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ABSTRACT OF THE DISSERTATION

Yang-Mills heatflow on gauged holomorphic maps

by Sushmita Venugopalan

Dissertation Director: Chris Woodward

We study the gradient flow lines of a Yang-Mills-type functional on the space of gauged

holomorphic maps H(P,X), where P is a principal bundle on a Riemann surface Σ and

X is a Kähler Hamiltonian G-manifold. For compact Σ, possibly with boundary, we

prove long time existence of the gradient flow. The flow lines converge to critical points

of the functional. So, there is a stratification on H(P,X) that is invariant under the

action of the complexified gauge group.

Symplectic vortices are the zeros of the functional we study. When Σ has boundary,

similar to Donaldson’s result in [Don92], we show that there is only a single stratum -

any element of H(P,X) can be complex gauge transformed to a symplectic vortex. This

is a version of Mundet’s Hitchin-Kobayashi result [MiR00] on a surface with boundary.
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Chapter 1

Introduction

J-holomorphic maps have been important objects in symplectic geometry since they

were introduced by Gromov ([Gro85]) in 1985. In an equivariant setting, these gener-

alize to gauged holomorphic maps. Let G be a compact connected Lie group acting

on a compact Kähler manifold (X,ω). We assume the action is Hamiltonian and has

moment map Φ : X → g
∗. The G-action preserves the complex structure on X. A

gauged holomorphic map from a Riemann surface Σ to X is a pair (A, u) consisting of

a connection A on a principal G-bundle P → Σ together with a holomorphic section

of the associated fiber bundle P (X) := (P × X)/G. The complex structure on P (X)

is given by the complex structure on Σ and X and the connection A. The space of

gauged holomorphic maps H(P,X) has a formal Hamiltonian action of the group of

gauge transformations G(P ). The moment map is given by ∗FA + Φ(u), where FA is

the curvature of A. The functional

H(P,X) → R

given by (A, u) 7→ ‖∗FA +Φ(u)‖2L2

(1.1)

is the square of the norm of the moment map. In this dissertation, we study the

long-time existence and convergence behaviour of the gradient flow trajectories of (1.1)

If Σ is a compact Riemann surface, possibly with boundary, the gradient flow lines

of (1.1) exist for all time. If Σ has boundary, the flow equations are solved under the

condition ∗FA +Φ(u) = 0 on ∂Σ.

Theorem 1.0.1. (3.0.1) Suppose Σ is compact. The gradient flow for the functional

(1.1) exists for all time. (At, ut) ∈ C0
loc([0,∞), H1 × C0). There is a family of gauge

transformations gt ∈ H2(G) so that gt(At, ut) is smooth on [0,∞)× Σ.
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We view this theorem as an infinite-dimensional version of the set-up in [Kir84].

On a compact Kähler manifold with a Hamiltonian G-action, Kirwan describes the

Morse strata of the norm square of the moment map. A compact Lie group has a

complexification GC, which is a complex reductive group. Since X is Kähler, the action

of G extends to an action of GC. The Morse strata are GC invariant.

When X ⊆ Pn is a projective variety and GC acts linearly on it, geometric invariant

theory (GIT), developed by Mumford [MFK94], gives a way of defining quotients. Let

A(X) be the co-ordinate ring of X, and A(X)GC be the subring of GC-invariants.

A(X)GC is finitely generated because GC is reductive. The associated projective variety

X//GC is the GIT quotient of X. A point x in X is semi-stable if there is a GC-

invariant homogeneous polynomial f with positive degree that does not vanish at x.

The semistable locus of Xss is Zariski-open in X. An important result of Mumford is

that, as a topological space X//GC ≃ Xss/ ∼, ∼ is the orbit-closure relation on Xss

given by: x1 ∼ x2 iff GCx1 ∩ GCx2 ∩ Xss 6= φ. The GIT quotient is equivalent to

the symplectic quotient φ−1(0)/G. In the affine case, this is the Kempf-Ness theorem

([KN79]). In the Morse theory picture, [Kir84] shows that the open Morse stratum

coincides with Xss and gives an algebraic description of the other Morse strata also.

The work of Atiyah and Bott[AB83] introduces the above ideas in the infinite di-

mensional setting - on the space of connections A on a principal bundle over a Riemann

surface. This space is equivalent to the space of holomorphic structures on an asso-

ciated complex vector bundle. There is a stratification of this space by considering

the Harder-Narasimhan filtration. The stratification is preserved by the action of the

complexified gauge group GC. The lowest stratum consists of semi-stable bundles. For

a bundle E, semi-stability means that for any holomorphic sub-bundle E1,

c1(E1)

rank(E1)
≤ c1(E)

rank(E)
.

On the differential-geometric side, there is the Morse stratification of the Yang-Mills

functional. The Narasimhan-Seshadri theorem ([NS65]) says that, in these two stratifi-

cations, the open stratum is the same : ‘every stable bundle admits a Yang Mills con-

nection that assumes the minimum value of the functional i.e. ∗FA = 2πic1(E)/rk(E).’
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Donaldson gave a diffeo-geometric proof [Don83] of this theorem. Daskalopoulos [Das92]

and R̊ade [R̊ad92] proved that the algebraic and Morse stratifications agree. R̊ade’s ap-

proach is to show that the gradient flow lines of the Yang-Mills functional are continuous

and converge as t→ ∞.

We use similar techniques as R̊ade [R̊ad92] to show the existence of flow for (1.1).

The main point of difference is that our flow problem involves u which is a map to a

compact Kähler manifold. While solving the flow equations, we assume that u(t) is in

C0, but in the time direction, we assume its regularity is in a Sobolev class. We have

to address some issues in defining such a mixed space. The reason why it’s necessary

to have ut in C0, is because the perturbative lower order terms in the parabolic flow

equations involve composition of functions, and we need ut ∈ C0 to use these results.

[Don85] gives a simpler way of obtaining flow lines, albeit modulo gauge. But this

approach does not work for us because of the non-linear moment map term. However,

after showing the existence of flow, we adapt the technique in [Don85] to show that our

flow is smooth in time and space directions modulo gauge.

Similar Morse-theoretic ideas have been applied to the space of holomorphic vector

bundles equipped with some extra data. For example, Wilkin[Wil08] studies the space of

Higgs pairs (A, φ), where A is a connection on a complex vector bundle over a Riemann

surface, and φ ∈ Ω1,0(E) such that ∂Aφ = 0. With a standard choice of symplectic

structure, the action of the gauge group action has moment map FA+[φ, φ∗]. This work

shows that the Morse stratification of the L2 norm of the moment map corresponds to

a holomorphic stratification. A Higgs pair corresponds to a GL(n,C) connection, so

the problem of studying the gradient flow in this case, is reduced to the gradient flow

problem on the space of connections.

We prove the following result on the convergence behaviour of the gradient flow

lines:

Theorem 1.0.2. Let (At, ut) ∈ C∞
loc([0,∞) × Σ) be the gradient flow (modulo gauge)

calculated in theorem 1.0.1. There exists a sequence ti → ∞, a sequence of gauge

transformations gi ∈ GH2 and a pair (A∞, u∞) ∈ A(P )H2 × Γ(Σ, P (X))C1 such that,
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a. gi(Ati) → A∞ weakly in H2

b. If Σ does not have boundary, giuti Gromov converges to a nodal gauged holomor-

phic map with principal component u∞. Let Z ⊆ Σ be the finite bubbling set. In

compact subsets of Σ\Z, giuti → u∞ in C1.

c. If Σ has boundary, giuti → u∞ in C1 - there is no bubbling.

d. (A∞, u∞) is a critical point of the functional (1.1).

A stronger result can be obtained in case the Σ has boundary. For this case, we

define a sub-group GC,G of the complexified gauge group consisting of g ∈ GC such that

g|∂Σ ∈ G(∂Σ)

Theorem 1.0.3. The limit (A∞, u∞) computed in theorem 1.0.2 lies in the same GC,G-

orbit as the flow line (At, ut). For a given flow line (At, ut), the limit (A∞, u∞) is unique

up to gauge.

This result in the case of a surface with boundary can be compared to Donaldson’s

result [Don92] on Yang-Mills gradient flow. On a two-dimensional base manifold with

boundary, it says that any connection can be complex gauge transformed to a flat

connection - there is no semi-stability condition involved.

Gauged holomorphic maps that satisfy FA,u = 0 are called symplectic vortices.

These have been studied in [JT80], [Bra90], [CGS00], [CGMiRS02], [Zil06] etc. An

important motivation for studying the functional (1.1) is to obtain a holomorphic de-

scription of the moduli space of symplectic vortices. [JT80] (theorem 1.1 and 1.2 in

chapter 3) gives a classification of vortices on C with target manifold X = C, with

the linear action of S1. [Bra90] considers the case when Σ is a compact Kähler mani-

fold and X = C. They give a stability condition on the space of gauged holomorphic

maps which ensures that there is a vortex in the GC orbit - this is a Hitchin-Kobayashi

correspondence. Mundet’s work [MiR00] generalizes this correspondence to non-linear

G-action. He takes X to be a compact Kähler Hamiltonian-G-manifold and gives a

stability criterion. Our heat-flow approach to the problem can give a complete strat-

ification of H - i.e. H can be decomposed into subsets according to the critical set a
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point flows to via the gradient flow. Theorem 1.0.3 can be seen as a version of Mundet’s

result for a Riemann surface with boundary. It shows that the map

H(P,X)/GC,G → Space of symplectic vortices from P to X/G

[(A0, u0)] 7→ [(A∞, u∞)]

is a bijection.

An application of theorem 1.0.3 is that it can be used to obtain a semi-stability

criterion on holomorphic maps on C to X - this determines which maps on the trivial

bundle over C have a symplectic vortex in their complex gauge orbit. This general-

izes the result of [JT80] - in [JT80] the target manifold is C with a linear S1-action,

whereas our result holds for a compact Kähler manifold with Hamiltonian G-action.

This application will be presented elsewhere.

This dissertation is organized as follows: chapter 2 describes connections, gauged

holomorphic maps etc. Chapter 3 proves theorem 1.0.1 - the long-time existence of

gradient flow and its regularity properties. Chapter 4 discusses the convergence re-

sult theorem 1.0.2. Chapters 5 and 6 carefully describe the Sobolev spaces and their

properties used in chapter 3.
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Chapter 2

Preliminaries

2.1 Hamiltonian actions

Let (X,ω) be a compact Kähler manifold. This means that (X,ω) is a symplectic

manifold, alongwith a compatible almost-complex structure J : TX → TX that is

integrable.

Let G be a compact connected Lie group acting on X smoothly. We assume that

the action is Hamiltonian, i.e. there is a moment map Φ : X → g
∗. Φ is equivariant

and satisfies ι(ξX)ω = d〈Φ, ξ〉, ∀ξ ∈ g, where ξX ∈ Vect(X) given by the infinitesimal

action of ξ on X. Since G is compact, g has an Ad-invariant metric. We fix such a

metric and identify g with g
∗ and so the moment map is Φ : X → g. We also assume

that the action of G preserves J .

Consider the gradient flow lines of the functional f = 1
2〈Φ,Φ〉 on X. The Rieman-

nian metric we use here is g := ω(·, J ·).

Proposition 2.1.1. grad f(x) = −JΦ(x)X

Proof. For v ∈ TxX,

〈grad f, v〉g = 〈dΦ(v),Φ〉g = ιΦ(x)Xω(v) = 〈v,−JΦ(x)X〉g.

Next we describe GC-the complexified Lie group of G. Let gC denote the complexified

Lie algebra g⊕ ig. Then,

Proposition 2.1.2. ([Hoc65], p205) For a compact connected Lie group G, there exists

a unique connected complex Lie group GC, with the following properties:
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a. its Lie algebra is gC.

b. G is a maximal compact subgroup of GC.

On a Kähler manifold the action of G extends to a unique holomorphic action of

GC (see [GS82]). Since the gradient of 1
2‖Φ‖2 is JΦ(x)X , the gradient flow preserves

the GC orbit. So, the semistable stratum - which is the open stratum of this gradient

flow, is GC invariant.

Proposition 2.1.3. A GC orbit has at most one G-orbit on which Φ = 0.

Proof. The map

GC → G× g g 7→ (k, s) so that g = keis (2.1)

is a diffeomorphism. For semi-simple GC, this is shown in [Hel62], p 214. The result is

true for any compact Lie group G because of the decomposition G = Z(G)×Gs, where

Z(G) is the center of G and Gs is a semisimple subgroup.

Suppose Φ(x) = Φ(gx) = 0. Since g = keis, where k ∈ G and s ∈ g, we can assume

g = eis. For 0 ≤ t ≤ 1,

d

dt
〈Φ(eitsx), s〉 = 〈sX(eitsx), sX(eitsx)〉 ≥ 0. (2.2)

So, sX = 0 for all points on t 7→ eitsx which means x = eitsx.

2.2 The space of connections

Let (Σ, j) be a Riemann surface and P → Σ a principal G-bundle over it. A connection

A on P is a g-valued 1-form on P that is G-equivariant and satisfies A(ξP ) = ξ for all

ξ ∈ g. Let A(P ) denote the space of all connections. It is an affine space modeled on

Ω1(Σ, P (g)), where P (g) := (P × g)/G is the adjoint bundle. A connection A defines

an exterior derivative dA on Ω∗(Σ, P (g))

dAξ := dξ + [A ∧ ξ].

Locally this means, in a trivialization of the bundle P (g) on a neighbourhood Uα ⊆ Σ,

suppose A is given by d + Aα, Aα ∈ Ω1(Uα, g). Then (dAξ)α = dξ + [Aα ∧ ξ]. On
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the vector bundles Ωk(Σ, P (g)), there is an inner product defined using the Hodge

star on Σ and the Ad-invariant metric on g. dA extends to an exterior derivative

dA : Ωk(Σ, P (g)) → Ωk+1(Σ, P (g)). Its formal adjoint is d∗A = − ∗ dA∗. Then, the

Hodge Laplacian is defined as ∆A = d∗AdA + dAd
∗
A.

The curvature FA ∈ Ω2(Σ, P (g)) of a connection A is

FA := dA+
1

2
[A ∧A].

The operator d2A is a tensor on Σ and it satisfies d2Aξ = [FA, ξ]. The curvature varies

with the connection as

FA+ta = FA + tdAa+
t2

2
[a ∧ a].

A gauge transformation is an automorphism of P - it is an equivariant bundle map

P → P . It is a section of the bundle (P ×G)/G, where G acts on itself by conjugation.

Let G(P ) denote the group of gauge transformations. g ∈ G(P ) acts on A(P ) by

pullback by g−1. In a local trivialization, a gauge transformation can be seen as a map

Uα → G. For a connection d+Aα on Uα, the action of g ∈ G(P ) is given by

g(A)α = gdg−1 + gAαg
−1.

Differentiating, we see that the infinitesimal action of ξ ∈ Γ(Σ, P (g)) on A is −dAξ.

Under the action of g ∈ G(P ), the curvature transforms as Fg(A) = gFAg
−1. A(P ) can

be equipped with a symplectic form - for a, b ∈ TAA = Ω1(Σ, P (g))

(a, b) 7→
∫

X
〈a ∧ b〉g.

With this symplectic structure, the action of the gauge group is Hamiltonian.

A(P ) has a complex structure: JA : TA → TA given by a 7→ ∗a. A(P ) is an affine

space and JA looks identical at any A, so it is integrable. It is also compatible with

the symplectic structure, giving A a Kähler structure. The action of G extends to an

action of the complexified gauge group GC := Γ(P ×G GC), where G acts on GC by

conjugation. (Details in section 3.2.1.)

In this case the L2-norm square of the moment map is the Yang-Mills functional

A 7→ ‖FA‖2L2(Σ). Analogous to proposition 2.1.1, the gradient of this functional is

grad(A 7→ ‖FA‖2L2(Σ)) = JA(−dA(∗FA)) = d∗AFA.
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2.3 Gauged holomorphic maps

A natural way of generalizing J-holomorphic curves to the equivariant setting is to

consider G-equivariant maps from P to X, where P is a principal G-bundle over Σ. In

this work, we think of an equivariant map from P to X as a section u : Σ → P (X),

where P (X) := (P × X)/G is a bundle over Σ with fibres isomorphic to X. But

‘holomorphicity’ depends on the choice of connection A on P . A connection A on P gives

a splitting TP (X) = π∗TΣ ⊕ T vertP (X). This, and the complex structure J together

define an almost complex structure JA on P (X) := (P × X)/G. This is actually a

complex structure because for dimΣ = 2, there are no integrability conditions. ∂Au = 0

means that u : Σ → P (X) is holomorphic with respect to JA. That is, ∂Au :=

1
2(du + JAdu ◦ j). A gauged holomorphic map is a pair (A, u) that satisfies ∂Au = 0.

The space of gauged holomorphic maps from P → Σ to X is called H(P,X):

H(P,X) := {(A, u) ∈ A(P )× Γ(P (X)) : ∂Au = 0}

Remark 2.3.1 (Integrability Conditions). : The Newlander-Nirenberg theorem states

that on a vector bundle, an almost-complex structure ∂A is a complex structure if

and only if ∂
2
A = 0 or F 0,2

A = 0 (See [AB83] p.555 or [DK90] theorem 2.1.53). On

a 2-dimensional base manifold, this condition is automatically satisfied. This result

on vector bundles applies to principal bundles and their associated fibre bundles also.

This is seen as follows: Suppose G ⊆ U(n). Let E = P ×G Cn. If ∂
2
A = 0, it gives

a holomorphic structure on E. The frame bundle Fr(E) of E is a GL(n,C) bundle

on Σ. A local holomorphic frame gives a holomorphic section on Fr(E). This makes

Fr(E) a holomorphic bundle. Since PC := P ×GGC is an almost-complex submanifold

of Fr(E), it is a complex manifold. The fiber bundle P (X) is also holomorphic with

respect to ∂JA - P (X) can be written as P (X) = PC ×GC
X. Holomorphic sections on

PC give holomorphic sections of P (X).

Γ(Σ, P (X)) is the space of smooth sections of P (X). It is an infinite dimensional

Frechet manifold whose tangent space at u is Tu = Γ(Σ, u∗T vertP (X)). Locally, after a

choice of gauge, the bundle u∗T vertP (X) becomes u∗TX. Γ(Σ, P (X)) has a symplectic



10

structure : for ξi ∈ Tu, (ξ1, ξ2) 7→
∫
Σ ωX(ξ1, ξ2). The gauge group G(P ) acts component-

wise on A(P )× Γ(P (X)) - for any g ∈ G(P ),

g(A, u) 7→ (g(A), gu) = ((g−1)∗A, gu).

Define

A(P )× Γ(Σ, P (X)) → Ω2(Σ, P (g))

(A, u) 7→ FA,u := FA +Φ(u)dvolΣ

Since, Φ is G-equivariant, it induces a map P (X) → P (g), which is also denoted Φ, so

that Φ(u) in the above definition is a section of P (g) → Σ. Under the product symplectic

structure, the action of the gauge group on A(P ) × Γ(Σ, P (X)) is Hamiltonian with

moment map

(A, u) 7→ ∗FA + u∗Φ = ∗FA,u.

Since both Σ and P (X) are complex, so is the space Γ(Σ, P (X)). The complex

structure is given by ξ 7→ JXξ, where ξ ∈ Γ(Σ, u∗T vertP (X)) This is compatible with

the symplectic structure and so, A(P ) × Γ(P (X)) has a Kähler structure. GC(P ) acts

component-wise on (A, u) and this action is holomorphic. H(P,X) also has a Kähler

structure because it is a subspace of A(P ) × Γ(P (X)) whose tangent space is closed

under the action of JA×Γ(P (X)):

• Consider (a, 0) ∈ TA,uH(P,X) - that means au(jv) = JXau(v) for all v ∈ V ect(Σ).

The same condition is satisfied for ∗a, since ∗a = a ◦ j.

• Consider (0, ξ) ∈ TA,uH(P,X). Locally, u : C → Cn is a holomorphic map and

ξ ∈ u∗TCn. (0, ξ) ∈ TA,uH(P,X) translates to ∂ξ = 0 and this condition will

apply to iξ also.

Notice that holomorphicity of (A, u) is preserved by the action of GC.

