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ABSTRACT OF THE THESIS

Characterization of TLB and Page Allocation

Behavior on Modern Processors

by Viswanathan Vaidyanathan

Thesis Director: Dr.Abhishek Bhattacharjee

Virtual memory support is prevalent in most modern processors and is facilitated

through Translation Lookaside Buffers (TLBs) which play a major role in the

overall system performance. TLB misses are costly since they require multiple

high latency memory references to walk the page table and locate the desired Vir-

tual Page Number (VPN) - Physical Page Number (PPN) mapping. This study

improves TLB hit rates by taking advantage of any contiguity present in the pages

allocated by the Operating System (OS). By contiguity we refer to cases where

consecutive VPNs are mapped to consecutive PPNs. Traditionally, OSs use large

or superpages to collapse hundreds of such contiguous entries, thereby using one

TLB entry to represent them rather than hundreds of entries they would normally

require. Unfortunately due to implementation complexities superpaging has not

been universally successful in reducing TLB pressure. We show, however, that

even without explicit superpaging, various OS virtual memory allocation activ-

ities lead to intermediate levels of contiguity that may be exploited to coalesce
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TLB entries and significantly improve hit rates. We verify the presence of conti-

guity by running benchmarks on a real system and checking the page allocations

of the OS. The OS page allocation schemes depend on memory pressure and

memory defragmentation daemons. Further, we find an average contiguity of 30

pages over all the benchmarks and configurations with superpaging turned on and

about 10 with superpaging turned off. To verify the performance of a Coalesced

TLB we have implemented a fully associative TLB with variable size and Least

Recently Used (LRU) replacement policy. Our results show an average hit rate

improvement of 25% by adding an 8 - 16 entry fully associative Coalesced TLB.

The Coalesced TLB further needs no complex hardware to implement, hence

providing to a low cost means to reduce miss rates.
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Chapter 1

Introduction

Most modern processors employ virtual memory to automate the management of

multiple layers of memory hierarchy. A key hardware structure to manage virtual

memory is the Translation Lookaside Buffer (TLB). TLB performance is critical

due to long miss penalites [13, 24, 36, 31]. Despite hardware and software enhance-

ment studies such as size, associativity, multi-level hierarchies and prefetching,

TLB misses can degrade performance by up to 50% [25, 32, 12, 11, 10, 9].

A key technique to improve TLB hit rates is superpaging. A number of past stud-

ies tried allocating contiguous physical pages to contiguous virtual pages, thereby

constructing large pages [35]. The goal is to use one TLB entry to represent

these pages rather than the hundreds of entries that would otherwise be required.

Superpaging has a number of implementation complexities that have obstructed

their widespread adoption. Among other problems, they require a huge level of

OS mandated contiguity which can eventually lead to problems in page allocation

leading to memory trashing.

This thesis is the first to show that regardless of superpaging, intermediate lev-

els of contiguity are generated naturally and transparently by the OS due to the

buddy allocator [27], memory defragmentation daemons [14] and system load. We

show how to improve TLB hit rates by exploiting this contiguity. Two entries are

contiguous if their VPNs and PPNs are contiguous and their permission bits are

the same. Here are our major contributions

• Our work quantifies the amount of page contiguity present in workloads
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when run on a real system. This study uses Spec CPU2006 [16] and

BioBench [4] workloads. On an average we find a contiguity of 30 pages

when superpaging is turned on and 10 pages when superpaging is turned

off.

• Page allocation patterns vary due to memory pressure (also known as system

load), superpaging and the defragmentation daemon. We determine the

effect of these attributes on overall contiguity.

• Our second experiment exploits the contiguity mentioned above to create a

Coalesced TLB. A large least recently used (LRU) list is used to characterize

the performance of a range of fully associative TLBs. On an average close to

25% misses are eliminated with the addition of an 8 entry fully associative

TLB. This is explained in detail in chapter 5.4.

