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ABSTRACT OF THE DISSERTATION
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Dissertation Director: András Prékopa

We are interested in single commodity stochastic network design problems under prob-

abilistic constraint with discrete and continuous random variables. We use a stochastic

programming model under probabilistic constraint (also called a chance-constrained

model) to study these problems.

The problem addressed in this research is how to find minimum cost optimal ca-

pacities at the nodes and/or arcs subject to the constraint that the demands should

be met on a prescribed probability level (reliability constraint). In our first problem

formulation, we formulate the reliability constraint in terms of the Gale-Hoffman feasi-

bility inequalities. In latter formulations, we allow system to meet the demand at least

k-out-of-n and consecutive k-out-of-n periods. The number of reliability constraints, in

both cases, increases exponentially with the size of the nodes and therefore we identify

the redundant constraints and reduce their number with elimination methods.

Even with the reduced number of inequalities, it is not simple to solve probabilistic

constrained stochastic network problems due to the large number of efficient points that

satisfy the probabilistic condition. To overcome the size limitation of the problem, we

develop a new theorem for efficient point generation in the case when the random vari-

ables are discrete, and we use hybrid cutting plane / supporting hyperplane algorithm

in the case when the random variables are continuous.
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Chapter 1

Introduction

Stochastic networks offer efficient solution methodologies for problems that emerge

on the borderlines of operations research, applied mathematics, computer science and

statistics. This new field uses a combination of techniques from several branches of

mathematics including probability theory, stochastic programming, optimization, com-

binatorics and graph theory to solve challenging problems. These techniques have been

applied to a variety of problems, including telecommunications, service operations, and

social and financial networks.

The work here is largely influenced by the results of Prékopa and Unuvar (2012),

Unuvar et. al. (2012 a) and Unuvar et. al. (2012 b). In Chapter 2, we describe the

single commodity network design problem studied in Prékopa and Unuvar (2012). In

Chapters 3 and 4, we describe the problems studied in Unuvar et. al. (2012 a) and

Unuvar et. al. (2012 b), respectively.

The history of networks can be traced back to as early as second half of the 1700’s

when Gaspard Monge first originated the mass transportation problem (see Monge

(1781)). In the 1800’s, network problems became relevant to real world applications

with the construction of the first railroad networks built in the United States. The

next major advancement for networks came with Ohm’s law in 1827 and Kirchhoff’s

fundamental equations on electric circuits in 1845. For the first time, electric flow could

be represented as a network. In Kirchhoff’s electric circuit theory, electric current is the

flow between the junction points and resistances (See figure 1.1). Kirchhoff’s Current

Law (1.1)] states that the total current into a node must be the same as a total current
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Figure 1.1: Electric circuit network flow given by Gustov Kirchhoff to show the current
law: I2 + I3 = I1 + I4

Figure 1.2: Closed circuit network given by Gustov Kirchhoff to show the voltage law:
V1 + V2 + V3 + V4 = 0
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out of the node. We express this as

n∑
k=1

Ik = 0, (1.1)

where n is the total number of branches with current flowing towards or away from a

node. Kirchhoff’s Voltage Law (1.2) states that the directed sum of electrical potential

differences, the voltages, is zero in any closed network. We express this as

n∑
k=1

Vk = 0, (1.2)

where n is the number of edges in the network. Figure (1.2) gives an example of a

closed network to which Kirchoff’s Voltage Law can be applied. Later in the 1850’s,

Samuel Morse constructed the electrical telegraph, a major invention in long distance

communication that used an electrical-communication system for the first time. Since

then transportation and electric and power networks have been studied and applied all

over the world. In the 1900’s, A. N. Tolstǒı, Tjalling Koopmans, Frank Hitchcock, and

Lenoid Kantorovich made significant contributions to the theory of network science.

Tolstǒı and Kantorovich were interested in the applications involving transportation in

the Soviet rail network. Ford and Fulkerson, influenced by the same problem, published

a fundamental book on network flows in 1962. Since then a variety of network flow

problems have been studied in computer science, mathematics and operations research.

The stochastic networks, where randomness is included in network parameters, be-

gan taking attention in the late 1900’s. One of the first stochastic network design

problem was modeled by Prékopa (1980) where he discovered that the Gale-Hoffman

inequalities for network feasibility provide the necessary and sufficient condition for a

feasible flow in power generation networks. Before his work, there were publications in

connection with small size (three, four node) networks where the feasibility domain was

known but it was an unsolved problem in the power network literature. The majority

of the work in this research, Prékopa, Unuvar (2010), is based on the mentioned paper

by Prékopa (1980).

In many network applications, such as telecommunication, power generation, and

water reservoirs, one entity is being delivered from the source(s) to the sink(s). These
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are called single commodity networks. In telecommunication networks, phone calls

between the specific locations define separate commodities. If the phone calls do not

interact with each other in any way, then we model each phone call as a separate single

commodity problem. For other problems, where physical entities have their own indi-

vidual flow constraints, the single commodity network is not appropriate, and instead

we use multi-commodity networks. Some examples of commodities which have their

own individual flow constraints are vehicles in traffic problems, data in the communi-

cation problems, and different commodities in transportation problems. Even though

many of the network problems concern multi-commodity networks, there are important

applications where the network is a single commodity type. For example, operating

power systems, water resources, road traffic, home security (evacuation), finance etc.

For our purposes, single commodity networks are the center of interest.

The nodes and arcs together represent the graph structure of the network, or what is

commonly called the topology of the network. The topology of a given network is very

suitable to describe a number of structural (physical) properties of the network. For

the networks arising from modeling power systems, the connectivity of the associated

graph tests whether the system will survive if an arc failure occurs. Speed of the

water flow in the water reservoir network, resistance or impedance in electrical/power

network, and velocity of the vehicles in a traffic network are a few other examples of the

physical properties of networks. Attempting to include all physical properties of the

underlying commodity in the network model will lead to far too complex of a network

to realistically solve. Instead, we model on a macroscopic level. That is to say, the

nodes in our networks will represent an aggregate amount in an area (for instance, the

total amount of power into a city instead of an an individual house).

There is also extensive work done in literature for the losses and delays on networks.

Losses or delays are usually apparent in large scale computer networks (i.e. internet

networks) such that data arrival rate to an arc exceeds output arc capacity, and there-

fore the data is either queued until an available arc capacity occurs or is lost. Another

example is loss of active power in electric network systems due to ohmic resistance.

The electric energy is converted into heat in these networks and Prékopa (2012) has a
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model where he takes into account the costs that occur due to transmission losses in

power plants. Another representation of loss and delays can be seen in a large scale

telecommunication network where the calls are queued until a line becomes available

(Kelly, 1991a). Kelly (1991b) names these type of networks as loss networks and ex-

plains the details of solution methodologies when delay is taken into account. In our

research, the nature of the networks are not designed for delays or losses therefore our

type of network definition does not consider those concepts.

Militaries are both some of the earliest adopting and largest users of networks.

During World War II, radar communication networks, transportation networks, and

evacuation networks held significant interest to the United States. The work begun in

this era has continued to present day leading the U.S. Department of Defense to initiate

a special research center, Network Science CTA, under the Army Research Laboratory

in 2009 for strategic defense reasons. Other governments, including the UK Ministry of

Defense, coordinate with the United States to perform research in support of network

centric operations addressing the needs that nation.

Besides its uses in the military, we observe networks in many aspect of our daily

lives. Electrical and power networks enable us to operate modern machines, telephone

and communication networks enable us to communicate across large distances, national

highway networks, rail networks, and airline service networks enable us to travel, evacu-

ation networks enable us to move outside a disaster area quickly, distribution networks

provide the goods necessary for modern society, and computer networks allow us to

share information rapidly. In all of these applications, our goal is to move an entity

(electricity, power, information, vehicle etc.) from one point to another through an

underlying network efficiently. Most of these examples contain random parameters (de-

mand, supply, capacity, etc.). For instance, the demand in highway networks, which is

the number of vehicles on the highway, is not predictable. Therefore, we model these

networks stochastically. Stochastic networks are networks that involve randomness in

one or more parameters.

Transportation networks are one of the most common applications of stochastic

networks. These networks and associated problems often model a homogenous facility,
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such as a railroad system or highway exchange. From the operations research point of

view, the most general form of a transportation problem is defined as follows: a shipper

would like to distribute his goods to retail locations from his warehouse in a cost efficient

way. In this problem, there is a capacity limitation on these distribution lines and there

are demand constraints. When the parameters of this problem are deterministic, the

network can be modeled as a deterministic type and solved by existing minimum cost

network flow type algorithms. However, when there is randomness involved in one

or more than one of the parameters of the problem formulation, the minimum cost

network flow solution methodologies are not applicable. When such network contains a

probabilistic parameter(s) or needs to satisfy its constraints at a predefined probability

level (reliability), the transportation network is stochastic.

The study of transportation problems was initiated independently by Hitchcock,

Kantorovitch and Koopmans in the mid 1900s. The earliest and most famous of this

body of work was a transportation problem developed by Hitchcock known commonly

as the Hitchcock Problem (Hitchcock, 1941). Dantzig (1963) improved on this work,

by developing an algorithm to solve a network flow problem with a linear program-

ming algorithm using simplex method which also could be successfully applied to solve

the transportation problem. During World War II, Koopmans, who was a member

of Combined Shipping Adjustment Board, approached the same problem, by consid-

ering economic efficiency point of view. Koopmans and Reiter (1951) further studied

the problem and drew the attention to similarities between it and Maxwell-Kirchhoff

electrical network. The networks arising from the above models are deterministic. The

probabilistic transportation problem was first studied by Doulliez and Jamoulle in 1972,

where they introduced a decomposition technique, which was improved by Wallace in

1986. Hassin and Zemel (1988) later studied another variation of the transportation

problem from a probabilistic point of view, namely the capacitated transportation prob-

lem.

Traffic/road assignment networks frequently come up in connection with transporta-

tion networks. Chen et al. (2002) and Arnold et al. (2004) describe the literature of

the road transportation systems. Chen et al (2002) also talks about the reliability of
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the road network in disaster circumstances such as earthquakes, floods etc. by con-

sidering the connectivity and travel time reliability. Waller and Ziliiaskopoulos (2006)

model the traffic assignment problem with chance constraints as a network and most

of the problems in this area are usually solved by a dynamic stochastic programming

approach, known as dynamic traffic assignment models.

Stochastic networks are also used to model inventory problems. The goal of inven-

tory research is to develop policies to minimize the related costs while meeting demand

(usually probabilistic) and some service constraints. Most of the research in this area

is related with distribution structures, and therefore falls under the study of networks.

Daskin (1995), Mirchandani and Francis (1990), and Drezner (1995) are just a few

among others who mainly focus on the trade-offs between the facility and locations.

Further work was done by Daskin et. al (2002).

The networks arising from modeling evacuation problems are also stochastic. The

evacuation networks are very important from the point of view of homeland security.

Sherali et al. (1991) studied the static network model for shelter location and traffic

routing during the evacuation. Similar to traffic assignment applications, most of the

problems in this area are modeled as dynamic programming problems. The following

example is an evacuation network of Cape May, NJ. The Category 4 Cape May hurricane

in 1821 was the last major hurricane to make direct hit in New Jersey. Figure 1.3 shows

the Cape May evacuation map which is also studied by Yazici, Ozbay (2007) to model

the optimum shelter capacities on a evacuation route. In the network depicted in

Figure 1.4, nodes represent the connection points to the highways and the directed arcs

represent evacuation roads. People or vehicles are the entities that are carried along

the arcs.

In electrical power engineering, the physical networks are also widely used and con-

tain applications in power generation, transformation, control, power transmission and

distribution networks. The network may represent an interconnected power system,

where the nodes are the areas and the arcs are the transmission system. The power or

energy is the entity that is distributed along the transmission lines in these type of net-

works. An example for an electric transmission system is depicted in Figure 1.5. This
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Figure 1.3: Cape May evacuation route, New Jersey Office of Emergency Management

Figure 1.4: Simplified cell representation of Cape May evacuation network, Yazici,
Ozbay (2007)
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Figure 1.5: Electric transmission system for North Eastern United States, PJM Inter-
connection

map represents the movement of wholesale electricity across the electric transmission

network in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan,

New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia

and the District of Columbia. PJM Interconnection (www.pjm.com) is a regional trans-

mission organization that coordinates the transmission of the electricity and the map in

Figure 1.5 is taken from the company webpage. PJM monitors the flow of power across

the transmission lines throughout a large portion of the North Eastern United States,

thereby keeping a rich collection of data for the demand and the supply of electricity

for the transmission network. It is very important from the practical point of view to

keep track of the historical usage to optimize the distribution cost of the power while

meeting the demand and supply constraints.

Networks arising from flood control reservoir systems are also stochastic. Mathe-

matically, a natural river system can be represented by a rooted directed tree where the

orientations of the edges coincide with the directions of the streamflows. It is possible
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Figure 1.6: Example for river system topology and possible reservoir sites. Streamflow
directions are indicated only on edges without reservoir, Prékopa, Szántai (1978)

to build reservoirs on these rivers to retain the flood. Prékopa, Szántai, (1978) has

given a nonlinear model to optimize the capacities of such reservoirs by meeting some

reliability constraints. Refer to the river system topology given in Figure 1.6 to con-

struct such a model and design a flood control reservoir system for a river as a network

flow problem.

Other applications where the process time of the jobs departing the system are larger

than process time of arriving jobs can be classified under queueing networks. These

type of networks are different than the ones that are mentioned above. Our primary

goal in previous models is to satisfy the system demand for each node with the total

supply that is available for the network without taking the arrival and departure time

concept into consideration. Consider the telegraph network that is referenced in Kelly

(1979) Reversibility and Stochastic Networks in Figure 1.7 (a). In this network, nodes

correspond to the cities and arcs correspond to directed channels. The commodities

are the messages that are generated in a city to be delivered to a destination city. The

transmission of the message from a city cannot begin until the entire message has been

collected in that city. Each transmission channel (arc) has its own maximum capacity.
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Figure 1.7: (a)A telegraph network system and (b) representation as a queuing network,
Kelly (1979).

We can model this problem as a network of queues by considering each message as

a customer and each channel as a queue (see Figure 1.7 (b)). In these systems, it is

usually assumed that arrival of the messages are coming from outside the system as

Poisson process distribution. For the time taken for a message to pass along a channel,

we should consider different factors such as length of the message or other random

effects that influence the distribution. Often, the time a message takes to pass along

the channel is exponentially distributed and independent of the time it takes to pass

along other channels along its route. The most likely queueing policy is first come

first serve, but there are other networks where they consider the random order. Other

applications of queueing networks can be machine interference, timesharing computers,

teletraffic models, compartmental models and some other applications.

Network reliability design problems with probabilistic constraints where the goal
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is to establish a network of links to allow the flow of some commodities while sat-

isfying the system demand is related to our type of network design problem. This

type of problems have immediate applications in road networks, communication and

supply chain networks. Karger (2001) designed a network that has an application in

communication networks where he took into account the probabilistic arc failures as

a network reliability. Chen et. al (2002) described solution methods varying from

uncertainty analysis to Monte Carlo methods to optimize the design of the reliability

of a road network. Asakura, Hato (2003) formulated a similar problem in connection

with stochastic network design where the existence of a link is probabilistic. Santoso et

al. (2005) applied stochastic programming approach for solving supply chain network

design problems with probabilistic problem parameters. More recently, researchers are

interested in not only satisfying the reliability constraints but also finding a minimum

cost network design while satisfying these reliability constraints. Beraldi et al. (2010)

introduced an integer programming problem and gave heuristic algorithms to find local

optima or near-optimal solutions for such problems. Even though existing literature is

very relevant to our research, we differ from them first, by working on the networks

where the topology is already given. Second, by modelling and solving the network

design problem as a stochastic programming problem under probabilistic constraints

rather than Monte Carlo or heuristic algorithms.

The stochastic network design problems are stochastic programming models which

can be subdivided into two types depending on whether the decision is made in a single

period or in at least two periods. In the former case, time consists of a single period

wherein the decision is made and the observation takes place after. We call this the

static model. The decision is made only once after we observe the realized values of

some random variables involved; we do not want to wait for the realization of all random

variable(s). In the latter case, the system changes its state in time. If the decisions

are made in at least two periods such that between any two decisions, observations

take place, then we call this decision process the dynamic model. When the observed

values in between subsequent decisions are random decision variables, the model is

called stochastic static or stochastic dynamic. If the observed values were deterministic
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and known right at the outset, then in principle we would be able to make only one

decision for the entire future of the system under investigation. We call these systems

deterministic static or deterministic dynamic models. We will model our network design

problem using a stochastic static model.

Our models are of stochastic programming type. Stochastic Programming is an

extension of linear and nonlinear programming for decision models where parameters

are not known with certainty. Thus, Stochastic Programming offers solutions for prob-

lems formulated in connection with stochastic systems. We either study the statistical

properties of the random optimum value or we reformulate the problem into a decision

type problem by considering the joint probability distribution of the random decision

variables. In particular, we use a stochastic programming model under probabilistic

constraint, also called chance constrained model. The first paper on programming un-

der probabilistic constraints as a decision model under uncertainty was published by

Charnes, Cooper and Symonds (1958). These authors used “chance constraint pro-

gramming” for this model and variants. In this paper and Charnes and his coauthors’

subsequent papers, individual probabilistic constraints imposed on each stochastic con-

straint. Therefore, this model is rarely legitimate from the point of view of probability

theory and statistics theory. Miller and Wagner (1965) have used joint probabilistic

constraint, but only in case of independent random variables when the convexity and

algorithmic problems are not difficult to handle. Models, theories and algorithms for

joint probabilistic constraints, where random variables may also be stochastically de-

pendent, were first introduced and developed by Prékopa in a series of publications

(1970, 1971, 1973, 1980, 1995, etc.)

A stochastic network design problem with probabilistic constraints was first intro-

duced in Prékopa (1980). It is a two-stage dynamic type model, but no solution method

was proposed. In this research we look at a related static problem and propose an el-

egant and efficient solution method for it. We will use the method of p-efficient points

(see Prékopa 1990 a, Prékopa et al. 1998, Dentcheva et al. 2000) for the discrete

random variables and use the supporting hyperplane method (see Kelley 1960, Veinott

1967, Prékopa, Szántai 1978 and Szántai 1988) for the continuous random variables. We
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will also use preprocessing and reliability results that have been presented by Prékopa

and Boros (1991) and Wallace, Wets (1993). See also the presentation of the network

reliability calculation and network design model construction in Prékopa (1995). Re-

cently, the method of p-efficient points captured great interest in the civil engineering

literature (see Yazici and Ozbay (2007)). We also mention recent papers by Thapalia,

Crainic, Kaut, Wallace (2010) and Thapalia, Kaut, Wallace, Crainic (2010), where the

reader can find ideas in connection with single commodity stochastic network design,

even though their main interest of these authors is different from ours.

This paper is organized as follows.

In the second chapter, we describe a static model, under the assumption that the

system is influenced by randomness and we have to decide in the face of uncertainty.

Thus, we are dealing with stochastic networks. Our main concern is the handling of

reliability, by the use of probabilistic constraints that we include in the model. We will

distinguish between local demands and system demands. The local demands are the ζi,

where i designates a node. For example, in case of an interconnected power system, ζi

may represent the local demand for power in area i and xi the local generating capacity.

However, xi may be reduced and the available generating capacity is xi−ηi. The system

demand is defined as ηi + ζi − xi
.
= ξi − xi. Thus, ξi represents the local demand plus

the deficiency in the generation capacity. In what follows we will simply call ξi the local

demand. Deficiency may exist in the arc capacities as we will discuss later.

In all our models, we use joint probabilistic constraints, meaning that the constraints

are satisfied at some prescribed level of probability for the entire time horizon. The use

of simple individual probabilistic constraints, which are much simpler from the algo-

rithmic point of view that satisfies the probabilistic constraints at each step separately,

fails to represent the real life applications. Most of the water resource management

models use simple individual probabilistic constraints, even though it has been shown

that individual constraint models are not the right models for this application (Ackooij

et all, 2010). In our models, we use joint probabilistic constraints. As an example,

consider an interconnected power system consisting of two areas and a transmission

line, described in Prékopa (1995), page 452.
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The organization of the Chapter 2 is as follows. We first give definitions that we use

for networks, network flows and demands. Then we present the Gale-Hoffman Theorem

and its refinements by Prékopa, Boros (1991) and Wallace, Wets (1993) for feasibility of

a demand function. Then we describe how we can eliminate redundant inequalities from

the feasibility condition. The notion of a p-efficient point is recalled and an important

theorem is proved that makes possible to write up the joint probabilistic constraint

for the demand feasibility inequalities, using the p-efficient points of a much smaller

system of inequalities. Later we formulate and solve a static stochastic network design

problem. Section 2.3 is devoted to the case where the demands corresponding to the

nodes are independent. In this case the p-efficient points are generated by solutions of

multiple choice knapsack problems. We summarize the solution algorithm for the static

problem and present two numerical examples for an 8-node network.

In Chapter 3, we formulate and solve probabilistic constrained stochastic program-

ming problems, where we prescribe lower bounds for k-out-of-n and consecutive-k-out-

of-n reliabilities in the form of probabilistic constraints. In probabilistic constrained

stochastic programming problems we look at the joint probability of a finite number

of stochastic constraints and impose a lower bound on it, chosen by ourselves. This

ensures that the system we are looking at has a prescribed level of probability. The joint

occurrence of constraints, or events, depending on a decision vector is, however, only

one type of Boolean function of events among those that appear in reliability theory.

The problems mentioned above have various real life applications. As an example for

k-out-of-n reliability constraints, one could determine the optimal safety cash reserve for

a bank or one could determine the optimal safety stock for an inventory control system,

where the probability constraints are satisfied at least k periods out of n periods. For

the second type of reliability constraint given as the consecutive k-out-of-n, one could

also find applications in the fields of banking or supply chain management. For example,

banks often have legal regulations preventing them from failing to meet their customers’

demand for consecutive k periods out of n periods and also in inventory control systems,

there are generally policies which incur penalty costs associated with failing to meet

demand more than k consecutive periods. The solution approach presented in this
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paper can be used for the applications where there is a supply and demand or similar

type reliability constraints. Supplying goods to sparsely populated areas or commercial

supply problems are just a few examples among many other supply/demand problem

applications. Our methodology is novel, from the point of model construction, as

it serves to enrich the collection of these stochastic programming models that have

immediate and wide applications.

Another application exists in agricultural water resource problems. It is a widely

accepted view, supported by practical experience, that a plant can survive a given num-

ber of dry days, which depends on the plant. If n is the total number of days until

harvest and the maximum number of dry days the plant can survive is k − 1, then we

want to ensure the possibility of irrigation in any k consecutive days which means we

have a consecutive k-out-of-n reliability. The problem is not to calculate the afore-

mentioned reliability, but rather to optimize with respect to a decision variable subject

to the constraint that the k-out-of-n reliability holds true on a prescribed probability

level, near 1 in practice. We also look at probabilistic constraint problems, where the

reliability is of a weaker type: of k-out-of-n type instead of consecutive k-out-of-n type.