Analogous to the finite-dimensional case and that of A(P ), we consider the norm

square of the moment map (A, u) 7→ ‖FA,u‖2L2(Σ). The gradient at (A, u) is

J(A,u)(∗FA,u)A(P )×Γ(P (X)) = (d∗AFA,u, JX(∗FA,u)u). (2.3)



11

Recalling notation, given ξ ∈ Γ(P (g)), ξu ∈ u∗T vertP (X) denotes the action of ξ on the

image of u, i.e. for x ∈ Σ, ξu(x) = ξ(x)u(x). The gradient flow preserves GC orbits and

so it preserves H(P,X).

A useful related quantity is the twisted derivative dAu. It is the projection of du

onto T vertP (X). Locally, this is described as follows - for a neighbourhood Uα ⊆ Σ,

pick a trivialization. Under this, A can be written as d+ Aα, Aα ∈ Ω1(Uα, g) and u is

given by uα : Uα → X. Then, dAu = duα + (Aα)uα .
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Chapter 3

Heat flow

In this section, we prove the long-term existence of the gradient flow of (1.1) for the

case when Σ is a compact Riemann surface, possibly with boundary. The gradient flow

line starting at (A0, u0) ∈ H(P,X) is given by the system

d

dt
A = −d∗AFA,u,

d

dt
u = −J(∗FA,u)u

FA,u|∂Σ = 0,

A(0) = A0, u(0) = u0.

(3.1)

The first two equations come from (2.3).

Theorem 3.0.1. (1.0.1) For any (A0, u0) ∈ A(P )×Γ(P (X)), the gradient flow (At, ut)

exists for all time. (At, ut) ∈ C0
loc([0,∞), H1 × C0). There is a family of gauge trans-

formations gt ∈ H2(G) so that gt(At, ut) is smooth on [0,∞)× Σ.

In section 3.1, we prove the existence of unique flow lines, and in section 3.2, we

show that (At, ut) is smooth modulo gauge. In this part of the dissertation, we do not

require (A0, u0) to be holomorphic.

3.1 Existence of trajectories

3.1.1 Setting up the system of equations for gradient flow

If (A(t), u(t)) are solutions of the system (3.1), then FA(t),u(t) satisfies

d

dt
FA(t),u(t) =

dFA

dt
+
d

dt
u∗ΦdvolΣ = dA

dA

dt
+ u∗dΦ(

du

dt
)dvolΣ

= −dAd
∗
AFA,u + u∗dΦ(−J(∗FA,u)u)dvolΣ.
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For 0-dimensional forms, d∗AdA = ∆A, which is an elliptic operator. Writing Ft :=

∗FA(t),u(t), the above equation is equivalent to

dF

dt
= −∆AF − u∗dΦ(JFu). (3.2)

Except for the non-linear term u∗dΦ(JFu), (3.2) is parabolic. Roughly speaking, once

we solve this equation in F , At = A0 −
∫ t
0 d

∗
AFA,u and ut is obtained by integrating the

vector field (∗FA,u)ut . But unfortunately, A occurs in the term
∫ t
0 d

∗
AFA,u and At, ut

occur in the equation in F . So, we need to solve the three equations ((3.1) and (3.2))

as a coupled system.

We know, if (At, ut) is a solution of (3.1), then (A(t), ∗FA(t),u(t), u(t)) is a solution

of

d

dt
A = ∗dAF,

d

dt
F = −d∗AdAF − u∗dΦJFu,

d

dt
u = JFu. (3.3)

with initial data A(0) = A0, F (0) = ∗FA0,u0
and u(0) = u0. Note that F ∈ Γ(Σ, P (g))

is an independent variable in this system, whereas FA denotes the curvature of the

connection A and FA,u = FA + u∗ΦdvolΣ ∈ Ω2(Σ, P (g)).

Remark 3.1.1. A solution (A,F, u) of (3.3) will satisfy ∗FAt,ut = F (t)

We use A0 as the base connection, and write any connection on A on P as A0 + a,

where a ∈ Ω1(Σ, P (g)). Write u = expu0
ξ, where ξ ∈ Γ(Σ, T vert

u P (X)). Then, the

system (3.3) becomes

d

dt
a− ∗dA0

F = ∗[a, F ]
d

dt
F +∆A0

F = −u∗dΦJFu − ∗[a ∧ ∗dA0
F ]− [d∗A0

a, F ]− [a ∧ ∗[a, F ]]
d

dt
ξ = −d exp(ξ)−1(JFu)

(3.4)

with initial conditions a(0) = 0, F (0) = ∗FA0,u0
, ξ(0) = 0. The advantage of writing

the system this way is that now, a, F and ξ are just sections of vector bundles over Σ.

Remark 3.1.2. For the last equation to make sense, d exp : Tu0(x)X → Texpu0 ξ(x)X has

to be invertible, i.e. for any x ∈ Σ, expu0(x) is a diffeomorphism in a neighbourhood of

ξ(x). So, we ensure

‖ξ‖C0 < injX .
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injX is the injectivity radius of X. This is defined as follows: For any x ∈ X, injX(x) :=

radius in TxX for which the exp map is a diffeomorphism. injX := infx∈X injX(x). For

a compact manifold injX > 0.

3.1.2 Description of Sobolev spaces

To show the existence of a solution, we work in Sobolev spaces of sections of vector

bundles. In this section, we use Sobolev spaces Hs = W s,2, i.e. p = 2. For any real r,

s, t0 > 0 and a vector bundle E over Σ, Hr,s([0, t0]×Σ, E) (or Hr,s or Hr(Hs)) denotes

the space of time-dependent (equivalence classes of) sections that are in Sobolev class

Hr in time and Hs in space. When r and s are non-negative integers, Hr,s is the

completion of C∞([0, t0]× Σ, E) under the norm

‖σ‖2r,s :=
r∑

i=0

s∑

j=0

‖t−(r−i)
0

di

dti
∇s

A0
σ‖2L2(Σ×[0,t0]

.

For other exponents, the spaces Hr,s are defined by interpolation and duality. For neg-

ative Sobolev exponents, the elements of Hr,s, need not be almost-everywhere defined

sections, they are just distributions. The norm ‖·‖r,s depends on A0 but is equivalent

for any choice of connection, so that the space Hr,s is well-defined independent of the

connection. A0 need not be smooth - if A0 ∈ H1, then we can define the spaces Hr,s

for s ∈ [−2, 2]. Detailed definitions and properties of these spaces are given in chapter

5. A crucial property is that although the operator norms depend on the choice of con-

nection A, if the curvature satisfies ‖F (A0)‖L2 < K, the operator norms are bounded

by constants dependent only on K and independent of A. These Sobolev spaces will

be used, for example, when E = Ωk(Σ, P (g)).

Another type of Sobolev space we use is Hr([0, t0], C
0(Σ, E)) - it is the space of

(equivalence classes of) sections that are in Sobolev-class r in time and are C0 in space.

This space has norm

‖σ‖r,C0 := sup
x∈Σ

‖σx‖Hr([0,t0],Ex).

The way this is defined, it is more appropriate to call it C0(Σ, Hr([0, t0], E)), but we

call it Hr(C0) to preserve our convention of having the time-index outside. This space

satisfies the expected embedding properties, for example Hr,s →֒ Hr(C0) for s > 1,
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but that is not obvious because the spaces Hr,s = Hr([0, t0], H
s(E)) are defined with

the time and space co-ordinates in a different order. These details will be presented in

section 5.5. This space is used, for example, when E = T vert
u0

P (X), where it is useful

to have the norm be independent of the derivatives of u0.

With initial value F (0) ∈ L2(Σ, P (g)), we expect to solve for F in spaces of the type

H
1

2
+r,−2r([0, t0]×Σ, P (g)) (see lemma 5.4.9). We choose the following Banach space to

solve the system (3.4).

U(t0) = {(a, F, ξ)|a ∈ H1/2+ǫ(H1−2ǫ),

F ∈ H1/2+ǫ(H−2ǫ) ∩H−1/2+ǫ(H2−2ǫ
δ ), ξ ∈ H1/2+ǫ(C0)}

ǫ ∈ (0, 1/12) is a fixed number in the rest of this section. For s > 1, Hs
δ (Σ, E) ⊆ Hs

consists of sections that vanish on the boundary of Σ. We will prove:

Proposition 3.1.3. Let A0 ∈ H1 be a connection on P , and u0 ∈ C0(Σ, P (X)). Then

for any K > 0 there exists a t0 > 0 such that if ‖FA0
‖L2 < K then the initial value

problem (3.4) has a unique solution (a, F, ξ) ∈ U(t0).

With this proposition, we can prove the existence of a unique solution for the flow

equation for all time:

Proof of theorem 3.0.1. By compactness of Σ, ‖u∗Φ‖L2 ≤ ‖Φ‖C0 Vol(Σ) ≤ c. So,

‖FA‖L2 ≤ ‖FA,u‖L2 + c. Applying proposition 3.1.3 with K = ‖FA0,u0
‖L2 + c, we

get the flow for a time interval [0, t0], with (A(t0), u(t0)) ∈ H1 × C0. (At, ut) are flow

lines for the functional ‖FA(t),u(t)‖2L2 , with the functional decreasing along the flow. So,

‖FA(t0),u(t0)‖L2 < ‖FA0,u0
‖L2 , and ‖FA(t0)‖L2 < K and so we can get flow for [t0, 2t0].

The process is repeated to get flow lines for t ∈ [0,∞).

To continue the discussion, we define certain Banach spaces needed to state inter-

mediate results. The first one UP (t0) is a subspace of U(t0) consisting of sections that
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vanish at t = 0.

UP (t0) ={(a, F, ξ)|a ∈ H
1/2+ǫ
P (H1−2ǫ),

F ∈ H
1/2+ǫ
P (H−2ǫ) ∩H−1/2+ǫ

P (H2−2ǫ
δ ), ξ ∈ H

1/2+ǫ
P (C0)}

W (t0) ={(a, F, ξ)|a ∈ H−1/2+ǫ(H1−2ǫ), F ∈ H−1/2+ǫ(H−2ǫ), ξ ∈ H−1/2+ǫ(C0)}

X ={(a0, F0, ξ0)|a0 ∈ H1, F0 ∈ H0, ξ0 ∈ C0}

Notation 3.1.4. We call x := (a, F, ξ) and xi := (ai, Fi, ξi).

3.1.3 Outline of proof of Proposition 3.1.3

The terms in the system (3.4) can be broken into 2 parts - the leading order terms and

the rest. The leading order terms form an operator

L : U(t0) →W (t0)

(a, F, ξ) 7→ (
d

dt
a− ∗dA0

F, (
d

dt
+∆A0

)F,
d

dt
ξ).

When restricted to UP (t0), this operator is invertible. (see lemma 3.1.5)

The terms in the right hand side of (3.4) form a non-linear operator Q : U(t0) →

W (t0). We break up the solution into 2 parts x = x1 + x2, where x1 ∈ U(t0) satisfies

Lx1 = 0, and x1(0) = x0. x1 can be found uniquely (see lemma 3.1.6). x2 ∈ UP (t0)

satisfies

Lx2 = Q(x1 + x2).

‖x2‖W (t0) can be made small by choosing small t0. Since L is invertible, we find x2

using an implicit function theorem argument.

Denote x0 7→ x1 by the operator M

M : X → U(t0)

(a0, F0, ξ0) 7→ (a1, F1, ξ1)

where x1(0) = x0 and L(a1, F1, ξ1) = 0.

We define Q1, Q2, Q3 as follows. The terms in Q are split into Q1, Q2, Q3 in a way

that they have a linear, quadratic and cubic bound on them respectively. (See lemma
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3.1.7.)

Q : U(t0) →W (t0) Q = Q1 +Q2 +Q3

Q1 : (a, F, ξ) 7→(0,−u∗0dΦ− JFu0
, JFu0

)

Q2 : (a, F, ξ) 7→(∗[a, F ],− ∗ [a ∧ ∧dA0
F ]

− [d∗A0
a, F ]− ((expu0

ξ)∗dΦ(JXFexpu0 ξ)− u∗0dΦ(JXFu0
)),

− ((d exp ξ)−1(JFexpu0 ξ)− JFu0
)

Q3 : (a, F, ξ) 7→(0,−[a ∧ ∗[a, F ]], 0)

3.1.4 Bounds on L, M and Q

The next 3 lemmas prove that L, M , Q are well-defined operators and that they satisfy

appropriate bounds, given ‖F (A0)‖L2 ≤ K. The constants in these bounds, denoted

by cK are independent of (A0, u0) and depend only on K.

Lemma 3.1.5. L is invertible. For any K, there exists a constant cK such that if

‖F (A0)‖L2 ≤ K then

‖L−1‖ ≤ cK .

Proof. In matrix form,

L =




d
dt − ∗ dA0

0

0 d
dt +∆A0

0

0 0 d
dt



.

The operators

d

dt
: H

1/2+ǫ,1−2ǫ
P → H

−1/2+ǫ,1−2ǫ
P

d

dt
: H

1/2+ǫ
P (C0) → H

−1/2+ǫ
P (C0)

have inverse
∫
0, which is bounded by cK using lemma 5.3.6. For 0-forms, ∆A0

=

∇∗
A0

∇A0
and the operator d

dt +∇∗
A0

∇A0
: H1/2+ǫ,−2ǫ ∩H−1/2+ǫ,2−2ǫ → H−1/2+ǫ,−2ǫ has

an inverse with norm ≤ cK by lemma 5.4.11.
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Last, we look at ∗dA0
. The operator ∇A0

: H2−2ǫ → H1−2ǫ has norm bounded by cK

for all t ∈ [0, t0] (using (5.3)). This induces∇A0
: H−1/2+ǫ,2−2ǫ → H−1/2+ǫ,1−2ǫ with the

same bound on the norm (see (5.16)). On 0-forms, ∇A0
= dA0

and so ‖∗dA0
‖ ≤ cK .

Lemma 3.1.6. M is a well-defined operator. For any K > 0, there exists a constant

cK such that if ‖F (A0)‖L2 < K,

‖M‖ ≤ cKt
−ǫ
0 .

Proof. By the lemma (5.4.9), given F0 ∈ L2, the system

d

dt
F1 + d∗A0

dA0
F1 = 0, F1(0) = F0

has a unique solution F1 ∈ H1/2+ǫ,−2ǫ ∩H−1/2+ǫ,2−2ǫ satisfying

‖F1‖H1/2+ǫ,−2ǫ∩H−1/2+ǫ,2−2ǫ ≤ cK‖F0‖H0 .

Define a1(t) := a0 +
∫ t
0 ∗dA0

F1. Then,

‖
∫ t

0
d∗A0

F1‖ 1

2
+ǫ,1−2ǫ ≤ cK‖F1‖− 1

2
+ǫ,2−2ǫ

because ‖dA0
‖ ≤ 2‖∇A0

‖ ≤ cK by (5.3) and
∫ t
0 has norm ≤ c by lemma 5.3.6. So,

‖a1‖ 1

2
+ǫ,1−2ǫ ≤ cK(‖a0‖H1 + ‖F0‖H0).

Finally, since dξ1
dt = 0, we set ξ1(t) = ξ0, and ‖ξ1‖ 1

2
+ǫ,C0 ≤ c‖ξ0‖C0 for some constant

c.

Lemma 3.1.7. Let x = (a, F, ξ). Assume ‖ξ‖C0 ≤ injX (see remark 3.1.2). Then,

Q : U(t0) → W (t0) is a well-defined map. It is differentiable so that dQ(x) : U(t0) →

W (t0) is a linear map for each x ∈ Σ. If ‖F (A0)‖L2 < K, there exist constants cK so

that

‖Q1x‖W ≤ cKt
1

2
−2ǫ

0 ‖x‖U , ‖Q2(x)‖W ≤ cKt
1

2
−2ǫ

0 ‖x‖2U , ‖Q3(x)‖W ≤ cKt
1

2
−2ǫ

0 ‖x‖3U .

The derivatives satisfy

‖dQ1(x)‖ ≤ cKt
1

2
−2ǫ

0 , ‖dQ2(x)‖ ≤ cKt
1

2
−2ǫ

0 (1 + ‖x‖U ), ‖dQ3(x)‖ ≤ cKt
1

2
−2ǫ

0 ‖x‖2U .

Putting them together,

‖Q(x)‖W ≤ cKt
1

2
−2ǫ

0 (1 + ‖x‖3U ), ‖dQ(x)‖ ≤ cKt
1

2
−2ǫ

0 (1 + ‖x‖2U ).
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Proof. [a, F ], [dA0
a, F ], [a, dA0

F ] and [a, [a, F ]] are polynomials of a, F and their deriva-

tives. Consider [a, F ]. a ∈ H
1

2
+ǫ,1−2ǫ and F ∈ H0,1 by interpolation (see (5.6) and

(5.19)). By the multiplication theorem (5.20), [a, F ] ∈ H−ǫ,−2ǫ →֒ H− 1

2
+ǫ,−2ǫ. The last

inclusion has norm cKt
1

2
−2ǫ

0 (5.15) -

‖[a, F ]‖− 1

2
+ǫ,−2ǫ ≤ cKt

1

2
−2ǫ

0 ‖[a, F ]‖−ǫ,−2ǫ ≤ cKt
1

2
−2ǫ

0 ‖a‖ 1

2
+ǫ,1−2ǫ‖F‖0,1

≤ cKt
1

2
−2ǫ

0 ‖x‖2U .

That the constants depend only on K follows from proposition 5.2.6. The other poly-

nomial terms are bounded the same way. A bound on the derivatives for these terms

is obvious : for example,

‖d[a, F ]‖− 1

2
+ǫ,−2ǫ ≤ cKt

1

2
−2ǫ

0 (‖a‖ 1

2
+ǫ,1−2ǫ + ‖F‖0,1) ≤ cKt

1

2
−2ǫ

0 ‖x‖U .

To discuss the other terms, we define a map: for any u ∈ C0(Σ, P (X)), let Xu :

Γ(Σ, P (g)) → Γ(Σ, T vert
u0

P (X)) be given by ξ 7→ Jξu. The terms u∗0dΦ(JFu0
) and JFu0

are obtained by the action of linear bundle maps on F . The maps are dΦu0
◦ Xu0

and Xu0
respectively. For example, consider the first of these terms. dΦ ◦ Xu0

is in

L2(Σ, P (End g)) and the norm is independent of u0. u
∗
0dΦFu0

can be seen as the tensor

product of the sections dΦu0
◦ Xu0

and F . As earlier F ∈ H0,1. Since dΦ ◦ Xu0
is

constant in the time direction, it is in H1,0. By the multiplication theorem (5.20),

u∗0dΦFu0
∈ H−ǫ,−2ǫ →֒ H− 1

2
+ǫ,−2ǫ.

The remaining 2 terms - ((expu0
ξ)∗dΦ(JXFexpu0 ξ)−u∗0dΦ(JXFu0

)) and ((d exp ξ)−1

(JFexpu0 ξ)−JFu0
) require corollary 6.0.2, which is a result on composition of functions

in the space H
1

2
+ǫ(C0). Chapter 6 explains this result in detail. Consider the first of

these terms. The bundle map ξ(x) 7→ (dΦ ◦Xexpu0 ξ(x) − dΦ ◦Xu0(x)) is continuous and

by corollary 6.0.2, it induces a map H
1

2
+ǫ(C0)(Σ, P (g)) → H

1

2
+ǫ(C0)(Σ, P (End g)). So

(dΦ ◦Xexpu0 ξ − dΦ ◦Xu0
) ∈ H

1

2
+ǫ(C0)(P (End g)) and

‖dΦ ◦Xexpu0 ξ − dΦ ◦Xu0
‖ 1

2
+ǫ,C0 ≤ cK‖ξ‖ 1

2
+ǫ,C0 .

cK is independent of u0. By compactness of Σ, dΦ ◦ Xexpu0 ξ − dΦ ◦ Xu0
∈ H

1

2
+ǫ,0.

