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Much of the world’s supply of data is in the form of time series. In the last decade, there

has been an explosion of interest in time series data mining. Time series prediction has

been widely used in engineering, economy, industrial manufacturing, finance, manage-

ment and many other fields. Many new algorithms have been developed to classify,

cluster, segment, index, discover rules, and detect anomalies/novelties in time series.

However, traditional time series analysis methods are limited by the requirement of

stationarity of the time series and normality and independence of the residuals. Be-

cause they attempt to characterize and predict all time series observations, traditional

time series analysis methods are unable to identify complex (nonperiodic, nonlinear,

irregular, and chaotic) characteristics. As a result, the prediction of multivariate noisy

time series (such as physiological signals) is still very challenging due to high noise,

non-stationarity, and non-linearity.

The objective of this research is to develop new reliable frameworks for analyzing

multivariate noisy time series, and to apply the framework to online monitor noisy time

series and predict critical events online. In particular, this research made an extensive

study on one important form of multivariate time series: electroencephalography (EEG)

data, based on which two new online monitoring and prediction frameworks for mul-

tivariate time series were introduced and evaluated. The new online monitoring and
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prediction frameworks overcome the limitations of traditional time series analysis tech-

niques, and adapt and innovate data mining concepts to analyzing multivariate time

series data. The proposed approaches can be general frameworks to create a set of

methods that reveal hidden temporal patterns that are characteristic and predictive of

time series events.

In second part of this dissertation provide an overview of the state-of-the-art pre-

diction approaches. In the third part of this dissertation, we perform an extensive data

mining study on multivariate EEG data, which indicates that EEG may be predictable

for some events. In chapter 4, a reinforcement learning-based online monitoring and

prediction framework is introduced and applied to solve the challenging seizure pre-

diction problem from multivariate EEG data. In chapter 5, it first overview of the

most popular representation methods for time series data, and then introduce two new

robust algorithms for offline and online segmentation of a time series, respectively.

Chapter 6 proposes a general online monitoring and prediction framework, which com-

bines temporal feature extraction, feature selection, online pattern identification, and

adaptive learning theory to achieve online prediction of complex time series events.

Two prediction-rule construction schemes are proposed. In chapter 7, the proposed

framework is applied to solve two challenging problems including seizure prediction

and ’anxiety’ prediction in a simulated driving environment. The significant prediction

results demonstrated the superior prediction capability of the proposed framework to

predict complex target events from online streams of nonstationary and chaotic time

series.
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Chapter 1

Introduction

Time series data accounts for an increasingly large fraction of the world’s supply of

data. Given the ubiquity of time series data, and the exponentially growing sizes of

databases, there has been recently been an explosion of interest in time series Data

Mining. The major task of the time series data mining are mainly as follows:

• Indexing: Given a query time series, and some similarity/dissimilarity measure,

find the most similar time series in a time series database.

• Clustering: Find natural groupings of the time series in database given some

similarity/dissimilarity measure.

• Classification: Given an unlabeled time series, assign it to one of two or more

predefined classes.

• Prediction: Given a time series, predict the values of the time series in the fol-

lowing time points.

• Anomaly Detection: Given a baseline time series which is assumed to be nor-

mal, and find ‘abnormal’ sections of an unannotated time series which contain

anomalies or unexpected occurrences.

Prediction can be viewed as a type of clustering or classification. The difference is

that prediction is predicting a future state, rather than a current one. Time series pre-

diction is fundamental to engineering, scientific, and business endeavors. Researchers

study systems as they evolve through time, hoping to discern their underlying prin-

ciples and develop models useful for predicting or controlling them. Some important

applications include obtaining forewarning of natural disasters (flooding, hurricane,



2

snowstorm, etc), epidemics, stock crashes, etc. Many techniques have been proposed

for time series prediction.

Although time series has been worked with for more than a century, many of the

existing techniques hold little utility for researchers working with massive time series

databases. The transitional machine learning and data mining algorithms do not work

well on massive time series data mainly due to following reasons:

• Time series data are often massive in volumes. In the medical domain alone, large

volumes of data as diverse as electrocardiograms, electroencephalograms, gait

analysis and growth development charts are routinely created. Similar remarks

apply to industry, entertainment, finance, meteorology and virtually every other

field of human endeavors. While classic time series data mining algorithms assume

relatively low dimensionality.

• It is often the case that time series data have very high dimensionality, high non-

stationary, and large amount of noise, which present a difficult challenge in time

series data mining tasks [16]. However, the traditional algorithms are generally

static and nonadaptive due to their unique structures. For example, the Box-

Jenkins or Autoregressive Integrated Moving Average (ARIMA) method is widely

applied to various time series problems. However, the ARIMA method is seriously

limited by the requirement of stationarity of the time series and normality and

independence of the residuals [14]. Similar to ARIMA, many existing algorithms

require the statistical characteristics of a stationary time series remain constant

through time, prediction errors must be uncorrelated and normally distributed.

As a result, the severe drawback of these approaches are their inability to identify

complex non-stationary characteristics of a time series.

The objective of this research is to overcome the limitations of the traditional

time series approaches, and to uncover complex and hidden patterns for massive non-

stationary time series data. This body of this work draws on the fields of data mining,

machine learning, statistics, signal processing, and mathematics. In particular, this

dissertation describes a set of adaptive learning methods that reveal complex hidden
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patterns in time series data. The adaptive time series data mining frameworks, intro-

duced by this dissertation, are fundamental contributions to the fields of time series

analysis and data mining. The adaptive learning frameworks allows the proposed pre-

diction methods are able to successfully characterize and predict complex patterns for

nonperiodic, irregular, and chaotic time series. The proposed methods overcome lim-

itations (including stationarity and linearity requirements) of traditional time series

analysis techniques by adapting adaptive learning mining concepts for analyzing time

series. The new methods are applicable to time series that appear stochastic, but oc-

casionally (though not necessarily periodically) contain distinct, but possibly hidden,

patterns that are characteristic of the desired events. For example, the challenging

problem of seizure prediction from multivariate EEG data is well suited to the new

adaptive prediction frameworks.

The dissertation is divided into seven chapters. Chapter 2 reviews several of the

start-of-the-art prediction models and as well as a recent advances in machine learning

and data mining.

Chapter 3 studies the possibility of early detection of numerical typing errors from

EEG recordings. The objective of this study is to perform various data mining tech-

niques on EEG time series, and evaluate if EEG time series can be employed to predict

a future event of the brain.

Chapter 4 investigates the challenging problem of epileptic seizure prediction prob-

lem. We introduced an adaptive seizure prediction framework, which combines re-

inforcement learning, online monitoring and adaptive control theory to advance the

flexibility and adaptability of the prediction system. Using EEG recordings from five

patients with epilepsy, we have demonstrated that the adaptive learning framework

considerably improved the prediction performance of the system.

Chapter 5 firstly overviews the current pattern representations methods of time se-

ries. Inspired by the top-down decomposition structure, a new decomposition algorithm

is proposed to extract key skeleton points of time series. Two new statistic measures are

also introduced. Based on the new measures, the stop criterion of the decomposition

algorithm can be determined. The numerical studies show that the proposed skeleton
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extraction technique is generally robust and computational efficiency.

Chapter 6 proposes a general online monitoring and prediction framework, which

combines temporal feature extraction, feature selection, online pattern identification,

and adaptive learning theory to achieve online prediction of complex time series events.

Two prediction-rule construction schemes are proposed.

Chapter 7, the proposed framework is applied to solve two challenging problems in-

cluding seizure prediction and ’anxiety’ prediction in a simulated driving environment.

The significant prediction results demonstrated the superior prediction capability of the

proposed framework to predict complex target events from online streams of nonsta-

tionary and chaotic time series.

Chapter 8 summarizes the dissertation and discusses the possible future research

directions.



5

Chapter 2

Start-of-the-Art Prediction Models

Prediction is a very important aspect of any business, and has enormous social, eco-

nomic, and environmental impacts. Many prediction models have been developed to

empower people in decision-making for various application areas. For example, accurate

demand forecasts are essential for manufacturers to determine the optimal production

rate by making a tradeoff between stock-outs and high inventory levels. Successful

climate prediction models have been developed to provide early warnings of adverse

climatic conditions, such as hurricanes, storms, or frogs [146]. In business activities,

forecasting technologies have become indispensable tools in a wide range of managerial

decision-making processes, such as finance, banking, investments, employment, mort-

gages and loans [5].

Based on historical time series data, forecasts can be made based on either empirical

qualitative analysis or mathematical quantitative analysis. Accordingly, forecasting

models can be broadly classified as qualitative methods and quantitative methods.

The categorization of the current most popular prediction models is shown in Figure

2.1. Qualitative prediction techniques rely primarily on human judgment based on

expertise, experience, or intuition. They can be used in a wide range of circumstances

where historical data are not available, or circumstances that are changing so rapidly

that a mathematical forecasting model based on past data may become irrelevant or

questionable. An overview of the qualitative prediction methods, including Delphi

method, Jury of Expert Opinion, Scenario Analysis, Sales Force Composite, and Market

Survey, can be referred to [158].

Quantitative methods make forecasts based on mathematical models rather than

subjective judgment. These methods are the mainstream of forecasting techniques as
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a result of the great advances in mathematical modeling and computational power

in modern times. Quantitative forecasting models have been utilized across a wide

spectrum of business and industry. As shown in Figure 2.1, quantitative methods can

be classified as non-causal models and causal models [60]. Non-causal models are also

known as time-series models, which make forecasts by extracting systematic patterns

(such as trends and seasonality) from historical time series data. Causal models are also

known as cause-and-effect models, which investigate how the variable being forecasted

is determined by its relevant influential factors. This chapter briefly summarizes the

state-of-the-art quantitative prediction methods in terms of basic procedure, underlying

assumptions, applications and limits.

Forecasting
Models

Quatitative
Models

Qualitative
Models

Moving Average

Time Series Models
(Non-causal Models)

Causal Models

Exponential Smoothing

Box-Jenkins

Linear Regression

ANNs Models

Delphi Method

Jury of Expert Opinion

Scenario Analysis

Sales Force Composite

Market Research

State Space

Spectral  Analysis

Econometrics Models

Figure 2.1: Categorization of prediction models.
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2.1 Time Series Prediction Methods

Non-causal models predict values of the variable being forecasted based on historical

patterns. Thus the basic underlying assumption of these methods is that future patterns

are similar to historical patterns. To extract characteristics of time series patterns, four

basic properties of data are often analyzed:

• Trend. Given a set of time series data, the term trend refers to a stable tendency

of growth or decline exhibited in the data. The trend of a time series can be either

linear or nonlinear. Accordingly, linear and nonlinear functions can be utilized to

model the trend.

• Seasonality. If a pattern always repeats at a fixed interval, it is called a seasonal

pattern. Seasonality is a very common characteristic of time series data. For

example, air temperature exhibits a strong yearly seasonal pattern.

• Cycles. Cyclic patterns are similar to seasonal patterns, except that they repeat

at varying intervals. For example, it is common to find nonstationary cycles in

financial time series data.

• Randomness. Most time series data are assumed to contain both systematic

patterns and random noises. The randomness usually makes the pattern difficult

to identify. Most time series models include a noise term to take into account the

effects of randomness.

Various time series methods have been developed to analyze these properties of time

series data. Five of the most popular ones are moving average, exponential smoothing,

Box-Jenkins models, state-space models, and spectral methods.

2.1.1 Moving Average (MA)

MA models are simple but popular forecasting methods in time series analysis. A MA

model involves taking arithmetic average of N most recent observations, where N is a

specified number according to the nature of the data to be forecasted. For example,
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if you are forecasting monthly sales, you might use 12-month MA model, which takes

the average sales over the past 12 months. A one-step-ahead MA model of N periods

is given by

Ft+1 =
1

N

t∑
i=t−N+1

xi =
xt + xt−1 + · · ·+ xt−N+1

N
, (2.1)

where Ft+1 is the forecast for the t + 1 period, and xis, i = t − N + 1, . . . , t are

the observations in the past N periods. The mean of N most recent observations is

used as the forecast of the next period. The moving averages method is probably

the most commonly used technique to smooth out short-term fluctuations and capture

characteristics of varying trends in time series data.

2.1.2 Exponential Smoothing

Exponential smoothing assigns exponentially decreasing weights as observations getting

older. The most commonly used single exponential smoothing is given by

F0 = x0, (2.2)

Ft+1 = αxt + (1− α)Ft = Ft + α(xt − Ft), (2.3)

where α ∈ [0, 1] is the smoothing factor, Ft+1 is the new forecast for next period, xt is

the current observation at period t, and Ft is the last forecast made in period t− 1. In

the above formula, one can substitute Ft = αxt−1 + (1− α)Ft−1, and continue so forth

to obtain the infinite expansion of Ft as follows

Ft =
∞∑
i=0

α(1− α)ixt−i−1 =
∞∑
i=0

αixt−i−1, (2.4)

where αi = α(1 − α)i. From this expression, one can see clearly that the weight αi

decreases exponentially with time. This illustrates why this method is called ‘expo-

nential smoothing’. Single exponential smoothing works best only for stationary time

series data. Double exponential smoothing has been developed to handle time series
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data with linear trends. And triple exponential smoothing has been proposed to deal

with both trend and seasonality. A very detailed discussion of exponential smoothing

techniques can be found in [49, 50].

2.1.3 Box-Jenkins Methods

Box-Jenkins methods, named after the statisticians George Box and Gwilym Jenkins,

who applied autoregressive moving average (ARMA) to make forecasts for time series

data [15]. An ARMA model can be generally described by

xt = c+ εt + a1xt−1 + a2xt−2 + . . .+ apxt−p,−b1εt−1 − b2εt−2 − . . .+ bqεt−q,(2.5)

= c+

p∑
i=1

aixi −
q∑
j=1

ajεj , (2.6)

where xt is the current observation, xt−1, . . . , xt−p are the observations in the past p

periods, and the a1, . . . , ap are the regression coefficients of the past p observations. The

εt is the current prediction error, the εt−1, εt−2, . . . , εt−q are the past q prediction errors,

and the b0, b1, . . . , bq are the associated regression coefficients. ARMA model assumes

that the time series to be analyzed is stationary. To handle the nonstationarities such

as trend and seasonality, Box and Jenkins proposed a differencing version of ARMA

model, which is known as ARIMA model. The ‘I’ stands for ‘Integrated’, since the

estimation process is performed on differenced data, and the time series needs to be

integrated before making a forecast. More mathematical details of Box-Jenkins model

can be referred to Box et al. [15].

2.1.4 State Space Models

State space models virtually build up a generalized representation of linear time series

models in state space form. For example, one can represent an ARIMA model in state

space form. Once a state space model is built, it can be conveniently analyzed by

Kalman filter and the associated smoother. Kalman filter is a recursive procedure to

compute the optimal estimator of the state vector at time t, based on the information
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available at time t. The parameters of a state space model are usually estimated by

maximum likelihood functions. State space method is a sophisticated form of forecasting

models. A detailed discussion of various algorithms of state space models can be found

in Harvey [59].

2.1.5 Spectral Analysis

Spectral analysis represents a group of methods which decompose time series data

into a few underlying sine and cosine functions of different frequencies. Compared to

ARIMA or Exponential Smoothing techniques, for which seasonal period is known as a

priori in the analysis, spectrum analysis is suitable to deal with the seasonal series data

for which lengths of cyclic patterns or fluctuations are changing rapidly or difficult to

estimate. In spectral analysis, some important recurring cycles of different frequencies

in the time series can be discovered. Those patterns may be hidden in random noises

and are extremely difficult to find out by other methods. The most common spectrum

decomposition process is also referred as Fourier analysis, which can be considered as

a linear multiple regression process. The dependent variable is the time series to be

studied, and the independent variables are sine and cosine functions of all possible

frequencies. In general, a spectral decomposition model is give by

xt = c+
k∑
j=1

(akcos(ωjt) + bksin(ωjt)), 0 < ω1 < · · · < ωk < π (2.7)

where ω1 < · · · < ωk are k possible wave lengths of the cyclic patterns in the time series,

a1, a2, . . . , ak, and b1, b2, . . . , bk are regression coefficients that represent the degree of

corresponding sinusoidal functions are correlated with the data. In other words, a large

sine or cosine coefficient indicates a strong periodicity of the respective frequency in

the data. There are various techniques available to perform spectral analysis for time

series data. A comprehensive discussion of spectral analysis can be found in Koopmans

[80].
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2.2 Casual Prediction Models

Causal models are also known as cause-and-effect models, which establish a causal

relationship between the variable being forecasted and all other related variables. The

most well known causal models are called regression models, which build up a rigorous

mathematical model of causal relationship based on sound statistical techniques. In a

regression model, the variable to be forecasted is called dependent or response variable,

and the variables that represent the causal factors of the dependent variable are called

independent or explanatory variables.

2.2.1 Regression Models

Regression models are in principle to investigate the relationship between one depen-

dent variable and its relevant independent predictor variables. In general, a standard

regression model takes the form as follows

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn, (2.8)

where Y is the forecasted value of the dependent variable, b0 is the intercept, and

b1, b2, . . . , bn are the estimated regression coefficients representing the contribution of

the independent predictor variables X1, X2, ..., Xn, respectively. When linear regression

models do not appear to adequately capture the relationships between dependent and

predictor variables, nonlinear regression models (such as polynomial regression) can be

used. An overview of the popular nonlinear regression models can be found in Seber

and Wild [141].

2.2.2 Econometrics Models

In many real problems, the cause-and-effect relationship between dependent and in-

dependent variables are not straightforward. The estimated model parameters by the

standard regression analysis may become inappropriate due to the highly dynamic re-

lationship between the dependent and independent variables. For example, we wish to
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forecast sales of a product which are related to its price. However, the market price

in turn is also affected by sales. Another typical example is the supply and demand

model. The interaction of supply and demand jointly determines the equilibrium price

and quantity of the product in the market. In such cases, it no longer makes sense to

separate dependent and independent variables completely. To handle this problem, a

set of simultaneous regression models is necessary to describe dynamics of these sys-

tems. The simultaneous regression models are called econometrics models in literature,

since they are often applied to analyze the relationships between economic variables

that should be jointly determined. One can consider that a single regression model

is a special case of econometrics models. The rigorous mathematical formulations of

econometrics can be found in Pindyck and Rubinfeld [118].

2.2.3 ANN Models

Artificial neural networks (ANNs) represent another important form of causal models,

which have shown powerful capabilities of modeling complex relationships between in-

puts and outputs. An ANN model consists of a network of neurons connected by arcs

with assigned weights. Neurons take some form of basic nonlinear functions. There-

fore, an ANN model can be equivalently considered as a nonlinear regression model in

mathematics. A typical ANN has three layers, an input layer, a hidden layer, and an

output layer. As a causal model, the inputs to an ANN are independent or explanatory

variables, and the outputs are dependent or response variables being forecasted. There

are various algorithms available to train ANNs, such as Perceptron learning rule and

backpropagation [134]. Once the structure and weights of an ANN is determined, it

can be employed to perform forecasting. ANNs have been increasingly used in forecast

modeling in the past decade. They are suitable for complicated problems which are

difficult to be mathematically formulated by regression models or econometric models.

In many real applications, ANN methods can often achieve good performance if given

enough training data. An overview of the applications of ANNs in forecasting can be

found in Zhang et al. [164].
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2.3 Comparing Forecasting Models

We have discussed the most popular prediction models above. To evaluate prediction

models, two aspects of terms are often concerned about: accuracy and bias. Accuracy

refers to the distance between the forecasts and actual values. And a forecast is biased

if the errors in one direction are significantly larger than those in other directions. In

general, the basic objective of all forecast models is to maximize accuracy and minimize

bias. A number of criteria have been proposed to compare prediction models, which

will be discussed in the following.

2.3.1 Prediction Error Measures

To achieve high prediction accuracy is the primary objective in most forecasting tasks.

To evaluate forecasting accuracy, four of the more popular direct error measures are

mean squared error (MSE), or its variants such as root mean squared error (RMSE),

mean absolute error (MAE), and mean absolute percentage error (MAPE). Minimizing

these measures is usually the most essential criterion in comparing forecasting models.

These measures are most frequently used due to their mathematical convenience. For

each of these measures, a smaller value indicates higher prediction accuracy. Given a

set of real data yi, i = 1, 2, . . . , n, each of which has an associated forecast value ŷi, then

these measures are defined as follows

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (2.9)

RMSE =

√∑n
i=1(yi − ŷi)2

n
, (2.10)

MAE =
1

n

n∑
i=1

|yi − ŷi|, (2.11)

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

.| (2.12)

The R-squared (R2), also known as coefficient of determination, is another most

commonly used criterion to evaluate a forecast model. The most general form of the
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R2 is defined as follows

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

= 1− SSerr
SStot

, (2.13)

where ȳ =
∑n

i=1 yi/n, it is the mean of the observed data. The second term compares

the variance of the forecast errors with the total variance of the data. One minus the

second term is the proportion of variability in a data set that can be explained by the

forecast model. R2 is used to measure how well a model approximates real data values.

The magnitude of R2 is usually restricted within 0 and 1. An R2 close to 1.0 indicates

that the model perfectly fits the data, while an R2 close to 0 means that the model

cannot explain the data at all.

2.3.2 Information Criterion

A number of model selection criteria have also been developed based on information

theory. A well-known criterion is Akaike’s information criterion (AIC) developed by

Akaike in 1974 [4]. It makes a tradeoff between accuracy and complexity in model

construction. In general, this criterion can be defined as:

AIC(K) = log(MSE) +
2K

n
, (2.14)

where K is the number of parameters in the model, n is the number of observations in

the data. The MSE has been defined above, and it can be explained as the estimated

residual variance in this criterion. In the formula of AIC, the first term indicates model

accuracy, and the second term indicates model complexity in terms of the number of

parameters. Hence AIC not only rewards prediction accuracy, but also gives a penalty to

larger number of model parameters. One major benefit of this penalty is to discourage

overfitting. For a set of models, the one with the lowest AIC value is considered as

the preferred model. This criterion is particular suitable for comparing a set of nested

models. For example, compare an AR(m) model with an AR(m+1) for a given set
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of data. One drawback of AIC is that it is not consistent, since as the number of

observations grows, the probability of selecting the correct model does not approach

one.

The Bayesian information criterion (BIC), also known as Schwarz criterion, is an-

other well-known criterion to select a set of parametric models with different choices of

explanatory parameters [140]. BIC is actually a variant of AIC in a form of:

BIC(K) = log(MSE) +
log(n)K

n
. (2.15)

The BIC also makes a tradeoff between accuracy and complexity of a model. For a set

of models, the one with the lowest value of BIC is the one to be preferred. It differs

from AIC in that the penalty coefficient of K becomes log(n)/n instead of 2/n. The

BIC generally penalizes free parameters more strongly than does the AIC. In addition,

Hannan and Quinn [58] also proposed an alternative to AIC and BIC called Hannan-

Quinn criterion (HQC), which is given by

HQC(K) = log(MSE) +
2Klnln(n)

n
. (2.16)

Similar to AIC and BIC, the model with the lower value of HQC is preferred. It has

been shown that consistency can be obtained by the BIC [140] or HQC [58, 57].

2.3.3 Cross-Validation

Cross-validation is also a commonly used technique to compare different predictive

models in practice [52]. Given a set of data, the basic idea of cross-validation is to

partition the data set into training and validating subsets, and estimate the predictive

accuracy on the validating data by the model obtained from the training data set.

The MSE, RMSE, MAE, and MAPE can be used to measure the expected level of

fit of a predictive model. If a model fits the training data set very well but does not

fit the validation data, it is called overfitting. A good predictive model is supposed
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to generate consistent results in both training and validating data sets. To reduce

the variability of the model evalutation, multiple trials of cross-validation are usually

performed with respect to different partitions to the original data set. The evaluation

result of a predictive model is the averaged result over these trials. There are several

different approaches to perform multiple steps of cross-validation.

• Repeated Random Partition Validation: this method simply divides the dataset

into two subsets randomly each time and repeats the same procedure a number

of times. One problem of this method is that the validation subsets may overlap

and some observations may never be selected in the validation subsets.

• K-fold cross-validation: the dataset is partitioned randomly into K subsets. Then

the cross-validation is repeated K times. Each time one of the subsets is reserved

as the validation data, and the remaining K−1 subsets are the training data sets.

The validation result is the average over K results. This approach guarantees that

each observation can be used for validation exactly once.

• Leave-one-out cross-validation: this method is actually a special case of K-fold

cross-validation, when the number of observations in each subset is one. In other

words, only one observation is reserved for validation and the remaining observa-

tions are used for training. The procedure is repeated until each observation has

been used once for validation.

2.3.4 Stepwise Model Selection

Stepwise model selection approaches are very useful for automatically selecting a set

of nested predictive models, for which there are a large number of potential predictive

variables [32]. The selection procedure is generally grounded in some statistical tests

and usually takes in the form of partial F-test. Other measures can also be used, such

as t-tests, R2, AIC, and BIC. Since the basic procedures are similar, only the case of

partial F-test is discussed here. To compare two nested models with different number
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of predictor variables, the partial F-test can be generally formulated as follows:

F =
Extra sum of squares/Extra model df

SSR of large model/Residual df Large model
, (2.17)

where SSE denotes the sum of squared residual. The key idea of this test is to check

if the ‘extra’ predictors of the large model explain significantly more of the variability

compared to the variability that is explained by the predictors that are already in the

small model. Based on partial F-test, three approaches are commonly used for model

selection:

• Forward selection: starts with the smallest number of possible predictors and

adds predictors one by one until a stop criterion is satisfied or the largest model is

reached. The current model satisfying the stop criterion is selected. In particular,

suppose that the current model has P parameters, and we want to test if one of

the model with P + 1 parameters is more preferred. If for all models of P + 1

parameters, it satisfies

F =
SSE(P + 1)− SSE(P )

SSE(P + 1)/n− P − 1
< Fm,P , (2.18)

where Fm,P is the critical values of F-statistic for a chosen level of significance.

Then stop the process and the current model with P parameters is preferred.

Otherwise, select one preferred model of P + 1 parameters, and repeat the test

for all models with P + 2 parameters, and so forth.

• Backward selection: starts with the largest number of possible predictors and

removes predictors one by one. At each step, it compares all the smaller model

candidates with the old larger model and stops the process if

F =
SSE(P − 1)− SSE(P )

SSE(P )/n− P
< Fm,P . (2.19)
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• Stepwise selection: a modified version of forward-selection which allows the elimi-

nation of predictors those become statistically insignificant in the model. At each

step of the process, the p-values of all predictors are computed. If the largest of

these p-values is greater than a critical value, then the corresponding predictor is

eliminated. Other steps are all the same with those of forward selection.

2.3.5 Residual Diagnostics

Residuals represent the portion of the validation data not explained by the model. The

graphical residual analysis is commonly used in complementary with the quantitative

techniques. A typical residual diagnostics includes plots of residuals versus the predicted

values, versus other predictors, and versus time, residual autocorrelation plots, residual

histogram, and normal probability plots. In general, the residual analysis can be used

to test the following:

• Whiteness test: a good predictive model should have the uncorrelated residuals.

• Independence test: a good model should have residuals uncorrelated with past

inputs.

• If there are some extreme influential observations. Identifying and deleting out-

liers from the training dataset may significantly improve the quality of a model.

• If the residuals exhibit systematic patterns and bias. The residuals of a good

model should be approximately dispersed around zero evenly. If systematic pat-

terns are found, the most probably reason is that one or several relevant predictors

are missing. A forecast is biased if residuals in one direction are significantly larger

than those of the other direction.

2.4 Overview of Machine Learning Techniques

With the explosion of computing power in the past decade, machine learning and pat-

tern recognition techniques have become important tools in the analysis of various



19

biological problems, such as in cancer research [93], cognitive neuroscience [29], and ge-

nomics and proteomics [26]. Machine learning best depicts the computational methods

that allow a system to evolve behaviors through an automated process of knowledge

acquisition from empirical data. Machine learning techniques generally fall into three

broad categories: supervised learning, reinforcement learning and unsupervised learn-

ing. A supervised learning technique usually first finds a mapping between inputs and

outputs of a training dataset, and then makes predictions to the inputs that it has

never seen. A large number of supervised learning algorithms have been developed,

which can be categorized into several major groups including neural networks, support

vector machines, locally weighted learning, decision trees, and Bayesian inference [83].

Reinforcement learning is another learning paradigm in which an agent is able to learn

a decision policy by ‘trial and error’. A reinforcement learner receives feedback of its

actions and makes adjustments to its actions accordingly [154]. Reinforcement learning

is a natural framework for building models to accumulate knowledge from previously

learned tasks to new tasks with increasing complexity and variability. Reinforcement

learning techniques have been applied to many complex learning tasks, such as robot

control [33] and traffic network control[132]. Unsupervised learning is inspired by the

brain’s ability to recognize complex patterns of visual scenes, sounds or odors. It takes

root in neuroscience/psychology and is established on information theory and statis-

tics. An unsupervised learner usually performs clustering or associative rule learning

to extract the implicit structure of a given dataset. The established clusters, cate-

gories or associative networks are then used for decision making, prediction, or efficient

communication [31].

Modern devices can produce voluminous datasets fueling a need for effective and

user-friendly data mining models. At present, machine learning techniques have found

widespread applications in many real world complex problems, which are difficult to deal

with using traditional modeling tools. Bhaskar et al. [12] reported that the number of

studies in the area of machine learning for solving problems in bioinformatics has rapidly

increased since 1999. Some examples include the use of neural networks and SVMs

to classify and diagnose cancers using gene expression data [78, 87], data clustering
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for the analysis of breast cancer and colon cancer [53], and reinforcement learning to

individualize erythropoietin dosages for hemodialysis patients [100].

2.5 Data Mining for Non-stationary Chaotic Time Series Prediction

Data mining is the search for valuable information in large volumes of data. Predictive

data mining is a search for very strong patterns in big data that can generalize to ac-

curate future decisions. The most interesting time series presented in this dissertation

may be classified as non-stationary deterministic chaotic time series. A working def-

inition of a chaotic time series is one generated by a nonlinear, deterministic process

highly sensitive to initial conditions that has a broadband frequency spectrum [1]. Since

the chaotic time series is deterministic, it is still predictable. However, the time series

patterns are extremely complex, and the prediction horizon is unknown.

Many researchers have applied data mining concepts to finding predictive patterns

in time series include Berndt and Clifford [11], Keogh [75, 73, 77]. Berndt and Clifford

use a dynamic time warping technique taken from speech recognition. Their approach

uses a dynamic programming method for aligning the time series and a predefined set of

templates. Keogh represents the templates using piecewise linear segmentations. Local

features such as peaks, troughs, and plateaus are defined using a prior distribution on

expected deformations from a basic template. A probabilistic method was used for

matching the known templates to the time series data.

The adaptive learning framework, introduced in this dissertation, differs fundamen-

tally from these approaches. In particular, most prediction approaches, such those

advanced in [75, 11, 73, 77], require a priori knowledge of the types of structures or

temporal patterns to be discovered and represents these temporal patterns as a set of

templates. The use of predefined templates completely prevents the achievement of the

basic data mining goal of discovering useful, novel, and hidden temporal patterns from

massive chaotic time series data.