The thesis is organized as follows. The second chapter gives some background

on the topic. The next chapter talks about the real system experiments run for

this study. Chapter 4 talks about the simulation infrastructure used to study

the Coalesced TLB performance. As part of this study we have extended FeS2

[38], a cycle-accurate x86 simulator, to read from traces generated by Simics [39]

to improve simulation run times. Chapter 5 introduces the Coalesced TLB and

explains how it works. Performance improvement results are then discussed. The

last chapter talks about some future extensions to the idea presented in this paper.
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Chapter 2

Background

This chapter provides background on the various components involved in sup-

porting virtual memory on modern systems. Later in the chapter, OS support

for contiguous pages is discussed.

2.1 Translation Lookaside Buffers

Due to their performance criticality, a range of TLB design attributes such as

size, placement, lookup, associativity and multiple hierarchies have been studied

[25, 32, 12, 11, 10, 9]. Unfortunately a TLB is restricted by power and die area.

Typical L1 data TLBs in Intel’s recent processors are 4 way set associative and

have from 32 - 64 entries. The corresponding L2 data TLBs are 4 way set associa-

tive and have 256 - 512 entries [26]. There are seperate L1 data and instruction

TLBs while the L2 is unified. This study focuses on data TLB performance,

since instruction TLBs already have high hit rates [10, 25]. TLB miss handling is

accomplished through either hardware or software managed methods. Hardware

managed methods involve walking the page table using hardware state machines.

Some studies have shown the performance benefits of this approach [22] with miss

latencies ranging from 10 to 50 cycles [23, 24]. Since this approach fixes the size

of the page table, RISC architectures often use a software managed TLB [21, 36].

In this approach a TLB miss invokes an interrupt which causes the OS to walk a

software managed page table to refill the TLB. Around 10 to 100 OS instructions

need to be executed on every miss and this causes further misses in the memory
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hierarchy. Studies have shown that software managed TLB misses take up to

hundreds of cycles to get serviced [21, 22]. Hence improving TLB performance is

critical.

2.2 Page tables

We now detail page walk mechanisms and associated acceleration hardware. Though

different architectures approach this problem differently we focus here on x86 ar-

chitectures since they are widespread and we use them for our studies.

2.2.1 Page Table Walk

X86 processors maintain the page table in a radix tree data structure, accessible

by splitting the virtual address into the following fields as illustrated in Figure 2.1:

• Page Offset (bits 0 - 11)

• L1 Index/ Page Table Level (bits 12 - 20)

• L2 Index/ Page Directory Level (bits 21 - 29)

• L3 Index/ Page Directory Pointer (bits 30 - 38)

• L4 Index/ Page Map Level 4 (bits 39 - 47)

• Sign Extension (bits 48 - 63)

Figure 2.1: Virtual address partitioned into range of bits used to perform the
page walk

.
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Page tables are walked using hardware on a set of page tables known as the

Page Map Level 4 (PML4), the Page Directory Pointer (PDP), the Page Directory

(PD) and the Page Table (PT) . We will refer to these tables as the L4, L3, L2

and the L1 tables respectively. Figure 2.2 illustrates a page walk. Moving from

L4 to L1, each level successively maps a smaller range of virtual addresses (VAs),

with 512GB, 1GB, 2MB and 4KB being the respective sizes. The page walk

iteratively uses the physical address of each level’s base combined with the 9

index bits obtained from the VA to locate page table entries. These entries store

the physical address of the next level. The L1 entry provides the final VA - PA

address translation [6, 8].

Figure 2.2: Page walk for x86 64 bit architectures
.

2.3 OS page allocation schemes

2.3.1 Basic page sizes

Linux distributions support 4KB, 2MB and 1GB pages. Of these the default

is a 4KB page. Some applications use large contiguous chunks of memory and

hence allocating a 2MB page can be beneficial. The first form of large page

support, called Hugepages, allowed 2MB page allocations if a kernel parameter
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nr hugepages was set explicitly for processes [2]. Recent developments have in-

troduced Transparent Hugepage Support (THS) [5] which allocates 2MB pages

to processes without an administrator having to explicitly set them. 1GB pages

are not yet supported by the Linux OS.