Multiplying by F ∈ H0,1, we get the result ((expu0
ξ)∗dΦ(JXFexpu0 ξ)−u∗0dΦ(JXFu0

)) ∈
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H−ǫ,−2ǫ →֒ H− 1

2
+ǫ,−2ǫ and,

‖((expu0
ξ)∗dΦ(JXFexpu0 ξ)− u∗0dΦ(JXFu0

))‖− 1

2
+ǫ,−2ǫ

≤ cKt
1

2
−2ǫ

0 ‖((expu0
ξ)∗dΦ(JXFexpu0 ξ)− u∗0dΦ(JXFu0

))‖−ǫ,−2ǫ

≤ cKt
1

2
−2ǫ

0 ‖dΦ ◦Xexpu0 ξ − dΦ ◦Xu0
‖ 1

2
+ǫ,C0‖F‖0,1

≤ cKt
1

2
−2ǫ

0 ‖ξ‖ 1

2
+ǫ,C0‖F‖0,1 ≤ cKt

1

2
−2ǫ

0 ‖x‖2U .

Similarly, for the second term ((d exp ξ)−1(JFexpu0 ξ)− JFu0
),

‖(d exp ξ)−1 ◦Xexpu0 ξ −Xu0
‖ 1

2
+ǫ,C0 ≤ cK‖ξ‖ 1

2
+ǫ,C0 .

Applying interpolation, followed by Sobolev embedding (5.7), F ∈ H−ǫ,1+2ǫ →֒ H−ǫ(C0).

By multiplication theorem (5.32),

((d exp(ξ))−1 ◦Xexpu0 ξ −Xu0
)F ∈ H−ǫ(C0) →֒ H− 1

2
+ǫ(C0).

Corollary 6.0.2 also gives differentiability and a bound on the derivative for these terms.

3.1.5 Proof of Proposition 3.1.3

To show the existence of gradient flow in [0, t0], we need to solve

L(a2, F2, ξ2) = Q(M(a0, F0, ξ0) + (a2, F2, ξ2))

for (a2, F2, ξ2). Similar to R̊ade’s proof ([R̊ad92]), we use the implicit function theorem

in the following form:

Proposition 3.1.8. Suppose that F : H1 → H2 is a map of Banach spaces, and

F = F1 + F2 with F1 an invertible linear operator with inverse satisfying a bound

‖F−1
1 ‖ ≤ c, and ‖DF2‖ ≤ 1/2c on a convex open set S ⊂ H1 Then,

a. F1 + F2 is injective on S, and it is a diffeomorphism of S onto its image.

b. In addition if Bδ ⊆ S and ‖F2(0)‖ ≤ δ/4c, then there exists a unique solution to

F (x) = 0 on Bδ.
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This is same as theorem A.0.2. A proof is given there.

Proof of proposition 3.1.3. The initial data (a0, F0, ξ0) for (3.4) can be taken so that

‖ξ0‖C0 < injX/2. Then the construction of M gives ‖ξ1(t)‖C0 = ‖ξ0‖C0 < injX/2. In

this proof, xi will denote (ai, Fi, ξi).

We’ll use theorem 3.1.8 to prove the result, taking S = {(a2, F2, ξ2) ∈ UP (t0) :

‖ξ2‖C0 < injX/2}, F1 = −L, F2(x) := (Q1 +Q2 +Q3)(Mx0 + x) and c = ‖L−1‖ = cK

We have x2 ∈ S ⇒ ‖ξ‖C0 ≤ injX and the estimate on Q2 applies. Since the map

π : UP (t0) → Γ(Σ, P (g))C0 that takes (a, F, ξ) to ξ is continuous (by Sobolev embedding

(5.17)), there exists δ > 0 such that Bδ ⊂ S. For ‖x2‖ < δ,

‖dQ(Mx0 + x2)‖ ≤ cKt
1

2
−2ǫ

0 (1 + ‖Mx0 + x2‖2) ≤ cKt
1

2
−4ǫ

0 (1 + ‖x0‖2)

To apply the theorem we need to pick t0 such that,

• ‖dQ(Mx0 + x2)‖ < 1/2c, i.e. t
1

2
−4ǫ

0 (‖x0‖+ 1)2 ≤ 1/cK and

• ‖F2(0)‖ = ‖Q(Mx0)‖ = cKt
1

2
−3ǫ

0 (‖x0‖+ 1) < δ/4cK .

Both these conditions can be met by a small enough value of t0, that is dependent only

on K. This proves the existence part of proposition 3.1.3.

Regularity Next, we prove that there exists a solution with extra regularity a ∈

C0(H1), F ∈ C0(L2)∩L2(H1) and ξ ∈ C0. This is essential to prove that it is the only

solution in U(t0).

First, we look at (a1, F1, ξ1), using remark (5.4.10), F1 ∈ C0(L2) ∩H0,1. Since F1

satisfies ( d
dt +∇∗

A0
∇A0

)F1 = 0, we get F1(t)−F0 = ∇∗
A0

∇A0

∫
0 F1 ∈ C0(L2). By elliptic

regularity (see proposition 5.4.2),
∫
0 F1 ∈ C0(H2). So, a1(t) = a0+

∫
0 d

∗
A0
F1 ∈ C0(H1).

It can be checked that lemmas 3.1.5, 3.1.6 and 3.1.7 hold with the following stronger

spaces

Ũ(t0) = {(a, F, ξ)|a ∈ H
1

2
+ǫ,1−2ǫ ∩H 1

2
,1, F ∈ H

1

2
+ǫ,−2ǫ ∩H− 1

2
,2, ξ ∈ H

1

2
+ǫ(C0)}

ŨP (t0) = {(a, F, ξ)|a ∈ H
1

2
+ǫ,1−2ǫ

P ∩H
1

2
,1

P , F ∈ H
1

2
+ǫ,−2ǫ

P ∩H− 1

2
,2

P , ξ ∈ H
1

2
+ǫ

P (C0)}

W̃ (t0) = {(a, F, ξ)|a ∈ H− 1

2
+ǫ,1−2ǫ ∩H− 1

2
,1

P , F ∈ H− 1

2
+ǫ,−2ǫ ∩H− 1

2
,0

P ,

ξ ∈ H− 1

2
+ǫ(C0)}.
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So, there exists a solution of (3.4) in Ũ(t0). Using this, we can get improved estimates

for the right hand side of (3.4). For example, a ∈ H
1

2
,1 =⇒ ∇A0

a ∈ H
1

2
,0. By

interpolation F ∈ H
1

4
−ǫ, 3

2
+2ǫ. By the multiplication theorem, [∇A0

a, F ] ∈ H− 1

4
−2ǫ,0.

Similarly we estimate all terms in the right hand side of (3.4) to get





d

dt
a2 + d∗A0

F2 ∈ H
− 1

4
−2ǫ,1

P

d

dt
F2 +∇∗

A0
∇A0

F2 ∈ H
− 1

4
−2ǫ,0

P

By lemma 5.4.11, we know F2 ∈ H
3

4
−2ǫ,0

P ∩ H
− 1

4
−2ǫ,2

P →֒ C0(L2). So, F = F1 +

F2 ∈ C0(L2). Also, since d∗A0
F2 ∈ H

− 1

4
−2ǫ,1

P , a2 ∈ H
3

4
−2ǫ,1

P →֒ C0(H1). Therefore,

a = a1 + a2 ∈ C0(H1).

Uniqueness We now prove uniqueness by contradiction. Suppose x = (a, F, ξ) and

x′ = (a′, F ′, ξ′) are two solutions to (3.4) for some t0 > 0 with the same initial data

(a0, F0, ξ0), a0 ∈ L2, F0 ∈ H1, ξ0 ∈ C0.

a ∈ H
1

2
+ǫ,1−2ǫ ∩ C0(H1), F ∈ H

1

2
+ǫ,−2ǫ ∩H− 1

2
+ǫ,2−2ǫ ∩ C0(L2), ξ ∈ H

1

2
+ǫ(C0)

a′ ∈ H
1

2
+ǫ,1−2ǫ, F ′ ∈ H

1

2
+ǫ,−2ǫ ∩H− 1

2
+ǫ,2−2ǫ, ξ′ ∈ H

1

2
+ǫ(C0)

Assume x 6= x′. Let t1 be the largest number such that the restrictions of x and

x′ to Σ × [0, t] are identical. Since the solutions are in C0([0, t1], H
1 × L2 × C0),

(a(t1), F (t1), ξ(t1)) is well-defined. Then, (a, F, ξ) and (a′, F ′, ξ′) solve the initial value

problem (3.4) on Σ × [t1, t0] with initial data (a(t1), F (t1), ξ(t1)). Therefore, without

loss of generality, we may assume that t1 = 0.

We can split x = x1 + x2, where Lx1 = 0, x1(0) = (a0, F0, ξ0) and x2 ∈ UP (t0).

Similarly x′ = x′1 + x′2. Since M is uniquely defined x1 = x′1. So, now both x2

and x′2 are solutions of Lx = Q(x1 + x) in UP (t0). By Sobolev embedding, both

ξ2, ξ
′
2 ∈ H

1

2
+ǫ

P (C0) →֒ C0
P ([0, t0], C

0). There exists 0 < t < t0 such that ‖ξ2‖C0
P ([0,t],C0)

and ‖ξ′2‖C0
P ([0,t],C0) < injX . So, the restrictions of x2 and x′2 to UP (t) are in S. But,

−Lx+Q(x1+x) is injective on S, so x2 = x′2 in UP (t). This leads to a contradiction.

We prove another result about the regularity of F which comes in handy in the next

section.
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Lemma 3.1.9. In proposition 3.1.3, if F (0) ∈ H1+2ǫ, then F ∈ C0([0, t0]× Σ)

Proof. Recall that x = (a, F, ξ) was obtained as the sum x = x1 + x2 where x1 =Mx0

and x2 is the solution of Lx2 = Q(Mx0 + x2). We have

Mx0 + x2 ∈ H
1

2
+ǫ,1−2ǫ × (H

1

2
+ǫ,−2ǫ ∩H− 1

2
+ǫ,2−2ǫ)×H

1

2
+ǫ(C0)

=⇒ Lx2 = Q(Mx0 + x2) ∈ H−ǫ,1−2ǫ ×H−ǫ,−2ǫ ×H−ǫ(C0)

=⇒ x2 = H1−ǫ,1−2ǫ × (H1−ǫ,−2ǫ ∩H−ǫ,2−2ǫ)×H
1

2
+ǫ(C0)

The regularity of x1 can be brought up to the same level and we get

‖F1‖1−ǫ,−2ǫ∩−ǫ,2−2ǫ ≤ cK‖F0‖H1−4ǫ .

a1(t) = a0 +
∫ t
0 ∗dA0

F1 ∈ H1−ǫ,1−2ǫ. This yields,

x = x1 + x2 ∈ H1−ǫ,1−2ǫ × (H1−ǫ,−2ǫ ∩H−ǫ,2−2ǫ)×H
1

2
+ǫ(C0)

Repeating this process, we get

x ∈ H1+2ǫ,1−2ǫ × (H1+2ǫ,−2ǫ ∩H2ǫ,2−2ǫ)×H
1

2
+ǫ(C0).

By interpolation, F ∈ H
1

2
+ǫ/2,1+ǫ →֒ C0(H1+ǫ) →֒ C0([0, t0]× Σ).

3.2 Smooth flow modulo gauge

Since the gradient flow preserves complex gauge orbit, we can write

(At, ut) = gt(A0, u0) gt ∈ GC.

Then the system of equations (3.1) can be written as a single equation in gt.

dgt
dt
g−1
t = −iFt. (3.5)

To write Ft in terms of gt, we need some preliminaries. We follow [Don85].
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3.2.1 Action of GC on A(P )

First we assume that G = U(n), the arguments naturally extend to general G ⊆ U(n).

We work with an associated complex vector bundle of P . The standard linear action

of G on Cn will preserve a Hermitian metric on Cn. That means the associated bundle

E := P ×G Cn has a Hermitian metric and this is compatible with any connection

A ∈ A(P ). There is a bijection between the space of connections A(P ) and the space

of holomorphic structures C(E) on E. A connection A defines a holomorphic structure

on E with Dolbeault operator given by ∂A := 1
2(dA + JEdA ◦ j). For the reverse

direction, a holomorphic structure on E together with the fixed metric determine a

unique connection on E (see [GH94]). This corresponds to a connection on P because

of the metric compatibility. This correspondence is described in [AB83] and [Don85] -

where they show that after choosing a Hermitian metric on a complex vector bundle

E → Σ, there is a correspondence A → C. In our case the Hermitian metric on E is

determined by the construction of E.

Locally this corresponds to an isomorphism

TAA = Ω1(g) →Ω0,1(gC) = T∂A
C

a 7→a0,1 =
1

2
(a+ JEa ◦ j).

Note that C has a complex structure : for c ∈ Ω0,1(gC), JCc = ic = c ◦ j = ∗c. This

pulls back to a complex structure on A : JAa = ∗a. The complex gauge group acts on

C(E).

∂g(A) = g ◦ ∂A ◦ g−1, g ∈ GC. (3.6)

Infinitesimally the action is ξ 7→ −∂Aξ, where ξ ∈ Lie(GC). This is complex-linear -

∂A(iξ) = JE∂ξ. This action pulls back to a GC action on A(P ), that extends the G

action.

The Hermitian metric on E together with the Riemannian metric on Σ give a metric

on the spaces Ωk(Σ, E). For any connection A, let (∂A)
∗ denote the formal adjoint of

∂A under this metric. It satifies ∂A = ∗(∂A)∗∗. Applying this identity to the the
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connection g(A), we get

∂g(A) = (g∗)−1 ◦ ∂A ◦ g∗, A ∈ A(P ), g ∈ GC, (3.7)

where g∗ is the adjoint of g under the metric fixed on Γ(Σ, E). dg(A) = ∂g(A)+∂g(A) is the

unique connection on E that is compatible with the fixed metric and the holomorphic

structure ∂g(A).

For g ∈ GC, define h(g) := g∗g. Observe

G = {g ∈ GC|h(g) = g∗g = Id}.

From (3.6) and (3.7), g−1 ◦ dg(A) ◦ g = ∂A + h−1 ◦ ∂A ◦ h. On vector bundles, the

curvature FA = d2A. It transforms as

g−1 ◦ Fg(A) ◦ g = FA + ∂A(h
−1∂Ah)

= FA + h−1(∂A∂Ah− (∂Ah)h
−1∂Ah).

Fg(A) is also the curvature of the connection g(A) on P .

For a general compact Lie group G, there is a U(n) into which it can be mapped

injectively. So, we work on the bundle P ×G Cn. We look upon the space of G-

connections on E as a subset of U(n)- connections. The group action preserves G-

actions, because the infinitesimal action −∂Aξ is in Ω0,1(gC). All the relations carry

over to the general case.

3.2.2 Gauge-invariant version of the flow equations

If ht = g∗t gt, the evolution equation (3.5) can be written as

dht
dt

= −2ig∗tFtgt

= −2iht(∗FA0
+ ∗∂0(h−1

t (∂0ht)) + g−1
t u∗tΦgt).

(3.8)

Note that replacing gt by gtkt, kt ∈ G doesn’t alter ht. Also, the term g−1
t u∗tΦgt is

G-invariant - it is unchanged if changing ut to ktut and gt to gtkt. So, solving the

above equation solves the gradient flow equation modulo gauge. For example, if we
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let g′t := h
1/2
t , then g′t(A0, u0) differs from (At, ut) by a family kt ∈ G. For 0-forms

∆A0
= d∗A0

dA0
= ∗∂0∂0 and so, (3.8) can be modified to

dht
dt

+∆A0
ht = −2iht{∗FA0

+ ∗(∂0ht)h−1
t (∂0ht) + g−1

t u∗tΦgt}

h(0) = Id,

h|∂Σ = Id .

(3.9)

Proposition 3.2.1. If (A0, u0) are smooth, then the solution of (3.9) ht : [0, t0] → GC

is smooth. Hence the gradient flow (At, ut) computed in proposition 3.1.3 is smooth

modulo gauge.

Proof. From lemma 3.1.9, we know Ft = ∗FAt + u∗tΦ is in C0([0, t0] × Σ). So, the

solution gt of (3.5) is in C0([0, t0] × Σ). Hence ht = g∗t gt is also in C0([0, t0] × Σ)

and by the above discussion, ht is a weak solution of (3.9). Since (3.9) is a non-linear

parabolic equation, the regualarity of ht can be improved by bootstrapping. ‖ht‖C0 is

small enough that its image is contained in U ⊆ GC for which there is a holomorphic

chart U → Cn. So, we may think of h as a time-dependent section of a vector bundle

over Σ. Also, I assume Id in GC is mapped to 0 in Cn.

For the bootstrapping, we need the following 3 observations

a. If ht ∈ L2(Hs)∩Hs/2(L2)∩C0, then the r.h.s of (3.9) is in L2(Hs−1)∩H(s−1)/2(L2).

This is true because - if u0 is smooth, ht 7→ g−1
t (u∗tΦ)gt is a composition operator

(here ut = gtu0). By corollary 6.0.2, it is a map from L2(Hs) ∩Hs/2(L2) ∩C0 →

L2(Hs)∩Hs/2(L2). For the other terms we use multiplication theorem (5.20) etc.

b. If the r.h.s. of (3.9) is in L2(H2s) ∩Hs(L2), then ht ∈ L2(H2s+2) ∩Hs+1(L2) by

theorem 5.4.13.

c. ht ∈ C0 implies r.h.s. of (3.9) is in L2(H−1). By lemma 5.4.11, ht ∈ H1(H−1) ∩

L2(H1).

The last observation provides the base case for induction. Using, the first 2 observations,

we can inductively prove the statement ht ∈ L2(Hm)∩Hm/2(L2) for any integer m ≥ 0.

So, ht is a smooth solution of (3.9). Let gt :=
√
ht ∈ GC(Σ), then gt(A0, u0) is smooth

on [0,∞)× Σ and is gauge equivalent to (At, ut).
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Chapter 4

Convergence

We now consider convergence behaviour of the flow (At, ut). Theorem 4.2.1 is the first

result of this section. There is a sequence {ti} so that connections Ati converge weakly

in H2 (W 2,2) modulo gauge. uti converge in the sense of Gromov, i.e in the limit, sphere

bubbles develop in the vertical fibres of P (X). The name ‘Gromov convergence’ is taken

from [MS04], where it refers to a similar notion of convergence for J-holomorphic curves.

In the last section 4.3, we restrict ourselves to the case when Σ has boundary. Then,

the limit (A∞, u∞) is in the same complex gauge orbit of the gradient flow - and so,

there is no bubbling in the limit and the limit is unique up to gauge.

4.1 Gauged holomorphic maps as J-holomorphic curves

As discussed in section 2.3, a connection A determines a complex structure JA on P (X).

If Ai → A∞ in C∞, then JAi → JA∞
. If (Ai, ui) is a gauged holomorphic map, then ui

is a JAi-holomorphic curve. We may now expect that the Gromov compactness result

in [MS04] is applicable on {ui}. In this section, we discuss the hypotheses for Gromov

compactness in the context of gauged holomorphic maps - we construct a symplectic

form on P (X) that tames JAi , and we describe an energy functional on ui. This can

be compared to [Ott09], where similar ideas are used to study Gromov convergence of

vortices.
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4.1.1 Symplectic form on P (X)

There is a symplectic form ωX on X and ωΣ on Σ. Let A be a C1 connection on P .

Consider the following 2-form on P ×X,

σ̃A = π∗2ωX + d〈A,Φ〉.

σ̃A is closed, G-invariant and vanishes on the orbits of G. So, it descends to σA ∈

Ω2(P (X)) which is also closed. We write out an explicit expression for σA. For a point

[p, x] ∈ P (X),

T[p,x]P (X) = (TpP × TxX)/{(ξp,−ξx) : ξ ∈ g}.

Using a connection A, a vector in T[p,x]P (X) can be split as a pair [v, w], where v ∈ TpP

is in kerA and w ∈ TxX. We first work with σ̃A,

σ̃A([v1, w1], [v2, w2]) = ω(w1, w2) + (〈dA,Φ〉+ 〈A, dΦ〉)((v1, w1), (v2, w2)).