The practical problem, to illustrate our solution methodologies, is mentioned in

a paper by Prékopa, Szántai, Zsuffa (2010), where four optimization problems are

formulated in connection with water resource problem. However, solutions are offered

for three of them and the fourth one, which is the starting point of our research, was

left unsolved. The problem is to determine the optimal capacity of a water release, or

pump station, to satisfy the demand for irrigation, i.e., a reliability constraint where

the reliability is one of the mentioned type.

Formulas are available to compute probability of various Boolean function of events.

For the probability of at least k-out-of-n (P(k)) and exactly k-out-of-n (P[k]) we have,

respectively,

P(k) =
n∑
i=k

(−1)i−k
(
i−1
k−1

)
Sk

P[k] =
n∑
i=k

(−1)i−k
(
i
k

)
Sk,

where S1, . . . , Sn are the binomial moments of the random variable equal to the number
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of events that occur. However, in practice we cannot compute all S1, . . . , Sn. If n is

large then we apply binomial procedures to approximate the probabilities.

In order to create lower and upper bounds for Boolean functions of events arranged

in a finite sequence, a simple and frequently efficient method is the one provided by

the discrete binomial moment problems. These are linear programs (LP’s) where the

numbers in the right-hand side are some of the binomial moments S1, S2, . . . . Since Sk

is the sum of joint probabilities of k-tuples of events, these LP’s are called aggregated

problems. Better bounds can be obtained if we use the individual probabilities in the

sums of all Sk binomial moments that turn up in the aggregated problem. However,

the LP’s based on these, called the disaggregated problems, have huge sizes in general,

and may be unsolvable (see Prékopa, Vizvári, Regös, 1998). Bounding probabilities of

Boolean functions of events are studied extensively in literature. The first upper and

lower bounds are given by Bonferroni (1937) and Boole (1854), respectively. However,

they are weak and rarely useful in practice. Sharp S1, S2, S3 lower bounds were proposed

by Dawson and Sankoff (1967) and S1, S2, S3 lower and upper bounds by Kwerel (1975a,

1975b). Prékopa (1988, 1989, 1990, 1995) generalized these results and gave formulas

as well as dual type algorithms to obtain the bounds. See also Boros and Prékopa

(1989) for a collection of formulas. We will use this in our research but we also use

bounds where most sums of probabilities (as in S1, . . . , Sn) are calculated by the use

of individual probabilities. Hunter (1976) gives a solution for an upper bound which

is going to be used for the solution of the k-out-of-n type of problem. In Bukszár

and Prékopa (2001), a third order upper bound by using graphs called cherry trees

is presented. These are graphs that are recursively generated by connecting the new

vertex into two already existing vertices. Cherry tree bounds also correspond to a dual

feasible bases however they are always as good as or better than Hunter’s upper bound.

In Chapter 3, S1, S2, S3 sharp lower bounds, Hunter and Cherry tree upper bounds are

taken into consideration. Bi-section method is then applied to the model for obtaining

the optimal capacity level while satisfying the reliability constraints.

The problem to be solved in Chapter 4 will be to find optimal reservoir capacities,

that are serially linked to each other, such that at least k consecutive periods, there
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will be sufficient supply to meet the demand with a probability which is greater than

or equal to a prescribed (in practice, high) probability thus consecutive k-out-of-n type

reliability is again present. In this Chapter, different than Chapter 3, more than one

reservoir case will be considered. For the sake of simplicity, we will be referring to an

example from water resources application to demonstrate the problem.

Reservoir network systems can be represented by graphs where the nodes correspond

to reservoirs, direct input (irrigation) or connection points depending on the value of

the system demand function. Let d(i) = ξi − xi be the system demand function where

ξi denotes the inflow and xi represents the random local demand. At each node, ξi = 0

or xi = 0 or both of them can be 0. If xi = 0, the corresponding node represents a

reservoir (K1, K2 etc in Figure 1.6), if ξi = 0, corresponding node represents an inflow

(3, 4 etc in Figure 1.6), if both of them are 0, then corresponding node represents the

junction or connection points (6, 7, 8 etc in Figure 1.6). The links that connect the

nodes in a reservoir network refer to rivers or canals. In most of the models, the inputs

to the nodes are water released from upstream reservoirs and probabilistic inflows from

external resources such as rivers and rain. The outputs from the nodes are the amount

of water that is going to be released during a given period such as day, week or a month.

We assume that released water leaves the system; thus we are considering reservoirs

used for irrigation, municipal purposes, etc., and we exclude, for example, hydroelec-

tric power generation applications. The objective function to be minimized is the sum

of total building costs of each reservoir per its capacity therefore is to find the opti-

mal water reservoir capacity building problem. The reliability constraints ensures the

sufficient supply of water for the demand for at least consecutive k periods. We fur-

ther assume that, for the numerical applications, the inflow and demand values will

be normally distributed for each period. Also, in our models, we assume dependency

between the inflow and demand, as well as dependency of their values between each

period individually.

There is an extensive history of work that is done for water resources applications.

Rivers are one of the most suitable representation forms for serially linked reservoirs

placement therefore water engineering paid special attention in these type of problems.



21

The optimal operation of water reservoir networks usually modeled in connection with

dynamic stochastic programming problems. Gal (1979), Yakowitz (1982), Archibadl et

al. (1997) are just a few of the many publications where the solution to optimal water

reservoir system is given by the techniques from the dynamic programming. We will be

looking at the same problem but from the reliability point of view. We will introduce a

stochastic programming problem in which chance constraint reliabilities are going to be

met in a predefined probability level. The term “reliability programming” was first in-

troduced in the water resources literature by Colorni and Fronza (1976). Since ReVelle

et al. (1969) many authors have investigated the use of chance constrained reservoir

network design problems. Kirby et al. (1970), Joeres et al. (1971), ReVelle and Gun-

delach (1975), Houck (1979) and Houck and Datta (1981) are just a few of them. Loucks

(1970), Loucks and Dorfman (1975) and Stedinger (1983) studied a similar problem to

ReVelle (1969) where the chance constrained reliabilities are solved with extra decision

variables. Later, Colorni and Fronza (1976) modeled the same problem in connection

with explicit decision variables unlike Loucks (1970). Simonovic (1979) developed a

model for the long-term reservoir operating policies under chance-constrained reliabil-

ity. Simonovic and Marino (1980, 1981), Simonovic and Orlob (1984), Marino and

Mohammadi (1983) have also modeled different variations of reservoir system design

and operating policies under probabilistic constraints.

The organization of the last chapter is as follows. In Section 4.2, we formulate

and describe the nature of the problem and discuss the mathematical properties of

the water reservoir model. In Section 4.3, we present the solution methodology and a

hybrid algorithm to solve the problem and in section 4.4 a numerical example is given.

Finally, in the appendix we list the distribution of random variables that are used in

the numerical example, as well as the covariance matrices.
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Chapter 2

Single Commodity Stochastic Network Design under

Probabilistic Constraint with Discrete Random Variables

2.1 Introduction

2.1.1 Basic Definitions on Networks

Below we give the definitions for the network and network flow, suitable for our problem.

Definition A network [N, y] is a pair of a finite set of nodes N and a capacity function

y(i, j) on the arcs (i, j) ∈ N ×N assumed to have nonnegative values or +∞.

While we speak about network flows, we typically have source, terminal and inter-

mediate nodes. Sometimes we know exactly which node is of which type but sometimes

the nodes randomly become sources or terminals and we cannot categorize them in

advance. This is the case, for example, in interconnected power systems, where some of

the nodes in the network represent areas that may have surplus generating capacities or

may need assistance from other nodes to meet the demand, and it happens randomly.

Here comes the first definition for a network flow:

Definition A flow or feasible flow is a function f(i, j), (i, j) ∈ N ×N such that

∑
(i,j)∈N×N f(i, j)−

∑
(j,i)∈N×N f(j, i) = d(i) = 0, ∀i ∈ I∑

(s,j)∈N×N f(i, t) ≤ d(S), s ∈ S (2.1)∑
(i,t)∈N×N f(i, t) ≥ d(t), t ∈ T

f(i, j) ≤ y(i, j), (i, j) ∈ N ×N.

where d(i), i ∈ N is a given function that we call system demand function or briefly

demand.
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If we know in advance the types of the nodes, then we can write up equations/inequalities

for each type to set up the constraints that the flow values have to satisfy. If, however,

we do not know the types in advance, then it is more convenient to define the flow

differently, e.g., the way Gale (1957) and Ford, Fulkerson (1962) have done it. This

definition is presented below.

Definition A flow or feasible flow in the network is a function f(i, j), (i, j) ∈ N ×N

such that

f(i, j) + f(j, i) = 0

f(i, j) ≤ y(i, j) for all (i, j) ∈ N ×N. (2.2)

The first line in condition (2.2) expresses a general convention that the flow from

j to i is the negative of the flow from i to j. The first part of equalities in (2.2) also

implies the flow balance constraints since it guarantees that the amount of flow that

is leaving the node is equal to the amount of flow that is coming into the node. The

second part of the inequalities in (2.2) named as capacity constraint since the amount

of the flow cannot exceed the given capacity y(i, j).

2.1.2 Feasible Demands

If the network flow is defined as in Definition 2.1.1, then we have to introduce addition-

ally, the notion of a system demand and a feasible system demand.

In what follows, we use the following notations:

f(A,B) =
∑

i∈A, j∈B f(i, j)

y(A,B) =
∑

i∈A, j∈B y(i, j) for A,B ⊂ N, AB = ∅

Definition A system demand is a function d(j), j ∈ N . In what follows we use the

notation d(A) =
∑

i∈A d(i) for A ⊂ N . A system demand is said to be feasible if there

exists a flow f satisfying Definition 2.1.1 and the relations:

f(N, j) ≥ d(j), j ∈ N. (2.3)
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Relations (2.2), (2.3) can be thought of as a system of homogenous linear inequali-

ties, if we take f(i, j), y(i, j), d(j), j ∈ N , (i, j) ∈ N ×N as variables. An important

question is: what are the conditions on d(j), y(i, j), j ∈ N , (i, j) ∈ N ×N in order to

ensure the existence of a feasible flow. The question was answered by Gale (1957) and

Hoffman (1960). Gele (1957) gave a system of linear inequalities which are necessary

and sufficient for feasibility of a set of supplies and demands in a network. Hoffman

(1960) extended this work to feasible circulations. The inequalities are generated by

considering all bipartitions of the vertices of the network thus the problem of determin-

ing the probability of a feasible flow in a stochastic network can be solved by referring to

these inequalities. The following theorem summarizes the Gale and Hoffman’s results:

Theorem 2.1.1 The system demand d(i), i ∈ N is feasible iff the following inequalities

hold:

d(S) ≤ y(S̄, S), S ⊂ N, where S̄ = N \ S. (2.4)

In what follows we call relations (2.4) Gale–Hoffman inequalities.

Let |N | = n. The number of Gale–Hoffman inequalities is 2n − 1, the case where

S = ∅ being trivial. Since it is a large number, also if n is relatively small, we are looking

for reduction of the Gale–Hoffman inequalities by eliminating redundant ones to obtain

the minimum number of the Gale–Hoffman inequalities. An equality is redundant if

and only if the induced subgraph on at least one of the partitions is not connected.

A theorem, first proved by Prékopa and Boros (1991) and later by Wallace and Wets

(1993), states the following:

Theorem 2.1.2 The inequality (2.4) is redundant among the Gale–Hoffman inequali-

ties if and only if at least one of the graphs G(S), G(S̄) is not connected. In that case

the inequality d(S) ≤ y(S̄, S) is the sum of other Gale–Hoffman inequalities.

Remark Prékopa and Boros (1991) stated only the sufficiency part of the theorem but

their proof contains also the proof of the necessary part.

Prékopa and Boros (1991) worked out a variety of elimination procedures in con-

nection with the Gale–Hoffman inequalities so that at the end only the non-redundant
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ones remain. In their paper, however, only the system demands are variables while the

arc capacities are assumed to be constant. Since we look at the arc capacities also as

variables, we have to slightly rework the elimination procedure. Below, we present the

new version.

2.1.3 Preprocessing the Problem- Elimination of Redundant Inequal-

ities

The elimination methods described below are studied in detail by Prékopa and Boros

(1991).

Elimination by Network Topology

Based on Theorem 2.1.2, in this procedure we eliminate those inequalities in (2.4)

which are sums of others. We subsequently enumerate the sets S ⊂ N according to

their cardinalities, and look for sets S, S̄ such that at least one of G(S), G(S̄) is not

connected. Then, eliminate the corresponding inequality among those in (2.4). The

steps of the elimination algorithm that is described in Prékopa, Boros (1991) is as

follows:

• Step 0. Let b(H) = 1 and e(H) = 0 for all H ⊆ N , H 6= ∅

• Step 1. Choose a nonempty subset of H ⊆ N such that b(H) = 1 and e(H) = 0,

if no such subset exists, then STOP

• Step 2. Let T ⊆ N\H be a maximal subset such that there is no arc between T

and H

• Step 3. Let b(V ) = 0 for all V ⊆ H ∪ T where V ∩ T 6= ∅ and V ∩H 6= ∅

• Step 4. Let e(H) = 1 and go back to step 1.

Example: To illustrate the elimination by network topology, we consider a new

example which is a 5-node network in Figure (2.1). This same example will be used

throughout this chapter to demonstrate further theorems and applications of our solu-

tion method.
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Figure 2.1: Five-node network with demand values ξ1−x1, ξ2−x2, ξ3−x3, ξ4−x4, ξ5−x5

and interconnection capacities y1, y2, y3, y4, y5.

Here are the Gale-Hoffman inequalities (2.5) for the 5-node network:

(1)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ 0

(2)ξ1 − x1 ≤ y1

(3)ξ2 − x2 ≤ y1 + y2 + y3 + y4

(4)ξ3 − x3 ≤ y3

(5)ξ4 − x4 ≤ y4 + y5

(6)ξ5 − x5 ≤ y2 + y5

(7)ξ1 − x1 + ξ2 − x2 ≤ y2 + y3 + y4

(8)ξ1 − x1 + ξ3 − x3 ≤ y1 + y3

(9)ξ1 − x1 + ξ4 − x4 ≤ y1 + y4 + y5

(16)ξ4 − x4 + ξ5 − x5 ≤ y2 + y4

(17)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 ≤ y2 + y4

(18)ξ1 − x1 + ξ2 − x2 + ξ4 − x4 ≤ y2 + y3 + y5

(19)ξ1 − x1 + ξ2 − x2 + ξ5 − x5 ≤ y3 + y4 + y5
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(20)ξ1 − x1 + ξ3 − x3 + ξ4 − x4 ≤ y1 + y3 + y4 + y5

(21)ξ1 − x1 + ξ3 − x3 + ξ5 − x5 ≤ y1 + y2 + y3 + y5

(22)ξ1 − x1 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y2 + y4

(23)ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y1 + y2 + y5

(24)ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y1 + y4 + y5

(25)ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y3

(26)ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y2 + y3 + y4

(27)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y2 + y5

(28)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y4 + y5

(29)ξ1 − x1 + ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y3

(30)ξ1 − x1 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y2 + y3 + y4

(31)ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1

(2.5)

We observe 2n−1 = 31 Gale–Hoffman inequalities, where n = 5. Which means that

there is an inequality for each combination of the n = 5 nodes in the network with the

exception of the case where S = ∅ (when S is empty, d(S) = 0 and it is trivial).

We will start the algorithm with H = {1} and proceed the inequalities in numerical

order.

• Iteration 1

Step 1: H = {1}

Step 2: T = {3, 4, 5}

Step 3: V = {1, 3}, {1, 4}, {1, 5}, {1, 3, 4}, {1, 3, 5} and b(V ) = 0

Step 4: e({1}) = 1.

Before continuing, let us describe the algorithm in more detail. Since e(H) keeps

record of whether the subset H ⊆ N has ever processed or not during the Step 1 of the

algorithm thus all possible subsets will be processed at most once during the algorithm.

Furthermore, the algorithm only changes e(H) value once, therefore through out the
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execution of the algorithm not all the subsets of H ⊆ N need to be processed. One

further remark should be that there might be occurrences of T being an empty set and

in those instances, algorithm will only execute the change of e(V ) step. The binary

variable b(V ) is an indicator whether an inequality is redundant or not. All subsets

H ⊆ N with b(V ) = 0 can be eliminated at the end of the algorithm.

After the first iteration of the algorithm, we concluded that below inequalities can

be eliminated since they are the sum of other inequalities. Let us demonstrate the

redundancy of the inequality V = {1, 3} explicitly:

(2) ξ1 − x1 ≤ y1

(4) ξ3 − x3 ≤ y3

+

(8) ξ1 − x1 + ξ3 − x3 ≤ y1 +y3 (redundant)

Furthermore, V = {1, 4} is equation (9) and sum of (2) and (5), V = {1, 5} is

equation (10) and sum of (2) and (6) , V = {1, 3, 4} is equation (20) and sum of (2) ,

(4) and (5) V = {1, 3, 5} is equation (21) and sum of (2), (4) and (6).

After the detailed description of the first iteration we can proceed in an abbreviated

manner to complete the remaining iterations of the algorithm for our five-node example.

• Iteration 2

Step 1: H = {2}

Step 2: T = ∅

Step 3: V = ∅

Step 4: e({2}) = 1.

• Iteration 3

Step 1: H = {3}

Step 2: T = {1, 4, 5}

Step 3: V = {1, 3}, {3, 4}, {3, 5}, {1, 3, 4}, {1, 3, 5} and b(V ) = 0

Step 4: e({3}) = 1.
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• Iteration 4

Step 1: H = {4}

Step 2: T = {1, 3}

Step 3: V = {1, 4}, {3, 4} all subsets of V has been considered before.

Step 4: e({4}) = 1.

• Iteration 5

Step 1: H = {5}

Step 2: T = {1, 3}

Step 3: V = {1, 5}, {3, 5} all subsets of V has been considered before.

Step 4: e({5}) = 1.

• Iteration 6

Step 1: H = {1, 2}

Step 2: T = ∅

Step 3: V = ∅

Step 4: e({1, 2}) = 1.

The next subsets to be considered are H = {1, 3}, {1, 4} and {1, 5}, which already

eliminated in the previous iterations therefore we can proceed with the H = {2, 3}.

However, H = {2, 3}.{2, 4}, {2, 5} are adjacent to all other nodes therefore the subset

V will always be an emptyset and there is no need to illustrate iteration 7, 8 and 9,

explicitly.

• Iteration 10

Step 1: H = {3, 4}

Step 2: T = {1}

Step 3: V = {1, 3}, {1, 4}, {1, 3, 4} all subsets of V has been considered before.

Step 4: e({3, 4}) = 1.

• Iteration 11

Step 1: H = {3, 5}
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Step 2: T = {1}

Step 3: V = {1, 3}, {1, 5}, {1, 3, 5}all subsets of V has been considered before.

Step 4: e({3, 5}) = 1.

• Iteration 12

Step 1: H = {4, 5}

Step 2: T = {1}

Step 3: V = {1, 4}, {1, 5}, {1, 4, 5}all subsets of V has been considered before.

Step 4: e({4, 5}) = 1.

Again, H = {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5} are adjacent to all

other nodes and their subset combinations will always yield a nonempty set therefore

there is no need to illustrate iteration 13, 14, 15, 16, 17, 18 explicitly. With the same

reason, combination of all 4 and 5 subsets of the nodes will be adjacent to all other

nodes therefore we can terminate the algorithm here. The algorithm will eliminate 8

out of 31 inequalities. The remaining non-eliminated inequalities are:
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(1)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ 0

(2)ξ1 − x1 ≤ y1

(3)ξ2 − x2 ≤ y1 + y2 + y3 + y4

(4)ξ3 − x3 ≤ y3

(5)ξ4 − x4 ≤ y4 + y5

(6)ξ5 − x5 ≤ y2 + y5

(7)ξ1 − x1 + ξ2 − x2 ≤ y2 + y3 + y4

(8)ξ2 − x2 + ξ3 − x3 ≤ y1 + y2 + y4

(9)ξ2 − x2 + ξ4 − x4 ≤ y1 + y2 + y3 + y5

(10)ξ2 − x2 + ξ5 − x5 ≤ y1 + y3 + y4 + y5

(11)ξ4 − x4 + ξ5 − x5 ≤ y2 + y4

(12)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 ≤ y2 + y4

(13)ξ1 − x1 + ξ2 − x2 + ξ4 − x4 ≤ y2 + y3 + y5

(14)ξ1 − x1 + ξ2 − x2 + ξ5 − x5 ≤ y3 + y4 + y5

(15)ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y1 + y2 + y5

(16)ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y1 + y4 + y5

(17)ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y3

(18)ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y2 + y3 + y4

(19)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y2 + y5

(20)ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y4 + y5

(21)ξ1 − x1 + ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y3

(22)ξ1 − x1 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y2 + y3 + y4

(23)ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1

(2.6)
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We further assume that there are also known lower and upper bounds on the vari-

ables d(i), y(i, j):

l(i) ≤ d(i) ≤ u(i), i ∈ N

l(i, j) ≤ y(i, j) ≤ u(i, j), (i, j) ∈ N ×N,

where

l(i), l(i, j) ∈ R ∪ {−∞},u(i), u(i, j) ∈ R ∪ {+∞}.

We define l(A), u(A), A ⊂ N , l(A,B), u(A,B), where, A,B ⊂ N , AB = ∅, in a similar

way as we have defined d(A), f(A,B), y(A,B).

Elimination by Upper Bounds

If for an S we have the inequality u(S) ≤ l(S, S̄), then clearly the Gale–Hoffman

inequality d(S) ≤ y(S, S̄) is redundant.

Elimination by Lower Bounds

If S ⊂ N and we have the inequality y(S, S̄) ≥ d(S), further, T ⊂ S and we have the

inequality,

l(T, T̄ )− l(T ) ≥ u(S)− l(S, S̄), (2.7)

then the inequality,

y(T, T̄ ) ≥ d(T )

is redundant. In fact, if we subtract l(S) on both sides of the inequality y(S, S̄) ≥ d(S),

we obtain:

y(S, S̄)− l(S) ≥ d(S)− l(S). (2.8)

On the other hand, relation T ⊂ S implies that:

d(S)− l(S) ≥ d(T )− l(T ). (2.9)

Using (2.7), (2.8), and (2.9), we derive

y(T, T̄ )− l(T ) ≥ l(T, T̄ )− l(T )

≥ u(S, S̄)− l(S) ≥ y(S, S̄)− l(S)

≥ d(S)− l(S) ≥ d(T )− l(T )
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which implies y(T, T̄ ) ≥ d(T ).

The elimination works in such a way that we start by S = N , eliminate all inequal-

ities corresponding to T ⊂ S for which (2.7) is satisfied, then decrease the cardinality

of S, etc.