2.3.2 Transparent Hugepage support

Even though hugepages are advantageous, it requires an administrator to explic-

itly allocate them to a process. A more recent development, called THS [5],

is instrumental in supporting hugepages seamlessly. Kernel 2.6.38 and above

support this feature which can be turned on by setting /sys/kernel/mm/ trans-

parent hugepage/enabled to ’always’. When enabled, the OS tries to allocate a

2MB page if one is available. When it has no 2MB page available it attempts to

defragment the memory, through a defrag daemon and allocates a new hugepage,

if one is obtained. Otherwise the OS falls back to allocating 4KB pages.

2.3.3 VM Allocation - Buddy Allocator

Virtual memory page allocation is done through the Buddy allocator algorithm

[27], which divides free memory into a partition that satisfies the requested size[1].

The most common form of buddy allocator is the binary buddy allocator where

memory blocks have sizes proportional to powers of 2. Figure 2.3 shows how the

buddy allocator works on a system with block sizes ranging from 4K - 32K.The

colored portions represent allocated entries while the transparent portions repre-

sent free entries. Steps 1 - to end denote memory allocation requests to this chunk

of memory starting with stage 1 showing the initial state, a free 32K chunk. The

first memory request Mem1 is for a 7K chunk and the buddy allocator provides

this by splitting the free space into smaller chunks as shown by Steps 2.1 and

2.2. In step 2.1, the two 16K entries are buddies. In step 3 Mem2 requires 13K,
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which can be only satisfied by a chunk having 4 blocks. Since Mem1 splits the

4 block chunk on the left side, its buddy is allocated for Mem2. In step 4 Mem3

requires 4K and one of the 4K blocks satisfies this request. These block sizes

make address computation simple since buddies are aligned on memory address

boundaries, which are in turn powers of 2. The hardware sets the size of the

smallest block based on the page size, which is typically 4KB in x86 processors

[20]. Larger block sizes are power-of-two multiples of this size.

Figure 2.3: Working of a Buddy allocator
.

2.3.4 Defragmentation

Memory gets fragmented over a period of time. A defragmentation daemon com-

pacts such fragmented memory blocks into chunks of allocated blocks and thereby

frees up a large chunk of contiguous memory blocks, which can then be used by

the buddy allocator for hugepages. This is shown in in figures 2.4 - 2.6. The

daemon builds up two lists of memory blocks as shown in figure 2.5 and moves

them if sufficient space exists. The daemon runs this as two separate algorithms,

one starting at the bottom of the memory range building a list of allocated blocks

while the other starts at the top building a list of free blocks. To facilitate page

movement, page migration code [15] is invoked. The defragmentation daemon can

be enabled by setting the variable /sys/kernel/mm/transparent hugepage/defrag

to ’always’ [3].
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Figure 2.4: State of memory before de-
fragmentation

Figure 2.5: Memory block movement

Figure 2.6: State of memory after defrag-
mentation

2.4 Related work

One design that exploits the predictable behavior of reservation-based physical

memory allocators to improve TLB hit rates is SpecTLB [7]. SpecTLB pro-

vides speculative translations for TLB misses without consulting the page table

by tracking partially filled large-page reservations. It claims to overlap an av-

erage of 57% of page walks with successful speculative execution. On a TLB

miss SpecTLB checks if the virtual page that missed in the TLB was part of a

large-page reservation.These mappings are however predictions and further does

not guarantee if the page is still valid. Hence an explicit validation is required,

which involves marking the page table. This amounts to modifying the page ta-

ble. SpecTLB overcomes this with a heuristic reservation detection mechanism

which requires alignment of bits (VA[20:12] = PA[20:12]). SpecTLB requires a

special form of superpaging called reservation based superpaging and this is not
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supported in commonly used OSs like Linux. Further not all systems have super-

paging enabled hence reducing the usability of this design. SpecTLB also requires

validation on hits, which involve page walks.Mis-speculations and alignment re-

strictions tend to further degrade the performance of this design. Section 2.5

introduces our approach.