The last term vanishes because vi are horizontal. Further, dA = FA − 1
2 [A ∧ A] and

[A(v1) ∧A(v2)] = 0. So,

σA((v1, w1), (v2, w2)) = ω(w1, w2) + 〈FA(v1, v2),Φ〉. (4.1)

σA is non-degenerate in the vertical direction, but not necessarily in the horizontal

direction. But, there is a constant cA (dependent on A and Φ) so that

cA|ωΣ(v1, v2)| > 〈FA(v1, v2),Φ〉 for all v1, v2 ∈ TΣ.

Define

ωA := π∗2ωX + d〈A,Φ〉+ cAπ
∗
1ωΣ. (4.2)

This is a symplectic form on P (X). So, we have the result:

Lemma 4.1.1. Let A be a C1 connection on P , then,

ωA := π∗2ωX + d〈A,Φ〉+ cAπ
∗
1ωΣ

is a symplectic form on P (X). cA is a constant satisfying

cA|ωΣ(v1, v2)| > |〈FA(v1, v2),Φ〉|
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for all v1, v2 ∈ TΣ. If [v, w] is a vector field on P (X) split by A, i.e. A(v) = 0, then

ωA([v1, w1], [v2, w2]) = ωX(w1, w2) + 〈FA(v1, v2),Φ〉+ cAωΣ(v1, v2).

It is easily seen that JA is ωA-tame. Since ωA-tameness is an open condition,

connections C0-close to A also give ωA-tame complex structures. This lemma proves it

rigorously.

Lemma 4.1.2. Given a C1 connection A0 ∈ A(P ), there is a constant c1(A0), so that

for any C0 connection satisfying ‖A−A0‖C0 < c1, JA is ωA0
-tame.

Proof. A connection A can be written as A = A0 + a, where a ∈ Ω1(Σ, P (g)). Let

[v, w] ∈ Vect(P (X)). The splitting is according to A0 - that is A0(v) = 0. In an

A-splitting the vector field is [v − a(v)P , w + a(v)X ]. Using the definition of ωA0
,

ωA0
([v, w], JA[v, w]) = cA0

ωΣ(π1v, jΣ(π1v)) + 〈FA0
(π1v, jΣ(π1v)),Φ〉

+ ωX(w + a(v)X , JX(w + a(v)X)).

(4.3)

For a fixed vector field [v, w], ωA0
([v, w], JA[v, w]) varies continuously with a. Since

‖ωA0
([v, w], JA0

[v, w])‖C0 > 0, there is a constant c[v,w] so that ‖ωA0
([v, w], JA[v, w])‖C0

is positive if ‖a‖C0 < c[v,w]. TP (X) can be spanned by a finite number of vector fields,

so the lemma follows.

4.1.2 Energy of holomorphic curves

Gromov compactness uses an energy functional defined in [MS04]:

Definition 4.1.3. Let A0 be a C1 connection and A a C0 connection. The energy of

a JA-holomorphic curve u : Σ → P (X) is

EJA,ωA0
(u) :=

1

2

∫

Σ
|du|2JA,ωA0

dvolΣ.

(·, ·)JA,ωA0
= ωA0

(·, JA·) is the Riemannian metric on P (X).

Remark 4.1.4. If JA is ωA0
-tame and u : Σ → P (X) is JA-holomorphic, then EJA,ωA0

(u) =
∫
Σ u

∗ωA0
. This is proved in [MS04].
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In our application, we’ll need a bound on EJA(u) in terms of ‖dAu‖L2 , this follows

from the lemma:

Lemma 4.1.5. For a C1 connection A0 on P , there is a constant c2(A0) so that for

any C0 connection A satisfying ‖A−A0‖C0 < c2,

ωA0
([v, w], JA[v, w]) ≤ ωX(w + a(v)X , JX(w + a(v)X)) + 2cA0

ωΣ(v, jv) (4.4)

for any vector field [v, w] on P (X). [v, w] is split by A0, that is A0(v) = 0 and w ∈ TX.

A = A0 + a.

Proof. First we look at A = A0. By the definition of ωA0
,

ωA0
([v, w], JA0

[v, w]) ≤ ωX(w, JXw) + 2cA0
ωΣ(v, jv).

By (4.3), we see that both sides of (4.4) vary continuously with a. So, for any vector field

[v, w], there is a constant c[v,w] so that the inequality (4.4) is satisfied for ‖a‖C0 < c[v,w].

By picking a finite set of vector fields that span TP (X), and taking c2 to be the

maximum of all these c[v,w] the lemma is proved.

Corollary 4.1.6. If ‖A−A0‖C0 < c2, then for any JA-holomorphic u : Σ → P (X),

EJA,ωA0
(u) ≤ ‖dAu‖L2(Σ) + cA0

vol(Σ).

We assume A0 is C1, A is C0 and u is C1.

Proof. Let χ be a non-vanishing vector field on Σ. If a non-vanishing vector field does

not exist on Σ, we’ll work in co-ordinate patches. We may assume that |χ(x)| = 1 for

all x ∈ Σ. Apply lemma 4.1.5 with [v, w] := du(χ). Thinking of u as a section of P (X),

du : TΣ → TuP (X) and dπ(v) = dπ(du(χ)−A0(du(χ))P ) = χ. The lemma says

ωA0
([v, w], JA[v, w]) ≤ ωX(w + a(v)X , JX(w + a(v)X)) + 2cA0

ωΣ(χ, jχ)

= ωX(w + a(v)X , JX(w + a(v)X)) + 2cA0
.

=⇒ |du|2JA,ωA0
≤ |dAu|2 + 2cA0

.

All the terms are positive. Integrating both sides over Σ proves the corollary.
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4.1.3 Gromov convergence in P (X)

As in the case of J-holomorphic curves, bubbling occurs in the space H(P,X). Since

this space consists only of sections u : Σ → P (X), bubbling happens on the fibers of

P (X). These structures with bubbles are called nodal gauged holomorphic maps and

next, we describe them precisely. For this discussion, we assume that Σ is closed, since

in our applications, bubbling will be ruled out in the case when Σ has boundary. A

rooted tree T = (V,E) is a connected acyclic graph, with a distinguished root vertex

labeled 0. That is, V = {0} ∪ Vs

Definition 4.1.7. A nodal Riemann surface C = (Σ, z := {zαβ}αEβ, T ) is modeled on

a rooted tree T = (V,E). It consists of a closed compact Riemann surface Σ for the

vertex 0 and a copy of P1 for each vertex in VS up to an equivalence ∼. For each edge

(α, β) ∈ E, zαβ ∈ (P1)α, zβα ∈ (P1)β and zαβ ∼ zβα. These are the singular points of

C and we denote Zα := {zαβ}αEβ .

Notation 4.1.8. If α and β do not share an edge, then zαβ ∈ Zα corresponds to the first

edge on the path from α to β.

Definition 4.1.9. A nodal gauged holomorphic map from Σ to X consists of the data

(P,A,C, u, z). C is a nodal curve with singular points z and principal component Σ. P

is a principal G-bundle on Σ with connection A. u is a JA-holomorphic map from C →

P (X). The principal component of u is a section of P (X) - that is πP (X) ◦ u|Σ = IdΣ.

The other components map to a fibre of P (X) - for any α ∈ VS , πP (X) ◦ uα = constt.

This map satisfies a stability condition : |Zα| ≥ 3 if α ∈ VS and uα is constant.

Definition 4.1.10 (Gromov Convergence). Let ω be a symplectic form on P (X) and

Ai a sequence of connections on P converging to A∞ in C∞ so that each JAi is ω-

tame. Let ui : Σ → P (X) be JAi-holomorphic sections of P (X). Then ui Gromov

converges to a nodal gauged holomorphic map u∞ if there exist sequences of rational

maps φαi : (P1)α → Σ for α ∈ Vs that satisfy the following:

Map • ui converges to u
0
∞ in C∞ on compact subsets of Σ\Z0.

• ∀α ∈ VS , ui ◦ φαi converges to uα∞ in C∞ on compact subsets of (P1)α\Zα.
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• For the nodal map u∞, the connection on the principal component Σ is A∞.

Rescaling • ∀α, β ∈ Vs, (φ
β
i )

−1 ◦ φαi : (P1)α → (P1)β converges to zβα in C∞ on

compact subsets of P1
α\{zαβ}.

• ∀α ∈ Vs, φ
α
i C

∞-converges to z0α on compact subsets of P1
α\{zα0}.

Energy limi→∞Eω,J(Ai)(ui) = Eω,J(A∞)(u
0
∞) +

∑
α∈Vs

Eω,JX (u
α
∞).

The Gromov convergence result in [MS04] is applicable to a sequence of holomorphic

sections of P (X). We re-state the result in our context.

Proposition 4.1.11. Let Σ be a closed compact Riemann surface and (Ai, ui) a se-

quence of gauged holomorphic maps. Suppose, Ai → A∞ in C∞, and

supiEJ(Ai),ω(A∞)(ui) <∞.

Then a subsequence of ui Gromov-converges to a nodal gauged holomorphic map.

Remark 4.1.12 (Gromov convergence on Σ with boundary). The above definition of

Gromov convergence is applicable on a Riemann surface with boundary with no bub-

bling at the boundary. Proposition 4.1.11 holds for a Σ with boundary if we impose

the additional condition that for any x ∈ ∂Σ there exists a neighbourhood Bǫ(x) ⊆ Σ

such that supi|dui|L∞(Bǫ(x)) < ∞. The norm on dui is taken with respect to the met-

ric ωA∞
(·, JAi ·) on P (X). This condition ensures that there is no bubbling on the

boundary.

In our application where we have Gromov-type convergence, the convergence of Ai

and ui is not in C
∞. So, we define a weaker notion. Since A∞ is not in C1, we do not

have the symplectic form ωA∞
and so, we do not talk about energy here.

Definition 4.1.13 (Weak Gromov Convergence). Let Ai a sequence of connections on

P converging to A∞ weakly in H2. Let ui : Σ → P (X) be JAi-holomorphic sections of

P (X). Then we say ui weakly Gromov converges to a nodal gauged holomorphic map

u∞ if there exist sequences of rational maps φαi : (P1)α → Σ for α ∈ Vs that satisfy the

following.
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Map • ui converges to u
0
∞ in C1 on compact subsets of Σ\Z0. u

0
∞ ∈ C1.

• ∀α ∈ VS , ui ◦ φαi converges to uα∞ in C1 on compact subsets of (P1)α\Zα.

uα∞ is smooth.

• For the nodal map u∞, the connection on the principal component Σ is A∞.

Rescaling • ∀α, β ∈ Vs, (φ
β
i )

−1 ◦ φαi : (P1)α → (P1)β converges to zβα in C∞ on

compact subsets of P1
α\{zαβ}.

• ∀α ∈ Vs, φ
α
i C

∞-converges to z0α on compact subsets of P1
α\{zα0}.

4.2 Convergence of a subsequence modulo gauge

Theorem 4.2.1. Let p > 2 be a constant. Let (At, ut) ∈ C∞
loc([0,∞)×Σ) be the gradient

flow (modulo gauge) calculated in theorem 3.0.1. There exists {ti}∞i=1 with ti → ∞ as

i→ ∞ and gauge transformations gi ∈ H3(G) such that

a. there exists a connection A∞ in H2 so that gi(Ai) → A∞ weakly in H2 and

strongly in W 1,p.

b. there exists a C1 section u∞ : intΣ → P (X) so that on compact sets of Σ\∂Σ,

giui weakly Gromov converges (definition 4.1.13) to a nodal gauged holomorphic

map with principal component (A∞, u∞). Let Z denote the set of singular points

on Σ. Z is finite and giui → u∞ in C1 on compact subsets of Σ\(Z ∪ ∂Σ).

c. Let Fi := ∗FAi + Φ(ui), F∞ := ∗FA∞
+ Φ(u∞). Then, Adgi Fi → F∞ weakly in

H1 and strongly in Lp. If Σ has boundary F∞|∂Σ = 0 and so F∞ = 0.

d. (A∞, u∞) is a critical point of the functional i.e. dA∞
F∞ = 0 and (F∞)X = 0

Remark 4.2.2. The limit (A∞, u∞) need not be unique. But, if Σ has boundary, we

prove later that the limit is unique modulo gauge.
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4.2.1 Convergence of Ai

Definition 4.2.3. The energy of a gauged holomorphic map (A, u) on a Riemann

surface Σ is defined as

E(A, u) :=
1

2

∫

Σ
|F (A)|2 + |Φ ◦ u|2 + |dAu|2dvolΣ

Lemma 4.2.4. ([CGS00]) Let Σ be a closed compact Riemann surface and P a principal

G-bundle on it. A pair (A, u) ∈ A(P )× Γ(Σ, P (X)) satisfies

1

2

∫

Σ
|F (A)|2 + |Φ ◦ u|2 + |dAu|2dvolΣ

=

∫

Σ
|∂Au|2 +

1

2
| ∗ FA +Φ(u)|2dvolΣ + 〈ωX − Φ, u〉,

(4.5)

where 〈ωX − Φ, u〉 =
∫
Σ u

∗ω − d〈Φ(u), A〉

Remark 4.2.5. a. The last term 〈ωX−Φ, u〉 in (4.5) denotes the pairing of equivariant

cohomology and homology. For a closed Σ, the quantity is an invariant of the

homotopy class of (A, u). (And so it is independent of the choice of A.) - this is

proved in [CGS00].

b. u∗ω − d〈Φ(u), A〉 ∈ Ω2(P, g) is equivariant and horizontal, so it descends to a 2-

form on Σ. Consider an open set Uα with a trivialization of P |Uα ≃ Uα×G, A can

be written as d+aα, aα ∈ Ω1(U, g) and uα : U → X. Here, u∗ω−d〈Φ(u), A〉|Uα =

u∗αω − d〈Φ(uα), aα〉.

c. The identity (4.5) holds for A ∈ H1 and u ∈ C0 ∩H1.

Lemma 4.2.6. Suppose (At, ut) satisfies the gradient flow equations (3.1). For any t,

E(At, ut) ≤ E(A0, u0).

Proof. If ∂Σ = φ, the result is obvious using the energy identity (4.5). But, for a surface

with boundary 〈ω−Φ, (A, u)〉 is not invariant under homotopy (even homotopies fixing

u on the boundary). So, we carefully construct a gauged holomorphic map on a closed

Riemann surface Σ̃ that is made up of two copies of Σ. For that we first need the

result of Step 1. For ease of notation, we assume throughout the proof that ∂Σ has one

component, the proof works identically for multiple components.
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Step 1: Close to any boundary component, there is a trivialization τ of P - τ :

PBǫ(∂Σ) → {z ∈ C : 1 ≤ |z| < 1 + ǫ} ×G so that if (τ−1)∗A0 = d+ a0, then ∗a0 = 0 on

∂Σ. This condition is preserved by the flow - i.e. for any t, if (τ−1)∗At = d+ at, then

∗at = 0 on ∂Σ.

Pick a trivialization τ1 of P close to the boundary : P |Bǫ(∂Σ) → {z ∈ C : 1 ≤ |z| <

1 + ǫ} ×G. Such a trivialization exists because G is connected and so P |∂Σ is a trivial

bundle . Now, (τ−1
1 )∗A0 = d+ ardr+ aθdθ, where ar, aθ : Bǫ(∂Σ) → g. The radial part

of the connection vanishes if we apply the gauge tranformation g : Bǫ(∂Σ) → G given

by

dg

dr
+ arg = 0, g(1, θ) = Id

The required trivialization is τ := g ◦ τ1.

Next, we show that this condition is preseved by the flow. For any t, let (τ−1)∗A(t) =

d+ar(t)dr+aθ(t)dθ. Under these co-ordinates, the flow equation d
dtA = ∗dAF becomes

d
dtar = (dAF )θ. On ∂Σ, (dAF )θ = 0

Step 2: Completing the proof

Consider the bundle P̃ := P
⊔
P/{(x, x) : x ∈ P∂Σ} over the Riemann surface Σ̃ :=

Σ
⊔

Σ/{(x, x) : x ∈ ∂Σ}. At the boundary, the trivialization τ of P |Bǫ(∂Σ) extends to

a trivialization of P̃ : P̃ |Bǫ(∂Σ) ≃ {z ∈ C : 1
1+ǫ < |z| < 1 + ǫ} × G - this defines the

manifold structure of P̃ close to ∂Σ.

Next, for any t, let the connection on Ãt on P̃ be given by the At on both copies

of P . The trace of these connections on P |∂Σ agree, so this is a H1 connection on P̃ .

ũt : Σ̃ → P̃ (X) is defined to be same as ut on both copies. (Ãt, ũt) is homotopically

equivalent to (Ã0, ũ0) and since Σ̃ is a closed surface, 〈ω − Φ, (Ãt, ũt)〉 is constant for

all t. ‖FÃt,ũt
‖2
L2(Σ̃)

= 2‖FAt,ut‖2L2(Σ) decreases with t, so by the energy identity (4.5),

E(Σ̃, (Ãt, ũt)) ≤ E(Σ̃, (Ã0, ũ0)) and so, the result follows.

Proof of theorem 4.2.1 (a). Let (Ãt, ũt) ∈ C0
loc([0,∞), H1×C0) be the solution of (3.1).

It differs from (At, ut) by a family ofH2 gauge tranformations. Let F̃t = ∗F (Ãt)+Φ(ũt).
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By the second equation in the system (3.3),

d

dt
‖F̃t‖2L2 =

∫

X
〈F̃t, d

∗
Ãt
dÃt

F̃t + ũ∗tdΦ(JF̃t)ũ(t)

= ‖dÃ(t)F̃t‖2L2 +

∫

X
gX((F̃t)ũ(t), (F̃t)ũ(t))

This computation makes sense because Ft ∈ H1 by lemma 3.1.9. ‖F̃t‖L2 → 0 as t→ ∞.

So, one can pick a sequence {ti} (ti → ∞ as i→ ∞), such that

‖dA(ti)Fti‖L2 , ‖(Fti)u(ti)‖L2 → 0 as i→ ∞.

We replace the subscripts ti by i. By lemma 4.2.6, ‖dAiui‖L2 < c for all i and so,

supi‖dAi ∗ FAi‖L2 < ∞. So, we get the result by Uhlenbeck compactness ([Uhl82],

[Weh04]) i.e. there exists a sequence of gauge transformations {gi} in H3(G), such that

gi(Ai) converges weakly to A∞ in H2 and strongly in W 1,p, because of the compact

embedding H2 →֒W 1,p.

4.2.2 Convergence of ui

As discussed at the start of this section, to study the convergence behaviour of ui, we

see them as JAi holomorphic curves. One issue in applying Gromov convergence results

in [MS04] is that we do not have smooth convergence of the complex structures JAi .

Our strategy is to apply a sequence of complex gauge transformations to {Ai} to obtain

smooth convergence.

Lemma 4.2.7. Let U be a compact Riemann surface with boundary. Let p > 2 and Ai

be a sequence of connections on a principal bundle P over U . Ai → A∞ in W 1,p(U)

and A∞ is a flat connection that is smooth on int(U). For large i, there exist complex

gauge transformations gi in W 2,p so that gi(Ai) − A∞ ∈ ker(dA∞
⊕ d∗A∞

). gi → Id in

W 2,p(U ′). For any closed set U ′ contained in the interior of U , gi(Ai) is smooth on U ′

and the sequence converges to A∞ in C∞(U ′).

The proof follows ideas in [DK90]. It uses the implicit function theorem, which we

state:
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Proposition 4.2.8 (Implicit function theorem). Let E1, E2 and F be Banach spaces.

f : E1 × E2 → F a smooth map with partial derivatives D1f and D2f . If the partial

derivative D2f at (ξ1, ξ2) is an isomorphism from E2 to F , then there is a smooth map

h from a neighbourhood of ξ1 in E1 to a neighbourhood of ξ2 in E2 such that

f(η, h(η)) = f(ξ1, ξ2).

.

Proof of lemma 4.2.7. Given a connection A = A∞+a, we need to find g = exp ξ ∈ GC

so that the function




Ω1(P (g))W 1,p × Ω0(P (gC))W 2,p
δ

→ Ω2(P (g))Lp × Ω0(P (g))Lp

(a, ξ) 7→ (dA∞
(exp ξ · (A∞ + a)−A∞), d∗A∞

(exp ξ · (A∞ + a)−A∞))

vanishes. We use the implicit function theorem (proposition 4.2.8). At (a, ξ) = (0, 0),

partial derivative Dξ is given by (ξ1 + iξ2) 7→ (dA∞
∗ dA∞

ξ2, d
∗
A∞

dA∞
ξ1). The other

terms vanish because d2A∞
= FA∞

= 0. Write dA∞
∗ = −∗d∗A∞

, so we need to show that

d∗A∞
dA∞

: W 2,p
δ (Ω0(P (g))) → Lp(Ω0(P (g))) is an isomorphism. This is true because

the Dirichlet problem has a unique solution. We also know that g varies continuously

with a.