Elimination by Linear Programming

Consider the inequalities that have not been eliminated. Let S0 be one of them and

S1, . . . , Sm be the remaining ones. Then we formulate the LP:

max
{
d(S0)− y(S̄0, S)

}
subject to

d(Si)− y(S̄i, S) ≤ 0, i = 1, . . . ,m (2.10)

l(i) ≤ d(i) ≤ u(i), i ∈ N

l(i, j) ≤ y(i.j) ≤ u(i, j), (i, j) ∈ N ×N.

The inequality d(S0) − y(S̄0, S) ≤ 0 is redundant if and only if the optimum value

of problem (2.10) is nonpositive. Problem (2.10) takes a more convenient form if we

subtract the lower bound from each variable. Let

x(i) = d(i)− l(i), i ∈ N

x(Si) = d(Si)− l(Si), i = 1, . . . ,m

x(i, j) = y(i, j)− l(i, j), (i, j) ∈ N ×N

x(S̄i, Si) = y(S̄i, Si)− l(S̄i, Si), i = 1, . . . ,m.

Then problem (2.10) takes the form:

max
{
x(S0)− x(S̄0, S) + l(S0)− l(S̄0, S)

}
subject to

x(Si)− x(S̄i, Si) ≤ l(S̄i, Si)− l(Si), i = 1, . . . , S (2.11)

0 ≤ x(i) ≤ u(i)− l(i), i ∈ N

0 ≤ x(i.j) ≤ u(i, j)− l(i, j), (i, j) ∈ N ×N.

If we remove the constant term l(S0) − l(S̄0, S0) from the objective function, then we

can state that the inequality d(S0) − y(S̄0, S0) ≤ 0 is redundant if the optimum value
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of problem (2.11) is smaller than or equal to l(S0)− l(S̄0, S0).

In problem (2.11) we may have too many constraints; therefore it may be more

convenient to work with the dual. Let z(Si), w(i), w(i, j) be the dual variables corre-

sponding to the constraints involving x(Si), x(i), x(i, j), respectively. Then the dual of

problem (2.11) can be written as follows:

min
{∑m

i=1 (l(S̄i, Si)− l(Si))z(Si) +
∑

i∈N (u(i)− l(i))w(i) +
∑

(i,j)∈NxN (u(i, j)− l(i, j))w(i, j)
}

subject to

w(i) +
∑

j:Sj∈i z(Sj) ≥ 1, i ∈ S0 (2.12)

w(i, k) +
∑

S̄j∈i,Sj∈k z(Sj) ≥ −1, i ∈ S̄0, k ∈ S0

z(Si) ≥ 0, i = 1, . . . ,m

w(i) ≥ 0, i ∈ N

w(i, k) ≥ 0, (i, k) ∈ N ×N.

If the optimum value is smaller than or equal to l(S0) − l(S̄0, S0), then the inequality

d(S0)− y(S̄0, S0) ≤ 0 is redundant.

Note that we do not need to solve problem (2.12) optimally. In fact, if in the course of

the optimization procedure we find that the current objective function value is less than

or equal to l(S0)−l(S̄0, S0), then we may stop and declare that d(S0)−y(S̄0, S0) ≤ 0 is a

redundant inequality. We may also simply try to find feasible solution to the constraints

of problem (2.12) supplemented by the additional constraint that the objective function

is less than or equal to l(S̄0, S0), l(S0). In what follows the local demands ξ1, . . . , ξn

will be assumed to be random variables and the system demand will be the function

d(i) = ξi − xi, i ∈ N .

Example for Elimination Procedure

In this section we present an example to demonstrate the efficiency of elimination

methods on Gale-Hoffman inequalities. Rather than 5-node example, we use a bigger

size, 15-node network to show the impact of all elimination methods. The topology of

this new network is taken from Prékopa and Boros (1991) where we have in mind power

networks. We use the notation xi for node capacities and yij for arc capacities.
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Example We look at the 15-node network in the mentioned paper, where the network

topology is depicted in Figure 2.2. It may represent an interconnected power system,

where the nodes are the areas and the arcs the transmission system. At the nodes

we have xi generating capacities and on the arcs yij = yji transmission capacities. At

the nodes there are ξi random local demands and, by the use of them we define the

system demand function d(i) = ξi − xi, 1 ≤ i ≤ 15. At each node we have both

power generation capacity and demand. There may also be random deficiencies in the

generation capacities but we have assumed that they are already combined with the

demands. Flows on the arcs can take place in both directions. The arc capacities are

the same in both directions, on each arc. In the paper by Prékopa and Boros (1991), the

arc capacities are assumed to be constant. In this illustration we keep this assumption

and indicate the numerical values of the arc capacities in Figure 2.2.

Figure 2.2: Fifteen-node network with arc capacities.
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After the elimination procedure, we observed a minor error in Prékopa and Boros

(1991) results, we were able to eliminate one more inequality and reduce the total

number of inequalities to 12 from 13. Table 2.1 shows the number of eliminated in-

equalities by each elimination method. Table 2.2 contains the characteristics vectors of

noneliminated inequalities.

Table 2.1: Number of eliminated inequalities by each elimination method

Number of original Gale–Hoffman inequalities 32,767

By network topology 28,655

By upper bounds 2,588

By lower bounds 1,288

By linear programming 224

Remaining inequalities 12

Table 2.2: Characteristics vectors of noneliminated inequalities for 15-node network

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

3 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1

4 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1

5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

8 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0

9 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0

10 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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2.2 p-level Efficient Points

The concept of a p-level efficient point or briefly p-efficient point was introduced in

Prékopa (1990). It was further studied and used to solve probabilistic constrained

stochastic programming problem with discrete random variables by Prékopa, Vizvári,

Badics (1998). The new results in that paper include an algorithmic enumeration

method of the p-efficient points. Another algorithm is proposed by Boros, Elbassioni,

Gurvich, Khachiyan and Makino (2003). Dentcheva, Prékopa and Ruszczyński (2000)

gave another solution method for the same problem that generates the p-efficient points

simultaneously with the solution algorithm if the random variables are independent.

The notion of Pareto efficient points usually comes in mind in connection with the

definition of p-efficient points. Pareto efficient points are the minimal points of compact

sets in linear spaces with convex orderings. It is a concept in economics with applications

in engineering and other sciences. In economics, Pareto efficiency is interpreted as a

minimal notion of efficiency and does not necessarily result in overall optimization of

the society. In optimization literature, great deal of attention has been paid to Pareto

efficient points. Stadler (1974) provides a good survey until 1960’s and Penot (1978) up

to 1978. The work by Borwein (1983) provides the below definition for Pareto efficient

points.

Definition We define x to be Pareto efficient (minimal) for a set C in X, with respect

to a convex cone K, if x ∈ C and

c ∈ C, c ≤K x⇒ c ∼K x, (2.13)

and write x ∈ E(C;K).

Before describing the differences between Pareto and p-efficient points, first, for the

reader’s convenience, we recall the definition of a p-efficient point.

Let ξ = (ξ1, . . . , ξn) be a discrete random vector, where the supports of the random

variables ξ1, . . . , ξn are the finite sets Z1, . . . , Zn, respectively. Introduce the notation:

Z = Z1 × Z2 × · · · × Zn. (2.14)
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Let Zi = {zi1, . . . , ziki} , where zi1 ≤ · · · ≤ ziki , i = 1, . . . , n.

Definition A point z ∈ Z is a p-efficient point (0 ≤ p ≤ 1) of the probability distri-

bution function F of ξ if F (z) ≥ p and there is no y < z such that F (y) ≥ p. (y < z

means y ≤ z, y 6= z).

Obviously, there is a connection between the definition of a Pareto efficient point

and a p-efficient point but not very strong. Given the set {z|F (z) ≥ p} is C in Equation

(2.13), then its Pareto efficient points are our p-efficient points. However, the theory of

the two applications are already different. Pareto efficient points belong to sets while

p-efficient points belong to probability distributions. Given a probability distribution

function, still there is a variety of p-efficient points because p can be chosen infinitely

many ways. We want equivalent formulations of probabilistic constrained problems,

want to determine the p-efficient points algorithmically and generate them simultane-

ously in the course of a procedure. In addition, we want to investigate their convexity

properties. These are not present in Pareto efficient point theory. Moreover, the distri-

bution can be given in many ways. Our principle notion is the distribution, not simply

a set. A lot of hard and novel problems come up in connection with p-efficient points.

Prékopa (2010) gives a detailed use of p-efficient points that is applied in finance, water,

and power engineering, with multivariate probability distribution where Pareto efficient

points cannot be used to represent the set of feasible points.

In this chapter, our optimization problem is of probabilistic constrained type. If, for

example, the arc capacities in a network are constants but the demands are random,

then the d(S) symbols on the left hand sides in (2.3) are random variables while the

right hand sides are constants and a probabilistic constraint in an optimization problem

may take the form:

P
(
d(S) ≤ y(S, S̄), S ⊂ N

)
≥ p. (2.15)

The inequalities in (2.3), however, include a number of redundant ones that first we

eliminate and it is sufficient to impose probabilistic constraint on those inequalities

that are not deleted in the course of the eliminations. Still, in many cases quite a
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few inequalities remain after the elimination (as it can be seen in example 1 of section

3; see Appendix 2.9), hence it is reasonable to look for further simplifications in the

enumeration of the set of p-efficient points. Fortunately, the random variables d(S) in

(2.3) allow for such simplification. We formulate it in more general terms.

The next theorem, Prékopa and Unuvar (2010), tells us that if we know the p-

efficient points of a random vector ξ, then, under some conditions, we can at once

obtain the p-efficient points of a random vector consisting of all components of ξ and

some others that are linear combinations of ξ with nonnegative coefficients.

Theorem 2.2.1 Let ξ ∈ Z be a random vector and B ≥ 0 a matrix with n columns

and an arbitrary number of rows such that in each row there is at least one positive

element. Suppose that the p-efficient points of ξ are z(1), . . . , z(M) and the following

condition holds for every i = 1, . . . ,M : P
(
{z ∈ Z | z ≤ z(i)}\{z(i)}

)
< p. Then the

p-efficient points of the random vector
(

ξ
Bξ

)
are:

 z(1)

Bz(1)

 , . . . ,

 z(M)

Bz(M)

 . (2.16)

Note that P
(
{z | z ≤ z(i)}

)
≥ p for every i = 1, . . . ,M, hence the condition in Theorem

2.2.1 implies that every p-efficient vector has positive probability.

Proof For every i, 1 ≤ i ≤ M , the inequality Bξ ≤ Bz(i) is a consequence of the

inequality ξ ≤ z(i). It follows that

P

 ξ

Bξ

 ≤
 z(i)

Bz(i)

 ≥ p, i = 1, . . . ,M. (2.17)

We have to show that if we decrease the value of at least one of the components of(
z(i)

Bz(i)

)
within the support of

(
ξ
Bξ

)
then the inequality (2.17) is no longer valid for

given i. Obviously, if the decrease happens among the first n components, z(i) decreases

to w(i), then P (ξ ≤ w(i)) < p and also P (ξ ≤ w(i), Bξ ≤ z(i)) < p. If, on the other

hand, one component of Bz(i) decreases to Bw(i), then, because B has at least one

positive entry in each row, the point z(i) is excluded. In view of our assumption the

probability decreases to P (ξ ≤ z(i), ξ 6= z(i), Bξ ≤ Bw(i)) < p. �
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Remark While in practice most frequently we have P (ξ = z(i)) > 0, i = 1, . . . ,M , the

condition that P (ξ ≤ z(i), ξ 6= z(i)) < p may not hold. Still, we advise to use the set of

vectors (2.16) as an approximation of the set of p-efficient points of
(

ξ
Bξ

)
. The reason is

that the probability distribution of ξ can slightly be perturbed (at least in most practical

problems) in such a way that the p-efficient points of the perturbed distribution are

those in (2.16). In fact, if we add to each pjk = P (ξ = zjk), zjk ∈
M⋃
i=1

(z(i) +Rn−) ∩ Z a

value εjk ≥ 0 and subtract εlt ≥ 0 from each plt = P (ξ = zlt), zlt /∈
M⋃
i=1

(z(i) +Rn−) ∩ Z,

keeping the probabilities nonnegative and their sum equal to 1, then under suitable

choices of the ε’s we may accomplish the task.

An important special case of Theorem 2.2.1 is the following. Let I1, . . . , Il be non-

empty subsets of the set {1, . . . , l} and consider the random vectorξ1, . . . , ξn,
∑
i∈I1

ξi, . . . ,
∑
i∈Il

ξi

T

. (2.18)

Theorem 2.2.2 If the p-efficient points of ξ are {z(1), . . . , z(M)} and P (ξ ≤ z(k), ξ 6=

z(k)) < p, k = 1, . . . ,M , then the p-efficient points of the random vector (2.18) are:z(k)
1 , . . . , z(k)

n ,
∑
i∈I1

z
(k)
i , . . . ,

∑
i∈Il

z
(k)
i

T

, k = 1, . . . ,M. (2.19)

Remark The condition in Theorem 2.2.2 holds true if P (ξ ≤ z(k)) = p and P (ξ =

z(k)) > 0, k = 1, . . . ,M .

Example Let ξ = (ξ1, ξ2, ξ3, ξ4)T and consider the random vector:

(ξ1, ξ2, ξ3, ξ4, ξ1 + ξ2, ξ1 + ξ3 + ξ4, ξ2 + ξ4)T . (2.20)

If the condition mentioned in Theorem 2.2.2 holds true, then the p-efficient points of
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the random vector (2.20) are:

z
(k)
1

z
(k)
2

z
(k)
3

z
(k)
4

z
(k)
1 + z

(k)
2

z
(k)
1 + z

(k)
3 + z

(k)
4

z
(k)
2 + z

(k)
4



, k = 1, . . . ,M.

If each random variable is uniformly distributed in the same support set {1, 2, 3, 4, 5}

and p = 0.8 then the p-efficient points of ξ are:

4

5

5

5


,



5

4

5

5


,



5

5

4

5


,



5

5

5

4


.

The value of the joint c.d.f. is equal to 0.8 at each of these points, hence the

condition mentioned in Theorem 2.2.2 is satisfied. It follows that the p-efficient points

of the random vector (2.20) are:

4

5

5

5

9

14

10



,



5

4

5

5

9

15

9



,



5

5

4

5

10

14

10



,



5

5

5

4

10

14

9



.

Example We show that the statement of Theorem 2.2.1, may not be valid without

the assumption. Consider the random vector ξ = (ξ1, ξ2)T and suppose that ξ has the

following probability distribution: P (ξ = (0, 0)) = 0.4, P (ξ = (0, 1)) = P (ξ = (1, 0)) =

0.2, P (ξ = (0, 2)) = P (ξ = (2, 0)) = 0.1.
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Figure 2.3: The condition in Theorem 2.2.2 is not satisfied for the marked point.

The marked point (1, 1) in Figure 2.3 is the only 0.8-efficient point of ξ and it has

0 probability. If we consider the random vector ξ = (ξ1, ξ2, ξ1 + ξ2)T , then we can

see that its only 0.8-efficient point is (1, 1, 1) and not (1, 1, 2) as it would be the case

under the condition of Theorem 2.2.1.

For the sake of completeness we present an algorithm that generates all p-efficient

points of the random vector (2.18). The p-efficient points of (2.18) will be called network

p-efficient points.

If for some k the condition of Theorem 2.2.1 is satisfied, i.e., P (ξ ≤ z(k), ξ 6= z(k)) <

p, then the vector (2.19) is a network p-efficient point. If this is not the case, then we

define the set

K
(k)
h =

z ∈ Z | z ≤ z(k),
∑
i∈Ij

(z
(k)
i − zi) ≥ hj , j = 1, . . . , t


hj integer, 0 ≤ hj ≤ |Ij |, j = 1, . . . , t; k = 1, . . . ,M. (2.21)

For a given k, for which P (ξ ≤ z(k), ξ 6= z(k)) < p, we want to find all h∗ =

(h∗1, . . . , h
∗
t ) vectors that satisfy the condition in the second line of (2.21) and

F (z(k))− P (K
(k)
h ) ≥ p

F (z(k))− P (K
(k)
h∗ ) < p (2.22)
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for h ≤ h∗. If we rewrite (2.22) as follows:

P (K
(k)
h ) ≤ F (z(k))− p

P (K
(k)
h∗ ) > F (z(k))− p (2.23)

then the problem is to find all F (z(k)) − p-efficient points in the integer lattice of the

cube {h | hj ≤ |Ij |, j = 1, . . . , t}. The efficiency is now defined in the sense of (2.23).

To find all efficient h∗, in the sense of (2.23), any of the existing algorithms, to find all

p-efficient points, can be used with obvious modification.

If M = 1, i.e., there is only one p-efficient point of ξ and the condition of Theo-

rem 2.2.1 is satisfied, then we are done, the corresponding vector in (2.20) is the only

network p-efficient point. If M = 1 and the condition of Theorem 2.2.1 is not satisfied,

then we generate all h∗ and the obtained F (z(1))−p-efficient points simultaneously pro-

vide us with the set of all network p-efficient points. If M > 1 and there is at least one

k (1 ≤ k ≤M) for which the condition of Theorem 2.2.1 is not satisfied, then we use an

algorithm to generate the set of network p-efficient points. Note that it is not enough

to find the F (z(k))− p-efficient points for every k for which P (ξ ≤ z(k), ξ 6= z(k)) < p,

because some of them may be dominated by others, corresponding to different k values

and therefore an elimination procedure has to be included.

2.2.1 Algorithm to Find all Network p-efficient Points

• Step 1. Find all p-efficient points of ξ and designate them by z(k), k = 1, . . . ,M .

• Step 2. Initialize J = 0 and let H(J) be the current set of network p-efficient

points.

• Step 3. Set J = J + 1. If J > M + 1, then go to Step 6. Otherwise go to Step 4.

• Step 4. If for z(J) we have P (ξ ≤ z(J), ξ 6= z(J)) < p, then include z(J) into H(J)

and go to Step 6. Otherwise go to Step 5.

• Step 5. Using z(J), generate all F (zJ)−p-efficient points and form the new (2.20)-

type vectors. Eliminate those which are dominated by vectors in H(J). Include

into H(J) the remaining ones. Go to Step 3.
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• Step 6. Stop, H(M) is the set of all network p-efficient points.

A numerical example at the end of this chapter contains the results of above algo-

rithm.

2.3 Static Stochastic Network Design Problem Using Probabilistic

Constraint

Our stochastic network design problem can be formulated in following way.

Corresponding to each node i in the network a capacity xi and a random demand ξi

are associated. Bearing in mind the application to the interconnected power systems,

we call xi as generating capacity and the capacity yij , corresponding to arc (i, j) as

transmission capacity. If the system demand ξi−xi at node i is positive, then the local

generating capacity is not enough to meet the local demand ξi and assistance is needed

from other nodes. If, however, ξi − xi < 0, then there is surplus generating capacity at

node i and the node can assist others.

The unknown decision variables in our optimization problem are the node capacities

xi, i ∈ N and the arc capacities yij , (i, j) ∈ N × N . The static formulation of the

problem is the following:

min
{∑

i∈N ci(xi) +
∑

(i,j)∈N×N cij(yij)
}

subject to

P (d(S) ≤ y((S, S̄), S ⊂ N)) ≥ p (2.24)

A1x+A2y ≥ b

x ≥ 0, y ≥ 0.

The constraint A1x+A2y ≥ b may simply mean lower and upper bounds for the decision

variables xi, yij . In that case, we write them up as follows:

li ≤ xi ≤ ui, i ∈ N

lij ≤ yij ≤ uij , (i, j) ∈ N ×N . (2.25)
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Illustration of model 2.24 on 5 node example in Figure 2.1

To demonstrate how to design a network problem as a probabilistic constrained stochas-

tic programming problem, we worked on the 5-node example in Figure 2.1. Below we

constructed the model with all the feasibility constraints (before elimination) and some

deterministic constraints:

min
{∑5

i=1 ci(xi) +
∑5

j=1Kj(yj)
}

subject to

P



ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ 0

ξ1 − x1 ≤ y1

ξ2 − x2 ≤ y1 + y2 + y3 + y4

ξ3 − x3 ≤ y3

ξ4 − x4 ≤ y4 + y5

ξ5 − x5 ≤ y2 + y5

ξ1 − x1 + ξ2 − x2 ≤ y2 + y3 + y4

ξ1 − x1 + ξ3 − x3 ≤ y1 + y3

ξ1 − x1 + ξ4 − x4 ≤ y1 + y4 + y5

ξ1 − x1 + ξ5 − x5 ≤ y1 + y2 + y5

ξ2 − x2 + ξ3 − x3 ≤ y1 + y2 + y4

ξ2 − x2 + ξ4 − x4 ≤ y1 + y2 + y3 + y5

ξ2 − x2 + ξ5 − x5 ≤ y1 + y3 + y4 + y5

ξ3 − x3 + ξ4 − x4 ≤ y3 + y4 + y5

ξ3 − x3 + ξ5 − x5 ≤ y2 + y3 + y5

ξ4 − x4 + ξ5 − x5 ≤ y2 + y4

ξ1 − x1 + ξ2 − x2 + ξ3 − x3 ≤ y2 + y4

ξ1 − x1 + ξ2 − x2 + ξ4 − x4 ≤ y2 + y3 + y5

ξ1 − x1 + ξ2 − x2 + ξ5 − x5 ≤ y3 + y4 + y5

ξ1 − x1 + ξ3 − x3 + ξ4 − x4 ≤ y1 + y3 + y4 + y5

ξ1 − x1 + ξ3 − x3 + ξ5 − x5 ≤ y1 + y2 + y3 + y5

ξ1 − x1 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y2 + y4



≥ p
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cont’

P



ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y1 + y2 + y5

ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y1 + y4 + y5

ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y3

ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y2 + y3 + y4

ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ4 − x4 ≤ y2 + y5

ξ1 − x1 + ξ2 − x2 + ξ3 − x3 + ξ5 − x5 ≤ y4 + y5

ξ1 − x1 + ξ2 − x2 + ξ4 − x4 + ξ5 − x5 ≤ y3

ξ1 − x1 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1 + y2 + y3 + y4

ξ2 − x2 + ξ3 − x3 + ξ4 − x4 + ξ5 − x5 ≤ y1



≥ p

A1x+A2y ≥ b

x ≥ 0, y ≥ 0 . (2.26)

where ci is the cost function for network capacities and Kj is the cost function for the

arc transmission capacities in Figure 2.1. Moreover, let the A1x+ A2y ≥ b constraint

represent an upper bound on the capacities such that:

li ≤ xi ≤ ui, i = 1, 2, 3, 4, 5

lj ≤ yj ≤ uj , j = 1, 2, 3, 4, 5

Through the rest of the chapter, we will be illustrating the models and methods by

using this 5 node example. Suppose the deterministic constraints are of the form

A1x+A2y ≥ b for compatibility with the closed-form of the model.