In this dissertation research, we performed a number of study on EEG data, which

is an important form of chaotic multivariate time series. In the next chapter, we made
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an extensive study on EEG time series, and applied the existing data mining techniques

to identify if some predictive time series patterns can be found from EEG data. We

demonstrated that EEG signal may be predictable based on this preliminary study.

Thus EEG data can be a good candidate to test and evaluate our proposed online

monitoring and prediction frameworks discussed in Chapter 4 and Chapter 6.
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Chapter 3

An Extensive Study of EEG Time Series for Early

Detection of Numerical Typing Errors

This chapter studies the possibility of early detection of numerical typing errors from

EEG recordings. The objective of this study is to perform various data mining tech-

niques on EEG time series, and evaluate if EEG time series can be employed to predict

a future event of the brain. Three feature extraction techniques were developed to cap-

ture temporal, morphological and time-frequency (wavelet) characteristics of EEG data.

Two most commonly used data mining techniques, Linear Discriminant Analysis (LDA)

and Support Vector Machine (SVM) were employed to classify EEG samples associated

with correct and erroneous keystrokes. The leave-one-error-pattern-out and the leave-

one-subject-out cross validation methods were designed to evaluate the in-subject and

cross-subject classification performance, respectively. For in-subject classification, the

best testing performance had a sensitivity of 62.20% and a specificity of 51.68%, which

were achieved by SVM using morphological features. For cross-subject classification,

the best testing performance was achieved by LDA using temporal features, based on

which it had a sensitivity of 68.72% and a specificity of 49.45%. In addition, the Re-

ceiver Operating Characteristic (ROC) analysis revealed that the averaged values of the

area under ROC curves (AUC) of LDA and SVM for in-subject and cross-subject classi-

fication were both greater than 0.60 using the EEG 300ms prior to the keystrokes. The

classification results of this study indicated that the EEG patterns prior to erroneous

keystrokes might be different from those of correct ones. The outcome of this study

indicates that the EEG time series may show predictive patterns prior to events, based

on which one can develop develop online monitoring and prediction systems based on

EEG signals.
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3.1 Introduction

Numerous types of electronic devices with alphabetical or numerical keyboards have

become very important tools in modern times. An erroneous keystroke can be eas-

ily caused by many reasons such as operators’ inexperience, fatigue, and carelessness.

At the present time, many typing error correction systems have been developed for

computer users. For example, current word processing software such as Microsoft

Word provides automatic spelling checks as well as automated corrective actions. Some

other methods have also been developed to detect and remove errors due to overlapped

keystrokes [155]. It is noted that most of the automatic typing error detection systems

are designed for text typing; very few studies have focused on detecting numerical typ-

ing errors. In fact, numerical typing is as a common task as text typing in practice

[138, 139]. In particular, in some crucial tasks, numerical typing errors may result in

serious consequences or accidents. For instance, numerical typing errors in medical

records may result in inaccurate diagnoses and/or drug administrations. In financial

transactions, numerical errors may cause significant losses at the stock exchanges. In

aviation control, incorrect numerical inputs may lead to serious air traffic accidents

[163].

Human typing involves intricate interactions of concurrent perceptual and cognitive

processes [137]. Numerous studies of typing behaviors have been conducted to explore

their underlying cognitive mechanisms in the past decade. However, most studies in the

literature were in the field of transcription (text) typing. Error correction of numerical

data is much more difficult and challenging because there is no pattern database to

look-up. The operator cannot visualize and identify if there are errors in the data

because there is no contextual information for verification. This is very common in

hear-and-type tasks such as telling a phone number to a phone representative, bank

account number to a teller, and tracking number of a parcel to a customer service agent.

The operators are very susceptible to making errors when they receive auditory inputs

while typing.

Although double data entry (DDE) and read-aloud (RA) [72] methods are commonly
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used to assure the data quality, these methods are very tedious and inefficient. Also, in

reality to avoid typing errors, each data entry may accompany a confirmative action,

such as pressing an ENTER key, before which input data can be checked and corrected.

However, such a mechanism does not always exist. For example, a selection menu may

be coded by numbers and pressing a number already commands the execution. In this

kind of situations, afterward detection mechanism is too late to reverse the outcome.

Especially in a crucial task, such numerical errors may result in serious or even life

threatening consequences. As a result, when afterward checking/confirmation is limited

or even impossible, predicting and avoiding numerical typing errors are becoming very

critical to assure data quality. Unfortunately, to the best of our knowledge, there are

no effective tools available to assist human operators in this task. If numerical typing

errors can be detected in advance, the detection can be integrated in an error prevention

system for many crucial typing works.

Erroneous keystrokes are possibly caused by an operator’s psychophysiological state

such as a lack of attention, external distractions and fatigue. In our previous study,

we have successfully built a computational model, called the Queuing-Network-Model

Human Processor, to establish mathematical representations of cognitive functions of

typing behaviors. The results of our study on brain modeling and human factor analysis

of erroneous keystrokes suggested that the brain activity before erroneous keystrokes

might be different from that of correct ones [161, 94]. The goal of this study is to

develop an early detection system of erroneous keystrokes. We employ feature extrac-

tion and data mining techniques to perform quantitative analysis of EEG recordings

prior to keystrokes. Although there have been numerous EEG studies in various fields,

very few studies in the literature have been conducted to investigate the early detec-

tion (or prediction) of typing behaviors based on EEG data. The characterization of

the underlying EEG patterns before someone is about to make an error is still in a

great need of further investigation. The development of an effective method to classify

erroneous keystrokes based on their (generating) mechanisms remains a difficult but

worth-pursuing task.
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The rest of this chapter is organized as follows. In Section 3.2, the research back-

ground and previous related work are discussed, including the background of data entry

correction methods, error related EEG potentials, and the data mining techniques for

quantitative EEG analysis. In Section 3.3, the proposed EEG feature extraction tech-

niques and the employed classification techniques, linear discriminant analysis (LDA)

and support vector machine (SVM), are described. Section 3.4 presents the design of

human experiments and computational data analysis. The computational results of the

classification systems are provided in Section 3.5. Finally, the concluding remarks and

future work are given in Section 3.6.

3.2 Background

3.2.1 Data Entry Correction Methods

A number of studies have been performed to develop correction methods for numerical

typing errors. Scholtus [138, 139] developed an algorithm for automatic correction

of typing errors in numerical data. However, this algorithm can be only applied to

some systematic typing errors, such as checking the inconsistencies when there are

mathematical relations between the data digits. Kawado et al. [72] compared the

efficiency of the two commonly used data verification methods: DDE and RA. In the

DDE method, the double data entry was performed by either an identical or a different

operator. In the RA method, one operator read the typed data on a printed sheet

or computer screen aloud, and another operator compared the data (that were) heard

with the data (that were) recorded to confirm whether they were the same. The error

detection rate was 59.5% for the RA method, and 69.0% for the DDE method. Their

results surprisingly showed that there might still be a large portion of undetected errors

even after the two commonly used data verification methods were applied. Their study

also indicated that it is very hard to achieve full accuracy for large amount of numerical

data input even when data verification methods are used to the data management. As

mentioned in Arndt et. al. [8], databases of large projects may contain a great absolute

number of mistakes in data collection, and thus have data quality problems. They
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investigated the types and frequencies of data errors in 688 forms from seven sites in

a multicenter field trial. It was found that 2.4% of the received data had errors even

though conscientious efforts had been made in checking and correcting data.

3.2.2 Error-Related Potentials (ErrP)

Typing behaviors involve complex interactions of concurrent perceptual and cognitive

processes [137]. The brainwave activity measured by EEG is often an essential and

natural way to study the brain activity during typing. The event-related potentials

(ERP) in response to a perceptual, cognitive or motor event have been extensively

studied in neuroscience and brain computer interfaces [56]. Since the early 1990s, many

studies have found that a subject’s recognition of response errors is often associated

with some specific error-related EEG potentials [38, 108]. More recently, the work of

Ferrez and Millán [124] showed that ErrP of a brain-computer-interface (BCI) can be

reliably recognized. The pioneering work in ErrP detection provided a prelude for us

to explore the underlying mechanisms of erroneous keystrokes. It should be noted that

current ErrP studies mostly focused on the EEGs after response errors, and the EEGs

prior to errors were much less studied. However, EEGs prior to errors are of great

importance to prevent errors from occurring, especially in some crucial typing tasks

mentioned in the introduction part. Therefore, this study particularly focused on early

error detection using EEGs prior to keystrokes.

3.2.3 Data Mining in EEG: Feature Extraction

Over the past decade, numerous studies have been performed to apply quantitative

signal processing methods and time series techniques to analyze characteristics of EEG

data. The simplest feature extraction can be obtained by downsampling an EEG signal

from its usually high sampling rate (such as 1000Hz) into a low frequency range of

particular interest (such as 0-30Hz). The resulting features are supposed to be rep-

resentative to the temporal characteristics of EEG data in this low frequency band

[13]. Another common univariate feature extraction method uses the morphological
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characteristics of EEG data, such as curve length [110], zero crossings [130], number

of peaks [160], nonlinear energy [3], etc. In addition, grounded in signal processing

techniques, some more complex EEG feature extraction techniques have also been de-

veloped. Traditional linear methods include frequency and power spectrum analysis and

the parametric modeling of EEG time series (e.g., autoregressive (AR), moving average

(MA), and autoregressive moving average (ARMA) models). Though widely used in

EEG analysis, these methods actually treat EEG as statistically stationary signals. To

deal with nonstationarity in EEG, various methods based on time-frequency analysis

have been developed. The most well-known time-frequency technique is called wavelet

transform, which is capable of providing a representation of nonstationary EEG signals

in both time and frequency domain accurately.

3.2.4 Data Mining in EEG: Classification

Over the past decade, there were increasing interests in using classification techniques

to discriminate different brain activities based on EEG recordings. Numerous data

mining techniques have been proposed to EEG classification. Those methods include

decision trees [120], neural networks [149], association rule induction [37], K-Nearest-

Neighbor method [23], and genetic algorithms [109]. There have been many studies

suggesting that EEG signals at different mental states or in different mental tasks may

be classifiable [7, 6, 10, 107, 145].

The error detection task in this study is in principle a binary classification problem

of correct and erroneous EEG samples. LDA and SVM are two popular classification

techniques for binary classification tasks. Both of them construct a hyperplane to

separate data into two subsets based on optimization theories. Parra et al. [115] used

LDA to detect response errors for seven subjects in a forced choice visual discrimination

task. Using 64 EEG electrodes and two time windows of 100 ms, they were able to

reach an accuracy of 79 % on average. Blankertz et al. [13] adopted Sparse Fisher

Discriminant (SFD) to differentiate index finger movement from small finger movement

in a self-paced key typing task. Using EEG data 120ms prior to keystrokes, they

achieved overall classification accuracies of 96.7% and 93.6% for filtered and non-filtered
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EEG data, respectively. SVMs have also been widely applied to a large number of EEG

classification problems [47, 162]. Our group successfully applied data mining techniques

to classify normal and abnormal (epileptic) brain activities based on EEG recordings

of a number of epileptic patients [23, 18, 20]. Garrett et al. [51] applied both LDA and

SVM to classify EEG signals in five mental tasks. The averaged classification accuracies

of LDA and SVM were 66% and 72%, respectively.

3.3 Methods

3.3.1 Feature Extraction

We employed three feature extraction techniques to capture characteristics of EEG

signals. They were temporal, morphological and wavelet features. For an EEG epoch

with n channels, we first extracted features from each channel, and then concatenated

the features of all the n channels to construct the feature vector of this multichannel

EEG epoch. Let X = {x1, x2, , · · · , xm} denote a single-channel EEG with m sampling

points, the extraction of the temporal, morphological and wavelet features of X are

described as follows.

3.3.1.1 Temporal Features

the temporal features can be obtained by downsampling of EEG signals. The down-

sampling of EEG data reduces the amount of data that needs to be analyzed while it is

still capable of capturing patterns for slow brain activity [13]. Since the most common

EEG patterns (e.g., alpha, beta, delta, theta wave patterns) contain frequency elements

mainly below 30Hz, we downsampled the EEG data from 1000Hz to 30Hz in this study.

In particular, the downsampling was accomplished by calculating means of consecu-

tive, non-overlapping intervals of every 33 points. For example, a 100ms EEG epoch of

1000Hz has 100 points in each channel, then three temporal features are extracted for

each channel of EEG through the downsampling process.
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3.3.1.2 Morphological Features

seven morphological features were extracted from each channel of EEG. These features

were based on the features previously described in Wong et al. [160]. A brief description

of the morphological features is given in the following.

• Curve Length: this feature is also known as ‘line length’ which was first proposed

by Olsen et al. [110]. Curve length is the sum of distances between successive

points, given by
m−1∑
i=1

|xi+1 − xi|. (3.1)

Since curve length increases as the signal magnitude or frequency increases, it

can be used to measure the amplitude-frequency variations of the EEG signals.

It has been used in many EEG studies, such as epileptic seizure detection [35],

stimulation responses of the brain [36].

• Standard Deviation: it is among the most widely used measures of signal variabil-

ity. It indicates how all the points of the signal are clustered around the mean.

The standard deviation can be obtained by

√∑m
i=1(xi − X̄)2

m− 1
, (3.2)

where X̄ is the mean of the single-channel EEG X.

• Number of Peaks: the number of peaks per second is a commonly used charac-

teristic to measure the overall frequency of EEG signals. The number of peaks in

the single-channel EEG X can be calculated by

1

2

m−2∑
i=1

max{0, sgn(xi+2 − xi+1)− sgn(xi+1 − xi)}. (3.3)

• Root Mean Square (RMS) Amplitude: RMS is one of the most commonly used

methods to determine the power changes of the signal [103], especially for complex

waveforms, such as EEG signals. The RMS amplitude of the single-channel EEG
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X is defined as √∑m
1 x

2
i

m
. (3.4)

• Average Nonlinear Energy: nonlinear energy was first proposed by Kaiser [70]. It

is a measure of signal energy that is proportional to both signal amplitude and

frequency. It has been found that the nonlinear energy is sensitive to spectral

changes. Thus it is also useful to capture spectral information of an EEG signal

[3]. The average nonlinear energy of the single-channel EEG X is computed as

1

m− 2

m−1∑
i=2

x2i − xi−1xi+1. (3.5)

• Zero Crossings: the frequency information of EEG signals can also be estimated

by the number of times its value crosses the zero axis. Zero-crossing feature

extraction has been applied in many signal processing and pattern recognition

tasks including EEG signal analysis [130]. The zero crossings of the single-channel

EEG X can be mathematically defined as

1

2

m−1∑
i=1

|sgn(xi+1)− sgn(xi)|. (3.6)

• Variance-to-Range Ratio: this feature calculates the ratio of the variance to the

magnitude range of the EEG signal. It takes into account both variation and

range of EEG magnitudes. The ratio of the single-channel EEG X is given by

∑m
i=1(xi − X̄)2

(m− 1)(Xmax −Xmin)
, (3.7)

where Xmax and Xmin are the maximum and minimum value of X, respectively.

3.3.1.3 Time-Frequency Features

Wavelet transform (WT) was employed to analyze time-frequency characteristics of

the EEG signals. The basic idea of wavelet analysis is to express a signal as a linear
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combination of a particular set of functions obtained by shifting and dilating one single

function called mother wavelet. The WT of the signal X(t) is defined as

C(a, b) =

∫
R
X(t)

1√
a

Ψ(
t− b
a

)dt (3.8)

where Ψ is the mother wavelet, C(a, b) are the WT coefficients of the signal X(t), a

is the scale parameter, and b is the shifting parameter. Continuous wavelet transform

(CWT) has a ∈ R+ and b ∈ R; and discrete wavelet transform (DWT) has a = 2j and

b = k2j for all (j, k) ∈ Z given the decomposition level of j. Analyzing the signal by

CWT at every possible scale a and shifting b requires substantially more computations

than the DWT. As a result, the DWT with dyadic scaling and shifting is often em-

ployed in many studies to decompose EEG signals into different frequency sub-bands

[133]. The coefficients of DWT decomposition provide a non-redundant and highly ef-

ficient representation of a signal in both time and frequency domain. At each level of

decomposition, DWT works as filters to divide the signal into two bands called approxi-

mations and details signals. The approximations (A) are the low frequency components

of the signal, and the details (D) are the high-frequency components. For more detailed

mathematical formulations of wavelet transform can be referred to Addison [2].

Among different wavelet families, Daubechies wavelets are well known for its orthog-

onality property and efficient filter implementation, and the db4 is frequently used in

EEG analysis [151]. In this study, we applied the typical db4 to decompose EEG signals

into eight levels. Table 3.1 shows the frequency bands of different levels of DWT decom-

position. Since the frequency band of EEG signals is often considered to be less than 30

Hz, we employed the coefficients of the level A7, D7, D6, D5, which roughly correspond

to the commonly recognized delta, theta, alpha, and beta brainwaves, respectively. The

other four levels of signals were considered as the high-frequency background noises,

and thus were eliminated in the wavelet feature vector. Moreover, to further decrease

the feature dimensionality for classification, the statistics of the DWT coefficients were

extracted. They are mean, standard deviation, maximum and minimum of the wavelet

coefficients of the four used levels. By doing so, each channel of EEG can be represented
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by a 4 × 4 = 16 dimensional feature vector, and an EEG epoch of n channels can be

represented by a 16n-dimensional feature vector.

Table 3.1: Frequency ranges and the corresponding brainwave bands of the eight levels
of signals by discrete wavelet decomposition.

Decomposed Signal Frequency Range (Hz) Approximate Band

D1 250-500 -
D2 125-250 -
D3 62.5-125 -
D4 31.3-62.5 -
D5 15.7-31.3 Beta
D6 7.9-15.7 Alpha
D7 4.0-7.9 Theta
A7 0-4.0 Delta

3.3.2 Classification Methods

Let Y denote the n × k dimensional feature vector for a multi-channel EEG epoch,

where n is the number of channels and k is the number of features of each single

channel of EEG. In this study, n = 36 and k = 3, 7, 16 for temporal, morphological and

wavelet features, respectively. Let l denote the class label of the EEG epoch, for which

l = 1 denotes a correct EEG sample, and l = −1 means an erroneous EEG sample.

Given p + q training samples (Yi, li), i = 1, ..., p + q, the dataset of p correct EEG

epochs is denoted by D1 = {(Y1, l1), (Y2, l2), ..., (Yp, lp)}, and the dataset of q erroneous

epochs is denoted by D2 = {(Yp+1, lp+1), (Yp+2, lp+2), ..., (Yp+q, lp+q)}. The difference

between them is that the optimal decision boundary is determined based on different

optimization theories, which will be briefly discussed in the following.

3.3.2.1 Fisher’s Linear Discriminant Analysis

Fisher’s LDA aims to find an optimal projection by minimizing the intraclass variance

and maximizing the distance between the two classes simultaneously [46]. Mathemat-

ically, LDA tries to find an optimal direction ω∗ ∈ Rn×k as a solution of the following
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optimization problem:

ω∗ = argmaxω
ωTSbω

ωTSω∗ω
, (3.9)

where ω is the direction of the hyperplane that is used to separate the two data sets.

Sb and Sω are the interclass and intraclass covariance matrix, respectively. They are

defined as follows

Sb = (m1 −m2)
T (m1 −m2), (3.10)

Sω =
∑
i∈1,2

∑
i∈Di

(Yi −mi)
T (Yi −mi), (3.11)

where m1 and m2 are the means of the feature vectors Y in the two data sets D1 and

D2, respectively. They can be calculated by

m1 =
1

p

∑
Y ∈D1

Y =
1

p

p∑
i=1

Yi, (3.12)

m2 =
1

q

∑
Y ∈D2

Y =
1

p

p+1∑
i=p+q

Yi. (3.13)

When Sω is not singular, the above optimization problem can be solved by applying

the eigen-decomposition to the matrix S−1ω Sb. The eigenvector corresponding to the

largest eigenvalue forms the optimal direction w∗ by

ω∗ = S−1ω (m1 −m2). (3.14)

When Sω is singular, an identity matrix with a small scalar multiple can be used to

tackle this problem [102]. The optimal w∗ then becomes

ω∗ = (Sω + λI)−1(m1 −m2). (3.15)
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Once ω∗ is obtained, the optimal decision boundary of LDA can be represented by

ω∗TY + b = 0, (3.16)

where b is the bias term. There is no general rule to determine the bias term, a most

commonly used bias term is b = −ω∗T (m1 + m2)/2. The class of an EEG epoch Y

depends on which side of the hyperplane its feature vector is on. In particular, for a

new EEG epoch represented by a feature vector Ynew, then the prediction rule is as

follows 
ω∗TYnew + b > 0, lnew = 1 (an erroneous keystroke),

ω∗TYnew + b < 0, lnew = −1 (a correct keystroke).

3.3.2.2 Support Vector Machine

SVMs are another group of binary classification tools, which have been successfully

applied in many EEG classification problems [13, 84, 129, 71, 51]. The fundamental

problem of SVM is to build an optimal decision boundary to separate two categories of

data. In the data sets of EEG epochs D1 and D2, each EEG epoch is represented by

a n× k dimensional feature vector. One can actually find infinitely many hyperplanes

in Rn×k to separate the two data groups. Based on statistics learning theory (STL), a

SVM selects a hyperplane which maximizes its distance from the closest point from the

samples. This distance is referred to as margin. The standard SVM formulation that

maximizes the margin and minimizes the training error is as follows:

minω,ξ,b{12‖ω‖
2 + C

∑p+q
i=1 ξi : D(Y Tω + be) ≥ e− ξi}, (3.17)

where ω is the weight vector, and the slack variables ξ is introduced to measure the

degree of misclassification during training. The penalty cost C is used to control the

tradeoff between a large margin and a small prediction error penalty. Each column of

Y is an observation Yi, D is a diagonal matrix with class-label elements Dii equal to

1 if Yi belongs to one class, or -1 otherwise. The vector e has all its elements equal to
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one. The first term of the objective function in 3.17 is due to maximize the margin of

separation 2/‖w‖, and the second term measures how much emphasis is given to the

minimization of the training error.

Since the standard SVM classifiers usually require a large amount of computation

time for training, the Proximal SVM (PSVM) algorithm was introduced Mangasarian

and Wild [99] as a fast alternative to the standard SVM formulation. The formulation

for the linear PSVM is as follows:

minω,ξ,b{12(‖ω‖2 + b2) + 1
2Cξi

T ξi : D(Y Tω + be) = e− ξi}, (3.18)

where the traditional SVM inequality constraint is replaced by an equality con-

straint. This modification changes the nature of the support hyperplanes (ωTY + b =

±1). Instead of bounding planes, the hyperplanes of PSVM can be thought of as ‘prox-

imal’ planes, around which the points of each class are clustered and which are pushed

as far apart as possible by the term (‖ω‖2 + b2) in the above objective function. It has

been shown that PSVM has comparable classification performance to that of standard

SVM classifiers, but can be an order of magnitude faster [99]. Therefore, we employed

PSVM in this study.

3.4 Typing Experiment

3.4.1 Experimental Design

The experimental task was a typical hear-and-type task which emulated daily work

done by bank tellers or representatives in customer services. A computer program read

out 30 random numbers of nine digits in a trial and the subjects were told to type out

those numbers. The numbers were not linguistically grouped, i.e. every digit was read

out separately without chunking two or three digits (e.g., read 123 as “one two three”

instead of “one twenty three” or “one hundred twenty three”). In addition, there was

a small pause (300 ms) in-between every 3 digits. The numbers were read out this

way because based on an observation and interview by the author in a pilot study,
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this was the most natural way to read out numbers without any specific format known

beforehand. The interval between two digits is 750ms on average. A short pause of

2.5 seconds existed after each nine-digit number, during which the subjects would be

reminded of pressing the enter key.

Nine subjects were recruited from the student body of University at Buffalo. All

subjects were native speakers of English without any hearing disability. Before the

experiment, each subject was pre-tested on his/her typing skill to assure his/her fa-

miliarity with typing. The subjects were allowed to adjust the volume, posture and

other settings of typing environment to his/her preference. Each subject was given

two practice trials prior to formal experimental trials. If a subject did not show any

inability in the hear-and-type task, she or he was then allowed to continue eight trials

of hear-and-type tasks. During each trial, the EEG data of each subject were recorded.

A five-minute break was given to subjects after four trials so that their EEG would not

be influenced by long exposure to a relatively boring task.

The descriptive statistics of the typing performance of the nine subjects are sum-

marized in Table 3.2. No significant difference was found in terms of age, accuracy

or typing speed between male and female subjects. Hence, male and female subjects

can be regarded as a homogeneous group. The percentage of erroneous keystrokes was

ranged from 0.42% on subject 4 to 3.59% on subject 7. The latency between auditory

stimuli and keystrokes was 728ms on average.

Table 3.2: The typing performance of each subject.
Subject # Keystrokes # Erroneous Percentage of

Keystrokes Erroneous Keystrokes

1 2122 36 1.70%

2 2113 51 2.41%

3 2419 69 2.85%

4 2401 10 0.42%

5 2422 60 2.48%

6 2117 76 3.59%

7 2420 45 1.88%

8 2405 63 2.62%

9 2134 54 2.53%
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3.4.2 EEG Acquisition and Preprocessing

During the experiment, EEG data were collected with an EEG cap containing 40

Ag/AgCl electrodes according to the international 10-20 system. There are four elec-

trodes that were used for measuring eye movements to remove muscular artifacts. The

rest 36 electrodes were mounted on the scalp and thus used for analyses in this chap-

ter. The placement of the 36 scalp electrodes is shown in Figure 3.1. The signals were

amplified by NuAmps Express system (Neuroscan Inc, USA) and sampled at 1000Hz.

The typed number as well as the timing of each keystroke was recorded simultaneously

by the system. After comparing with the reference number, each keystroke was labeled

as either ‘correct’ or ‘erroneous’ by using ‘1’ and ‘-1’, respectively. The raw EEG data

were first processed by a 0.1-30Hz band-pass filter [119]. Then the EEG epochs were

extracted from the filtered data based on the keystroke events recorded during typ-

ing. The length of each EEG epoch was set to 500 ms before a keystroke according

to the minimal interval between two successive keystrokes. The flowchart of the EEG

acquisition and the epoch sampling is shown in the upper part of Figure 3.2.
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Figure 3.1: The allocations of the 36 scalp electrodes.
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3.4.3 Classification Procedure

As shown in Figure 3.2, each 500ms EEG epoch was divided into five non-overlapping

sub-epochs with equal length of 100ms. The size of sub-epochs was chosen empirically

with the goal of obtaining salient information of the brain activity prior to keystrokes.

The temporal, morphological and wavelet features of each 100ms EEG epoch were

extracted. The feature vector of a multichannel EEG epoch was constructed by con-

catenating the feature vectors of all the channels. For example, if we want to classify

the 100ms EEG epochs based on temporal features, then each epoch was represented

by a 3 × 36 = 108 dimensional feature vector. Similarly, the morphological feature

dimension for an EEG epoch is 7 × 36 = 252, and the wavelet feature vector has a

dimension of 16× 36 = 576.

3.4.4 Evaluation Metric of a Single Prediction

Sensitivity and specificity are commonly used performance measures of binary classifi-

cation tests. For example, people are tested for a disease in a clinic study. Sensitivity is

defined as the proportion of actual positives which are correctly identified as positive,

and specificity is the proportion of negatives which are correctly identified as negative.

In this study, we labeled the erroneous EEG samples as positive and the correct EEG

samples as negative. Then we use sensitivity to measure the percentage of erroneous

EEG samples that are correctly identified as positive, and specificity to measure the

percentage of correct EEG samples that are correctly identified as negative. For each

testing EEG sample, the classification result can be always categorized into one of the

following four subsets:

• True positive (TP): if an erroneous EEG epoch is classified as positive.

• False positive (FP): if an correct EEG epoch is classified as positive.

• True negative (TN): if an correct EEG epoch is classified as negative.

• False negative (FN): if an erroneous EEG epoch is classified as negative.
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Figure 3.2: Flowchart of the typing experiment as well as the EEG acquisition and
epoch sampling procedure. The 500ms EEG epochs were first extracted from the raw
EEG data, and then they were divided into five 100ms sub-epochs corresponding to the
five non-overlapping time intervals prior to keystrokes.

Then sensitivity and specificity can be calculated as follows:

sensitivity =
TP

TP + FN
, (3.19)

specificity =
TN

FP + TN
. (3.20)
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3.4.5 Training and Evaluation

A standard classification problem generally follows a two-step procedure which consists

of training and testing phases. During the training phase, a classifier is trained to

achieve the optimal separation for the training data set. Then in the testing phase, the

trained classifier is used to discriminate new samples with unknown class information.

The leave-one-out cross validation is an attractive method of model evaluation, it is

capable of providing almost unbiased estimate of the generalization ability of a classifier

[150]. In this study, we trained and tested the classifiers under two frameworks, namely

in-subject and cross-subject error detection. Correspondingly, two leave-one-out cross

validation methods with perturbed duplications of erroneous samples were designed to

achieve an unbiased estimate of the classification performance. The two methods are

described in the following.

• In-subject Error Detection: training and testing on each subject individually. We

employed a leave-one-error-pattern-out cross validation method for each subject.

Let nc and ne denote the number of correct and erroneous keystrokes of a subject.

Each time, we picked one erroneous EEG sample and dnc/nee correct samples

out, and trained the classifier by the rest samples. To eliminate the unbalanced

problem during training, we employed an oversampling method with perturbed

replications of erroneous samples. Let ntc and nte denote the number of correct and

erroneous samples in the training data set (ntc � nte). Then the feature vector

of each erroneous sample was replicated dntc/ntee times. For each replication, a

synthetic erroneous feature vector was generated by adding a random perturbation

to the original erroneous feature vector. In particular, let Yj be a feature vector

of an erroneous EEG sample, then a synthetic erroneous feature vector Y ′j can be

created by

Y ′j = Yj + α× Ȳe − Yj
τe

, (3.21)

where Ȳe and τe are 1 × 36k vectors, which contain the means and standard

deviations of the 36k features for all the erroneous samples in the training data

set, α is a random number uniformly generated in [-1, 1]. The trained classifiers
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were tested on the left-out samples. Repeat the procedure for all the erroneous

samples of a subject. The averaged prediction result was used to indicate the

classification effectiveness based on the current data set.

• Cross-subject Error Detection: In this framework, we speculate that the erroneous

EEG patterns of different subjects may share some common characteristics due

to a high level of uncertainty or anxiety prior to making typing errors. There

have been a number of recent BCI studies focusing on subject-independent ERP

classification. The studies showed that the EEG potentials of different subjects

may exhibit similar waveform characteristics in performing the same mental task

[39, 98]. Stemmed from this consideration, we designed a leave-one-subject-out

method to train and evaluate the classifiers. Each time we picked one subject

out, and trained the classifiers by the EEG samples from the rest eight subjects.

The oversampling method with perturbed replications of erroneous samples was

also used to form a balanced training data set. The EEG samples of the left-

out subject were considered as unknown samples to test the trained classifiers.

Repeating this procedure for all the subjects, the averaged prediction accuracy

can be used to indicate the effectiveness of the trained classification models.