By this argument, for any large i, the required complex gauge transformation gi

exists and gi → Id in W 2,p. Together with the fact that Ai → A∞ in W 1,p, it implies

gi(Ai) → A∞ in W 1,p.

dA∞
⊕ d∗A∞

: Ω1 → Ω0 ⊕ Ω2 is an elliptic operator because d2A∞
= F (A∞) = 0, and

so, (dA∞
⊕ d∗A∞

)2 = ∆A∞
. For any closed set U ′ contained in the interior of U , elliptic

regularity gives, for s ≥ 0,

‖gi(Ai)−A∞‖W s+2,p(U ′) ≤ c(‖∆A∞
(gi(Ai)−A∞)‖W s,p(U) + ‖gi(Ai)−A∞‖W s+1,p(U))

≤ c‖gi(Ai)−A∞‖W s+1,p(U).

This leads to the proof of the lemma.

Remark 4.2.9. In the statement of the lemma, we assume A∞ is a flat connection that

is smooth on int(U). Flatness is enough - because a flat connection is gauge-equivalent
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to a connection that is smooth in the interior of U . This is seen by an implicit function

theorem argument very similar to the proof of the above lemma. If FA = 0 and A ∈ H1,

pick a smooth connection A0 that is H1-close to A. Then A can be put into Coulomb

gauge with respect to A0. i.e. there exists g ∈ H2(G) such that d∗A0
(g(A) − A0) = 0.

Now, we have control on both d(g(A)) and d∗(g(A)). By elliptic boot-strapping g(A)

is smooth in the interior of U .

Proof of theorem 4.2.1 (b). We first work with the case when Σ has boundary. By

theorem 1 in [Don92], A∞ can be complex gauge-transformed to a flat connection that

is smooth in the interior of Σ. That is, g(A∞) is flat for some g ∈ W 2,p
δ (GC). From

theorem 4.2.1 (a), gi(Ai) → A∞ in W 1,p(Σ). So, ggi(Ai) also converges to g(A∞) in

W 1,p(Σ). By lemma 4.2.7, there is a sequence {g′i} ⊆ W 2,p(GC) converging to Id and

such that (g′iggi(Ai) − g(A∞)) ∈ ker(dg(A∞) ⊕ d∗g(A∞)). Let us call A′
i := g′iggi(Ai),

A′
∞ := g(A∞) and u′i := g′iggiui. On any compact set U ⊆ Σ\∂Σ. A′

i converges to A
′
∞

in C∞(U) and so JA′

i
→ JA′

∞
in C∞(U).

Next, we verify that there’s an energy bound on u′i. In the proof of theorem 4.2.1 (a),

we showed that supi‖dgi(Ai)giui‖L2(Σ) = supi‖dAiui‖L2(Σ) <∞. The quantity ‖dAu‖L2

varies continuously under the action of complex gauge transformations - i.e. the function

g 7→ ‖dg(A)gu‖L2 is continuous from H2(GC) to R. So, supi‖dggi(Ai)ggiui‖L2(U) < ∞

and since gi → Id in H2(GC), supi‖dA′

i
u′i‖L2(U) < ∞. On any compact set U ⊆ Σ\∂Σ,

A′
i is smooth and A′

i → A′
∞ in C∞(U). Using lemmas 4.1.2 and 4.1.5, for large i, JA′

i

is ωA′

∞
-tame and supiEJA′

i
,ωA′

∞

(ui, U) <∞.

By applying proposition 4.6.1 in [MS04], we see that there is a finite set Z in Σ\∂Σ so

that for z0 ∈ Z, there is a sequence zi → z0 for which |dui(zi)| is unbounded. Consider

a compact set U ⊆ Σ\∂Σ such that ∂U ∩ Z = φ. By remark 4.1.12, a subsequence

of u′i Gromov-converges on U and the principal component is u′∞. u′∞ is a secetion

of P (X) well-defined on int(Σ). Now, we gauge transform back. Let u∞ := g−1u′∞.

Since g′i → Id in W 2,p(GC), we get giui → u∞ in C1(U ′), where U ′ is compact subset of

Σ\(∂Σ ∪ Z).

In case, Σ does not have boundary, the connection A∞ cannot be complex gauge
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transformed to a flat connection. So, we consider closed sets Σ1 and Σ2 which have

boundary, Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 6= φ. By repeating the arguments above, we

see that there is a finite set Z ⊆ Σ where bubbling happens. A subsequence of giui

converges on Σ1\(Z∩∂Σ1), and a further subsequence converges on Σ2\(Z∩∂Σ2). The

limits agree on the intersection, and so we have ui weakly Gromov converges to a nodal

gauged holomorphic map with principal component u∞ and connection A∞.

4.2.3 (A∞, u∞) is a critical point

Proof of theorem 4.2.1 (c) and (d). For this proof, denote (A′
i, u

′
i) := gi(Ai, ui) and

F ′
i = Adgi Fi = ∗F (A′

i) + Φ(u′i). We consider the sequence Φ(u′i) in L
p

‖Φ(u′i)− Φ(u∞)‖Lp(Σ) ≤‖Φ(u′i)− Φ(u∞)‖Lp(Σ\Bǫ(Z∪∂Σ))

+ ‖Φ(u′i)‖Lp(Bǫ(Z∪∂Σ)) + ‖Φ(u∞)‖Lp(Bǫ(Z∪∂Σ)).

Since, ‖Φ‖L∞ is bounded, the second and third terms can be made small by taking small

enough ǫ. From (b), we have u′i → u∞ in Lp(Σ\Bǫ(Z)). Therefore Φ(u′i) → Φ(u∞) in

Lp. F (A′
i) → F (A∞) in Lp as A′

i → A∞ in W 1,p. Adding, we get F ′
i → F∞ in Lp.

From the proof of (a), we know, for some constant c, ‖F ′
i‖H1 < c for all i. So

there is a subsequence so that, F ′
i → F̃∞ weakly in H1 and strongly in Lp. Therefore

F̃∞ = F∞. In case Σ has boundary:

H1(Σ, E) → H1/2(∂Σ, E|∂Σ) σ 7→ σ|∂Σ

is a continuous map. Since F ′
i = 0 on the boundary for all i, F∞ is also zero on the

boundary.

Since F ′
i ⇀ F∞ in H1, dA′

i
F ′
i ⇀ dA∞

F∞ in L2 and so,

‖dA∞
F∞‖L2 ≤ lim inf

i
‖dA′

i
F ′
i‖L2 .

We know ‖dA′

i
F ′
i‖L2 → 0. So, dA∞

F∞ = 0.

To show (∗F∞)u∞
= 0, we work on a compact set U ⊆ Σ\(Z ∪ ∂Σ) on which there

is a trivialization of P . So, u′i is a map from U to X. Since u′i → u∞ in C0(U), we
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can take U small enough that for any i, u′i(U) ⊆ V and V is a chart of X that is

bi-holomorphic to a subset of Cn. So, we may assume u′i : U → Cn. Define a map

L : U → Hom(g,Cn) x 7→ (ξ 7→ ξx). (4.6)

L is smooth and (F ′
i )u′

i
= (L ◦ u′i)F ′

i . Since L ◦ u′i → L ◦ u∞ in C0 and F ′
i → F∞ in Lp,

we get (F ′
i )u′

i
→ (F∞)u∞

in Lp(U). From the proof of theorem 4.2.1 (a), (F ′
i )u′

i
→ 0 in

L2(Σ) and so (F∞)u∞
= 0 on U and hence on Σ\(Z ∪ ∂Σ). That means (F∞)u∞

= 0

almost everywhere on Σ and this proves the result.

4.3 Unique limit

When Σ has boundary, theorem 4.2.1 says that (A∞, u∞), the principal component of

the limit, is a vortex i.e. FA∞,u∞
= 0. In this section, we show that (A∞, u∞) is in the

complex gauge orbit of the flow line (At, ut). Since in a complex gauge orbit, a vortex

is unique up to gauge transformation (proposition 4.3.2), the limit of the gradient flow

is unique up to gauge. The main theorem is

Proposition 4.3.1. Let p > 2. Suppose Σ is a Riemann surface with boundary. Let

(Ai, ui) ∈ H(P,X) be a sequence such that Ai → A∞ in W 1,p and there is a finite

set Z ⊆ Σ so that ui → u∞ in C1 on compact subsets of Σ\(Z ∪ ∂Σ). Also, Fi :=

∗F (Ai) + u∗iΦ → 0 in Lp. Then, there exist constants C and i0 so that for i > i0, there

is a complex gauge transformation exp iξi, ξi ∈ W 2,p
δ (Σ, P (g)) so that (exp iξi)(Ai, ui)

is a vortex and satisfies ‖ξi‖W 2,p < 8C‖Fi‖Lp.

Proof. For every (Ai, ui) in the subsequence found in theorem 4.2.1, define a function,

Fi : Γ(g)δ → Γ(g)

ξ 7→ F(exp iξ)Ai,(exp iξ)ui
.

Here Γ(g)δ = {ξ ∈ Γ(g) : ξ|∂Σ = 0}. The differential of Fi at ξ = 0 is given by

DFi(0)ξ1 = d∗Ai
dAiξ1 + u∗i dΦ(J(ξ1)ui) :W

2,p
δ → Lp.

Step 1: DFi(0) is invertible for all i.

The operator Id+d∗Ai
dAi : W 2,p

δ (Σ, g) → Lp(Σ, g) is invertible because the Dirichlet
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problem has a unique solution. So, it has Fredholm index 0. u∗i dΦ(J(·)u) − Id is a

compact perturbation so DFi(0) also had Fredholm index 0. It is 1-1 because for any

non-zero ξ1 ∈W 2,p
δ ,

〈d∗Ai
dAiξ1 + u∗i dΦ(J(ξ1)ui), ξ1〉g = ‖dAiξ1‖2L2 +

∫

X
ωui((ξ1)ui , J(ξ1)ui) > 0,

and therefore, it is onto as well.

Step 2: For large i, ‖DFi(0)
−1‖ < C and C is independent of i.

Denote

Qi :=DFi(0)
−1, Q∞ :=DF∞(0)−1.

On the spaces W s,p, we use the norm ‖·‖A∞

s i.e for σ ∈ Γ(Σ, P (g)),

‖σ‖A∞

s,p :=
s∑

i=0

‖∇i
A∞

σ‖Lp .

For notational convenience, we define an operator Lx for every x ∈ X,

Lx : g → g

ξ 7→ dΦx(Jξx).

We’ll proceed by showing that the difference between DF∞(0) and DFi(0) is small and

so ‖Qi‖ can be bounded in terms of ‖Q∞‖. Let ξ1 ∈W 2,p
δ (Σ, g).

‖(DF∞(0)−DFi(0))ξ1‖Lp(Σ) ≤ ‖d∗A∞
dA∞

ξ1 − d∗Ai
dAiξ1‖Lp(Σ)

+ ‖(Lu∞
− Lui)ξ1‖Lp(Σ\Bǫ(Z∪∂Σ)) + ‖(Lu∞

− Lui)ξ1‖Lp(Bǫ(Z∪∂Σ)).

(4.7)

Bǫ(Z ∪∂Σ) denotes ǫ balls about the points in Z ∪∂Σ. The value of ǫ is yet to be fixed.

We bound the third term in (4.7) first.

‖(Lu∞
− Lui)ξ1‖Lp(Bǫ(Z∪∂Σ)) ≤ 2‖L‖C0(X)‖ξ1‖W 2,p(Σ) · vol(Bǫ(Z ∪ ∂Σ)).

Fix a small enough value of ǫ so that

2‖L‖C0(X) · vol(Bǫ(Z ∪ ∂Σ)) ≤ 1

4‖Q∞‖ .

For the second term - since ui → u∞ in C1(Σ\Bǫ(Z ∪ ∂Σ)) for a large enough i,

‖(Lu∞
− Lui)ξ1‖Lp(Σ\Bǫ(Z∪∂Σ)) ≤ ‖Lu∞

− Lui‖C0(Σ\Bǫ(Z∪∂Σ))‖ξ1‖W 2,p(Σ)

≤ 1

8‖Q∞‖‖ξ1‖W 2,p .
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The first term is bounded similarly. For a large enough i,

‖(d∗A∞
dA∞

− d∗Ai
dAi)ξ1‖Lp(Σ) ≤ c‖A∞ −Ai‖W 1,p(Σ)‖ξ1‖W 2,p(Σ)

≤ 1

4‖Q∞‖‖ξ1‖W 2,p(Σ).

Then,

‖DF∞ −DFi‖ ≤ 1

2‖Q∞‖ and so, ‖Qi‖ ≤ 2‖Q∞‖.

To prove the result we apply the implicit function theorem (in the form of theorem

A.0.1) to Fi with C := 2‖Q∞‖. We need to find δ for which ‖DFi(ξ)−DFi(0)‖ < 1
2C

for ‖ξ‖W 2,p < δ.

Step 3: For large i, ‖ξ‖W 2,p < 1, there is a constant c1 independent of i such that

‖DFi(ξ)−DFi(0)‖ ≤ c1‖ξ‖W 2,p .

Proceeding in a similar way as above,

‖DFi(ξ)−DFi(0)‖ ≤ ‖∆(exp iξ)Ai
−∆Ai‖+ ‖L(exp iξ)ui

− Lui‖. (4.8)

Consider the first term. Recall that

(d∗Ai+adAi+a − d∗Ai
dAi)ξ1 = ∗[a ∧ ∗dAiξ1] + d∗Ai

[a ∧ ξ1] + ∗[a ∧ ∗[a ∧ ξ1]].

We assume that i is large enough so that ‖A∞ − Ai‖W 1,p < ǫ for some fixed ǫ. Then,

for any s ≥ 0, the operator dAi : W s+1,p → W s,p has a bound on its norm that is

independent of i. Applying multiplication theorem,

‖(d∗Ai+adAi+a − d∗Ai
dAi)ξ1‖Lp ≤ c‖a‖1,p‖ξ1‖2,p.

To bound the first term, we need a bound on ‖(exp iξ)Ai−Ai‖W 1,p in terms of ‖ξ‖W 2,p .

At a connection A, the infinitesimal action of iξ is ∗dAξ. So, (exp iξ)Ai is given by

A(1), where A(t) is the solution of the ODE

dA(t)

dt
= ∗dA(t)ξ A(0) = Ai.

Write A(t) = A∞ + a(t) and the equation changes to

da(t)

dt
= ∗dA∞

ξ + ∗[a(t), ξ] a(0) = A∞ −Ai.
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Assume ‖ξ‖2,p ≤ 1. Then,

d

dt
‖a‖1,p ≤ ‖da

dt
‖1,p ≤ c‖ξ‖2,p(1 + ‖a‖1,p) ≤ c(1 + ‖a‖1,p).

Since ‖a(0)‖1,p < ǫ, ‖a(t)‖1,p < c = c(ǫ) for 0 ≤ t ≤ 1. This means, if ‖ξ‖2,p < 1,

d

dt
‖a‖1,p ≤ c‖ξ‖2,p.

So,

‖(∆(exp iξ)Ai
−∆Ai)ξ1‖Lp ≤ c‖(exp iξ)Ai −Ai‖1,p‖ξ1‖2,p ≤ c‖ξ‖2,p‖ξ1‖2,p.

As for the second term in (4.8), ξ 7→ (L(exp iξ)ui
−Lui) is a smooth map. So, ‖L(exp iξ)ui

−

Lui‖C0 < c‖ξ‖C0 < c‖ξ‖2,p. The constants are independent of i, because since X is

compact, there is a constant c for which dX((exp iξ)x, x) < c|ξ| for any x ∈ X and

ξ ∈ g. Now, by multiplication,

‖(L(exp iξ)ui
− Lui)ξ1‖Lp ≤ c‖L(exp iξ)ui

− Lui‖C0‖ξ1‖Lp ≤ c‖ξ‖2,p‖ξ1‖2,p.

Therefore, there is a constant c1 independent of i, such that for large enough i and

‖ξ‖2,p < 1,

‖DFi(ξ)−DFi(0)‖ ≤ c1‖ξ‖W 2,p

Step 4: Finishing the proof.

Let δmax := 1/2Cc1. For i large enough that ‖Fi‖Lp < δmax
4C , the implicit function

theorem (A.0.1) is applicable on Fi with δ = δmax.

If we take i such that ‖Fi‖Lp < δmax
8C and apply the implicit function theorem with

δ = 8C‖Fi‖Lp , we get ξi ∈W 2,p
δ so that Fi(ξi) = 0 and ‖ξ‖2,p < δ = 8C‖Fi‖Lp .

Proposition 4.3.2. Let (A, u), (A′, u′) ∈ H(P,X) be vortices related by a complex

gauge transformation g : (A′, u′) = g(A, u) satisfying g|∂Σ ∈ G(∂Σ). Then, (A, u) and

(A′, u′) are gauge-equivalent, i.e. g ∈ G

Proof. A vortex is a point (A, u) ∈ H(P,X) at which the moment map ∗FA,u van-

ishes, so the proof is similar to the finite-dimensional case - proposition 2.1.3. The

diffeomorphism (2.1) in the proof of proposition 2.1.3, induces a bijection

GC → G × Γ(Σ, P (g)) g 7→ (k, ξ) so that g = keiξ.
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So, if (A, u) and (A′, u′) are vortices that are complex gauge-equivalent, after a gauge

transformation, we may assume (A′, u′) = eiξ(A, u) where ξ ∈ Γ(Σ, P (g)) and ξ|∂Σ = 0.

Let (At, ut) := eitξ(A, u). We know FA0,u0
= FA1,u1

= 0. Analogous to (2.2), we

have, for ξ|∂Σ = 0,

d

dt

∫

Σ
〈∗FAt,ut , ξ〉 = 〈d∗At

dAtξ + u∗tdΦ(J(ξ)ut), ξ〉g

= ‖dAtξ‖2L2 +

∫

X
ωut((ξ)u, J(ξ)u) ≥ 0.

The inequality is strict for non-zero ξ. So, ξ = 0 and (A, u) and (A′, u′) are gauge-

equivalent.

Theorem 4.3.3. Under notations from theorem 4.2.1, let Σ have non-empty boundary.

Then,

a. u∞ ∈ C1(Σ) and giui → u∞ in C1(Σ) - i.e. there is no bubbling.

b. (A∞, u∞) lies in the same GC,G-orbit as the flow line (At, ut) - i.e. there is a

g ∈ GC satisfying g|∂Σ ⊆ G such that (A∞, u∞) = g(A0, u0).

c. For a given flow line (At, ut), the limit (A∞, u∞) is unique up to gauge.

Proof. Denote (A′
i, u

′
i) := gi(Ai, ui). The outline of the proof is as follows: using the

fact that A′
i → A∞ and proposition 4.3.1, we show that if g̃i ∈ GC is a sequence such

that g̃i(A
′
0) = A′

i, then g̃i → g∞. This implies, u′i = g̃iu
′
0 → g∞u

′
0 = u∞.

Apply proposition 4.3.1 to (A′
i, u

′
i). By dropping a tail of the sequence, we may

assume i0 = 0. So, for all i, there exist ξi ∈W 2,p
δ such that (A′′

i , u
′′
i ) := (exp iξi)(A

′
i, u

′
i)

is a vortex and ξi → 0 in W 2,p.

The gradient flow preserves the (GC)δ orbit - any (At, ut) is related to (A0, u0) by

a complex gauge transformation that is identity on ∂Σ. Also, ξi|∂Σ = 0. So, using

proposition 4.3.2, (A′′
i , u

′′
i ) are in the same gauge orbit for all i. We know A′′

i → A∞

in W 1,p. Applying lemma 4.3.4 to the sequence {A′′
i } gives gauge transformations

{ki} ⊆W 2,p(G) such that ki ⇀ Id in W 2,p and A′′
i = ki(A∞). So, ki → Id in C1.