The static stochastic programming problems can be of probabilistic constrained,

recourse (penalty) or hybrid type. Instead of problem (2.24) we may easily construct a

hybrid type model, where the expectation of the measure of violation of the stochastic

constraints is incorporated into the objective function. Since we have discrete random

variables, the inclusion of penalty terms into the objective function does not change

the type of the problem. The objective function is extended by linear terms and new

linear constraints are incorporated (see Prékopa, 1995, Chapter 9). However, our main

concern is the handling of the probabilistic constraint, therefore we disregard the for-

mulation of a hybrid model. In the probabilistic constraint of problem (2.24) we have
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the Gale–Hoffman inequalities: d(S) ≤ y(S, S̄), S ⊂ N . If we apply the elimination

procedure described in the introduction, then we can significantly reduce the number

of them. After the elimination the problem takes the form:

min
{∑

i∈N ci(xi) +
∑

(i,j)∈NxN cij(yij)
}

subject to

P

 ξk ≤ xk +
∑

(j,k)∈N×N yjk, k = 1, . . . , n∑
k∈Ij ξk ≤

∑
k∈Ij xk +

∑
k∈Ij

∑
(j,k)∈N×N yjk, j = 1, . . . , t

 ≥ p (2.27)

A1x+A2y ≥ b

x ≥ 0, y ≥ 0,

where n = |N |. Inside the parentheses in the probabilistic constraint the non-eliminated

feasibility inequalities are listed. It is essential, from our point of view, that all indi-

vidual stochastic constraints, i.e., those that contain a single component of the random

vector ξ = (ξ1, . . . , ξn)T appear among the stochastic constraints. We need them in

order to be able to apply the methodology of Theorem 2.2.1. The requirement that the

individual stochastic constraints should not be eliminated is not a restriction, however,

needed from the practical point of view.
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Illustration of model 2.27 on 5 node example in Figure 2.1

After the network topology elimination, our 5-node example becomes;

min
{∑5

i=1 ci(xi) +
∑5

j=1Kj(yj)
}

subject to

P



ξ1 ≤ x1 + y1

ξ2 ≤ x2 + y1 + y2 + y3 + y4

ξ3 ≤ x3 + y3

ξ4 ≤ x4 + y4 + y5

ξ5 ≤ x5 + y2 + y5

ξ1 + ξ2 ≤ x1 + x2 + y2 + y3 + y4

ξ2 + ξ3 ≤ x1 + x3 + y1 + y2 + y4

ξ2 + ξ4 ≤ x2 + x4 + y1 + y2 + y3 + y5

ξ2 + ξ5 ≤ x2 + x5 + y1 + y3 + y4 + y5

ξ4 + ξ5 ≤ x4 + x5 + y2 + y4

ξ1 + ξ2 + ξ3 ≤ x1 + x2 + x3 + y2 + y4

ξ1 + ξ2 + ξ4 ≤ x1 + x2 + x4 + y2 + y3 + y5

ξ1 + ξ2 + ξ5 ≤ x1 + x2 + x5 + y3 + y4 + y5

ξ2 + ξ3 + ξ4 ≤ x2 + x3 + x4 + y1 + y2 + y5

ξ2 + ξ3 + ξ5 ≤ x2 + x3 + x5 + y1 + y4 + y5

ξ2 + ξ4 + ξ5 ≤ x2 + x4 + x5 + y1 + y3

ξ3 + ξ4 + ξ5 ≤ x3 + x4 + x5 + y2 + y3 + y4

ξ1 + ξ2 + ξ3 + ξ4 ≤ x1 + x2 + x3 + x4 + y2 + y5

ξ1 + ξ2 + ξ3 + ξ5 ≤ x1 + x2 + x3 + x5 + y4 + y5

ξ1 + ξ2 + ξ4 + ξ5 ≤ x1 + x2 + x4 + x5 + y3

ξ1 + ξ3 + ξ4 + ξ5 ≤ x1 + x3 + x4 + x5 + y1 + y2 + y3 + y4

ξ2 + ξ3 + ξ4 + ξ5 ≤ x1 + x3 + x4 + x5 + y1

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 ≤ x1 + x2 + x3 + x4 + x5



≥ p

A1x+A2y ≥ b

x ≥ 0, y ≥ 0 . (2.28)
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In what follows we will be looking at the random vector:
ξ∑

k∈Ij ξk

j = 1, . . . , t

 (2.29)

Illustration of random vector 2.29 on 5 node example in Figure 2.1



ξ1

ξ2

ξ3

ξ4

ξ5

ξ1 +ξ2

ξ2 +ξ3

ξ2 +ξ4

ξ2 +ξ5

ξ4 +ξ5

ξ1 +ξ2 +ξ3

ξ1 +ξ2 +ξ4

ξ1 +ξ2 +ξ5

ξ2 +ξ3 +ξ4

ξ2 +ξ3 +ξ5

ξ2 +ξ4 +ξ5

ξ3 +ξ4 +ξ5

ξ1 +ξ2 +ξ3 +ξ4

ξ1 +ξ2 +ξ3 +ξ5

ξ1 +ξ2 +ξ4 +ξ5

ξ1 +ξ3 +ξ4 +ξ5

ξ2 +ξ3 +ξ4 +ξ5

ξ1 +ξ2 +ξ3 +ξ4 +ξ5



(2.30)
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We assume that {z(1), . . . , z(M)} is the set of p-efficient points of ξ. Then, we use

the vectors 
z(i)∑
k∈Ij z

(i)
k

j = 1, . . . , t

 , i = 1, . . . ,M (2.31)

as the correct or approximate set of network p-efficient points. With these vectors our

network design problem can be formulated in the following way:

min
{∑

i∈N ci(xi) +
∑

(i,j)∈N×N cij(yij)
}

subject to the constraints that for at least one i = 1, . . . ,M we have

xk +
∑

(j,k)∈N×N yjk ≥ z
(i)
k , k = 1, . . . , n∑

k∈Il xk +
∑

k∈Il
∑

(j,k)∈N×N yjk ≥
∑

k∈Il z
(i)
k , 0 l = 1, . . . , t (2.32)

and

A1x+A2y ≥ b

x ≥ 0, y ≥ 0.

Problem (2.32) is a disjunctive optimization problem that we relax by a standard con-

vexification procedure: we take the convex combination of the upper M(n+ t) inequal-

ities. The new problem is:

min
{∑

i∈N ci(xi) +
∑

(i,j)∈N×N cij(yij)
}

subject to xk +
∑

(j,k)∈N×N yjk ≥ z
(i)
k , k = 1, . . . , n∑

k∈Il xk +
∑

k∈Il
∑

(j,k)∈N×N yjk ≥
∑

k∈Il z
(i)
k , l = 1, . . . , t

 ≥∑M
i=1 λi

 z
(i)
k , k = 1, . . . , n∑

k∈Il z
(i)
k , l = 1, . . . , t


A1x+A2y ≥ b (2.33)∑M

i=1 λi = 1

x ≥ 0, y ≥ 0, λ ≥ 0.

In what follows, we assume that the cost functions ck(xk), cjk(yjk) are linear. If these

functions are nonlinear but convex, then we approximate them by piecewise linear

functions and again the problem is an LP.
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Set of p-efficient points of the 5 node example in Figure 2.1

Let the cumulative probability distribution and associated values for the demand values

be in Table 2.3 and let the corresponding set of all p-efficient points for the individual

random variables be: z(1) =

(
10
9
12
9
15

)
, z(2) =

(
15
9
8
9
15

)
z(3) =

(
15
9
12
6
15

)
, z(4) =

(
15
9
12
9
10

)
, z(5) =(

15
9
12
6
10

)
.

Table 2.3: Cumulative Probability Distribution of ξi for 5 node example in Figure 2.1
ξ1 ξ2 ξ3 ξ4 ξ5

Value P(Value) Value P(Value) Value P(Value) Value P(Value) Value P(Value)

5 0.2 3 0.3 4 0.2 3 0.3 5 0.1
10 0.8 6 0.7 8 0.8 6 0.9 10 0.9
15 1 9 1 12 1 9 1 15 1

Let us demonstrate how to construct the rest of the p-efficient points for z(1) of ξi

by referring to vector 2.30 and vector 2.31.

z
(1)
all =



ξ1
ξ2

ξ3
ξ4

ξ5
ξ1 +ξ2

ξ2 +ξ3
ξ2 +ξ4
ξ2 +ξ5

ξ4 +ξ5
ξ1 +ξ2 +ξ3
ξ1 +ξ2 +ξ4
ξ1 +ξ2 +ξ5

ξ2 +ξ3 +ξ4
ξ2 +ξ3 +ξ5
ξ2 +ξ4 +ξ5

ξ3 +ξ4 +ξ5
ξ1 +ξ2 +ξ3 +ξ4
ξ1 +ξ2 +ξ3 +ξ5
ξ1 +ξ2 +ξ4 +ξ5
ξ1 +ξ3 +ξ4 +ξ5

ξ2 +ξ3 +ξ4 +ξ5
ξ1 +ξ2 +ξ3 +ξ4 +ξ5



=



10
9
12
9
15

10+9
9+12
9+9
9+15
9+15

10+9+12
10+9+9
10+9+15
9+12+9
9+12+15
9+9+15
12+9+15

10+9+12+9
10+9+12+15
10+9+9+15
10+12+9+15
9+12+9+15

10+9+12+9+15



=



10
9
12
9
15
19
21
18
24
24
31
28
34
30
36
33
36
40
46
43
46
45
55



Illustration of model 2.32 on 5 node example in Figure 2.1

Let us demonstrate how to create model 2.32 with the first p-efficient point below:

min
{∑5

i=1 ci(xi) +
∑5

j=1Kj(yj)
}

subject to
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ξ1 ≤ x1 + y1

ξ2 ≤ x2 + y1 + y2 + y3 + y4

ξ3 ≤ x3 + y3

ξ4 ≤ x4 + y4 + y5

ξ5 ≤ x5 + y2 + y5

ξ1 + ξ2 ≤ x1 + x2 + y2 + y3 + y4

ξ2 + ξ3 ≤ x1 + x3 + y1 + y2 + y4

ξ2 + ξ4 ≤ x2 + x4 + y1 + y2 + y3 + y5

ξ2 + ξ5 ≤ x2 + x5 + y1 + y3 + y4 + y5

ξ4 + ξ5 ≤ x4 + x5 + y2 + y4

ξ1 + ξ2 + ξ3 ≤ x1 + x2 + x3 + y2 + y4

ξ1 + ξ2 + ξ4 ≤ x1 + x2 + x4 + y2 + y3 + y5

ξ1 + ξ2 + ξ5 ≤ x1 + x2 + x5 + y3 + y4 + y5

ξ2 + ξ3 + ξ4 ≤ x2 + x3 + x4 + y1 + y2 + y5

ξ2 + ξ3 + ξ5 ≤ x2 + x3 + x5 + y1 + y4 + y5

ξ2 + ξ4 + ξ5 ≤ x2 + x4 + x5 + y1 + y3

ξ3 + ξ4 + ξ5 ≤ x3 + x4 + x5 + y2 + y3 + y4

ξ1 + ξ2 + ξ3 + ξ4 ≤ x1 + x2 + x3 + x4 + y2 + y5

ξ1 + ξ2 + ξ3 + ξ5 ≤ x1 + x2 + x3 + x5 + y4 + y5

ξ1 + ξ2 + ξ4 + ξ5 ≤ x1 + x2 + x4 + x5 + y3

ξ1 + ξ3 + ξ4 + ξ5 ≤ x1 + x3 + x4 + x5 + y1 + y2 + y3 + y4

ξ2 + ξ3 + ξ4 + ξ5 ≤ x1 + x3 + x4 + x5 + y1

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 ≤ x1 + x2 + x3 + x4 + x5

(2.34)

A1x+A2y ≥ b

x ≥ 0, y ≥ 0 .
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Illustration of model 2.33 on 5 node example in Figure 2.1

The relaxed problem takes the form;

min
{∑5

i=1 ci(xi) +
∑5

j=1Kj(yj)
}

subject to

x1 + y1 ≥ 10λ1 + 15λ2 + 15λ3 + 15λ4 + 15λ5

x2 + y1 + y2 + y3 + y4 ≥ 9λ1 + 9λ2 + 9λ3 + 9λ4 + 9λ5

x3 + y3 ≥ 12λ1 + 8λ2 + 12λ3 + 12λ4 + 12λ5

x4 + y4 + y5 ≥ 9λ1 + 9λ2 + 6λ3 + 9λ4 + 6λ5

x5 + y2 + y5 ≥ 15λ1 + 15λ2 + 15λ3 + 10λ4 + 10λ5

x1 + x2 + y2 + y3 + y4 ≥ 19λ1 + 24λ2 + 24λ3 + 24λ4 + 24λ5

x1 + x3 + y1 + y2 + y4 ≥ 21λ1 + 17λ2 + 21λ3 + 21λ4 + 21λ5

x2 + x4 + y1 + y2 + y3 + y5 ≥ 18λ1 + 18λ2 + 15λ3 + 18λ4 + 15λ5

x2 + x5 + y1 + y3 + y4 + y5 ≥ 24λ1 + 24λ2 + 24λ3 + 19λ4 + 19λ5

x4 + x5 + y2 + y4 ≥ 24λ1 + 24λ2 + 21λ3 + 19λ4 + 16λ5

x1 + x2 + x3 + y2 + y4 ≥ 31λ1 + 32λ2 + 36λ3 + 36λ4 + 36λ5

x1 + x2 + x4 + y2 + y3 + y5 ≥ 28λ1 + 33λ2 + 30λ3 + 33λ4 + 30λ5

x1 + x2 + x5 + y3 + y4 + y5 ≥ 34λ1 + 39λ2 + 39λ3 + 34λ4 + 34λ5

x2 + x3 + x4 + y1 + y2 + y5 ≥ 30λ1 + 26λ2 + 27λ3 + 30λ4 + 27λ5

x2 + x3 + x5 + y1 + y4 + y5 ≥ 36λ1 + 32λ2 + 36λ3 + 31λ4 + 31λ5

x2 + x4 + x5 + y1 + y3 ≥ 40λ1 + 33λ2 + 30λ3 + 28λ4 + 25λ5

x3 + x4 + x5 + y2 + y3 + y4 ≥ 46λ1 + 32λ2 + 33λ3 + 31λ4 + 28λ5

x1 + x2 + x3 + x4 + y2 + y5 ≥ 43λ1 + 41λ2 + 42λ3 + 45λ4 + 42λ5

x1 + x2 + x3 + x5 + y4 + y5 ≥ 46λ1 + 47λ2 + 51λ3 + 46λ4 + 46λ5

x1 + x2 + x4 + x5 + y3 ≥ 43λ1 + 48λ2 + 45λ3 + 43λ4 + 40λ5

x1 + x3 + x4 + x5 + y1 + y2 + y3 + y4 ≥ 46λ1 + 47λ2 + 48λ3 + 46λ4 + 43λ5

x2 + x3 + x4 + x5 + y1 ≥ 45λ1 + 41λ2 + 42λ3 + 40λ4 + 37λ5

x1 + x2 + x3 + x4 + x5 ≥ 55λ1 + 56λ2 + 57λ3 + 55λ4 + 52λ5
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∑5
i=1 λi = 1 (2.35)

A1x+A2y ≥ b

x ≥ 0, y ≥ 0 .

2.4 Solution of the Problem Presented in Section 5

For simplicity we assume that the objective function is linear, but it can be of a very

large size, hence a special algorithm may be more efficient than the use of a general

purpose LP package. There are two algorithms available that offer solutions for our

problem:

I. The Prékopa–Vizvári-Badics (PVB) algorithm (1998), where the p-efficient points

are first enumerated or they are all known from another source.

II. The Dentcheva–Prékopa–Ruszczyński (DPR) algorithm (2000) that generates

the p-efficient points simultaneously with the solution algorithm.

The PVB algorithm is described in a somewhat more complete way in Prékopa

(2006). We will comment on it in the next section.

We propose the use of the DPR algorithm with an important improvement regarding

the calculation of the new p-efficient points in the course of the iteration. We also use

ideas from Vizvári (2002), where the DPR algorithm is presented in a slightly different

way. First we rewrite problem (2.33) in the following form, where J = {1, . . . ,M}:

min
{
cT1 x+ cT2 y

}
subject to

T1x+ T2y ≥
∑

j∈J λjv
(j)

A1x+A2y ≥ b (2.36)∑M
i=1 λi = 1

x ≥ 0, y ≥ 0, λ ≥ 0.

where v(1), . . . , v(M) are the network p-efficient points 2.31.

If we introduce slack variables u,w in the inequality constraints, then the problem can
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be written as:

min
{
cT1 x+ cT2 y + 0Tu+ 0Tw + 0Tλ

}
subject to

(P)


T1 T2 −E 0 −V

A1 A2 0 −E 0

0T 0T 0T 0T eT





x

y

u

w

λ


=


0

b

1

 (2.37)

x ≥ 0, y ≥ 0, u ≥ 0, w ≥ 0, λ ≥ 0,

where V =
(
v(j), j ∈ J

)
, is the (n+t)×M matrix and eT = (1, . . . , 1). We subsequently

generate the columns of V . Let Jh designate the subscript set of the available p-efficient

points and Vh =
(
v(j), j ∈ Jh

)
. In iteration h we have a problem that differs from (P )

in such a way that we replace Vh for V . Let (Ph) designate that LP.

Solve (Ph) by a method that produces an optimal basis satisfying the optimality

condition and let α be the optimal dual vector. Partition α into α1, α2, α3, consistent

with the partitioning of the rows of the matrix in problem (Ph).

If α is an optimal dual vector in problem (P ) too, then we are done, the current

problem (Ph) provides us with the optimal solution of problem (P ). Otherwise there

exists a column in the matrix of problem (P ) that has a scalar product with α greater

than the corresponding objective function coefficient. This may happen to a column

that belongs to the last block of the matrix because the other columns are the same

as those in (Ph). The column in the last block we are referring to is unknown but we

know that its transpose has the form: (−vT , 0T , 1), where v is a column in V but not

in Vh. Writing up the scalar product we obtain:

(
−vT , 0T , 1

)
α = α3 − vTα1 > 0. (2.38)

On the other hand, if we look at the columns in problem (Ph), then we observe that at

least one component of λ must be basic. If the corresponding column in the problem
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is
(
−v(h), 0T , 1

)
, then we have the equation:(

−
(
v(h)

)T
, 0T , 1

)
α = 0

which implies that

α3 −
(
v(h)

)T
α1 = 0. (2.39)

Relations (2.38) and (2.39) tell us that a new column (and variable) can enter the basis

in problem (Ph) iff

mini∈Jhα
T
1 v

(i) > mini∈Jα
T
1 v

(i). (2.40)

The new column and variable will be supplied by the solution of the problem:

mini∈Jα
T
1 v

(i) (2.41)

If the two values in (2.40) are equal, then the procedure terminates. Note that if we

take the scalar product with the columns in (Ph) that belong to the second to the last

block, then we obtain the inequality α1 ≥ 0. On the other hand, if the optimum value

of problem (2.37) is different from 0, then (2.39) implies that α1 > 0. In fact, if α1 = 0,

then α3 = 0 and the optimum value of the dual of problem (2.37) would be 0, contrary

to the assumption.

In the next section we need the stronger inequality: α1 � 0. To ensure it, we need

same condition in connection with the p-efficient points.

Regularity condition. Let v(i), i ∈ L be a collection of linearly independent p-

efficient points. Then there exists a v(j), j ∈ L such that the intersection of the linear

subspace spanned by v(i) − v(j), i ∈ L, i 6= j and the nonnegative orthant Rn+ has the

0 vector in common.

Theorem 2.4.1 If the regularity condition holds true, then at any iteration of the

solution algorithm of Section 6 the dual vector can be chosen in such a way that α1 � 0.

Proof Proof of Theorem 2.4.1. Let L be the subscript set of the basic vectors from

the last block in problem (2.37). The regularity condition tells us that there is a j ∈ L
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such that there are real values yi, i ∈ L \ {j} satisfying∑
i∈L\{i}

yi(v
(i) − v(j)) > 0. (2.42)

Then, by the theorem of Stiemke (Ax = 0 has a solution x � 0 iff there is no y such

that yTA > 0) we have that

(v(i) − v(j))Tα1 = 0, i ∈ L \ {j} (2.43)

has a solution α1 � 0. Since α3 = (v(j))Tα1, (2.43) implies that

α3 − (v(i))Tα1 = 0, i ∈ L.

�

Illustration of model 2.37 on 5 node example in Figure 2.1

Explicit version of model 2.37 for the 5 node example is available in Appendix A. After

we solve problem 2.59 (see Appendix A) with a method that produces dual optimal

vector, α we obtain the below optimal solutions for primal and dual vector:

Primal =



15
10
10
10
10
10
10
10
10
10
15
41
8
21
15
36
34
42
36
16
24
37
31
30
14
10
14
22
19
12
39
5

4.20E−12
5

5.54E−13
1.96E−12
3.76E−13
3.25E−13
1.43E−12
4.99E−13
4.08E−13
1.62E−12
6.20E−13

1



Dual = α =



1.03245E−13
3.67671E−14
1.89368E−13
7.19208E−14
1.00581E−13
4.2023E−14
4.49084E−14
3.58616E−14
4.19383E−14
9.47355E−14
6.39031E−14
4.08078E−14
4.89421E−14
5.02673E−14
1.10418E−13
1.56502E−13
1.13039E−13
6.97396E−14
8.1942E−14
1.31502E−13
3.89224E−14
5.73884E−13

1
3.3134E−13

4
1
6
7
2
5
6
2
4
55


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After representing the dual vector α, we can partition it into (α1, α2, α3) and verify

the condition (2.39) and show that the regularity condition holds true for the α1 vector.

Condition (2.39) verification:

α3 −
(
v(h)

)T
α1 = 55−



10
9
12
9
15
19
21
18
24
24
31
28
34
30
36
40
46
43
46
43
46
45
55



×



1.03245E−13
3.67671E−14
1.89368E−13
7.19208E−14
1.00581E−13
4.2023E−14
4.49084E−14
3.58616E−14
4.19383E−14
9.47355E−14
6.39031E−14
4.08078E−14
4.89421E−14
5.02673E−14
1.10418E−13
1.56502E−13
1.13039E−13
6.97396E−14
8.1942E−14
1.31502E−13
3.89224E−14
5.73884E−13

1



T

= 0

Regularity condition verification:

Since the regularity condition holds, we can show that α1 � 0:

α1 =



1.03245E−13
3.67671E−14
1.89368E−13
7.19208E−14
1.00581E−13
4.2023E−14
4.49084E−14
3.58616E−14
4.19383E−14
9.47355E−14
6.39031E−14
4.08078E−14
4.89421E−14
5.02673E−14
1.10418E−13
1.56502E−13
1.13039E−13
6.97396E−14
8.1942E−14
1.31502E−13
3.89224E−14
5.73884E−13

1



� 0

Since Vh vector doesn’t yield an optimal solution to the original problem, we need

to find a new p-efficient point to enter as a new column to Vh.
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2.5 Finding new p-efficient Point

2.5.1 The General Case

This section is largely influenced by Prékopa, Unuvar (2010). The solution of the

problem (2.41) can be carried out by solving another problem, where the unknown

vector is of much smaller size. Let F (z) be the c.d.f. of ξ.