3.4.6 Receiver Operating Characteristic Analysis

ROC analysis is another popular method to evaluate the performance of a prediction

model. A ROC curve is a plot of sensitivity versus false alarm rate (1-specificity) as the

discriminant threshold of a classifier varied throughout its possible ranges. The ROC

curve for a perfect prediction model is the line connecting [0, 0] to [0, 1] and [0, 1] to

[1, 1]. And the diagonal line connecting [0, 0] to [1, 1] is the ROC curve corresponding

to a random model. Generally, a ROC curve lies between these two extreme lines. The

area under the ROC curve (AUC) is often used as a important metric to evaluate a

prediction model. The AUC is an overall summary of prediction accuracy across the

spectrum of its decision-making values. AUC values are usually between 0.5 and 1.

The AUC of a perfect predictor is 1 while a purely random chance model has an AUC
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of 0.5 on average. The higher the AUC value is to one, the better the prediction power

a predictor has. A typical generation procedure of the ROC curve for a classifier is

demonstrated in Figure 3.3. One may also find that the value of AUC may also be

a classificability index of the two data sets without knowing their exact distributions

based on the current classification framework.

Discrimination
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     Set of
Typing Errors

         Set of
Correct Keystrokes

0 1

1

Se
n

si
ti

vi
ty



1 - Specificity

TP
FP

TN
FN

AUC

Critical values generated by

Figure 3.3: A demonstration of ROC as the discrimination threshold of a classifier (LDA
or PSVM) is varied through the whole range of its possible values. The value of AUC
indicates the overall performance of a classifier. It may also indicate the classificability
of the two data sets without knowing the distributions of the two data sets based on
the current classification framework.

3.5 Results

3.5.1 In-Subject Sensitivity and Specificity Analysis

Table 3.3 summarize the in-subject training and testing sensitivity and specificity of

LDA and PSVM based on the leave-one-error-pattern-out cross validation methodology

using the three choices of EEG features. The best training performance was achieved

by the wavelet features for both LDA and PSVM. Using wavelet features, the training

sensitivity and specificity were above 90% for both LDA and PSVM at all the five

time intervals. It had an averaged training sensitivity of above 90% and an averaged

specificity of above 80% when using morphological features. The temporal features had

the worst training performance, which had an averaged training sensitivity of above 80%

and an averaged specificity of above 70%. As for the testing performance, a noteworthy
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observation is that the best testing results of LDA and PSVM were both achieved at the

time interval of -100ms ∼ 0ms. In particular, the best testing performance of LDA was

achieved at a sensitivity of 62.77% and a specificity of 51.03% when using morphological

features, while the best testing performance of PSVM had a sensitivity of 62.20% and a

specificity of 51.68% when using morphological features. In a contrast experiment, we

also tested a randomized detection model with prior probability of error rate (RDPP).

For a subject with an error rate of p, the RDPP classified each EEG sample as erroneous

with a probability of p, and as correct with a probability of 1− p. The testing results

of the RDPP are shown in the last row of Table 3.3. It was noted that only about 2%

of the erroneous keystrokes can be detected on average by the RDPP, while both LDA

and PSVM detected more than 60% of the erroneous keystrokes at the time interval

of -100ms ∼ 0ms. Our trained classification models considerably increased the error

detection rate.

In addition, the averaged testing sensitivities of LDA and PSVM over the nine

subjects and the three choices of features for the five time intervals are shown in Figure

3.4. Interestingly, the error detection accuracies tended to increase as the time interval

became closer to the timing of keystrokes, especially at the last three 100ms time

intervals. This observation may indicate that the closer the analyzed EEGs to the

keystrokes, the more prominent brainwave patterns can be captured to discriminate an

upcoming erroneous keystroke from correct ones. This result nicely matches with our

physiological intuition and the previous study of Blankertz et. al. in [13], which also

reported an increased classification accuracies in detecting upcoming finger movements

(keystrokes) based on EEG recordings prior to the keystrokes. They also claimed that

the most salient information of brain may be gained within 230ms before the finger

movements based on their experiments. However, this hypothesis still needs further

investigation in future work.
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Table 3.3: In-Subject training and testing results of LDA, PSVM and a Random model
based on the leave-one-error-pattern-out cross validation methodology (Results were all
averaged over the nine subjects).

Classifier Feature -500ms -400ms -300ms -200ms -100ms
sen. spe. sen. spe. sen. spe. sen. spe. sen. spe.

Temporal 87.11% 76.33% 87.64% 76.76% 88.26% 76.84% 85.07% 76.66% 89.63% 79.19%
LDA Morph. 95.08% 84.64% 95.62% 85.20% 95.28% 85.20% 96.41% 85.21% 95.71% 86.16%

Training Wavelet 99.59% 93.67% 99.78% 94.43% 99.59% 93.28% 99.34% 93.64% 99.23% 93.71%
Results Temporal 87.16% 75.74% 87.33% 76.37% 87.03% 76.70% 86.90% 76.77% 87.40% 78.08%

PSVM Morph. 93.73% 82.71% 95.57% 84.01% 93.22% 83.36% 96.08% 83.88% 95.89% 85.05%
Wavelet 99.28% 92.42% 99.74% 92.64% 99.52% 92.60% 99.63% 93.45% 99.66% 93.68%

Temporal 56.03% 50.02% 57.47% 49.86% 54.88% 49.26% 61.28% 49.68% 61.74% 49.83%
LDA Morph. 54.48% 50.35% 55.93% 51.13% 58.81% 50.73% 55.17% 51.23% 62.77% 51.03%

Testing Wavelet 53.10% 49.72% 55.91% 50.41% 52.03% 50.85% 54.74% 51.97% 56.95% 49.70%
Results Temporal 55.62% 50.16% 57.83% 49.58% 55.89% 49.44% 59.88% 49.61% 63.15% 49.37%

PSVM Morph. 52.87% 50.48% 55.82% 50.75% 60.13% 51.05% 58.92% 50.91% 62.20% 51.68%
Wavelet 50.98% 50.49% 57.00% 50.28% 51.37% 50.63% 55.30% 51.64% 57.00% 50.52%

RDPP - 2.35% 97.73% 2.18% 97.74% 2.33% 97.72% 2.21% 97.72% 2.32% 97.73%

Table 3.4: Cross-Subject Training and testing results of LDA, PSVM and a Random
Model based on the leave-one-subject-out cross validation methodology (Results were
all averaged over the nine subjects).

Classifier Feature -500ms -400ms -300ms -200ms -100ms
sen. spe. sen. spe. sen. spe. sen. spe. sen. spe.

Temporal 51.67% 79.52% 52.57% 85.15% 52.64% 86.00% 54.89% 71.75% 55.04% 72.96%
LDA Morph. 68.09% 64.75% 65.59% 63.25% 69.06% 66.18% 68.04% 62.01% 70.00% 63.89%

Training Wavelet 62.47% 69.66% 66.03% 68.38% 63.64% 64.73% 66.10% 68.34% 67.81% 71.06%
Results Temporal 46.69% 93.06% 47.48% 91.99% 48.83% 89.00% 52.09% 79.39% 56.06% 73.15%

PSVM Morph. 66.46% 66.20% 66.40% 62.63% 67.44% 64.80% 66.04% 63.57% 69.25% 64.69%
Wavelet 60.94% 74.19% 64.97% 72.66% 61.52% 69.18% 62.74% 69.87% 67.29% 71.98%

Temporal 63.39% 48.50% 63.98% 49.52% 59.75% 50.43% 64.17% 48.67% 68.72% 49.45%
LDA Morph. 55.74% 54.41% 55.53% 56.29% 60.39% 53.84% 60.84% 53.12% 60.88% 53.66%

Testing Wavelet 58.73% 49.97% 57.21% 50.88% 62.37% 48.83% 61.51% 50.21% 63.63% 51.84%
Results Temporal 54.85% 55.43% 54.65% 58.40% 55.08% 56.55% 61.21% 53.46% 66.63% 51.30%

PSVM Morph. 54.40% 55.68% 54.25% 56.20% 60.35% 53.51% 56.87% 56.41% 60.61% 54.46%
Wavelet 58.23% 50.97% 57.49% 52.79% 62.23% 48.93% 61.52% 51.38% 62.09% 52.86%

RDPP - 2.31% 97.74% 2.25% 97.74% 2.26% 97.74% 2.29% 97.74% 2.23% 97.74%
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Figure 3.4: The averaged testing sensitivity of LDA and PSVM over the nine subjects
and the three choices of features for the five time intervals. In both in-subject and
cross-subject experiments, there is an increasing trend of error detection accuracy as
the time interval moves closer to the timing of keystrokes.

3.5.2 Cross-Subject Sensitivity and Specificity Analysis

Table 3.4 summarize the cross-subject training and testing performance based on the

leave-one-subject-out cross validation methodology. It is noted that the cross-subject

training performance was worse than in-subject training performance. The best training

performance of LDA has a sensitivity of 52.64% and a specificity of 86.00%, and that of

PSVM was achieved at a sensitivity of 46.69% and a specificity of 93.06%. As for testing

performance, it is interesting to observe that the cross-subject testing performance was

comparable to in-subject testing performance. Also it is worth mentioning that the

best testing performance was achieved at the time interval of -100ms ∼ 0ms for both

LDA and PSVM. In particular, the best testing performance of LDA has a sensitivity

of 68.72% and a specificity of 49.45%, and PSVM has a sensitivity of 66.63% and a

specificity of 51.30% at best. These results indicate that the erroneous EEG at the

time interval of -100ms ∼ 0ms may exhibit more prominent patterns than the other

four time intervals, which lead to increased classification accuracies. More importantly,

the classifiability of erroneous and correct EEG samples across the subjects confirmed

our hypothesis that different subjects may exhibit some similar EEG patterns prior

to erroneous actions. Otherwise, the leave-one-subject-out method would produce an

overall accuracy no better than a chance level. The subject-independent erroneous EEG
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potentials may be associated with a high level of uncertainty or anxiety prior to wrong

response actions. Such uncertainty/anxiety related EEG potentials may have much in

common for human beings.

3.5.3 Receiver Operating Characteristic Analysis

The ROC analysis is an important method to further investigate the classificability of

the erroneous and correct EEG samples. Table 3.5 and Table 3.6 present the in-subject

and cross-subject AUC values of the nine subjects based their best choices of features.

The corresponding in-subject and cross-subject ROC curves are shown in Figure 3.5

and Figure 3.6, respectively. From the ROC plots, one can observe that both in-subject

and cross-subject ROC curves of the nine subjects are apparently deviated from the

45-degree diagonal line which represents a random chance level, especially the last three

time intervals. These ROC curves suggested that the distribution of erroneous EEG

patterns might be different from that of correct ones.

In addition, AUC is a convenient indicator of the discrimination between the two

distributions of erroneous and correct EEG samples. As for in-subject experiments,

the best AUC value of LDA was 0.76 achieved at subject 4 using temporal features at

-200ms ∼ -100ms. The best AUC value of PSVM was 0.80 achieved also at subject 4

using temporal features at -200ms ∼ -100ms. The best averaged AUC values were 0.63

and 0.64 for LDA and PSVM, respectively. They were both achieved at the time interval

of -100ms ∼ 0ms. In the cross-subject experiments, the best AUC values of LDA and

PSVM were both 0.78 achieved at subject 4 using temporal features at the time interval

of-100ms ∼ 0ms. The best averaged cross-subject AUC value of LDA was 0.62 achieved

at -200ms ∼ -100ms, and the best averaged AUC value of PSVM was also 0.62 achieved

at both time intervals of -200ms ∼ -100ms and -100ms ∼ 0ms. It is noted that the

averaged in-subject and cross-subject AUC values were all above 0.60 at the last three

time intervals of -300ms ∼ 200ms, -200ms ∼ 100ms, and -100ms ∼ 0ms. Also, we notice

that the classification accuracy on subject 4 was generally higher than that of other nine

subjects. When excluding subject 4, we still can get an averaged AUC values of around
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0.60 at the last three time intervals. These results further confirmed our hypothesis that

the most salient information of the brain activity associated with erroneous keystrokes

may be gained within 300ms prior to keystrokes. The AUC values indicated that the

distributions of erroneous and correct EEG patterns might be different. As a result,

erroneous keystrokes might be predictable based on EEG recordings.

Table 3.5: In-Subject AUC Values of LDA and PSVM based on the best choice of
features.

sub. -500ms -400ms -300ms -200ms -100ms
AUC Feat. AUC Feat. AUC Feat. AUC Feat. AUC Feat.

1 0.56 Morp. 0.53 Temp. 0.62 Temp. 0.63 Wave. 0.68 Temp.
2 0.59 Wave. 0.62 Morp. 0.55 Morp. 0.53 Morp. 0.58 Temp.
3 0.59 Wave. 0.58 Temp. 0.59 Morp. 0.53 Morp. 0.64 Morp.
4 0.6 Temp. 0.61 Morp. 0.75 Morp. 0.76 Temp. 0.75 Temp.

LDA 5 0.61 Temp. 0.59 Wave. 0.58 Temp. 0.57 Temp. 0.61 Wave.
6 0.68 Morp. 0.65 Temp. 0.66 Morp. 0.63 Morp. 0.64 Morp.
7 0.61 Temp. 0.57 Morp. 0.62 Temp. 0.65 Morp. 0.61 Morp.
8 0.57 Temp. 0.53 Temp. 0.6 Temp. 0.58 Wave. 0.54 Temp.
9 0.59 Morp. 0.58 Morp. 0.62 Morp. 0.56 Morp. 0.62 Temp.

ave. 0.60 - 0.58 - 0.62 - 0.60 - 0.63 -

1 0.61 Morp. 0.53 Temp. 0.67 Temp. 0.65 Wave. 0.65 Temp.
2 0.59 Wave. 0.67 Temp. 0.55 Temp. 0.55 Temp. 0.66 Morp.
3 0.59 Wave. 0.58 Temp. 0.61 Morp. 0.59 Morp. 0.64 Morp.
4 0.59 Temp. 0.59 Wave. 0.74 Morp. 0.80 Temp. 0.72 Temp.

PSVM 5 0.6 Temp. 0.57 Wave. 0.56 Temp. 0.54 Morp. 0.62 Temp.
6 0.65 Morp. 0.63 Temp. 0.64 Morp. 0.67 Morp. 0.65 Morp.
7 0.6 Temp. 0.54 Morp. 0.6 Temp. 0.63 Morp. 0.62 Wave.
8 0.57 Temp. 0.54 Morp. 0.59 Temp. 0.61 Wave. 0.57 Wave.
9 0.59 Morp. 0.6 Morp. 0.55 Temp. 0.57 Wave. 0.67 Morp.

ave. 0.60 - 0.58 - 0.61 - 0.62 - 0.64 -

3.6 Conclusion

In this Chapter, we applied the start-of-the-art data mining techniques to investigate

EEG time series patterns during numerical typing. The temporal, morphological, and

wavelet-based time-frequency features were extracted. Popular data mining tools LDA

and PSVM were employed in this binary classification task. Since the number of erro-

neous EEG samples of each subject was too few to train the classifiers, we designed the

in-subject leave-one-pattern-error-out and the cross-subject leave-one-subject-out cross

validation methodology to achieve an unbiased estimate of classification performance.

The experimental results of this study were promising. The averaged in-subject and
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Table 3.6: Cross-Subject AUC Values of LDA and PSVM based on the best choice of
features.

subject -500ms -400ms -300ms -200ms -100ms
AUC Feat. AUC Feat. AUC Feat. AUC Feat. AUC Feat.

1 0.56 Temp. 0.57 Temp. 0.57 Temp. 0.68 Wave. 0.55 Temp.
2 0.53 Morp. 0.58 Temp. 0.56 Morp. 0.59 Morp. 0.57 Temp.
3 0.6 Morp. 0.58 Wave. 0.58 Wave. 0.57 Temp. 0.59 Temp.
4 0.67 Temp. 0.6 Temp. 0.73 Wave. 0.76 Temp. 0.78 Temp.

LDA 5 0.6 Temp. 0.56 Morp. 0.57 Temp. 0.6 Temp. 0.64 Temp.
6 0.64 Morp. 0.64 Morp. 0.64 Morp. 0.66 Morp. 0.63 Morp.
7 0.59 Morp. 0.59 Temp. 0.62 Morp. 0.56 Wave. 0.61 Morp.
8 0.55 Temp. 0.56 Temp. 0.57 Temp. 0.6 Temp. 0.58 Wave.
9 0.57 Morp. 0.6 Morp. 0.61 Morp. 0.59 Morp. 0.57 Temp.

ave. 0.59 - 0.59 - 0.61 - 0.62 - 0.61 -

1 0.56 Wave. 0.57 Morp. 0.57 Temp. 0.68 Wave. 0.57 Wave.
2 0.53 Morp. 0.59 Wave. 0.56 Morp. 0.59 Morp. 0.57 Temp.
3 0.6 Morp. 0.58 Temp. 0.58 Wave. 0.57 Temp. 0.59 Temp.
4 0.67 Temp. 0.64 Temp. 0.73 Wave. 0.75 Temp. 0.78 Temp.

PSVM 5 0.6 Temp. 0.56 Morp. 0.57 Temp. 0.6 Temp. 0.64 Temp.
6 0.64 Morp. 0.64 Morp. 0.64 Morp. 0.66 Morp. 0.63 Morp.
7 0.57 Morp. 0.6 Wave. 0.61 Morp. 0.56 Morp. 0.61 Morp.
8 0.55 Temp. 0.56 Temp. 0.59 Temp. 0.6 Temp. 0.58 Wave.
9 0.57 Morp. 0.6 Morp. 0.58 Morp. 0.6 Morp. 0.57 Temp.

ave. 0.59 - 0.59 - 0.60 - 0.62 - 0.62 -
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Figure 3.5: The in-subject ROC curves of the nine subjects at each time interval for
LDA and PSVM based on their best choice of features. The averaged AUC value over
the nine subjects is denoted in the bottom part of each subplot.

cross-subject AUC values were both above 0.60 at the last three time intervals of -300ms

∼ 200ms, -200ms ∼ 100ms, and -100ms ∼ 0ms. These results indicated that the distri-

bution of erroneous EEG patterns may be considerably different from that of correct
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Figure 3.6: The cross-subject ROC curves of the nine subjects of LDA and PSVM at
each time interval based on their best choice of features. The averaged AUC value over
the nine subjects is denoted in the bottom part of each subplot.

ones, especially at the last 300ms prior to keystrokes. The results are very encourag-

ing considering that the classification problem of this study is extremely challenging

due to the highly imbalanced data structure, and that we only used a very simple and

straightforward classification framework. This study confirmed our hypothesis that it

is possible to predict a future event (such as an erroneous keystroke) based on EEG

recordings.

All our experiments were performed based on nine subjects. The number of subjects

is limited due to difficulties in recruiting subjects and complex experimental settings.

Although this study based on the limited data pool might not represent a general-

ized result for all people, the concept of automated EEG-based online monitoring and

prediction system seems to be conceivable. In the next chapter, we will explain an

reinforcement learning based online prediction framework based on EEG time series

data. The whole framework is explained in detail by solving the challenging seizure

prediction problem.
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Chapter 4

Reinforcement Learning-Based Online Monitoring and

Prediction Approach: an Application to Seizure

Prediction

Epilepsy is one of the most common neurological disorders, affecting approximately

1% of the world’s population. The sudden and spontaneous occurrence of epileptic

seizures imposes a significant burden on patients with epilepsy. Being able to pre-

dict impending seizures could greatly improve the life of patients with epilepsy. One

prominent challenge in seizure prediction is the high intra- and inter- individual vari-

ability of epileptic seizures and their episodic events. In this study, we propose a novel

autonomous adaptive learning approach for online seizure prediction based on analy-

sis of electroencephalogram (EEG) recordings. For each individual patient, after the

first seizure in the EEG recording, we construct baseline patterns of normal and pre-

seizure EEG samples. Then our approach monitors continuous EEG recordings using

sliding windows, and classify each of the EEG windows as normal or pre-seizure by

comparing it with the baseline samples using a K-nearest-neighbor (KNN) method. We

proposed a gradient-based reinforcement learning algorithm to update the normal and

preseizure baseline patterns online based on the feedback of each prediction (true or

false). The proposed approach was evaluated by an EEG dataset of 10 patients with

epilepsy. For each one of the 10 patients, the adaptive algorithm was trained to find

the best parameter setting using the EEG recordings containing the first half of seizure

occurrences. With the best setting, our approach was tested prospectively on the EEG

recordings containing the second half of seizure occurrences. The testing prediction

performance using the prediction horizon of 150 minutes yields the sensitivity of 73%
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and the specificity of 67% on average over 10 patients. We also compared the perfor-

mance of our approach with that of a non-update prediction scheme and two native

prediction schemes (periodic and Poisson). We performed a receiver operating charac-

teristic (ROC) analysis on each prediction scheme, and the area under the ROC curve

(AUC) was used to compare the prediction power of different prediction schemes. The

statistical validation of the results demonstrated that the proposed adaptive learning

approach outperformed the the non-update and the two naive prediction schemes with

the p-values smaller than 0.001. The results of this study are considered as an ample

evidence of the need of adaptive baseline/model update in online monitoring problems.

4.1 Introduction

Epilepsy is one of the most common neurological disorders, affecting approximately 1%

of the world’s population [34]. Epileptic seizures generally occur without warning, and

the shift between a normal brain state and seizure onset is often considered an abrupt,

unpredictable phenomenon. The unpredictability of seizures represents a significant

source of morbidity in patients with epilepsy. Patients with epilepsy frequently suffer

from seizure-related injuries due to loss of motor control, loss of consciousness or delayed

reactivity during seizures [117]. Current technology has yet to reach a point where

epileptic patients can be warned by an automated system prior to seizure onsets. The

ability to predict the occurrence of impending seizures could significantly improve the

life quality of epileptic patients.

One crucial question in seizure prediction is whether an identifiable, specific, pre-

seizure state exists. Over the recent years, there has been accumulating evidence indi-

cating that a transitional pre-seizure state does exist prior to seizure onsets [64, 89, 126,

106, 90, 19, 22]. The majority of the quantitative evidence supporting the existence of a

pre-seizure state is derived from EEG analyses. For example, Iasemidis et al. [64] noted

premonitory pre-seizure changes based on the analysis of dynamical entrainment. Lehn-

ertz and Elger [89] showed that the correlation dimension decreases prior to seizures.

Le van Quyen et al. [126] reported a reduction in the dynamical similarity index before
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seizure occurrence. Mormann et al. [106] observed that there was a relative decrease

of signal power in the delta band of the EEG up to hours prior to seizure onsets. They

also demonstrated statistically significant discrimination between pre-seizure and nor-

mal brain states. In our previous study, Chaovalitwongse et al. [21] investigated the

EEG characteristics of pre-seizure transition and found that the probability of detecting

pre-seizure transition was as high as 83% using the optimized critical EEG channels.

In later studies, a network-based approach was built to study the evolution of epileptic

seizures. The evolutional structural changes of the brain network hours prior to seizure

onsets indicated that the seizures may slowly develop by an evolutional epileptogenic

process [22, 24].

The current seizure prediction algorithms generally employ some EEG features as

precursors of imminent epileptic seizures. If the extracted EEG features cross an op-

timized threshold, a warning is issue for a patient. Examples of published features

include dynamical entrainment [67, 54], correlation dimension [88], dynamic similarity

index [126], accumulated energy [96], phase synchronization [105], wavelet and median

filtering [111]. Recently, Feldwisch-Drentrup et al. [40] investigated the possibility of

combining different seizure prediction algorithms and different EEG features to improve

prediction accuracy. Using Boolean operations, they showed the different prediction

methods with different EEG features can be combined and can generate significant

better performance than each individual method. In particular, they found that sen-

sitivity can be markedly improved by combining dynamic similarity index [126] and

phase synchronization [105], given a fixed maximum FPR.

A significant challenge of seizure prediction is the high inter- and intra-individual

variability of epileptic seizures with a variable degree of success [66]. Although many

nonadaptive methods have achieved promising results, this variability makes it difficult

to develop a universal robust predictor to accurately predict seizures for a wide range

of patients with different seizures. This variability also highlights the emerging need for

an automated adaptive approach for epileptic seizure prediction. A number of adaptive

seizure prediction algorithms have been proposed to account for the high variability of

epileptic seizures [66, 67, 135, 128, 25]. Iasemidis et al. [66, 67] and Sackellares et al.
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[135] developed optimization-based prediction algorithms which, based on dynamical

synchronization in the human epileptic brain, adaptively selects a group of critical EEG

electrodes to predict impending seizures. More recently, Iasemidis’s group published

similar results, with high sensitivity (85.9%) and specificity (0.18 false positive rate

(FPR) per hour), and long warning times prior to seizures (67.6 minutes on average),

on prospective seizure prediction in rodents with chronic epilepsy [54]. Rajdev et al.

[128] also proposed an adaptive prediction algorithm based on a Wiener implementation

of autoregressive (AR) modeling. A warning was issued if the prediction errors over a

moving window exceeded a threshold. The threshold was continuously updated online,

and it was optimized to maximize sensitivity and latency, while minimizing FPR. This

algorithm achieved an averaged sensitivity of 92% on four rats with 70 seizures. This

study also compared the proposed algorithm with the state-of-the-art seizure prediction

algorithms [67, 88, 126, 96, 27, 105, 111]. In particular, we are interested to compare

the two most recent adaptive algorithms in Rajdev et al. [128] and Iasemidis et al. [54].

It is noted that the FPR in [128] was 4.8/hour, which is much higher than that in [67]

(0.18/hour). And also the averaged warning time in [128] is only 6.7 seconds, which is

much shorter than that in [67] (67.6 minutes).

The current a few adaptive seizure prediction approaches are generally based on

an adaptively-optimized set of EEG channels [66, 67, 135] or an adaptive threshold

[128]. In principle, these approaches employed the prediction settings optimized by

one or several recently occurred seizures to predict the next seizure. Due to the high

intra-individual variability of epileptic seizures, the characteristics of the EEG patterns

of the next seizure may become quite different from those of its preceding ones. The

current adaptive approaches actually do not make full use of the whole monitored EEG

recordings, and thus have problems to deal with the challenging problems of high intra-

individual variability of seizures in prediction. Therefore, it is extremely desirable to

enable a prediction system to accumulate more and more knowledge of predictive EEG

patterns over time instead of only holding ‘short memories’.

To tackle this problem, we propose a novel adaptive learning approach for prospec-

tive online seizure prediction. For each individual patient, after the first seizure in the
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EEG recording, we construct baseline patterns of normal and pre-seizure EEG sam-

ples. Our approach monitors continuous EEG recordings using sliding windows, and

classify each of the EEG windows as normal or pre-seizure by comparing it with the

baseline samples using a K-nearest-neighbor (KNN) method. We proposed a gradient-

based reinforcement learning algorithm to update the normal and preseizure baseline

patterns online based on the feedback of each prediction (true or false). This study

is among the first to investigate adaptive learning algorithms to solve the challenging

online monitoring and prediction problem of seizure prediction [66, 135, 55, 128]. It is

noted that the seizure prediction approach has to work with a seizure detection algo-

rithm to provide prediction feedbacks for baseline updating. Since there have been a

number of automated seizure detection algorithms embedded in clinical EEG systems,

our proposed prediction approach can be readily integrated to the current EEG sys-

tems. The proposed adaptive learning approach eliminates the need for a complicated

threshold-tuning process, and makes it possible to achieve a personalized seizure pre-

diction in real clinical applications. Since seizure detection is beyond the scope of this

research, we assume that all seizures can be detected perfectly in this study.

This chapter is organized as follows. In section 4.2, the background and previous

related work are discussed. The data collection, feature extraction, the adaptive seizure

prediction approach, and the evaluation metrics of prediction performance are presented

in section 4.3. The experimental results are provided and discussed in Section 4.4, and

we conclude the chapter in Section 4.5.

4.2 Background and Related Works

4.2.1 Overview of Machine Learning Techniques

With the explosion of computing power in the past decade, machine learning and pat-

tern recognition techniques have become important tools in the analysis of various

biological problems, such as cancer research [93], cognitive neuroscience [29], and ge-

nomics and proteomics [26]. Machine learning best depicts the computational methods

that allow a system to evolve behaviors through an automated process of knowledge
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acquisition from empirical data. Machine learning techniques generally fall into three

broad categories: supervised learning, reinforcement learning and unsupervised learn-

ing. A supervised learning technique usually first finds a mapping between inputs and

outputs of a training dataset, and then makes predictions for inputs that it has never

seen. A large number of supervised learning algorithms have been developed that can

be categorized into several major groups, including neural networks, support vector

machines, locally weighted learning, decision trees, and Bayesian inference [83]. Re-

inforcement learning is another learning paradigm in which an agent is able to learn

a decision policy by ‘trial and error’. A reinforcement learner receives feedback of its

actions and makes adjustments to its actions accordingly [154]. Reinforcement learning

is a natural framework for building models to accumulate knowledge from previously

learned tasks to new tasks with increasing complexity and variability. Reinforcement

learning techniques have been applied to many complex learning tasks, such as robot

control [33] and traffic network control [132]. Unsupervised learning is inspired by the

brain’s ability to recognize complex patterns of visual scenes, sounds or odors. It takes

root in neuroscience/psychology and is established on the basis of information theory

and statistics. An unsupervised learner usually performs clustering or associative rule

learning to extract the implicit structure of a given dataset. The established clusters,

categories or associative networks are then used for decision making, prediction, or

efficient communication [31].

4.2.2 EEG Analysis for Epileptic Seizures

Most seizure prediction methods are based on quantitative analysis of the EEG, and

can be broadly categorized into univariate and multivariate analysis, respectively.

Univariate analyses focus on the features of each single channel of EEG. Based on

the morphological characteristics of EEG, Lange et al. [85] reported that there were

consistent changes in EEG spike activity prior to seizures. With the help of advanced

signal processing methods, more complex univariate EEG feature extraction techniques

have been developed for seizure prediction. Litt et al. [96] introduced signal energy

variations to seizure prediction, and reported EEG changes hours before seizure onsets.
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Autoregressive (AR) and autoregressive moving average (ARMA) models have also

been utilized for seizure prediction. Characteristic changes of AR/ARMA coefficients

before seizure onsets were reported in [136, 25]. Nonlinear measures based on chaos

theory have drawn considerable attention in EEG studies of brain activity. The two

well-known nonlinear chaotic measures that have been applied in seizure prediction are

the Lyapunov exponent and correlation dimension. Iasemidis et al. [66] monitored the

evolution of Lyapunov exponents extracted from EEG data. They designed an adaptive

prediction scheme that attempted to select the most informative channels to predict an

impending seizure with optimization techniques. Channel selection was adjusted after

every seizure since it was assumed that the pre-seizure dynamics may change from

seizure to seizure over time. Lehnertz et al. [88] investigated the feasibility of seizure

prediction based on transitions of correlation dimension, a feature that is considered as

an index of neuronal complexity.

