‖β‖1. (2.5)

Antoniadis (2010) suggested this jointly convex loss function as a way of extending

Huber’s robust regression method to high dimensions. For a = 0 and λ = σ̂λ0 with

fixed σ̂, σ̂Lλ0(β, σ̂) = Lλ(β) + σ̂2/2, so that β̂ ← β̂(λ) in (3.5) minimizes Lλ0(β, σ̂)

over β. For fixed β̂, σ̂2 ← ‖y−Xβ̂‖22/{(1− a)n} in (2.3) minimizes Lλ0(β̂, σ) over

σ. We summarize some properties of the algorithm (2.3) with (3.5) in the following

proposition.
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Proposition 2.1. Let β̂ = β̂(λ) be a solution path of (3.4) with ρ(t) = t. The

penalized loss function (2.5) is jointly convex in (β, σ) and the algorithm (2.3) with

(3.5) converges to

(β̂, σ̂) = arg min
β,σ

Lλ0(β, σ). (2.6)

The resulting estimators β̂ = β̂(X,y) and σ̂ = σ̂(X,y) are scale equivariant in y in

the sense that β̂(X, cy) = cβ̂(X,y) and σ̂(X, cy) = |c|σ̂(X,y). Moreover,

∂

∂σ
Lλ0
{
β̂(σλ0), σ

}
=

1− a
2
− ‖y −Xβ̂(σλ0)‖22

2nσ2
. (2.7)

Since (2.5) is not strictly convex, the joint estimator may not be unique for some

give data point (X,y). However, since (2.5) is strictly convex in σ, σ̂ is always unique

in (2.6) and the uniqueness of β̂ follows from that of Lasso β̂(λ) at λ = σ̂λ0. The

Lasso estimator β̂(λ) is unique when the second part of (3.4) is strict in the sense of

not hitting±λ when β̂j = 0, which holds almost everywhere in (X,y) for λ > 0. See,

for example, Zhang (2010).

2.3 Theoretical results

In this section, we study theoretical properties of the scaled Lasso (2.6) with a = 0.

Let β∗ be a vector of true regression coefficients. An expert with oracular knowledge

of β∗ would estimate the noise level by the oracle maximum likelihood estimator

σ∗ = ‖y −Xβ∗‖2/n1/2. (2.8)
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Under the Gaussian assumption, this is the maximum likelihood estimator for σ when

β∗ is known and n(σ∗/σ)2 follows the χ2
n distribution. Due to the scale equivariance

of σ̂ in Proposition 1, it is natural to use σ∗ as an estimation target with or without the

Gaussian assumption. We derive upper and lower bounds for σ̂/σ∗ − 1 and use them

to prove the consistency and asymptotic normality of σ̂. We derive oracle inequalities

for the prediction performance and the estimation of β under the `q loss. Throughout

the sequel, prβ,σ is the probability measure under which y −Xβ ∼ N(0, σ2In). We

assume ‖xj‖22 = n whenever prβ,σ is invoked. The asymptotic theory here concerns

n → ∞ and allows all parameters and variables to depend on n, including p ≥ n ≥

‖β‖0 →∞.

2.3.1 Consistency of noise level estimator

We first provide the consistency for the estimation of σ via an oracle inequality for

the prediction error of the scaled Lasso. In our first theorem, the relative error for

the estimation of σ is bounded by a quantity τ0 related to a prediction error bound

η(λ, ξ, w, T ) in (2.9) below. For λ > 0, ξ > 1, w ∈ IRp, and T ⊂ {1, . . . , p}, define

δw,T = 1− I(w = β∗, T = ∅) and

η(λ, ξ,w, T ) = ‖Xβ∗ −Xw‖22/n+ (1 + δw,T )2λ‖wT c‖1 +
4ξ2λ2|T |

(ξ + 1)2κ2(ξ, T )
(2.9)

where κ(ξ, T ), the compatibility factor (van de Geer & Bühlmann, 2009), is defined as

κ(ξ, T ) = min
{ |T |1/2‖Xu‖2

n1/2‖uT‖1
: u ∈ C (ξ, T ), u 6= 0

}
(2.10)

with the cone C (ξ, T ) = {u : ‖uT c‖1 ≤ ξ‖uT‖1}. Since the prediction error bound

η(λ, ξ, w, T ) is valid for all w and T , τ0 is related to its minimum over all w and T at
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the oracle scale σ∗:

τ0 = η1/2∗ (σ∗λ0, ξ)/σ
∗, η∗(λ, ξ) = inf

w,T
η(λ, ξ,w, T ). (2.11)

Theorem 2.1. Let (β̂, σ̂) be as in (2.6) with a = 0, β∗ ∈ Rp, σ∗ in (2.8), z∗ =

‖X ′(y −Xβ∗)/n‖∞/σ∗ and ξ > 1. When z∗ ≤ (1− τ0)λ0(ξ − 1)/(ξ + 1),

max
(

1− σ̂

σ∗
, 1− σ∗

σ̂

)
≤ τ0,

‖Xβ̂ −Xβ∗‖2
n1/2σ∗

≤ 1

σ∗
η1/2∗

( σ∗λ0
1− τ0

, ξ
)
≤ τ0

1− τ0
.(2.12)

In particular, if λ0 = A{(2/n) log p}1/2 with A > (ξ+1)/(ξ−1) and η∗(σλ0, ξ)/σ →

0, then

prβ∗,σ

(
|σ̂/σ − 1| > ε

)
→ 0 (2.13)

for all ε > 0.

Theorem 2.1 extends to the scaled Lasso a unification of prediction oracle

inequalities for a fixed penalty. With λ = σ∗λ0/(1 − τ0)+, (2.12) gives

max{(σ∗τ0)2, ‖Xβ̂ −Xβ∗‖22/n} ≤ η∗(λ, ξ), or

max{(σ∗τ0)2, ‖Xβ̂ −Xβ∗‖22/n}

≤ min
w

{
‖Xw −Xβ∗‖22/n+ 4C̃λ

p∑
j=1

min(λ, |wj|)
}

(2.14)

for a C̃ ≥ 1, if the minimum in (2.14) is attained at a w̃ with (1+1/ξ)2κ2(ξ, T̃ ) ≥ 1/C̃,

where T̃ = {j : |w̃j| > λ}. This asserts that for an arbitrary, possibly non-sparse β∗,

the prediction error of the scaled Lasso is no greater than that of the best linear predictor
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Xw with a sparse w for an additional capped-`1 cost of the order λ
∑

j min(λ, |wj|).

A consequence of this prediction error bound for the scaled Lasso is the consistency of

the corresponding estimator of the noise level in (2.13). Due to the scale equivariance

in Proposition 2.1, Theorem 2.1 and the results in the rest of the section are all scale

free.

For fixed penalty λ, the upper bound η(λ, ξ,w, T ) has been previously established

for different w and T , with possibly different constant factors. Examples

include η(λ, ξ,β∗, ∅) = 2λ‖β∗‖1 (Greenshtein & Ritov, 2004; Greenshtein, 2006),

η(λ, ξ,β∗, Sβ∗) . λ2‖β∗‖0 with Sw = {j : wj 6= 0} (van de Geer & Bühlmann, 2009),

and minw η(λ, ξ,w, Sw) = minw{‖Xβ∗ − Xw‖22/n + O(λ2‖w‖0)} (Koltchinskii

et al., 2011).

2.3.2 Asymptotic normality of noise level estimator

Now we provide sharper convergence rates and the asymptotic normality for the scaled

Lasso estimation of the noise level σ. This sharper rate λµ(λ, ξ)/σ2, essentially taking

the square of the order τ0 in (2.12), is based on the following `1 error bound for the

estimation of β,

µ(λ, ξ) = (ξ + 1) min
T

inf
0<ν<1

max
[‖β∗T c‖1

ν
,

λ|T |/{2(1− ν)}
κ2{(ξ + ν)/(1− ν), T}

]
. (2.15)

This `1 error bound has the interpretation

‖β̂ − β∗‖1 ≤ µ(λ, ξ) ≤ C̃

p∑
j=1

min(λ, |β∗j |), (2.16)

if C̃ ≥ (1 + ξ) max{2, 1/κ2(2ξ + 1, T̃ )} with T̃ = {j : |β∗j | > λ}. This allows β∗

to have many small elements, as in Zhang & Huang (2008), Zhang (2009) and Ye &
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Zhang (2010). The bound µ(λ, ξ) ≤ (ξ + 1)λ|Sβ∗ |/{2κ2(ξ, Sβ∗)} improves upon its

earlier version in van de Geer & Bühlmann (2009) by a constant factor 4ξ/(ξ + 1) ∈

(2, 4).

Theorem 2.2. Let {β̂, σ̂,β∗, σ∗, z∗, ξ} be as in Theorem 2.1. Set τ∗ =

{λ0µ(σ∗λ0, ξ)/σ
∗}1/2. (i) The following inequalities hold in the event z∗ ≤ (1 −

τ 2∗ )λ0(ξ − 1)/(ξ + 1),

max
(
1− σ̂/σ∗, 1− σ∗/σ̂) ≤ τ 2∗ , ‖β̂ − β∗‖1 ≤ µ(σ∗λ0, ξ)/(1− τ 2∗ ). (2.17)

(ii) Let λ0 ≥ {(2/n) log(p/ε)}1/2(ξ + 1)/{(ξ − 1)(1 − τ 2∗ )}. For all ε > 0 and

n− 2 > log(p/ε)→∞,

prβ∗,σ

{
z∗ ≤ (1− τ 2∗ )λ0(ξ − 1)/(ξ + 1)

}
≥ 1− {1 + o(1)}ε/{π log(p/ε)}1/2.

If λ0 = A{(2/n) log p}1/2 with A > (ξ+ 1)/(ξ−1) and λ0µ(σλ0, ξ)/σ � n−1/2, then

n1/2
(
σ̂/σ − 1

)
→ N(0, 1/2) (2.18)

in distribution under prβ∗,σ.

Since σ2τ 2∗ ≈ µ(λ, ξ) ≤ 2(ξ + 1) minT η(λ, 2ξ + 1,β∗, T ) with λ = σλ0, the rate

τ 2∗ in (2.17) is essentially the square of that in (2.12), in view of (2.11). It follows that

the scaled Lasso provides a faster convergence rate than does the penalized maximum

likelihood estimator for the estimation of the noise level (Städler et al., 2010; Sun &
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Zhang, 2010). In particular, (2.17) implies

max
(
1− σ̂/σ∗, 1− σ∗/σ̂) ≤ (ξ + 1)λ20|Sβ∗|/{2κ2(ξ, Sβ∗)} . |Sβ∗ |(log p)/n(2.19)

with Sβ∗ = {j : β∗j 6= 0}, when κ2(ξ, Sβ∗) can be treated as a constant. The bounds

(2.19) and its general version (2.17) lead to the asymptotic normality (2.18) under

proper assumptions. Thus, statistical inference about σ is justified with the scaled

Lasso in certain large-p-smaller-n cases, for example, when |Sβ∗|(log p)/
√
n → 0

under the compatibility condition (van de Geer & Bühlmann, 2009).

2.3.3 Oracle inequalities for coefficient estimator

For a fixed penalty level, oracle inequalities for the `q error of the Lasso have been

established in Bunea et al. (2007), van de Geer (2008) and van de Geer & Bühlmann

(2009) for q = 1, Zhang & Huang (2008) and Bickel et al. (2009) for q ∈ [1, 2],

Meinshausen & Yu (2009) for q = 2, and Zhang (2009) and Ye & Zhang (2010) for

q ≥ 1. The bounds on σ̂/σ∗ in (2.17) and (2.19) allow automatic extensions of these

existing `q oracle inequalities from the Lasso with fixed penalty to the scaled Lasso.

We illustrate this by extending the oracle inequalities of Ye & Zhang (2010) for the

Lasso and Candes & Tao (2007) for the Dantzig selector in the following corollary. Ye

& Zhang (2010) used the following sign-restricted cone invertibility factor to separate

conditions on the error y−Xβ∗ and design X in the derivation of error bounds for the

Lasso:

Fq(ξ, S) = inf
{ |S|1/q‖X ′Xu‖∞

n‖u‖q
: u ∈ C−(ξ, S)

}
, (2.20)
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where C−(ξ, S) = {u : ‖uSc‖1 ≤ ξ‖uS‖1 6= 0, ujx
′
jXu ≤ 0, for all j 6∈ S}.

The quantity (3.9) can be viewed as a generalized restricted eigenvalue comparing

the `q loss and the dual norm of the `1 penalty with respect to the inner product

for the least squares fit. This is more directly connected to the Karush–Kuhn–

Tucker condition (3.4). Compared with the restricted eigenvalue (Bickel et al.,

2009) and the compatibility factor (2.10), a main advantage of (3.9) is to allow all

q ∈ [1,∞]. In addition, (3.9) yields sharper oracle inequalities (Ye & Zhang, 2010).

For (|A|, |B|, ‖u‖2) = (dae, dbe, 1) with A ∩B = ∅, define

δ±a = max
A,u

{
±
(
‖XAu/n

1/2‖2 − 1
)}
, θa,b = max

A,B,u

∥∥X ′AXBu/n
∥∥
2
. (2.21)

The quantities in (2.21) are used in the uniform uncertainty principle (Candes & Tao,

2007) and the sparse Riesz condition (Zhang & Huang, 2008). We note that 1 − δ−a is

the minimum eigenvalue of X ′AXA/n among |A| ≤ a, 1 + δ+a is the corresponding

maximum eigenvalue, and θa,b is the maximum operator norm of size a×b off-diagonal

sub-blocks of the Gram matrixX ′X/n.

Corollary 2.1. Suppose ‖β∗Sc‖1 = 0. Then, Theorem 2.2 holds with µ(λ, ξ) replaced

by λ|S|(2ξ)/{(ξ + 1)F1(ξ, S)}, and for z∗ ≤ (1− τ 2∗ )λ0(ξ − 1)/(ξ + 1),

‖β̂ − β∗‖q ≤
k1/q(σ∗z∗ + σ̂λ0)

Fq(ξ, S)
≤ 2σ∗ξλ0k

1/q

(1− τ 2∗ )(ξ + 1)Fq(ξ, S)
(2.22)

for all 1 ≤ q ≤ ∞, where k = |S|. In particular, for ξ =
√

2 and z∗ ≤ (1−τ 2∗ )λ0(
√

2−

1)2,

‖β̂ − β∗‖2 ≤
(8k)1/2λ0σ

∗/(1− τ 2∗ )
(
√

2 + 1)F2(
√

2, S)
≤ 4k1/2λ0σ

∗/(1− τ 2∗ )
(
√

2 + 1)(1− δ−1.5k − θ2k,1.5k)+
. (2.23)
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2.3.4 The key of proofs

The proofs of Theorem 2.1 and 2.2 are based on the basic inequality

‖Xβ̂(λ)−Xβ∗‖22/n+ ‖Xβ̂(λ)−Xw‖22/n

≤ ‖Xw −Xβ∗‖22/n+ 2λ{‖w‖1 − ‖β̂(λ)‖1}+ 2σ∗z∗‖w − β̂(λ)‖1 (2.24)

as a consequence of the Karush–Kuhn–Tucker conditions (3.4). The version of (2.24)

withw = β∗ is well-known (van de Geer & Bühlmann, 2009) and controls ‖Xβ̂(λ)−

Xβ∗‖22 for sparse β∗. When ‖Xβ̂(λ)−Xβ∗|22 > ‖Xw−Xβ∗|22, (2.24) controls the

excess for sparse w by the same argument. The generalw is taken in Theorem 1, while

w = β∗ is taken in Theorem 2. In both cases, (2.24) provides the cone condition in

(2.10) and (3.9). This is used to derive upper and lower bounds for (2.7), the derivative

of the profile loss function Lλ0(β̂(σλ0), σ) with respect to σ, within a neighborhood of

σ/σ∗ = 1. The bounds for the minimizer σ̂ then follow from the joint convexity of the

penalized loss (2.5).