If we take into account the p-efficient point v(i), i = 1, . . . ,M are those in (2.31),

then we can derive an expression for αT1 v
(i) by the use of z(i) which is an efficient point

of ξ. In fact,

αT1 v
(i) =

n∑
j=1

α1jz
(i)
j +

r∑
h=n+1

α1h

∑
j∈Ih

z
(i)
j

=
n∑
j=1

α1jz
(i)
j +

n∑
j=1

z
(i)
j

∑
Ih3j

α1h (2.44)

=
n∑
j=1

α1j +
∑
Ih3j

α1h

z(i)
j , i = 1, . . . , n,

where r = n+ t. Introducing the notation:

γj = α1j +
∑
Ih3j

α1h

γ = (γ1, . . . , γn)T ,

equation (2.44) can be written in the form:

αT1 v
(i) = γT z(i), i = 1, . . . , n. (2.45)

There is a one-to-one correspondence between the p-efficient points z(i), i = 1, . . . ,M ,

such that v(i) ↔ z(i) and (2.45) holds true. Since α1 � 0, this implies that problem

(2.41) can be solved in such a way that we solve the smaller size problem:

min γT z

subject to

F (z) ≥ p (2.46)

z ∈ Z.
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In most cases we know lower and upper bounds on the components of ξ, which, in

turn, can be prescribed for the components of z. At this point we just supplement the

constraint z ∈ D to problem (2.46) with the remark that it may mean the mentioned

lower and upper bounds on z. The solution of problem (2.46), in that general form,

may still be computationally intensive because the number of p-efficient points of F

may be very large. There is no need, however, to solve problem (2.46) optimally. It

is enough to enumerate the p-efficient points (e.g., by the use of the PVB algorithm),

until a z ∈ J , z /∈ Jh is found for which

mini∈Jhα
T
1 v

(i) > γT1 z.

Let z be the new p-efficient point.

Problem (2.46) can be reformulated as a discrete optimization problem as follows:

min
∑

i γ
Tuiεi

subject to∑
i F (ui)εi ≥ p (2.47)∑

i εi = 1

ui ∈ Z, ui ∈ D, εi ∈ {0, 1}, all i.

Another simple reformulation is possible if the probability function values, rather

than the c.d.f. values of ξ are available.

Let pi = p(ξ = ui), for ui ∈ Z, ui ∈ D. Then the problem is:

min
∑

i γ
Tuiεi

subject to∑
i piεi ≥ p (2.48)

εi ≤ εj for uj ≤ ui

ui ∈ Z, ui ∈ D, εi ∈ {0, 1}, all i.
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2.5.2 Specialization and Relaxation of Problem (2.47)

In this section we present our version of the greedy algorithm (see Pisinger, 1995) for

the solution of the knapsack problem and its application to solve problem (2.46) in case

of independent random variables with strictly logconcave univariate marginal c.d.f.’s

are also logconcave.

Assume that ξ1, . . . , ξn are independent, integer valued and let Fi be the c.d.f. of

ξi, i = 1, . . . , n. Assume, further, that ξi ∈ [li, ui] and Fi is strictly logconcave in

[li, ui], i = 1, . . . , n. Then problem (2.46) an be written in the form:

min
∑n

i=1

∑ui
k=li

γikδik

subject to∑n
i=1

∑ui
k=li

aikδik ≤ d (2.49)

z ∈ D∑ui
k=li

δik = 1, i = 1, . . . , n

δik ∈ {0, 1}, all i, k,

where aik = − logFi(k) and d = − log p. The problem is a special case of the Multiple

Choice Knapsack Problem (MCKP). In the general case we have hik instead of kα2i.

Illustration of model 2.47 on 5 node example in Figure 2.1

Let us assume that ξi’s in model 2.26 are independent of each other and we further

assume that there are lower and upper bounds for each ξi such that [li, ui] where i =

1, . . . , 5. We can model our 5 node example similarly in (2.47) to obtain the new

p-efficient point.
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min
∑5

i=1

∑ui
k=li

γikδik

subject to

− log(0.2)δ1,5 − log(0.8)δ1,10 − log(1)δ1,15

− log(0.3)δ2,3 − log(0.7)δ2,6 − log(1)δ2,9

− log(0.2)δ3,4 − log(0.8)δ3,8 − log(1)δ3,12

− log(0.1)δ4,3 − log(0.9)δ4,6 − log(1)δ4,9

− log(0.1)δ5,5 − log(0.9)δ5,10 − log(1)δ5,15 ≤ log(0.8)

z ∈ D (2.50)∑ui
k=li

δik = 1, i = 1, . . . , 5

δik ∈ {0, 1}, all i, k,

For the solution of problem (2.49) we use a greedy method in Pisinger (1995), where

the first step is the solution of a relaxed LP called Linear Multiple Choice Knapsack

Problem (LMCKP). We relax problem (2.49) in such a way that we allow the δik

variables to move freely in the interval [0, 1]:

min
∑n

i=1

∑ui
k=li

γikδik

subject to∑n
i=1

∑ui
k=li

aikδik ≤ d (2.51)

z ∈ D∑ni
k=li

δik = 1, i = 1, . . . , n

δik ≥ 0, all i, k.

To solve problem (2.51) we use a special algorithm. We introduce slack variable u

in the inequality constraint in problem (2.51), then split the sum into n terms, each

term corresponds to a component of ξ. It will be more convenient in the new problem

to use slightly different notations. We change the range of the second subscripts so

that the summation should go from 1 to mi and designate the coefficient of δik in the

objective function by hik. Note that for every i, the discrete function hik is linear in k
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with coefficient δi > 0. Then the new problem is:

min
{

0u+ 0u1 + · · ·+ 0un + h11δ11 + · · ·+ h1m1
δ1m1

+ · · · + hn1δn1 + · · ·+ hnmn
δnmn

}
subject to

u + u1 + · · ·+ un = d

−u1 +a11δ11 + · · ·+ a1m1
δ1m1

= 0

. . .
...

−un +an1δn1 + · · ·+ anmn
δnmn

= 0

δ11 + · · ·+ δ1m1 = 1

. . .
...

δn1 + · · ·+ δnmn = 1

(2.52)

u ≥ 0, ui ≥ 0, i = 1, . . . , n, δik ≥ 0, all i, k.

Illustration of model 2.52 on 5 node example in Figure 2.1

Let us relax the problem 2.50 and then rewrite in the form of 2.52:

min
{

0u+ 0u1 + · · ·+ 0u5 + h11δ11 + · · ·+ h13δ13 + · · · + h51δ51 + · · ·+ h53δ53
}

subject to

u + u1 + · · · + u5 = − log(0.8)

−u1 − log(0.2)δ11 − · · · − log(1)δ13 = 0

.
.
.

.

.

.

−u5 − log(0.1)δ51 − · · · − log(1)δ53 = 0

δ11 + · · · + δ13 = 1

. .
.

.

.

.

δ51 + · · · + δ53 = 1

(2.53)

u ≥ 0, ui ≥ 0, i = 1, . . . , 5, δik ≥ 0, all i, k.

Problem (2.52) is related to the simple recourse problem in stochastic programming, when

we apply the λ-representations for the piecewise linear separable functions in the objective, for

the case of discrete random variables (see Prékopa, 1990 a, 1995, Chapter 9). The matrix of

the equality constraints, together with the coefficient sequences in the objective function, can

be partitioned into n+1 blocks and labeled by 0, 1, . . . , n respectively. The matrices taken from

blocks 1, . . . , n,

 ai1 . . . aimi

1 . . . 1

 ,


hi1 . . . himi

ai1 . . . aimi

1 . . . 1

 (2.54)
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have a property enjoyed by the corresponding matrices in the simple recourse problem as for-

mulated by Prékopa.

Theorem 2.5.1 All 2 × 2 minors of the first and all 3 × 3 minors of the second matrices in

(2.54) are nonnegative.

Proof Proof of Theorem 2.5.1. The sequence −ai1, . . . ,−aimi is non-decreasing, hence any

2 × 2 minor of the first matrix is nonnegative. As regards the second matrix, if we pick three

columns from it, corresponding to j < k < l, then its determinant is γi times the second order

divided difference of −aij ,−aik,−ail, where γi > 0. Here we took into account the convexity

of the sequence −ai1, . . . ,−aimi
which is a consequence of the strict logconcavity of the c.d.f.

Fi and the strict convexity of the sequences −ai1, . . . ,−aimi
. It follows that, any dual feasible

basis of problem (2.52) has two consecutive columns from each block 1, . . . , n. (see Prékopa

1990 a, 1995).

An LP: min(max)cTx subject to Ax = b, x ≥ 0 is called totally positive (in Prékopa, 1009 b)

if all m × n minors of A and all (m + 1) × n minors of
(
cT

A

)
are positive, where A is a m × n

matrix, n ≥ m+ 1. In the above mentioned paper Prékopa proved the following

Theorem 2.5.2 The dual feasible basis of a totally positive LP have the following structure,

presented in terms of the basis subscripts:

m even m odd

min problem i, i+ 1, . . . , j, j + 1 i, i+ 1, . . . , j, j + 1, n

max problem 1, i, i+ 1, . . . , j, j + 1, n 1, i, i+ 1, . . . , j, j + 1,

where the subscripts are arranged in increasing order.

If we specialize this theorem for the LP:

min
∑ni

j=1 hijδij

subject to∑ni

j=1 aijδij = ui (2.55)∑ui

j=1 δij = 1

δij = 1, j = 1, . . . , ni,

then we derive the consequence that all dual feasible basis of the problem are consecutive pairs

of columns of the matrix of the equality constraints.
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2.5.3 Solution of Problem (2.52)

An efficient dual type algorithm for the solution of the simple recourse problem is presented in

Prékopa (1990 a, 1995) and further developed by Fábián, Prékopa, Ruff-Fiedler (1995). The

same method solves efficiently problem (2.52) too. Here we present only the construction of the

initial dual feasible basis, because it is particularly simple in this case and mention how we can

obtain fast and very good bounds for the optimum value.

Finding initial dual feasible basis

Pick arbitrary two consecutive columns from each of the blocks 1, . . . , n in problem (2.52),

as part of a dual feasible basis of the entire problem. Let vi, wi be the dual variables cor-

responding to problem (2.55), i = 1, . . . , n. Since the rows of blocks 1, . . . , n are disjoint,

the v1, . . . , vn, w1, . . . , wn can be regarded as dual variables corresponding to problem (2.55),

where, however, one column and one dual variable is further to be chosen. Let y designate the

last dual variable. This and the final column of the dual feasible basis can be found by the

solution of the LP:

min
∑n
i=1(−vi)ui

subject to (2.56)∑n
i=1 ui = d

u ≥ 0.

The optimal solution is ui = d, ui = 0, for i 6= j, where j = argmin(vi). The column of ui in

block 0 is the final one to form a dual feasible basis B0 with the already chosen consecutive

pairs from blocks 1, . . . , n. The final consecutive of the corresponding dual vector is y = vj .

Illustration of finding initial dual feasible basis on 5 node example in Fig-

ure 2.1

Let us demonstrate how to initiate the dual feasible basis for the 5 node example through the

model (2.53). Let us first write down the dual problem to help visualizing the dual variables
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easily.

max dy + 0v1 + 0v2 + 0v3 + 0v4 + 0v5 + w1 + w2 + w3 + w4 + w5

subject to

y ≤ 0

y + v1 ≤ 0

y + v2 ≤ 0

y + v3 ≤ 0

y + v4 ≤ 0

y + v5 ≤ 0

− log(0.2)v1 + w1 ≤ h11

− log(0.8)v1 + w1 ≤ h12

− log(1)v1 + w1 ≤ h13
... (2.57)

− log(0.1)v5 + w5 ≤ h51

− log(0.9)v5 + w5 ≤ h52

− log(1)v5 + w5 ≤ h53

y, vi, wi are free where i = 1, . . . , 5

In the primal problem, there are total 6 blocks. We call the block which covers ui variables as

0th block and then there are 5 more blocks that covers the δij variables. Below we represent

the matrices that are taken from the last 5 blocks including the cost coefficients of the problem

(2.53).
h11 h12 h13

− log(0.2) − log(0.8) − log(1)

1 1 1

 · · ·


h51 h52 h53

− log(0.1) − log(0.9) − log(1)

1 1 1


As Theorem 2.5.2 states, all dual feasible basis of simple recourse problem are consecutive pairs

of columns of the above mentioned blocks. One can pick two arbitrary columns from each of

the 5-blocks in problem (2.53) to define a dual feasible vector for the vi and wi variables where

i = 1, . . . , 5. However, for the dual variable y, the minimum of v1, . . . , v5 needs to be picked, in

other words, the solution of the problem (2.56) will yield a feasible value for the dual vector y.

Below we present the bases encountered by the procedure. Initially we choose first two vectors
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Subscripts of the basic δij variables, Subscripts of the basic uj variables
i = 1 i = 2 i = 3 i = 4 i = 5

1,2 1,2 1,2 1,2 1,2 1,2,5

from each blocks 1, 2, 3, 4, 5.

where

δ11 = 0.98678937, δ12 = 0.01321063

δ21 = 0.8745342, δ22 = 0.1254658

δ31 = 0.86374993, δ32 = 0.74364

δ41 = 0.873545, δ42 = 0.126455

δ51 = 0.78345255, δ52 = 0.21654745

u1 = 0.691016413, u2 = 0.623432066, u5 = 0.568595448

The above solution is not primal feasible since sum of ui variables is exceeding log(d) yielding

a negative value for u. In the next section, we will describe and show how one can create a

primal feasible basis and calculate an upper bound for problem (2.53).

Fast bounds for the optimal value

Having dual feasible basis for the minimization problem we also have a lower bound for the

optimum value. The basic solution, corresponding to the dual feasible basis is not necessarily

primal feasible, but we can easily create a primal feasible basis in the following way. Keep the

vector that has been obtained as the optimal solution of problem (2.55) and j1, . . . , jn in such

a way that the solution for δij , δiji+1 of the equation:

aijiδiji + aiji+1δiji+1 = ui

δiji + δiji+1
= 1, i = 1, . . . , n

be nonnegative. Then the new basis B1, consisting of the columns subscripted by j, from block

0, and ji, ji+1, from block i, i = a, . . . , n, is primal feasible and provides us with an upper bound

for the optimum value of problem (2.52).

The bounding procedure can be continued. Keeping the consecutive pairs from blocks

1, . . . , n we can construct a further dual feasible basis B2 in the same way as we have constructed

B0 etc. The lower bounds may not be increasing and the upper bounds may not be decreasing.

In addition, the bounding procedure may not provide us with the exact optimum value but we

choose the best bounds after a finite number of steps. Having a close bound, corresponding

to a primal feasible basis we may pass to a feasible solution where any one of the δiji , δiji+1 is

positive, for every i = 1, . . . , n, in a cost efficient way. If the obtained p-efficient point is not
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good enough, then we solve problem (2.52) optimally and only then pass to a p-efficient point

in a cost efficient way.

An efficient algorithm for the solution of a problem of which (2.52) is a special case, is

presented in Prékopa (1990, 1995) and further developed by Fábián, Prékopa, Ruff-Friedler

(1995). The application of it to problem (2.52) is straightforward and will not be detailed. We

note, however, that the specialized algorithm is very simple because of the simplicity of that part

of the matrix which constitutes block 0. In the optimal solution, we need exactly one argument

zi of each Fi so that z = (z1, . . . , zn) is an optimal solution to the problem (2.52). However, at

the end of the algorithm there may be blocks, among these labeled by 1, . . . , n, which have two

columns in the optimal basis. The final step is to remove one out of each consecutive pairs in

a cost efficient way. The obtained z solves problem (2.52).

Once we have the new p-efficient point for the distribution of ξ, we create the new p-efficient

point for the random vector (2.29) and enter it into problem (Ph) to obtain (Ph+1).

Illustration of finding lower and upper bounds for the optimum value on 5

node example in Figure 2.1

Since the solution we found with the first basis in problem (2.53) is not primal feasible, let us

create a primal feasible basis with a method described above. For the primal feasible basis, we

will force each ui variable to be equal to aijiδiji + aiji+1δiji+1 while δiji + δiji+1 = 1 is satisfied

with nonnegativity. The primal feasible basis that is obtained through this solution will yield

an upper bound for the problem. Solution of below system of equations yield a non negative

vector therefore gives a primal feasible basis with an optimum value of 2.322768. This optimum
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value constructs an upper bound for the primal problem.

− log(0.2)δ11 − log(0.8)δ12 = u1

− log(0.3)δ21 − log(0.7)δ22 = u2

− log(0.8)δ32 − log(1)δ33 = u3

− log(0.1)δ41 − log(0.9)δ42 = u4

− log(0.9)δ52 − log(1)δ53 = u5 (2.58)

δ11 + δ12 = 1

δ21 + δ22 = 1

δ32 + δ33 = 1

δ41 + δ42 = 1

δ52 + δ53 = 1

For the 5-node example, since the distribution function of the random variables can only

take 3 different values,number of combinations for picking the consecutive columns to calculate

the dual feasible basis is limited. However, for the systems where the distribution function takes

much bigger number of values, it is better to select the consecutive columns in a cost-efficient

way. In the below table we present the bases we encountered by the procedure where we pick

them in a cost efficient way:

Subscripts of the basic δij variables, Subscripts of the basic uj variables
i = 1 i = 2 i = 3 i = 4 i = 5

1,2 1,2 1,2 1,2 1,2 1,2,5
1,2 2,3 1,2 1,2 1,2 1,2
1,2 2,3 2,3 1,2 1,2 1,2,5
1,2 2,3 2,3 1,2 1,2 1,2,5
2,3 2,3 3 1,2 1,2 1,3,4,5
2,3 2,3 3 1,2 1,2 1,3,4,5
2,3 2,3 3 2,3 1,2 1,3,5
2,3 2,3 3 2,3 2,3 1,4,5
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with the optimum vector:

δ12 = 0.00000123, δ23 = 0.99999877

δ22 = 0.0000124, δ23 = 0.9999876

δ32 = 0, δ33 = 1

δ42 = 0.00000021, δ43 = 0.9999979

δ51 = 0.0000233, δ53 = 0.9999767

u1 = 0.0000000191, u4 = 0.045757691, u5 = 0.0000001066.

2.6 Summary of the Solution Algorithm

In this section we summarize the solution algorithm of the stochastic network design problem

(2.36).

It consists of the following steps.

Step 1. Rewrite problem (2.36) in the form of (2.37).

Step 2. Generate a few p-efficient points for ξ and create the corresponding p-efficient points

of the random vector (2.29). Initialize J0 as the subscript set of these p-efficient points.

Step 3. Set up and solve problem (Ph) by a method that produces primal-dual feasible

(optimal) basis. Let α designate the optimal dual vector.

Step 4. Solve problem (2.46) to check if an entering variable to (Ph) exists, i.e. (2.40) holds.

If it is not the case, then go to Step 5. If (2.40) holds then we find a new p-efficient point, form

the union of jh and the new p-efficient point, to obtain jh+1 and define (Ph+1). Go to Step 3.

Step 5. Stop, the optimal solution of problem (Ph) is the optimal solution of problem (P ).

Finding a new p-efficient point means the solution of problem (2.47), if the components

of ξ, are stochastically dependent. If the components of ξ are independent, then to find new

p-efficient point for ξ in problem (2.29) is a multiple choice knapsack problem that we solve by

the algorithm in Section 2.5.3.

2.7 Numerical Examples

Example This example is an 8 node network in Figure 2.4 with only 2 random demand nodes

(Node 2 and Node 5) which are both binomially distributed on arithmetic sequences. The

demands are assumed to be independent. Among 161 non-eliminated inequalities (see Appendix

B) only 136 include at least one of the two demands. The 136 inequalities are stochastic and

the remaining 25 are deterministic constraints. Table 2.4 provides us with the possible values of
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the random demands at Nodes 2 and 5. The associated probability distributions are presented

in Table 2.5.

Figure 2.4: Eight-node network with arc capacities.

Table 2.4: Possible values of the random demands

ξ2 33 38 43 48 53 58 63 68 73 78

ξ5 15 20 25 30 35 40 45 50 55 60

Table 2.5: Associated probabilities (Binomial), c.d.f.

F2 (n = 9, p = 0.47) 0.004 0.038 0.149 0.361 0.621 0.83 0.950 0. 990 0.999 1

F5 (n = 9, p = 0.47) 0.003 0.029 0.123 0.316 0.573 0.80 0.936 0. 987 0.998 1

Since the binomial probability function is logconcave, both F2 and F5 are logconcave discrete

function. The Stochastic Programming Problem to be solved is: ((S) means the feasibility
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inequality corresponding to S ⊂ N):

min cTx

subject to

P (y(S, S̄) ≥ d(S), S ⊂ N1, (S) non-eliminated) ≥ 0.95,

where N1 is the collection of the nodes with random demand,

y(S, S̄) ≥ d(S), S ⊂ N2, N2 = N \N1

d(S) =
∑
i∈S(ξi − xi)

li ≤ xi ≤ ui for i = 1, . . . , 8,

where li =



0

0

0

0

0

0

0

0



, ui =



100

100

100

100

100

100

100

100



, c =



2

3

4

2

1

1

7

4


and x = (x1, x2, x3, x4, x5, x6, x7, x8)T is the decision vector. The solution steps are the

following.

Step 1. Rewrite problem in the form of (2.37).

Step 2. V1 = (z(1)) =
(
78
45

)
.

Step 3. Set up and solve problem (P1) by a method that produces primal-dual feasible

(optimal) basis. The optimal solution is:

x = [89 100 58 100 100 87 34 47]
T

with optimum value= 1523. Let α designate the optimal dual vector.

Step 4.

Iteration 1: Solve problem (2.44). The optimal solution is z(2) =
(
73
55

)
. Since (2.40) holds,

include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into (P1),

define (P2) with V2 = (V1,
(
73
55

)
).

Iteration 2: Solve problem (2.44). The optimal solution is z(3) =
(
68
60

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V3 = (V2,
(
68
60

)
).
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Iteration 3: Solve problem (2.44). The optimal solution is z(4) =
(
63
60

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V4 = (V3,
(
63
60

)
).

Iteration 4: Solve problem (2.44). The optimal solution is z(5) =
(
63
45

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V5 = (V4,
(
63
45

)
).

Iteration 5: Solve problem (2.44). The optimal solution is z(6) =
(
68
55

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V6 = (V5,
(
68
55

)
).

Iteration 6: Solve problem (2.44). The optimal solution is z(7) =
(
78
50

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V7 = (V6,
(
78
50

)
).