2.5 Our approach

Our study uses intermediate levels of page contiguity present in applications to

coalesce contiguous entries together. Two entries are contiguous if their VPNs

and PPNs are consecutive. Our approach requires extra bits to hold the contiguity

length and involves range checks, which can be performed through some combi-

nation logic. We first quantify the amount of page contiguity on real systems

by varying OS parameters. We find sufficient contiguity (10 - 30 page contigu-

ity) under various OS configurations. With this detail we determine performance

numbers for a Coalesced TLB. We find an average of 25% miss eliminations over

all the benchmarks using a 8 - 16 fully associative Coalesced TLB.
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Chapter 3

Contiguity - Real System Experiments

Our goal is to exploit as much page contiguity as possible. Since a real system

runs many processes, the number of superpages available for allocation tend to go

down. As a first cut, we quantify the amount of contiguity present in benchmarks

(table: 3.2) run under similar conditions. Even though simulations are used to

substantiate architectural proposals they differ from a real system for the following

reasons.

• These experiments collect page allocations over the whole life time of a

benchmark unlike simulations, which capture phases of execution.

• When simulated the benchmark is the only program running. The effect of

other processes is not obtained.

• The simulator uses a memory is not very fragmented since the OS has just

booted up. The real system experiments are run on a system that has been

running for days, thereby removing any such initial contiguity.

The following section shows the configuration used to run these experiments.

3.1 System Configuration

The system configuration mentioned in Table 3.1 was used to run these exper-

iments. Fedora 15 is chosen due to its stable support for kernel 2.6.38, which

supports THS. Since THS is one of the features being studied in this thesis, it

was critical to run experiments on such a setup.
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Operating System Fedora 15
Kernel Version Linux 2.6.38 and above

Memory 3GB
Processor Intel(R) Core(TM) 2 Duo

Number of cores 2

Table 3.1: System Configuration

Benchmark Name Benchmark Suite Benchmark Detail
401.bzip2 CPU2006 Compression Algorithm

416.gamess CPU2006 Quantum Chemistry
429.mcf CPU2006 Combinatorial Optimization
433.milc CPU2006 Quantum Chromodynamics

436.cactusADM CPU2006 Physics / General relativity
445.gobmk CPU2006 AI: Go
453.povray CPU2006 Image Ray tracing
458.sjeng CPU2006 AI: Chess

459.GemsFDTD CPU2006 Computational Electromagnetics
471.omnetpp CPU2006 Discrete Event simulation

473.astar CPU2006 AI: A* algorithm
483.XalancBMK CPU2006 XML processing

001.mummer BioBench Genome-level alignment
002.tigr BioBench Sequence assembly
007.fasta BioBench Sequence search

Table 3.2: Benchmarks used in the study

3.1.1 Benchmarks

Benchmarks mentioned in Table 3.2 are chosen from SPEC 2006 [16] and BioBench

[4] suites. We ran some initial experiments to determine the D-TLB miss rates.

These benchmarks had the highest D-TLB miss rates. Reference inputs used to

run these benchmarks are listed in Table 3.3.

3.2 Methodology

To run real system experiments the following parameters are studied:

• THS: A kernel parameter that allocates superpages seamlessly.
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Benchmark Name Benchmark Input
401.bzip2 input.combined

416.gamess triazolium.config
429.mcf inp.in
433.milc su3imp.in

436.cactusADM benchADM.par
445.gobmk trevord.tst
453.povray SPEC-benchmark-ref.ini
458.sjeng ref.txt

459.gemsFDTD ref.in
471.omnetpp omnetpp.ini

473.astar BigLakes2048.cfg
483.xalancBMK t5.xml, xalanc.xsl

001.mummer hs chrY.fa hs chr17.fa
002.tigr sitchensis.fa
007.fasta -a -m 5 -O

Table 3.3: Benchmark Input

• Memory defragmentation daemon: A daemon that works in conjunction

with THS to allocate super pages by compacting free pages.

• System load: The amount of memory usage. To create this a utility called

Memhog [17] is used.

3.2.1 Memhog

Memhog is a utility that allocates a given amount of memory and holds it until

it is explicitly terminated. This is used to load the real system when benchmarks

are executed. We stress the memory at the following three levels.

• 0 % memory Hog.