2.4 Numerical studies

In this section, we present some numerical results to compare five methods: the scaled

penalized methods with the `1 penalty, minimax concave penalty and smoothly clipped

absolute deviation penalty, the `1 penalized maximum likelihood estimator (Städler

et al., 2010), and its bias correction. The penalized maximum likelihood estimator is

{β̂
(pmle)

, σ̂(pmle)} = arg max
β,σ

{
− ‖y −Xβ‖

2
2

2σ2n
− log σ − λ0

‖β‖1
σ

}
,

or equivalently the limit of the iteration σ̂ ← {y′(y −Xβ̂)/n}1/2 and β̂ ← β̂(σ̂λ0).

The bias-corrected estimator is one iteration of (2.3) with (3.5) from {β̂
(pmle)

, σ̂(pmle)}
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with a = 0,

σ̂(bc) = ‖y − β̂(σ̂(pmle)λ0)‖2/n1/2, β̂
(bc)

= β̂(σ̂(bc)λ0).

Two simulation examples and a real data set are considered.

2.4.1 Simulation results

Example 1

This experiment has the same setting as in Experiment 5 of Zhang (2010). We

provide the description of the simulation settings in our notation as follows: (n, p) =

(600, 3000), the xj are normalized columns from a Gaussian random matrix with

independent and identically distributed rows and correlation σj,k = σ
|k−j|
1,2 between

the j-th and k-th entries within each row, γ = 2/(1−max |x′kxj|/n) for the minimax

concave penalty and smoothly clipped absolute deviation penalty, the nonzero β∗j are

composed of five blocks of β∗(1, 2, 3, 4, 3, 2, 1)′ centered at random multiples j1, . . . , j5

of 25, β∗ sets ‖Xβ∗‖22 = 3n, and y −Xβ∗ is a vector of independent and identically

distributed N(0, 1) variables, where the true value of σ is 1. Two cases are considered:

σ1,2 = 0.1 for low correlation and σ1,2 = 0.9 for high correlation.

We summarize the simulation results in Table 2.1, which provides the bias and

standard error of the ratio σ̂/σ and the average `2 error of the estimated β. In

this simulation experiment, the scaled Lasso outperforms the penalized maximum

likelihood estimator and its bias correction, which are also based on the Lasso path.

The scaled concave penalized methods perform well at the universal penalty level

λ2 = {(2/n) log p}1/2. The simulation results also suggest that smaller λ may provide

a somewhat better estimate of the noise level at the cost of a larger estimation error

for the coefficients. The scaled minimax concave penalized selection demonstrates the
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strongest performance for σ1,2 = 0.1, while the scaled Lasso is the best for σ1,2 = 0.9.

This suggests potential improvements over the choice γ = 2/(1 − max |x′kxj|/n),

since the minimax concave penalty becomes the `1 penalty with γ =∞.

Table 2.1: Performance of five methods in Example 1 at three penalty
levels λ0, λj = {2j−1(log p)/n}1/2, j = 1, 2, 3. The estimation
performance across 100 replications in terms of bias (×10) and standard
error (×10) of σ̂/σ and the `2 estimation error (×10) of β̂ are tabulated
for each method.

σ1,2 = 0.1 σ1,2 = 0.9

Method Bias ± SE (σ̂/σ) ‖β̂ − β∗‖2 Bias ± SE (σ̂/σ) ‖β̂ − β∗‖2
λ1 5·5 ± 0·4 8·7 2·5 ± 0·3 5·3

PMLE λ2 7·7 ± 0·4 12·1 3·8 ± 0·3 5·4
λ3 9·5 ± 0·4 15·0 5·7 ± 0·3 5·8
λ1 3·2 ± 0·4 7·8 0·3 ± 0·3 5·4

BC λ2 6·2 ± 0·5 11·4 1·3 ± 0·3 5·4
λ3 9·1 ± 0·5 14·9 3·2 ± 0·4 5·6

Scaled λ1 1·9 ± 0·4 7·3 0·1 ± 0·3 5·4
Lasso λ2 5·1 ± 0·5 10·9 0·7 ± 0·3 5·4

λ3 9·0 ± 0·5 14·9 1·9 ± 0·3 5·5
Scaled λ1 −0·2 ± 0·4 4·7 0·1 ± 0·3 8·2
mcp λ2 1·8 ± 0·6 7·4 0·7 ± 0·3 7·1

λ3 7·9 ± 0·8 14·0 1·8 ± 0·3 7·2
Scaled λ1 0·7 ± 0·4 6·0 0·1 ± 0·3 7·7
scad λ2 4·8 ± 0·6 11·0 0·7 ± 0·3 6·7

λ3 8·9 ± 0·5 14·9 1·9 ± 0·3 5·8

PMLE, `1 penalized maximum likelihood estimator; BC, bias-corrected estimator;
mcp, minimax concave penalty; scad, smoothly clipped absolute deviation penalty;
SE, standard erro

We plot the histogram of the simulated σ̂ for the scaled estimators with the penalty

level λ1 in Figure 2.1, with the approximate normal density superimposed. Since

F (ξ, S) > 1 and |β∗|0(log p)/n > 0.4, the condition for the asymptotic normality

in Theorem 2.2 holds marginally at the best with an approximate variance 1200−1/2 =

0.03. Still, the plots demonstrate a reasonable match between the simulations and the

theory, except for the scaled Lasso and scaled smoothly clipped absolute deviation

penalization in the case of low correlation. For λ2 and λ3, the bias of the scaled

estimators dominates the standard error; see Table 2.1.
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Figure 2.1: Histograms of the simulated σ̂ for the scaled estimators with penalty
level λ1. Top row: σ1,2 = 0.1; Bottom row: σ1,2 = 0.9; Left: the scaled Lasso;
Middle: the scaled minimax concave penalization; Right: the scaled penalization
with smoothly clipped absolute deviation.
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Example 2

We compare the five estimators at the same three penalty levels {λ1, λ2, λ3} as in

Example 1. The experiment has the setting of Example 2 in Fan et al. (2012), with

the smallest signal, b = 1/
√

3. Fan et al. (2012) considered several joint estimators

of (β, σ) using cross-validation. Their results are included without repeating their

experiment. We provide their description of the simulation setting in our notation as

follows: X has independent and identically distributed Gaussian rows with marginal

distribution N(0, 1), corr(xi, xj) = σ1,2 for 1 ≤ i < j ≤ 50 and corr(xi, xj) = 0

otherwise, (n, p) = (200, 2000), nonzero coefficients βj = 1/
√

3 for j ∈ S =

{1, 2, 3}, and y −Xβ ∼ N(0, σ2I) with σ = 1. Two configurations are considered:

independent columns xj with σ1,2 = 0 and correlated first 50 columns xj with

σ1,2 = 0.5. Again, we set γ = 2/(1−max |x′kxj|/n) for the concave penalties.

Our simulation results are presented in the top section of Table 2.2, while the results

in Fan et al. (2012) are included in the bottom section. In addition to the bias and the

standard error for the estimation of the noise level σ, we report the average model size

|Ŝ| and the relative frequency of sure screening Ŝ ⊃ S as in Fan et al. (2012), where

Ŝ = {j : β̂j 6= 0} is the selected model.

The scaled Lasso at λ1 and the scaled minimax concave penalized selection at λ2

clearly outperform the cross-validation methods for the estimation of σ, especially

for the standard error. The results with the average model size and sure screening

probability show that cross-validation methods select about 30 variables when the true

model size is 3. The scaled estimators choose correct models at the universal penalty

level {(2/n) log p}1/2 with large probabilities.
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Table 2.2: Performance of five methods in Example 2 at three penalty levels λ0,
λj = {2j−1(log p)/n}1/2, j = 1, 2, 3, and the results in Fan et al. (2012). The
estimation performance across 100 replications in terms of average bias (×10)
and standard error (×10) of σ̂/σ, average model size and relative frequency of
sure screening are tabulated for each method.

σ1,2 = 0 σ1,2 = 0.5
Method Bias ± SE (σ̂/σ) AMS SSP Bias ± SE (σ̂/σ) AMS SSP

λ1 1·7 ± 0·6 7·8 1·0 1·5 ± 0·5 9·8 1·0
PMLE λ2 2·6 ± 0·6 3·1 1·0 2·5 ± 0·5 5·2 1·0

λ3 3·7 ± 0·7 2·0 0·3 3·8 ± 0·5 3·8 1·0
λ1 0·5 ± 0·6 12·3 1·0 0 ± 0·5 15·7 1·0

BC λ2 1·6 ± 0·6 3·2 1·0 0·7 ± 0·5 5·8 1·0
λ3 3·4 ± 0·7 2·1 0·4 2·0 ± 0·6 4·3 1·0

Scaled λ1 −0·1 ± 0·6 15·0 1·0 −0·5± 0·6 18·8 1·0
Lasso λ2 1·3 ± 0·7 3·2 1·0 0·4 ± 0·6 6·1 1·0

λ3 3·2 ± 0·7 2·1 0·4 1·3 ± 0·6 4·5 1·0
Scaled λ1 −1·3 ± 0·8 14·3 1·0 −0·8± 0·6 14·0 1·0
mcp λ2 −0·1 ± 0·6 3·2 1·0 0·1 ± 0·6 3·3 1·0

λ3 1·5 ± 1·4 2·5 0·6 0·7 ± 0·6 3·0 1·0
Scaled λ1 −0·6 ± 0·6 14·1 1·0 −0·5± 0·6 14·4 1·0
scad λ2 0·8 ± 0·9 3·1 1·0 0·3 ± 0·6 3·9 1·0

λ3 3·2 ± 0·7 2·2 0·4 1·2 ± 0·6 3·9 1·0
N-LASSO −5·3 ± 2·0 36·6 1·0 −4·6 ± 2·0 29·6 1·0
RCV-SIS 0·2 ± 1·4 50·0 0·9 −0·1 ± 1·4 50·0 1·0
RCV-ISIS 0·5 ± 1·7 30·9 0·7 0·2 ± 1·2 29·0 0·8

RCV-LASSO 0 ± 1·3 31·1 0·9 −0·3 ± 1·1 26·5 1·0
P-SCAD −1·4 ± 1·1 30·0 1·0 −1·2 ± 1·7 29·9 1·0

CV-SCAD 0·7 ± 1·2 30·0 1·0 0·9 ± 1·3 29·9 1·0
P-LASSO −0·8 ± 2·1 36·5 1·0 −0·9 ± 1·5 29·6 1·0

CV-LASSO 1·4 ± 1·1 36·5 1·0 0·8 ± 1·0 29·6 1·0

PMLE, `1 penalized maximum likelihood estimator; BC, bias-corrected estimator; mcp,
minimax concave penalty; scad, smoothly clipped absolute deviation penalty; N, naive;
RCV, refitted cross-validation; SIS, sure independent screening; ISIS, iterative SIS; P, plug-in
method with degrees-of-freedom correction; CV, cross-validation; SE, standard error; AMS,
average model size; SSP, relative frequency of sure screening.
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Table 2.3: Selected probe sets by four methods in the real data example: the Lasso
with cross-validation, the Lasso with adjusted cross-validation, the scaled Lasso
and minimax concave penalized selection at λ2 = {2(log p)/n}1/2. The estimated
coefficients (×103) are tabulated for each method.

Probe ID C-V lasso C-V lasso/LSE Scaled lasso Scaled MCP
#cov 200 3000 200 3000 200 3000 200 3000
1369353 at −9 · 12 −7·13* −7·09 −2·79* −7·3 −4·03*
1370052 atM 3·65
1370429 at −3·22 −8·94* −11·06 −8·78* −9·36 −16·37*
1371242 at −6·66
1374106 at 8·88* 10·58* 7·33* 6·14* 7·45* 7·01* 8·47* 10·02*
1374131 at 4·07 0·80
1375585 atM 0·58
1384204 at 0·70 0·70
1387060 atM 3·50*
1388538 atM 1·42
1389584 at 17·16* 25·39* 20·07* 19·61* 19·97* 21·18* 45·75* 50·49*
1393979 at −1·81 −0·22 −0·4
1379079 atM −1·43*
1379495 at 4·84 1·73 1·71 1 · 00
1379971 at 13·56* 13·1 11·19* 8·81 11·25* 9·52
1380033 at 8·69 2·76 2·97 6·75*
1380070 atM 0·19
1381787 at −2·05 −2·01 −2·11
1382452 atM 12·93 1·63 12·91*
1382835 at 12·64 5·79 3·73 4·15
1383110 at 9·03* 19·99 15·10* 16·43 14·97* 16·69 15·80* 23·01*
1383522 at 3·03* * *
1383673 at 5·54 6·12* 6·07 6·15* 6·08 6·47*
1383749 at −13·86 −10·85* −10·84 −6·7* −11·02 −8·07* −2·74 * −1·11*
1383996 at 25·01* 17·82* 18·61* 14·30* 18·88* 15·52* 25·07* 19·19*
1385687 atM −0·99
1386683 at 4·60* 2·90*
1390788 a at 0·92
1392692 atM 1·74
1393382 at 2·43
1393684 at 1·59
1395076 atM 0·23
1397489 atM 3·33
Model size 19 20 15 10 15 14 7 6
λ̂ = σ̂λ0 0.0103 0.0163 0.025 0.035 0.0243 0.0315 0.0244 0.0304

C-V Lasso/LSE, the Lasso estimator with the adjusted cross-validation; mcp, minimax concave penalty;
#cov, the number of covariates considered; M, probes not in the smaller set of 200 probes; * , covariates
selected by stability selection.
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2.4.2 Real data example

We study a data set containing 18976 probes for 120 rats, which is reported in Scheetz

et al. (2006). Our goal is to find probes that are related to that of gene TRIM32,

which has been found to cause Bardet–Biedl syndrome, a genetically heterogeneous

disease of multiple organ systems including the retina. We consider linear regression

with the probe from TRIM32, 1389163 at, as the response variable. As in Huang et al.

(2008), we focus on 3000 probes with the largest variances among the 18975 covariates

and consider two approaches. The first approach is to regress on these p = 3000

probes. The second approach is to regress on the 200 probes among the 3000 with

the largest marginal correlation coefficients with TRIM32. For the cross-validation

Lasso, we randomly partition the data 1000 times, each with a training set of size 80

and a validation set of size 40. For each partition, the penalty level λ is selected by

minimizing the prediction mean squared error in the validation set. Then we compute

the Lasso estimator with all 120 observations at the penalty level equal to the median

of the selected penalty levels with the 1000 random partitions. Since cross-validation

tends to choose a larger model, we also consider an adjusted version using the cross-

validated error of the least squares estimator with covariates selected by the Lasso. For

the minimax concave penalty, we set γ = 2/(1− σ0.95) = 6.37, where σ0.95 is the 95%

quantile of |x′kxj|/n.