Multivariate analyses take more than one channel of EEG into account simultane-

ously rather than only looking at each channel individually. The most influential multi-

variate analysis methods in seizure prediction are phase synchronization and dynamical

entrainment. Le Van Quyen et al. [127] used phase synchronization to distinguish pre-

seizure features from normal state. They compared the normal synchronization patterns

taken from 3-10 hours before seizures with the pre-seizure patterns taken from 30 min-

utes before seizures. The variables that achieved best discriminating performance were

chosen for each individual patient. Mormann et al. [105] designed a seizure prediction

scheme based on their finding that the degree of synchronization may decrease up to

hours prior to seizure onsets. Iasemidis et al. [67] explored the effectiveness of a method

called dynamical entrainment, which estimated the difference of the largest Lyapunov

exponents from any two observed time series of EEG. A progressive convergence of the

dynamical entrainment was considered as sign of transition from normal to pre-seizure

states.
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4.2.3 Related Work in Seizure Prediction and Challenges

In the 1970s, accumulating evidence from clinical practice suggested that epileptic

seizures might be predicable. Viglione and Walsh started a project to investigate the

predictability of seizures based on EEG data [157]. Iasemidis et al. pioneering work

started in the 1980s [68, 69, 65]. Since then, many studies have been carried out aiming

to predict epileptic seizures.

Most current seizure prediction methods involve two steps. First, univariate or mul-

tivariate EEG features are extracted from a sliding window. Then each EEG epoch

in the moving window is classified as either pre-seizure or normal based on an opti-

mized threshold level. Whenever a windowed EEG epoch is classified as pre-seizure,

a warning alarm is triggered indicating that an impending seizure may occur within a

pre-defined prediction horizon. Although some methods have shown promising results

for selected patients, the reliability and repeatability of the results have been questioned

when tested on other EEG datasets. Many of the earlier optimistic findings were ir-

reproducible or achieved poor performance in extended EEG datasets [9]. This is not

surprising since the optimal threshold obtained from a limited number of patients may

not be generalizable. Manually tuning a threshold level for each individual patient is a

subjective procedure and would pose a significant burden on physicians and patients.

The inability to apply these techniques to a wide spectrum of epileptic patients with

a variety of types of epileptic seizures may represent the greatest limitation of current

seizure prediction methods.

Given our accumulated knowledge regarding seizure prediction, we conjecture that

a promising approach may be the one that processes adaptive learning ability and

is capable of achieving personalized seizure prediction autonomously. The flowchart

of a prospective adaptive seizure prediction system is illustrated in Figure 4.1. In

this study, we attempted to construct an adaptive prediction system using machine

learning algorithms. We developed a novel adaptive learning approach, which combines

reinforcement learning, online monitoring, and feedback control theory into an online

seizure prediction system. The proposed adaptive seizure prediction approach can be



58

readily integrated to any clinical EEG system. With the attractive adaptive learning

ability, the proposed approach is capable of achieving a personalized seizure prediction

through baseline-updating as it monitors more and more EEG recordings from a patient.

Patient-specific prediction
system, which can be adaptive
adjusted for each individual
patient based on feedbacks.

Issue warning alarms to the
patient, or trigger medical
interventions to prevent seizure
onset via an implantable devices.

Online Mornitoring of
EEG data

Prediction

    Feedbacks

(right or wrong)

Patient

Figure 4.1: A prospective adaptive seizure prediction system, which can be adjusted to
each individual patient automatically based on feedbacks.

4.3 Materials and Methods

4.3.1 Data Collection

In this study, we used a dataset containing long-term continuous intracranial EEG

recordings from 10 epileptic patients with temporal lobe epilepsy. The placement of

the EEG electrodes is shown in Figure 4.2, which is a modified image of the inferior

transverse view of the brain from Potter [121]. The EEG recordings consist of 26 stan-

dard channels. Recording durations ranged from 3 to 13 days. Expert epileptologists

annotated the EEG recordings to determine the number of seizures, their onset, and

their offset points. The characteristics of the 10 patients and the EEG data statistics

are outlined in Table 4.1.
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Table 4.1: Characteristics of the analyzed patients and EEG data

Patient Gender Number of EEG Length Average Seizure Type
/Age Seizures (hour) Inter-seizure

Interval (hour)

1 F/45 7 85.18 12.17 CP, SC
2 M/60 7 280.86 40.12 CP, GTC, SC
3 F/41 24 212.28 8.85 CP
4 M/19 17 315.23 18.54 CP, SC
5 M/33 17 286.76 16.87 CP, SC
6 M/38 9 74.60 8.29 CP, SC
7 M/44 23 146.15 6.35 CP, SC
8 M/29 19 142.32 7.49 CP, SC
9 F/37 20 276.65 13.83 CP, SC
10 M/37 12 231.61 19.30 CP, GTC

Total 155 2051.63

Seizure types: CP, complex partial; SC, subclinical; GTC, generalized
tonic/clonic.

Figure 4.2: The interior transverse view of the brain and the placement of the 26 EEG
electrodes.

4.3.2 Data Preprocessing & Feature Extraction

Since EEG signals are highly nonstationary and seemingly chaotic, there has been an

increasing interest in analyzing EEG signals in the context of chaos theory [131]. Several

commonly used chaotic measures in many recent studies include largest Lyapunov ex-

ponent [66], correlation dimension [147], Hurst exponent [28] and entropy [125]. Among

these EEG measures, the Lyapunov exponent has been shown to be useful in charac-

terizing a chaotic system [156]. Lyapunov exponents measure the degree of sensitivity

to initial conditions for a dynamical system. For an n-dimensional dynamical system,
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there will be n corresponding Lyapunov exponents that measure the exponential rate

of divergence of the different trajectories in the phase space. If an exponent is positive,

it indicates that the corresponding orbits locally defined by that exponent diverge ex-

ponentially. The magnitude of the exponents indicates the degree of divergence. The

largest Lyapunov exponent in a chaotic system is usually more reliable and reproducible

than the estimation of all the exponents [156], and is an important indicator to charac-

terize a chaotic system. In our previous studies, we used an estimation algorithm called

the short-term largest Lyapunov exponent (STLmax) to quantify EEG dynamics [66].

We employed this measure in the current study. A detailed calculation of STLmax as

well as parameter selection and variation of STLmax has been explained by Iasemidis

in [63].

4.3.3 Adaptive Seizure Prediction Approach

The schematic structure of the proposed adaptive seizure prediction system is illustrated

in Figure 4.3. A sliding window was applied to monitor continuous multichannel EEG

data. The window size is 10 minutes with 50% overlap between two successive windows.

Two baselines of normal and pre-seizure states were constructed and initialized by the

beginning part of the EEG recordings for each patient. The two baselines were used

to classify the monitored EEG epochs of the sliding moving window using a K-nearest-

neighbor (KNN) method. All the baseline samples and windowed EEG epochs were

represented in terms of the multichannel time profile of STLmax values. The two

baselines were updated by a reinforcement learning algorithm based on feedbacks of

prediction actions (true or false). The adaptive seizure prediction system is discussed

in detail in the following.

4.3.3.1 Baseline Construction & Initialization

To start our prediction system, we first initialize the pre-seizure and normal baseline

samples. The selection of baseline samples depends on the presumed time length of pre-

seizure period, which is often considered the prediction horizon in the seizure prediction
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Figure 4.3: Schematic structure of the adaptive prediction system.

literature. The pre-seizure duration has been reported to be between a few minutes

and several hours prior to seizure onset, and remains an open question in epilepsy

research. In this study, we tried three prediction horizons (30, 90, and 150 minutes).

For convenience, we denote the length of the prediction horizon as H minutes, then the

EEG recordings can be divided into the following three periods:
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• Pre-seizure period: 0-H minutes preceding a seizure onset.

• Post-seizure period: 0-20 minutes after a seizure onset.

• Normal period: between pre- and post-seizure periods.

The initial samples of the two baselines were randomly chosen from the normal

and pre-seizure period preceding the first seizure onset. The length of the baseline

samples is equal to that of the moving window. Since there are no guidelines available

to determine the number of samples in each baseline, we tentatively stored a fixed

number of 50 samples in each baseline.

4.3.3.2 KNN Prediction Procedure

With baselines for normal and pre-seizure states, it is intuitive to classify a windowed

EEG epoch based on its degree of similarity to the two baselines. For this purpose, KNN

is a reasonable choice because it classifies a new unlabeled sample by comparing the

sample with all the samples in the two baseline sets. For each EEG epoch in the moving

window, the KNN method finds its K nearest (best matching) samples in each baseline,

and compares the its averaged distances to the two groups of K-nearest neighbors. The

epoch is classified to a baseline that is ‘closer’ to it. The KNN prediction procedure is

described in the following.

KNN methods use similarity measures to quantify the closeness between a moving-

window EEG and baseline samples. We employed three frequently-used time-series

similarity measures. If we denote two time-series of STLmax as X and Y with equal

length of n, then the three types of distances are briefly described as follows.

• Euclidean distance (EU): measures the degree of similarity in terms of amplitude

of the data. The EU between X and Y is defined as EDxy =
√∑

n
p=1(xp − yp)2.

• T-statistical distance (TS): a statistical distance measure between two time series

derived from the t-test. It is frequently used to determine if the mean values of
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two time series differ from each other in a significant way under the assumptions

that the paired differences are independent and identically normally distributed.

The TS between X and Y is calculated by TSxy =
∑n

p=1 |xp − yp|/
√
nτ|X−Y |,

where τ|X−Y | is the sample standard deviation of the absolute difference between

the time series X and Y .

• Dynamic time warping (DTW): DTW measures similarity based on the best pos-

sible alignment or the minimum mapping distance between two time series. The

two time series are ‘warped’ in the time domain to find the optimal pattern match-

ing between them. DTW is particularly suited to matching time series patterns

independent of time variations. A detailed calculation of DTW can be found in

[142].

Once a similarity measure is chosen, we can obtain the distance between a baseline

sample and an EEG epoch in the moving window. For a multichannel EEG epoch, the

window-sample distance is calculated as follows:

dpre,i =

M∑
j=1

distance(Sjpre,i, S
j
mw) (4.1)

dint,i =
M∑
j=1

distance(Sjint,i, S
j
mw) (4.2)

where M=26 is the number of EEG channels. Sjpre,i and Sjint,i is the jth channel of

EEG time series in the ith pre-seizure and normal baseline sample, respectively; Sjmv,i is

the jth channel of EEG in the windowed EEG epoch; dpre,i and dint,i are the distances

between the windowed EEG and the ith sample in the pre-seizure and normal baseline,

respectively. The term distance in the above formula represents a time series distance

measure, which denotes EU, TS, or DTW in this chapter.

We used four choices of K. They were three, seven, half, and all of the baseline

samples, respectively. Once K is fixed, the weighted summation of K smallest window-

sample distances in a baseline was considered as the distance between the windowed

EEG epoch and that baseline. Therefore, we call the two distances as window-normal
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distance DK
int and window-preseizure distance DK

pre, respectively. For each windowed

EEG epoch, its distances to the two baselines can be calculated byDK
pre =

∑K
k=1 αkdpre,k

and DK
int =

∑K
k=1 βkdint,k. The αk and βk are the weights of the kth pre-seizure and

normal baseline, respectively. The dpre,k and dint,k are the distances between the win-

dowed EEG epoch and its kth nearest neighbor in the pre-seizure and normal baseline,

respectively. Once the two baseline-window distances are obtained, the prediction de-

cision can be made by:

predictor =

 1, if DK
pre/D

K
int ≤ R∗ (issue an alarm)

0, otherwise (no warning);

where the threshold R∗ can be used to control the sensitivity of the prediction system.

In this study, we employed R∗ = 0.99 to make the prediction less sensitive to noises

which would lead to many false predictions.

4.3.3.3 Evaluation of a Prediction Result

Baseline updating depends on prediction evaluation feedback. We define the evaluation

metrics of each prediction outcome by the following. If the predefined prediction horizon

is H minutes, then we can categorize each prediction outcome into one of the following

four subsets:

• True positive (TP): if predictor = 1 and a seizure occurs within H minutes after

the prediction.

• False positive (FP): if predictor = 1 and no seizure occurs within H minutes after

the prediction.

• True negative (TN): if predictor = 0 and no seizure occurs within H minutes

after the prediction.

• False negative (FN): if predictor = 0 and a seizure occurs within H minutes after

the prediction.
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Figure 4.4: Schematic structure of the KNN-based prediction rule.
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Figure 4.5: The categorization of prediction outcomes. Each prediction outcome can
always be classified into one of the four subsets (TP, FP, TN, and FN).

4.3.3.4 Baseline Updating Mechanism

The flowchart of the baseline update framework from delayed prediction feedback is

shown in Figure 4.7. In medical practice, a physician mentally compares the EEG

patterns from an individual with the patterns from a database of many other patients
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Figure 4.6: A demonstration of the evaluation metrics: TP, FP, TN, and FN.

and healthy people. The search of the best matching patterns can be global within the

whole database, and can also be local within a sub-group of the database. We designed

both local and global update rules inspired by this consideration. In particular, we

designed four update rules including score-based local update (SL), score-based global

update (SG), distance-based local update (DL), and distance-based global update (DG).

Score-Based Update: In this prediction scheme, we assume that different baseline sam-

ples have different power in decision making. We assigned a score to each baseline

sample to indicate its ‘importance’. The basic idea of score updating is to reinforce

the scores of the ‘good’ baseline samples when correct predictions are made, and de-

crease the scores of ‘bad’ baseline samples when false predictions are made. The score

of a baseline sample is determined by its window-sample distances. For example, if

a windowed EEG epoch is mis-classified as pre-seizure via the KNN evaluation, then

the pre-seizure baseline samples that are closest to, and the normal baseline samples

that are furthest from, this windowed epoch will see their scores penalized according to

their window-sample distances. The closest pre-seizure baseline sample and the furthest

normal baseline sample receive the highest penalties. The mathematical formulations

of the score updating rules are stated in the following.

At the beginning, the initial scores of the baseline sample are all equal, and are
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Figure 4.7: Flowchart of the retrospective baseline-updating framework.

given by:

αi = βi =
1

N
, i = 1, . . . , N, (4.3)

where αi and βi are the scores of the ith sample in the pre-seizure and normal baseline,

respectively. N = 50 is the number of samples in each baseline. Let r ∈ (0, 1) denote

the learning rate to control the update size for the scores, then the score update rule is
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represented as follows:

• For feedback of TP or FN (the windowed EEG is in pre-seizure period), the scores

are updated by:

αi = αi(1−
dpre,i − dpre

dpre
)× r, (4.4)

βi = βi(1 +
dint,i − dint

dint
)× r, (4.5)

• For feedback of FP or TN (the windowed EEG is in normal period), the scores

are updated by:

αi = αi(1 +
dpre,i − dpre

dpre
)× r, (4.6)

βi = βi(1−
dint,i − dint

dint
)× r, (4.7)

where ∀i = 1, 2, . . . , N , dpre =
∑N

i=1 dpre,i/N , and dint =
∑N

i=1 dint,i/N .

For a windowed EEG epoch, the system makes a prediction by the KNN method.

The feedback of this prediction is available until either of the following occurs: 1) the

prediction horizon passes, or 2) a seizure occurs. Once the feedback of this prediction

is given, the score-based retrospective baseline update rules are as follows:

• For case of FP: replace the lowest-scored sample in the normal K-nearest neigh-

bors with the moving-window EEG epoch.

• For case of FN: replace the lowest-scored sample in the pre-seizure K-nearest

neighbors with the moving-window EEG epoch..

• For cases of TP and TN: keep the current baseline samples unchanged.

When K equals to N , the above update is a global update rule that replaces the

global lowest-scored baseline sample. When K is smaller than N , it is a local update

rule which only considers the local K-nearest neighbors of a windowed EEG epoch. The
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score-based local and global update rules are denoted as ‘SL’ and ‘SG’, respectively, in

the remaining part of this chapter.

Distance-based Update: The distance between two EEG epochs indicates the degree of

similarity. Intuitively, a shorter distance means a better match, and a larger distance

indicates a worse match. For a windowed EEG epoch, the goodness of a baseline

sample depends on its window-sample distances. For example, suppose a normal state

windowed EEG epoch, via KNN evaluation, is falsely classified as pre-seizure. We

consider the furthest normal baseline sample as the ‘bad’ baseline sample, which may

be the primary cause of the false prediction, and we replace it with the windowed

EEG epoch. In summary, for a windowed EEG epoch, the retrospective distance-based

baseline update rules are as follows:

• For feedback of FP: replace the furthest sample in its K-nearest neighbors of the

normal baseline with the corresponding windowed EEG epoch.

• For feedback of FN: replace the furthest sample in its K-nearest neighbors of the

pre-seizure baseline with the corresponding windowed EEG epoch.

• For feedback of TP or TN: keep the current baseline samples unchanged.

Similar to ‘SL’ and ‘SG’, the distance-based update can also be local and global

depending on the value of K. The distance-based local and global update rules are

denoted as ‘DL’ and ‘DG’, respectively.

4.3.4 Evaluation of Prediction Performance

To evaluate a prediction model, the most commonly used performance measures are

specificity and sensitivity. In seizure prediction studies, sensitivity is usually defined as

the number of correctly predicted seizures divided by the total number of seizures. A

seizure is considered to be correctly predicted if there is at least one warning within its

preceding prediction horizon. In this study, we also employed this definition of sensi-

tivity, denoted as senblk. To estimate the prediction specificity, most studies calculated

a false prediction rate, which is defined by the number of false predictions per hour (or
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unit time). However, false prediction rate does not provide enough information to infer

the effect of prediction horizon on the prediction performance. For example, a patient

has to wait until the end of prediction horizon to determine if a warning is false. Given

the same false prediction rate, an algorithm with a 3-hour prediction horizon will give a

patient much longer false awaiting time than the one with a 10-minute prediction hori-

zon. To overcome this bias, Mormann et al. [104] suggested that a prediction specificity

can be estimated by quantifying the portion of time during the normal period that is

not considered to be false awaiting time. We herein employed this specificity measure,

denoted as speblk. A demonstration of the senblk and speblk quantification is shown

in Figure 4.8. In turn, we also define the overall prediction performance (OPP) as an

average of senblk and speblk, i.e., OPP = (senblk + speblk)/2. The OPP values can

range from [0.0, 1.0]. An accurate prediction model should have an OPP close to 1,

and a random model should have an OPP around 0.5. The closer the OPP value to

one, the better the prediction performance.

Receiver Operating Characteristic (ROC) Analysis:

In any prediction algorithm, one can always make a trade-off between sensitivity and

specificity, such as increasing sensitivity at the expense of a lower specificity. A common

way to compare different prediction models is to construct a ROC curve that plots

sensitivity versus (1-specificity) whereas the decision boundary of the prediction model

is varied throughout its range. The area under the ROC curve (AUC) is commonly used

to access the overall prediction power of a prediction model. AUC values are usually

between 0.5 and 1. A perfect prediction model has an AUC value of 1 while a random

chance model has an AUC of around 0.5.

4.4 Results

4.4.1 Computational Settings

The proposed prediction approach was tested on EEG recordings of 10 patients with

epilepsy using three prediction horizons, four baseline-update rules, four settings of
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Figure 4.8: A demonstration of the prediction procedure based on the distance ratio
DK
pre/D

K
int. The definition of sensitivity (senblk), specificity (speblk), false alarms, and

false seizure awaiting periods are also illustrated.

KNN, and three types of similarity measures. The summary of the parameter settings

of the prediction system is shown in Table 4.2.

4.4.2 Random Predication Models

There has been no definite conclusion whether prospective algorithms can predict

seizures based on EEG analysis. Before applying it to any clinical application, it is
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Table 4.2: Summary of the settings of the prediction system.
Parameter Setting Values or Choices

Moving Window 10 minutes length with 50% overlap each step

Prediction Horizon 30 minutes, 90minutes, 150minutes

Similarity Measure EU, TS, DTW

The value of K 3, 7, half, all

1. Non-update (No update to the initial baselines)
2. SL (score-based local update)

Update Scheme 3. SG (score-based global update)
4. DL (distance-based local update)
5. DG (distance-based global update)

necessary to evaluate if the designed prediction model is indeed able to perform better

than a chance model. Therefore, we compared the performance of the proposed adap-

tive prediction model with two random prediction schemes: periodic prediction scheme

and Poisson prediction scheme. The periodic prediction scheme gives warnings at a

fixed time interval T . The Poisson prediction scheme issues a warning according to an

exponential distributed random time interval with a fixed mean λ. We performed the

periodic prediction scheme and the Poisson prediction scheme for each patient. The

values of λ and T were determined according to the average length of inter-seizure in-

tervals for each patient as shown in Table 4.1. For example, for patient 1, the averaged

inter-seizure interval is 12.17 hours, we set λ = T = 12.17 hours. This is the best value

setting of T and λ the one could obtain.

4.4.3 Prediction Performance of senblk and speblk

For each patient, the EEG recordings were divided into training and testing dataset.

The training dataset is the EEG recordings that contain the first half of seizure occur-

rences. It is used to train our approach to find the best parameter setting. The testing

dataset is the EEG recordings that contain the second half of seizure occurrences. It

is used to test our prediction approach prospectively using the best parameter set-

ting found from the training data. The best parameter setting is defined as one with

the highest OPP value. In addition, to find the most appropriate trade-off between

sensitivity and specificity, we also added a constraint that the senblk must be greater

than 0.6, and the speblk must be greater than 0.4. If none of the settings meet this
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Figure 4.9: An example of the prediction outcomes of the adaptive prediction system
for patient 6 using the prediction horizon of 150 minutes. Other experimental settings
are SG, K =all, and DTW. The vertical black lines are the recorded seizures in this
patient, and the dashed horizontal line is the threshold of distance ratio. A warning is
issued if the distance ratio falls below the threshold.

constraint, we simply selected the one with the highest OPP value.

Table 4.3 summarizes the performance characteristics of the adaptive learning pre-

diction scheme in the training and testing dataset. To determine the importance and

effectiveness of the proposed baseline-update rule, we also summarizes the performance

characteristics of the non-update prediction scheme in Table 4.3. The non-update pre-

diction scheme employed the same initial baselines as the adaptive ones for each patient,

and kept the baseline unchanged throughout the prediction process. Table 4.3 clearly

shows that the training and testing OPP values of the adaptive learning approach are

considerably higher than those of non-update prediction scheme in all the three pre-

diction horizons. To compare with random predictions, the prediction results of the

periodic and Poisson prediction schemes are also shown in Table 4.3. The adaptive

learning approach performed much better than the two random prediction schemes in

terms of the overall OPP values.

The adaptive prediction approach achieved the best overall performance using the

prediction horizon of 150 minutes. An example of the prediction outcomes of the adap-

tive prediction system is also shown in Figure 4.9. In general, the averaged testing

OPP over the 10 patients of the adaptive prediction approach is 0.70, which is 14%,

25%, and 27% higher than that of non-update prediction scheme, the Poisson prediction

scheme, and the periodic prediction scheme, respectively. Starting from the initial (less
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representative) baseline samples, the adaptive system increased the prediction perfor-

mance considerably by baseline-updating for each individual patient. The experimental

results confirmed our goal that it is possible to achieve personalized prediction through

adaptive learning approaches. In addition, one can observe an increasing trend of the

averaged OPP values for both adaptive and non-update prediction schemes when the

prediction horizon increases from 30 minutes to 150 minutes. This may indicate that

the prediction horizon of 150 minutes is a better estimate of the real length of pre-

seizure periods. The length of prediction horizon is very crucial since a better estimate

of pre-seizure periods will give better reinforcement feedbacks to the adaptive learning

system, and thus will lead to a better prediction performance.

4.4.4 Receiver Operating Characteristic Analysis

The effectiveness of the proposed four adaptive prediction schemes was also evaluated by

the ROC analysis. Table 4.4 summarizes the AUC values of the four adaptive schemes

(SL, SD, DL, and DG), the non-update scheme, and the two random schemes (periodic

and the Poisson). The four adaptive schemes and the non-update scheme employed

the best parameter settings obtained from the training data of each patient. For each

prediction scheme with a selected setting, the sensitivity and specificity of the entire

EEG recordings of a patient were used to generate ROC curves. The parameter used to

generate ROC curves is the threshold of the distance ratio R∗, which was tuned from

0.1 to 10 to make a broad spectrum of tradeoff between sensitivity and specificity. For

the periodic and Poisson schemes, the sensitivity and specificity tradeoff is controlled by

the parameters T and λ, respectively. The ROC curves were obtained by tuning T and

λ from 0.1 to 20 hours. We performed 300 Monte Carlo simulations for both random

schemes, a set of λ and T were randomly, uniformly selected from [0.1, 20] hours at

each experiment. The averaged AUC values over 300 experiments are reported in Table

4.4.

One can clearly observe that the four adaptive schemes generally have higher AUC

values than the non-update and the two random schemes. When using the prediction
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horizons of 150 minutes, the averaged AUC values of the four adaptive schemes (SL,

SG, DL, and DG) are 0.67, 0.68, 0.72, 0.71, respectively. The averaged AUC values

of SL, SG, DL, and DG are 14%, 15%, 22%, and 20% higher than the averaged AUC

value of the non-update scheme. This indicates that all the proposed four adaptive

prediction schemes increased the overall prediction performance of the system through

adaptive baseline-updating. When compared to the random schemes, the averaged AUC

values of SL, SG, DL, and DG are 24%, 26%, 33%, and 31% higher than the averaged

AUC values of the Periodic and Poisson scheme (both are 0.54). The significant higher

AUC values strongly indicate that the adaptive prediction schemes has a much higher

prediction power than random predictions. Similar results can also be obtained when

using the prediction horizons of 30 minutes and 90 minutes.

To make a solid statistical comparison, it is also interesting to investigate the per-

formance of the four adaptive schemes as well as the non-update scheme on all the

parameter settings over the 10 patients. For each scheme (adaptive and non-update),

there are 36 settings including four choices of K, three choices of distance measures,

and three choices of prediction horizons. Figure 4.10 shows the boxplots of the av-

eraged AUC values over 10 patients for the entire 36 settings of each scheme. The

AUC values of the two random schemes obtained from 300 Monte Carlo simulations are

shown in Figure 4.10 for comparison. The boxplot clearly shows that the AUC values of

the four proposed adaptive prediction schemes have significantly different distributions

with those of the non-update and random schemes. We used the AUC values of the

non-update scheme as the baseline group, and performed paired t-test for the AUC val-

ues of the four adaptive schemes and the two random schemes. As shown in the Figure

4.10, the p-value of each paired t-test is smaller than 0.001. This outcome indicates

that the four adaptive prediction schemes all performed significantly better than the

non-update scheme. While the non-update scheme performed significantly better than

the two random schemes. This is not unexpected, since the initial baseline samples

employed by the non-update scheme already contained some useful information of the

preseizure and normal EEG patterns. It thus worked better than random predictions.

When we compare among the four proposed adaptive schemes, we found that the
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Figure 4.10: Box-plot of the AUC values of the four adaptive schemes, the non-update
scheme, and the two random schemes. The AUC values of the adaptive and non-update
schemes are the averaged AUC values over 10 patients for all possible parameter settings
(=36) of each scheme. The AUC values of the two random schemes are obtained from
300 Monte Carlo simulations, in each of which a set of values of lambda and T are
randomly and uniformly varied from 0.1 to 20 hours. Each box shows the median,
interquartile range, minimum and maximum of the AUC values of each prediction
scheme. Using AUC values of the nondicated-update scheme as the baseline group,
the p-values of the paired t-tests for the AUC values of other prediction scheme are
indicated in the plot. The four adaptive schemes performed significantly better than
the non-update scheme with all p-values smaller than 0.001. While the non-update
scheme performed significantly better than the two random schemes with both p-values
smaller than 0.001.

two distance-based update schemes (DL and DG) performed better than the two score-

based update schemes with p-values smaller than 0.001. This outcome implies that the

distance-based update rule did a better job in the online baseline-updating than the

score-based rule. In addition, the AUC values of the two score-based update schemes

SL and SG are comparable with a p-value of 0.15; and DG worked a little better than

DL with a p-value of 0.02.
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4.4.5 Comparisons to Other Seizure Prediction Methods

There have been many studies focusing on epileptic seizure prediction. However, only a

few of them were designed prospectively for online seizure prediction. Since most stud-

ies employed different EEG datasets and the ambiguous performance measure of false

prediction rate, it is actually very hard to compare the real prediction performances

between these algorithms. With recognition of this problem, the seizure prediction re-

searchers began to report more universal and unambiguous performance measures, such

as the portion of time a patient is not in the false awaiting state suggested by [104].

Two recent studies have reported this information and thus are convenient to be com-

pared with our approach. Sackellares et al. evaluated an adaptive seizure prediction

approach on 10 patients. Given a prediction horizon of 150 minutes and a sensitivity of

80%, the portion of false awaiting time is 37% (corresponding to our specificity of 63%)

on average over the 10 patients. Snyder et al. [148] performed a prospective seizure

prediction on four patients using a prediction horizon of 120 minutes. The averaged

sensitivity is 82.3% and the portion of false awaiting time is 30.5% (corresponding to

our specificity of 69.5%). The OPP values of the two studies are 0.72 and 0.76, respec-

tively. For our approach, if we choose the prediction horizon of 150 minutes and select

the best prediction performance based on the entire EEG recordings of each patient, the

resulting sensitivity is 77% and specificity is 73% on average over the 10 patients. The

OPP value of our adaptive learning approach is 0.75. Given comparable prediction per-

formance to the two state-of-the-art studies, our adaptive learning approach is actually

more prominent since it does not require a sophisticated parameter/threshold opti-

mization procedure and is capable of improving prediction performance autonomously

in the online monitoring and prediction process. The prediction performance of the

adaptive learning approach has more potential to be further improved when more EEG

recordings are available. In addition, only requiring the first seizure of each patient

for initialization, the proposed approach is more convenient to be embedded into the

existing EEG systems and achieve a personalized prediction using adaptive learning.
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4.5 Conclusions and Discussion

This study investigated the challenging problem of epileptic seizure prediction. We in-

troduced an adaptive learning approach, which combine reinforcement learning, online

monitoring and adaptive control theory to achieve a personalized seizure prediction.

Using EEG recordings from 10 patients with epilepsy, we demonstrated that the adap-

tive learning algorithm was effective in increasing prediction performance of the system

through adaptive baseline-updating. The best prediction performance was achieved

using the prediction horizon of 150 minutes, in which the averaged sensitivity was 73%

and the averaged specificity was 67%. The ROC analysis demonstrated that the adap-

tive prediction schemes indeed performed much better than the non-update scheme and

the two chance models.

The experimental outcomes of this study are very encouraging given that seizure

prediction techniques are still in their early stages. There has been no definite conclusion

that the current prospective prediction algorithms are indeed able to perform better

a random prediction [104]. This study confirmed the hypothesis that it is possible

to prospectively predict impending seizures based on the proposed adaptive learning

algorithm. An autonomous learning framework like the one proposed here was shown

capable of self-adjusting the baseline samples for each individual patient without a

tedious parameter tuning process. With this attractive online learning ability, the

proposed adaptive learning prediction system is expected to be able to further improve

the prediction performance when more EEG recordings are available for each patient.