• 25% memory Hog

• 50% memory Hog.
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Memhog (in %) THS state Defrag state
0 On On
25 On On
50 On On
0 Off On
25 Off On
50 Off On
0 On Off
25 On Off
50 On Off
0 Off Off
25 Off Off
50 Off Off

Table 3.4: Various scenarios tested with the real system infrastructure

3.2.2 Benchmark Instrumentation

To collect statistics on OS page allocation, we created a utility called dataCollect.

dataCollect reads through the page table of a process by reading the system files

/proc/pid/pagemap and /proc/pid/maps. The VPN to PPN mapping is used to

generate contiguity statistics. This utility is run throughout the lifetime of the

benchmark by instrumenting each benchmark to call the dataCollect utility inside

its main function. The utility is spawned periodically to collect page distribution

over the whole run of the benchmark. Each benchmark is run twice and the

results are averaged over both the runs.

By varying the amount of memory hog, toggling THS support and defragmen-

tation daemon, the following twelve scenarios as shown in table 3.4 are run.

3.2.3 Results

The weighted average contiguity is calculated by counting each contiguous block

of Virtual to Physical mapping exactly once, and weighting that by the length of

its contiguity. The results are shown in Figures 3.1 - 3.6.
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3.2.4 Average Contiguity Results

Figure 3.1: Weighted average contiguity with no memory hog, Part 1

Figure 3.2: Weighted average contiguity with no memory hog, Part 2
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Figure 3.3: Weighted average contiguity with 25% memory hog, Part 1

Figure 3.4: Weighted average contiguity with 25% memory hog, Part 2
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Figure 3.5: Weighted average contiguity with 50% memory hog , Part 1

Figure 3.6: Weighted average contiguity with 50% memory hog , Part 2
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3.2.5 Observations

The results in Figures 3.1 - 3.6 show contiguity exists across all the configura-

tions. 401.bzip2 is a benchmark that exhibits a lot of contiguity in all scenarios.

Since 401.bzip2 is a compression algorithm it could be using large data structures

which in turn could be allocated in contiguous chunks of memory. On the other

hand the BioBench workload 007.fasta is a sequence searching utility and hence

might access random address patterns that are not contiguous. This behavior is

evident from the results which show low overall contiguity.

Turning on THS increases the average page contiguity from 10 to 30. This is be-

cause THS transparently allocates larger pages if possible and most benchmarks

that require data spanning page boundaries use this. Further since modern Linux

kernels have this feature enabled by default, a future micro-architectural design

involving this feature should have usability. Turning off this feature still gets

10 pages of contiguity. Hence under both these scenarios a micro-architectural

design involving contiguity stands to gain.

Lower levels of memory hog, upto 25%, make for great contiguity. In some bench-

marks a memory hog of 25% gets better results than no memory hog. Some

examples are 416.gamess, 459.GemsFDTD and 471.astar. This is due to the com-

bined effect of the defragmentation daemon and system load. Nevertheless both

0% and 25% memory hog produce an average contiguity of around 28.1 and 29.4

pages respectively . When the memory hog is increased to 50% the average page

contiguity dips to 5.4 since the defragmentation daemon finds fewer free blocks

to compact. A configuration with THS on, defragmentation daemon on and 25%

memory hog has the highest average contiguity of 45.8 while a configuration with

THS off, defragmentation daemon off and 50% memory hog has the lowest con-

tiguity of 2.11. As we can see even the worst case has sufficient contiguity that

can be exploited with a Coalesced TLB, discussed in Chapter 5 . To test this out

infrastructure listed in the next chapter is used.
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Chapter 4

Simulation Infrastructure

Given the amount of contiguity exhibited by the benchmarks, a Coalesced TLB

would benefit from it. We used traces collected from Simics [39] to evaluate its

performance. The following sections introduce the simulators used.

4.1 Simics

Windriver Simics [39] is a full system functional simulator that supports popular

micro-architectures like x86, SPARC etc. Simics provides functional correctness

of a program running on it by ensuring no wrong paths (mis-predicted paths)

are simulated. As a result Simics can be used to verify micro-architectural state.