Table 2.3 shows the probe sets identified by four methods: the cross-validation

lasso, its adjusted version, the scaled lasso at at universal penalty level λ2 =

{2(log p)/n}1/2, and the minimax concave penalized selection at the same penalty

level. We apply stability selection (Meinshausen & Bühlmann, 2010) to check the

reliability of selection. Let W1, . . . ,Wp be independent variables with P (W = 0.2) =
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Figure 2.2: Mean squared error of the Lasso estimator against penalty level λ. Solid
line: testing error for fixed λ; dotted line: training error for fixed λ; dashed line:
testing error for the scaled Lasso.

P (W = 1) = 1/2 and

β̂
W

= arg min
b

‖y −Xb‖22
2n

+ λ̂

p∑
j=1

|bj|/Wj,

where λ̂ is the penalty level chosen by individual methods. The stability selection

selects variables with nonzero estimated β̂Wj over 50 times in 100 replications. We

observe that the scaled minimax concave penalized selector produces most sparse and

most stable selection, followed by the adjusted cross-validation, the scaled lasso and

then the plain cross-validation. The selection results are consistent among the four

methods in the sense that the selected models are almost nested. Since the model size is

between 6 and 8 by stability selection in all 8 cases and by the scaled minimax concave

penalized selection for both p = 200 and p = 3000, these two methods provide most

consistent results. The scaled lasso and the adjusted cross-validation yield identical

lasso and stability selections for p = 200 and identical stability selection for p = 3000.
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We also compare the prediction performance of the scaled Lasso with that of the

Lasso with the best fixed penalty level. We compute the scaled estimators in 1000

replications. In each replication, the dataset is split at random into a training set with

80 observations and a test set with 40 observations. The prediction mean squared error

is computed within the test set, while the scaled estimators and the Lasso estimator with

fixed penalty level λ are computed based on the training set. Figure 2.2 demonstrates

that in prediction, the scaled Lasso with λ0 chosen as λ2 = {2(log p)/n}1/2 performs

almost as well as the Lasso with the optimal fixed λ.

In addition, we compare the prediction performance of all the estimators mentioned

in this section. In each replication, we compute the penalized maximum likelihood

estimator, its bias-correction, and scaled penalization methods based on the training

set of 80 observations. For cross-validation, the training set of 80 observations is

further partitioned at random 100 times into two groups of sizes 60 and 20, and a

penalty level is selected by minimizing the estimated loss in the smaller group for the

Lasso estimator based on the larger group. This selected penalty is then used for the

Lasso with the entire training set. Thus, the cross-validation Lasso is also based on

the training set with 80 observations. For the adjusted cross-validation with the least

squares cross-validated error, two estimators are considered: the Lasso estimator with

the λ selected by the adjusted cross-validation, and the least squares estimator with the

covariates selected by the Lasso. In Table 2.4, we present the medians of the prediction

mean squared error and the selected model size in the 200 replications. The scaled

Lasso has comparable prediction performance as cross-validation. Again, Table 2.4

suggests that original cross-validation tends to choose larger models, while adjusted

cross-validation leads to results comparable with the scaled Lasso.
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Table 2.4: Prediction performance of eight methods in the real data
example at three penalty levels λ0, λj = {2j−1(log p)/n}1/2(j = 1, 2, 3).
The prediction mean squared error (×102), the estimated model size and
the correlation coefficient (×102) between fitted and observed responses
are tabulated for each method.

#cov = 200 #cov = 3000
Method P-MSE ‖β̂‖0 corr P-MSE ‖β̂‖0 corr
PMLE λ1 0·94 12 67·1 0·97 12 63·5

λ2 0·97 9 63·5 1·04 7 59·8
λ3 1·09 6 57·6 1·23 3 52·2

BC λ1 0·93 13 68·2 0·96 15 64·6
λ2 0·95 10 64·7 1·01 9 60·9
λ3 1·04 7 59·4 1·17 4 53·1

Scaled Lasso λ1 0·93 13 68·4 0·96 17 64·3
λ2 0·94 10 65·2 0·98 10 61·7
λ3 1·02 7 60·8 1·13 5 53·9

Scaled mcp λ1 1·03 6 66·4 1·08 8 62·3
λ2 1·03 5 63·4 1·06 5 60·0
λ3 1·12 3 59·1 1·18 2 54·9

Scaled scad λ1 1·00 11 68·9 1·01 14 65·1
λ2 0·95 10 68·8 0·98 10 65·9
λ3 1·01 8 65·0 1·09 5 59·7

C-V Lasso 0·94 15 69·0 0·99 25 63·8
C-V Lasso/LSE1 0·97 11 64·8 0·98 12 62·5
C-V Lasso/LSE2 0·97 11 66·8 1·09 12 62·6

PMLE, `1 penalized maximum likelihood estimator; BC, bias-corrected
PMLE; mcp, minimax concave penalty; scad, smoothly clipped absolute
deviation penalty; C-V Lasso/LSE1, the Lasso with adjusted cross-
validation; C-V Lasso/LSE2, the least squares estimator with the Lasso
selection and adjusted cross-validation, #cov, the number of covariates
considered; corr, the correlation coefficient between fitted and observed
responses; P-MSE, prediction mean squared error.
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2.5 Discussion

Although theory for the scaled Lasso is more complete, several theoretical and

simulation studies (Fan & Peng, 2004; Zhang, 2010) have supported the use of

concave penalized least squares estimators with the minimax concave penalty or

the smoothly clipped absolute deviation penalty. For variable selection, the Lasso

requires a restrictive irrepresentability condition on the design matrix (Meinshausen &

Bühlmann, 2006; Zhao & Yu, 2006), while concave penalized least squares estimators

require weaker conditions. Model selection consistency implies oracle properties

in estimation and prediction in the sense of matching the performance of an oracle

expert with the knowledge of the set of relevant variables S = {j : β∗j 6= 0}. An

important issue with the concave penalized least squares estimator is the multiplicity

of local minimizers of the penalized loss. In this regard, Zhang (2010) proved selection

consistency and oracle properties of the minimax concave penalization estimator for

the local minimum computed by the penalized linear unbiased selection algorithm.

Throughout this chapter, we have considered λ0 = A{(2/n) log p}1/2 with A > 1.

This choice is somewhat conservative from a number of points of view. Simulation

results suggest that the requirement A > 1 is a mathematical technicality. If

|X ′ε/n|∞ ≤ λ∗ with large probability for a standard normal vector ε, the theoretical

results in this paper are all valid under prβ,σ when λ0 is replaced by the smaller

min(λ0, Aλ∗). The value of λ∗ can be estimated by simulation with the given X and

a separately generated ε. A somewhat sharper choice of λ0 is A{(2/n) log(p/s)}1/2

with the unknown s = |β∗|0 (Zhang, 2010), or its simulated version with λ∗ =

max|T |=s |X ′T ε|2/|T |1/2. The difference between the two λ0 is limited unless log p =

{1 + o(1)} log n.

In the proof of our theoretical results for the scaled Lasso, we use oracle inequalities

for fixed penalty which unify and somewhat sharpen existing results. We now discuss
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this. Define

η∗(λ, ξ) = min
T

2−1
[
η(λ, ξ,β∗, T ) +

{
η2(λ, ξ,β∗, T )− 16λ2‖β∗T c‖21

}1/2] (2.25)

as a sharper version of η(λ, ξ,β∗, T ) in (2.9).

Theorem 2.3. Let β̂(λ) be the minimizer of (2.1) with ρ(t) = t. Let β∗ ∈ IRp be a

target vector and ξ > 1. Then, in the event ‖X ′(y −Xβ∗)‖∞/n ≤ λ(ξ − 1)/(ξ + 1),

we have

‖Xβ̂(λ)−Xβ∗‖22/n ≤ min
{
η∗(λ, ξ), η

∗(λ, ξ)
}

(2.26)

with η∗(λ, ξ) in (2.11). Moreover, in the same event and with µ(λ, ξ) in (2.15),

‖β̂(λ)− β∗‖1 ≤ µ(λ, ξ). (2.27)

The interpretations of (2.26) and (2.27) are given in (2.14) and (2.16), along with

their relationship to several existing results. We note here that the condition κ(ξ, S) �

1 for (2.14) and (2.16), weaker than the parallel condition on the restricted eigenvalue

(Bickel et al., 2009), can be slightly weakened by using F1(ξ, S) in (3.9) (Ye & Zhang,

2010).

A parallel study Belloni et al. (2011) expressed the same estimator of β alone in a

different format and considered a different algorithm, called square-root Lasso. We

note that (2.3) can be easily implemented with existing algorithms, while the loss

function in β in Belloni et al. (2011) is identical to the minimum of (2.5) over σ.

Also, we note that (2.3) and (3.5) allow concave penalties and degrees of freedom
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adjustments as in Zhang (2010).

2.6 Proofs

Here we prove Proposition 2.1, Theorem 2.3, Theorem 2.1 and then Theorem 2.2.

Proof of Proposition 2.1. (i) Since β̂ = β̂(σλ0) is a solution of (3.4) at λ = σλ0,

{
(∂/∂w)Lλ0(w, σ)

∣∣∣
w=β̂(σλ0)

}
j

= 0,

for all β̂j(σλ0) 6= 0. Since {j : β̂j(λ)} is unchanged in a neighborhood of σλ0,

[(∂/∂σ){β̂(σλ0)/σ}]j = 0 for β̂j(σλ0) = 0. Thus,

∂

∂σ
Lλ0{β̂(σλ0), σ} =

∂

∂t
Lλ0{β̂(σλ0), t}

∣∣∣
t=σ

=
1− a

2
− ‖y −Xβ̂(σλ0)‖22

2nσ2
.

(ii) The convergence of (2.3) and (3.5) follows from the joint convexity of Lλ0(β, σ).

The scale invariance follows from L0(cβ, cσ;X, cy) = cL0(β, σ;X,y), where

L0(β, σ;X,y) expresses the dependence of (2.5) on the data (X,y).

Proof of Theorem 2.3. (i) Let β̂ = β̂(λ). Since σ∗z∗ = ‖X ′(y −Xβ∗)‖∞/n and

ρ̇(|β̂j|/λ) = 1 for β̂j 6= 0, the inner product of w − β̂ and the Karush–Kuhn–Tucker

condition (3.4) yields

(Xβ̂ −Xw)′(Xβ̂ −Xβ∗)/n ≤ λ(‖w‖1 − ‖β̂‖1) + σ∗z∗‖w − β̂‖1.
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Since 2(Xβ̂ −Xw)′(Xβ̂ −Xβ∗) = ‖Xβ̂ −Xw‖22 + ‖Xh‖22 − ‖Xβ∗ −Xw‖22,

this gives the basic inequality (2.24). Let h = β̂−β∗. Since σ∗z∗ ≤ λ(ξ− 1)/(ξ+ 1),

λ{‖w‖1 − ‖β̂‖1} + σ∗z∗‖w − β̂‖1 is no greater than b‖(w − β̂)T‖1 + 2λ‖wT c‖1 −

(b/ξ)‖(w − β̂)T c‖1 with b = 2ξλ/(ξ + 1). Thus, (2.24) implies

‖Xβ̂ −Xw‖22/n+ ‖Xh‖22/n+ (2b/ξ)‖(w − β̂)T c‖1 ≤ 2c+ 2b‖(w − β̂)T‖1(2.28)

with c = ‖Xβ∗ −Xw‖22/(2n) + 2λ‖wT c‖1. For T = ∅ and w = β∗, (2.28) directly

yields |Xh|22/n ≤ c = 2λ|β∗|1. For general {w, T}, we want to prove

‖Xh‖22/n ≤ η(λ, ξ,w, T ) = 2c+ b2/a, a = κ2(ξ, T )/|T |.

It suffices to consider ‖Xh‖22/n ≥ 2c. In this case, β̂ − w ∈ C (ξ, T ) by (2.28), so

that by (2.10)

a‖(w − β̂)T‖21 ≤ ‖Xβ̂ −Xw‖22/n. (2.29)

Let x = ‖(w − β̂)T‖1 and y = ‖Xh‖22/n. It follows from (2.28) and (2.29) that

ax2 + y ≤ 2c+ 2bx. For such (x, y), y − 2c ≤ maxx{2bx− ax2} = b2/a. This gives

y ≤ 2c+ b2/a = η(λ, ξ,w, T ).

For w = β∗, it suffices to consider the case y > c = 2λ‖β∗T c‖1, where the cone

condition holds for β̂ − β∗. Now, (x, y) satisfies ax2 ≤ y ≤ c + bx. The maximum of
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y, attained at ax2 = c+ bx, is

c+ b{b+ (b2 + 4ac)1/2}/(2a) =
[
η(λ, ξ,β∗, T ) + {η2(λ, ξ,β∗, T )− 4c2}1/2

]
/2.(2.30)

(ii) Let 0 < ν < 1 and T ⊂ {1, . . . , p}. It follows from (2.28) with w = β∗ that

(1 + ξ)‖Xh‖22/n+ 2λ‖hT c‖1 ≤ 2λ(ξ + 1)‖β∗T c‖1 + 2ξλ‖hT‖1.

It suffices to consider ν|h|1 ≥ (ξ + 1)|β∗T c |1. In this case

(1 + ξ)‖Xh‖22/n+ 2λ(1− ν)‖hT c‖1 ≤ 2λ(ξ + ν)‖hT‖1.

Thus, (1− ν)‖hT c‖1 ≤ (ξ + ν)‖hT‖1, or equivalently h ∈ C {(ξ + ν)/(1− ν), T}. It

follows from (2.10) that ‖Xh‖22/n ≥ ‖hT‖21κ2{(ξ + ν)/(1− ν), T}/|T |, so that

(1 + ξ)‖hT‖21κ2{(ξ + ν)/(1− ν), T}/|T |+ 2(1− ν)λ‖hT c‖1 ≤ 2(ξ + ν)λ‖hT‖1.(2.31)

Let x = ‖hT‖1 and y = ‖hT c‖1. Write (2.31) as ax2 + by ≤ cx. Subject to this

inequality, the maximum of x + y is maxx≥0{x + (cx − ax2)/b}. This maximum,

attained at 2ax = b+ c, is x(b+ c)/(2b) = (b+ c)2/(4ab). Thus,

‖h‖1 ≤
{2(ξ + 1)λ}2|T |

4(1 + ξ)κ2{(ξ + ν)/(1− ν), T}{2(1− ν)λ}
=

(ξ + 1)λ|T |/(1− ν)

2κ2{(ξ + ν)/(1− ν), T}
.