Let g̃i := exp(−iξi)kik−1
0 exp(iξ0). Then, we have g̃i → k−1

0 exp(iξ0) in C
1(Σ). Since

g̃i(A
′
0) = A′

i, we get u′i = g̃iu
′
0 and so u′i → k−1

0 exp(iξ0)u0 in C1(Σ). So, the limit u∞
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computed in theorem 4.2.1 is same as k−1
0 exp(iξ0)u0 - i.e. u∞ extends to a C1 map on

all of Σ.

Lemma 4.3.4. Let P → Σ be a principal G-bundle over a compact Riemann surface.

Let p > 2 and Ai a sequence of connections converging to A∞ in W 1,p. Ai are gauge

equivalent, i.e. there exist gi ∈ W 2,p(G) such that gi(A0) = Ai. Then, gi are bounded

in W 2,p and there exists g∞ ∈W 2,p(G) such that gi → g∞ weakly in W 2,p and strongly

in C1. A∞ = g∞(A0) and so is in the same gauge orbit as the sequence.

Proof. Denote Θi := gi(A0) − A∞. We are given Θi → 0 in W 1,p as i → ∞. We work

in a neighbourhood U of Σ, over which there is a fixed trivialization of P . So, A0, A∞,

Θi ∈ Ω1(U, g) and gi : U → G and we know

gi(A0) = (dgi)g
−1
i + giA0g

−1
i

So,

dgi = −giA0 +A∞gi +Θigi (4.9)

A0, A∞ and Θi are bounded in Lp. Since the action of G is metric-preserving, the right

hand side is bounded in Lp. Since G is compact, ‖gi‖W 1,p < c for some constant c.

Next, we show that the right hand-side of (4.9) is bounded in W 1,p. Consider

∇(Θigi) = Θi(∇gi) + (∇Θi)gi.

‖∇(Θigi)‖Lp ≤ ‖Θi‖W 1,p‖∇gi‖Lp + ‖∇Θi‖Lp‖gi‖W 1,p

by proposition 5.1.13. So, ‖∇(giΘi)‖W 1,p are bounded. Similarly giA0 and A∞gi are

also bounded in W 1,p and so, ‖gi‖W 2,p < c for a constant c. Therefore, passing to a

subsequence, gi ⇀ g∞ in W 2,p and the convergence is strong in C1. Also, gi(A0) →

g∞(A0) in L
p and so, g∞(A0) = A∞.
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Chapter 5

Sobolev Spaces

The goal of this section is to define Sobolev completions of time-dependent sections of

vector bundles and prove uniform bounds on certain operators. For a vector bundle

E → Σ, we define spaces Hr,s([0, t0]×Σ, E) - roughly speaking, when r and s are non-

negative integers, this space consists of sections that have r weak derivatives in the time

direction, and s in the space direction. This space is defined as Hr([0, t0], H
s(Σ, E)), i.e.

the space of Hr-regular functions from [0, t0] to the Hilbert space Hs(Σ, E). Subsection

5.1 introduces the spaces Hs(Σ, E). The norm on the space Hs(Σ, E) is dependent on

a choice of connection. Here we’ll use a connection A, that satisfies ‖F (A)‖L2 < K,

and then show that the operator norms depend only on K and not on the choice of A.

This uses Uhlenbeck compactness and is proved in subsection 5.2. 5.3 describes time

dependent sections. Next, in 5.4, we show that in these spaces, the solution of the heat

equation has uniformly bounded norm. In the last subsection 5.5, we define the space

Hr(C0) and prove some of its properties.

5.1 Sections of vector bundles

5.1.1 Definition and basic properties

Let Σ be a compact Riemann surface, possibly with boundary. Let P → Σ be a principal

G-bundle, where G ⊆ SO(n) is a Lie group. If V is a vector space with a G-action

on it, we denote the associated vector bundle (P × V )/G by P (V ). Here, we consider

bundles of the form E = P (V )⊗ ∧nT ∗Σ. A connection on the principal bundle P and

the Levi-Civita connection together determine a connection on E.

Definition 5.1.1. Let A be a smooth connection on the vector bundle E → Σ and s
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be a non-negative integer, σ ∈ Γ(Σ, E)

‖σ‖As :=

(
s∑

i=0

‖∇i
Aσ‖2L2

)1/2

(5.1)

is a norm. Hs(E) is the completion of Γ(Σ, E) under this norm.

Remark 5.1.2. Hs(E) can alternately be defined as the equivalence classes of almost-

everywhere defined sections σ that satisfy ∇i
Aσ ∈ L2 for 0 ≤ i ≤ s. The derivatives ∇A

are taken in the distributional sense. [LM72] shows that the space of smooth sections

is dense in Hs(E).

The following properties are well known:

For s2 < s1, the inclusion

Hs1(E) →֒ Hs2(E) (5.2)

is continuous.

∇A : Hs(E) −→ Hs−1(E ⊗ T ∗X) (5.3)

∇∗
A : Hs(E ⊗ T ∗X) −→ Hs−1(E) (5.4)

∇∗
A∇A : Hs(E) −→ Hs−2(E) (5.5)

∇∗
A is the same as ∇A followed by the contraction T ∗X × T ∗X → R. For smooth A,

the operators ∇A, ∇∗
A, ∇∗

A∇A are continuous by the definition (5.1.1) of ‖·‖s.

5.1.2 Interpolation

Definition 5.1.3. If X and Y are Banach spaces such that the inclusion X ⊂ Y

is continuous, an interpolation space W is a Banach space, X ⊂ W ⊂ Y with the

following property: If L is a linear operator from Y into itself, which is continuous from

X into itself, then it is also continuous from W into itself. It is an interpolation space

of exponent θ if there exists constant C such that

‖L‖W ≤ C‖L‖1−θ
X ‖L‖θY for all such operators L.

Further, if C = 1, then W is an exact interpolation space.
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The complex interpolation functor Iθ produces an exact interpolation space of expo-

nent θ (see [LM72], [Tri95]). We describe this method of obtaining interpolation spaces:

Let S be the strip {z ∈ C : 0 < Re(z) < 1}. Let H(X,Y ) denote the space of functions

f : S → Y with the following properties:

• f is holomorphic on S

• f(iη) ∈ X and η 7→ f(iη) is a bounded continuous function from R to X

• η 7→ f(1 + iη) is a bounded continuous function from R to Y .

H(X,Y ) is equipped with the norm

‖f‖H := max(sup
η∈R

‖f(iη)‖X , sup
η∈R

‖f(1 + iη)‖Y ).

Using the three lines theorem, theorem 1.9.1 in [Tri95] proves that H is a Banach space.

Definition 5.1.4 (Complex Interpolation). Let X ⊆ Y be a continuous inclusion of

Banach spaces and 0 < θ < 1,

Iθ(X,Y ) := {a|∃f ∈ H(X,Y ) : f(θ) = a}

with norm ‖a‖Iθ(X,Y ) = inf{‖f‖H|f(θ) = a}.

We use this construction to define fractional interpolation spaces:

Definition 5.1.5 (Fractional Sobolev spaces). For an integer n and 0 < θ < 1,

Hn+θ(E) := Iθ(H
n(E), Hn+1(E)).

For s1, s2 ≥ 0, and 0 < θ < 1, [LM72] proves that the map

Iθ(H
s1 , Hs2) → Hθs1+(1−θ)s2 (5.6)

is an isomorphism. So, (5.2), (5.3), (5.4), (5.5) are bounded maps for all s > 0

For s > dimΣ/2, there is an embedding ([LM72])

Hs →֒ C0. (5.7)
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5.1.3 The spaces Hs
0, H

s
δ

For s > 1
2 ,

Hs(Σ, E) → Hs− 1

2 (∂Σ, E|δΣ) (5.8)

is well-defined and continuous. C∞
0 (Σ, E) denotes the space of smooth sections sup-

ported away from the boundary of Σ. For any s ≥ 0

Definition 5.1.6. [Hs
0 spaces] Let m ≥ 0 be a non-negative integer

Hm
0 (Σ, E) := closure of C∞

0 in Hm(Σ, E).

For 0 < θ < 1

Hm+θ
0 (Σ, E) := [Hm

0 , H
m+1
0 ]θ.

Remark 5.1.7 (Alternate characterization of Hs
0). If s 6= µ + 1

2 , where µ is an integer,

the spaces can be directly defined as

Hs
0(Σ, E) := closure of C∞

0 in Hs(Σ, E).

These spaces can be alternately characterized as : σ ∈ Hs
0 if and only if σ ∈ Hs and

∂jσ
∂νj

= 0 on ∂Σ for j = 0, . . . , ⌊s− 1
2⌋. So, for 0 < s < 1

2 , H
s
0 = Hs. This makes intuitive

sense because for Hs-sections, the boundary trace is not well-defined if s < 1
2 .

However, if s = µ+ 1
2 , H

s
0(Σ, E) is a strict subspace of the closure of C∞

0 inHs(Σ, E),

with a finer topology. H
µ+1/2
0 is called the Lions-Magenes space and is not closed in

Hµ+1/2. We’ll talk about these spaces more in the 1-dimensional case in section 5.3.

Remark 5.1.8. Our notation here is different from [LM72]. [LM72] defines Hs
0(Σ, E) as

the closure of C∞
0 in Hs(Σ, E) for all s. [Hµ, Hµ+1]1/2 is called H

µ+1/2
00 .

The Hs
0 spaces are well-behaved in terms of interpolation. For s1, s2 ≥ 0 and

0 < θ < 1,

Iθ(H
s1
0 , H

s2
0 ) → H

θs1+(1−θ)s2
0 (5.9)

is an isomorphism.
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5.1.4 Defining H−s by duality

Definition 5.1.9. Let s ≥ 0. H−s(E) := (Hs
0(E))∗ i.e. H−s(E) is the completion of

Γ(Σ, E) under the norm

‖σ‖−s := sup{
∫

Σ
(σ, σ′) : σ′ ∈ Hs

0(Σ, E), ‖σ′‖s = 1}. (5.10)

Elements in H−s need not be sections that are defined almost everywhere. H−s is

a subspace of the space of distributions.

Notation 5.1.10. We use the notation Hs
∗ in statements that apply to both Hs and Hs

0 .

Using the above duality, we have

Proposition 5.1.11. The maps (5.2), (5.3), (5.4), (5.5) are continuous for all s, s1,

s2

By duality, the expected interpolation results also hold for H−s spaces.

Proposition 5.1.12 (Multiplication Theorem). The map

Hs1
∗ (E1)⊗Hs2

∗ (E2) −→ Hs3
∗ (E1 ⊗ E2) (5.11)

is continuous if s1 + s2 ≥ 0, s3 < min(s1, s2) and s3 ≤ s1 + s2 − dimΣ
2 .

This is a corollary of the corresponding result on Wm,p spaces.

5.1.5 W s,p spaces

Let p > 1 and m be a non-negative integer. The space Wm,p(E) is a completion of

Γ(Σ, E) under the norm

‖σ‖Am,p :=
m∑

i

‖∇i
Aσ‖Lp .

By complex interpolation, W s,p can be defined for all non-negative s. Hs = W s,2. For

p 6= 2, W s,p is not a Hilbert space. The negative exponent spaces are defined differently

from Hs. For s ≥ 0, W−s,p := (W s,p∗)∗ where the pairing is via the L2-product and p∗

is given by 1
p + 1

p∗ = 1. We’ll need the following embedding results:

W s1,p1 →֒W s2,p2 if s2 < s1 and s2 −
dimΣ

p2
≤ s1 −

dimΣ

p1
, (5.12)

W s,p →֒ Ck if k < s− dimΣ

p
. (5.13)
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Both the inclusions are compact ([Tri95]).

Proposition 5.1.13. [Multiplication theorem on W s,p(E) spaces] The multiplication

map

W s1,p1(E1)⊗W s2,p2(E2) →W s3,p3(E1 ⊗ E2)

is continuous if s1 + s2 ≥ 0, s3 ≤ min(s1, s2) and s3 − dimΣ
p3

≤ s1 − dimΣ
p1

+ s2 − dimΣ
p2

.

This result follows from a corresponding result for functions on bounded Euclidean

domains. This result is proved by Hölder’s inequality for the case when si = 0 and then

using induction, interpolation and duality.

5.2 Uniform operator bounds

So far, we have used a smooth connection A to define spaces Hs
∗ , and we have stated

some operators between these spaces that have bounded norms. Using a different

connection leads to the same spaces, with equivalent norms. Here, we show that one

can use a connection A ∈ Hs0 , where s0 >
dimΣ

2 −1 is an integer, and get an equivalent

norm on spaces Hs
∗ for s ∈ [−s0 − 1, s0 + 1]. The norms of operators between these

spaces will depend on the choice of connection, but we’ll show that if the connection

satisfies a curvature bound ‖F (A)‖s0−1 < K, then the operator norm bounds depend

only on K and not on the choice of connection. Constants that depend only on K will

be denoted cK . We’ll also use terms like cK-bounded, cK-isomorphism etc. to say that

the relevant operator norms are bounded by cK

Proposition 5.2.1. Let s0 >
dimΣ

2 − 1 be an integer and A ∈ Hs0 be a connection

on P (and hence E). We assume that B is a smooth connection and that the spaces

Hs(E) are Sobolev completions under the norm ‖·‖Bs .

a. For s ∈ [−s0, s0 + 1], the operator ∇A : Hs(E) → Hs−1(E) is continuous.

b. For s ∈ [−s0 − 1, s0 + 1], ‖·‖A defines a norm and is equivalent to ‖·‖B.

Remark 5.2.2. The above result shows that the space Hs(E) is independent of the

connection used to define it.
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Proof of proposition 5.2.1. Let a := A − B ∈ Ω1(X,P (g))Hs0 . If σ ∈ Hs(E) (s ∈

[s0, s0+1]),∇Aσ = ∇Bσ+[a, σ]. By the multiplication theorem ‖[a, σ]‖Bs−1 ≤ ‖a‖Bs0‖σ‖Bs .

So, ∇A : Hs → Hs−1 is a bounded operator. This implies that ‖·‖As is a norm for

s = 0, 1, . . . , s0+1. The definition of the norm can be extended to all s ∈ [−s0−1, s0+1]

by interpolation and duality.

We use induction to prove ‖·‖As ≤ c‖·‖Bs (when s is a non-negative integer). The

result is trivial for s = 0, since both norms are just the L2-norms. Assuming the result

for s− 1,

‖σ‖As ≤ ‖σ‖As−1 + ‖∇Aσ‖As−1

≤ c(‖σ‖Bs−1 + ‖∇Aσ‖Bs−1)

≤ c(‖σ‖Bs−1 + ‖∇Bσ‖Bs−1 + ‖a‖Bs0‖σ‖
B
s )

≤ c‖σ‖Bs .

The other direction ‖·‖Bs ≤ c‖·‖As can be proved similarly. The result extends to all

s ∈ [−s0 − 1, s0 + 1] by duality and interpolation.

To prove a uniform bound on operator norms, we use local trivializations to give an

alternate definition of Hs.

5.2.1 Local trivialization definition of Hs-spaces

It’s possible to define the spaces Hs using a local trivialization of the bundle : roughly,

‖σ‖s will be the sum of its Hs-norms in each co-ordinate patch. Changing the triv-

ialization would produce equivalent norms. We will pick a trivialization that would

produce a norm that is cK-equivalent to ‖·‖s.

A local trivialization data of E → Σ consists of : an open cover {Uα}α of Σ, with

coordinate charts τα : Uα → Vα ⊂ Rn (where n = dimΣ, and a local section eα of the

principal bundle P . This induces a trivialization of the bundle, φα : π−1Uα→̃Vα ×Rm,

where Rm is isomorphic to the fibres of E. The trivializations are related by transition

functions gαβ : Uα ∩ Uβ → G. The following is lemma 3.5 in [Uhl82].

Lemma 5.2.3 (Uhlenbeck Compactness). Let dimΣ = 2, 3. Given a K > 0, there

exists a finite cover {Uα}α of Σ and constants cK such that for any connection A on
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P satisfying ‖F (A)‖Hs0−1 < K, there is a trivialization φα : π−1Uα→̃Vα × Rm, and if

τ∗αA = d+Aα, ‖Aα‖Hs0 (Vα) ≤ cK and ‖gαβτα‖Hs0+1(Vα∩τ
−1
α Uβ)

≤ cK .

We fix a partition of unity ηα subordinate to this cover.

Let σα := φα ◦ σ ◦ τ−1
α represent σ on Vα. Define another norm on Hs(E) as

|σ|s :=
(
∑

α

[η1/2α · σα]2Hs(Vα,Rm)

)1/2

. (5.14)

We denote the Hs-norm on Euclidean space by [·]. The L2 product corresponding to

the norms | · | and ‖·‖ agree
∫

X
(σ′, σ)dV =

∑

α

∫

Vα

ηα(σ
′
α, σα)dV.

The next lemma shows that the norm | · |−s is the dual norm of | · | on Hs
0 under the

L2 pairing. This is needed for proving the cK-equivalence of the norms ‖·‖ and | · |.

Lemma 5.2.4. For any 0 ≤ s ≤ s0 + 1, there is a constant cK so that

c−1
K |σ|−s ≤ |σ|(Hs)∗ ≤ cK |σ|−s.

Proof. For the first inequality, we show the existence of σ′ ∈ Hs so that

c−1
K |σ|−s <

(σ, σ′)L2(Σ)

|σ′|s
.

For each α, there exists σ′α ∈ Hs
0(Vα) with |σ′α|s = 1 so that

(η1/2α σα, σ
′
α)L2(Vα) ≥

1

2
|η1/2α σα|H−s(Vα).

Define σ′ :=
∑

α η
1/2
α φ−1

α ◦ σ′α ◦ τα ∈ Hs(Σ, E). Then,

c−1
K |σ|H−s ≤

∑

α

|η1/2α σα|H−s(Vα) ≤ 2
∑

α

(η1/2α σα, σ
′
α)L2(Vα) ≤ cK

(σ, σ′)L2(Σ)

|σ′|s
.

For the last inequality above, we use the fact that the number of co-ordinate patches

is bounded by some cK and so |σ′|Hs(Σ) < cK .

For the second inequality in the proposition, we need to show that for all σ′ ∈ Hs(Σ),

(σ,σ′)L2

|σ′|s
≤ |σ|−s.

(σ, σ′)L2(Σ) =
∑

α

ηα(σα, σ
′
α) ≤

∑

α

|η1/2α σα|H−s(Vα)|η1/2α σ′α|Hs(Vα)

≤ (
∑

α

ηα|σα|2H−s(Vα)
)1/2(

∑

α

ηα|σ′α|2Hs(Vα)
)1/2 = |σ|−s|σ′|s.
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Proposition 5.2.5. Let dimΣ = 2, 3 and s0 >
n
2 +1 is an integer. Given K > 0, there

are constants cK so that : if A is a connection on P satisfying ‖FA‖s0−1 < K, for any

s ∈ [−s0 − 1, s0 + 1], the norms ‖·‖As and | · |s are cK-equivalent on Hs(E). The norm

| · |s is defined by (5.14) and is produced by the trivialization given by lemma 5.2.3.

Proof. We first prove the result for non-negative integers by induction. For s = 0,

|σ|L2 = ‖σ‖L2 . We assume the estimate is true for s− 1 and prove |σ|s ≤ cK‖σ‖s

|σ|2s = |σ|2L2 +
∑

α

[∇(η1/2α · σα)]2s−1

≤ ‖σ‖2L2 + ‖∇Aσ‖2s−1 +
∑

α

[Aα × σα]
2
s−1 +

∑

α

[(∇η1/2α ) · σα)]2s−1

≤ ‖σ‖2S + cK |σ|2s−1 ≤ cK‖σ‖2s.

The other direction i.e. ‖σ‖s ≤ cK |σ|s is similar to the proof of proposition (5.2.1).

We have exact interpolation isomorphisms for both norms ‖·‖ and | · |, so the result

extends to all positive s. Using lemma 5.2.4, it extends to negative s by duality.