Simics allows users to extend components like TLBs, trace generators among

many other modules. Even though Simics is comprehensive, it remains a func-

tional simulator and hence does not have a notion of time.This requires a more

cycle accurate simulator to model pipeline stage delays. Many such simulators

are present for popular architectures [30, 38] . We used one such simulator called

FeS2 [38].

4.2 FeS2

FeS2 is a cycle accurate, x86 multiprocessor simulator designed to work with

Simics and was chosen since it works with x86 architectures. FeS2 decodes an

x86 instruction into micro instructions and schedules them for execution out of
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order [38, 28]. Some other benefits are its support for complex memory subsystems

like Ruby [19] and a variety of branch predictors. Ruby could be extended to

model interconnection networks [18] and power modules. Support for the 64 bit

architecture x86 64 was recently included. Since the study deals with 64 bit

systems, FeS2 was chosen as the timing accurate simulator to be used in this

study.

4.2.1 Traditional FeS2-Simics Interaction

In a traditional Simics-FeS2 simulator setup, FeS2 reads instructions from Simics

and executes them in its pipeline. The two simulators perform a consistency

check on every instruction commit by comparing their physical registers. In case

of a mismatch, FeS2 copies the state information from Simics and continues to

simulate the next instruction. FeS2 also relies on Simics to provide it memory

translation and paging information since Simics simulates the OS. This setup can

take weeks to simulate benchmarks like 436.cactusADM. To improve simulation

run times we added trace driven support to FeS2. To decouple the two simulators,

the trace must contain enough information to replicate the architectural state.

This is explained in the next section.

4.3 Trace Driven FeS2

Since we are interested in the benchmark phases that stress the micro-architecture

the most, a huge number of instructions are skipped during every simulation. This

leads to an overall run time of a number of weeks. To speed up the process we

extended FeS2 to read from a trace generated by Simics.
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4.3.1 Simics trace generation module

Simics provides a trace generation module that generates the following informa-

tion.

• Instructions executed

• Data accesses and the translation information.

• Exceptions

• OS instructions and their memory accesses.

The Simics development SDK [33] has APIs to extract important architectural

details like register values, instruction disassembly and page walk information. We

extend the trace generation module as follows.

• An initial snapshot of the system is dumped into the trace file at the start.

This includes

– Architecture type.

– Physical registers (based on the architecture type)

– XMM registers, if supported.

– FPU status and FPU registers.

– Register mapping information.

• The disassembled version of the instruction is stored.

• Registers modified by that instruction are stored along with their updated

values.

We have created a new processor in FeS2 to read these traces called the Trace

Processor.
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4.3.2 Trace Processor

The trace processor reads inputs from a trace file and sends them to the fetch

stage of the FeS2 pipeline. Based on the fetch width of the FeS2 processor, that

many instructions are read from the trace file. Since Simics is decoupled from

FeS2, memory translations and physical contents are stored in two maps. These

maps are updated when reading the data access lines from the trace. As the

instructions move through the pipeline, effective addresses are calculated from

FeS2’s internal register state and the resulting address is looked up in one of the

maps to obtain its physical content. Since FeS2 supports exception handling and

branch prediction modules the trace needs to be rewound when an exception or

a misprediction occurs. This is explained in detail in the next section.

4.3.3 Rewinds

A rewind updates the instruction pointer (IP) to reload a previously executed

instruction. To be able to rewind, the processor stores file pointers and register

state information for every macro instruction in the pipeline. During a rewind

the register state is set back to the state when the instruction being rewound was

first fetched. During a rewind the buffers holding state information and the FeS2

pipeline are flushed.

4.3.4 Future

This setup is tested to work with multi-fetch processors on a simple memory

hierarchy. In the future this infrastructure can be extended to work with more

complex memory systems, having variable delays and port contention built into

them. This infrastructure could be used to test the performance of a Coalesced

TLB mentioned in chapter 5.
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Chapter 5

Coalesced TLB

A Coalesced TLB coalesces contiguous entries in the TLB within one entry. This

can be extended from a normal TLB by adding some bits to each entry to denote

the length of contiguity. Figures 5.1 and 5.2 show how the same content is stored

on the two TLBs. The contiguous entries are coalesced to a single entry (refer

to the first two entries in 5.2). The entry with VPN=0x501021 is not coalesced

with the entry having VPN=0x501022 since their PPN’s are not contiguous.