This gives ‖h‖1 ≤ µ(λ, ξ) for ν|h|1 ≥ (ξ + 1)|β∗T c|1.
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Proof of Theorem 2.1. Assume τ0 < 1 without loss of generality. Consider t ≥

σ∗(1− τ0) and the penalty level λ = tλ0 for the Lasso. Since z∗σ∗ ≤ σ∗(1− τ0)λ0(ξ−

1)/(ξ + 1) ≤ λ(ξ − 1)/(ξ + 1) and σ∗ = ‖y −Xβ∗‖2
/
n1/2, the Cauchy–Schwarz

inequality and (2.26) imply

∣∣‖y −Xβ̂(tλ0)‖2
/
n1/2 − σ∗

∣∣ ≤ ‖Xβ̂(tλ0)−Xβ∗‖2
/
n1/2 ≤ η1/2∗ (tλ0, ξ).

Since η1/2∗ (tλ0, ξ) ≤ σ∗τ0 for t < σ∗, the derivative (2.7) of the loss with a = 0 satisfies

2t2
∂

∂t
Lλ0{β̂(tλ0), t} = t2 − ‖y −Xβ̂(tλ0)‖22/n ≤ t2 − (σ∗)2(1− τ0)2 = 0

at t = σ∗(1−τ0). This implies σ̂ ≥ σ∗(1−τ0) by the strict convexity of the profile loss

(2.5) in σ. For t > σ∗, η1/2∗ (tλ0, ξ) ≤ tτ0 by (2.9) and (2.11), so that at t = σ∗/(1−τ0),

t2 − ‖y −Xβ̂(tλ0)‖22/n ≥ t2 −
(
σ∗ + tτ0

)2 ≥ 0.

This implies σ∗ ≥ σ̂(1− τ0) by the strict convexity of (2.5) in σ. Thus, the first part of

(2.12) holds. Moreover,

‖Xβ̂ −Xβ∗‖2
/
n1/2 ≤ η1/2∗ (σ̂λ0, ξ) ≤ η1/2∗ {σ∗λ0/(1− τ0), ξ} ≤ σ∗τ0/(1− τ0).

Finally, since prβ,σ[‖X ′(y − Xβ)/n‖∞ ≤ σ{(2/n) log p}1/2] → 1, (2.13) follows

from (2.12).

The proof of Theorem 2 requires the following lemma.
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Lemma 2.1. Let Tm have the t-distribution with m degrees of freedom. Then, there

exists εm → 0 such that for all t > 0

pr
[
T 2
m > m{e2t2/(m−1) − 1}

]
≤ (1 + εm)e−t

2

/(π1/2t). (2.32)

Proof of Lemma 2.1. Let x = [m{e2t2/(m−1)−1}]1/2. Since Tm has the t-distribution,

pr
(
T 2
m > x2

)
=

2Γ{(m+ 1)/2}
Γ(m/2)(mπ)1/2

∫ ∞
x

(
1 +

u2

m

)−(m+1)/2

du

≤ 2Γ{(m+ 1)/2}
xΓ(m/2)(mπ)1/2

∫ ∞
x

(
1 +

u2

m

)−(m+1)/2

udu

=
2Γ{(m+ 1)/2}m

xΓ(m/2)(mπ)1/2(m− 1)

(
1 +

x2

m

)−(m−1)/2
.

Since x ≥ t{2m/(m− 1)}1/2,

pr
(
T 2
m > x2

)
≤
√

2Γ{(m+ 1)/2}
Γ(m/2)(m− 1)1/2

e−t
2

tπ1/2
= (1 + εm)

e−t
2

tπ1/2
,

where εm = {2/(m− 1)}1/2Γ{(m+ 1)/2}/Γ(m/2)− 1→ 0 as m→∞.

Proof of Theorem 2.2. We need to express τ 2∗ as a function of σ at σ = σ∗ in the

proof. Define

φ(σ) = λ0µ(σλ0, ξ)/σ, φ+ =
φ(σ∗)ξ

(ξ + 1){1− φ(σ∗)}+
, φ− =

φ(σ∗)(ξ − 1)

ξ + 1
.

We have τ 2∗ = φ(σ∗) < 1, φ− ≤ φ(σ∗) and φ+ ≤ φ(σ∗)/(1− φ(σ∗).

(i) Consider z∗ ≤ (1 − φ−)λ0(ξ − 1)/(ξ + 1). Let λ = tλ0 and h = β̂(λ) − β∗.
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Since ‖X ′(y −Xβ∗)/n‖∞ = z∗σ∗, the Karush–Kuhn–Tucker condition (3.4) gives

−(z∗σ∗ + λ)‖h‖1 ≤ (Xh)′{y −Xβ∗ + y −Xβ̂(λ)}/n

= (σ∗)2 − ‖y −Xβ̂(λ)‖22/n

= (Xh)′{2(y −Xβ∗)−Xh}/n ≤ 2z∗σ∗‖h‖1 (2.33)

as lower and upper bounds for (σ∗)2 − ‖y −Xβ̂(λ)‖22/n. This is a key point in the

proof.

For t ≥ σ∗(1− φ−), z∗σ∗ ≤ tλ0(ξ− 1)/(ξ + 1) = λ(ξ− 1)/(ξ + 1), so that (2.27)

in Theorem 2.3 implies ‖h‖1 ≤ µ(tλ0, ξ). It follows (2.33) that for t = σ∗(1− φ−),

t2 − ‖y −Xβ̂(tλ0)‖22/n ≤ t2 − (σ∗)2 + 2z∗σ∗µ(tλ0, ξ)

≤ 2t(t− σ∗) + 2tλ0(ξ − 1)(ξ + 1)−1µ(σ∗λ0, ξ) = 0,

due to φ− = (ξ − 1)(ξ + 1)−1φ(σ∗) = (ξ − 1)(ξ + 1)−1λ0µ(σ∗λ0, ξ)/σ
∗. As in the

proof of Theorem 2.1, we find σ̂/σ∗ ≥ 1−φ− by (2.7) and the strict convexity of (2.5)

in σ.

Now we prove σ̂/σ∗ ≤ 1+φ+. For t > σ∗, µ(tλ0, ξ) ≤ (t/σ∗)µ(σ∗λ0, ξ) by (2.15).

Thus, since (ξ − 1)/(ξ + 1) + 1 = 2φ+{1− φ(σ∗)}/φ(σ∗) and φ+ ≤ (1 + φ+)φ(σ∗),

for t/σ∗ = 1 + φ+ (2.33) and (2.27) imply that

t2 − ‖y −Xβ̂(tλ0)‖22/n

≥ t2 − (σ∗)2 − (z∗σ∗ + tλ0)µ(tλ0, ξ)
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≥ (t+ σ∗)σ∗φ+ − {(ξ − 1)/(ξ + 1) + 1 + φ+}tλ0µ(σ∗λ0, ξ)

= (σ∗)2
(
(2 + φ+)φ+ − [2φ+{1− φ(σ∗)}/φ(σ∗) + φ+](1 + φ+)φ(σ∗)

)
= (σ∗)2φ+{φ(σ∗)(1 + φ+)− φ+} > 0.

It follows that σ̂/σ∗ ≤ 1 + φ+ by convexity.

Since 1−φ− ≤ σ̂/σ∗ ≤ 1+φ+, ‖β̂(σ̂λ0)−β∗‖1 ≤ µ(σ̂λ0, ξ) ≤ µ(σ∗λ0, ξ)(1+φ+).

This completes the proof of (2.17).

(ii) Let zj = x′j(y −Xβ∗)/(nσ∗) with z∗ = maxj≤p |zj|. Under prβ∗,σ, ε∗ = y −

Xβ∗ is a vector of independent and identically distributed normal variables with zero

mean. Since σ∗ = ‖y−Xβ∗‖/n1/2, zj/{(1− z2j )/(n− 1)}1/2 follows a t-distribution

with n − 1 degrees of freedom. Lemma 2.1 with m = n − 1 and t2 = log(p/ε) > 2

implies

prβ∗,σ

[(n− 1)z2j
1− z2j

> (n− 1){e2t2/(n−2) − 1}
]

≤ 1 + εn−1
π1/2t

e−t
2

=
(1 + εn−1)ε/p

{π log(p/ε)}1/2
. (2.34)

Since ea − 1 ≤
∑∞

k=1 a
k/2k−1 = a/(1− a/2) for any 0 < a < 2,

(n− 1){e2t2/(n−2) − 1} ≤ 2(n− 1)t2/(n− 2)

1− t2/(n− 2)
≤ 2(n− 1)t2/n

1− 2t2/n
. (2.35)

The combination of (2.34) and (2.35) yields

prβ∗,σ

[
|zj| > {2 log(p/ε)/n}1/2

]
= prβ∗,σ

{(n− 1)z2j
1− z2j

>
2(n− 1)t2/n

1− 2t2/n

}
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≤ prβ∗,σ

{(n− 1)z2j
1− z2j

> (n− 1)(e
2t2

n−2 − 1)
}

≤ (1 + εn−1)(ε/p)/{π log(p/ε)}1/2.

Since λ0 ≥ {(2/n) log(p/ε)}1/2(ξ + 1)/{(ξ − 1)(1 − φ−)}, this bounds the tail

probability of z∗ = maxj≤p |zj| by the union bound. Since n(σ∗/σ)2 follows the χ2
n

distribution, n1/2(σ∗/σ−1) converges to N(0, 1/2) in distribution, which then implies

(2.18) by (2.17) under φ(σ) = o(n−1/2).
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Chapter 3

Estimation of Matrix Inversion

3.1 Introduction

This chapter concerns the estimation of the matrix inversion Θ∗ satisfying ΣΘ∗ ≈ I ,

given a data matrix Σ. When Σ is a sample covariance matrix, our problem is the

estimation of the inverse of the corresponding population covariance matrix. The

inverse covariance matrix is also called precision matrix or concentration matrix. With

the dramatic advances in technology, the number of covariates is of greater order

than the sample size n in many statistical and engineering applications. In this case,

the sample covariance matrix is always singular and thus it is difficult to compute

the precision matrix. In such cases, a certain type of sparsity condition is required

for proper estimation the precision matrix and for theoretical investigation of the

estimation problem. In this paper, we will impose for simplicity an `0 (maximum

degree) sparsity condition on the target inverse matrix Θ∗.

Many approaches have been proposed to estimate the sparse inverse matrix in the

high dimensional setting. The `1 penalization is one of the most popular methods.

Lasso-type methods, or convex minimization algorithms with the `1 penalty on all

entries of Θ∗, have been discussed by Banerjee et al. (2008), Friedman et al. (2008),

and more, and by Yuan & Lin (2007) with `1 penalization on the off-diagonal matrix

only. This is refereed to as the graphical Lasso (GLasso) due to the connection of the

precision matrix to Gaussian Markov graphical models. In this GLasso framework,

Rothman et al. (2008) proved the convergence rate {((p + s)/n) log p}1/2 in the
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Frobenius norm and {(s/n) log p}1/2 in the spectrum norm, where s is the number of

nonzero entries in the off-diagonal matrix. Ravikumar et al. (2008) provided sufficient

conditions for model selection consistency of this `1-regularized MLE. Lam & Fan

(2009) studied on a general penalty function and achieved a sharper bound of order

{(s/n) log p}1/2 under the Frobenius norm for the `1 penalty. Similar convergence rates

have been also studied under the Frobenius norm in a unified framework for penalized

estimation in Negahban et al. (2009). Since the spectrum norm can be controlled

via the Frobenius norm, this provides a sufficient condition (s/n) log p → 0 for the

convergence under the spectrum norm to the unknown precision matrix. This is a very

strong condition since s is of the order dp for banded precision matrices, where d is the

matrix degree, i.e. the largest number of nonzero entries in the columns.

Some recent work suggests a weaker sufficient condition with the matrix degree.

Yuan (2010) estimated each column of the inverse matrix by Dantzig selector and then

seek a symmetric matrix close to the column estimation. When `1 norm of the precision

matrix is bounded, this method can achieve a convergence rate of order d{(log p)/n}1/2

based on several matrix norms. The CLIME estimator, introduced by Cai et al. (2011),

has the same order of convergence rate, which uses the plug-in method with Dantzig

selector to estimate each column, but followed by a simpler symmetrization step. They

also require the boundedness of the `1 norm of the unknown. In Yang & Kolaczyk

(2010), the Lasso is applied to estimate the columns of the target matrix under the

assumption of equal diagonal, and the estimation error is studied in the Frobenius norm

for p = nν . This column-by-column idea reduces a graphical model to a regression

model. It was first introduced in Meinshausen & Bühlmann (2006) for identifying

nonzero variables in a graphical model, called neighborhood selection.

In this chapter, we propose to apply the scaled Lasso, introduced in Chapter 2,

column by column to estimate a precision matrix in the high dimensional setting.

Based on the connection of precision matrix to linear regression by the block inversion
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formula, we construct a column estimator with the scaled Lasso, a joint estimator for

the regression coefficients and noise level. Since we only need the sample covariance

matrix in our procedure, this estimator could be extended to generate an approximate

inverse of a nonnegative data matrix in a general setting. This scaled Lasso algorithm

provides a fully specified map from the space of nonnegative-definite matrices to the

space of symmetric matrices. For each column, the penalty level of the scaled Lasso is

determined by data via convex minimization, without using cross-validation.

We study theoretical properties of the proposed estimator for a precision matrix

under a normality assumption. More precisely, we assume that the data matrix is the

sample covariance matrix Σ = X ′X/n, where the rows ofX are iidN(0,Σ∗). Under

conditions on the spectrum norm and degree of the inverse of Σ∗, we prove that the

proposed estimator guarantees the rate of convergence of order d{(log p)/n}1/2 in the

spectrum norm. The conditions are weaker than those in the existing analyses of other

`1 algorithms, which typically require the boundedness of the `1 norm. When the `1

norm of the target matrix diverges to infinity, the analysis of the proposed estimator

guarantees a faster convergence rate than that of the existing literature. We state this

main result of this chapter in the following theorem.

Theorem 3.1. Let Θ̂ be the scaled Lasso estimator, defined in (3.5), (3.6) and (3.7)

below, based on n iid observations from N(0,Σ∗). Let ρ∗ and ρ∗ be the smallest and

largest eigenvalues of correlation matrix of Σ∗, Θ∗ be the inverse of Σ∗ and d =

maxi #{j : Θ∗ij 6= 0} be the maximum degree of Θ∗. Suppose that d
√

(log p)/n→ 0,

the diagonal entries of the target matrix Θ∗ are uniformly bounded, ρ∗ is bounded from

0 and (ρ∗/ρ∗){(d/n) log p}1/2 < a for a small fixed a. Then, the spectrum norm of the
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estimation error Θ̂−Θ∗ is bounded by

‖Θ̂−Θ∗‖2 = OP (d
√

(log p)/n).

The convergence of the proposed scaled Lasso estimator under the sharper

spectrum norm condition on Θ∗, instead of the stronger bounded `1 condition, is not

entirely technical. It is a direct consequence of the faster convergence rate of the scaled

Lasso estimator of the noise level in linear regression. To the best of our knowledge, it

is unclear if other `1 algorithms also achieve this fast convergence rate, either for the

estimation of the noise level in linear regression or for the estimation of a precision

matrix under the spectrum norm. However, it is still possible that this difference

between the scaled Lasso and other methods is due to potentially coarser specification

of the penalty level in other algorithms (e.g. cross validation) or a less accurate error

bound in other analyses.