Iteration 7: Solve problem (2.44). The optimal solution is z(8) =
(
68
45

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V8 = (V7,
(
68
45

)
).

Iteration 8: Solve problem (2.44). The optimal solution is z(9) =
(
73
60

)
. Since (2.40) holds,

include the new p-efficient point into (P1), define (P2) with (P2) with V9 = (V8,
(
73
60

)
).

Iteration 9: Solve problem (2.44). Solve problem (2.44). The optimal solution is z(10) =(
58
60

)
. Since (2.40) holds, include the new p-efficient point into (P1), define (P2) with (P2) with

V10 = (V9,
(
58
60

)
).

Step 5. Equation (2.40) has equal values on both sides of the inequality therefore algorithm

terminates. Optimal solution is obtained;

x =
[

89 100 44.785 100 100 87 34 45.215
]T

with optimum value= 1463.

If we solve the same problem by using the existing multiple choice knapsack solution algo-

rithms, we obtain the same optimal solution with following p-efficient points:(
78
45

)
,
(
63
50

)
,
(
68
45

)
,
(
78
40

)
,
(
63
45

)
,
(
63
60

)
,
(
58
50

)
,
(
58
60

)
.

Example This example is the same 8 node network in Figure 2.4, where all nodes have random

demands with binomial distribution on arithmetic sequences. The number of non-eliminated

161 inequalities is (see Appendix B), those are the stochastic constraints. Table 2.6 provides us

with the possible values of the random demands of Node 1 thorough Node 8. The associated

probability distributions can be found in Table 2.7.

All eight distributions are binomial hence all discrete functions Fi, i = 1, 2, 3, 4, 5, 6, 7, 8 are
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Table 2.6: Possible values of the random demands
ξ1 34 39 44 49 54 59 64 69 74 79

ξ2 33 38 43 48 53 58 63 68 73 78

ξ3 17 22 27 32 37 42 47 52 57 62

ξ4 33 38 43 48 53 58 63 68 73 78

ξ5 15 20 25 30 35 40 45 50 55 60

ξ6 10 15 20 25 30 35 40 45 50 55

ξ7 15 20 25 30 35 40 45 50 55 60

ξ8 25 30 35 40 45 50 55 60 65 70

Table 2.7: Associated probabilities (Binomial) c.d.f.
p(1) (n = 9, p = 0.4) 0.01 0.0704 0.2316 0.4824 0.7332 0.9004 0.9747 0.9959 0.9994 1
p(2) (n = 9, p = 0.45) 0.0046 0.0385 0.1494 0.3612 0.6212 0.8339 0.9499 0.9905 0.9988 1
p(3) (n = 9, p = 0.5) 0.0019 0.0194 0.0897 0.2537 0.4997 0.7457 0.9097 0.98 0.9975 1
p(4) (n = 9, p = 0.6) 0.0002 0.0037 0.0249 0.0992 0.2664 0.5172 0.768 0.9292 0.9896 1
p(5) (n = 9, p = 0.48) 0.0027 0.0257 0.1109 0.2945 0.5488 0.7835 0.9279 0.985 0.9981 1
p(6) (n = 9, p = 0.35) 0.0207 0.121 0.3371 0.6087 0.828 0.9461 0.9885 0.9982 0.9995 1
p(7) (n = 9, p = 0.42) 0.0074 0.0558 0.196 0.4329 0.6902 0.8765 0.9664 0.9943 0.9993 1
p(8) (n = 9, p = 0.38) 0.0135 0.0881 0.2711 0.5329 0.7735 0.921 0.9812 0.997 0.9994 1

logconcave in the supports of ξi, i = 1, 2, 3, 4, 5, 6, 7, 8, respectively. The Stochastic Program-

ming Problem to be solved is:

min cTx

subject to

P (y(S, S̄)) ≥ d(S), (S) non-eliminated) ≥ 0.95, S ⊂ N,

where N is the collection of the nodes with random demand,

and d(S) =
∑
i∈S(ξi − xi), for S ⊂ N.

li =


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

, ui =


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, c =


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4


and x = (x1, x2, x3, x4, x5, x6, x7, x8)T is the decision vector. The solution steps are the

following.

Step 1. Rewrite problem in the form of (6.2).
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Step 2. V1 = (z(1)) =


64
68
57
73
55
45
55
65

.

Step 3. Set up and solve problem (P0) by a method that produces primal-dual feasible (opti-

mal) basis. Optimal basisx =
[

74 60 40 67 86.1799 56.8201 47 51
]T

with optimal

value= 1298.

Let α designate the optimal dual vector.

Step 4.

Iteration 1:Solve problem (2.44). The optimal solution is z(2) =


64
73
62
78
50
45
50
65

. Since (2.40) holds,

include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into (P1),

define (P2) with V2 =

V1,


64
73
62
78
50
45
50
65


.

Iteration 2: Solve problem (2.44). The optimal solution is z(3) =


69
68
57
78
50
40
55
60

. Since (2.40) holds,

include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into (P1),

define (P2) with V3 =

V2,


69
68
57
78
50
40
55
60


.

Iteration 3: Solve problem (2.44). The optimal solution is z(4) =


59
73
62
73
55
40
55
55

. Since (2.40) holds,

include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into (P1),

define (P2) with V4 =

V3,


59
73
62
73
55
40
55
55


.

Iteration 4:Solve problem (2.44). The optimal solution is z(5) =


74
73
62
73
55
40
55
55

. Since (2.40) holds,

include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into (P1),

define (P2) with V5 =

V4,


74
73
62
73
55
40
55
55


.

Iteration 5: :Solve problem (2.44). The optimal solution is z(6) =


79
73
52
73
60
40
50
60

. Since (2.40)

holds, include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into
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(P1), define (P2) with V6 =

V5,


79
73
52
73
60
40
50
60


.

Iteration 6: :Solve problem (2.44). The optimal solution is z(7) =


74
68
57
73
50
50
50
60

. Since (2.40)

holds, include the new p-efficient point (2.31) that we obtain for the random vector (2.29), into

(P1), define (P2) with V7 =

V6,


74
68
57
73
50
50
50
60


.

Step 5.Equation (2.40) has equal values on both sides of the inequality therefore algorithm

terminates. Optimal solution is obtained;

x =
[

69 60 40 67 81.0192 61.9808 42 46
]T

with optimal value= 1233.

If we solve the same problem by using the existing multiple choice knapsack solution algo-

rithms, we obtain the same optimal solution with following p-efficient points:
64
68
57
73
55
45
55
65

 ,


69
68
57
78
50
40
55
60

 ,


79
78
52
73
60
40
50
60

 ,


74
73
62
73
55
40
55
55

 ,


69
68
62
78
60
40
50
55

 ,


74
68
57
73
50
50
50
60

 .

Remark The condition in Theorem 2.2.1 holds true for the p-efficient points encountered in

the solution algorithm in examples 1 and 2.

Remark All the p-efficient points for the second example can be found in Appendix C.
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                                            x y u w λ

           =
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                            

x
≥

0,
y
≥

0,
u
≥

0,
w
≥

0,
λ
≥

0
,
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2.9 Appendix B

The number of eliminated inequalities by network topology: 94. Their numbers are: 11, 12, 13,

14, 15, 19, 20, 22, 24, 25, 26, 29, 33, 36, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,

57, 60, 61, 65, 70, 72, 73, 74, 75, 76, 79, 80, 81, 83, 91, 98, 99, 102, 103, 104, 112, 118, 120, 125,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 144, 145, 146, 148, 150, 155,

159, 160, 165, 178, 184, 185, 186, 187, 188, 189, 190, 193, 194, 195, 203, 209, 211, 216, 226, 228,

241.
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Table 2.8: Gale–Hoffman inequalities for the 8-node network (28−1 = 255 inequalities)

Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1

9 1 1 0 0 0 0 0 0

10 1 0 1 0 0 0 0 0

11 1 0 0 1 0 0 0 0

12 1 0 0 0 1 0 0 0

13 1 0 0 0 0 1 0 0

14 1 0 0 0 0 0 1 0

15 1 0 0 0 0 0 0 1

16 0 1 1 0 0 0 0 0

17 0 1 0 1 0 0 0 0

18 0 1 0 0 1 0 0 0

19 0 1 0 0 0 1 0 0

20 0 1 0 0 0 0 1 0

21 0 1 0 0 0 0 0 1

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

22 0 0 1 1 0 0 0 0

23 0 0 1 0 1 0 0 0

24 0 0 1 0 0 1 0 0

25 0 0 1 0 0 0 1 0

26 0 0 1 0 0 0 0 1

27 0 0 0 1 1 0 0 0

28 0 0 0 1 0 1 0 0

29 0 0 0 1 0 0 1 0

30 0 0 0 1 0 0 0 1

31 0 0 0 0 1 1 0 0

32 0 0 0 0 1 0 1 0

33 0 0 0 0 1 0 0 1

34 0 0 0 0 0 1 1 0

35 0 0 0 0 0 1 0 1

36 0 0 0 0 0 0 1 1

37 1 1 1 0 0 0 0 0

38 1 1 0 1 0 0 0 0

39 1 1 0 0 1 0 0 0

40 1 1 0 0 0 1 0 0

41 1 1 0 0 0 0 1 0

42 1 1 0 0 0 0 0 1

43 1 0 1 1 0 0 0 0

44 1 0 1 0 1 0 0 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

45 1 0 1 0 0 1 0 0

46 1 0 1 0 0 0 1 0

47 1 0 1 0 0 0 0 1

48 1 0 0 1 1 0 0 0

49 1 0 0 1 0 1 0 0

50 1 0 0 1 0 0 1 0

51 1 0 0 1 0 0 0 1

52 1 0 0 0 1 1 0 0

53 1 0 0 0 1 0 1 0

54 1 0 0 0 1 0 0 1

55 1 0 0 0 0 1 1 0

56 1 0 0 0 0 1 0 1

57 1 0 0 0 0 0 1 1

58 0 1 1 1 0 0 0 0

59 0 1 1 0 1 0 0 0

60 0 1 1 0 0 1 0 0

61 0 1 1 0 0 0 1 0

62 0 1 1 0 0 0 0 1

63 0 1 0 1 1 0 0 0

64 0 1 0 1 0 1 0 0

65 0 1 0 1 0 0 1 0

66 0 1 0 1 0 0 0 1

67 0 1 0 0 1 1 0 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

68 0 1 0 0 1 0 1 0

69 0 1 0 0 1 0 0 1

70 0 1 0 0 0 1 1 0

71 0 1 0 0 0 1 0 1

72 0 1 0 0 0 0 1 1

73 0 0 1 0 0 0 1 1

74 0 0 1 0 0 1 0 1

75 0 0 1 0 0 1 1 0

76 0 0 1 0 1 0 0 1

77 0 0 1 0 1 0 1 0

78 0 0 1 0 1 1 0 0

79 0 0 1 1 0 0 0 1

80 0 0 1 1 0 0 1 0

81 0 0 1 1 0 1 0 0

82 0 0 1 1 1 0 0 0

83 0 0 0 1 0 0 1 1

84 0 0 0 1 0 1 0 1

85 0 0 0 1 0 1 1 0

86 0 0 0 1 1 0 0 1

87 0 0 0 1 1 0 1 0

88 0 0 0 1 1 1 0 0

89 0 0 0 0 1 1 1 0

90 0 0 0 0 1 1 0 1

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

91 0 0 0 0 1 0 1 1

92 0 0 0 0 0 1 1 1

93 0 0 0 0 1 1 1 1

94 0 0 0 1 0 1 1 1

95 0 0 0 1 1 0 1 1

96 0 0 0 1 1 1 0 1

97 0 0 0 1 1 1 1 0

98 0 0 1 0 0 1 1 1

99 0 0 1 0 1 0 1 1

100 0 0 1 0 1 1 0 1

101 0 0 1 0 1 1 1 0

102 0 0 1 1 0 0 1 1

103 0 0 1 1 0 1 0 1

104 0 0 1 1 0 1 1 0

105 0 0 1 1 1 0 0 1

106 0 0 1 1 1 0 1 0

107 0 0 1 1 1 1 0 0

108 0 1 0 0 0 1 1 1

109 0 1 0 0 1 0 1 1

110 0 1 0 0 1 1 0 1

111 0 1 0 0 1 1 1 0

112 0 1 0 1 0 0 1 1

113 0 1 0 1 0 1 0 1

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

114 0 1 0 1 0 1 1 0

115 0 1 0 1 1 0 0 1

116 0 1 0 1 1 0 1 0

117 0 1 0 1 1 1 0 0

118 0 1 1 0 0 0 1 1

119 0 1 1 0 0 1 0 1

120 0 1 1 0 0 1 1 0

121 0 1 1 0 1 0 0 1

122 0 1 1 0 1 0 1 0

123 0 1 1 0 1 1 0 0

124 0 1 1 1 0 0 0 1

125 0 1 1 1 0 0 1 0

126 0 1 1 1 0 1 0 0

127 0 1 1 1 1 0 0 0

128 1 0 0 0 0 1 1 1

129 1 0 0 0 1 0 1 1

130 1 0 0 0 1 1 0 1

131 1 0 0 0 1 1 1 0

132 1 0 0 1 0 0 1 1

133 1 0 0 1 0 1 0 1

134 1 0 0 1 0 1 1 0

135 1 0 0 1 1 0 0 1

136 1 0 0 1 1 0 1 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

137 1 0 0 1 1 1 0 0

138 1 0 1 0 0 0 1 1

139 1 0 1 0 0 1 0 1

140 1 0 1 0 0 1 1 0

141 1 0 1 0 1 0 0 1

142 1 0 1 0 1 0 1 0

143 1 0 1 0 1 1 0 0

144 1 0 1 1 0 0 0 1

145 1 0 1 1 0 0 1 0

146 1 0 1 1 0 1 0 0

147 1 0 1 1 1 0 0 0

148 1 1 0 0 0 0 1 1

149 1 1 0 0 0 1 0 1

150 1 1 0 0 0 1 1 0

151 1 1 0 0 1 0 0 1

152 1 1 0 0 1 0 1 0

153 1 1 0 0 1 1 0 0

154 1 1 0 1 0 0 0 1

155 1 1 0 1 0 0 1 0

156 1 1 0 1 0 1 0 0

157 1 1 0 1 1 0 0 0

158 1 1 1 0 0 0 0 1

159 1 1 1 0 0 0 1 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

160 1 1 1 0 0 1 0 0

161 1 1 1 0 1 0 0 0

162 1 1 1 1 0 0 0 0

163 0 0 0 1 1 1 1 1

164 0 0 1 0 1 1 1 1

165 0 0 1 1 0 1 1 1

166 0 0 1 1 1 0 1 1

167 0 0 1 1 1 1 0 1

168 0 0 1 1 1 1 1 0

169 0 1 0 0 1 1 1 1

170 0 1 0 1 0 1 1 1

171 0 1 0 1 1 0 1 1

172 0 1 0 1 1 1 0 1

173 0 1 0 1 1 1 1 0

174 0 1 1 0 0 1 1 1

175 0 1 1 0 1 0 1 1

176 0 1 1 0 1 1 0 1

177 0 1 1 0 1 1 1 0

178 0 1 1 1 0 0 1 1

179 0 1 1 1 0 1 0 1

180 0 1 1 1 0 1 1 0

181 0 1 1 1 1 0 0 1

182 0 1 1 1 1 0 1 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

183 0 1 1 1 1 1 0 0

184 1 0 0 0 1 1 1 1

185 1 0 0 1 0 1 1 1

186 1 0 0 1 1 0 1 1

187 1 0 0 1 1 1 0 1

188 1 0 0 1 1 1 1 0

189 1 0 1 0 0 1 1 1

190 1 0 1 0 1 0 1 1

191 1 0 1 0 1 1 0 1

192 1 0 1 0 1 1 1 0

193 1 0 1 1 0 0 1 1

194 1 0 1 1 0 1 0 1

195 1 0 1 1 0 1 1 0

196 1 0 1 1 1 0 0 1

197 1 0 1 1 1 0 1 0

198 1 0 1 1 1 1 0 0

199 1 1 0 0 0 1 1 1

200 1 1 0 0 1 0 1 1

201 1 1 0 0 1 1 0 1

202 1 1 0 0 1 1 1 0

203 1 1 0 1 0 0 1 1

204 1 1 0 1 0 1 0 1

205 1 1 0 1 0 1 1 0

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

206 1 1 0 1 1 0 0 1

207 1 1 0 1 1 0 1 0

208 1 1 0 1 1 1 0 0

209 1 1 1 0 0 0 1 1

210 1 1 1 0 0 1 0 1

211 1 1 1 0 0 1 1 0

212 1 1 1 0 1 0 0 1

213 1 1 1 0 1 0 1 0

214 1 1 1 0 1 1 0 0

215 1 1 1 1 0 0 0 1

216 1 1 1 1 0 0 1 0

217 1 1 1 1 0 1 0 0

218 1 1 1 1 1 0 0 0

219 0 0 1 1 1 1 1 1

220 0 1 0 1 1 1 1 1

221 0 1 1 0 1 1 1 1

222 0 1 1 1 0 1 1 1

223 0 1 1 1 1 0 1 1

224 0 1 1 1 1 1 0 1

225 0 1 1 1 1 1 1 0

226 1 0 0 1 1 1 1 1

227 1 0 1 0 1 1 1 1

228 1 0 1 1 0 1 1 1

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

229 1 0 1 1 1 0 1 1

230 1 0 1 1 1 1 0 1

231 1 0 1 1 1 1 1 0

232 1 1 0 0 1 1 1 1

233 1 1 0 1 0 1 1 1

234 1 1 0 1 1 0 1 1

235 1 1 0 1 1 1 0 1

236 1 1 0 1 1 1 1 0

237 1 1 1 0 0 1 1 1

238 1 1 1 0 1 0 1 1

239 1 1 1 0 1 1 0 1

240 1 1 1 0 1 1 1 0

241 1 1 1 1 0 0 1 1

242 1 1 1 1 0 1 0 1

243 1 1 1 1 0 1 1 0

244 1 1 1 1 1 0 0 1

245 1 1 1 1 1 0 1 0

246 1 1 1 1 1 1 0 0

247 1 1 1 1 1 1 1 0

248 1 1 1 1 1 1 0 1

249 1 1 1 1 1 0 1 1

250 1 1 1 1 0 1 1 1

251 1 1 1 0 1 1 1 1

Continued on next page
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Number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