The proposed adaptive learning approach is a pilot framework that can be poten-

tially applied to a wide range of patients with epilepsy, and achieve a personalized

seizure perdition for each individual patient through adaptive learning. In practice, a

prospective seizure prediction system must have both high sensitivity and specificity

for clinical use. If such a seizure-warning device is to become a reality, we envision that

adaptive learning techniques will definitely play an important role in handling the great

variety of brain-wave patterns among different patients.
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Chapter 5

Robust and Efficient Approaches for Offline and Online

Time Series Segmentation

A time series data set usually has large data size, high dimensionality, and incremen-

tally updates over time. One of the fundamental problems in time series data mining

is how to represent time series data efficiently in a robust and fast way. In the last

decade, there has been an explosion of research interest on time series representations

to manipulate large volumes of raw time series data. Piecewise linear approximation

(PLA) is one of the most frequently representations. There havebeen various PLA ap-

proaches developed. However, most of them employ some data-dependent thresholds,

which require a careful tuning process to fit different time series data. Thus the re-

sulting approximation performances highly rely on a user’s knowledge of the data. In

addition, the approaches using heuristic data-dependent thresholds are not robust to

noises and outliers, which are inevitable in most real time series data. In this chapter,

we first propose a new data-independent threshold strategy developed from statistics

theory. Based on the new threshold strategy, we develop a two-stage offline segmen-

tation algorithm that gets rid of a tedious parameter tuning process for various time

series data. Finally, we extend the offline algorithm into an efficient online time series

segmentation algorithm using a set of incremental closed-form formulas. The proposed

offline and online time series segmentation methods have been tested on a variety of

real-world time series. The online method achieved a superior overall performance over

two popular online approaches in terms of approximation accuracy, compression rate,

and computational efficiency.
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5.1 Introduction

Time series is an important form of data with ubiquitous applications in science, en-

gineering, manufacturing, finance, and many other fields. A time series is a sequence

of data points collected chronologically. Examples of time series include daily closing

prices of mutual funds and stocks, monthly sales totals, and a patient’s electrocardio-

gram.

With the great advances in data collection and storage technologies, huge amounts

of time series are generated every day. For example, data providers such as Bloomberg,

Reuters and Thompson Financial offer large streams of data taken in real time from

international electronic trading systems. In particular, there are nearly 200,000 listed

options in the US equity and index options markets. At every second, the prices of the

underlying equities change, these options are re-priced with over 400,000 updates per

second and still growing [61]. The data are collected over days, months, and years, and

thus generate massive amounts of data tuples that exceeds human capabilities by far.

Similar problems also exist in diverse domains, which produce huge amounts of time

series over time.

To efficiently manipulate massive time series data, it is necessary to represent raw

time series data in a high-level representation with low dimensionality. The time series

characteristics such as the trends, shapes and patterns can be compressed into a com-

pact high-level representation. Thus, an appropriate choice of time series representation

is of great importance in most time series knowledge discovery problems.

Traditionally, autoregressive moving average (ARMA) and autoregressive integrated

moving average (ARIMA) models are widely used in time series data mining. These

models employ multivariate regression and represent a time series by the regression

coefficients. However, the biggest problem of these models is that they are estab-

lished on the stationary assumption, which requires that the analyzed time series have

time-invariant statistics and that the prediction errors are white noises. Due to this

restriction, they are inappropriate to analyze a large portion of time series that are

non-stationary.
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On the other hand, many time series segmentation methods have been proposed

to process various time series data. The basic idea is to partition a time series into

segments, and then approximates each time series segment by a math function, such

as linear, polynomial functions. Although a time series segment can be approximated

by polynomials of any degree, the PLA-based approaches are still the most often used

representation in the literature according to Keogh et al. [74]. A PLA approach is to

represent a time series by a series of line segments by connecting a set of key turning

points. The PLA framework is popular because it is the most intuitive way to represent

important time series temporal patterns, such as up and down trends and at what rates

(the slopes).

Although many PLA algorithms have been proposed, most of them highly rely on

some data-dependent threshold strategies, which have to be manually adjusted to fit

for different time series. The resulting segmentation methods are not robust to time

series noises and outliers, and cannot generate reliable results for highly non-stationary

time series with time-varying statistics.

In this chapter, we aim to tackle this problem with effective solutions. In particular,

we made three contributions to achieve a robust and efficient segmentation for various

stationary and non-stationary time series data. The three contributions are summarized

as follows:

• We introduce a data-independent threshold strategy, which defines the approx-

imation accuracy requirement directly. The proposed new threshold strategy

employs a relative statistic measure defined on [−∞, 1]. If the measure is close to

1, it means a high accuracy requirement for local linear approximation; a lower

value indicates a bigger error tolerance and thus leads to a coarser segmentation.

The proposed threshold strategy is a scaled universal measure, which controls the

degree of approximation accuracy directly and data-independent.

• We develop a new two-stage offline time series segmentation approach using the

new data-independent threshold strategy. The proposed offline approach has two

key steps. In the first step, it adopts a top-down decomposition structure, and
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partitions a time series into non-overlapping intervals by the key turning points

of the time series. The time series sequence within each interval approximately

follows a linear trend (satisfies the linear approximation accuracy requirement).

In the second step, we perform linear regression on each interval of time series,

and fine-tune the approximation mode by the regression lines. The proposed

offline time series segmentation approach is capable of achieving an accurate ap-

proximation for various time series without a tedious threshold turning process.

For example, one can use the same parameter setting (threshold value) to a fi-

nancial time series and an electrocardiogram time series given the same degree of

approximation accuracy requirement.

• We extend the two-stage offline segmentation approach into an online algorithm,

which integrates the offline segmentation algorithm into an adaptive sliding win-

dow approach. Most importantly, we formulate the online monitoring and segmen-

tation decision process of time series data into incremental closed-form formulas.

Instead of manipulate massive historical time series data, the online algorithm

only needs to manipulate three online incremental variables and two approxima-

tion parameters to decide whether to perform a segmentation within the current

window. With the closed-form formulations, the complexity of online process-

ing an incoming data point is only O(1). This impressive property of our online

algorithm makes it possible to process massive time series streams. It achieved

superior overall performance over two popular online approaches in our numerical

experiments on various real-world time series.

The rest of the chapter is organized as follows. Section 1 briefly introduces the

important related work on time series segmentation techniques. In Section 2, we propose

a novel two-stage offline time series segmentation algorithm using data-independent

threshold strategy. In Section 3, we present the new online time series segmentation

framework. In Section 4, extensive experiments on various real-world time series data

are performed to evaluate the proposed offline and online time series segmentation

algorithms. Finally, we conclude this chapter in Section 5.
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5.2 Related Work on Time Series Representation Approaches

5.2.1 Pattern Representations Methods of Time Series Data

Given various different time series representations, each has its merits and limits due

to its intrinsic approximation principles. We briefly summarize the most popular time

series representation approaches in the following.

5.2.1.1 Discrete Fourier Transform (DFT)

The basic idea of Fourier decomposition is that any signal, no matter how complex,

can be represented by the super position of a finite number of sine/cosine waves, where

each wave is represented by a single complex number known as a Fourier coefficient.

A time series represented in this way is said to be in the frequency domain. A time

series signal of length n can be decomposed into n/2 sine/cosine waves that can rebuilt

the original signal. Since many of the Fourier coefficients have very low amplitude and

thus contribute little to reconstructed signal. These low amplitude coefficients can be

discarded without much loss of information thereby largely reduce the dimentionality

of the ordinal time series data.

5.2.1.2 Discrete Wavelet Transform (DWT)

Wavelets are mathematical functions that represent a time series data in terms of the

sum and difference of a template pattern, which is called mother wavelet. In this

sense, they are similar to DFT, the only difference is that it replaces the sine/cosine

waves by a user selected other wavelet. However, one important difference is that

wavelets are localized in time, i.e. some of the wavelet coefficients represent small, local

subsections of the data being studied. This is in contrast to Fourier coefficients that

always represent the global contribution to the whole time series data. This property of

wavelet analysis is very useful for multiresolution analysis of time series data. The first

few coefficients contain an overall, coarse approximation of the time series; addition

coefficients can be imagined as finer approximation to local areas. There has been an
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explosion of interest in using wavelets for data compression, filtering, analysis, and other

areas where Fourier methods have previously been used. For example, Chan and Fu

[17] produced a breakthrough for time series indexing based on a simple, but powerful

type of wavelet known as the Haar Wavelet.

5.2.1.3 Singular Value Decomposition (SVD)

SVD is a global transformation method, which is the optimal linear transform that

minimizes reconstruction error. The entire time series data is examined and is then

rotated such that the first axis has the maximum possible variance, the second axis has

the maximum possible variance orthogonal to the first, the third axis has the maximum

possible variance orthogonal to the first two, etc. Then one can only select the first few

time series with largest variances for analysis, and the remaining can be discarded.

5.2.2 Symbolic Aggregate Approximation (SAX)

The symbolic representation SAX for time series was introduced by Lin et al. in [95].

This approach has been shown to be able to preserve meaningful information from the

original time series data and produce competitive results for classifying and clustering

time series.

The basic idea of SAX is to convert the data into a discrete format, with a small

alphabet size. In this case, every part of the representation contributes about the same

amount of information about the shape of the time series. To convert a time series into

symbols, it is first normalized, and two steps of discretization will be performed.

• First, a time series T of length n is divided into w equal-sized segments; the values

in each segment are then approximated and replaced by a single coefficient, which

is their average of the data points in each segment.

• Second, determine the breakpoints that divide the distribution space into a equiprob-

able regions; each region has a representing symbol such as A, B, C, etc. By this

way, the ordinal time series can be represented a series of symbols in a reduced
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dimension, such as a string ‘ABBBDCCCFFAC’, and each symbol is equiprobable

in probability.

The SAX method can roughly preserve the general shape of the time series with

large dimensionality reduction. Another advantage of this kind of methods is that,

the symbolic representation allows the use of algorithms that are not well defined for

real-valued data, including suffix trees, hashing, Markov models etc.

5.2.2.1 Piecewise Segmentation

Segmentation is often used dimensionality reduction algorithm for time series data.

Although the segments created could be polynomials of an arbitrary degree, the most

common representation of the segments is Piecewise Linear Approximation (PLA).

The idea of using PLA to approximate time series dates back to 1970s by Pavlidis and

Horowitz [116]. Intuitively, a time series of length n can be represented by K straight

lines. Since K is typically much smaller than n, this representation can often largely

reduce the dimensionality and makes the computation of the time series data more

efficient. There are many algorithms available for segmenting time series, most of them

can be grouped into one of the following three categories.

• Sliding-Windows (SW): A segment is grown until it exceeds some error bound.

The process repeats with the next data point not included in the newly approxi-

mated segment.

• Top-Down (TD): The time series is recursively partitioned until some stopping

criteria is met.

• Bottom-Up (BU): Starting from the finest possible approximation, segments are

merged until some stopping criteria are met.

An open question of PLA is how to best choose K, the ‘optimal’ number of linear

segments used to represent a particular time series. This problem involves a trade-off

between accuracy and compactness, and there is no general solution.
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5.2.2.2 An Evaluation of Time Series Representation Methods

Given various different time series representations, it is natural to ask which is best and

what are the limitations of each approach. We evaluate the most popular time series

representations in the following.

Discrete Fourier Transform (DFT):

• key properties: it compares a time series signal with sine and cosine signals at

different frequencies, the obtained fourier coefficients are used to characterize the

time series.

• limitations: only extract frequency information for the whole time series, and

ignore the local time series fluctuations.

Discrete Wavelet Transform (DWT):

• key properties: it compares a time series with a mother wavelet at different loca-

tions and distortion scales, the obtained wavelet coefficients are used to charac-

terize the time series.

• limitations: considers local fluctuations; however, usually generate many coeffi-

cients, thus not good for dimensionality reduction. Often statistics of wavelet

coefficients are used as features, but many useful ’time series’ information is miss-

ing by doing that. Moreover, it is not easy to choose a appropriate mother wavelet

for various time series.

Singular Value Decomposition (SVD):

• key properties: it linear transforms the ordinal time series into a new space ac-

cording to variance of each axis.

• limitations: the transformed time series data are still massive in volume, it has

to employ other techniques to further reduce the dimensionality.

Symbolic Aggregate Approximation (SAX):
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• key properties: it discretizes the amplitudes space into a number of bins, and name

them as A,B,C,D,etc. (for example). Then each time point can be categorized

into A, B, C, or D, and the whole time series is represented by a symbolic vector.

By doing this, many symbolic data mining techniques can be used to extract

important patterns.

• limitations: Useful information may be missing due to coarse discretization. Also

it is not intuitive for human beings.

ARMA/ARIMA Models:

• key properties: The model consists of two parts, an autoregressive (AR) part and

a moving average (MA) part. It is often referred to as ARMA(p,q), which models

the regression relationship between the current value Xt with previous p values

(Xt−p, ..., Xt−1) and q prediction errors (εt−q, ..., εt−1). The orginal time series

can be represented by the regression coefficients.

• limitations: ARMA/ARIMA identification employ multivariate regression and is

often difficult and time consuming. The coefficients of ARMA/ARIMA have no

structural interpretation, thus they may be difficult to explain to others. More-

over, these models assumes the analyzed time series is stationary and the predic-

tion errors are white noisy, they are not suitable to nons-stationary chaotic time

series.

Piecewise Linear Approximation (PLA):

• key properties: it decomposes a time series into piecewise linear segments. The

PLA approaches are very useful to deal with noisy time series data, and iden-

tify local trends efficiently. The results of PLA are intuitive and very easy to

understand and interpret.

• limitations: This filed has not been well developed, and the existing techniques

are mostly ad-hoc and heuristic. Some are not computational efficient and some



91

are not robust. There is no established benchmark approaches and guidelines in

this area. Here, we propose a novel and robust approach to extract piecewise

linear segments, in particular skeleton points, for time series data.

5.2.3 Time Series Segmentation Background

A comprehensive review on time series segmentation techniques can be found in Keogh

et al. [74] and Fu [44]. Though there are many segmentation algorithms available for

time series, most of them are constructed by one of the following three frameworks:

• Sliding-Window: : a single line fits the data points in a sliding-window. If the cost

of the line approximation is less than a threshold value, the next point joins the

window, and the approximation cost is recalculated. The segment in the window

is grown until the cost exceeds a threshold value, and then a new sliding window

is open to approximate the next segment. Some typical sliding window algorithms

can be found in [101, 82, 114, 97, 45, 30].

• Top-Down: start from the whole time series, and decompose the time series into

two subsequences according to a break-down criterion. The fitting error of each

subsequence is calculated and compared with some stopping criterion (an error

threshold). A subsequence that does not meet the stopping criterion is decom-

posed further into two parts. The procedure continues recursively until all the

subsequences meet the stopping criteria. Some typical top-down segmentation

algorithms can be found in [144, 113, 86, 91].

• Bottom-Up: a time series is partitioned into the finest possible approximation

first. The lines connecting each pair of adjacent data points constitute the finest

basic segments. Then the fitting error of merging each pair of adjacent segments

is calculated. The two segments with the least fitting error are merged into a

larger line segment. The procedure continues until the merging cost of each pair

of adjacent segments exceeds an error threshold. Some important bottom-up

algorithms can be found in [75, 77, 62, 112].
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5.2.4 Challenges in Time Series Segmentation

No matter what framework it constructed, a segmentation algorithm is inevitably to

use some threshold strategy to make a trade-off between approximation accuracy and

dimensionality reduction. An ideal segmentation is expected to approximate a time

series with as low fitting error as possible using as few segments as possible. As sum-

marized in Keogh et al. [74], a segmentation problem can be formulated into one of the

following ways.

• minimize the approximation error given a desired number of segments (denoted

as K∗) or a desired compression ratio (denoted as R∗).

• minimize the number of segments given an error threshold (denoted as E∗seg) for

each segment.

• minimize the number of segments given an error threshold (denoted as E∗tot) for

the whole approximation.

In the literature, many choices of K∗, E∗seg, and E∗tot are defined in different studies

and different applications. For example, Pratt and Flink [123] and Fink et al. [43]

controlled the desired compression ratio by a parameter r∗. For a time series sequence

xi, . . . , xj , a segmentation breaking point xk was be selected if it satisfies xk/xi ≥ r∗

and xk/xj ≥ r∗. Deng et al. [30] fixed the number of segments to decompose time series

data. At each step, a segmentation breaking point is selected if it is the furthest point to

the two ending points of a sub-sequence. The decomposition continues until the number

of segments reaches the desired threshold. Feng et al. [41] defined a heuristic threshold

value h to identify the segmentation breaking points, denoted by peaks or valleys. If

a point is a peak (valley) if its distances to the two adjacent valleys (peaks) higher

than the threshold h. Liu et al. [97] proposed a feasible space criterion to determine

the segmentation breaking point. The feasible space of a time series data point is

controlled by a parameter δ, which defines the vertical neighborhood space of the data

point. Since the parameter δ is highly depend on the scale of data amplitude, thus the

parameter has to be manfully re-adjusted to achieve best performance for different time
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series. Li et al. [92] defined a threshold ε to control the segmentation level in a top-

down structure. At each step, if the maximum vertical distance between a time series

sequence and its approximation line is greater than ε, the time series is divided into

two parts by the data point which has the maximum vertical distance to the segment

line. Keogh et al. [74] applied the maximum allowed approximation error E∗max in a

bottom-up structure. The segmentation procedure continues until the approximation

error falls below the threshold E∗max. Palpanas et al. [112] employed two types of

threshold strategies (relative and absolute) in an online segmentation approach. The

relative threshold strategy employed a time-weighted error, which was determined by

some user-defined amnesic functions. The basic idea is to decrease the weights of older

data points and try to approximate the most recent time series accurately. The absolute

threshold employed the maximum allowable error for the overall approximation. To deal

with time series with different amplitude scales, Liu et al. [97] employed a ‘maximum

error percentage’ (MEP) criterion, which defines the threshold percentage of ‘max error’

to the range of time series values. However, the segmentation performances are still

very sensitive to the value of MEP. They still had to choose appropriate MEP values

carefully to fit different data sets in their paper.

It is noticed that most of the current segmentation approaches highly rely on some

data-specific threshold strategies, such as ‘maximum overall error’ and ‘maximum ab-

solute error’. Some relative threshold strategies, such as ‘maximum error percentage’

and ‘time-weighted error’, are also not easy to manipulate, especially for highly non-

stationary time series. An appropriate threshold of segmentation highly relies on a

user’s knowledge of the data, which is often not possible in presence of massive real-

world time series streams with time-varying statistics. For example, a ‘maximum ab-

solute error’ of 1 may work well for a time series ranges within [-100, 100]. It may not

acceptable for another time series that ranges within [-1, 1].

From the literature study, we find that most of the current segmentation approaches

are incapable of controlling the approximation accuracy and the compression rate ef-

ficiently and directly. The approximation accuracy is generally controlled indirectly
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through some data-specific threshold strategy, which often requires a tedious thresh-

old tuning procedure to process various time series data in practice. In addition, we

notice that the current threshold strategies are not statistically robust due to their in-

trinsic heuristic structures. Thus, the resulting segmentation approaches are generally

not robust to time series noises, outliers, and time-varying properties. It is still an

open question to determine ‘optimal’ levels of these segmentation thresholds for vari-

ous time series data. This limitation seriously hampers the potentials of the time series

segmentation techniques in practical applications.

In addition, we also noticed that the vast majority of the time series segmentation

approaches are offline algorithms, only a few of them have been extended for online

segmentation of time series streams with a low (linear) computational complexity [97,

112, 45].

5.2.5 New Segmentation Approaches Are Demanding

The existing bottleneck problems in time series segmentation motivate us to develop

new segmentation approaches that have the following desirable properties:

• employ a data-independent measure, which is not affected by the scales of a time

series, and can be adjusted easily for various time series in real-world applications.

• make a direct and convenient trade-off between approximation accuracy and di-

mensionality reduction in the segmentation process.

• generate robust performances in presence of time series noises and outliers.

• achieve low computational complexity in the segmentation process.

• can be formulated into an efficient online algorithm, achieve online monitoring and

processing of massive time series streams with low computational complexity.

In this chapter, we proposed a novel two-stage robust segmentation approach that

achieves all the desirable properties above. In particular, a new data-independent

threshold measure is proposed in a top-down decomposition framework. A two-stage
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offline approach is developed for a robust and accurate time series segmentation using

the data-independent threshold strategy. Finally, the offline approach is extended into

an efficient online algorithm. The proposed new data-independent threshold strategy,

the offline and online time series segmentation approaches are presented in the following

three sections.

5.3 A Two-Stage Approach for Time Series Segmentation Using A

Data-Independent Threshold Strategy

In this section, we propose a two-stage top-down segmentation approach (TSTD) that

can be adaptive to different time series without a tedious parameter-tuning process

and with a guarantied approximation accuracy. In general, the first stage decompose a

time series in a top-down decomposition structure using a data-independent threshold

strategy. A time series is partitioned into non-overlapping intervals, and is roughly

approximated by the piecewise interpolation lines. The second stage is a fine-tune step,

which adjusts the approximation model using a regression technique.

5.3.1 A New Data-Independent Threshold Strategy

A challenging problem in time series segmentation is to find an appropriate threshold

strategy to break down a time series efficiently and reliably in presence of noises and out-

liers. Most of the current threshold strategies are data-specific and are rather unreliable

for dynamic non-stationary time series data. It is desirable to have a data-independent

threshold strategy that controls the approximation accuracy directly regardless exact

data values.

In this section, we propose a data-independent threshold based on the statistical

measure, the coefficient of determination R2. R2 is widely used to verify the goodness

of fit for a linear regression model. It is the proportion of variability in a data set that

is accounted for by the approximation model (e.g., a linear model).

In particular, for a time series segment X = x1, x2, . . . , xn, the ‘variability’ of the

time series is measured by the total sum of squares SStot =
∑n

i=1(xi − x̄)2, where x̄
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is the mean value of the time series. The regression sum of squares is calculated by

SSreg =
∑n

i=1(fi − x̄)2, where fi is the approximated value at time i generated by the

regression model. The sum of squared residuals is calculated by SSerr =
∑n

i=1(xi−fi)2.

The standard definition of the coefficient of determination R2 is defined as follows

R2 = 1− SSerr
SStot

. (5.1)

The value of R2 represents that how much of the data variability is explained by an

approximation model. It generally ranges within [0, 1]. If a R2 is close to 1, it means

that most of the data variance can be explained by the approximation model. Other-

wise, if a R2 is close to 0, it means that the approximation model cannot explain most

of the variance, and thus this model is not appropriate to describe the data.

The value of R2 is data-independent and can be easily applied to evaluate the fit

of goodness for data with different scales. This notable property is just desirable in

time series segmentation. Intuitively, one can perform linear regression of a time series

segment, and check the obtained R2 value. If R2 is greater than some threshold (such

as 0.8), one can consider the current linear fit is appropriate. Otherwise, we need to

decompose this time series segment further. From this point of view, one can use R2

as the threshold measure to decompose a time series recursively, and represent the

time series by the regression lines of the decomposed time series segments. However,

a previous study by Shatkay and Zdonik [144] found that this regression-line based

method has difficulties in finding appropriate partitioning intervals of a time series.

The linear regression-line based method produced poorer results than the interpolation

methods, which approximate a time series by connecting its key turning points. Our

numerical experiments also show that the direct application of R2 lead to unreliable

and poor segmentation performance. Mainly due to this reason, the interpolation-line

based methods are most frequently employed in time series segmentation.

The original R2 has difficulties to identify segmentation intervals for a time series.

To tackle this problem, we propose an interpolation-line based R2, we call it R2
kp. For a

time series segment X = (x1, x2, . . . , xn), instead of the regression line of X, we employ
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the interpolation line that connects the two endpoints (x1 and xn), denoted by L, to

roughly approximate the trend of the time series. The calculation procedure of R2
kp is

similar to the standard R2, except the calculation of the error term, which calculated

as follows,

ei = xi − li, (5.2)

where xi is the time series value at time i; and li is the value of the interpolation line

L at time point i, it is calculated by

li = x1 + (xn − x1)
i− 1

n− 1
. (5.3)

Then the interpolation-line based sum of squared errors is calculated by

SSkperr =
n∑
i=1

(ei − ē)2, (5.4)

and the interpolation-line based coefficient of determination R2
kp is obtained by

R2
kp = 1− SSkperr

SStot
. (5.5)

The value of R2
kp indicates the goodness of fit by the current interpolation-line ap-

proximation. The value of R2
kp is generally located within [0, 1], and it can also be

negative under some situations when a time series is very badly fitted by the interpo-

lation line. If R2
kp is close to 1, it means that the time series temporal patterns can be

perfectly explained by the interpolation line. The smaller the R2
kp, the less goodness of

fit the current interpolation line. If R2
kp is close to 0 or even negative, it means that

the interpolation line cannot explain most of the time series temporal patterns at all,

thus it is necessary to perform a further decomposition for this time series segment.

The R2
kp defined above is a data-independent measure. It can be conveniently ap-

plied in a time series segmentation process in a recursive way. One can use R2
kp to

control the approximation accuracy of each decomposed time series segment directly.



98

For example, a threshold R2∗
kp of 0.9 guarantees that at least 90% temporal variations

can be explained by the endpoint-interpolation-line for each time series segment. With

this impressive property, it can be embedded in a time series decomposition to possess

various time series data with guaranteed approximation accuracy and without a tedious

threshold tuning procedure. In the next subsection, we will present the first stage of

the proposed segmentation approach that employs R2
kp in a top-down framework.

5.3.2 Stage One: Top-Down Decomposition Using A Data-Independent

Threshold

The top-down segmentation starts from the whole time series sequence, and decom-

pose the time series recursively until all the partitioned time series segments satisfy a

threshold-based stop criterion. In this section, we first introduce a data-independent

threshold to measure the goodness of linear-fit for each partitioned time series segment.

The data-independent threshold measure is defined as follows.

Definition 1. Given a time series Y = (y1, y2, . . . , yp), the interpolation line that

connects its two endpoints (y1 and yp) is denoted by L = (l1, l2, . . . , lp). The data-

independent threshold measure, called the interpolation-line based coefficient of deter-

mination R2
kp is defined by

R2
kp = 1− SSkperr

SStot
. (5.6)

where SStot =
∑p

i=1(yi − ȳ)2 is the total sum of squared values of Y , ȳ is the mean

value of the time series values; SSerr =
∑p

i=1(yi − li)2 is the sum of squared residuals

between Y and the interpolation line L, and li = y1 + (yp− y1)(i− 1)/(p− 1) is the ith

value of the interpolation line L.

The value of R2
kp is totally data-independent. It is used to measure if the trend of

the time series can be approximately represented by its endpoints interpolation line.

A R2
kp value is generally within [0, 1], and can be negative under when a time series

is very badly fitted by the interpolation line. If R2
kp is close to 1, it means that the
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temporal patterns of a time series can be perfectly explained by the interpolation line.

The smaller the R2
kp, the worse the trend-fit of the interpolation line. If R2

kp is close to

0 or even negative, it means that the interpolation line cannot represent the temporal

trend of the time series at all.

Using R2
kp as a data-independent threshold, the R2

kp-based top-down segmentation

framework is illustrated in Figure 5.2 (first stage part). At each step of the top-down

decomposition, we first calculate R2
kp for all the partitioned time series segments (X1,

X2, . . ., Xd, where d is the number of partitioned segments at the current step. Given

a threshold value R2∗
kp, the R2

kp-based decomposition decision-making rule is as follows

• If min(R2
kp(Xi)) ≥ R2∗

kp, all the time series partitioned segments approximately

follow linear trend, and stop the decomposition process.

• Otherwise, partition the time series segment with the minimum R2∗
kp into two parts

according to the breaking-point rule defined in Definition 2.

The most prominent feature of The R2
kp-based top-down framework is that it is capable

of achieving a guaranteed level of approximation accuracy irrespective of time series

data values. Thus, the above top-down decomposition process gets rid of a tedious

threshold tuning procedure when applied to various different time series data sets.

For example, a requirement of 90% approximation accuracy corresponds to a R2∗
kp of

0.9. With this impressive property, one can conveniently process various time series

with a guaranteed approximation accuracy. Due to the intrinsic statistical theory, the

proposed new decomposition measure is robust to noises and outliers. Moreover, in

the proposed top-down decomposition procedure, it is also very convenient to control

the compression rate directly by introducing another measure, the minimum length of

the partitioned time series. That is, if the time series segment is less than the length

threshold, it will not be partitioned any more.

Definition 2. Given a time series Y = (y1, y2, . . . , yp), a point ykp is the breaking point

of Y if it satisfies

Dv(ykp) = max(Dv(yi), i = 1, 2, . . . , p), (5.7)

where Dv(yi) is the vertical distance between yi and the interpolation line connecting
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the two endpoints of the time series Y . The Dv(yi) is calculated by

Dv(yi) = | yi − Li |, (5.8)

= | yi − y1 − (xp − x1)(i− 1)/(p− 1) | .

A demonstration of the break-point selection rule is illustrated in Figure 5.1.

The point with the largest vertical distance to

the interpolation line is the break point

Partition the time series segment with the minimum

into two parts if its        is less then the threshold

Figure 5.1: A demonstration of the top-down time series segmentation procedure at
stage one. The break-point selecting rule defined in Definition 2 is also illustrated in
the figure.

5.3.3 Stage Two: Fine-Tune Approximation Model

In the first stage, an interpolation-line based piecewise linear model is obtained. To

reduce approximate error, we designed a second stage to fine-tune the interpolation-line

approximation model.

For a time series X, suppose it has been partitioned into m time series segments

denoted by (X1, X2, . . . , Xm) in the first stage. In the second stage, we perform the

least-squares linear regression (LSLR) on each partitioned time series segment. For a

time series segment Xi = (xp1 , xp1+1, . . . , xp2), where p1 and p2 are the time indices,
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the LSLR linear regression model of Xi is represented by

X̂i = ai + biXi, (5.9)

where ai and bi are the slope and intercept of the linear model, which can be calculated

by

bi =

p2∑
k=p1

xkk −
p2∑

k=p1

xk
p2∑

k=p1

k/ni

p2∑
k=p1

x2k − (
p2∑

k=p1

xk)2
, (5.10)

ai =

p2∑
k=p1

k/ni − bi
p2∑

k=p1

k/ni, (5.11)

where ni = p2 − p1 + 1 is the length of the time series subsequence Xi.

We perform LSLR on each partitioned time series intervals, and calculate the in-

tersection points of each pair of neighboring regression lines. The final approximation

model is the piecewise lines that connect the intersection points of the regression lines.

The whole work flow of the two-stage segmentation procedure is shown in Figure 5.2.

The pseudocode of the TSTD algorithm is shown in Algorithm 1. And a demonstration

of the two-stage segmentation precess is shown in Figure 5.3. The second fine-tune stage

greatly reduces the sum of squared residuals from 170.00 to 48.52. It achieves a 71.5%

reduction of approximation error.

5.3.4 Rationale for the Two-Stage Segmentation Algorithm

Currently, a time series piecewise linear approximation is generally achieved by either

using the interpolation line of each segment’s endpoints, or by calculating the linear

regression line through each segment. Both of them have distinct merits and limitations.