The chapter is organized as follows. In Section 3.2, we present the estimation for

the inversion of a nonnegative definite matrix via the scaled Lasso. In Section 3.3, we

study error bounds of the proposed estimator for precision matrix. Simulation studies

are presented in Section 3.4. In Section 3.5, we discuss oracle inequalities for the

scaled Lasso with unnormalized predictors and the estimation of inverse correlation

matrix. Section 3.6 includes all the proofs.

We use the following notation throughout this chapter. For a vector v =

(v1, . . . , vp), ‖v‖q = (
∑

j |vj|q)1/q is the `q norm with the special ‖v‖ = ‖v‖2 and

the usual extensions ‖v‖∞ = maxj |vj| and ‖v‖0 = #{j : vj 6= 0}. For matrices M ,

M j,∗ is the j-th column of M , MA,B represents the submatrix of M with rows in A

and columns in B, ‖M‖q = sup‖v‖q=1 ‖Mv‖q is the `q matrix norm. In particular,

‖ · ‖2 is the spectrum norm for symmetric matrices. Moreover, we denote the set {j}



41

by j and denote the set {1, . . . , p} \ {j} by −j in the subscripts.

3.2 Matrix inversion via scaled Lasso

Let Σ be a nonnegative-definite data matrix and Θ∗ be a positive-definite target matrix

with ΣΘ∗ ≈ I . In this section, we describe the relationship between positive-definite

matrix inversion and linear regression and propose an estimator for Θ∗ via scaled

Lasso, a joint convex minimization for the estimation of regression coefficients and

noise level.

We use scaled Lasso to estimate Θ∗ column by column. Define σj > 0 and β ∈

IRp×p by

σ2
j = (Θ∗jj)

−1, β∗,j = −Θ∗∗,jσ2
j = −Θ∗∗,j(Θ∗jj)−1. (3.1)

In the matrix form, we have the following relationship

diagΘ∗ = diag(σ−2j , j = 1, . . . , p), Θ∗ = −β(diagΘ∗). (3.2)

Let Σ∗ = (Θ∗)−1. Since (∂/∂b−j)b
′Σ∗b = 2Σ∗−j,∗b = 0 at b = β∗,j , one may

estimate the j-th column of β by minimizing the `1 penalized quadratic loss. In order

to shrink the estimation coefficients on the same scale, we adjust the penalty function

with a normalizing factor, which leads to the `1 penalized quadratic loss as follows,

b′Σb/2 + λ

p∑
k=1

Σ
1/2

kk |bk|

subject to bj = −1. This is actually the Lasso for a linear regression model with

normalized preditors. In practice, we first normalize the predictors by the weights
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Σ
−1/2
kk (k 6= j) and then the minimization problem can be solved by algorithms for the

Lasso estimation. This is similar to Yuan (2010) and Cai et al. (2011) who used the

Dantzig selector to estimate each column. However, one still needs to choose a penalty

level λ and to estimate σj to recover Θ∗ via (3.2). A solution to resolve these two

issues is the scaled Lasso:

{β̂∗,j, σ̂j} = arg min
b,σ

{b′Σb
2σ

+
σ

2
+ λ0

p∑
k=1

Σ
1/2

kk |bk| : bj = −1
}

(3.3)

where λ0 = A
√

2(log p2/ε)/n with a fixed A > 1. This is actually (2.6) with

normalized parameters Σ
1/2

kk bk. Since β′Σ∗β = (diagΘ∗)−1Θ∗(diagΘ∗)−1,

diag
(
β′Σ∗β

)
= (diagΘ∗)−1 = diag(σ2

j , j = 1, . . . , p).

Thus, (3.3) is expected to yield consistent estimates of σj .

In Chapter 2, an iterative algorithm (2.3) is provided to compute the scaled Lasso

estimator (2.6). We rewrite the algorithm in the form of matrices. For each j ∈

{1, . . . , p}, the Lasso path is given by the estimates β̂−j,j(λ) satisfying the following

KKT conditions, for all k 6= j,


Σ
−1/2
kk Σk,∗β̂∗,j(λ) = −λsgn(β̂k,j(λ)), β̂k,j 6= 0,

Σ
−1/2
kk Σk,∗β̂∗,j(λ) ∈ λ[−1, 1], β̂k,j = 0,

(3.4)

where β̂jj(λ) = −1. Based on the Lasso path β̂∗,j(λ), the scaled Lasso estimator

{β̂∗,j, σ̂j} is computed iteratively by

σ̂2
j ← β̂

′
∗,jΣβ̂∗,j, λ← σ̂jλ0, β̂∗,j ← β̂∗,j(λ). (3.5)
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Here the penalty level of the Lasso is determined by the data without using cross-

validation. We then simply take advantage of the relationship (3.2) and compute the

coefficients and noise levels by the scaled Lasso for each column

diagΘ̃ = diag(σ̂−2j , j = 1, . . . , p), Θ̃ = −β̂(diagΘ̃). (3.6)

It is noticed that a good estimator for Θ∗ should be a symmetric matrix. However,

the estimator Θ̃ does not have to be symmetric. We improve this estimator by using a

symmetrization step as in Yuan (2010),

Θ̂ = arg min
M :MT=M

‖M − Θ̃‖1, (3.7)

which can be solved by linear programming. Alternatively, semidefinite programming,

which is somewhat more expensive computationally, can be used to produce a

nonnegative definite Θ̂ in (3.7). According to the definition, the new estimator Θ̂

has the same `1 error rate as Θ̃. A nice property for symmetric matrix is that the

spectrum norm is bounded by the `1 matrix norm. The `1 matrix norm can be given

more explicitly as the maximum `1 norm of the columns, while the `∞ matrix norm

is the maximum `1 norm of the rows. Hence, for any symmetric matrix, the `1 matrix

norm is equivalent to the `∞ matrix norm, so the spectrum norm can be bounded by

either of them. Since both our estimator and the target matrix are symmetric, the

error bound based on the spectrum norm could be studied by bounding the `1 error, as

typically done in the existing literature. We will discuss these error bounds in Section

3.3.

To sum up, we propose to estimate the matrix inversion by (3.5), (3.6) and (3.7).

The iterative algorithm (3.5) computes the regression coefficients and noise level based

on a Lasso path determined by (3.4). Then (3.6) translates the resulting estimators
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of (3.5) to column estimators and thus a preliminary matrix estimator is constructed.

Finally, the symmetrization step (3.7) produces a symmetric estimate for our target

matrix.

3.3 Error bounds for precision matrix

In this section, we study the error Θ̂−Θ∗ for the inverse of a covariance matrix, which

is our primary example of the target matrix. From now on, we suppose that the data

matrix is the sample covariance matrix Σ = X ′X/n, where the rows of X are iid

N(0,Σ∗), and the target matrix is Θ∗ = (Σ∗)−1.

Let ρ∗ and ρ∗ be the smallest and the largest eigenvalues of the correlation matrix

(diagΣ∗)−1/2Σ∗(diagΣ∗)−1/2. Define Sj = {i 6= j : Θ∗i,j 6= 0} and the degree of the

matrix

d = deg(Θ∗) = max
j
|Sj|+ 1.

The following theorem gives the convergence rate based on the `1 matrix norm (`∞

matrix norm) and spectrum norm.

Theorem 3.2. Let ε ∈ (0, 1/4) and λ0 = A{(2/n) log(p2/ε)}1/2 with A > 1. Suppose

that {d(log p)/n}1/2ρ∗/ρ∗ < a for a small fixed a. Then with probability greater than

1− 4ε,

‖Θ̂−Θ∗‖2 ≤ ‖Θ̂−Θ∗‖1 = ‖Θ̂−Θ∗‖∞

≤ C1λ
2
0d‖Θ∗‖1ρ−1∗ + C2λ0dmax Θ∗kkρ

−1
∗ (3.8)

where C1 and C2 are constants depending on {A, a} only.



45

Since the entries of Θ∗ are bounded by the maximum of the diagonal, the `1

matrix norm ‖Θ∗‖1 is of the same order as the matrix degree d. Thus, the inequality

(3.8) provides a convergence rate of the order dλ0 for either the `1 matrix norm or

the spectrum norm under the conditions d{(log p)/n}1/2 → 0, ρ−1∗ = O(1) and

max(Θ∗)kk = O(1). The first condition is the main sparsity condition, and the

other two are actually conditions on the `2 norm of the target matrix. To achieve the

same convergence rate, Yuan (2010) and Cai et al. (2011) both imposed the condition

d{(log p)/n}1/2 → 0 and the boundedness of the `1 norm of the unknown. We replace

the `1 condition by the weaker boundedness of the spectrum norm of the unknown. The

spectrum norm condition on the unknown is not only weaker, but also natural for the

convergence in spectrum norm. The extra condition {d(log p)/n}1/2ρ∗/ρ∗ < a here

is not strong. Under the conditions d{(log p)/n}1/2 → 0 and ρ−1∗ = O(1), the extra

condition only requires ρ∗/d1/2 to be small and it allows ρ∗ to diverge to infinity.

This sharper error bound in the spectrum norm is a consequence of using the scaled

Lasso estimator (3.3). We prove a convergence rate of order λ20d for the scaled Lasso

estimation of the noise levels σj in Chapter 2. With this faster rate of convergence, the

estimation error in the diagonal is no longer the main term and thus the condition of

the bounded `1 norm of Θ∗ can be weakened.

The consistency of the scaled Lasso estimation for the noise level is based on the

`1 error bound for the regression coefficients. Oracle inequalities for the `1 error of

the Lasso have been studied with various conditions, including the restricted isometry

condition (Candes & Tao, 2007), the compatibility condition (van de Geer, 2007) and

the sign-restricted cone invertibility factor (Ye & Zhang, 2010) among others. Chapter

2 extends these oracle inequalities for the scaled Lasso. Here we use the version under
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the condition of `1 sign-restricted cone invertibility factor (SCIF)

SCIF1(ξ, S;Σ) = inf
{ |S| · ‖Σu‖∞

‖u‖1
: u ∈ C−(ξ, S)

}
> 0, (3.9)

with the cone C (ξ, S) = {u ∈ Rp−1 : ‖uSc‖1 ≤ ξ‖uS‖1} and the sign-restricted cone

C−(ξ, S) = {u ∈ C (ξ, S) : ujΣj,∗u ≤ 0,∀j 6∈ S}. It is proved that, conditional on

X∗,−j ,

∣∣∣ σ̂j
σj
− 1
∣∣∣ = Op(1)|Sj|λ20, ‖β̂−j,j − β−j,j‖1/σj = Op(1)|Sj|λ0, (3.10)

under the condition that SCIF1(ξ, Sj;Σ−j) is bounded away from 0. This is

guaranteed by the conditions of Theorem 3.2. The error bound of `1 matrix norm

then follows from (3.10).

3.4 Simulation results

In this section, we compare the proposed matrix estimator based on scaled Lasso with

graphical Lasso and CLIME (Cai et al., 2011). Three models are considered. The first

two models are the same as model 1 and model 2 in Cai et al. (2011). Model 2 was

also studied in Rothman et al. (2008).

• Model 1: Θij = 0.6|i−j|.

• Model 2: Let Θ = B + δI , where each off-diagonal entry in B is generated

independently and equals to 0.5 with probability 0.1 or 0 with probability 0.9.

δ is chosen such that the condition number of Θ∗ is p. Finally, we rescale the

matrix Θ∗ to the unit in diagonal.

• Model 3: The diagonal of the target matrix has unequal values. Θ =
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D1/2ΩD1/2, where Ωij = 0.6|i−j| and D is a diagonal matrix with diagonal

elements dii = (4i+ p− 5)/{5(p− 1)}.

For each model, we generate a training sample of size 100 from a multivariate normal

distribution with mean zero and covariance matrix Σ = Θ−1 and an independent

sample of size 100 from the same distribution for validating the tuning parameter λ

for the graphical Lasso and CLIME. The GLasso and CLIME estimators are computed

based on training data with various λ’s and we choose λ by minimizing likelihood

loss {trace(ΣΘ̂) − log det(Θ̂)} on the validation sample. The proposed scaled Lasso

estimator is computed based on the training sample alone with the penalty level

λ0 = {(log p)/n}1/2. Consider 6 different dimensions p = 30, 60, 90, 150, 300, 1000

and replicate 100 times for each case. The CLIME estimators for p = 300 and

p = 1000 are not computed due to the computational costs.

Table 3.1 presents the mean and standard deviation of estimation errors based on

100 replications. The estimation error is measured by several matrix norms: spectrum

norm, matrix `1 norm and Frobenius norm. We can see that scaled Lasso estimator,

labelled as SLasso, outperforms the graphical Lasso (GLasso) in all cases, while it has

a comparable peformance with the CLIME.
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3.5 Discussion

In the proof of the theoretical results for the proposed estimator, we use oracle

inequalities for the estimation error associated with a linear model without normalizing

the predictors. In the discussion section, we describe this aspect of our results.

Consider a linear model as follows,

y = Xβ + ε, ε ∼ N(0, σ2In).

Let Σ = X ′X/n, D = diagΣ, X̃ = XD1/2 and Σ̃ = D−1/2ΣD−1/2. In order

to penalize the coefficients on the same scale, we use a weighted `1 norm of the

coefficients as the penalty function. Consider the estimator

{β̂, σ̂} = arg min
b,σ

{‖y −Xb‖2
2nσ

+
σ

2
+ λ0‖D1/2b‖1

}
. (3.11)

This is actually the scaled Lasso as we use in matrix estimation in Section 2. It is

equivalent to the estimation based on normalized predictors:

{α̂, σ̂} = arg min
a,σ

{‖y − X̃a‖2
2nσ

+
σ

2
+ λ0‖a‖1

}
(3.12)

with β̂ = D−1/2α̂.

The following theorem gives the oracle inequalities for the estimation of regression

coefficients and noise level.

Theorem 3.3. Let {α̂, β̂, σ̂} be as in (3.11) and (3.12), σ∗ = ‖y −Xβ‖2/n1/2, S =

{k : βk 6= 0}, z∗ = ‖X̃
′
(y −Xβ)/n‖∞/σ∗ and ξ > 1.
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(i)In the event z∗ ≤ (1 + τ+)−1/2λ0(ξ − 1)/(ξ + 1),

1

1 + τ+
≤
( σ̂
σ∗

)2
≤ 1

1− τ−
, ‖α̂−α‖1 ≤

(1 + ξ)τ−σ∗

2ξλ0(1− τ−)1/2
, (3.13)

‖β̂ − β‖1 ≤
(1 + ξ)τ−σ∗

2ξλ0(1− τ−)1/2 minkD
1/2
kk

, (3.14)

where τ− = φ1(ξ)λ
2
0|S|/SCIF1(ξ, S; Σ̃) and τ+ = φ2(ξ)λ

2
0|S|/SCIF1(ξ, S; Σ̃) with

constants ξ > 1, φ1(ξ) = 4ξ2/(1 + ξ)2 and φ2(ξ) = 4ξ(ξ − 1)/(1 + ξ)2.