252 1 1 0 1 1 1 1 1

253 1 0 1 1 1 1 1 1

254 0 1 1 1 1 1 1 1

255 1 1 1 1 1 1 1 1



91

2.10 Appendix C

Table 2.10: All the p-level efficient points for the 8-node example

Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

64 64 69 69 69 69 69 59 59 79 79 79

68 73 68 68 73 78 78 68 73 73 78 78

57 62 57 62 57 52 57 57 62 52 52 62

73 78 78 78 73 78 73 73 73 73 73 78

55 50 50 60 55 55 50 50 55 55 60 60

45 45 40 40 40 55 40 50 40 40 40 55

55 50 55 50 55 50 50 50 55 50 50 60

65 65 60 55 55 55 70 60 55 60 60 70

132 137 137 137 142 147 147 127 132 152 157 157

121 126 126 131 126 121 126 116 121 131 131 141

125 135 125 130 130 130 135 125 135 125 130 140

141 151 146 146 146 156 151 141 146 146 151 156

123 123 118 128 128 133 128 118 128 128 138 138

133 138 128 123 128 133 148 128 128 133 138 148

112 112 107 122 112 107 107 107 117 107 112 122

128 128 128 138 128 133 123 123 128 128 133 138

118 123 118 118 113 133 113 123 113 113 113 133

138 143 138 133 128 133 143 133 128 133 133 148

100 95 90 100 95 110 90 100 95 95 100 115

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

110 100 105 110 110 105 100 100 110 105 110 120

100 95 95 90 95 105 90 100 95 90 90 115

110 110 100 95 95 110 110 110 95 100 100 125

189 199 194 199 199 199 204 184 194 204 209 219

205 215 215 215 215 225 220 200 205 225 230 235

187 187 187 197 197 202 197 177 187 207 217 217

197 202 197 192 197 202 217 187 187 212 217 227

176 176 176 191 181 176 176 166 176 186 191 201

198 213 203 208 203 208 208 198 208 198 203 218

180 185 175 190 185 185 185 175 190 180 190 200

190 200 185 185 185 185 205 185 190 185 190 210

196 201 196 206 201 211 201 191 201 201 211 216

186 196 186 186 186 211 191 191 186 186 191 211

206 216 206 201 201 211 221 201 201 206 211 226

168 168 158 168 168 188 168 168 168 168 178 193

178 173 173 178 183 183 178 168 183 178 188 198

188 188 178 183 183 188 198 178 183 188 198 208

178 183 168 163 168 188 188 178 168 173 178 203

185 190 185 200 185 185 180 180 190 180 185 200

157 157 147 162 152 162 147 157 157 147 152 177

167 162 162 172 167 157 157 157 172 157 162 182

173 173 168 178 168 188 163 173 168 168 173 193

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

183 178 183 188 183 183 173 173 183 178 183 198

193 193 188 193 183 188 193 183 183 188 193 208

173 173 173 168 168 183 163 173 168 163 163 193

183 188 178 173 168 188 183 183 168 173 173 203

155 145 145 150 150 160 140 150 150 145 150 175

165 160 150 155 150 165 160 160 150 155 160 185

165 160 155 145 150 160 160 160 150 150 150 185

262 277 272 277 272 277 277 257 267 277 282 297

244 249 244 259 254 254 254 234 249 259 269 279

254 264 254 254 254 254 274 244 249 264 269 289

260 265 265 275 270 280 270 250 260 280 290 295

250 260 255 255 255 280 260 250 245 265 270 290

270 280 275 270 270 280 290 260 260 285 290 305

232 232 227 237 237 257 237 227 227 247 257 272

242 237 242 247 252 252 247 227 242 257 267 277

252 252 247 252 252 257 267 237 242 267 277 287

242 247 237 232 237 257 257 237 227 252 257 282

249 254 254 269 254 254 249 239 249 259 264 279

221 221 216 231 221 231 216 216 216 226 231 256

231 226 231 241 236 226 226 216 231 236 241 261

253 263 253 268 258 263 258 248 263 253 263 278

243 258 243 248 243 263 248 248 248 238 243 273

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

263 278 263 263 258 263 278 258 263 258 263 288

225 230 215 230 225 240 225 225 230 220 230 255

235 235 230 240 240 235 235 225 245 230 240 260

245 250 235 245 240 240 255 235 245 240 250 270

235 245 225 225 225 240 245 235 230 225 230 265

241 246 236 246 241 266 241 241 241 241 251 271

251 251 251 256 256 261 251 241 256 251 261 276

261 266 256 261 256 266 271 251 256 261 271 286

241 246 241 236 241 261 241 241 241 236 241 271

251 261 246 241 241 266 261 251 241 246 251 281

223 218 213 218 223 238 218 218 223 218 228 253

233 233 218 223 223 243 238 228 223 228 238 263

243 238 233 233 238 238 248 228 238 238 248 268

233 233 223 213 223 238 238 228 223 223 228 263

230 235 225 240 225 240 220 230 230 220 225 255

240 240 240 250 240 235 230 230 245 230 235 260

250 255 245 255 240 240 250 240 245 240 245 270

212 207 202 212 207 212 197 207 212 197 202 237

222 222 207 217 207 217 217 217 212 207 212 247

228 223 223 228 223 238 213 223 223 218 223 253

238 238 228 233 223 243 233 233 223 228 233 263

248 243 243 243 238 238 243 233 238 238 243 268

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

238 238 233 223 223 238 233 233 223 223 223 263

220 210 205 205 205 215 210 210 205 205 210 245

317 327 322 337 327 332 327 307 322 332 342 357

307 322 312 317 312 332 317 307 307 317 322 352

327 342 332 332 327 332 347 317 322 337 342 367

289 294 284 299 294 309 294 284 289 299 309 334

299 299 299 309 309 304 304 284 304 309 319 339

309 314 304 314 309 309 324 294 304 319 329 349

299 309 294 294 294 309 314 294 289 304 309 344

305 310 305 315 310 335 310 300 300 320 330 350

315 315 320 325 325 330 320 300 315 330 340 355

325 330 325 330 325 335 340 310 315 340 350 365

305 310 310 305 310 330 310 300 300 315 320 350

315 325 315 310 310 335 330 310 300 325 330 360

287 282 282 287 292 307 287 277 282 297 307 332

297 297 287 292 292 312 307 287 282 307 317 342

307 302 302 302 307 307 317 287 297 317 327 347

297 297 292 282 292 307 307 287 282 302 307 342

294 299 294 309 294 309 289 289 289 299 304 334

304 304 309 319 309 304 299 289 304 309 314 339

314 319 314 324 309 309 319 299 304 319 324 349

276 271 271 281 276 281 266 266 271 276 281 316

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

286 286 276 286 276 286 286 276 271 286 291 326

298 308 293 308 298 318 298 298 303 293 303 333

308 313 308 318 313 313 308 298 318 303 313 338

318 328 313 323 313 318 328 308 318 313 323 348

298 308 298 298 298 313 298 298 303 288 293 333

308 323 303 303 298 318 318 308 303 298 303 343

280 280 270 280 280 290 275 275 285 270 280 315

290 295 275 285 280 295 295 285 285 280 290 325

300 300 290 295 295 290 305 285 300 290 300 330

290 295 280 275 280 290 295 285 285 275 280 325

296 296 291 296 296 316 291 291 296 291 301 331

306 311 296 301 296 321 311 301 296 301 311 341

316 316 311 311 311 316 321 301 311 311 321 346

306 311 301 291 296 316 311 301 296 296 301 341

288 283 273 273 278 293 288 278 278 278 288 323

285 285 280 290 280 290 270 280 285 270 275 315

295 300 285 295 280 295 290 290 285 280 285 325

305 305 300 305 295 290 300 290 300 290 295 330

277 272 262 267 262 267 267 267 267 257 262 307

293 288 283 283 278 293 283 283 278 278 283 323

362 372 362 377 367 387 367 357 362 372 382 412

372 377 377 387 382 382 377 357 377 382 392 417

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

382 392 382 392 382 387 397 367 377 392 402 427

362 372 367 367 367 382 367 357 362 367 372 412

372 387 372 372 367 387 387 367 362 377 382 422

344 344 339 349 349 359 344 334 344 349 359 394

354 359 344 354 349 364 364 344 344 359 369 404

364 364 359 364 364 359 374 344 359 369 379 409

354 359 349 344 349 359 364 344 344 354 359 404

360 360 360 365 365 385 360 350 355 370 380 410

370 375 365 370 365 390 380 360 355 380 390 420

380 380 380 380 380 385 390 360 370 390 400 425

370 375 370 360 365 385 380 360 355 375 380 420

352 347 342 342 347 362 357 337 337 357 367 402

349 349 349 359 349 359 339 339 344 349 354 394

359 364 354 364 349 364 359 349 344 359 364 404

369 369 369 374 364 359 369 349 359 369 374 409

341 336 331 336 331 336 336 326 326 336 341 386

353 358 348 358 353 368 348 348 358 343 353 393

363 373 353 363 353 373 368 358 358 353 363 403

373 378 368 373 368 368 378 358 373 363 373 408

363 373 358 353 353 368 368 358 358 348 353 403

345 345 330 335 335 345 345 335 340 330 340 385

361 361 351 351 351 371 361 351 351 351 361 401

Continued on next page
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Plep

1

Plep

2

Plep

3

Plep

4

Plep

5

Plep

6

Plep

7

Plep

8

Plep

9

Plep

10

Plep

11

Plep

12

350 350 340 345 335 345 340 340 340 330 335 385

417 422 417 427 422 437 417 407 417 422 432 472

427 437 422 432 422 442 437 417 417 432 442 482

437 442 437 442 437 437 447 417 432 442 452 487

427 437 427 422 422 437 437 417 417 427 432 482

409 409 399 404 404 414 414 394 399 409 419 464

425 425 420 420 420 440 430 410 410 430 440 480

414 414 409 414 404 414 409 399 399 409 414 464

418 423 408 413 408 423 418 408 413 403 413 463

482 487 477 482 477 492 487 467 472 482 492 542
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Chapter 3

Optimal Capacity Design under k-out-of-n and

Consecutive k-out-of-n type Probabilistic Constraints

3.1 Introduction

In this chapter, we formulate and solve probabilistic constrained stochastic programming prob-

lems, where we prescribe lower and upper bounds for k-out-of-n and consecutive-k-out-of-n

reliabilities in the form of probabilistic constraints. The problem is to determine the optimal

capacity of a water release, or a reserve of a bank, to satisfy irrigation demand or demand

of financial transactions, i.e., a reliability constraint where the reliability is one of the above-

mentioned type. For the non-consecutive type reliability problem, normal and gamma distri-

butions are used for supply and demand values, respectively. By using the properties of the

standard gamma distribution, the reliability constraint is written as an equation, which can

then be solved by simulation. For the k-consecutive case, different probability bounds are used

in order to solve the reliability equation. To create lower and upper bounds for the reliability

constraint, discrete binomial problems are used, which are constructed as linear programming

(LP) problems. S1, S2, S3 sharp lower bounds, Hunter’s upper bound and Cherry tree upper

bound are calculated to obtain the desired probability level for the reliability constraint. A

bi-section algorithm is later applied to find the optimal capacity level.

3.2 Formulation of the Problem

There will be two types of problems modeled in this section. In the first model, system is

allowed to fail a demand for at most any k periods out of n periods while solving for the

optimal capacity. In the second model, same objective function is solved while allowing at most

consecutive k periods out of n periods without satisfying the demand. Following notation is
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used for both problems:

ξi supply in the ith period, random variable

γi demand in the ithperiod, random variable

δi additional supply (i.e. rain in water reservoir design)

in the ith period, random variable

xi if demand is satisfied in the ith period, 1 o.w., 0,

boolean decision variable

m capacity, decision variable

mopt value of the optimum capacity

M upper limit for the capacity, predefined number

k number of permitted days of not meeting the demand,

predefined number

p probability level of reliability, predefined number

First Model: Failing to meet the demand is allowed for at most k periods

Problem to be solved:

min m

subject to

P{(min(ξi,m) + δi) ≥ xiγi,

i = 1, . . . , n, x1 + · · ·+ xn ≥ n− k} ≥ p

xi ∈ {0, 1} i = 1, . . . , n (3.1)

0 ≤ m ≤M

Second Model: Failing to meet the demand is allowed for at most k consecutive

periods
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Problem to be solved:

min m

subject to

P{(min(ξi,m) + δi) ≥ xiγi

i = 1, . . . , n, xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n (3.2)

0 ≤ m ≤M

3.3 Mathematical Properties of the Reservoir System Design Model

In this section, we prove a convexity theorem for problems (3.1) and (3.2) where there are no

discrete variables. The convexity statement is based on the theory of multivariate logconcave

measures and functions. In order to make the paper self contained, we recall some facts from

logconcavity. First we present two definitions.

Definition A function f(x) ≥ 0, x ∈ Rn is logconcave if for every x, y ∈ Rn and 0 < λ < 1 we

have

f(λx+ (1− λ)y) ≥ (f(x))
λ

(f(y))
1−λ

(3.3)

Definition A probability measure P is the Borel subsets of Rn is logconcave (Prékopa 1971,

1973a) if for every convex subsets A,B of Rn and 0 < λ < 1 we have

P (λA+ (1− λ)B) ≥ (P (A))λ(P (B))1−λ.

A simple consequence of the second definition is that the c.d.f., corresponding to a logconcave

probability measure, is logconcave (as a point function). The basic theorem of logconcave

measure is the following:

Theorem 3.3.1 (Prékopa, 1971, 1973a). If the probability measure P is generated by a log-

concave p.d.f., then P is a logconcave measure.

Another theorem that we use in connection with problem (3.1) is the following:

Theorem 3.3.2 (Prékopa, 1972). If g1(x, y), . . . , gr(x, y) are concave functions in Rn+q, where

x ∈ Rn, y ∈ Rq and ξ ∈ Rn is a random variable that has logconcave distribution, then the

function

P (gi(ξ, y) ≥ 0, i = 1, . . . , r)
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is a logconcave function of y ∈ Rn.

A consequence of the above theorem is

Theorem 3.3.3 If the joint p.d.f. of the random variables ξi, δi, γi, i = 1, . . . , n is logconcave,

then for every fixed x,

P (min(ξi,m) + δi ≥ xiγi, i = 1, . . . , n)

is logconcave function of ξi, δi, and γi.

Proof Theorem 3.3.1 ensures the logconcavity of the joint distribution of the random variables

ξi, δi, γi, i = 1, . . . , n. On the other hand, if we consider ξi, δi, γi, i = 1, . . . , n as deterministic

variables, then we can see that the functions

min(ξi,m) + δi − xiγi, i = 1, . . . , n

are concave in all these variables and n. By Theorem 3.3.2, the assertion follows.

3.4 Solution of the Problem

3.4.1 Solution of the Model (3.1)

First we present a method to find an upper bound for the optimal solution of model where there

are no discrete variables. For the case of I.I.D. γ1, . . . , γn, where each has gamma distribution

with p.d.f.:

λϑzϑ−1e−λz

τ(ϑ)
, z > 0 (3.4)

we can obtain an upper bound for mopt. For simplicity, we assume that (γ1, . . . , γn) is indepen-

dent of (ξ1, . . . , ξn, δ1, . . . , δn).

First, we mention that the random variables λγ1, . . . , λγn follow the standard gamma dis-

tribution, i.e. the distribution with a p.d.f. (3.4), where λ = 1. The second observation is that

the following relations hold:

P (min(ξi,m) + δi ≥ xiγi, i = 1, . . . , n)

≤ P (

n∑
i=1

[min(ξi,m) + δi] ≥
n∑
i=1

xiγi) (3.5)

= P (

n∑
i=1

λ[min(ξi,m) + δi] ≥
n∑
i=1

xiλγi)



103

The distribution of
∑n
i=1 xiλγi is the same as the distribution of λγ1

∑n
i=1 xi. In fact,

the sum of independent standard gamma random variables is also a standard gamma random

variable and the (ϑ) parameter for the sum is also the sum of individual (ϑ) parameters. Thus,

we can replace
∑n
i=1 xiλγi by λγ1

∑n
i=1 xi for the last line in (3.5). On the other hand, it is

prescribed that
∑n
i=1 xi ≥ n− k, hence we obtain the inequality

P (min(ξi,m) + δi ≥ xiγi, i = 1, . . . , n) (3.6)

≤ P

(
n∑
i=1

λ [min(ξi,m) + δi] ≥ (n− k)λγ1

)
.

Inequality (3.6) implies that the optimum value of the problem

minm

subject to

P (
∑n
i=1 λ [min(ξi,m) + δi] ≥ (n− k)λγ1) ≥ p (3.7)

0 ≤ m ≤M

is an upper bound for the optimum value of problem (3.1). On the other hand, if there exists

a feasible m in problem (3.7), then, due to the monocity of the constraining function in the

first constraint, the optimal solution of problem (3.7) can simply be obtained by solving the

equation:

P

(
n∑
i=1

λ [min(ξi,m) + δi] ≥ (n− k)λγ1

)
= p. (3.8)

3.4.2 Solution of the problem (3.2)

The problem (3.2) can be solved in multiple ways; however in this paper we will use bounding

techniques. For the sake of computational easiness, we will ignore δi. In order to apply bounding

methodology, the reliability constraint in model (3.2) will be re-written as follows:

P{min ((ξi,m) ≥ γixi) , i = 1, . . . , n,

xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n
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This inequality can also be expressed as:

P{(ξi ≥ γixi,m ≥ γixi), i = 1, . . . , n,

xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n

which claims that, the minimum of the supply and the capacity should be greater than or equal

to the demand with a probability p so that the condition for failing to meet the demand for k-

consecutive periods can be satisfied. In order to solve this inequality, we will consider k periods

starting from the first period, (first period + k − 1 periods), second period (second period +

k − 1 periods) etc. individually and then we will consider the intersection of these n − k + 1

events. The intersection of these events will ensure that at least one period from the first period

until the kth period and from the second period until the (k + 1)
th

period will have enough

supply to meet the demand. When we consider total number of events l, the supply will never

fail to meet the demand for the k-consecutive periods out of n total periods.

The event Al means that starting from the lth period, at least one out of these k periods,

there will be sufficient supply. On the other hand, the complimentary event Al indicates that

there will not be sufficient supply for the demand during any k periods. A1 is represented as

follows when k = 7:

A1 = (ξi ≥ γi, m ≥ γi) ≥ 1, i = 1, . . . , 7

which implies that for at least 1 period out of 7 periods, there will be enough supply. On the

other hand, the A1 event is defined as follows:

A1 = (ξi ≥ γi, m ≥ γi) < 1, i = 1, . . . , 7

which indicates that demand will not be met for the whole 7 periods. Similarly, A2 event is

defined as:

A2 = (ξi ≥ γi, m ≥ γi) ≥ 1, i = 2, . . . , 8

which implies that for at least 1 period out 7 periods (from second period until the eighth

period), there will be sufficient supply whereas the A2 event is given as:

A2 = (ξi ≥ γi, m ≥ γi) < 1, i = 2, . . . , 8

which implies that there will not be sufficient supply for any of the mentioned 7 periods.
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The methodology to create Al events includes creating k consecutive periods, where the

demand is met, starting with the lth period till (l+ k − 1)th period. Here, there will be a total

of n − k + 1 number of events where n is the total number of periods that will be taken into

consideration. With this information, the last event is represented as follows:

An−k+1 = (ξi ≥ γi, m ≥ γi) ≥ 1, i = n− k + 1, . . . , n− 1

whereas the An−k+1 event is:

An−k+1 = (ξi ≥ γi, m ≥ γi) < 1, i = n− k + 1, . . . , n− 1

Next, the probability of intersection of all these events, that ensures that the demand is

allowed not to be met at most for k-consecutive periods can be written as follows:

P (A1 ∩ · · · ∩An−k+1) ≥ p (3.9)

The purpose of expressing the reliability constraint as the intersection of the specially defined

events is to be able to apply bounding techniques while searching for the optimum value of the

capacity m.

3.4.3 Sharp bounds on the probability

Solving Equation (3.9) is not practically easy and manageable therefore well known bounds

for the union of events will be used to define a lower and upper bound to the desired probability

which then will be used to determine the optimal capacity.

In order to calculate the lower and upper bounds for the reliability constraint, we provide

the description of the bounds in the next section where the same notation and definition of

Prékopa (1995) are used. Since all most known bounds are given for the union of the events,

we will explain how to convert the union of the events into intersection of the events, which is

needed to solve the optimal capacity problem.

Lower bounds, S1, S2, S3 given

Sharp lower bound is given in Prékopa (1995) as follows:

P (A1 ∪ · · · ∪An) ≥ i+ 2n− 1

(i+ 1)n
S1 −

2(2i+ n− 2)

i(i+ 1)n
S2 +

6

i(i+ 1)
S3 (3.10)
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where

i = 1 +
⌊
−6S3+2(n−2)S2

−2S2+(n−1)S1

⌋
Sk =

∑
1≤j1<···<jk≤n P (Aj1 ∩ · · · ∩Ajk), k = 1, . . . , n.

Hunter’s upper bound

Let A1, . . . , An be arbitrary events in an arbitrary probability space. Hunter (1976) provides

an upper bound for P (A1 ∪ · · · ∪ An) by the use of S1 and the individual probabilities P (Ai ∩

Aj), 1 ≤ i < j ≤ n. Hunter’s upper bound; therefore is given as:

P (A1 ∪ · · · ∪An) ≤ S1 −
∑

(i,j)∈T

P (Ai ∩Aj). (3.11)

The second term on the right hand side in inequality (3.11) is the weight of the spanning tree

T . The best bound of this type is obtained when we choose the maximum weight spanning

tree T ∗. Maximum weight spanning tree can be found using the Kruskal’s algorithm (Kruskal,

1956).

Cherry tree upper bound

A third order upper bound on the probability of the union of a finite number of events,

is presented by means of graphs called cherry trees. These are graphs that we construct re-

cursively in such a way that every time we pick a new vertex, we connect it with two already

existing vertices. If the latters are always adjacent, we call this a t-cherry tree. A cherry tree

has a weight that provides us with the upper bound on the union. A cherry tree bound can

be identified as a feasible solution to the dual of the Boolean probability bounding problem.

Moreover, a t-cherry tree bound can be identified as the objective function value of the dual

vector corresponding to a dual feasible basis in the Boolean problem. This enables us to make

an improvement on the bound algorithmically, if we use the dual method of linear programming.

First we will recall the definition of a cherry tree:

Definition (Bukszár, Prékopa 2001) We define a cherry tree recursively in the following man-

ner:

(i) An adjacent pair of vertices constitutes the only cherry tree that has exactly two vertices.

(ii) From a cherry tree we can obtain another cherry tree by adding a new vertex and two new

edges, connecting the new vertex with two already existing vertices. These two edges constitute
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a cherry.

(iii) If V is the set of vertices, ξ the set of edges and ε the set of cherries obtained that way

then we call the triple ∆ = (V, ξ, ε) a cherry tree.

Theorem 3.4.1 Bukszár and Prékopa (2001) For any cherry tree ∆ = (V, ξ, ε) with

V = 1, . . . , n we have

P (A1 ∪ · · · ∪An) ≤
∑n
i=1 P (Ai)− w(∆) = S1 − w(∆)

where (3.12)

w(∆) =
∑
{i,j}∈ξ P (Ai ∩Aj)−

∑
(i,j,k)∈ξ P (Ai ∩Aj ∩Ak)

Proof of the Theorem (3.4.1) can be found in Bukszár, Prékopa 2001.

3.4.4 Our lower and upper bounds

In Section 4.3, sharp lower and upper bounds that are widely used in the probability theory

are defined and formulated. There are two proposed upper bounds for the union of the events;

Hunter and Cherry tree upper bounds which are both dual feasible bases for the Boolean

bounding problem. However, all of these bounds calculate upper and lower ranges for the

probability of the union of the events. Since the main interest in our problem is to find a lower

and upper bound for the intersection of the events that is defined in Section 3.2, the following

conversion is needed:

P (A1 ∩ · · · ∩An−k+1) = 1− P (A1 ∪ · · · ∪An−k+1) (3.13)

If the lower bound for the union of the events is defined by equation (3.10), then we will have

the following formulation for the lower bound:

i+ 2n− 1

(i+ 1)n
S1 −

2(2i+ n− 2)

i(i+ 1)n
S2 +

6

i(i+ 1)
S3 = LB1.

Although we calculate both Hunter and Cherry tree upper bounds, our computational expe-

rience shows that cherry tree bounds are always better than or equal to Hunter upper bound

so that, we will define the upper bound for the union of the events with Equation (3.12) and

rename the right hand side as UB1. Then, we will have the following:

S1 − w(∆) = UB1 (3.14)
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Therefore, ranges for the union of the events can be rewritten as follows:

LB1 ≤ P (A1 ∪ · · · ∪An−k+1) ≤ UB1 (3.15)

If we rewrite the union of all the events in terms of intersection of complimentary events, we

will obtain the following:

LB1 ≤ 1− P (A1 ∩ · · · ∩An−k+1) ≤ UB1 (3.16)

After manipulating Equation (3.16), we will have the lower and upper bounds for the intersection

of the events as follows:

1− UB1 ≤ P (A1 ∩ · · · ∩An−k+1) ≤ 1− LB1 (3.17)

3.4.5 Bisection method

After calculating a lower and an upper bound for the intersection of the events, the proba-

bility interval for the reliability constraint will be used to obtain the optimal capacity, m. The

m value will be bisected until the calculated p is within one-decimal accuracy of the probability

bounds.

To perform this, the well-known bisection algorithm will be used. Bisection method in

mathematics, is a root-finding method which repeatedly bisects an interval and then selects a

subinterval in which a root must lie for further processing. In our case, the root that we would

like to find is the p. (Wood, 1989)

3.4.6 Summary of the steps for the solution of model 3.2

Here, we summarize the solution steps.

Step 0:

Generate ξ and η in Matlab by sampling from a normal distribution. m is a reasonable fixed

number which is subject to change during the bisection algorithm.

Step 1:

Ai,Aij , Aijk are calculated in order to find the S1, S2, S3.

Step 2:

S1, S2, S3 are calculated.
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Step 3:

Lower and upper bounds are calculated with Equation (3.10) and Equation (3.11) for the event:

P (A1 ∪ · · · ∪An)

Step 4:

Transformation of the intersection of the events from union of the events is performed as follows:

LB1 ≤ P (A1 ∪ · · · ∪An−k+1) ≤ UB1

LB1 ≤ 1− P (A1 ∩ · · · ∩An−k+1) ≤ UB1

1− UB1 ≤ P (A1 ∩ · · · ∩An−k+1) ≤ 1− LB1.

Step :5

Bisection algorithm is applied.Three possibilities can occur during the bisection algorithm:

• If p is larger than upper bound, then pick larger m

• If p is smaller than lower bound, then pick smaller m

• If p is in between lower and upper bound, try picking smaller/larger m

– If a large value of m performs better on value of m, keep bisection into the same

direction

– If a large value of m does not perform better on value of m, repeat the bisection in

other direction.

Step 6:

If p is in between one decimal digit of lower and upper bound STOP, else go to Step 0 and

change m.

3.5 Illustrative Example

In this section, we present a solution for an optimal water reservoir problem where a total period

of eight weeks (56 days) is considered. In the first formulation of the problem, any seven days

of dryness (not meeting the demand) is permitted with a probability level of 90%. For the sake
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of computational easiness, the rain amount which is an additional type of supply is considered

with the inflow (supply). Distribution of the inflow is assumed to be normal and the demand

is considered to follow gamma distribution in the first formulation. In the second formulation

of the problem, we use normal distribution for both inflow and demand distributions. Dryness

in consecutive seven days is forbidden with a probability level of 90%.