In this norm defined using local trivializations, operator norms do not depend on

A. So, using the cK-equivalence, we get

Proposition 5.2.6. Let dimΣ = 2, 3 and s0 >
n
2 + 1 is an integer. If

‖F (A)‖As0 = ‖F (A)‖L2 + ‖∇AF (A)‖L2 + ...+ ‖∇s0−1
A F (A)‖L2 < K,

then there exists constants cK , depending on K, but not on A, such that the multiplica-

tion operator (5.11) and Sobolev embedding (5.7) have norm ≤ cK and interpolation op-

erators (5.6), (5.9) are cK-isomorphisms for sobolev indices in the range [−s0−1, s0+1].

Remark 5.2.7. In the proof of proposition 5.2.6, there is an additional detail in the

bound for the multiplication operator: for (σ, σ′) 7→ σ ⊗ σ′, (σ ⊗ σ′)α depends on

gβα(σ
′
β |Vβ∩τ

−1

β Uα
). These terms can be bounded using the bound on gβα.
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5.3 Time dependent sections

5.3.1 Sobolev spaces over time intervals

We first define Sobolev completions of functions from a time interval [0, T ] to a Hilbert

space K. This is very standard and follows the same ideas as the previous section. The

only new idea in our definition is - we introduce a T -dependent scaling. This is for

technical reasons and its usefulness will be pointed out later.

Definition 5.3.1. Let m ≥ 0 be an integer. Hm([0, T ],K) is the completion of

C∞([0, T ],K) in the norm

‖σ‖m :=

(
m∑

i=0

‖T−(m−i) d
i

dti
f‖2L2

)1/2

.

For non-integers, Hr is defined by interpolating between neighbouring integers and

H−r([0, T ],K) := (Hr
0([0, T ],K∗))∗ with pairing 〈f, g〉 7→

∫ T
0 (f(t), g(T − t))dt.

Alternately, this norm can be defined by Fourier transform. Our definition differs

from the standard one by a T -scaling.

Definition 5.3.2. [Fourier transform definition of Hs([0, T ],K)]

‖f‖Hs([0,T ],K) := inf‖(T−2 + τ2)s/2F̂ (τ)‖L2 ,

where the infimum is taken over all smooth F : R → K that restrict to f in [0, T ].

We need another subspace here

Definition 5.3.3 (Hs
P ). Let C∞

P ([0, T ],K) be the subspace of smooth functions that

are supported away from t = 0 (i.e. all derivatives vanish at t = 0). For a positive

integer m, Hm
P := closure of C∞

P in Hs. The definition is extended to non-integers by

interpolation and to negative numbers by duality : H−s
P := (Hs

P )
∗ under the pairing

〈f, g〉 7→
∫ T
0 f(t), g(T − t)dt.

Remark 5.3.4. Hs
0 = Hs

P = Hs if 0 ≤ s < 1
2 . By duality, Hs

P = Hs for −1
2 < s ≤ 0 also.

For s ≤ −1
2 , H

s
P is a formal space - its elements may not correspond to distributions.
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Remark 5.3.5. Continuing remark 5.1.7,H
µ+1/2
P ([0, T ]) = {f ∈ Hµ+1/2([0, T ]) : t−1/2fµ ∈

L2} with norm

‖f‖
H

µ+1/2
P

=
(
‖f‖2

Hµ+1/2 + ‖t−1/2f‖2L2

) 1

2

.

The topology is finer than that of Hµ+1/2, so it is not closed in Hµ+1/2. Similarly, the

norm of H
µ+1/2
0 ([0, T ]) is equivalent to

‖f‖
H

µ+1/2
0

=
(
‖f‖2

Hµ+1/2 + ‖t−1/2f‖2L2 + ‖(T − t)−1/2f‖2L2

) 1

2

.

We state some important properties

For s1 > s2, the inclusion

(Inclusion) Hs1
∗ ([0, T ],K) −→ Hs2

∗ ([0, T ],K) (5.15)

has norm cT s1−s2 . This inclusion is compact. The advantage of the scaling is that :

by choosing small T , we have a handle on how small a perturbation this operator can

cause.

A map L : K → K′ between two Hilbert spaces, induces the following continuous

operator

Hs
∗([0, T ],K) −→ Hs

∗([0, T ],K′). (5.16)

Its norm is determined by ‖L‖.

For r > 1
2 , there is an embedding

Hs([0, T ],K) →֒ C0([0, T ],K). (5.17)

It is a compact operator with norm bounded by cT s− 1

2 .

The multiplication theorem follows from the multiplication theorem for real valued

functions,

(Multiplication) Hs1
∗ ([0, T ],K)⊗Hs2

∗ ([0, T ],K′) −→ Hs3
∗ ([0, T ],K ⊗K′) (5.18)

if s1 + s2 ≥ 0, s3 < s1 + s2 − 1/2 and s3 ≤ min(s1, s2). It has norm ≤ cT s1+s2−s3−1/2.

If K0 and K1 have a common dense subspace k, they form an interpolation pair. Let

Kθ = Iθ(K0,K1). Now, Hs0([0, T ],K0) and Hs1([0, T ],K1) form an interpolation pair



57

with common dense subspace Hmin(s0,s1)([0, T ], k) and there is an isomorphism

(Interpolation:) Hθs0+(1−θ)s1([0, T ],Kθ) −→ Iθ(H
s0([0, T ],K0), H

s1([0, T ],K1)).

(5.19)

Lemma 5.3.6 (Integration). d
dt : H

s+1
P → Hs

P is invertible, the inverse is given by the

integration operator
∫
0.

Proof. Integration, f 7→
∫
0 f(t)dt defines an operator from C∞

P ([0, T ]) to itself. It

extends to a bounded operator
∫
0 : H

n
P → Hn+1

P for integers n ≥ 0, using the definition

5.3.1 of the norm. The result follows by interpolation and duality.

Remark 5.3.7. For s > −1
2 , the integration operator

∫
0 : Hs

P → Hs+1
P corresponds to

“real integration”. Otherwise it is a formal operator. This ties in with the fact that for

f ∈ Hs, one can evaluate f(0) only if s > 1
2 .

5.3.2 Mixed spaces

We can define the following mixed spaces to describe time-dependent sections of vector

bundles.

Definition 5.3.8. For any real r and s,

Hr,s(Σ× [0, T ], E) = Hr([0, T ], Hs(Σ, E))

Hr,s
0,0(Σ× [0, T ], E) = Hr

0([0, T ], H
s
0(Σ, E))

Hr,s
P, (Σ× [0, T ], E) = Hr

P ([0, T ], H
s(Σ, E))

etc.

The definition is dependent on a choice of a fixed connection A on E, and A ∈ Hs0 ,

where s0 is a fixed integer ≥ n
2 . So, H

r,s
∗ is well-defined for all r and s ∈ [−s0−1, s0+1].

It is assumed that ‖F (A)‖As0−1 ≤ K. Putting together the results on Hs
∗(Σ, E) and

Hr
∗([0, T ], we get all the expected results. cK will denote a constant independent of A

and T , depending only on the manifold, the vector bundle E and the Lie group G. For

example, the multiplication map

Hr1,s1
∗ ([0, T ], E1)⊗Hr2,s2

∗ ([0, T ], E2) −→ Hr3,s3
∗ ([0, T ], E1 ⊗ E2) (5.20)
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is well-defined and continuous if r1 + r2, s1 + s2 ≥ 0, r3 ≤ min(r1, r2, r1 + r2 − 1
2) and

s3 ≤ min(s1, s2, s1 + s2 − 1). It has norm ≤ cKT
r1+r2−r3−1/2.

5.4 Heat equation

At the center of solving the flow problem, lies the problem of uniformly bounding

the solution of a parabolic differential equation. Throughout this section, we fix a

connection A ∈ Hs0 , where s0 ≥ dimΣ/2 is an integer. We consider the Laplacian

operator ∆A = ∇∗
A∇A. We assume that ‖FA‖s0−1 < K. The heat equation is solved

using standard techniques (see [Eva98]), but we incorporate details for the additional

issues - the Laplacian is given by a non-smooth connection, and we need cK-bounds on

the solution. The operator norms we use are : ‖·‖s := ‖·‖As .

5.4.1 Laplacian equation

Consider the system 



(I +∇∗
A∇A)σ = f on Σ

σ = 0 on ∂Σ.

We denote by Hs
δ := {σ ∈ Hs : σ = 0 on ∂Σ} for s > 1

2 . Note that Hs
δ = Hs

0 for

1
2 < s < 3

2 .

Proposition 5.4.1. 1 +∇∗
A∇A : Hs+1

δ → Hs−1 is invertible for s ∈ (−1
2 , s0].

Proof. First, we consider s = 0, i.e. ∇∗
A∇A : H1

δ → H−1.

∫

X
((1 +∇∗

A∇A)σ, σ
′) =

∫

X
((σ, σ′) + (∇Aσ,∇Aσ

′)) = (σ, σ′)H1 ≤ ‖σ‖1‖σ′‖1,

i.e. ‖(1 + ∇∗
A∇A)σ‖−1 = ‖σ‖1. So, the operator is injective. It is onto by the Riesz

representation theorem on H1
0 . For any τ ∈ H−1, there exists σ ∈ H1, so that (τ, σ′) =

(σ, σ′)H1 for all σ′ ∈ H1. Then, (1 +∇∗
A∇A)σ = τ .

By injectivity for s = 0, it is also injective for s = 1, .., s0. We know that, for any

smooth connection B, the operator 1 +∇∗
B∇B is onto. Let a = B −A, then

(1 +∇∗
B∇B)σ − (1 +∇∗

A∇A)σ = [a,∇Aσ] + [∇Aa, σ] + [a, [a, σ]].
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Using multiplication theorem, the right hand side is a compact operator. So, (1+∇∗
A∇A)

is Fredholm with index 0, and so it is onto.

The result extends to all s ∈ [0, s0] by interpolation. Dualizing the map gives

(1 + ∇∗
A∇A)

−1 : (Hs+1
δ )∗ → (Hs−1)∗. For s ∈ (−1

2 ,
1
2), (H

s+1
δ )∗ = (Hs+1

0 )∗ = H−s−1

and (Hs−1)∗ = H−s+1
0 = H−s+1

δ and the result follows for s ∈ (−1
2 , s0].

Proposition 5.4.2. The norm of (I +∇∗
A∇A)

−1 : Hs−1 → Hs+1
δ is ≤ cK .

For the proof, we use an elliptic regularity result in Euclidean space (Ch 2, theorem

5.1 [LM72]): Let V ⊆ Rn be a bounded open set, and L an elliptic operator on V . m

is a non-negative integer. Then,

‖u‖Hm+2(V ) ≤ c(‖Lu‖Hm(V ) + ‖ru‖Hm+3/2(∂V ) + ‖u‖m+1), (5.21)

where r denotes restriction of a function to the boundary ∂V .

Proof. We work with local trivializations described by lemma 5.2.3. For a section

σ : Σ → E, on a chart Uα,

(∆Aσ)α = ∆σα + [dσα, Aα] + [σα, dAα] + [Aα, [Aα, σα]].

Assume, σ|∂Σ = 0. Then, for each α, (η
1/2
α σ)α vanishes on ∂Vα, using (5.21), we get

[η1/2α σα]s ≤ c([(I +∆)η1/2α σα]s−2 + [η1/2α σα]s−1)

≤ c[((I +∆A)η
1/2
α σ)α]s−2 + cK [η1/2α σα]s−1.

Since the norms σ 7→ ‖σ‖s, σ 7→∑
α[η

1/2
α σα]s and σ 7→∑

α[σα]s are equivalent, we get

: if σ|∂Σ = 0, then

‖σ‖s ≤ cK(‖(I +∆A)σ‖s−2 + ‖σ‖s−1).

The operator (I +∇∗
A∇A)

−1 : H−1 → H1
δ has norm 1. By induction, we get the result

for all non-negative integers s. As in the proof of proposition 5.4.1, we get the result

for all s ∈ (−1
2 , s0 + 1].

(I +∆A) is a positive self-adjoint operator on L2, so it is possible to define negative

and fractional powers of the operator. We’d like to define a family of spaces Fs ⊆ Hs

for which theorem 5.4.4 holds.
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Definition 5.4.3. Let s > −3
2 and σ ∈ Hs. We say, σ ∈ Fs if (I +∆A)

jx|δΣ = 0 for

j = 0, . . . , ⌊ s2 − 1
4⌋. For −3

2 < s < 1
2 , Fs = Hs. We do not define Fs for the borderline

cases s = 2µ+ 1
2 , where µ is an integer.

For our applications we’ll use Fs only for −1
2 < s ≤ 2. So far, we know that the

maps (I + ∆A) : Fs → Fs−2 are isomorphisms. We’d like to extend the result to

fractional powers of (I +∆A):

Theorem 5.4.4. Let s, s + 2r ∈ (−1
2 , s0] and neither is 2µ + 1

2 . Then (I + ∆)r :

Fs+2r → Fs is a cK-isomorphism. r is any real number, not necessarily an integer.

To prove this theorem, we first need to show that Fs are a family of interpolation

spaces:

Lemma 5.4.5. Let 0 < θ < 1. F2θ = [L2, H2
δ ]θ with cK-equivalent norms.

Proof. We need the following result from [LM72] - “ Let H be a Hilbert space, whose

dual is identified to itself via 〈·, ·〉H . Let V ⊆ H be a dense subspace, and V ′ be its

dual via 〈·, ·〉H . (Then, V ⊆ H ⊆ V ′ are dense inclusions) Then, [V, V ′]1/2 = H.”

We apply this result with V = H2
δ , H = H1

0 = F1, then, I claim V ′ is cK-equivalent

to L2 : we know 〈u, (I +∆A)v〉L2 = 〈u, v〉H1 for all u, v ∈ H2
δ .

‖u‖V ′ = sup
v∈H2

δ

〈u, v〉H1

‖v‖H2
δ

= sup
v∈H2

δ

〈u, (I +∆A)v〉L2

‖(I +∆A)v‖L2

= ‖u‖L2

and all the equalities mean cK-equivalences. So, we have [H2
δ , L

2] 1
2

= H1
0 .

The result follows because [H1
0 , L

2]θ = H1−θ
0 and [H2

δ , H
1
0 ] = H2−θ

δ , and by the

reiteration theorem for interpolation.

For positive self-adjoint operators, fractional powers of the operator are well-defined

and these behave well on interpolation spaces:

Lemma 5.4.6. Let Λ be an unbounded positive self-adjoint operator on the Hilbert

space X. Then, [X,D(Λ)]θ = D(Λθ) with isometry. D(Λ) = domain of Λ, with norm

x 7→ (‖x‖2X + ‖Λx‖2X)
1

2 .



61

This is infact an equivalent way of defining interpolation spaces which is used in

[LM72]. The isometry result can be found in [Yag10], theorem 16.1. This result is

required to show a cK bound on the fractional powers of I +∆A.

Proof of theorem 5.4.4. It is enough to show - “Let 0 < θ < 1, then (I + ∆A)
θ :

F2θ → L2 is a cK-isomorphism.” The theorem is obtained by composing this map with

(I +∆A)
m, for some integer m.

Denote the operator (I + ∆A) by Λ. This is a positive self-adjoint operator. By

lemma 5.4.6, Λθ : [L2, D(Λ)]θ → L2 is well-defined. Let x ∈ H2
δ , using proposition

5.4.2 ‖x‖H2 and ‖x‖D(Λ) are cK-equivalent. So, H2
δ →֒ D(Λ). By interpolation, Fs →֒

D(Λs/2) for s ∈ [0, 2].

Now, we have D(Λ)
Λ1−θ

−−−→ D(Λθ)
Λθ

−→ L2, but we need F2 A1−θ

−−−→ F2θ Λθ

−→ L2 for

0 < θ < 1. We use the definition 5.1.4 of complex interpolation. Let a ∈ H2
δ = F2.

The function z 7→ Λza is holomorphic from {z ∈ C : 0 < Re(z) < 1} to L2. Λz is

well-defined using the spectral theorem. It is easily verified that this function is in

H(H2
δ , L

2), so Λ1−θx ∈ [H2
δ , L

2]1−θ = F2θ by lemma 5.4.5.

It remains to show that the maps Λθ : F2θ → L2 ar isomorphisms. First consider

1
2 < s < 2.

F2 −→ Fs −→ L2 (5.22)

is an isomorphism, so the second map is onto. Now consider

Fs −→ L2 −→ Fs−2.

The right map is obtained by dualizing F2−s → L2. The whole map is an isomorphism,

so the left map is injective and hence an isomorphism. In (5.22), the left map is also

an isomorphism. For 0 < s < 1
2 , ker Λ

s/2 ∩ Fs ⊆ kerΛs/2 ∩ L2 = {0}.

Finally, the norm of F2θ Λθ

−→ L2 has cK-bound because of a similar bound on

Λθ : D(Λθ) → L2. The inverses can be written as Λ−θ = Λ−1 ◦ Λ1−θ and ‖Λ−1‖ ≤ cK

from lemma 5.4.2.

An important consequence of theorem 5.4.4 is :
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Proposition 5.4.7. a. There is a complete orthonormal system {σi}i∈I of eigen-

sections of the operator ∆A (orthonormalized in L2), such that ∆Aei = λiei.

ei ∈ Hs0+1.

b. For s ∈ (−3
2 , s0 + 1] and σ ∈ Fs, c−1

K ‖σ‖s ≤ ‖(I + ∆A)
s/2σ‖H0 ≤ cK‖σ‖s.

So, ‖(I + ∆A)
s/2σ‖H0 =

(∑
i∈I(1 + λi)

s(σ, ei)
2
L2

)1/2
is a norm on Fs, which is

cK-equivalent to ‖·‖As .

Proof. We know (I +∆A)
−1 : H−1 → H1

0 , and the inclusions L2 →֒ H−1 and H1
0 →֒ L2

are compact, (I +∆A)
−1 is a compact self-adjoint positive operator on L2. So, it has a

complete orthonormal system {ei}i∈I of eigensections. These are eigen-sections for ∆A

also. By bootstrapping, ei ∈ Hs0+1. (b) easily follows from theorem 5.4.4.

The eigenvalue norm can also be used for time-dependent sections.

Corollary 5.4.8. Let σ ∈ Hr([0, T ],Fs), then it can be written as σ =
∑

i∈I σi(t)ei,

σi ∈ Hr([0, T ]) and

c−1
K ‖σ‖r,s ≤

(
∑

i∈I

(1 + λi)
s‖σi‖2Hr([0,T ])

) 1

2

≤ cK‖σ‖r,s. (5.23)

Proof. σi := (σ, ei). The operator Fs(E) → R mapping η 7→ (1+λi)
s(η, ei) is bounded.

By (5.16), it is a bounded operator between Hr
∗(Fs) → Hr

∗ as well. So, σi ∈ Hr
∗([0, T ]).

The norm bound (5.23) is straightforward to prove : by using definition 5.3.1 when r

is a non-negative integer and then applying interpolation and duality.

5.4.2 Parabolic equation

Now, we consider the equation




(
d

dt
+∆A)σ = f on [0, T ]× Σ

σ = 0 on [0, T ]× ∂Σ

σ(0) = g on Σ.

(5.24)

Here σ is a time-dependent section of E, that is σ : [0, T ] × Σ. ∆A = ∇∗
A∇A is the

Laplacian given by a connection A ∈ Hs0 on P → Σ. We use standard methods, but

get a cK-bound on the solution.
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Lemma 5.4.9. Let s, s − 2r ∈ (−3/2, 5/2). Given g ∈ Fs and f = 0, we can find a

unique solution σ ∈ H
1

2
+r,s−2r for (5.24), with bound ‖σ‖ 1

2
+r,s−2r ≤ cKT

−r‖g‖s.

Proof. Using proposition 5.4.7, g can be written as g =
∑

i∈I gi(t)ei. We aim to find

σ =
∑

i∈I σi(t)ei. ∀i ∈ I, dσi
dt + λiσi = 0 and σi(0) = gi. This ODE is solved by

σi(t) = gie
−λit.

For the norm bound, we use the eigen-value norm in corollary 5.4.8. For each i ∈ I,

we need to show

‖(1 + λi)
−re−λit‖Hr([0,T ]) ≤ cT− 1

2 |(1 + λi)| (5.25)

which holds using ‖e−λitχ[0,T ]‖Hr([0,T ]) ≤ c(λi + T−1)r−
1

2 and assuming T ≤ 1.