(ii)Let λ0 ≥ {(2/n) log(p/ε)}1/2(ξ+1)/{(ξ−1)(1−τ−)}. For n−2 > log(p/ε)→∞,

P
{
z∗ ≤ (1− τ−)λ0(ξ − 1)/(ξ + 1)

}
≥ 1− (1 + o(1))ε/

√
π log(p/ε).

Theorem 3.3 is an immediate extension from the oracle inequalities for the scaled

Lasso in Chapter 2. With an extra condition that x′kxk/n(k = 1, . . . , p) are uniformly

bounded from zero, the estimators have the same convergence rate as that for a

regression model with normalized predictors. The error rates (3.10) follows from

Theorem 3.3 and are used to prove the convergence rate of matrix estimation.

3.6 Proofs

In this section, we provide the proofs of Theorem 3.3 and Theorem 3.2. Theorem 3.1

is a brief version of Theorem 3.2, so we omit the proof.

Proof of Theorem 3.3. The inequalities (3.13) are parallel to (2.17). The only

difference is that here we use the `1 bound under the condition of the sign-restricted

cone invertibility factor (SCIF). Since β̂ = D−1/2α̂, (3.14) follows from the second
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inequality in (3.13).

Proof of Theorem 3.2. Let ξ > (A + 1)/(A − 1), (σ∗j )
2 = β′∗,jΣβ∗,j , z(j),k =

Σ
−1/2
kk |Σk,∗β∗,j|/σ∗j and z∗(j) = maxk 6=j z(j),k. By Theorem 4, in the event z∗(j) ≤

(1 + τ+(j))
−1/2λ0(ξ − 1)/(ξ + 1),

1

1 + τ+(j)
≤
( σ̂j
σ∗j

)2
≤ 1

1− τ−(j)
,
∑
k 6=j

Σ
1/2

kk |β̂k,j − βk,j| ≤
(1 + ξ)τ−(j)σ

∗
j

2ξλ0(1− τ−(j))1/2
, (3.15)

where

τ−(j) = φ1(ξ)λ
2
0|Sj|/SCIF1(ξ, Sj; Σ̃−j), τ+(j) = φ2(ξ)λ

2
0|Sj|/SCIF1(ξ, Sj; Σ̃−j).

We first derive some probabilistic bounds for some useful quantities. Since Σ =

X ′X/n and the rows of X follow a multivariate normal distribution with covariance

matrix Σ∗, we have σ∗j = ‖xj −X−jβ−j,j‖/
√
n and z(j),k = x̃k(xj −X−jβ−j,j)/σ∗j .

Thus, n(σ∗j/σj)
2 follows a χ2 distribution with n degrees of freedom and thus

P
{∣∣(σ∗j/σj)2 − 1

∣∣ >√(8/n) log(2p/ε)
}
≤ ε/p. (3.16)

Also, we have that z(j),k/{(1 − z2(j),k)/(n − 1)}1/2 follows a t-distribution with n − 1

degrees of freedom. By Lemma 2.1 with m = n− 1 and t2 = log(p2/ε) > 2,

P
{
|z(j),k| >

√
2 log(p2/ε)/n

}
≤ (1 + εn−1)(ε/p

2)/
√
π log(p2/ε).
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Thus,

P
{

max
j
|z∗(j)| >

√
2 log(p2/ε)/n

}
≤ ε, (3.17)

i.e. the events z∗(j) ≤ (1 + τ+(j))
−1/2λ0(ξ − 1)/(ξ + 1)(j = 1, . . . , p) occur with

probability greater than 1− ε. Since Σkk ∼ Σ∗kkχ
2
n/n, we have

P
{∣∣Σkk/Σ

∗
kk − 1

∣∣ >√(8/n) log(2p/ε)
}
≤ ε/p. (3.18)

So there exists a small ζ , such that max |Σkk/Σ
∗
kk − 1| < ζ holds for all k with

probability greater than 1− ε.

Now we need to bound SCIF1(ξ, Sj; Σ̃−j), for all j, with probability greater

than 1 − ε under the given conditions, where Sj = {i 6= j : βi,j 6= 0}.

Let Z = X(diagΣ∗)−1/2. We discuss the bounds for SCIF1 within the event

max |Σkk/Σ
∗
kk − 1| < ζ .

For (|A|, |B|, ‖u‖, ‖v‖r) = (dae, dbe, 1, 1) with A ∩B = ∅, we define

δ±a = δ±a (X) = max
A,u

{
±
(
‖X ′AXAu/n‖ − 1

)}
, θ

(2)
a,b = θ

(2)
a,b(X) = max

A,B,u,v
v′X ′AXBu/n.

For any subset T ⊂ {1, . . . , p}, we have

θ
(2)
a,b ≥ θ

(2)
a,b(XT ), δ±a ≥ δ±a (XT ), θ

(2)
a,b ≤ (1 + δ+a )1/2(1 + δ+b )1/2 ≤ 1 + δ+a∨b.(3.19)
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By Proposition 2(i) in Zhang & Huang (2008), we have

P
{

(1− c)2ρ∗ ≤ 1− δ−m(Z) ≤ 1 + δ+m(Z) ≤ (1 + c)2ρ∗
}
≥ 1− ε, (3.20)

where c =
√
m/n+

√
(2m/n) log(2p/ε)(1 + o(1)). We also have

1 + δ+a (X̃) ≤ max(Σ∗kk/Σkk)(1 + δ+a (Z)) = (1 + δ+a (Z))/(1− ζ),

1− δ−a (X̃) ≥ min(Σ∗kk/Σkk)(1− δ−a (Z)) = (1− δ−a (Z))/(1 + ζ). (3.21)

Let kj = |Sj|. It follows from the shifting inequality in Ye and Zhang (2010) with

` ≥ d that

SCIF1(ξ, Sj; Σ̃−j) ≥
1

1 + ξ

(
1− δ−kj+`(X̃−j)− ξ

√
kj
4`
θ
(2)
4`,kj+`

(X̃−j)
)

≥ 1

1 + ξ

{
1− δ−4`(X̃)− ξ

√
d

4`
(1 + δ+4`(X̃))

}
≥ 1

1 + ξ

{1− δ−4`(Z)

1 + ζ
− ξ
√

d

4`

1 + δ+4`(Z)

1− ζ
}

The second and the third inequalities follow from (3.19) and (3.21), respectively. Let

m = 4` in (3.20) with ` = d(ξρ∗/ρ∗)
2 > d. Then

SCIF1(ξ, Sj; Σ̃−j) ≥
ρ∗

1 + ξ

{(1− c)2

1 + ζ
− (1 + c)2

2(1− ζ)

}
.

Under the condition (ρ∗/ρ∗){(d/n) log p}1/2 < a for a small fixed a, c is also very

small. Thus, with probability greater than 1 − ε, SCIF1(ξ, Sj; Σ̃−j) are bounded by
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Cρ∗ for all j, where C is a constant only depending on {ξ, ζ, a}.

Now we are ready to bound `1 of the column of Θ̃ −Θ by (3.15), (3.16), (3.17),

(3.18) and the uniform bound for SCIF1. The following inequalities hold with

probability greater than 1− 4ε:

‖Θ̃·j −Θ∗·j‖1 ≤ |Θ̃jj −Θ∗jj|+ ‖Θ̃−j,j −Θ∗−j,j‖1

≤ ‖Θ·j‖1 ·
∣∣∣( σ̂j
σj

)−2
− 1
∣∣∣+
( σ̂j
σ∗j

)−2(σ∗j
σj

)−1
σ−1j
‖β̂−j,j − β−j,j‖1

σ∗j

≤ ‖Θ·j‖1
C ′1λ

2
0|Sj|
ρ∗

+
C ′2λ0|Sj|

σj
(

minkΣ
∗
kk

)1/2
ρ∗
.

The first two inequalities just use some simple algebra, while the last one put (3.15),

(3.16), (3.17), (3.18) and the uniform bound for SCIF1 together. The constants C ′1

and C ′2 only depend on {A, a}. Therefore, the `1 error of the matrix estimator Θ̃ is

bounded by

‖Θ̃−Θ∗‖1 ≤ C ′3λ
2
0d‖Θ∗‖1ρ−1∗ + C ′4λ0dmax Θ∗kkρ

−1
∗ .

Then the upper bound for ‖Θ̂ − Θ‖1 follows from the triangle inequality and the

definition of Θ̂, since ‖Θ̂− Θ̃‖1 ≤ ‖Θ∗ − Θ̃‖1.

For any matrixM and vector u, v, we have

u′Mv =
∑
i,j

Mijuivj ≤
(∑

i,j

Miju
2
i

∑
i,j

Mijv
2
j

)1/2 ≤ (‖M‖∞ · ‖M‖1)1/2‖u‖ · ‖v‖.
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So ‖M‖22 ≤ ‖M‖∞ · ‖M‖1. For the symmetric matrix Θ̂−Θ, we have

‖Θ̂−Θ‖2 ≤ ‖Θ̂−Θ‖∞ ≤ ‖Θ̂−Θ‖1.

The desired error bounds based the spectrum norm then follows.
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Chapter 4

Estimation and Statistical Inference for Partial
Correlation

4.1 Introduction

Most of the recent advances in high-dimensional data have been focused on the

estimation of high-dimensional objects as in Chapters 2 and 3. However, the estimation

of low-dimensional functionals of high-dimensional parameters is also of great interest.

For example, instead of the covariance matrix or its inverse as linear operators, one

might be more interested in the relationship between individual pairs of variables.

Chapter 3 provides a good estimator for precision matrix in terms of matrix norms,

but it still remains unclear if this leads to a good estimator for partial correlations. In

fact, a rate minimax estimator of a high-dimensional parameter does not automatically

yield rate minimax estimates of its low-dimensional functionals.

In this chapter, we propose a method for estimating partial correlations of

individual pairs of covariates, a feature of importance in a graphical model, with

high-dimensional Gaussian data. In Chapter 2, the scaled Lasso is proposed to jointly

estimate the coefficient vector and noise level (variance) in univariate linear regression.

The variance of the noise is estimated by the sample variance of the estimated residuals,

where we apply the scaled Lasso to estimate the linear effects from all covariates. We

extend this method for partial correlation estimation. Our basic idea is to solve two

sparse linear regression problems to remove linear effects of other covariates, and then

compute the sample correlation as our estimator. More generally, this method can be
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further extended to estimate any low-dimensional functional of conditional covariance

matrix, by considering multivariate linear regression.

We study the asymptotic performance of the partial correlation estimator by taking

advantage of the scale invariance and fast convergence rate of scaled Lasso. The

asymptotic theory automatically justifies statistical inference for the partial correlation.

These results only require a capped `1 sparsity and allow the target partial correlation

matrix to have many elements of small and moderate magnitude. This nature make our

scaled Lasso methodology very practical due to the tolerance of many small signals.

This chapter is organized as follows. In Section 4.2, we define an estimation

problem of low-dimensional functionals of high-dimensional objects, and introduce

our scale invariant method. In Section 4.3, we study asymptotic properties of the

proposed estimator. Numerical results are presented in Section 4.4. Section 4.5

includes some final remarks.

We use the following notation throughout this chapter. For a vector v =

(v1, . . . , vp), ‖v‖q = (
∑

j |vj|q)1/q is the `q norm with the special ‖v‖ = ‖v‖2 and

the usual extensions ‖v‖∞ = maxj |vj| and ‖v‖0 = #{j : vj 6= 0}. For matrices

M , M j,∗ is the j-th column of M , MA,B represents the submatrix of M with rows

in A and columns in B, Moreover, we denote the set {j} by j and denote the set

{1, . . . , p} \ {j} by −j in the subscripts.

4.2 Estimation of low-dimensional functionals

In this section, we state a more general problem of low-dimensional functionals of

high-dimensional objects, and propose a scale invariant estimation method via scaled

Lasso. Our primary example is the partial correlation.

The partial correlation is of great interest in Gaussian-Markov graphical models.

LetX = (X1, . . . , Xp)
> be a N(0,Σ) random vector. The partial correlation between
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Xj and Xk, say rjk, is their conditional correlation given all other variables. It can be

also written as the error correlation in the linear regression ofX{j,k} againstX{j,k}c . In

general, for any proper subset A ⊂ {1, . . . , p}, a multivariate linear regression model

can be written as

XA = XAcβAc,A + εA. (4.1)

For A = {j, k}, the partial correlation rjk is the correlation between the two entries

of εA. It is well known that the conditional distribution of XA given XAc follows the

normal distribution

XA|XAc ∼ N(XAcΣ−1Ac,AcΣAc,A,ΣA −ΣA,AcΣ−1Ac,AcΣAc,A).

Thus, the coefficient matrix in (4.1) is βAc,A = Σ−1Ac,AcΣAc,A and the residual εA

follows the multivariate normal distribution N(0,ΣA − ΣA,AcΣ−1Ac,AcΣAc,A). Let

Θ = Σ−1 be the precision matrix. It follows easily from the block inversion formula

that the covariance matrix for the residual εA is Θ−1A = ΣA − ΣA,AcΣ−1Ac,AcΣAc,A.

Thus,

rjk = −Θjk/(ΘjjΘkk)
1/2. (4.2)

Throughout the sequel, we consider the slightly more general problem of estimating a

smooth function of Θ−1A , say τ = τ(Θ−1A ), where set A is of bounded size.

For |A| = 1 and τ(s) = s, our estimation target is τ(Θ−1j ) = Θ−1j = σ2
j . This was

done in Chapter 2, where the scaled Lasso is used to jointly estimate the coefficient

vector and noise level in univariate linear regression. In the same spirit, we extend this

method to |A| > 1. Let Xj ∈ IRn be the j-th column of X . For each j ∈ A, we apply
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the scaled Lasso to the univariate linear regression ofXj againstXAc as follows:

{β̂Ac,j, σ̂j} = arg min
bAc ,σ

{‖Xj −XAcbAc‖2

2nσ
+
σ

2
+ λ

∑
`∈Ac

‖X`‖2|b`|/
√
n
}
. (4.3)

This is actually the scaled Lasso estimator (2.6) with normalized parameters

‖X`‖2|b`|/
√
n. It is the same estimator as in (3.3), where it is determined by the sample

covariance matrix. Here we express it in the form of linear regression as what we have

in Chapter 2. Let β̂Ac,j, j ∈ A, be the columns of β̂Ac,A and zA = XA−XAcβ̂Ac,A. In

Chapter 2, the noise level estimator is the sample standard deviation of the approximate

residuals as follows

Θ̂−1jj = σ̂2
j = z′jzj/n.

For |A| > 1, since the covariance matrix for the residual vector εA is Θ−1A , this above

estimator could be extended. We estimate Θ−1A by the sample covariance matrix of the

estimated residuals

Θ̂
−1
A = z′AzA/n,

and the smooth function τ = τ(Θ−1A ) by a plug-in step

τ̂ = τ(z>AzA/n). (4.4)

Consider our primary example: the estimation of partial correlation of Xj and

Xk. Let A = {j, k} and {zj, zk} be the estimated residuals of the bivariate linear

regression. Since the partial correlation rjk is the correlation between residuals, we
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estimate it by the sample correlation

r̂jk =
z>j zk

‖zj‖2‖zk‖2
. (4.5)

This is a special case of (4.4) with the function

τ(Θ̂
−1
{j,k}) = S12/(S11S22)

1/2, where Θ̂
−1
{j,k} =

 S11 S12

S21 S22

 .