Model (3.1)

min m

subject to

P{(min(ξi,m) ≥ xiηi) , i = 1, . . . , 56 x1 + · · ·+ x56 ≥ 7} ≥ 0.90

xi ∈ {0, 1} i = 1, . . . , 56 (3.18)

0 ≤ m ≤M

Solution of Model (3.1) is basically solving the following equation:

P

(
56∑
i=1

λ [min(ξi,m)] ≥ (49)λγ1

)
= 0.9 (3.19)

where ξi is a normally distributed random variable with parameters (200, 30) and γ1 belongs

to a gamma distribution with parameters λ = 20, ϑ = 10. Equation (3.19) is solved by coding

a simulator in JAVA and running the equation 1,000 times to get the most observed accurate

minimum value for the capacity value m. The most frequently observed m value is 162 therefore

we can say that with the given inflow and demand variables, the upper bound of the minimum

capacity for the reservoir can be approximated as 162, while maintaining at most 7 days of dry

periods with a probability level of 90% (with a precision of 0.01).

Model (3.2)

min m

subject to

P{(min(ξi,m) ≥ xiηi) , i = 1, . . . , 56 xi + · · ·+ xi+6 ≥ 1 i = 1, . . . , 50} ≥ 0.90

xi ∈ {0, 1} i = 1, . . . , 56 (3.20)

0 ≤ m ≤M
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where the reliability constraint of the problem is equivalent to:

P{(ξk ≥ ηk,m ≥ ηk), i = 1, . . . , 56 xi + · · ·+ xi+6 ≥ 1 i = 1, . . . , 50} ≥ 0.90

Distributions for the inflow (supply) and demand can be found in the Table 4.3 of Appendix

A. We first choose the initial capacity value m as 180. Next, we apply the bi-section algorithm

based on the intervals of lower and upper bounds of the probability value. After applying the

steps given in Section 3.4, we obtain the results given in Table 1.

Table 1 shows that the interval that contains our desired p is obtained with a capacity

value of m that equals 151.4. Results clearly indicate that, with given inflow and demand

distributions, the land will not be dry for 7 consecutive days with the probability level of 0.90

when the capacity of the reservoir is 151.4.
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Table 3.1: Bisection algorithm results

Steps Capacity,
M

S1, S2, S3

Lower
Bound

Hunter
Upper
Bound

Cherry
Tree
Bound

pvalue Comment

1 180 0.973505 14.45638 12.345356 0.9

p<LB, pick
smaller M

2 158.8 0.879283 3.664441 3.5678921 0.9

LB<p<UB, try
decreasing M

3 153.4 0.890781 1.708109 1.684544 0.9

LB<p<UB, try
decreasing M

4 152.1 0.893874 1.195414 1.194523 0.9

LB<p<UB, try
decreasing M

5 151.3 0.895434 0.937376 0.937283 0.9

LB<p<UB, try
increasing M

6 151.7 0.894653 1.06553 1.064428 0.9

LB<p<UB, try
decreasing M

7 151.5 0.895043 1.00159 1.000967 0.9

LB<p<UB, try
decreasing M

8 151.4 0.895541 0.919803 0.91789 0.9 STOP!
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3.6 Appendix A

Table 3.2: Inflow ξ and demand η distributions

Inflow (ξ) Distribution Demand (η) Distribution

Mean Standard Deviation Mean Standard Deviation

198 17 149 38

186 50 165 49

117 13 204 35

186 2 181 32

162 14 199 42

206 72 178 56

206 17 177 32

163 91 173 59

209 13 227 58

165 108 202 53

186 45 194 48

211 52 189 41

147 63 181 51

201 62 204 39

192 93 204 28

182 12 182 45

225 79 183 41

224 75 179 41

258 31 180 36

Continued on next page
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Inflow (ξ) Distribution Demand (η) Distribution

Mean Standard Deviation Mean Standard Deviation

198 5 144 32

235 62 157 32

213 54 186 33

218 40 204 47

179 8 225 44

223 98 142 50

226 44 174 41

160 56 175 45

192 40 250 33

219 49 189 28

139 11 187 58

197 44 170 43

175 25 188 47

170 80 190 47

208 60 187 49

195 5 174 35

223 29 209 38

183 10 201 25

203 7 157 43

199 78 191 35

218 34 187 38

206 41 188 30

Continued on next page
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Inflow (ξ) Distribution Demand (η) Distribution

Mean Standard Deviation Mean Standard Deviation

189 2 181 21

232 17 208 42

238 52 172 62

234 48 178 53

187 102 180 42

166 1 170 32

197 45 198 30

191 52 205 15

142 40 159 45

192 34 165 36

234 62 172 23

185 28 174 36

175 16 214 45

177 101 200 29

177 52 179 26
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Chapter 4

A Serially Linked Reservoir Network Design Problem

with Consecutive k-out-of-n Type Reliability

4.1 Introduction

In this chapter, we formulate and solve a probabilistic constrained stochastic programming

model for a serially linked reservoir system under consecutive k-out-of-n type reliability. The

problem is to determine the optimal capacities of water releases in reservoirs or buffer stations

in manufacturing system or shelter capacities in an evacuation network while satisfying the reli-

ability constraint. We propose a hybrid algorithm of cutting planes and supporting hyperplanes

as a solution methodology. Our solution is novel in the sense that it is fast, efficient, and can

be applied in many different areas such as water engineering, manufacturing buffer systems,

evacuation networks, and so forth. We formulate our problem as a stochastic programming

problem under probabilistic constraint, prove its mathematical properties, and explain the so-

lution methodology. Finally, we present a numerical example for two reservoirs that satisfy the

demand for at least 8 consecutive periods out of 24 periods. The demand and inflow values that

are used in the example are random, stochastically dependent, and normally distributed.

4.2 Formulation of the Problem

The capacity design of the reservoirs on the rivers are one of the best application areas of

serially linked type of networks therefore we refer to an example coming from water engineering

to describe the model and the solution method throughout this chapter. The topology of the

main river, the sider rivers, and the possible reservoir sites that are serially linked is illustrated

in Figure 1.

Time is subdivided into a finite number of periods. Periods can be weeks, decades, etc.

in practice. We assume that at the beginning of each period, certain water inputs occur in

accordance with the topology of the rivers and reservoirs. If a reservoir becomes full, then the

water spills and fills downstream reservoirs. When this is the case, no more water is released
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from upstream reservoirs to downstream reservoirs. At the end of every period, demands occur

which can be assigned to different reservoirs. If possible, every demand is primarily satisfied

from the reservoir that they are assigned. If this is not the case, then the following policy

happens. First, demands are satisfied from the corresponding reservoir with the amount that

is available from that reservoir. Then starting from the reservoir furthest downstream, stop at

the first unsatisfied demand reservoir. From that reservoir, aggregate the demand and try to

meet this demand from the upstream. If this is not possible, proceed similarly in the upstream

direction. If the whole system can meet the demand, then this procedure stops at a certain point

and we can conclude that the system can satisfy the downstream demands. This procedure is

repeated for the remaining upstream subsystem, and so forth. In our model, we guarantee

meeting the demand for at least one period out of k consecutive periods with a prescribed

probability.

Figure 4.1: Topology of main river, the side rivers, and the possible reservoir sites.
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Let us introduce the following notation:

r number of sites

k number of consecutive periods

n number of periods

K(j) unknown capacity of reservoir j

C(j) building cost of reservoir j as a function of its capacity

V (j) prescribed constant, upper bound for K(j)

ζ
(j)
i water content in reservoir j at end of ith period

ξ
(j)
i direct inflow into reservoir j in the ith period

η
(j)
i direct demand against reservoir j in the ith period

x
(j)
i 1 if jth reservoir satisfies the demand in the ith period, 0 otherwise

4.2.1 Demand will be met at least k consecutive periods in total of n

periods

The model below is the general case where there are r reservoirs and n periods with the condition

of satisfying the demand for at least k consecutive periods out of n periods.

We assume that at the beginning of every period, certain water inputs occur according

to the topology of rivers and reservoirs. If reservoir becomes full, then the additional water

overflows to downstream reservoirs. No more water is released from upstream reservoirs to

downstream reservoirs. At the end of every period, demands occur which can be assigned to

separate reservoirs. Every demand is satisfied from the assigned reservoir if it is possible. If not,

then our assumed operating policy is as follows. First, demands are satisfied to the extent that

water amounts are in the corresponding reservoirs. If some demand is left unsatisfied from the

corresponding reservoir, then the extra demand is satisfied from the reservoir upstream to the

extent that water is available there. If some demand is still left unsatisfied, we proceed further

upstream until all the demand is satisfied. Our model is given by;

Min
∑r
j=1 C

(j)K(j)

subject to (4.1)
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P



Min
{
ζ
(j)
i−1 +

[
min(ζ

(j−1)
i−1 + ξ

(j)
i ,K(j−1))− x(j)i η

(j)
i ]+ + · · ·+[

min(ζ
(1)
i−1 + ξ

(1)
i ,K(1))− xiη(1)i ]+ + ξ

(2)
i ,K

(j)
i ≥ x(j)i η

(r)
i

}
x
(j)
1 + · · ·+ x

(j)
k ≥ 1

x
(j)
2 + · · ·+ x

(j)
k+1 ≥ 1

...

x
(j)
n−k+1 + · · ·+ x

(j)
n ≥ 1


≥ p

K
(j)
i ≤ V (j)

x
(j)
i ∈ {0, 1}, ζ

(j)
i , η

(j)
i , ξ

(j)
i ,K(j) ≥ 0

where i = 1, . . . , n j = 1 . . . , r

4.3 Mathematical Properties of the Reservoir System Design Model

(4.5)

From the point of finding a solution, it is very important to know if the problem is convex. Since

we have discrete and continuous variables simultaneously, overall convexity cannot be expected.

However, we can prove the convexity of the set of feasible solutions for any fixed values of 0− 1

boolean variables.

The mathematical properties of the probabilistic constraining function will be derived from

the following theorems.

Theorem 4.3.1 Let gi(x, y), i = 1, . . . , r be concave function in Rm+n where x is an n-

component and y is an m-component vector. Let ξ be an m-component random vector having a

logarithmic concave probability distribution. Then the function of the variable x:

P (gi(x, ξ) ≥ 0, i = 1, . . . , r) , (4.2)

(4.2) is logarithmic concave in the space Rn.

This theorem was proved by Prékopa (1971). For further similar results, one should refer to the

paper by Prékopa (1978).

Theorem 4.3.2 For any fixed x
(j)
i , i = 1, . . . , n, j = 1, . . . , r, the probability, standing on the

left-hand side in the probabilistic constraint (1), is a logconcave function of
(
K(1), . . . ,K(r)

)
.

Proof Inside the parentheses of the probability in (1) we have inequalities that we imag-

ine reformulated in such a way that as 0 remains on the right-hand sides of the inequalities.
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Then, we have n inequalities which contain functions of the variables
(
K(1), . . . ,K(r)

)
and(

ξ
(j)
1 , . . . , ξ

(j)
n , γ

(j)
1 , . . . , γ

(j)
n

)
, and these functions are concave. The application of Theorem

4.3.1 for this case proves Theorem 4.3.2.

4.4 Solution Methodology of the Problem

4.4.1 Reduction of the feasible set

The probabilistic constraint in (4.5) is formulated as a set of inequalities that need to be satisfied

for each component of each vector x(j) = (x
(j)
1 , . . . , x

(j)
n ) where

x
(j)
1 + . . .+ x

(j)
k ≤ k − 1

x
(j)
2 + . . .+ x

(j)
k+1 ≤ k − 1

. . .

x
(j)
n−k+1 + . . .+ x(j)n ≤ k − 1

x
(j)
i ∈ {0, 1}, i = 1, . . . , n

(4.3)

In this section we show that it suffices to check only a subset of values of x(j) satisfying (4.3)

to ensure that the probabilistic constraint holds for all x(j) satisfying (4.3).

Observe that the right-hand side of the probabilistic constraint in (4.1) is monotonously

increasing in x(j), and the left-hand side is monotonously decreasing in x(j) (the larger values

of x
(j)
i imply the smaller values of ζ

(i)
j ) Therefore, if the constraints hold for some x(j)′ ≥ x(j)′′,

then they also hold for x(j)′′. As a result, the constraints only need to be checked for those

values of x(j) which are maximal elements of the set defined by (4.3).

We now proceed to characterize the maximal elements of (4.3). A vector x is not maximal if

for one of its coordinates xr, we have x
(j)
r = 0 and the vector x′ = (x

(j)
1 , . . . , x

(j)
r−1, 1, x

(j)
r+1, . . . , x

(j)
n )

also satisfies (4.3). This only happens if for all r0 such that r − k + 1 ≤ r0 ≤ r, we have

x
(j)
r0 + . . .+x

(j)
r0+k−1 < k− 1. In other words, for each sequence of coordinates x

(j)
r0 , . . . , x

(j)
r0+k−1,

there is at least one zero coordinate besides x
(j)
r . A vector x(j) is maximal if there is no such

coordinate x
(j)
r , that is

∀r ∈ 1, n : x(j)r = 0⇒ ∃r0, r − k + 1 ≤ r0 ≤ r : x(j)r0 + . . .+ x
(j)
r0+k−1 = k − 1 (4.4)

Condition (4.4) can be restated in a simpler form through the lengths of runs of ones in the

vector x(j). If x
(j)
r0 = 1, x

(j)
r0+1 = 1, . . . , x

(j)
r0+l−1 = 1, but either x

(j)
r0−1 = 0 or r0 = 1 and either

x
(j)
r0+l

= 0 or r0 + l − 1 = n, then we say that (x
(j)
r0 , . . . , x

(j)
r0+l−1) is a run of ones of length l. If

both x
(j)
r0−1 = 0 and x

(j)
r0 = 0 we will also say that they are separated by a run of ones of length
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0. Given vector x(j), let l1 be the length of run of ones starting at position 1, let l2 be the length

of run of ones starting at position l1 + 1, l3 be the length of run of ones starting at position

l1 + l2 + 2 and so on. The sequence l1, l2, . . . , ls uniquely defines the vector x(j). Moreover, we

can now restate the condition (4.4): vector x(j) is maximal if ∀i : li + li+1 ≥ k− 1. Notice, that

vector x(j) satisfies (4.3) if and only if ∀i : li ≤ k − 1. Thus, all maximal vectors x(j) can be

enumerated by listing all sequences of nonnegative integers l1, . . . , ls satisfying

li ≤ k − 1, i = 1, . . . , s,

li + li+1 ≥ k − 1, i = 1, . . . , s− 1,∑s

i=1
li + s = n,

(4.5)

where the last constraint encodes the fact that the length of vector x(j) is n.

The sequences {li} in (4.5) can be enumerated directly with, for example, a depth-first

search algorithm.

4.4.2 Hybrid Algorithm: Cutting Plane & Supporting Hyperplane

Method

The supporting hyperplane method is applied to probabilistic constrained stochastic program-

ming problem and it is an improvement on the cutting plane algorithm that is developed by

Kelley (1960) and Cheney and Goldstein (1959). It is first developed by Veinott (1967) and

adapted by Szántai (1988) to solve the below:

min cTx

subject to

Ax ≥ b

P (Tx ≥ ξ) ≥ p

x ≥ 0 . (4.6)

where p (0 < p < 1) is a prescribed probability. We assume that ξ has a continuous distribution

with logconcave probability distribution function (pdf). Let h(x) = P (Tx ≥ ξ)− p and assume

the convex polyhedron K0 = {x|Ax ≥ b, x ≥ 0} is bounded. Assume further that Slater’s

condition is satisfied: there exists an x0 ∈ K0 such that h(x0) > 0. Throughout the algorithm,

we used fixed x0 satisfying Slater’s condition. If we encounter an x such that h(x) > 0, we may

terminate the algorithm and set x0 = x.

We combined the Prékopa, Vizvári, Badics algorithm for cutting plane and supporting

hyperplane method of Veinott (1967), Prékopa, Szántai (1978) and Szántai (1988) to solve the
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problem (2) with continuously distributed ξ. Let’s briefly summarize the steps of this hybrid

algorithm:

• Step 0. Find x0 satisfying Ax0 ≥ b, x0 ≥ 0, h(x0) > 0. Go to Step 1.

• Step 1. Solve the LP:

Min cTx

subject to

Ax ≥ b

5h(xi)(x− x0) ≥ 0, i = 1, . . . , k

x ≥ 0.

Let x∗k be an optimal solution. Go to Step 2.

• Step 2. Check for the sign of h(x∗k). If h(x∗k) ≥ 0, Stop, optimal solution to problem

(3) has been found. Otherwise go to Step 3.

• Step 3. Find λk such that 0 < λk < 1 and h(x0 + λk(x∗k − x0)) = 0. Define xk+1 =

x0 + λk(xk − x0) and go to step 4.

• Step 4. Introduce the cut: 5h(xk+1)(x− x0) ≥ 0, set k ← k + 1 and go to Step 1.

Figure 4.2: Topology of main river, one side river, and 2 reservoir sites.
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4.5 Numerical Results

Here we present a 2-serially linked reservoir network problem. (See Figure(4.2).) We consider

a total number of 24 days and we force our model to satisfy the demand at least one out of

eight consecutive days in these total of 24 days at a probability level of 0.9. The cost function

for the reservoirs is convex with coefficients of 1.5× 104 for C(1) and 1× 104 for C(2). Below is

the formulation of our problem:

Min 15000×K(1) + 10000×K(2)

subject to (4.7)

P



Min
{
ζ
(j)
i−1 +

[
min(ζ

(j−1)
i−1 + ξ

(j)
i ,K(j−1))− x(j)i η

(j)
i ]+ + · · ·+[

min(ζ
(1)
i−1 + ξ

(1)
i ,K(1))− xiη(1)i ]+ + ξ

(2)
i ,K

(j)
i ≥ x(j)i η

(r)
i

}
x
(j)
1 + · · ·+ x

(j)
k ≥ 1

x
(j)
2 + · · ·+ x

(j)
k+1 ≥ 1

...

x
(j)
n−k+1 + · · ·+ x

(j)
n ≥ 1


≥ 0.9

K
(j)
i ≤ 50

x
(j)
i ∈ {0, 1}, ζ

(j)
i , η

(j)
i , ξ

(j)
i ,K(j) ≥ 0

where i = 1, . . . , 24 j = 1, 2

We assume the inflow and the demand values are random variables and coming from a

normal distribution. We further assume that demand values for different days for each reservoir

are dependent on each other. The covariance matrices are shown in Appendix A. Inflow values

are also dependent to each other with respect to days and covariance matrices are again shown

in Appendix A. The data for the distribution of inflow and demand for each reservoirs that is

used for this problem can be reached in Appendix B.

Since there are 24 days, we have 17 constraints for the first reservoir to ensure the availability

of water for at least one day out of eight consecutive days. There are also 17 constraints for the

second reservoir with the same purpose. If we consider all the possible x
(j)
i pairs that satisfies

the 34 × 8 system of inequalities, there is going to be 234 total feasible vectors that need to

be used to achieve the optimal solution. With the simple elimination technique described in

Section 4.4.1, we are able to reduce the set of feasible vectors to 254. After that, we used the
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Table 4.1: Results for hybrid algorithm

Supporting hyperplane

K1 Capacity (1000 m3) 15.06498
K2 Capacity (1000 m3) 5.7687
Optimal Cost 28.36617
Number of Iterations 78

hybrid algorithm to obtain the optimum solution while satisfying the reliability constraint with

a probability value of 0.9. The results can be found in table 4.1.
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4.6 Appendix A

Covariance Matrices Between Days for Demand and Inflow variables for Reservoir 1 and Reser-

voir 2

R
(j)
Demand covariance matrix for demand of reservoir j

R
(j)
Inflow covariance matrix for inflow of reservoir j

where j = 1, 2
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4.7 Appendix B

Distribution of Demand and Inflow Values for Reservoir 1 and Reservoir 2

Table 4.2: Demand η distributions
RESERVOIR 1 RESERVOIR 2

Demand (η
(1)
i ) Distribution Demand (η

(2)
i ) Distribution

Mean Standard Deviation Mean Standard Deviation
Day (i) 1000 m3 1000 m3 1000 m3 1000 m3

1 2.544 0.2544 1.564 0.1564
2 4.778 0.4778 3.895 0.3895
3 6.4 0.64 5.89 0.589
4 6.481 0.6481 4.763 0.4763
5 7.607 0.7607 5.92 0.592
6 5.933 0.5933 4.327 0.4327
7 4.993 0.4993 3.123 0.3123
8 7.117 0.7117 5.983 0.5983
9 4.67 0.467 3.012 0.3012
10 7.554 0.7554 2.074 0.2074
11 11.167 1.1167 6.93 0.693
12 5.87 0.587 3.21 0.321
13 4.012 0.4012 3.923 0.3923
14 4.014 0.4014 3.217 0.3217
15 4.205 0.4205 3.214 0.3214
16 5.985 0.5985 3.97 0.397
17 6.345 0.6345 5.936 0.5936
18 12.54 1.254 5.32 0.532
19 3.987 0.3987 1.784 0.1784
20 4.231 0.4231 3.984 0.3984
21 4.094 0.4094 3.758 0.3758
22 4.875 0.4875 4.345 0.4345
23 5.73 0.573 2.937 0.2937
24 2.98 0.298 1.984 0.1984
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Table 4.3: Inflow η distributions
RESERVOIR 1 RESERVOIR 2

Inflow (η
(1)
i ) Distribution Inflow (η

(2)
i ) Distribution

Mean Standard Deviation Mean Standard Deviation
Day (i) 1000 m3 1000 m3 1000 m3 1000 m3

1 6.023 0.6023 3.785 0.3785
2 9.855 0.9855 5.463 0.5463
3 6.778 0.6778 4.739 0.4739
4 9.342 0.9342 5.263 0.5263
5 10.583 1.0583 5.307 0.5307
6 8.521 0.8521 4.851 0.4851
7 6.721 0.6721 3.987 0.3987
8 6.844 0.6844 4.632 0.4632
9 8.9 0.89 5.933 0.5933
10 6.869 0.6869 3.914 0.3914
11 10.229 1.0229 5.743 0.5743
12 5.498 0.5498 3.894 0.3894
13 6.03 0.603 4.62 0.462
14 8.091 0.8091 5.938 0.5938
15 5.53 0.553 4.422 0.4422
16 6.482 0.6482 4.695 0.4695
17 6.437 0.6437 4.909 0.4909
18 13.22 1.322 5.095 0.5095
19 4.4 0.44 3.695 0.3695
20 5.34 0.534 4.56 0.456
21 5.78 0.578 4.234 0.4234
22 6.321 0.6321 5.442 0.5442
23 4.98 0.498 3.986 0.3986
24 5.01 0.501 3.724 0.3724
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