Remark 5.4.10. g 7→ σ is also an operator between Hs → C0(Hs) with norm ≤ c. The

proof is similar and follows from ‖e−λit‖C0([0,T ]) ≤ 1.

Lemma 5.4.11. Let −3
2 < s < 1

2 . Given f ∈ Hr,s
P and g = 0, (5.24) can be solved

uniquely for σ ∈ Hr+1,s
P ∩Hr,s+2

P , with bound ‖σ‖Hr+1,s∩Hr,s+2 ≤ cK‖f‖r,s.

Proof. Similar to the proof of lemma 5.4.9, we write f as f =
∑

i∈I fi(t)ei and solve

the ODE dσi
dt + λiσi = fi and σi(0) = 0. So, σi(t) =

∫ t
0 e

−λi(t−s)fi(s)ds. We need, for

each i ∈ I,

|σi|Hr+1

P ([0,T ]) + (1 + λi)|σi|Hr
P ([0,T ]) ≤ c|fi|Hr

P ([0,T ]). (5.26)

First assume r ≥ 0. It is enough to prove the statement for fi ∈ C∞
P . We prove it

using the Fourier-transform definition of the norm of Hr([0, T ]) (see definition 5.3.2).

By this, there exists Fi ∈ C∞
0 (R) that restricts to fi on [0, T ], vanishes for t < 0 and

‖F‖Hr(R) ≤ 2‖f‖Hr([0,T ]). Let Si = Fi ∗ e−λitχ[0,T ]. Then Si vanishes for t < 0 and

restricts to σi on [0, T ] and ‖(T−2 + τ2)r/2Ŝi‖Hr(R),T ≤ 2‖σi‖Hr([0,T ]). So, we need to

prove

‖(T−2 + τ2)1/2Ŝi(τ)‖L2(R) + |1 + λi| · ‖Ŝi(τ)‖L2(R) ≤ c‖F̂i(τ)‖L2(R),

which follows from observing that Ŝi(τ) = F̂i(τ) ̂e−λitχ[0,T ] and
̂e−λitχ[0,T ] ≤ (T−2 +

τ2)−
1

2 , ̂e−λitχ[0,T ] ≤ (1 + λi)
−1.
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We’ve proved that the operator fi 7→
∫ t
0 e

−λi(t−s)fi(s)ds is a bounded operator from

Hr
P → Hr+1

P , and fi 7→ (1 + λi)
∫ t
0 e

−λi(t−s)fi(s)ds is bounded between Hr
P → Hr

P .

These operators are self-adjoint under the Hr
P -H

−r
P pairing. So the statement holds for

negative r by duality.

Remark 5.4.12. The spaces L2(H2s) ∩Hs(L2) are very natural to solve the heat equa-

tion, since the time derivative is order 1 and space derivative is order 2.

The following result gives solutions of the heat equation in higher regularity spaces:

Theorem 5.4.13. Let s ≥ 0 and s 6= µ + 3
4 where µ is an integer. Suppose f ∈

L2(H2s)∩Hs(L2) and g ∈ H2s+1
δ . Assume that the boundary data are compatible, then

there is a unique solution σ ∈ L2(H2s+2) ∩Hs+1(L2) of the system (5.24) and

‖σ‖L2(H2s+2)∩Hs+1,0 ≤ cKT
−s− 1

2 (‖f‖L2(H2s)∩Hs,0 + ‖g‖H2s+1).

This can be proved by an induction argument identical to the one in [Eva98], lemmas

5.4.9 and 5.4.11 provide the base case. For our applications, we do not need a cK bound

on the higher regularity solutions.

5.5 Interchanging order of coordinates

We need to define spaces Hr(C0) - these can be thought of as spaces of sections with

r derivatives in the time co-ordinate and continuous in the space co-ordinate. The

difficulty here is that C0 does not have a good dual space, so it is not possible to define

such spaces for negative r. To circumvent this problem, we show that the space Hr,s can

be defined with the order of co-ordinates r, s reversed, as Hs(Σ, Hr([0, T ], E)). Then

Hr(C0) can be defined as C0(Σ, Hr([0, T ], E)) and this space has relevant properties

like Hr,1+ǫ →֒ Hr(C0). In this section, the spaces with reversed co-ordinates will be

denoted by H
r,s
, but this notation will not be used once it is proved equivalent to Hr,s.

In section 5.2.1, we found that corresponding to a connection A on P satisfying

‖F (A)‖s0−1 < K, there is a cover Σ = ∪αUα, Uα ≃ Vα ⊆ R2 and a trivialization

of P over these charts such that : the norm | · |s on Hs(E) defined in terms of the

local trivialization is cK-equivalent to ‖·‖As for s ∈ [−s0 − 1, s0 + 1]. Here, we fix a
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connection A and the corresponding trivialization. We use the charts on Σ to define

a Hilbert-bundle on Σ. (The connection with the trivialization of P and connection A

will become clear later.)

Definition 5.5.1 (Hilbert bundle on Σ). A Hilbert bundle π : H → Σ is a bundle

on Σ with fiber-wise inner product, whose fibres are isomorphic to a Hilbert space H.

The bundle H is described by the following data: a local trivialization φα : π−1(Uα) →

Vα×H for all α and transition functions gαβ : Uα ∩Uβ → Aut(H,H) where Aut(H,H)

is the space of linear isomorphisms from H to H that preserve the inner product.

To define Sobolev completions of C∞(Σ,H), we recall some notation from section

5.2.1 - given a section σ : Σ → H, σα := φα ◦ σ represents σ on Vα. ηα is a partition of

unity subordinate to the cover Σ = ∪αUα.

Definition 5.5.2. For real s ≥ 0, Hs(Σ,H) is the completion of C∞(Σ,H) with norm

‖σ‖Hs(Σ,H) :=

(
∑

α

|η1/2α σα|2Hs
0
(Vα,H)

)1/2

. (5.27)

The definition of the spaceHs(Σ,H) is dependent on the choice of local trivialization

of the bundle H. For

Definition 5.5.3 (H
r,s
∗ ). Let E := P ×G Rm denote an associated bundle of P . For

any r, the space Hr
∗([0, T ], E) is a bundle over Σ with fibres Hr

∗([0, T ],R
m). Let s ≥ 0.

H
r,s
∗ := Hs(Σ, Hr

∗([0, T ], E)).

Proposition 5.5.4. Let s ≥ 0. d
dt : Hr

P ([0, T ],R
m) → Hr−1

P ([0, T ],Rm) induces an

invertible operator d
dt

Σ
: H

r,s
P → H

r−1,s
P . The inverse is induced by

∫
0 on the fibres.

Proof. On any Uα,
d
dt induces the map

d

dt

Uα

: Γ(Uα, H
r
P ([0, T ],R

m)) → Γ(Uα, H
r−1
P ([0, T ],Rm)). (5.28)

For x ∈ Uα ∩Uβ, gαβ(x) ∈ G - this just rotates Rm and is independent of t ∈ [0, T ], We

have

gαβ(x)
−1 d

dt

Uα

gαβ(x) =
d

dt

Uβ

on Uα ∩ Uβ.
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So, the operators d
dt

Uα
can be patched up to yield d

dt

Σ
.

The operator (5.28) is linear on the fibres with norm ≤ c (see lemma 5.3.6). It is also

identical on every fibre. So, it induces

Hs(Uα, H
r
P ([0, T ],R

m)) → Hs(Uα, H
r−1
P ([0, T ],Rm))

and hence,

d

dt

Σ

: H
r,s
P → H

r−1,s
P

with the same norm.
∫
0 is the inverse of d

dt fibre-wise, and the result follows for s ≥

0.

Proposition 5.5.5. For r ≥ 0 and s ∈ [0, s0 + 1], the identity map

H
r,s → Hr,s (5.29)

is a cK-isomorphism. For any r and s ∈ [0, s0 + 1], the identity map

H
r,s
P → Hr,s

P (5.30)

is a cK-isomorphism.

Proof. First, we consider the case when r and s are non-negative integers. In the proof

of proposition 5.2.6, we showed for σ ∈ Hs(E),

c−1
K ‖σ‖s ≤ |σ|s ≤ ‖σ‖s.

So, it is enough to show that

Hs
0(Vα, H

r
∗([0, T ],R

m)) ≃ Hr
∗([0, T ], H

s
0(Vα,R

m)) (5.31)

with constants independent of T . These spaces are infact identical when r and s are

non-negative integers since both are completions of C∞
0,P (Vα × [0, T ],Rm) under the

same norm 


r∑

i=0

∑

0≤|λ|≤s

‖T−(r−i) d
i

dti
dλ

dxλ
σ‖2L2(Vα×[0,T ])




1/2

.

The spaces in (5.31) are equivalent for non-integers r ≥ 0 and s ≥ 0 by interpolation.
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Next, we prove the equivalence of H−r,s
P and H

−r,s
P , for non-negative r and 0 ≤ s ≤

s0 + 1 by induction on r. The result is true for 0 ≤ r < 1. We get an isomorphism

between H−r,s
P and H

r,s
P by

H−r,s
P

∫
0−→ H−r+1,s

P
≃−→ H

−r+1,s
P

d
dt−→ H

−r,s
P

Here each of the arrows is an isomorphism with constants ≤ cK - we get the middle

arrow from the induction hypothesis.

Reversing the order of space and time co-ordinates lets us define the space Hr(C0)

for any r.

Definition 5.5.6. For any r, Hr(C0) := C0(X,Hr([0, T ], E)). It is the space of con-

tinuous sections of Hr([0, T ], E). Its norm is given by

‖σ‖r,C0 := sup
x∈C

‖σ(x)‖Hr([0,T ],E).

This space satisfies the following properties: for any r, there is an inclusion

Hr(C0) →֒ Hr(L2).

d
dt is an invertible operator with inverse

∫
0 between the following spaces

Hr
P (C

0)
d
dt−→ Hr−1

P (C0).

There is a multiplication operator, for r3 ≤ min(r1, r2, r1 + r2 − 1
2)

Hr1
P (C0)⊗Hr2

P (C0) −→ Hr3
P (C0). (5.32)

For any r, there is an inclusion

Hr,1+ǫ
P →֒ Hr

P (C
0).

By the definition of Hr(C0), it follows that

Proposition 5.5.7. If ‖FA0
‖L2 < K, all the above operators have norms bounded by

cK .
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Chapter 6

Composition of functions

Some of the operators we encounter are non-polynomial - they are just smooth maps

between sections of bundles. For example,

F1 : Γ(Σ, P (g)) → Γ(Σ, P (End g))

ξ 7→ (F 7→ (expu0
ξ)∗dΦ(JXFexpu0 ξ)− u∗0dΦ(JXFu0

)),

F2 : Γ(Σ, P (g)) → Γ(Σ, P (End g))

ξ 7→ (F 7→ (d exp ξ)−1(JFexpu0 ξ)− JFu0
).

We are interested in results of the form

a. Fi extends to a map from Hs ∩ C0 to Hs.

b. Suppose ξ is a time-dependent section and let r > 1
2 . For any x ∈ Σ, ξx → (Fiξ)x

is a map Hr([0, T ], (E1)x) → Hr([0, T ], (E2)x).

Locally, the above operators can be modeled by something very similar to a composition

of functions operator. It is precisely described as follows. Let U ⊆ Rn and Ψ : Rn ×

Rm → RN be such that Ψ(·, 0) = 0. The operator FΨ is given by f 7→ (x 7→ Ψ(x, f(x))).

The results here are very similar to corresponding result on composition of functions.

Our presentation treats the slightly different operator arising out of a fibre-preserving

smooth map. Also it extends the results to fractional Sobolev indices.

Proposition 6.0.1. Let s ≥ 0 and m := ⌈s⌉. If Ψ ∈ Ck, then FΨ : Hs(U,Rm) →

Hs(U,RN ) is a continuous map and,

‖FΨ(f)‖s ≤ c‖Ψ‖Ck‖f‖s(1 + ‖f‖k−1
L∞ ). (6.1)
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It is Fréchet-differentiable and satisfies

‖dFΨ(f)‖ ≤ c‖Ψ‖Ck+1(1 + ‖f‖s)(1 + ‖f‖k−1
L∞ ). (6.2)

c is independent of Ψ and f .

We recall the definition of Fréchet-differentiability: A map L : V → W between

Banach spaces is Fréchet-differentiable at a point x ∈ V if there is a linear bounded

function dLx : V → W such that limh→0
‖L(x+h)−L(x)−dLx(h)‖W

‖h‖V
= 0. The following are

consequences of the above proposition.

Corollary 6.0.2. Suppose Ψ : E1 → E2 is a smooth fibre-preserving map that preserves

the zero section, then FΨ extends to a continuous Fréchet-differentiable map between

the following spaces of time-dependent sections of E1 and E2:

a. F : Hr(C0) ∩ L∞ → Hr(C0),

b. F : Hr(L2) ∩ L∞ → Hr(L2),

c. F : L2(Hs) ∩ L∞ → L2(Hs),

where r, s ≥ 0. The bounds on ‖F‖ and ‖dF‖ are same as in proposition 6.0.1. In (a)

and (b), we get stronger bounds.

‖Fξ‖r,C0 ≤ c‖Ψ‖Ck
vert

‖ξ‖r,C0(1 + ‖ξ‖k−1
L∞ ),

‖dF(ξ)‖r,C0 ≤ c‖Ψ‖Ck+1
vert

(1 + ‖ξ‖r,C0)(1 + ‖ξ‖k−1
L∞ ),

where ‖Ψ‖Ck
vert

:=
∑k

i=0 (C0-norm of ith order vertical derivative of Ψ). Similar in-

equalities hold for Hr(L2) spaces also.

Proof of proposition 6.0.1. We carry out the proof for m = N = 1. It is identical in

other cases. First we assume s is an integer, so s=k.

Continuity: We start with showing continuity at f = 0. To bound ‖Ψ(f)‖s, we need

to get an L2-bound on all terms of the form ∂I

∂xI FΨ(f) where I is a multi-index with

|I| ≤ m.

∂

∂xi
FΨ(f)(x) =

∂Ψ

∂f
· ∂f
∂xi

+
∂Ψ

∂xi
.

So, ∂I

∂xI FΨ(ξ) is a sum of terms of the form
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• ∂J+jΨ
∂xJ∂fj ·

(
∂L1f
∂xL1

)
. . .
(
∂LN f
∂xLN

)
, where |J |+ j ≤ k and |L1|+ · · ·+ |LN | ≤ s.

• ∂IΨ
∂xI , where |I| ≤ k.

To bound this, we work in W k,p spaces.

‖ ∂
J+jΨ

∂xJ∂f j
·
(
∂L1f

∂xL1

)
. . .

(
∂LN f

∂xLN

)
‖Lp

≤ ‖Ψ‖CkΠN
i=1‖

∂Lif

∂xLi
‖Lpi

(By Hölder inequality. Here pi = kp/li, li = |Li|)

≤ ‖Ψ‖CkΠN
i=1‖f‖li,pi

≤ c‖Ψ‖CkΠN
i=1‖f‖

ji/k
k,p · ‖f‖1−ji/k

L∞

≤ c‖Ψ‖Ck‖f‖k,p‖f‖k−1
L∞ .

The second-to-last inequality follows from Gagliardo-Nirenberg inequalities (see prop

B.1.18, [MS04]). The second term ∂IΨ
∂xI vanishes for f = 0. So, we have

‖∂
IΨ

∂xI
(x, f(x))‖L2 ≤ ‖ ∂

∂f

∂IΨ

∂xI
‖L∞ · ‖f‖L2 = c‖f‖L2 .

This proves the inequality (6.1) and continuity of FΨ at f = 0. It is continuous at any

f ∈ Hm because the operator ∆f 7→ FΨ(f +∆f)−FΨ(f) is continuous at ∆f = 0.

Differentiability : For any f ∈ Hk, we claim that dFΨ(f)|x := ∂Ψ
∂f |(x,f(x)) i.e.

dFΨ(f)∆f |x :=
∂Ψ

∂f
|(x,f(x)) ·∆f(x).

This is the Fréchet-derivative because:

Ψ(f +∆f)(x)−Ψ(f)(x)− dFΨ(f)∆f |x

= ∆f(x)2
∫ 1

0
(1− t)

∂2Ψ

∂f2
(x, (f + t∆f)(x))dt

and ‖
∫ 1
0 (1− t)∂

2Ψ
∂f2 (x, (f + t∆f)(x))dt‖L2 < c‖Ψ‖C2 .

To bound ‖dFΨ(f)‖,

‖∂Ψ
∂f

·∆f‖m ≤ ‖∆f‖m
(
‖∂Ψ
∂f

(f)− ∂Ψ

∂f
(0)‖m + ‖∂Ψ

∂f
(0)‖m

)

≤ c‖Ψ‖Cm+1(1 + ‖f‖m)(1 + ‖f‖m−1
L∞ )‖∆f‖m.
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The proof extends to the case when s is not an integer from the following equivalent

norm on W s,p(Rn): let s = k + σ, k is an integer and 0 < σ < 1:

‖f‖ps,p ≈ ‖f‖pLp + ‖Dkf‖pLp +

∫

Rn

∫

Rn

|Dkf(x)−Dkf(y)|p
|x− y|n+σp

dxdy.

(remark 4 in p189 [Tri95])
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Appendix A

Implicit function theorem

The following statement of the implicit function theorem is a part of proposition A.3.4

in [MS04].

Theorem A.0.1. Let F : X → Y be a differentiable map between Banach spaces.

DF (0) is surjective and has a right inverse Q, with ‖Q‖ ≤ c. For all x ∈ Bδ, ‖DF (x)−

DF (0)‖ < 1
2c . If ‖F (0)‖ < δ

4c , then F (x) = 0 has a solution in Bδ.

The next theorem is a slight variation. A complete proof is given for this.

Theorem A.0.2. Let F = F1 + F2 : X → Y be a differentiable map between Ba-

nach spaces. F1 is a linear invertible map with ‖F−1
1 ‖ ≤ c. In a convex set S ⊆ X,

‖DF2(x)‖ < 1
2c . Then,

a. F is injective on S.

b. In addition if Bδ ⊆ S and ‖F2(0)‖ ≤ δ/4c, then F (x) = 0 has a unique solution

on Bδ.

Proof. For any x1, x2 ∈ S, we have

‖F1(x2)− F1(x1)‖ = ‖F1(x2 − x1)‖ ≥ 1

c
‖x1 − x0‖

‖F2(x2)− F2(x1)‖ ≤ 1

2c
‖x2 − x1‖.

=⇒ ‖F (x2)− F (x1)‖ ≥ 1

2c
‖x2 − x1‖.

which proves (a).

Let ψ : X → X be given by x 7→ F−1
1 (F (x) − F (0)). Then ‖dψ(x) − Id‖ ≤ 1

2 for

x ∈ δ. The theorem follows from lemma A.0.3 - ‖F−1
1 F (0)‖ < 1

2 , so ψ(x) = −F−1
1 F (0)

has a solution in Bδ. This is a solution of F (x) = 0.
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The following is a part of lemma A.3.2 in [MS04]

Lemma A.0.3. Let ψ : X → X be a differentiable function between Banach spaces

satisfying ψ(0) = 0 and for all x ∈ Bδ, ‖dψ(x) − Id‖ ≤ 1
2 . Then ψ is injective on Bδ

and Bδ/2 ⊆ ψ(Bδ) ⊆ B3δ/2.

Proof. Let φ = Id−ψ. Then in Bδ, ‖dφ(x)‖ < 1
2 . So,

‖φ(x1)− φ(x2)‖ ≤ 1

2
‖x1 − x2‖.

Hence,

1

2
‖x1 − x2‖ ≤ ‖ψ(x1)− ψ(x2)‖ ≤ 3

2
‖x1 − x2‖. (A.1)

By the second inequality, ψ is injective in Bδ and ψ(Bδ) ⊆ B3δ/2. To show Bδ/2 ⊆

ψ(Bδ), pick y ∈ Bδ/2. By the first inequality in (A.1), the map x 7→ φ(x) + y is a

contraction map from B2‖y‖ to B2‖y‖. So, it has a fixed point x0 and ψ(x0) = y.
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