4.3 Theoretical properties

Suppose we have a data matrix X ∈ Rn×p with iid rows from N(0,Σ). An oracle

expert observing both X and εA = XA −XAcβAc,A may estimate τ by the oracle

MLE

τ ∗ = τ(ε>AεA/n) (4.6)

due to the sufficiency of εA for ΘA. In Chapter 2, the scaled Lasso estimator for the

noise level has been proven to be within o(n−1/2) of the oracle τ ∗ under certain “large-

p-smaller-n” settings. The following theorem gives an error bound for the estimator τ̂

in (4.4) by comparing it with the oracle MLE (4.6).

Theorem 4.1. Suppose τ : IRA×A → IR is a unit Lipschitz function in a neighborhood

{M : ‖M − Θ−1A ‖2 ≤ η0}. Let τ̂ be given by (4.4) with λ = {3(log p)/n}1/2 in (4.3).

Let sA = maxj∈A
∑

k∈Ac min(1, |Θjk|/λ). Suppose that for a fixedM0, ‖Θ‖2+‖Σ‖2 ≤

M0. Then, there exist constants a0 > 0 andC0 <∞, both depending on {η0,M0} only,
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such that for sA ≤ a0n/ log p,

P
{∣∣τ̂ − τ ∗∣∣ > C0sA(log p)/n

}
≤ p−1/3, (4.7)

where τ ∗ is the oracle MLE (4.6).

Since the oracle MLE τ ∗ in (4.6) is based on an |A|-dimensional regular

multivariate normal model εA ∼ N(0,Θ−1A ) and |A| is bounded, τ ∗ is efficient. This

gives the efficiency of τ̂ .

Now consider the estimation of the partial correlation (4.2). With A = {j, k} in

(4.3), the scaled Lasso estimator is given by (4.5) and the oracle estimator is given by

r∗jk = ε>j εk/(‖εj‖2‖εk‖2). (4.8)

The following corollary gives the sufficient conditions for the asymptotic normality of

the partial correlation estimator.

Corollary 4.1. Let r∗jk and r̂jk be given by (4.8) and (4.5). Suppose the conditions of

Theorem 4.1 hold with A = {j, k} and s = sA. Then,

r̂jk − r∗jk = OP (s(log p)/n). (4.9)

Consequently, if s(log p)/
√
n→ 0, then

√
n(r̂jk − rjk)/(1− r̂2jk)

D−→ N(0, 1).

Since r∗jk is the (oracle) MLE of the correlation based on iid bivariate normal
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observations,
√
n(r∗jk − rjk) converges to N(0, (1 − r2jk)

2) in distribution. Thus,

Corollary 4.1 directly follows from Theorem 4.1.

A major difference between our theory and existing work based on variable

selection is that Θ is allowed to have many elements of small and moderate magnitude

in Theorem 4.1 and Corollary 4.1. This is similar to Zhang & Zhang (2011) where

statistical inference of regression coefficients is considered.

4.4 Simulation results

We present some simulation results to demonstrate the performance of the scaled Lasso

for partial correlation. Two examples are considered. The first example is a five-

diagonal precision matrix with Θjj = 1, Θj−1,j = Θj,j−1 = 0.6, and Θj−2,j = Θj,j−2 =

0.1. In the second example, we set Θjk = 0.6|j−k| (no entry of the precision matrix is

exactly zero). The partial correlations are computed by rjk = −Θjk/(ΘjjΘkk)
1/2. We

generate a random sample of size n = 100 from N(0,Σ) with Σ = Θ−1. The scaled

Lasso estimator is computed with λ = {(log p)/n}1/2. For each example, we consider

p = 200 and p = 1000.

Table 4.1: Mean and standard error of the scaled Lasso estimator for the partial
correlation and the ratio of the simulated and theoretical MSEs, κ = MSE/{(1 −
r2jk)

2/n}.

Example 1: five-diagonal precision matrix
r12 = −0.6 r13 = −0.1 r14 = 0

p Mean±SE(r̂) κ Mean±SE(r̂) κ Mean±SE(r̂) κ
200 -0.626 ± 0.055 0.894 -0.042 ± 0.083 1.037 -0.010 ± 0.097 0.937
1000 -0.643 ± 0.056 1.214 -0.043 ± 0.088 1.104 -0.007 ± 0.089 0.797

Example 2: exponential decay precision matrix
r12 = −0.6 r13 = −0.36 r14 = −0.216

p Mean±SE(r̂) κ Mean±SE(r̂) κ Mean±SE(r̂) κ
200 -0.551 ± 0.064 1.602 -0.236 ± 0.079 2.846 -0.042 ± 0.100 4.412
1000 -0.539 ± 0.079 2.425 -0.224 ± 0.089 3.475 -0.029 ± 0.101 4.962
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Table 4.1 shows the scaled Lasso estimates for r12, r13, and r14 based on

100 replications. In Example 1, r̂jk is quite accurate, as the condition of small

sA(log p)/
√
n holds well with values 0.8, 1.3, and 1.5 for the estimation of r12, r13, and

r14 when p = 200, and with values 1.0, 1.6, and 1.9 when p = 1000. In Example 2, the

scaled Lasso deteriorates as the condition sA(log p)/
√
n starts to fail, with values 2.3,

2.8, and 3.4 for the estimation of r12, r13, and r14 when p = 200, and with values 2.8,

3.5, and 4.2 when p = 1000.

In addition, we would like to point out that another difficulty for this simulation

study is the relatively small sample size n = 100. The distribution of r∗ here tends

to the normality very slowly, as this normality is usually applied for very large sample

size in practice, say at least 500.

4.5 Proofs

In this section, we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. For the simplicity, we denote βAc,j by βj in this proof. Let

σ∗j = ‖Xj −XAcβj‖/
√
n for any j ∈ A. By the proof of Theorem 3.2, we have the

following statement for any j ∈ A: in the event Ej

max
`∈Ac
‖X`‖−12 |X ′`(Xj −XAcβj)|/(

√
nσ∗j ) ≤ λ, (4.10)

it holds that

∣∣∣ σ̂j
σ∗j
− 1
∣∣∣ ≤ C1λ

2sA, ‖β̂Ac,j − βAc,j‖1/σ∗j ≤ C2λsA, (4.11)
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where C1 and C2 are constants depending on M0 only. Moreover, the event (4.10)

holds with probability at least 1− p−1/2.

Thus, for any j, k ∈ A, we may compare z>j zk/n with ε>j εk/n as follows

z>j zk/n− ε>j εk/n =
{
εj +XAc(βj − β̂j)

}′{
εk +XAc(βk − β̂k)

}
/n− ε>j εk/n

≤ ‖X ′Acεj/n‖∞‖βk − β̂k‖1 + ‖X ′Acεk/n‖∞‖βj − β̂j‖1

+‖XAc(βj − β̂j)‖ · ‖XAc(βk − β̂k)‖/n.

In the event ∩j∈AEj , it holds that

z>j zk/n− ε>j εk/n ≤ C3σ
∗
jσ
∗
kλ

2sA.

This and the property of Lipschitz function lead to (4.7).
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Chapter 5

Statistical Methods for Real-time Blood Glucose
Monitoring

5.1 Introduction

Diabetes mellitus, one of the leading causes of death in the world, is a metabolic

disorder affecting the way that the human body uses digested food for growth and

energy. Type 1 diabetes (T1D) is a form of diabetes mellitus that results from the

loss of the insulin-producing beta cells of the islets of Langerhans in the pancreas,

leading to insulin deficiency. It is also known as juvenile diabetes or insulin-dependent

diabetes mellitus (IDDM). Nowadays injectable insulin is a widely-used treatment for

this non-insulin producing type 1 diabetes. It is of great importance to control the

insulin dose and thus the blood glucose level. A lack of insulin will result in the rise

of blood glucose levels, while overdose of insulin injection will cause low blood sugar

levels, or hypoglycemia, which may suddenly lead to ketoacidotic coma, an extremely

dangerous situation. In order to avoid these circumstances, it is usually recommended

to monitor the blood sugar levels continuously, especially before and after meals, and

count the carbohydrate content of meals and snacks. However, the majority of diabetic

patients fail to achieve the target glycated hemoglobin level (HbA1C) recommended

by the Diabetes Control and Complications Trial (DCCT-Research-Group, 1994). For

the effectiveness and convenience, people expect to develop a closed-loop artificial

pancreas system without the requirement for patient intervention and action. Three

major design elements are required for such system: 1) an insulin pump to accurately
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deliver variable amounts of insulin, 2) a real-time continuous glucose monitor (CGM)

to accurately determine ambient glucose levels, and 3) an effective algorithm to

regulate insulin delivery rates based on real-time CGM outputs. This will be a truly

transformational change in the treatment of patients with type 1 Diabetes.

However, the accuracy of the CGM is a major obstacle, mainly due to the

difficulties with the requirement of periodical recalibration of the device with

individual patients. In fact, the current generation of real-time CGM devices is also

far from optimal when used in an open-loop system, in which patients use the CGM

device as a reference of their blood glucose level. For example, the recent Juvenile

Diabetes Research Foundation randomized clinical trial (JDRF-CGM-Study-Group,

2008) showed that lowering of HbA1C levels 0.5% could be achieved in T1D patients

who were 25 years of age or older, but no improvement was observed in patients who

were 8-24 years of age, and the CGM failed to lower the risk of severe hypoglycemia,

regardless of age.

The continuous glucose monitor measures the glucose level via an electrochemical

glucose biosensor. It is a single electrode, coated with an enzyme, inserted into

subcutaneous fat tissue, called interstitial space. When a glucose molecule in

interstitial space comes in contact with the electrode, a current is generated in the

sensor (Wang, 2008). By measuring this current, one obtains a surrogate for blood

glucose density. The problem is to convert this current measurement (ISIG) into an

accurate measure of blood glucose density (BG). Due to degradation by biofouling and

other issues, the relationship between ISIG and BG is changing from time to time. The

variability between sensors is also observed. Moreover, BG is measured by the finger

stick (FS), which is medically regarded as the ground truth, but still has an random

error. All these concerns present a statistical challenge.

In this chapter, we propose and implement statistical methods to produce more

accurate and precise estimates for continuous glucose levels. Motivated by the
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mechanism of glucose sensor and continuous blood glucose monitor, we design a

statistical framework for modeling the dynamic relationship between the blood glucose

level and interstitial signal. At the current stage, our Bayes model also incorporates

the time series aspects of the data and the variability depending on sensor age. The

methods have been tested and evaluated with an important large dataset, called “Star

I”, from Medtronic, Inc., including 137 subjects using blood glucose sensors for six

months on average. The analysis shows that our blood glucose prediction outperforms

the current measurement in the CGM device. This provides a possibility of upgrading

the current continuous glucose monitor.

This chapter is organized as follows. In Section 5.2, we propose a general

framework for continuous blood glucose estimation. In Section 5.3, we describe some

methods for implementing nonparametric models under proper assumptions. Section

5.4 provides a statistical analysis of the STAR 1 dataset and compares our continuous

blood glucose prediction with some existing measurements.

5.2 Modeling the Continuous Glucose Levels

As stated in the introduction part, the continuous glucose monitor tracks the glucose

level via an electrochemical biosensor. In this section, we develop statistical methods

for the continuous glucose level estimation according to two primary sources of

information: previous finger stick results FS and interstitial signals ISIG. The current

interstitial signal is also necessary to estimate the current glucose level.

The electrical current ISIG(t) is correlated with the glucose density in interstitial

fluid near the sensor site at time t, which we denote by IG(t). Empirical and theoretical

evidence suggests that there is an approximately linear relationship between ISIG(t)
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and IG(t). Our basic model relating ISIG(t) and IG(t) is

ISIG(t) = α(t)IG(t), (5.1)

where α(t) is a slowly varying stochastic process. IG(t) could be used as a surrogate

for our primary target, blood glucose density BG(t). We may rewrite our model

BG(t) = β(t)ISIG(t), (5.2)

where β(t) is a new stochastic process. Although we never observe the true value of

BG, one may use fingerstick measurements of blood glucose density FS(t) instead.

Thus, our key model is

FS(t) = BG(t) + ε(t) = β(t)ISIG(t) + ε(t), (5.3)

where ε(t) is an error term with mean zero.

There is some debate about whether an intercept term should be included in (5.1).

Also, a time lag between BG and IG has been discussed in the literature, because it

takes time to diffuse blood glucose molecules into interstitial fluid. This suggests an

extra term of derivative IG′(t) or ISIG′(t) may be added in (5.2). For the convenience,

we do not include these possible terms in the following model description, while all

the methods discussed in this section could be extended to models with extra terms.

More specifically, suppose fingerstick measurements are taken at time tk, k = 1, . . .

and the error terms ε(tk) are iid normally distributed with standard deviation σ. Then

the fingerstick measurements are related to ISIG values as follows:

FStk
∣∣∣Ftk ∼ N

(
β(tk)ISIG(tk), σ

2
)
, (5.4)
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where Ft = σ({ISIG(tk); tk ≤ t}, {FS(tk); tk < t}) is the σ-field generated by all

the data up to time t, including ISIG(t) but not FS(t). The Bayes estimator of B̂G(t)

is

B̂G(t) = E
[
β(t)

∣∣∣Ft

]
ISIG(t). (5.5)

Now the only thing that remains unclear is how to model the process β(t). Due

to the biofouling on the sensor and environmental changes in human body, the linear

relation is unstable. Thus, we attempt to build up a dynamic model for β(t) to address

this change. Consider a single sensor with lifespan [0, t∗). In order to incorporate

sensor information into our estimation procedures, we consider a nonstationary discrete

Markov process β(t) with a constant transition intensity λ and independently generated

new states according to distributions depending on sensor age. Such a process can be

written as

β(t) = β(Sj), Sj ≤ t < Sj+1,

where S1 < S2 < · · · are interarrival times of a Poisson process in [0,∞) with intensity

λ, and at time Sj = a, β(a) is generated according to a distribution g(·|a), independent

of {β(t) : t ≤ a}. Figure 5.1 provides an illustration of the discrete Markov model.

The solid line indicates the transition times of the process β(t) and the expected value

of g(·) on each state. Our task is to estimate this expected value for each a, given the

observed ratios FS/ISIG.

The transition probability is characterized as follows

ps,t(b|b0) = e−λ(t−s)I{b = b0}+

∫ t

s

g(b|a)de−λ(t−a).
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Figure 5.1: An illustration of the discrete Markov model. Triangles: the
observed ratio of FS/ISIG; solid line: the expected value of BG/ISIG.

The first term is corresponding to the case of no transition from time s to time t, while

the second term concerns that the last transition between (s, t) happens at time a for

all a. Let π(b|t−) be the conditional probability mass function of b(t) given Ft. Due

to the given transition probability, we have

π(b|t−) = e−λ(t−tk)π(b|tk) +

∫ t

tk

g(b|a)de−λ(t−a), (5.6)

for all t ∈ (tk, tk+1]. Since the data in (tk, tk+1) contains no information about the

process b(t), we do not update the density function for t ∈ (tk, tk+1), i.e. π(b|t) =

π(b|t−). For t = tk+1, the posterior can be updated by the new FS information at time

τk+1. The updating rule is as follows:

π(b|tk+1) ∝ π(b|t−k+1) exp
[
− {FStk+1

− ISIG(tk+1)b}2/(2σ2)
]
. (5.7)
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To sum up, the relation between FS and ISIG is characterized by (5.4), (5.6) and

(5.7). The sequences of FS and ISIG are used to estimate the distribution of β(t),

leading to the blood glucose estimation via (5.5).