From a previous study by Shatkay and Zdonik [144], it was found that the latter often

produces poorer results although it has superior intrinsic mathematical (statistical)

properties. Based on our experiments, we also find that a decomposition only based

on a regression criterion can generate rather unreliable decomposition results compared
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S e g m e n t a t i o n   R e s u l t 

Figure 5.2: The flowchart of the TSTD segmentation algorithm for time series segmen-
tation. The first stage employs a R2

kp-based top-down decomposition rule to partition a
time series into piecewise intervals. The time series segments in these intervals approx-
imation follows a linear trend. The second stage is a fine-tune stage, which applies the
linear regression technique to adjust the approximation line for each partitioned time
series segment.
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Figure 5.3: A demonstration of the decomposition procedure of the top-down time series
segmentation approach. The sum of squared residuals of the two stages are 170.00 and
48.52, respectively. The second stage effectively reduces the approximation error.
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Algorithm 1 The Two-Stage Top-Down Segmentation (TSTD) Algorithm

1: Input: time series X = (x1, x2, . . . , xN ), and the decomposition threshold R2∗
kp

2: Output: piecewise linear segments L∗kp = (L∗1, L
∗
2, . . . L

∗
m), the key turning points

S∗ = (s∗1, s
∗
2, . . . , s

∗
m+1)

3: procedure TSTD(X, R2∗
kp)

4: The First Stage:
5: Initial: L1 = X, Lkp = [L1], R = [R2

kp(L1)], S = [1, n]

6: while min(R) < R2∗
kp do

7: Lj = argminR;
8: (R = [R2

kp(L1), . . . , R
2
kp(Li), . . . , R

2
kp(Lk)]),

9: where k is number of segments at this step.)
10: [LI , LII , skp] = KPseg(Lj);
11: (partitioned into 2 parts by the key point)
12: S = concat(S, skp)
13: R2

kp(LI) = cal R2kp(LI);

14: R2
kp(LII) = cal R2kp(LII);

15: Lkp = takeout(Lkp, Lj); (delete Lj)
16: R = takeout(R,R2

kp(Lj));
17: Lkp = addinto(Lkp, LI , LII);
18: R = addinto(R,R2

kp(LI), R
2
kp(LII));

19: end while

20: The Second Stage:
21: Initial: S∗ = [1, n], L∗ = [ ], M = length(S);
22: for i = 1 : M − 1 do
23: L∗i = regression(XLi);
24: L∗i+1 = regression(XLi+1);
25: s∗i = intersection(L∗i , L

∗
i+1);

26: S∗ = addinto(S∗, s∗i );
27: L∗ = addinto(L∗, L∗i );
28: end for
29: end procedure

to the interpolation method. This is mainly because the regression-line based methods

have difficulties in finding appropriate partitioning intervals due to various dynamic

changing patterns in a time series. However, it is the best linear fit if a segment of time

series data approximately follow a linear trend. On the other hand, the interpolation-

line based methods are generally good at identifying the key turning points in a time

series. While an interpolation-line (connecting two time series endpoints) is generally

not the best linear approximation for a segment of time series. And sometimes the

slope of the interpolation line can be considerably deviated from the true time series

trend (the best fitting regression line).
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Based on this observation, we developed the two-stage approximation framework,

which combines the two techniques in a top-down segmentation framework. In the first

stage discussed above, a time series is approximated by a series of interpolation lines

that connecting a set of ‘optimal’ breaking points. Then in the second stage, a linear

regression is performed on each segment of time series. The second step fine tunes

the piecewise approximation lines into unbiased best-fitting regression lines with least

squared errors for each segmented time series. The final approximation is the connected

regression lines. The proposed two-stage approach makes the best of the two techniques

to achieve a better approximation than those only use one. Most importantly, the

two-stage method further enhance the robustness of the algorithm by eliminating the

influences of the values of the key turning points.

However, the interpolation line in each partitioned interval is generally not the best

linear approximation for that time series segment. For a time series segment, the slope

of its interpolation line is often considerably deviated from its best linear trend defined

by its regression line.

5.3.5 Complexity Analysis

Given a time series X = (x1, x2, . . . , xn) with n points, the computational complexity

of a top-down algorithm is generally O(Kn2) according to Keogh et al. [74]. In this

section, we show that the proposed two-stage top-down segmentation algorithm achieves

a complexity of O(Kn) as follows.

• The first stage: at the first decomposition, the complexity to calculate the

approximation residuals is O(n); the complexity to calculate the decomposition

criterion R2
kp is O(n); and finally the complexity to pick up the breaking point

is O(n). Thus the complexity of a full step of decomposition is O(3n). For

all decompositions after the first one, the O(3n) is the upper bound of their

complexity, since the decomposed time series subsequences have fewer and fewer

number of data points. Define K the number of partitioned intervals obtained in

the first stage, then there are K − 1 decompositions, and the upper bound of the
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complexity of the first stage is O(3n(K − 1)).

• The second stage: denote the number of points contained in all the time se-

ries subsequences above are (n1, n2, . . . , nK). Then for an interval of time series

with ni points, the complexity to calculate its regression line is O(ni) using the

closed-form formulas 5.10 and 5.11. The total complexity of the second stage is∑K
i=1O(ni) = O(

∑K
i=1 ni) = O(n).

Based on the analysis above, the complexity of the two-stage top-down time series

segmentation algorithm is O(3(K−1)n)+O(n) = O((3K−2)n), where K � n in most

cases.

5.3.6 Experimental Results

This section presents the experimental results based on three performance measures.

We first investigate the segmentation performance of the proposed TSTD algorithm

with respect to the threshold R2∗
kp. And then we compare TSTD with two other popular

approaches, including the classic bottom-up (BU) method and the adaptive piecewise

constant approximation (APCA) method.

5.3.7 Performance Measures

Three measures are employed to evaluate the performance of a time series segmentation

algorithm. For a time series X = (x1, x2, . . . , xn), assume its piecewise linear model

has M piecewise linear segments denoted by LX = (L1, L2, . . . , LM ), and the lengths

(number of data points) of the segments are denoted by q1, q2, . . . , qM . The three

measures are described as follows.

• The first measure considers overall approximation accuracy of the whole time

series. It is desirable to measure how much of the overall time series variation

is accounted by the piecewise linear model. Denote the sum of squared residuals

between X and LX by SSR(X,LX), and the sum of squared values of the time

series by SS(X), then the global approximation performance of the whole time
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series is calculated by

Poff =
SS(X)− SSR(X,LX)

SS(X)
(5.12)

= 1−
∑n

i=1(xi − li)2∑n
i=1(xi − x̄i)2

. (5.13)

• The second measure is compression rate. It is used to evaluate the dimensionality

reduction of a segmentation approach. The compression rate in this study is

defined by

CR = n/NLX
, (5.14)

where n is the number of time series data points, and NLX
is the number of

parameters to represent the piecewise linear model LX .

• The third measure is the computing time, denoted by T . To deal with massive

time series data, a segmentation algorithm is definitely desirable to work as fast

as possible.

5.3.7.1 Performance Characteristics of TSTD with Different Threshold

Values

We employed a popular type of artificial time series, namely random walk, to investigate

the TSTD with respect to the threshold R2∗
kp. A random walk time series simulates a

trajectory that consists of successive random steps. It has been widely applied to model

a stochastic process in many fields including ecology, economics, psychology, computer

science, physics, and chemistry [159]. Thus, it can be a valuable testbed to investigate

the properties of time series segmentation algorithms that may be applied to diverse

fields.

The TSTD was applied to approximate 100 random-walk time series with very

different amplitude scales. For each time series, we changes the threshold R2∗
kp values

from 0.05 to 0.95 at a step length of 0.05. The averaged results over 100 time series are

shown in Figure 5.4. The subplot (a) shows the approximation accuracy of the TSTD
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with respect to threshold R2∗
kp. As R2∗

kp increases, the overall approximation accuracy P

is monotonically increased from around 0 to almost 1. A nearly 1 of P indicates that

most of the time series variation can be explained by the piecewise linear approximation

model. On the other hand, the subplot (b) shows that the compression ratio CR is

monotonically decreased from more than 800 to around 50. This comparison clearly

shows that the threshold R2∗
kp makes a trade-off between approximation accuracy and

compression rate directly, and does not rely on the characteristics of a time series,

since the tested 100 random walk time series have very different amplitude scales. This

notable data-independent property of the Rkp makes it very convenient in practical

applications. In addition, the computing time is also shown in subplot (c). The averaged

computing time increases linearly as R2∗
kp increases. This is because a higher value of

R2∗
kp lead to more decompositions in the top-down segmentation process.
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Figure 5.4: The performance of the TSTD with respect to the setting of R2∗
kp. The

results were averaged over the 100 experiments on a ’random walk’ time series. It shows
that R2∗

kp is the key to control the trade-off between the approximation accuracy and

compression rate. As R2
kp increases from 0.1 to 0.9, the Poff increases monotonically

from around 0 to 1, while the compression rate is decreased from 800 to around 50.

5.3.7.2 Performance Demonstration by Several Non-Stationary Time Se-

ries

In this section, we demonstrate the segmentation performance of the online SWTD

through a sensor signal contaminated heavily by noises. This types of signals are very

common in practice collected from various sensors. The segmentation result is shown in
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Figure 5.5: The segmentation performances of the offline TSTD and the online SWTD
algorithm with respect their parameter settings. The results were averaged over exper-
iments of 100 ’random walk’ time series with 3000 samples. (a) The performance of
TSTD with respect to R2

kp, (b) The performance of SWTD with respect to R2
on using

Lini = 500 and R2
kp = 0.9. (c) Using the performances at Lini = 500 as a reference, the

relative performances of SWTD with respect to Lini are shown based on R2
on = −0.5

and R2
kp = 0.9. The red dotted lines in (b) and (c) represent the performances of the

offline TSTD using R2
kp = 0.9.

Figure 5.6. The proposed SWTD is capable of capturing the major temporal patterns

of the time series in presence of the heavy noises. As a comparison, the result of the

popular online approach SWAB is also shown in Figure 5.15. The SWAB employs

a ‘maximum error’ threshold. We varied threshold values of ‘maximum error’, and

made it achieve a similar segmentation with the SWTD. Although the approximation

accuracy of SWAB (0.68) is a little higher than SWTD(0.66), the SWAB approach took

100 times more time (16.58s) than the SWTD (0.16s). The computationally speed is

vital for online monitoring of massive time series data. This example demonstrates the

great potential of our proposed SWTD in online real-time applications.
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Figure 5.6: The segmentation performance of SWTD on a very noisy sensory signal.

5.3.7.3 Comparison to Other Segmentation Techniques

In this section, we compare the proposed TSTD with two popular time series segmen-

tation approaches BU and APCA. The numerical experiments were conducted on 24

real-world time series data sets from various fields including neurophysiology, finance,

industry, medicine, biology, and geography. The data were selected from from the UCR

time series data archive [76].

The threshold of TSTD R2∗
kp was set at 0.8 for all the data sets. Since both BU

and APCA rely on a data-dependent threshold, the ‘maximum approximation error’.

To make a fair comparison, we chose the thresholds such that the BU and APCA

algorithms have approximately the same compression ratio for each time series. The

segmentation results of TSTD, BU, and APCA are summarized in Table 5.1.

Given almost the same compression ratio, the proposed TSTD achieved the highest

approximation accuracy on average with the least standard deviation, that is P (TSTD) =

0.97 ± 0.02. The APCA has the lowest approximation accuracy with the largest stan-

dard deviation, P (APCA) = 0.90 ± 0.08. The performance of BU algorithm is in the

middle with P (BU) = 0.95 ± 0.06. Most importantly, it is noticed that the proposed



111

TSTD approach achieved higher accuracies at an even lower computing time. The

TSTD approach shows a huge superiority of computational efficiency compared to BU

and APCA. For the 24 time series, the TSTD approach has an averaged computing

time of 0.08 second. While the average computing times of BU and APCA are 1.48 and

1.61 second, respectively. The proposed TSTD is about 20 times faster than the BU

and APCA approaches.

Moreover, a big advantage of the proposed TSTD is that it can automatically choose

an appropriate segmentation according to the accuracy requirement. For the 24 time

series with dramatically different data scales and statistics, we can use the same thresh-

old value of R2∗
kp, and the approximation accuracy can be guaranteed. On the other

hand, the approaches, such as BU and APCA, generally require a user to set a data-

dependent threshold (e.g.,‘maximum error’) or to set the required number of segments.

The parameters are not related to the approximation accuracy directly, and one have

to discover an appropriate setting in an inefficient trial-and-error manner.

5.3.8 Summary of The Proposed Offline TSTD Algorithm

From the literature study, we find that most of the current segmentation approaches are

incapable of controlling the approximation accuracy and the compression rate efficiently

and directly. The approximation accuracy is generally controlled indirectly through

some data-specific threshold strategy, which often requires a tedious threshold tuning

procedure to process various time series data in practice. Also we notice that the

current threshold strategies are not statistically robust due to their intrinsic heuristic

structures. Thus the resulting segmentation approaches are generally not robust to

time series noises, outliers, and time-varying properties. It is still an open question

to determine ‘optimal’ levels of these segmentation thresholds for various time series

data. This limitation seriously hampers the potentials of the time series segmentation

techniques in practical applications.

To tackle this problem, we provide an effective solution to piecewise linear segmen-

tation of time series data. The proposed time series segmentation approach employs a
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Table 5.1: The segmentation results of TSTD, BU, and APCA for 24 time series data
sets.

P CR T

Time Series Data TSTD BU APCA TSTD BU APCA TSTD BU APCA

1 ERP 1 0.98 0.98 0.95 11.32 11.28 11.28 0.27 5.47 6.06
2 ERP 2 0.98 0.98 0.95 11.41 11.36 11.36 0.09 4.92 5.30
3 ERP 3 0.98 0.98 0.96 10.91 10.87 10.87 0.09 4.91 5.33
4 EOG 0.99 1.00 0.98 29.77 29.77 29.77 0.03 4.13 4.42
5 Steamgen 1 0.98 0.96 0.87 73.17 71.43 71.43 0.02 5.11 5.42
6 Steamgen 2 0.98 0.99 0.97 8.85 8.82 8.82 0.11 4.78 5.31
7 Steamgen 3 0.96 0.96 0.94 5.61 5.60 5.60 0.19 4.59 5.20
8 Foetal ECG 1 0.89 0.89 0.83 6.11 6.10 6.10 0.19 4.67 5.24
9 Foetal ECG 2 0.97 0.99 0.94 6.98 6.98 6.98 0.13 3.88 4.30
10 TOR95 0.96 0.94 0.87 7.43 7.43 7.43 0.06 2.22 2.45
11 Power Data 0.98 1.00 0.99 6.63 6.63 6.63 0.11 3.03 3.33
12 Burst 0.99 0.99 0.98 47.19 46.31 46.31 0.02 4.16 4.42
13 Fluid Dynamics 0.95 0.96 0.89 7.31 7.31 7.31 0.11 3.84 4.25
14 PH Data 1 0.95 0.88 0.80 16.01 15.88 15.88 0.06 3.20 3.42
15 PH Data 2 1.00 1.00 1.00 8.10 8.07 8.07 0.09 3.08 3.36
16 Shuttle 1 0.99 1.00 0.99 40.00 38.46 38.46 0.01 1.55 1.67
17 Shuttle 2 1.00 1.00 1.00 13.70 13.51 13.51 0.03 1.52 1.63
18 Shuttle 3 1.00 1.00 1.00 14.93 14.71 14.71 0.03 1.50 1.64
19 Greatlakes 1 0.98 0.92 0.90 6.19 6.15 6.15 0.05 1.39 1.56
20 Greatlakes 2 0.97 0.94 0.94 7.24 7.24 7.24 0.05 1.42 1.58
21 Greatlakes 3 0.97 0.82 0.78 5.93 5.93 5.93 0.06 1.38 1.55
22 Flutter 0.98 0.95 0.77 9.23 9.14 9.14 0.03 1.47 1.61
23 Wool 0.98 0.96 0.78 8.75 8.83 8.83 0.05 1.45 1.61
24 Attas 0.93 0.77 0.75 17.31 17.31 17.31 0.05 2.86 3.06

AVE. 0.97 0.95 0.90 15.45 15.25 15.25 0.08 3.12 3.41

Median 0.02 0.06 0.08 16.05 15.63 15.63 0.06 1.48 1.61

data-independent threshold strategy in a top-down decomposition framework. A two-

stage procedure was developed to enhance the robustness and approximation accuracy

of the segmentation performance. The proposed TSTD has been validated by exten-

sive experiments on various real-world time series data sets. The numerical studies

show that the proposed TSTD generated a superior overall performance over two other

popular time series segmentation algorithms in terms of the accuracy and computa-

tional efficiency given the same compression ratio. The proposed TSTD algorithm can

generally find the key skeleton points of a noisy time series efficiently without many

redundant ‘pseudo’ key points in most of the cases.

In addition, we also noticed that the vast majority of the time series segmentation

approaches are offline algorithms, only a few of them have been extended for online

segmentation of time series streams with a low (linear) computational complexity [97,
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112, 45]. In the next section, we will extend the offline TSTD into an efficient online

algorithm using closed-form incremental online updating formulas.

5.4 An Efficient Approach for Automated Online Segmentation of

Time Series

The time series segmentation algorithm proposed in the previous section is an offline

algorithm. Due to its underlying closed-form based formulations, it is able to achieve

a great computational efficiency. Most importantly, the closed-form formulas can be

reformulated into an incremental online version that does not require an expensive

storage and manipulation of huge historical time series data. The incremental formulas

extends our proposed offline algorithm into an online version conveniently.

5.4.1 A Fast and Efficient Online Segmentation Framework

We extend the offline TSTD algorithm into an online segmentation algorithm, called

sliding window and top-down (SWTD) approach. An online measure, called online

coefficient of determination denoted by R2
on, is proposed to make a segmentation deci-

sion online. Basically, we use a sliding window approach to monitor a time series, and

update R2
on online as each point arrives. If R2

on is below a threshold, we apply TSTD

to perform time series segmentation in the sliding window; otherwise, continue to read

in a new data. The flowchart of the online SWTD approach is shown in Figure 5.7.

5.4.2 An Incremental Online Decision-Making Measure

An online segmentation algorithm needs to process incoming time series continually

and make decomposition decision in real-time. We propose an online decision-making

measure, called online coefficient of determination denoted by R2
on, which is defined as

follows.

Definition 3. Online monitoring and segmentation of a time series using SWTD (from

left to right), a time series point xn is read in the sliding window at time index
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Perform TSTD on the begining part ofX to

generate a number of time series segments

in the sliding window.

calculate the initial value of

Read in one more time series point, and add

it into the leftmost time series segment in the

sliding window.

update        incrementally according to

equation (12).

?

No

Yes

Perform TSTD on the time series in the

sliding window

Keep the most recentNw time series segments

in the sliding window, and push all others in

the left out of the sliding window.

A Time Series Stream X

Figure 5.7: The flowchart of the online time series segmentation of SWTD. The online
measure R2

on is calculated incrementally in time O(1) as a new point arrives. If R2
on

is smaller than a threshold, it trigger a TSTD segmentation on the time series in the
sliding window.

n. After adding in xn, the rightmost time series segment in the sliding window is

Xi = (xp, xp+1, . . . , xn), where i indicates that it is the ith the segment since the time

zero. Also denote the rightmost approximation line Li, which is obtained by TSTD

in the most recent segmentation update. The slope and intercept of Li are ai and bi,

respectively. We design the online coefficient of determination R2
on(n) to measure that

if the recent time series trend can still be represented by the rightmost segmentation
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line. The online coefficient of determination at time n is defined as follows

R2
on(n) = 1− SSonerr(n)

SSontot(n)

= 1−

n∑
k=p

(xk − fk)2

n∑
k=p

(xk − µn)2
, (5.15)

where µn =
∑n

i=p xi/(n − p + 1), and fk is the value of the approximation line Li at

the time index k, and is given by fk = ai + bik, ai and bi is the slope and the intercept

of Li.

Compared to the offline measure R2
kp, the R2

on is not calculated by the interpolation

line connecting the two endpoints of a time series. Instead, it uses the extension of

the rightmost approximation line to fit the most recent time series trend. As more and

more new time series data stream in, the approximation line is extended to fit the new

data. If R2
on is much lower than 1 (such as 0, or become negative), it means that the

rightmost approximation line becomes inappropriate to represent the recent time series

trend, thus a new segmentation update in the sliding window is required using TSTD.

Most importantly, the online measure R2
on can be calculated incrementally online

using a closed-form formula. The incremental update property of R2
on make the online

SWTD algorithm work super fast to monitoring and segmentation of time series streams

in real-time. The incremental formulation of R2
on is presented below.

Theorem 1. The online coefficient of determination R2
on defined in equation 5.15 can

be updated with a closed-formula in time O(1) when a new time series point is read in

the sliding window.

Proof. According to equation 5.15, we just need to derive that SSonerr(n) and SSontot can

be updated incrementally. Assume, at time index n + 1, a new time series point xn+1

arrives and is added to the rightmost segment Xi = (xp, xp+1, . . . , xn), and becomes
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Xi = (xp, xp+1, . . . , xn, xn+1). The mean of the growing time series segment Xi can be

calculated incrementally as follows:

µn+1 = µn +
1

N(Xi)
(xn+1 − µn). (5.16)

where N(Xi) = n− p+ 2 is the updated length of Xi, and µn =
∑n

i=p xi/(n− p+ 1) is

the mean of Xi at time index n, and µn+1 is the mean of Xi at time index n+ 1 after

adding in the new point xn+1.

A numerically stable formulation for an incremental online calculation of sample

variance was provided and proved in both Knuth [79] and Finch [42]. Based on the

incremental closed formula of sample variance, the online incremental calculation of the

total sum of squares SSontot can be formulated as follows

SSontot(n+ 1) =
n+1∑
k=p

(xk − µn+1)
2

= SSontot(n) + (xn+1 − µn)(xn+1 − µn+1). (5.17)

The SSontot(n + 1) formulated in equation 5.17 can be directly calculated from its

previous value SSontot(n), the new time series point xn+1, the segment mean µn at time

n, and the segment mean µn+1 at time n+1. Since the segment mean can be calculated

incrementally according to 5.16, the SSontot is updated in time O(1) when a new data

arrives.

The sum of approximation residuals SSonerr can also be updated in an incremental

formula as follows
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SSonerr(n+ 1) =

n+1∑
k=p

(xk − fk)2

= SSonerr(n) + (xn+1 − fn+1)
2

= SSonerr(n) + (xn+1 − ai − bi × (n+ 1))2.

(5.18)

where ai and bi are the slope and the intercept of the rightmost approximation line

Li, which is obtained by TSTD in a most recent update. The SSonerr(n + 1) can be

calculated directly from its previous value SSonerr(n), the new time series point xn+1,

and the paraments ai and bi of the rightmost approximation line. Thus the SSonerr is

updated in time O(1) when adding in a new data point.

Finally, the R2
on(n+ 1) can be incrementally calculated online as follows

R2
on(n+ 1) = 1− SSonerr(n+ 1)

SSontot(n+ 1)

= 1− SSonerr(n) + (xn+1 − ai − bi(n+ 1))2

SSontot(n) + (xn+1 − µn)(xn+1 − µn+1)
.

(5.19)

The Ron2 (n+ 1) can be calculated directly from SSonerr(n), SSontot(n), xn+1, µn, µn+1,

ai, and bi. Since the SSonerr(n), SSontot(n), xn+1, µn, and µn+1 can be calculated incre-

mentally in O(1), and the ai, and bi are known regression parameters at time n + 1.

Thus the Ron2 (n+1) can be updated incrementally in time O(1) when a new data point

is added in.

Instead of manipulating massive historical time series data, the proposed measure

R2
on only needs to store and manipulate three incremental variables (µ, SSontot, and SSonerr)

and two parameters (the intercept ai and the slope bi)of the most recent approxima-

tion line Li. The equation 5.19 is of great importance since it achieves an efficient

incremental online calculation. The complexity of the incrementally online update of

R2
on is extremely low, only O(1). This notable property makes it an ideal criterion to
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Figure 5.8: (a) A demonstration of the online segmentation of SWTD on a random-
walk time series with 1500 data points. The sliding window is initialized by the first
100 points, and the threshold values are R2

kp = 0.90 and R2
on = −1. The performance

of segmentation is very robust to the time series noises, and can achieve an overall
accuracy of 99% with a compression rate of 15.57. (b) A demonstration of the two-
stage TSTD segmentation on the time series of the initial sliding window with 100 data
points. The sum of squared approximation errors (SSE) is reduced by about 50% after
the second fine-tune stage.

verify the goodness-of-fit of the most recent approximation line in real time, even if the

sampling rate is very high. In the next section, we will present the R2
on-based online

time series segmentation framework.
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5.4.3 The SWTD Online Segmentation Framework

The online segmentation procedure of the SWTD algorithm using R2
on and R2

kp is sum-

marized in the following five steps. The flowchart of the SWTD online segmentation

is shown in Figure 5.7. The SWTD framework can be summarized into the following

steps.

• step 1: Determine the threshold values of R2∗
kp and R2∗

on. The higher the R2∗
on, the

more frequently the online algorithm will be updated. The higher the R2∗
kp, the

more accurate a time series will be approximated using more line segments. In

addition, we use Nw to control the number of time series segments in the sliding

window for online monitoring.

• step 2: The procedure is initialized by the beginning part of a time series, the

length of which is denoted by Lini. The time series segment (x1, x2, . . . , xLini)

forms the starting sliding window. The TSTD algorithm is performed within the

initial window, and generates a number of initial approximation lines (or one line).

• step 3: At each time step, a new data point is read in. Calculate the R2
on using

the incremental formula given in equation 5.19.

• step 4: Make a segmentation decision:

– If R2
on ≥ R2∗

on, the current regression line and its extension line can still

explain the required level of variance of the corresponding time series data.

– If R2
on < R2∗

on, the current approximation line and its extension cannot ‘ap-

proximately’ represent the recent time series. The TSTD algorithm is per-

formed within the sliding window using the R2∗
kp.

• step 5: If segmentation is performed in step 4, the most recent Nw time series

segments are kept in the sliding window, and all others and their approximation

lines leave the sliding window. If no segmentation is performed in step 4, the size

of the current sliding window is increased by one, and the algorithm continues to

read in the next time series data point.
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A demonstration example of SWTD on a random-walk time series with 1400 data

points is shown in Figure 5.8. During the online monitoring process, we allow the

sliding window to keep a few (e.g., Nw = 5− 6) most recent time series segments for a

robustness purpose. Some short segments in the sliding window caused by noises may

merged into bigger ones after several updates later on when more data points enter the

sliding window. The time series segmentation lines that have left the sliding window

are the finally form of the approximation, and will not be updated again.

The pseudocode of the SWTD algorithm is shown in Algorithm 2. A demonstration

of the online segmentation of a random-walk time series is shown in Figure 5.9.

Algorithm 2 The Sliding Window Top Down (SWTD) Algorithm

1: Input: online time series X = (x1, . . . , xi, . . .), the thresholds R2∗
kp and R2∗

on, and
the initial window size Lini.

2: Output: piecewise linear segments L∗on = (L∗1, L
∗
2, . . . L

∗
m), the key turning points

S∗on = (s∗1, s
∗
2, . . . , s

∗
m+1)

3: procedure SWTD(X, R2∗
kp, R

2∗
on, Lini)

4: Initial: perform TSTD on X1:Lini , get R2
on, SSonerr, and SSontot, set S∗on = [ ],

L∗on = [ ];
5: while a data xk is read in do
6: R2

on ← cal R2on(R2
on, xk); (eq. 5.19)

7: if R2
on < R2∗

on then
8: [L∗kp, S

∗] = TSTD(time series in window);
9: [l∗, s∗] = leftmost segment(L∗kp, S

∗);
10: S∗on = addinto(S∗on, s

∗);
11: L∗on = addinto(L∗on, l

∗);
12: else
13: continue to read in data.
14: end if
15: end while
16: end procedure

5.4.4 Complexity Analysis

The computational complexity of SWTD is also verified on 100 ‘random walk’ time

series with varying lengths ranged from 210 to 217. The averaged computing times are

shown in Figure 5.10 (left plot). The computing times of the TSTD using the same

data are also shown in the same plot, they are much smaller. One should notice that

much of the computing time of the online SWTD is taken by the online reading-in time
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Figure 5.9: A demonstration of the online segmentation of a random-walk time series
with 5000 data points. The sliding window is initialized by the first 500 points, and the
threshold values are R2

kp = 0.95 and R2
on = −0.5. The performance of segmentation is

very robust to the time series noises, and can achieve an overall accuracy of 98% with
a high compression rate of about 122.



122

series data point by point. The SWTD algorithm itself has a very low complexity of

O(1) to make an online decomposition decision using closed-form formulas. Once a

decomposition update is required, the complexity of this update is O(Kswnsw), where

nsw is the number of points in the sliding window, and the Ksw is the number of

segments within the sliding window.
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Figure 5.10: The computing time of the online SWTD and the offline TSTD with
respect to the length of a time series. The results were averaged over experiments of
100 ’random walk’ time series with lengths ranged from 210 to 217.

5.5 Experimental Results

In this section, we employ three performance measures to evaluate the proposed online

segmentation approaches, and compare the segmentation results with two other popular

online algorithms, including the classic sliding window (SW) method and the sliding

window and bottom-up (SWAB) method.

5.5.1 Performance Measures

For a time series X = (x1, x2, . . . , xn), assume its piecewise linear model has M line

segments denoted by LX = (L1, L2, . . . , LM ), and the lengths (number of data points)

of the segments are denoted by q1, q2, . . . , qM . The three measures are described as

follows.

• The first measure evaluates the overall approximation accuracy. It calculates
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how much of the overall time series variation is accounted by the piecewise linear

model. Denote the sum of squared residuals between X and LX by SSR(X,LX),

and the sum of squared values of the time series by SS(X), then the global

approximation performance of the whole time series is calculated by

Pon =
SS(X)− SSR(X,LX)

SS(X)
(5.20)

= 1−
∑n

i=1(xi − li)2∑n
i=1(xi − x̄i)2

. (5.21)

• The second measure is the compression rate, which is defined by

CR = 1−NLX
/n, (5.22)

where n is the number of time series data points, and NLX
is the number of

parameters to represent the piecewise linear model LX . The value of CR is ranged

in [0, 1] and indicates how much the data size is reduced after segmentation.

• The third measure is the computing time, denoted by T . To deal with massive

time series streams, an online segmentation algorithm definitely has to work as

fast as possible.

5.5.2 Characteristics of the Online SWTD

We did experiments on 100 ‘random walk’ time series with 3000 data samples to in-

vestigate the performance of SWTD with respect to the threshold R2∗
on and R2∗

kp. The

initial sliding window Lini = 100. Figure 5.11 shows the averaged results over the 100

time series. The plot (a) shows that Pon and CR almost keep at the same level as R2∗
on

is increased from -5 to 0.9. This indicates that the threshold R2∗
on does not control the

approximation accuracy and compression rate. However, R2∗
on controls the frequency

of online update. The higher the R2∗
on, the more segmentation updates are made dur-

ing online monitoring. Thus the computing time T increases when R2∗
on increases, as

shown in the left plot of Figure 5.11(a). The plot (b) clearly shows that the threshold
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R2∗
kp makes the trade-off between the approximation accuracy and the compression rate

directly. As R2∗
kp increase from 0.1 to 0.9, the approximation accuracy indicator Pon

is monotonically increasing, and CR is monotonically decreasing. Since a higher R2∗
kp

leads to more segmentation steps in TSTD, and computing time T is increasing with

R2∗
kp.