Figure 5.1: Contents of a normal TLB

5.1 Coalescing Operation

A Coalesced TLB entry contains the following fields.

• Base VPN

• Base PPN
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Figure 5.2: Contents of the corresponding Coalesced TLB

• Coalesced length

• Flags ( similar to the normal TLB)

When two entries are contiguous, the lesser of the two is stored as the base

VPN-PPN mapping and the coalesced length is increased by one. We have not

restricted the number of entries that can be coalesced. Further coalescing occurs

between two VPNs irrespective of whether the newly looked up VPN is lesser

or greater than the other. To illustrate this assume the following two addresses

are added to the Coalesced TLB depicted in Figure 5.2. After adding the first

mapping coalescing cannot be performed as the mapping 0x44531F3→ 0x88524

is missing. When the second mapping is looked up, entries with VPN 0x44531F1

and 0x44531F4 are coalesced along with the incoming VPN 0x44531F3 to create

one entry of length 4.

S.No VPN PPN
1 0x44531F4 0x88525
2 0x44531F3 0x88524

Table 5.1: Mappings added to the Coalesced TLB in Figure 5.2. A study of the
coalescing behavior.
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5.2 Lookup In Coalesced TLB

The Coalesced TLB has a slightly different lookup function when compared to

the normal TLB. Since the VPN corresponds to the least VPN in that range,

the lookup function performs a check in the range defined by BaseV PN ↔

BaseV PN + CoalescedLength. If the VPN is within that range, the PPN is

similarly checked before tagging it as a hit. On a miss, the Coalesced TLB evicts

an entry based on its replacement policy. Some future studies could involve mod-

ifying the replacement scheme to only evict entries with unit Coalesced length.

This is discussed in Section 6.1.

5.3 Benefits

To understand the benefits of such an architecture, one can look at the effective

capacity of a Coalesced TLB. If n were the average coalesced length of an entry

in the TLB, a similarly sized Coalesced TLB would hold n ∗X worth of entries,

where X is the total number of entries on the normal TLB. This reduces miss

rates without having to introduce complicated hardware. The experiments run

in chapter 3 show an average contiguity of 30 pages with THS turned on and 10

pages with THS turned off.

5.4 Performance Evaluation

This section quantifies the performance gain with a Coalesced TLB.

5.4.1 Experiment setup

To carry out this experiment, phases of the benchmark that stress the micro-

architecture are selected using a utility called Simpoints [37]. Simics traces from

ten such simpoints are collected for each benchmark. The data references of
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these simpoints are used to populate two fully associative TLBs with varying

sizes and LRU replacement policy. The first TLB is a baseline that exactly

resembles a normal TLB. The second TLB contains coalesced entries used to

characterize performance benefits for a range of fully associative TLBs. The

following subsection mentions how performance gains are obtained.

5.4.2 Results: Recency plot

The performance improvement metric is obtained as follows.

• On a hit in both the TLBs, the depth of that entry from the head of LRU

list is noted.

• Frequency counts are obtained for each depth.

• Cumulative distribution functions (CDF) are calculated for these frequency

counts.

• With the X axis denoting the depth of the hit, the CDF denotes the total

number of hits to expect with a fully associative TLB of that size.

• The normal TLB’s CDF is subtracted from the Coalesced TLB’s CDF and

these values are divided by the total number of misses at each depth in the

Normal TLB.

• This indicates the performance gain with a Coalesced TLB.