5.3 Nonparametric Bayes Methods

In the above formulation, the distribution g(·|a) remains unknown. Suppose G(·|a)

are discrete distributions with a common support B = {bi} and that G(·|a) = G(·|aj)

for aj ≤ a < aj+1, j ≤ j∗, a0 = 0 and aj∗+1 = ∞. The density function G(·|a) is

characterized by a matrix with elements gij = G({bi}|aj),
∑

i gij = 1. Specifically,

the process {β(t), t ≥ 0} has the initial distribution P{β(0) = bi} = gi0 and transition

probability is written in a discrete form as follows

ps,t(bi|x) = e−λ(t−s)I{bi = x}+
∑
aj+1>s

{
e−λ(t−aj+1)+ − e−λ(t−aj∨s)+

}
gij.

The computation of the posterior still requires an estimation of gij . In this section, we

introduce two methods for implementing our Markov model.

5.3.1 Implementation with MCMC methods

We may use Markov chain Monte Carlo (MCMC) methods to estimate the densities

{gij}. Our algorithm chooses an equilibrium for {gij} by iteratively estimating the

blood glucose by the discrete Markov model and updating {gij}.

• Step 1. We estimate B̂G based the given {gij}.

The conditional probability mass function of β(t) given Ft and the posterior
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probability given new FS information are

π(bi|t−k ) = e−λ(t−tk)π(bi|tk) +
∑

aj+1>tk

{
e−λ(t−aj+1)+ − e−λ(t−aj∨tk)+

}
gij,

π(bi|tk) =
π(bi|t−k ) exp

(
− {FStk − biISIG(tk)}2/(2σ2)

)∑
j π(bj|t−k ) exp

(
− {FStk − bj ISIG(tk)}2/(2σ2)

) .
Then B̂G(t) =

∑
i biπ(bi|t)ISIG(t).

• Step 2. We update the density function {gij} given FS and ISIG.

Let X(tk) = {FSt` , ISIG(t`), ` ≤ k}. We begin with the last finger-stick time

tm for this sensor. Let τ be the time of the last transition of β(t) before tm,

τ = max
{
t < tm : t = 0 or β(t) 6= β(tm)

}
.

GivenX(tm) and τ ∈ (tk, tk+1]∩[aj, aj+1), β(tm) has the conditional probability

mass function

pj,k(bi) = C−1j,k gij

m∏
`=k+1

{
σ−2 exp

(
− {FSt` − biISIG(t`)}2/(2σ2)

)}

with Cj,k =
∑

bi∈B gij
∏m

`=k+1 σ
−2 exp

(
− {FSt` − biISIG(t`)}2/(2σ2)

)
. Let

C1, . . . , Cj∗ be the collections of density functions for various sensor ages. Now

we need to generate the transition time to determine which category this density

function belongs to.

1. Generate (J,K) with P{(J,K) = (j, k)} = qj,k, where

qj,k = P
{
τ ∈ (tk, tk+1] ∩ [aj, aj+1)

∣∣∣X(tm)
}

∝ Cj,k

∫
(tk,tk+1]∩[aj ,aj+1)

e−λtλdt.
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2. Add pj,k(·) to collection Cj;

3. Let m = K.

We run this procedure until K = 0 or tK = 0. The training set can be repeatedly

used until each category reaches a certain size. The empirical distribution from

Cj gives a new estimate of {gij, bi ∈ B}. A weighted average of the new and old

estimators can be used to generate the estimators

The MCMC methods always requires many iterations to compute equilibrium

distributions, although we may choose short burning periods after having a warm

initial. Therefore, the computational cost of this method is very expensive.

5.3.2 Implementation with an empirical method

For the computational simplicity, we may implement our Bayes model in an

approximate way. Assume that the last transition time is at time t. Then the

approximate density function is

π(b|t−) = e−λ(t−τk)π(b|τk) + (1− e−λ(t−τk))g(b|t).

There is also an alternative explanation for this prior density function. It is a linear

combination of two sources of prior information: the recent body environment π(b|τk)

and the aging of sensor g(b|t). The weights are defined adaptively, depending on the

time since the last FS. When the last fingerstick measurement is taken very recently, the

prior distribution will more rely on the posterior information based on that fingerstick

test π(b|τk); vice versa.

The coefficient distribution g(·|a) is estimated by an empirical distribution as

follows

g(·|a) ≈ Average(π(·|a)), (5.8)
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where π(b|t) are the posteriors for earlier sensors at the same age. In practice, we

treat the age of sensor as a discrete variable in units of days and record the average

of posteriors for all possible ages. When the posterior is updated due to a new FS at

time tk, we add this posterior to the corresponding collection of density functions and

compute a new approximation for g(·|a) by (5.8).

5.4 Analysis of the STAR 1 Dataset

In this section, we describe the STAR 1 dataset and present our numerical results

for continuous blood glucose level estimation. The estimation are evaluated from

several aspects, including overall estimation accuracy, the detection of hypoglycemia

and hyperglycemia, etc.

5.4.1 Descriptive analysis

In the STAR 1 study, 137 subjects using blood glucose sensors were monitored for

periods of time spanning 6 days to 948 days (mean 188 days, SD 148). For each patient

in the study, an electrical current measurement ISIG (in nano amps, nA) from the blood

glucose sensor was recorded every 5 minutes with limited exceptions. Less frequently

– approximately every 6 hours, on average – patients in the study recorded a more

accurate measure of blood glucose density, obtained via fingerstick FS. Fingerstick

measurements are considered as the ground truth of the blood glucose levels in this

chapter. Each individual in the study regularly replaced their blood glucose biosensors,

on average every 2.72 days. These measurements are entered into the CGM system

and are essential for calibrating CGM algorithms. The dataset also includes the

blood glucose level estimation by the CGM device, which provides a benchmark for

estimation accuracy.

Figure 5.2 shows a typical dataset for a representative subject in a period of about
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Figure 5.2: FS(t), ISIG(t), CGM(t), and sensor replacement times for Subject 5
in Star 1 dataset.

one week. The measurements FS(t), ISIG(t), and CGM(t) are plotted along with

indicators for when sensors were replaced.

In Section 5.2, we have discussed the linear relationship (5.2) between the blood

glucose levels and the interstitial current signals (ISIG). Figure 5.3 supports this aspect

of our statistical framework.

When modeling the relation between the blood glucose level and the interstitial

signal, one expects that the sensitivity of the sensor decreases over time (due to

biofouling and other causes) and, hence, that β(Sj + t) is larger that β(Sj), for t > 0.

This is confirmed by Figure 5.4, where the ratios FS/ISIG are plotted for different

sensor ages. Note that the ratio tends to increase with sensor age.

5.4.2 Continuous blood glucose estimation

We implement our nonparametric methods described in Sections 5.2 and 5.3 and study

its estimation performances from various aspects. Three methods are going to be

compared in this section:
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Figure 5.3: FS vs. ISIG for two subjects in the STAR 1 dataset.
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Figure 5.4: The boxplots of the ratios of FS/ISIG by sensor age. 1: Sensor less
than 1 day old. 2: Sensor between 1 and 2 days old. 3: Sensor between 2 and 3
days old. 4: Sensor at least 3 days old.
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1. The nonparametric Bayes method with the implementation in Section 5.3.2.

2. The Kalman filter, also known as dynamic linear model, from Dicker et al.

(2012).

3. The original measurement in the CGM device.

The overall performance of each estimator was measured by its mean absolute relative

difference,

MARD(B̂G) =
1

#{t}
∑
t

{
|B̂G(t)− FS(t)|

FS(t)

}
, (5.9)

where the sum on the right-hand side above is taken over all FS times tk. MARD

is widely used as the fundamental metric for comparing the performance of these

methods. The first 50 patients in the Star 1 dataset were used for training the tuning

parameters for these methods, while the remaining 87 patients were used for validation.

For the nonparametric method, we still need to specify some necessary (tuning)

parameters as follows.

• The noise level σ for fingerstick measurement is first estimated by a ballpark

interval [10, 25] according to Brunner et al. (1998), which provides the

percentage of measurements within a defined range of the reference values

according to different glycemic ranges for various blood glucose meters.

• The tuning parameter eλ is a weight for the effect of recent performance and thus

between (0, 1).

• Initial distributions g(·|a) should be given for each age category.

Various parameters are tested on the training dataset and the optimal values are selected

in terms of mean absolute relative difference (MARD) that will be defined later. We

took σ = 20, eλ = 0.6 and let initial distributions g(·|a) be uniform U [0, 14] for each
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any age. In practice, it is noticed that the choice of initial distributions does not affect

the performance and the results are pretty stable when eλ ∈ [0.5, 0.7] and σ ∈ [20, 25].

In Table 5.1, we report the estimation performances of three methods in terms

of several loss functions: mean, standard deviation and median of absolute relative

difference. For nonparametric Bayes method and Kalman filter, we also report their

improvements over the original CGM and the number of subjects for which the subject-

level MARD of the specified method is smaller than MARD(CGM). It is concluded that

both methods outperform the original CGM.

Table 5.1: Summary statistics for analysis of Star 1 dataset.

MARD (SD) MedARD ∆MARD NMARD (N )
Train. NP-Bayes 0.1539 (0.1515) 0.1153 0.0111 47 (50)

Kalman filter 0.1538 (0.1504) 0.1152 0.0112 46 (50)
CGM 0.1650 (0.1675) 0.1225

Valid. NP-Bayes 0.1552 (0.1705) 0.1118 0.0087 77 (87)
Kalman filter 0.1536 (0.1653) 0.1105 0.0103 79 (87)
CGM 0.1639 (0.1831) 0.1168

MARD, mean absolute relative difference; MedARD, median absolute relative
difference; ∆MARD, the difference between the MARD of the indicated method
and MARD(CGM); NMARD, the number of subjects for which the subject-level
MARD of the specified method is smaller than MARD(CGM); N , the total
number of subjects.

5.4.3 More results on the estimation performances

In addition to the overall accuracy of blood glucose level estimation, we are interested

in other performance measurements: the estimation accuracy in different ranges, the

reliability of detecting hypoglycemia and hyperglycemia, etc. All the performance

results are based on the test dataset of 87 patients.

Figure 5.5 shows the estimation accuracy for different FS values in terms of mean
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Figure 5.5: Mean absolute (relative) differences. CGM (black); NP-Bayes (red);
Kalman filter (blue). Horizontal lines: overall MARD (MAD). Vertical lines:
Thresholds for hypoglycemia and hyperglycemia.

absolute relative difference (5.9) and mean absolute difference

MAD(B̂G) =
1

#{t}
∑
t

{
|B̂G(t)− FS(t)|

}
, (5.10)

where the sum on the right-hand side above is taken over all FS times tk. We can see

that the absolute relative difference is large in the low range of blood glucose levels,

while the absolute difference is large in the high range of blood glucose levels.

Another criteria for for CGM algorithms is to reliably detect hypoglycemia (low

blood glucose density) and hyperglycemia (high blood glucose density). Threshold

rules are a simple class of rules for detecting hypoglycemia or hyperglycemia based on

an estimate. Following Bode et al. (2004), any timepoint with FS less than 70 mg/dL is

defined to be a hypoglycemic period and any timepoint with FS greater than 250 mg/dL

is defined to be a hyperglycemic period. We may use a strict threshold B̂G ≤ 70 to

detect hypoglycemia or increase the threshold B̂G ≤ 90 to reduce the risk of missing

hypoglycemic episodes. Table 5.2 provides sensitivity, specificity, positive predictive
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value and negative predictive value for hypoglycemia. For a threshold B̂G ≤ S, these

measurements are defined as follows

• Sensitivity (SENS): P (B̂G < S|FS < 70)

• Specificity (SPEC): P (B̂G ≥ S|FS ≥ 70)

• Positive predictive value (PPV): P (FS < 70|B̂G < S)

• Negative predictive value (NPV): P (FS ≥ 70|B̂G ≥ S)

Table 5.2: Hypoglycemia detection with different threshold rules.

Threshold Method SENS SPEC PPV NPV
≤ 70 NP-Bayes 0.4431 0.9730 0.5048 0.9657

Kalman filter 0.4788 0.9693 0.4922 0.9677
CGM 0.4273 0.9696 0.4662 0.9646

≤ 90 NP-Bayes 0.8550 0.9007 0.3484 0.9901
Kalman filter 0.8772 0.8913 0.3338 0.9915

CGM 0.8388 0.8981 0.3384 0.9890

SENS, sensitivity; SPEC, specificity; PPV, positive predictive
value; NPV, negative predictive value.

It is noticed that the sensitivity of hypoglycemia with S = 70 is always below 0.5. It

may be very dangerous if we fail to detect the hypoglycemia. Thus, it is necessary to

have a higher threshold. However, the higher threshold reduces the positive predictive

value, which means patients may be bothered by many false warnings. We can see

from Table 5.2 that both of the nonparametric Bayes method and the Kalman filter

outperform the original CGM in the sensitivity and positive predictive value. The

Kalman filter is better in terms of sensitivity, while the nonparametric Bayes method

is better in terms of positive predictive value. Moreover, the ROC curve for the

nonparametric Bayes and Kalman filtering methods appear to dominate that for CGM

across the entire plotted range in the left of Figure 5.6.

As for the hyperglycemia detection, a strict threshold is B̂G ≥ 250 and a relaxed

threshold is B̂G ≥ 220 for lowering the risk of missing hyperglycemic episodes. Table
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5.3 provides sensitivity, specificity, positive predictive value and negative predictive

value for hyperglycemia that are defined with a threshold B̂G ≥ S as follows

• Sensitivity (SENS): P (B̂G > S|FS > 250)

• Specificity (SPEC): P (B̂G ≤ S|FS ≤ 250)

• Positive predictive value (PPV): P (FS > 250|B̂G > S)

• Negative predictive value (NPV): P (FS ≤ 250|B̂G ≤ S)

Table 5.3 suggests that the original CGM performs the best in terms of the sensitivity

for the hyperglycemia detection, followed by the nonparametric Bayes method and

then the Kalman filter. The ROC curve for three methods are roughly mixed together.

Table 5.3: Hyperglycemia detection with different threshold rules.

Threshold Method SENS SPEC PPV NPV
≥ 250 NP-Bayes 0.6315 0.9641 0.7819 0.9277

Kalman filter 0.6145 0.9699 0.8065 0.9250
CGM 0.6374 0.9617 0.7724 0.9286

≥ 220 NP-Bayes 0.8405 0.8921 0.6137 0.9648
Kalman filter 0.8213 0.9013 0.6293 0.9612

CGM 0.8432 0.8876 0.6047 0.9652

SENS, sensitivity; SPEC, specificity; PPV, positive predictive
value; NPV, negative predictive value.
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