5.5.3 Performance Demonstration by a Noisy Sensor Signal

In this section, we demonstrate the segmentation performance of the online SWTD

through a sensor signal contaminated heavily by noises. This types of signals are very

common in practice collected from various sensors. The segmentation result is shown in

Figure 5.14. The proposed SWTD is capable of capturing the major temporal patterns

of the time series in presence of the heavy noises. As a comparison, the result of the

popular online approach SWAB is also shown in Figure 5.15. The SWAB employs

a ‘maximum error’ threshold. We varied threshold values of ‘maximum error’, and

made it achieve a similar segmentation with the SWTD. Although the approximation

accuracy of SWAB (0.68) is a little higher than SWTD(0.66), the SWAB approach took

100 times more time (16.58s) than the SWTD (0.16s). The computationally speed is

vital for online monitoring of massive time series data. This example demonstrates the

great potential of our proposed SWTD in online real-time applications.

Table 5.2: The online segmentation performance of SW, SWAB, and SWTD.
Ron CRon T

SW 0.64 113.64 2.47

SWAB 0.68 83.33 16.69

SWTD 0.66 80.65 0.16

5.5.4 Performance Comparisons for Various Time Series

We compare the proposed SWTD with two popular online approaches SWAB and

SW, by 24 real-world time series data from various fields, including neurophysiology,

industry, medicine, and geography. The data are public available from the UCR time

series data archive [76].
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Figure 5.11: The performance measures Pon, CR, and T with respect to the thresholds
R2∗
on and R2∗

kp. The results were averaged over experiments of 100 ‘random walk’ time
series with 3000 samples, the initial window size Lini = 100. (a) The performance
measures Pon, CR, and T as R2∗

on increases from -5 to 0.9 using R2
kp = 0.9. (b) The

performance measures Pon, CR, and T as R2∗
kp increases from 0.1 to 0.9 using R2

on = −1.

The observations: R2∗
on does not control the approximation accuracy and compression

rate, however, it controls the frequency of online update; R2∗
kp makes the trade-off be-

tween the approximation accuracy and the compression rate directly. Most importantly,
the compression rate can be automatically adjusted to the analyzed time series. In this
example, the CR value is only decreases from 0.99 to 0.96 when R2∗

kp is increased from
0.1 to 0.9.

Since both SW and SWAB rely on a data-dependent decomposition criterion, called

‘maximum error’. To make a fair comparison, we made many numerical experiments to

investigate the effects of different settings of the ‘maximum error’. Finally, we choose

the relative ‘maximum error’, denoted by Emax as the threshold for SWAB and SW.
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Figure 5.12: The performance of the SWTD with respect to the setting of R2
on. The

results were averaged over experiments of 100 ’random walk’ time series with a length
of 3000, and Lini is 500. The red dotted line in each plot represents the performance
of the offline algorithm TSTD.
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Figure 5.13: The performance of the SWTD with respect to the setting of Lini. The
results were averaged over experiments of 100 ’random walk’ time series with a length of
3000, and the Lini was increased from 100 to 1500. Using the performance at Lini = 500
as the reference P 500

on , CR500, T 500 , the relative performance of other settings of Lini
is calculated by Pon/P

500
on , CR/CR500, and T/T 500.
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Figure 5.14: The segmentation performance of SWTD on a very noisy sensory signal.

Figure 5.15: The segmentation performance of SWAB on a very noisy sensory signal.



128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Approximation Accuracy
0

5

10

15

20

25

30

Compression Ratio
0

2

4

6

8

10

12

14

16

Computing Time (s)
 

 

SWTD

SWAB

SW

Figure 5.16: Comparison of the approximation accuracy, compression ration, and com-
puting time of the online approaches SWTD, SWAB, and SW.

The relative ‘maximum error’ Emax is defined by the percentage of ‘maximum error’ to

the range of time series values. we used 10 settings of Emax from 1% to 10%. These

settings are commonly used for SW and SWAB approaches, and the error range is

within 10% to avoid very coarse segmentations. The SWTD approach just employs one

setting of Rkp = 0.95 and Ron = −1 for all the data sets.

The boxplot of the segmentation results of SWTD, SW, and SWAB are shown

in Figure 5.17. A detailed results in each time series data are summarized in Table

5.3. Overall, the proposed SWTD has the comparable approximation accuracy and

compression rate to those of SWAB and SW. However, the proposed SWTD algorithm

works much faster than SWAB and SW. In particular, the median computing times of

SWTD, SWAB, and SW are 0.53, 10.57, and 1.91, respectively. The proposed SWTD is

about 20 times faster than SWAB, and about 4 times faster than SW. Most importantly,

it is very convenient to setup the parameters of the proposed SWTD, and work for

various time series data from different fields. On the other hand, the parameters of

SWAB and SW are not related to the approximation accuracy directly, and thus require

a lot more ‘trial and error’ process to make a good trade-off between approximation

accuracy and compression rate to meet some accuracy and compression requirements.

It is noted that, as demonstrated in Figure 5.18, the piecewise approximation model

of SWAB and SW approaches consist of disconnected approximation lines. The dis-

connected approximation lines reduce the approximation errors considerably; however,
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Figure 5.17: The boxplot of Pon, CR, and T of SWTD, SWAB, and SW on 24 real-world
time series data. Overall, the proposed SWTD has the comparable approximation ac-
curacy and compression rate to those of SWAB and SW. However, the proposed SWTD
algorithm works much faster (around 20 time faster than SWAB and 4 time faster than
SW). Most importantly, it is very convenient to setup the parameters of the proposed
SWTD, and work for various time series data from different fields. We employed only
one parameter setting (R2∗

kp = 0.95 and R2∗
on = −1) in this experiment, and achieved

a high approximation accuracy for all data sets. On the other hand, the parameters
of SWAB and SW are not related to the approximation accuracy directly, and thus
require more ‘trial and error’ process to make a good trade-off between approximation
accuracy and compression rate to meet some accuracy and compression requirements.

the resulting model are not perceptually plausible. On the other hand, the proposed

SWTD approach is more perceptually reasonable to capture time series patterns than

the models with disconnected lines.

5.6 Conclusions

The current segmentation approaches highly rely on some data-specific decomposition

strategies, which lead to a tedious parameter tuning procedure in practice. Another

bottleneck problem of online segmentation algorithms is the high computational com-

plexity. In this chapter, we propose an online time series segmentation approach that

is accurate, fast, and easily applicable to various time series with different scales. In

particular, the proposed online segmentation framework has three important features:

• employs a data-independent decomposition strategy, which employs a scaled uni-

versal statistical threshold measure to control approximation accuracy directly

regardless of data values.
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Figure 5.18: A demonstration of the segmentation results of SWTD, SWAB, and SW.
Another big advantage of the proposed SWTD is that it can provide a better repre-
sentation for time series temporal patterns. The piecewise connected-line model of the
proposed SWTD is more perceptually reasonable than the approximation models with
disconnected lines. The main objective to use disconnected lines is to increase approx-
imation accuracy, however, it sacrifice some temporal pattern information by doing so.
Our proposed algorithm is capable of generating similar approximation accuracy while
keep a better representation for temporal time series pattern.

• employs a novel two-stage top-down segmentation algorithm, which is capable of

achieving a guaranteed approximation accuracy for various time series without a

tedious threshold turning process.

• employs a closed-form online updating formulas and achieves a very low com-

puting cost to process massive time series streams online. The complexity of

processing a new incoming data point is only O(1).

It is very easy to setup the parameters of SWTD compared with many others that

employ data-dependent threshold strategies. We employed only one parameter setting

(R2∗
kp = 0.95 and R2∗

on = −1) in the numerical experiments of 24 real-world time se-

ries. The experimental results showed that the proposed online SWTD works very fast

online while achieving a high approximation accuracy for all data sets with only one

parameter setting. The proposed online segmentation approach SWTD has a great po-

tential to work well for online monitoring and processing of highly nonstationary time



131

Table 5.3: The online segmentation performances of SWTD, SWAB, and SW on 24
real-world time series data sets that are public available at the UCR time series data
archive [76].

Pon CR T

Time Series Data SWTD SWAB SW SWTD SWAB SW SWTD SWAB SW

1 ERP 1 0.99 0.98 0.97 0.82 0.84 0.87 1.47 17.82 2.87
2 ERP 2 0.99 0.97 0.96 0.83 0.87 0.89 0.89 20.1 2.86
3 ERP 3 0.99 0.98 0.97 0.81 0.87 0.89 0.95 20.23 2.86
4 EOG 1 1 0.99 0.86 0.96 0.97 0.31 19.7 2.39
5 Steamgen 1 1 0.99 0.99 0.89 0.96 0.96 0.53 23.36 2.86
6 Steamgen 2 0.99 0.98 0.97 0.82 0.86 0.88 1.2 19.95 2.86
7 Steamgen 3 1 1 0.99 0.81 0.9 0.91 1.31 23.01 2.88
8 Foetal ECG 1 0.88 0.96 0.95 0.78 0.79 0.82 1.13 10.47 2.38
9 Foetal ECG 2 0.98 0.98 0.97 0.79 0.84 0.87 0.86 12.5 2.38
10 TOR95 0.96 0.99 0.98 0.79 0.57 0.62 0.77 4.33 1.43
11 Power Data 0.99 0.99 0.99 0.78 0.8 0.83 0.58 10.17 1.91
12 Burst 0.99 0.99 0.99 0.94 0.97 0.97 0.27 17.83 2.4
13 Fluid Dynamics 0.93 0.94 0.9 0.82 0.84 0.87 0.95 14.12 2.38
14 PH Data 1 0.96 1 1 0.93 0.78 0.83 0.36 10.66 1.9
15 PH Data 2 1 1 1 0.84 0.92 0.94 0.22 12.2 1.91
16 Shuttle 1 0.99 1 1 0.93 0.98 0.99 0.11 4.94 0.95
17 Shuttle 2 1 1 0.99 0.88 0.96 0.96 0.2 7.76 0.95
18 Shuttle 3 1 1 0.99 0.89 0.95 0.96 0.28 7.81 0.95
19 Greatlakes 1 0.98 0.99 0.98 0.81 0.58 0.65 0.44 2.87 0.94
20 Greatlakes 2 0.99 0.99 0.98 0.81 0.68 0.73 0.5 3.25 0.94
21 Greatlakes 3 0.89 0.99 0.97 0.82 0.56 0.61 0.52 2.78 0.95
22 Flutter 0.74 0.99 0.98 0.9 0.77 0.83 0.34 4.73 0.98
23 Wool 0.99 0.99 0.98 0.89 0.79 0.83 0.69 6.7 1.72
24 Attas 0.99 0.99 0.99 0.78 0.78 0.81 0.19 5.77 0.98

AVE. 0.97 0.99 0.98 0.84 0.83 0.85 0.63 11.79 1.90

Median 0.99 0.99 0.98 0.82 0.84 0.87 0.525 10.565 1.91

series without a tedious parameter tuning process. In the future, we will explore more

potentials of SWTD on nonstationary time series data.
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Chapter 6

A General Framework for Online Prediction of Time

Series Events

In the previous chapter, we proposed an efficient time series segmentation algorithm

to extract key skeleton points of noisy time series. The proposed TDTD and SWTD

transform a time series into a much lower dimensionality representation, while the ‘big

picture’ of the temporal patterns largely preserved. The extracted time series skeleton

points allows more efficient storage, visualization, and computational analysis.

With the main objective of online prediction in mind, we are dedicated to develop a

new framework for online prediction of time series events. In this chapter, we propose

a general prediction framework for online prediction of complex time series events from

nonstationary multivariate time series data.

6.1 Traditional Time Series Prediction

Traditional time series prediction is to predict the next few values of a time series. There

is a huge number of approaches have been developed in this area. The most popular time

series modeling and prediction approaches are ARIMA models for stationary processes

and GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models for

non-stationary time series. Many data mining techniques have also been widely em-

ployed in time series prediction analysis, such as unsupervised neural networks [81], and

Support Vector Machines (SVM) [48]. Sfetsos and Siriopoulos also proposed a hybrid

technique combining clustering and function approximation for time series prediction

[143].
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6.2 Time Series Pattern Discovery and Event Prediction

For many real-world time series, the predictive patterns are hidden, unobvious, and

heavily contaminated with noises, such as brain activity in EEG time series data. It

is very difficult to discover hidden time series patterns using the traditional time series

analysis methods, such as the well-known ARIMA and GARCH modeling approaches.

The traditional time series modeling approaches are mainly applied to predict the up-

coming future values of a time series, and do not consider the event-related time series

temporal patterns. New approaches are in great need to investigate the online predic-

tion of target events from nonstationary and noisy time series data.

Many researchers have been devoted to apply data mining and machine learning

techniques to find patterns for time series event. In general, data mining of time series

event is the process of extracting previously unknown and useful event-related patterns

from historical data sets and then using the discovered event-pattern information to

make accurate future decisions. Berndt and Clifford employed a dynamic programming

approach to find time series patterns that match a predefined set of pattern templates

[11]. Rosenstein and Cohen employed a time-delay embedding process to find time series

patterns given a set of pattern templates. Keogh and Simith [75] applied piecewise linear

segmentation to represent time series patterns, and proposed a probabilistic method

to find template patterns from time series streams. These types of pattern mining

approaches generally require a priori knowledge or template for the interested temporal

patterns.

A number of approaches have been proposed to discover unknown and hidden time

series patterns without pattern templates. Povinelli and Feng [122] proposed a predic-

tion framework for characterization and prediction of time series events, such as the

sudden rise of a stock price. A genetic algorithm was used to find temporal patterns

based on a phase-space representation. Sun et al. [153, 152] studied the pattern dis-

covery for multiple time series events in a time series data. The basic idea is to find

the frequent temporal patterns that are related to each type of event, and then set up

classification rules for pattern discovery.
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It is noted that online prediction of complex time series event is still a young research

topic with few publications. The current approaches are not convenient to be applied

to solve many prediction problems due to the sophisticated parameter tunning process

and the expensive computational load for online applications. In this research, we are

dedicated to develop new efficient online prediction frameworks for time series events.

Given a multivariate time series stream, we want to discover predictive patterns for a

specific target event, and then use the discovered patterns to predict future occurrences

of the target event. The objective of the proposed research is to create a general

online prediction framework for complex time series event, especially for nonstationary

multivariate time series streams.

6.3 Problem Statement

The basic idea of online prediction of target events (such as seizure onsets, different

mental states, illegal financial transactions, etc.) is to capture specific pre-event pat-

terns that characterize the conditions preceding each target event. The fundamental

hypothesis in this research is that there exist pre-event patterns that occur frequently

before the target event but occur much less frequently in the periods far from the event.

The objective of this research is to discover such pre-event patterns in the process of

online monitoring of a time series stream. The ’online’ property indicates the predic-

tion is prospective without using any future information, which is very important in

practical applications. In summary, the online prediction problem is defined as follows.

Definition 4. Consider a multivariate time series stream

X = x1(t), x2(t), . . . , xn(t), t = 1, 2, . . .. (6.1)

where t is the time index, n is the number of time series. A sliding window of length

Lmw is applied to monitor the time series X with a step length of Lstep. Given a target

event E and a prediction horizon H, the time series pattern extracted from each sliding
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window is used to predict the potential occurrences of the event online. A prediction

is made if the extracted pattern of a sliding window is more similar to event-related

patterns than non-event patterns. An event is correctly predicted if there is at least

one prediction within its preceding prediction horizon. The online prediction problem

is also illustrated in Figure 6.3.

Observe Time Series

in Sliding Window

Pattern Feature

Extraction

Pattern

Classification

Similar to Pre

-event Patterns?

...

...

...
...
...

...

Sliding

Window

Prediction Horizon

Event will occur

in this period ?
Make

Prediction

Multivariate

Time Series

Figure 6.1: Block diagram of online prediction of a time series event.

6.4 Temporal Feature Extraction and Pattern Cluster

The proposed key-turning-point extraction technique is very efficient to deal with noisy

time series data and perform dimensionality reduction. In this section, we will propose

an efficient high-level pattern representation technique based on the key turning points.

By doing so, we are able to represent time series patterns in a very low-dimensional

space.

To achieve a higher-level of representation, we summarize the extracted key turning

points into four statistical features. In particular, for a time series X = (x1, x2, ..., xn),

its key turning points are shown in Figure 6.2. There are six sub-sections, three of



136

which (segment a, c, e) show increasing trend, and three of which (segment b, d, f)

have decreasing trends. The increasing and the decreasing trends indicate the degree

of fluctuation of the time series. The following four important features are proposed to

represent time series fluctuation patterns:

• Feature 1: accumulated vertical decrease in the segmented piecewise linear time

series, which is calculated as

F1 = H(a) +H(c) +H(e), (6.2)

where the function H(.) means the vertical distance from the starting point to

the ending point of a sub-segment.

• Feature 2: accumulated vertical increase in the segmented piecewise linear time

series, which is calculated as

F2 = H(b) +H(d) +H(f), (6.3)

• Feature 3: percentage of the decreasing line segments, which is calculated as

F3 = T (a+ c+ e)/T (X), (6.4)

where T (.) is the horizontal distance from the starting point to the ending point

of a sub-segment.

• Feature 4: range of the time series, which is calculated as

F4 = max(X)−min(X), (6.5)

where max(X) and min(X) means the maximum and minimum values of the

segmented time series, respectively.
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Figure 6.2: Four skeleton-point-based features are employed to represent the temporal
fluctuation pattern of a time series.

With the four features F1, F2, F3, and F4, we partition each feature space into

a number of non-overlap intervals. The time series patterns that fall in the same

interval in each feature space represent a set of close-by patterns with similar statistical

properties. We consider a set of such time series patterns as a pattern cluster. The

concept of pattern cluster is illustrated in Figure 6.4. The two time series can be

represented by the same pattern cluster, namely 1325.

Using the concept of pattern cluster, one can represent millions or billions of time

series patterns by a fixed number of pattern clusters representing groups of similar time

series patterns. As shown in the example, there are four features, and each feature

space is partitioned into five intervals, then the total number of pattern clusters is only

54 = 625 for a single time series. For multivariate time series, one can concatenate the

features of each time series into a big feature vector. For example, if there are two time

series, the total number of features becomes 4× 2 = 8, and the total number of pattern

clusters becomes 58 = 6252.

With this new high-level representation technique, we are capable of dealing with

numerous complicated time series patterns by a limited number of pattern clusters.

This property is really attractive to analyze chaotic nonstationary time series patterns.

We do not need to worry about an increasing database of recorded pattern clusters,

since the maximum number of possible pattern clusters is known fixed number.
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Figure 6.3: A demonstration of the concept of pattern cluster in discretized feature
space.

6.5 Adaptive Online Prediction Framework

In this section, we propose a new adaptive online prediction framework for time series

event. The proposed prediction framework has the following significant features:

• focuses on the identification of temporal time series patterns that are character-

istic of target events.

• employs the newly developed online time series segmentation algorithm SWTD

to extract skeleton points of a time series.

• propose a set of feature extraction techniques to extract temporal features from

the skeleton points of each time series.

• employs a feature selection technique to determine the feature vector of a time

series epoch. That is to determine which feature time series and which temporal

features are used to represent a time series epoch.

• build a feature pattern library which stores the feature vector of each monitored
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time series epoch. The relationship between the stored patterns and the target

events are investigated to construct the online prediction rule.

• proposes two adaptive prediction approaches to investigate the relationship be-

tween the stored patterns and the target events based on the pattern library. The

prediction decision boundaries of the adaptive prediction schemes are capable of

being updated and optimized online after each occurrence of a target event as the

system monitors a time series stream over time.

The whole pattern mining and prediction procedure has three stages including fea-

ture selection, training stage and testing stage. Figure 6.5 presents the whole framework

of the proposed online monitoring and prediction method. Given a prediction goal (tar-

get events), a brief outline of the three stages are presented in the following.

• Feature Selection Stage. The whole feature selection procedure is illustrated

in Figure 6.5. This step is to select the most prominent temporal features that are

characteristic of the target event. For each time series, one has many choices of

features to characterize the time series. Such as univariate features (e.g., mean,

standard deviation, signal power, etc.), bivariate features (e.g., pairwise corre-

lation, pairwise distances, and phase synchronization, etc.), and time-frequency

features (e.g., wavelet coefficients, frequency band analysis). We call these types

of features of raw time series are first-level features. Not all first-level features

of all time series are relevant to the target event. Thus we employ feature selec-

tion technique to select the most relevant features for the target event. As shown

in Figure 6.5, given a training time series with the timing of target events and the

assumed pre-event time length (prediction horizon H), the first step is to clean

the data. One can perform band-pass filer to remove the low and high frequency

noises. Then we employ a sliding window to extract the first-level features for

each time series. Now the raw time series are represented by a set of characteristic

feature time series. According to the event timing information, we extract time

series epoch from pre-event an non-event periods. For each time series of each

epoch, we first extract the skeleton points using TSTD algorithm proposed in last
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Figure 6.4: Block diagram of the proposed adaptive online monitoring and prediction
approach, which has three stages including feature selection, training stage and testing
stage.
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chapter, then we extract four temporal features from the skeleton points. Each

epoch is now can be represented by a long feature vector which concatenates the

temporal features in all the first-level feature time series. We employed the Pudil’s

floating search to select which temporal features of which first-level features have

the discrimination power to separate the pre-event and non-event epochs. The

outcome of the feature selection stage determines the final form of feature vector

of a time series epoch. The feature vector represent the concept of ’pattern’ of a

time series epoch.

Training Time Series After Preprocessing
(e.g.,  band-pass filter to remove low/high frequency noisies)

Feature Selection: determine which temporal

features of which first-level features are most

relevant to the target event.

Extract First-Level Features from Sliding Window
(univariate, bivariate, time-frequency, etc. )

:

event event

event event

Feature Vector: The Selected Temporal

Feature  Set for Online Pattern Classification

and Prediction.

: :

Pre-Event Period Pre-Event Period
Non-Event Period

Epoch Extraction:obtain Pre-event and

Non-event Epochs from the pre-event and

non-event periods, respectively.

Second Level Feature Extraction: temporal

pattern features of the firt level features using the

time series segmentation algorithm TSTD.

Figure 6.5: Flowchart of the proposed feature extraction and feature selection proce-
dure.

• Training Stage. The objective of the training stage is to find the best parameter

settings for the online monitoring and prediction framework. There are mainly

three types of parameters including the prediction horizon H, the sizes Lmw and

step lengths Lstep of the two-level sliding windows. These parameters are generally
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unknown in a prediction problem of complex time series event. We employ the

training stage to find the most appropriate estimation of the length of pre-event

period and the length of the hidden pre-event patterns. The length of pre-event

period is estimated by the prediction horizon, and the length of the hidden pre-

event patterns is estimated by the length of the second-level sliding window. Given

a section of training time series, we apply different settings of prediction horizon,

sliding window size and step length. For each parameter setting, we perform the

prospective online prediction on the training dataset. The block digram of the

prospective online prediction process is shown in Figure 6.5. The settings of H,

Lmw, and Lstep with the best prediction performance on the training dataset are

selected to perform online prediction on the testing dataset.

• Testing Stage. This stage is to perform prospective online prediction on a test-

ing time series using the trained parameter settings. The online monitoring and

prediction process is shown in Figure 6.5. The temporal patterns are extracted

online by two levels of sliding windows. The first-level sliding window is applied to

extract the first-level characteristic features from raw time series. The second-level

sliding window is applied to extract temporal patterns of the first-level features

using the proposed online time series segmentation algorithm SWTD. The feature

vector of each sliding window and its relationship to the target event (pre-event or

non-event) are stored in a pattern library. The relationship is also called pattern

label in this study. It is noted that the label of each pattern is not obtained at

the same time with the feature vector. It is obtained in a retrospective manner

using the pre-assumed pre-event period (=prediction horizon H). In other words,

the label of a pattern is only known either one prediction horizon later if no event

occurs in between or at the moment of event occurrence within one prediction

horizon. With the labeled temporal patterns, we designed two data mining tech-

niques to discover the pre-event patterns. The two adaptive pattern identification

methods will be discussed in the next two sections. The two adaptive methods

share the same property in that the prediction rule (decision boundary/threshold)

is automated updated and optimized after each event occurrence. In the online
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monitoring process, the system gives a prediction if the pattern vector of a slid-

ing window is classified as ’pre-event’ by the prediction rule. If a target event

is detected, then the decision boundary is updated and optimized based on the

updated pattern library.

Second-level sliding window to Extract the selected
temporal features for the first-level feature time series

First-level sliding window to monitor raw time series and extract the selected first-level features

Second-level sliding window to monitor the selected feature time series

F1 F2 ... ... Fn-1 Fn

Epoch Feature Vector (Epoch Pattern)

Store the Feature Vector into a Pattern Library,
and update the label after each event occurrence.

F1 F2 ... ... Fn-1 Fn Pattern Info.

: : :: : ::

Pre-event Pattern Identification
(Prediction Rule Construction)

Scheme 1: A Probabilistic Adaptive-Threshold-based
Prediction Scheme Using Prediction Score and the
Concept of Pattern Cluster.

Scheme 2: A Binary-Classification-based Prediction
Scheme: e.g., Linear discriminant analysis (LDA),
Support Vector Machine.

Online Updating: after each event occurrence, the
score threshold or the classification hyperplane is
retrained based on the most recent Pattern Library with
new added patterns and updated pattern information.

Online Prediction (Prospectively)

Scheme 1: If the feature vector is alreaday stored in the
pattern library, and also has a prediction score higher
than the score threshold, trigger a prediction.

Scheme 2: Using the trained seperating hyperlane to
classify the monitored feature vector. If the feature
vector is classified as pre-event, trigger a prediction.
Otherwise, no prediction.

Extract skeleton points for each monitored feature time
series using the online algorithm SWTD

Note: pattern information includes pattern label (pre-event

or non-event, and occurrence frequencies in pre-event and

 non-event periods.

Figure 6.6: Flowchart of the proposed general framework for online monitoring and
prediction of a time series target event.
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6.6 A Probabilistic Adaptive-Threshold-Based Online Prediction Scheme

In the previous section, we proposed the concept of pattern-cluster to manipulate nu-

merous time series patterns. The pattern cluster representation has a very low di-

mensionality, and it allows a very efficient storage, visualization, and computational

analysis. More importantly, it becomes possible to apply probabilistic theory to ana-

lyze the predictability of pattern clusters. In this section, we propose a probabilistic

prediction framework to discover the hidden pattern clusters that are predictive to

seizure onset. The flowchart of the proposed pattern-cluster based probabilistic online

prediction scheme is shown in Figure 6.7.

6.6.1 Definition of Prediction Score

The adaptive learning of the predictive power of the stored pattern clusters is of vital

importance in our prediction framework. In this section, we present the probabilistic

formula in detail to calculate the predictive score of each pattern cluster.

Definition 5. Given a time series pattern cluster, indexed as the kth cluster in the

pattern recording table, its prediction score Sk is defined as follows:

Sk =
Npre/Ntot

Rpre
×
Ndist
pre

Nevt
, (6.6)

where Npre is the number of occurrences of the pattern cluster in all monitored pre-

event periods; and Ndist
pre is the number of pre-event periods such that the pattern

cluster appears at least once in each of them; Ntot is the total number of occurrences

of the pattern cluster; and Nevt is the total number of events that have occurred. For

example, if two events have been monitored, a pattern cluster occurs three times in the

first pre-event period, 2 times in the non-event periods, and does not show up in the

second pre-event period, then Npre = 3, Ndist
pre = 1, Ntot = 5, and Nevt = 2. Finally,
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Figure 6.7: Flowchart of the probabilistic adaptive-threshold-based online prediction
scheme using the concept of pattern-cluster in discrete feature space.
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Rpre is the time ratio between pre-event periods and non-event periods. In particular,

it is calculated as follows:

Rpre =
Tpre

Ttot − Tpre
=

Nevt × Thrzn
Ttot −Nevt × Thrzn

, (6.7)

where Tpre is the total length of monitored pre-event periods, Ttot is the total length of

monitored EEG time series; and Thrzn is the length of prediction horizon.

The predictive score proposed in formula 6.6 indicates how strong a pattern cluster

is associated with event onset. In particular, in the first term of formula 6.6, the

Npre/Ntot is the percentage of the pattern cluster appear in pre-event periods. This

percentage value is compared with Rpre to evaluate if the pattern cluster occurs in

pre-event periods at a random level. If the pattern cluster occurs equal-likely in both

pre-event and non-event periods, then the expected value of Npre/Ntot should be equal

to the expected value of Rpre. In particular, we can summarize the following properties

of the first term of formula 6.6:

• If the pattern is pure random in both pre-event periods and non-event periods,

then

E(Npre/Ntot) = E(Rpre). (6.8)

• If the pattern occurs more frequently in pre-event periods than the non-event

periods, then we have

E(Npre/Ntot) > E(Rpre). (6.9)

The higher the ratio value, the more likely the pattern cluster is associated with

event onset.

• If the pattern occurs less frequently in pre-event periods than the non-event pe-

riods, then we have

E(Npre/Ntot) < E(Rpre). (6.10)
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As discussed above, the ratio of Npre/Ntot and Rpre (the first term in formula 6.6)

is an important factor to identify the prediction power of a pattern cluster. However, it

is noted that this ratio alone is sometime unreliable and un-robust under some extreme

situations. For example, a pattern cluster occurs many times within one prediction

horizon (may due to noises or unusual situations), and appears much less frequently

or never occurs in other pre-event periods. In such cases, the ratio can be temporally

high due to its very high occurrence frequency in only a few pre-event periods. And

thus lead to a high predictive score. Although the ratio may return toward its expected

value in long-term if Nnm could increase over time. However, it may take a long time

and many false predictions may have been made during this period due to this ‘bad’

pattern cluster.

To remedy this limitation, we introduce the second term in formula 6.6, Ndist
pre /Nevt,

which considers the percentage of the pattern occurrences in different pre-event periods.

Ideally, we assume that a good candidate for prediction should appear in a large portion

of the monitored pre-event periods, not only in one or in a few of them. In particular,

we expect an ideal predictive pattern cluster should have the following property:

NNdist
pre

Nevt
≈ 1, (6.11)

which means that the pattern cluster occurs in almost all of the monitored pre-event

periods. The multiplication of the first and the second term in formula 6.6 estimates the

likelihood of a pattern cluster in pre-event periods and reduces the bad effects of some

extreme situations. In general, the higher the prediction score, the higher probability

the pattern cluster appears in pre-event periods, and thus the more prominent it is to

predict events.

6.6.2 Probabilistic Online Prediction Rule

Figure 6.7 present the structure of the proposed probabilistic online prediction frame-

work. Each time series epoch in the sliding window is represented by a pattern cluster.
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The system stores each pattern cluster into the pattern library as well as six measures

that are used to calculate its prediction score according to formula 6.6. The higher the

prediction score of a pattern cluster, the more likely it is a pre-event pattern cluster.

We employ an adaptive threshold on the prediction score to discriminate the pre-event

and non-event pattern clusters online. More specifically, the threshold is defined as

follows.

Definition 6. The threshold S∗ is defined as the value that maximizes the prediction

performance (sensitivity + specificity) in the monitored historical time series. The

threshold S∗ is updated after each occurrence of a target event.

In the online prediction process, each time series epoch in the sliding window is

converted to a pattern cluster. Given a pattern cluster, indexed as the kth cluster in

the pattern library, its prediction score is denoted as Sk, then the prediction rule of the

probabilistic online prediction scheme is defined by:

predictor =

 1, if Sk ≥ S∗ (make an prediction)

0, otherwise (no prediction);

6.7 A Classification-Based Online Prediction Scheme

The previous prediction scheme investigate the temporal pattern features in discrete

space. In many cases, it might not be convenient to identify a set of appropriate

discretization criterion in each feature space. On the other hand, one can also employ

the existing data mining techniques to identify pre-event patterns in the pattern library.