The following subsections show the recency plots with THS turned on and off.
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5.4.3 Recency Plots - THS On

Figure 5.3: Recency plot of 473.astar
with THS on

Figure 5.4: Recency plot of 401.bzip2
with THS on

Figure 5.5: Recency plot of
007.fasta prot with THS on

Figure 5.6: Recency plot of 416.gamess
with THS on

Figure 5.7: Recency plot of
459.GemsFDTD with THS on

Figure 5.8: Recency plot of 445.gobmk
with THS on
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Figure 5.9: Recency plot of 429.mcf with
THS on

Figure 5.10: Recency plot of 001.mum-
mer with THS on

Figure 5.11: Recency plot of 471.om-
netpp with THS on

Figure 5.12: Recency plot of 453.povray
with THS on

Figure 5.13: Recency plot of 458.sjeng
with THS on

Figure 5.14: Recency plot of 002.tigr
with THS on
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5.4.4 Recency Plots - THS off

Figure 5.15: Recency plot of 471.astar
with THS off

Figure 5.16: Recency plot of 401.bzip2
with THS off

Figure 5.17: Recency plot of
007.fasta prot with THS off

Figure 5.18: Recency plot of 416.gamess
with THS off

Figure 5.19: Recency plot of
459.GemsFDTD with THS off

Figure 5.20: Recency plot of 445.gobmk
with THS off

5.4.5 Observations

The recency plots denote hit rate improvement with a Coalesced TLB. It can be

seen from Figures 5.3 - 5.14 that the plots increase around 8 - 16 entries and go

down to zero around 256 - 512 entries. This is due to a low number of pages
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Figure 5.21: Recency plot of 429.mcf
with THS off

Figure 5.22: Recency plot of 001.mumer
with THS off

Figure 5.23: Recency plot of 471.povray
with THS off

Figure 5.24: Recency plot of 473.om-
netpp with THS off

being used with THS turned on (250 - 500 pages). Having less than 8 entries

doesn’t gain much as there are very few entries to hold both coalesced and non-

coalesced entries. Future studies could study the performance gains of a TLB

holding coalesced entries alone. With 8 - 16 entries miss elimination ranges from

10% (figure 5.5) to 90% (figure 5.3).

The recency plots with THS turned off, mentioned in Figures 5.15- 5.24 show

benefits over a wider range. This is because the number of pages being used

across the whole run of the trace is much higher than in the previous case. Povray,

Figure 5.23 is an exception to this rule and uses the same number of pages as

its THS off counterpart. Even though benefits can be seen over a wide range

of fully associative TLB sizes, it is not practical to use a large fully associative

TLB. Since 8 - 16 entries show considerable gains they can be used to improve

performance.
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5.5 Conclusion

This study shows performance improvement of 10% - 90% using a 8 - 16 entry fully

associative Coalesced TLB. Though a Coalesced TLB requires range checks on a

lookup it can be implemented using simple combinational logic. The Coalescing

operation must be taken off the critical path by performing it in the background.

The above results show this to be a low cost approach to obtain better TLB hit

rates. The next chapter talks about some future studies related to the Coalesced

TLB.
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Chapter 6

Discussions and Future

We have shown performance improvement with the Coalesced TLB using very

little hardware changes. This is however a basic design and needs to be studied

further by testing set indexing, replacement policies and sizes. We list some future

studies here.

6.1 Replacement Policy

If an LRU replacement policy is used in the Coalesced TLB, a simple modification

choosing non contiguous entries for eviction could be tested. This policy must be

restricted to a certain depth from the head of the LRU so as to not evict a unit

length entry that was recently accessed.

6.2 Prefetching from Cache line

If the TLB is set indexed, the number of entries that can be coalesced is restricted

to the number of blocks within that line. In such a scenario we could prefetch the

whole cache line into a coalesced entry if the former has contiguous VPNs and

PPNs.

6.3 Coalescing entries within TLB

The experiments in section 5.4 show large number of pages being contiguous,

sometimes leading up to 1K pages. Hence on a set indexed TLB there is scope
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to coalesce entries among sets. This scheme could work on top of the prefetching

mechanism discussed above.

6.4 Small fully associative buffers

Another way of improving hit rates could be to add a small fully associative

buffer next to the Coalesced TLB. This buffer could be at most 16 entries, which

experiments in section 5.4 have shown to improve hit rates by 30% on an average.

By varying inclusion patterns (with the traditional L1 and L2 TLBs) we can study

various designs.
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