In this study, we employed the popular binary classification technique, Fisher’s Linear

Discriminant Analysis, to classify the pre-event and non-event patterns in the pattern

library. The flowchart of the LDA-based online prediction scheme is shown in Figure

6.8.
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Figure 6.8: Flowchart of the LDA-based online prediction scheme.
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6.7.1 Fisher’s Linear Discriminant Analysis

Fisher’s LDA aims to find an optimal projection by minimizing the intraclass variance

and maximizing the distance between the two classes simultaneously [46]. Mathemat-

ically, LDA tries to find an optimal direction ω∗ ∈ Rn×k as a solution of the following

optimization problem:

ω∗ = argmaxω
ωTSbω

ωTSω∗ω
, (6.12)

where ω is the direction of the hyperplane that is used to separate the two data sets.

Sb and Sω are the interclass and intraclass covariance matrix, respectively. They are

defined as follows

Sb = (m1 −m2)
T (m1 −m2), (6.13)

Sω =
∑
i∈1,2

∑
i∈Di

(Yi −mi)
T (Yi −mi), (6.14)

where m1 and m2 are the means of the feature vectors Y in the two data sets D1 and

D2, respectively. They can be calculated by

m1 =
1

p

∑
Y ∈D1

Y =
1

p

p∑
i=1

Yi, (6.15)

m2 =
1

q

∑
Y ∈D2

Y =
1

p

p+1∑
i=p+q

Yi. (6.16)

When Sω is not singular, the above optimization problem can be solved by applying

the eigen-decomposition to the matrix S−1ω Sb. The eigenvector corresponding to the

largest eigenvalue forms the optimal direction w∗ by

ω∗ = S−1ω (m1 −m2). (6.17)

When Sω is singular, an identity matrix with a small scalar multiple can be used to
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tackle this problem [102]. The optimal w∗ then becomes

ω∗ = (Sω + λI)−1(m1 −m2). (6.18)

Once ω∗ is obtained, the optimal decision boundary of LDA can be represented by

ω∗TY + b = 0, (6.19)

where b is the bias term. There is no general rule to determine the bias term, a most

commonly used bias term is b = −ω∗T (m1 + m2)/2. The class of a feature vector Y

depends on which side of the hyperplane it is on. In particular, given a feature vector

Ynew, the prediction rule is as follows


ω∗TYnew + b > 0, lnew = 1 (pr-event pattern),

ω∗TYnew + b < 0, lnew = −1 (non-event pattern).

6.7.2 LDA-based Online Prediction Rule

Figure 6.8 presents the structure of the LDA-based online prediction scheme. Each

time series epoch in the sliding window is represented by a feature vector in countinous

feature space. The system stores each pattern vector into the pattern library as well

as its class label (pre-event or non-event). The pattern library contains feature vectors

of two classes. Thus we can formulate the problem as a typical binary classification

problem. That is to find an optimal hyperplane to separate pattern vectors of the two

classes with highest accuracy. The trained LDA hyperplane is then used to classify a

feature vector of a sliding window online.

In the online prediction process, each time series epoch in the sliding window is

represented by a feature vector. Given a feature vector Xk stored in the kth row of the

pattern library, then the prediction rule of the LDA-based online prediction scheme is
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defined by:

predictor =

 1, if ω∗TXk + b > 0

0, if ω∗TXk + b ≤ 0;

6.8 Evaluation of Prediction Performance

The most commonly used prediction performance measures are specificity and sensi-

tivity. However, the traditional definition of specificity and sensitivity only focus on

the correctness of each individual prediction, and do not consider prediction horizon

and event information. They are inappropriate to be applied to measure prediction

performance directly for the online event prediction problem, which has to consider the

effects of prediction horizon. In this study, we formulate sensitivity and specificity by

considering the time effects of prediction horizon, and make them more appropriate to

measure the realistic prediction performance in real-life applications.

In this studies, sensitivity, denoted as senblk is defined as the number of correctly

predicted events divided by the total number of events. An event is considered to be

correctly predicted if there is at least one true prediction within its preceding prediction

horizon.

To estimate the prediction specificity, many event-prediction studies employed the

measure of false prediction rate, which is defined by the number of false predictions

per hour (or unit time). However, false prediction rate also ignore the time effects

of prediction horizon on the prediction performance. For example, given the same

false prediction rate, an algorithm with a 1-hour prediction horizon will give a patient

much longer false awaiting time than the one with a 10-minute prediction horizon. To

overcome this bias, Mormann et al. [104] suggested that a prediction specificity can be

estimated by quantifying the portion of time during the non-event period that is not

considered to be false awaiting time. We herein employed this definition of specificity,

denoted as speblk. A demonstration of the senblk and speblk quantification is shown in

Figure 6.9.
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Figure 6.9: A demonstration of the definition of time-block-based sensitivity (senblk)
and specificity (speblk) for event-prediction problems which have to consider the time
effects of prediction horizon in real-life applications.

6.9 Summary of the Online Prediction Framework

This chapter presents a general online monitoring and prediction framework for time

series event. The proposed prediction framework has the following important properties:

• propose a feature selection stage to select the event-related first-level characteristic

features of raw time series.

• propose a two-sliding-window approach for online monitoring time series and tem-

poral feature extraction. The first-level sliding window extracts the selected first-

level characteristic features from raw time series; and the second-level sliding

window extracts the temporal patterns of the first-level features.

• propose a pattern-library approach to store the window-monitored time series pat-

terns and some statistics of their occurrence history related to a target event (such

as occurrence frequency in pre-event and non-event period, occurrence spectrum

in different pre-event periods.)
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• propose an adaptive probabilistic online pattern-discovery and prediction scheme

based on pattern clusters in discrete feature space. A probabilistic formula is

proposed to estimate the pre-event likelihood (prediction score) of each stored

pattern based statistics of its occurrence history. An optimized score threshold

that maximizes the prediction performance over the monitor history is identi-

fied to discriminate pre-event and non-event patterns. The score threshold is

re-optimized after each occurrence of a target event. A big advantage of this

approach is that the size of pattern-library is limited by the maximum number of

pattern cluster. The drawback is that some efforts are needed to find the most

appropriate discretization criterion in each feature space.

• proposed an adaptive classification-based online pattern-discovery and prediction

scheme in continuous feature space. In this scheme, the pattern library only stores

the monitored feature vectors and their class labels (pre-event or non-event).

The the pattern-discovery problem can be formulated as a typical classification

problem. A classification technique (such as LDA) is employed to to construct an

optimal hyperplane to classify the two classes of feature vectors. The hyperplane

is retrained after each occurrence of a target event. The most advantage of this

scheme is that optimization and data mining techniques can be employed to find

the optimized hyperplane in continuous feature space. However, one drawback

of this approach is that the size of pattern-library keeps on increasing over time.

One solution to this problem is to use the recent monitored patterns, and discard

the far away ones.

In the next chapter, we will apply the proposed adaptive online prediction framework

to solve two challenging real-world prediction problems.
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Chapter 7

Real-world Applications

In this chapter, we apply the proposed adaptive online monitoring and prediction frame-

work to solve two challenging real-world event-prediction problems based on EEG time

series data. The proposed new prediction approach generated superior prediction per-

formance over the existing data mining techniques. The genetic structure of the online

monitoring and prediction framework enable it to be applicable to a wide range of time

series data. The time series temporal feature extraction and prediction approaches in-

troduced by this dissertation are fundamental contributions to the fields of time series

data mining, especially for the analysis of non-stationary chaotic time series.

7.1 Adaptive Online Prediction of Epileptic Seizures

In Chapter 4, we have proposed a reinforcement learning-based online prediction frame-

work for epileptic seizure. In this chapter, we will also evaluate the new adaptive

prediction framework by this challenging problem.

7.1.1 Computational Settings

The proposed two prediction schemes have been tested on the EEG recordings of 10

patients with epilepsy using three choices of prediction horizons, seven choices of win-

dow length, and seven choices of step length. The complete parameter settings of the

prediction system are summarized in Table 7.1.

A brief outline of the experimental setup is as follows:

• feature extraction: 29 first-level features are extracted for each raw time series

epoch in the first-level sliding window. In particular, 26 of them are univariate
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Table 7.1: Computational settings of the online prediction framework for epileptic
seizure prediction.

Parameter Setting Setting Choices

Prediction Horizon 30, 90, 150 minutes

1st-level sliding window window size: 10 minutes
(monitor raw time series) moving step length: 1 minutes

2nd-level sliding window window size: 15, 30, 60, 90, 120, 150, 180 minutes
(monitor feature time series) window size: 1, 3, 6, 9, 12, 15, 18 minutes

Online Prediction Scheme 1. Adaptive Probabilistic Prediction Scheme
2. Adaptive LDA-based Prediction Scheme

Feature Selection Method Pudil’s floating search based on 1-Nearest Neighbour
leave-one-out classification performance.

1-26: Lyapunov exponents of 26 channels of raw EEG
1st-level features 27: averaged pair-wise Euclidean distances

28: averaged pairwise T-ststistics
29: averaged pairwise correlations.

1. accumulated vertical increase
2nd-level features 2. accumulated vertical decrease

(temporal pattern feature) 3. percentage of decline periods
4. amplitude range

features, we extract the largest Lyapunov exponent from each of the 26 EEG chan-

nels. Three of them are bivariate features, they are averaged pairwise Euclidean

distance, T-ststistc, and Pearson correlation, respectively. And four temporal

features are extracted for the time series of each first-evel feature. Thus each raw

time series epoch is converted into a 29× 4 = 106 temporal feature candidates.

• feature selection: we employ the popular feature selection approach Pudil’s float-

ing search to select the optimal subset of temporal features. The criterion of fea-

ture selection is the 1-Nearest Neighbour leave-one-out classification performance.

The selected optimal feature subset has the highest leave-one-out classification ac-

curacy. In this study, we select 8 most important temporal features from the 106

candidates.

• pattern cluster formulation: we discretized each feature space into five equal bins.

Since each time series epoch is transformed into a feature vector of 8 selected

features, the total number of possible pattern clusters are 58 = 390625. Thus the

maximum size of the patter library is 390625× 8.
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• performance measure: prediction performance is evaluated by the time-block-

based sensitivity senblk and the time-block-based specificity speblk. Both of them

have been defined and discussed in the previous chapter. The overall prediction

accuracy (PA) is defined as the average of senblk and speblk. That is PA =

(senblk + speblk)/2.

• training and testing: For each patient, the EEG recordings were divided into

training and testing dataset. The training dataset is the EEG recordings that

contain the first half of seizure occurrences. It is used to perform feature selection

and train the best parameter settings of H, Lmw, and Lstep. The testing dataset

is the EEG recordings that contain the second half of seizure occurrences. It

is used to test our prediction approach prospectively using the best parameter

setting found from the training dataset. The best parameter setting is the one

with the highest prediction accuracy. In addition, to find the most appropriate

trade-off between sensitivity and specificity, we also added a constraint that the

senblk must be greater than 0.6, and the speblk must be greater than 0.5. If none

of the settings meet this constraint, we simply selected the one with the highest

value of prediction accuracy.

7.1.2 Prediction Performance of The Adaptive-Threshold-Based Pre-

diction (ATP) Scheme

Table 7.2 summarizes the training and testing prediction performance of the ATP

scheme for the three prediction horizons. To demonstrate the effectiveness of the adap-

tive prediction scheme, the prediction performance of a non-update scheme and two

random prediction schemes (periodic and Poisson) are also reported in the table. The

‘non-update’ scheme employed the trained threshold obtained from training data, and

kept the threshold unchanged in the testing dataset. The prediction periods of the

periodic and Poisson schemes for each patient are equal to the averaged length of inter-

seizure intervals of the patient. The proposed adaptive scheme ATP achieved much
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better prediction performance than the non-update scheme and the two random pre-

dictiors. With the best parameter settings (sliding window width and step length),

the overall prediction accuracies (PA) of the proposed prediction framework ATP for

prediction horizons of 30, 90, and 150 minutes are 78%, 71%, and 66%, respectively.

The PAs of the non-update scheme and the two random preditors are all less than 60%.

This strong contrast indicates that the proposed ATP scheme was indeed effective to

improve the prediction performance online over time. In addition, we notice that the

prediction horizon of 30 minutes generated the best prediction performances than the

other two horizon choices. This observation implies that the proposed ATP scheme

is promising to achieve high prediction accuracy using a short prediction horizon, and

thus provide early warnings accurately and timely. Figure 7.1, Figure 7.2, and Figure

7.3 show the prediction outcome of the ATP prediction scheme for patient 10, 4, and

2, respectively, using the best training parameter settings. The adaptive threshold and

the prediction alarms are also shown in the Figures.

Our previously developed reinforcement-learning-based prediction scheme achieved

an overall prediction accuracy of 70%. The new ATP scheme increased the overall

prediction accuracy by 8%. The outcome of this study confirmed that the proposed

adaptive-threshold sheme is effective to predict complex time series event from nonsta-

tionary chaotic time series data.

7.1.3 Prediction Performance of The Adaptive-LDA-Based Prediction

(ALP) Scheme

Table 7.3 summarizes the training and testing performance characteristics of the ALP

scheme for three prediction horizons, respectively. The ALP scheme generated very

promising prediction using the prediction horizon of 30 minutes, which has an overall

prediction accuracy of 91%. While the overall prediction accuracies using the prediction

horizons of 90 and 150 minutes are 82% and 73%, respectively. The prediction perfor-

mance of the adaptive scheme ALP is much better than those of the non-update scheme

and the two random preditors. Compared with the state-of-the-art seizure prediction
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Figure 7.1: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 10 using a prediction horizon of 30 minutes with Lmw = 15 minutes
and Lstep= 1 minute. The vertical black lines indicate the onset starting times of
the occurred seizures. The piecewise horizontal line represents the adaptive threshold,
which is updated after each seizure onset. The red line represents the prediction alarms.
The non-zero values in the red line indicate’ prediction alarms.

Figure 7.2: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 4 using a prediction horizon of H=30 minutes with Lmw = 15
minutes and Lstep= 12 minute. The vertical black lines indicate the onset starting times
of the occurred seizures. The piecewise horizontal line represents the adaptive threshold,
which is updated after each seizure onset. The red line represents the prediction alarms.
The non-zero values in the red line indicate prediction alarms.
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Table 7.2: The training and testing performance characteristics of the adaptive-
threshold-based ATP prediction framework for three prediction horizons, respectively.
The ‘Non-Update’ scheme employed the trained threshold of prediction score, and kept
the threshold unchanged in the testing dataset. The prediction performance on the
testing dataset is presented in the table. The prediction performances of two random
prediction schemes (periodic and Poisson) are also reported. The prediction periods of
the periodic and Poisson schemes for each patient are equal to the averaged length of
inter-seizure intervals of the patient.

Setting Training Testing Non-Update Possion Periodic

Horizion Patient Lmw(min) Lstep (min) senblk speblk senblk speblk senblk speblk senblk speblk senblk speblk
1 15 1 1.00 0.87 1.00 0.53 0.00 1.00 0.00 0.53 0.00 0.53
2 30 1 1.00 0.39 1.00 0.66 0.00 1.00 0.00 0.35 0.00 0.35
3 60 15 0.90 0.56 1.00 0.45 0.33 0.69 0.17 0.52 0.17 0.52
4 120 1 1.00 0.65 1.00 0.77 0.00 1.00 0.00 0.72 0.07 0.72
5 60 9 0.86 0.64 1.00 0.63 1.00 0.58 0.00 0.39 0.00 0.39

30 min 6 120 1 0.75 0.77 1.00 0.40 0.75 0.74 0.13 0.34 0.00 0.34
7 30 15 0.75 0.80 1.00 0.41 0.00 1.00 0.05 0.52 0.00 0.52
8 15 15 0.86 0.38 0.83 0.56 0.00 1.00 0.06 0.77 0.12 0.77
9 15 3 0.89 0.76 1.00 0.34 1.00 0.63 0.05 0.95 0.05 0.95
10 15 1 1.00 0.81 1.00 0.82 1.00 0.08 0.00 0.70 0.09 0.70

Ave. 0.89 0.66 0.97 0.61 0.38 0.70 0.06 0.96 0.06 0.96
PA 0.78 0.79 0.54 0.51 0.51

1 15 1 1.00 0.69 1.00 0.84 0.00 1.00 0.00 0.47 0.33 0.47
2 30 1 1.00 0.38 0.67 0.45 0.00 1.00 0.00 0.17 0.00 0.17
3 120 1 0.90 0.32 1.00 0.30 0.00 1.00 0.30 0.15 0.39 0.15
4 90 1 1.00 0.44 1.00 0.68 0.00 1.00 0.07 0.39 0.07 0.39
5 30 3 0.71 0.72 1.00 0.41 1.00 0.39 0.00 0.15 0.00 0.15

90 min 6 90 1 1.00 0.28 1.00 0.39 1.00 0.41 0.25 0.00 0.25 0.00
7 90 1 0.88 0.57 1.00 0.17 0.00 1.00 0.21 0.22 0.21 0.22
8 120 18 0.86 0.22 1.00 0.18 1.00 0.46 0.18 0.57 0.18 0.57
9 120 3 0.89 0.56 0.89 0.43 1.00 0.32 0.11 0.79 0.16 0.79
10 15 1 1.00 0.72 1.00 0.61 1.00 0.07 0.18 0.24 0.18 0.24

Ave. 0.90 0.52 0.96 0.49 0.49 0.58 0.15 0.88 0.19 0.88
PA 0.71 0.73 0.54 0.52 0.54

1 15 1 1.00 0.59 0.67 0.78 0.00 1.00 0.33 0.56 0.33 0.56
2 30 1 1.00 0.39 1.00 0.33 0.00 1.00 0.00 0.10 0.00 0.10
3 90 1 0.90 0.16 1.00 0.34 0.00 1.00 0.70 0.25 0.65 0.25
4 90 1 1.00 0.47 1.00 0.65 0.00 1.00 0.13 0.25 0.13 0.25
5 30 1 0.57 0.58 1.00 0.40 1.00 0.40 0.13 0.09 0.00 0.09

150 min 6 30 1 0.75 0.76 0.75 0.50 1.00 0.38 0.13 0.17 0.13 0.17
7 180 1 0.88 0.47 1.00 0.12 0.00 1.00 0.37 0.19 0.37 0.19
8 150 15 0.86 0.16 1.00 0.18 0.00 1.00 0.24 0.47 0.24 0.47
9 15 1 1.00 0.12 1.00 0.55 1.00 0.32 0.32 0.49 0.26 0.49
10 15 1 1.00 0.66 1.00 0.46 1.00 0.07 0.09 0.25 0.27 0.25

Ave. 0.89 0.43 0.96 0.47 0.34 0.63 0.29 0.82 0.28 0.82
PA 0.66 0.72 0.49 0.56 0.55

approaches, an overall prediction accuracy around 90% using a prediction horizon of 30

minutes is very attractive. The significant experimental reslts confirmed that the pro-

posed ALP prediction sheme is very effective to achieve online prediction of time series

events. The adaptive property of the prediction structure makes it very convinient to

achieve persionalized seizure prediction in real clinical applications.

Figure 7.5, 7.6, and 7.7 show the prediction outcomes of the ALP prediction scheme

for patient 9, 3, and 1, respectively, using the best training parameter settings.
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Figure 7.3: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 2 using a prediction horizon of H=30 minutes with Lmw = 30
minutes and Lstep= 1 minute. The vertical black lines indicate the onset starting times
of the occurred seizures. The piecewise horizontal line represents the adaptive threshold,
which is updated after each seizure onset. The red line represents the prediction alarms.
The non-zero values in the red line indicate prediction alarms.

7.2 Online Prediction of A Mental State in A Simulated Driving En-

vironment

In this section, we apply the proposed adaptive online prediction framework to solve

another challenging prediction problem. A virtual-reality scene was created to simulate

the real-world driving experience in big cities. Each subject is provided with a map

which is city map in the simulation. Each subject start from the same place, and is

asked to go to an objective destination pointed out in the map. The map is placed

beside the simulation screen while the subject is driving. The function of the map is

very similar to a GPS map in real driving environments. The subject will look at the

map from time to time in case he/she was uncertain about the following driving route,

for example, if turn left, turn right or go straight ahead at the next intersection. There

are 24 subjects were recruited in the simulated driving experiment, their EEG time

series data were recorded during their driving.

The occurrence timing of two important events were recorded. They are

• event I: a subject begins to look at the map.

• event II: a subject looks back to the driving screen from the map.
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Figure 7.4: The effectiveness of the adaptive online updating scheme ATP. The ATP
scheme was only performed on the EEG with the first portion of seizures, and the
obtained score threshold was kept unchanged in the remaining EEG recordings. The
horizontal axis indicates the portion of seizures the ATP scheme was actively performed.
The point 0 indicates that the initial classification hyperplane of LDA was unchanged
throughout the prediction process; and the point 1 means that the LDA classification
hyperplane was updated after each seizure onset. It shows clearly that the overall
prediction accuracies increased as more seizures were used to train the LDA classifier.
The strong increase trend of prediction accuracy indicates that the adaptive updating
scheme ATP is effective to increase online prediction performance over time.
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Figure 7.5: The prediction outcome of the LDA-based ALP prediction scheme for pa-
tient 9 using a prediction horizon of H=30 minutes with Lmw = 15 minutes and Lstep=
12 minute. The vertical black lines indicate the onset starting times of the occurred
seizures. The blue line represents the prediction value of the LDA classifier. If the pre-
diction value is higher than 0, a monitored pattern is classified as pre-seizure, a warning
is triggered; otherwise, the pattern is classified as non-event. The LDA hyperplane is
updated after each seizure onset. The red line represents the prediction alarms. The
non-zero values in the red line indicate prediction alarms.

Figure 7.6: The prediction outcome of the LDA-based ALP prediction scheme for pa-
tient 3 using a prediction horizon of H=30 minutes with Lmw = 30 minutes and Lstep=
9 minute. The vertical black lines indicate the onset starting times of the occurred
seizures. The piecewise horizontal line indicates the adaptive threshold, which is up-
dated after each seizure onset. The red line represents the prediction alarms. The
non-zero values in the red line indicate prediction alarms.
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Figure 7.7: The prediction outcome of the LDA-based ALP prediction scheme for pa-
tient 1 using a prediction horizon of H=30 minutes with Lmw = 15 minutes and Lstep=
12 minute. The vertical black lines indicate the timings of seizure onset. The piecewise
horizontal line indicates the adaptive threshold, which is updated after each seizure
onset. The red line represents the prediction alarms. The non-zero values in the red
line indicate prediction alarms.

In particular, we pay a special interest on the prediction of event I. Because event I

may be highly related to the ‘anxiety’ and ‘uncertainty’ of the brain activity. The

prediction of such an event in driving EEG can be very insightful for online prediction

of various mental states, such as ‘uncertainty’, ‘certainty’, ‘alertness’ and ‘drowsiness’.

For example, predicting a drowsy state can be applied to provide warning alarms to a

driver to avoid fatigue-related driving accidents.

7.2.1 The Driving EEG Acquisition and Preprocessing

During the experiment, EEG data were collected with an EEG cap containing 40

Ag/AgCl electrodes according to the international 10-20 system. There are four elec-

trodes that were used for measuring eye movements to remove muscular artifacts. The

rest 36 electrodes were mounted on the scalp and thus used for analyses in this chap-

ter. The placement of the 36 scalp electrodes is shown in Figure 3.1. The signals were

amplified by NuAmps Express system (Neuroscan Inc, USA) and sampled at 1000Hz.

24 subjects were recruited from the student body of University at Buffalo. All subjects

had driving experience without any motion disability. During the driving experiment
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Figure 7.8: The effectiveness of the adaptive online updating scheme ALP. The ALP
scheme was only performed on the EEG with the first portion of seizures, and the
obtained LDA classification hyperplane was kept unchanged in the remaining EEG
recordings. The horizontal axis indicates the portion of seizures the ALP scheme was
actively performed. The point 0 indicates that the initial classification hyperplane of
LDA was unchanged throughout the prediction process; and the point 1 means that the
LDA classification hyperplane was updated after each seizure onset. It shows clearly
that the overall prediction accuracies increased as more seizures were used to train the
LDA classifier. The strong increase trend indicates that the adaptive updating scheme
ALP is effective to increase online prediction performance over time.
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Table 7.3: The training and testing performance characteristics of the ALP prediction
framework for prediction horizon, respectively. The ‘Non-Update’ scheme employed the
trained threshold of prediction score, and kept the threshold unchanged in the testing
dataset. The prediction performance on the testing dataset is presented in the table.
The prediction performances of two random prediction schemes (periodic and Poisson)
are also reported. The prediction periods of the periodic and Poisson schemes for each
patient are equal to the averaged length of inter-seizure intervals of the patient.

Setting Training Testing Non-Update Possion Periodic

Horizion Patient Lmw(min) Lstep (min) senblk speblk senblk speblk senblk speblk senblk speblk senblk speblk
1 15 12 1.00 0.87 1.00 0.60 0.67 0.74 0.00 0.53 0.00 0.53
2 30 15 1.00 0.86 1.00 0.76 1.00 0.88 0.00 0.35 0.00 0.35
3 30 9 1.00 0.90 0.89 1.00 0.67 0.93 0.17 0.52 0.17 0.52
4 15 12 1.00 0.82 0.86 0.80 0.71 0.85 0.00 0.72 0.07 0.72
5 60 1 1.00 0.84 0.83 0.66 0.83 0.73 0.00 0.39 0.00 0.39

30 min 6 30 18 1.00 0.57 1.00 0.82 0.25 0.40 0.13 0.34 0.00 0.34
7 15 6 1.00 0.73 0.86 0.61 0.71 0.68 0.05 0.52 0.00 0.52
8 180 12 0.86 0.85 0.67 0.63 1.00 0.35 0.06 0.77 0.12 0.77
9 15 12 1.00 0.90 1.00 0.84 0.67 0.97 0.05 0.95 0.05 0.95
10 30 15 1.00 0.93 0.60 0.78 0.60 0.82 0.00 0.70 0.09 0.70

Ave. 0.96 0.85 0.86 0.73 0.73 0.77 0.06 0.96 0.06 0.96
PA 0.91 0.80 0.75 0.51 0.51

1 90 18 1.00 0.50 1.00 0.54 0.50 0.43 0.00 0.47 0.33 0.47
2 180 18 0.67 0.80 1.00 0.73 0.33 0.71 0.00 0.17 0.00 0.17
3 30 15 1.00 0.74 0.89 1.00 0.89 0.37 0.30 0.15 0.39 0.15
4 60 18 1.00 0.70 1.00 0.47 1.00 0.43 0.07 0.39 0.07 0.39
5 90 18 0.86 0.71 0.83 0.58 1.00 0.23 0.00 0.15 0.00 0.15

90 min 6 150 18 0.75 0.82 0.75 0.47 0.75 0.31 0.25 0.00 0.25 0.00
7 15 18 0.88 0.55 1.00 0.44 1.00 0.21 0.21 0.22 0.21 0.22
8 180 9 1.00 0.80 0.83 0.51 1.00 0.25 0.18 0.57 0.18 0.57
9 120 6 1.00 0.69 0.89 0.50 1.00 0.22 0.11 0.79 0.16 0.79
10 60 12 1.00 0.57 1.00 0.41 1.00 0.29 0.18 0.24 0.18 0.24

Ave. 0.96 0.67 0.90 0.51 0.92 0.31 0.15 0.88 0.19 0.88
PA 0.82 0.71 0.62 0.52 0.54

1 90 15 1.00 0.27 1.00 0.33 1.00 0.28 0.33 0.56 0.33 0.56
2 150 18 0.67 0.92 1.00 0.59 0.33 0.50 0.00 0.10 0.00 0.10
3 120 12 1.00 0.73 0.89 1.00 0.67 0.91 0.70 0.25 0.65 0.25
4 120 15 1.00 0.50 1.00 0.19 0.86 0.46 0.13 0.25 0.13 0.25
5 30 18 1.00 0.48 1.00 0.40 1.00 0.10 0.13 0.09 0.00 0.09

150 min 6 150 18 0.75 0.75 1.00 0.41 1.00 0.22 0.13 0.17 0.13 0.17
7 15 18 1.00 0.51 1.00 0.26 1.00 0.17 0.37 0.19 0.37 0.19
8 180 9 0.86 0.73 0.83 0.32 0.67 0.73 0.24 0.47 0.24 0.47
9 90 18 1.00 0.62 0.89 0.38 1.00 0.17 0.32 0.49 0.26 0.49
10 180 18 1.00 0.32 0.80 0.41 1.00 0.67 0.09 0.25 0.27 0.25

Ave. 0.95 0.51 0.93 0.38 0.85 0.40 0.29 0.82 0.28 0.82
PA 0.73 0.66 0.63 0.56 0.55

of each subject, the timing of each map-looking activity was recorded.

7.2.2 Target Event Definition

As discussed in the fundamental structure of the prediction framework, it is always

useful to perform a preliminary study on the analyzed time series data, and try to find

some knowledge about the data prior to event occurrence. Figure 7.2.2 plots the The

statistics of the inter-arrival periods of event I (periods of continuous driving without
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looking at the map), and the intervals between event I and event II (periods of map-

looking). We notice that for those event I with short inter-arrival times (less than 2

seconds) may be clustered as one event. There are often the cases such that a subject

drives for a period without looking at the map; however, if the subject feel uncertain

about the next driving route, she/he may look at the map back and forth a number

of times in a short periods. As a result, these groups of event Is are natural to be

considered as a part of learning process, and are less relevant to our interested target

event, which is related to ‘uncertainty’ of future driving directions. In particular, we

are more interested in an ’initial’ event I after a relative long-term continuous driving

without looking at the map. In this study, we consider five second is a reasonable time

interval to separate two ’initial’ event Is. Thus we selected the event I with at least five

seconds preceding continuous driving as the target event. The event Is that have very

short inter-arrival times are ignored in the prediction problem.
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Figure 7.9: The statistics of the inter-arrival intervals of event I (periods of continuous
driving without looking at the map), and the intervals between event I and event II
(periods of map-looking).
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Figure 7.10: The 36 EEG channels are divided into seven channel groups according to
their spacial locations. In the feature extraction stage, features are first extracted from
each single channel, and then averaged over each channel group.

7.2.3 Data Processing and Feature Extraction

We employed a band-pass filter to decompose the EEG data into four frequency bands,

they are 8 to 13 Hz, 13 to 30 Hz, 2 to 50 Hz, and 1 to 100 Hz, respectively. For EEG

signals in each frequency band, we performed several univariate, bivariate analysis and

time-frequency analysis of the driving EEG data. We also divided the 36 EEG channels

into 7 groups according to their spacial locations. We consider the channel groups in

the feature extraction procedure. In particular, we extracted the following first-level

features from the raw EEG data.

• 9 univariate features: mean, variance, skewness, kurtosis, signal power, curve

length, number of peaks, average nonlinear energy, variance to range ratio. Each

univariate feature is calculated from the 36 channels, and then the features in the

same channel group are averaged to represent the value of that channel group. In

other word, each epoch of 36 channels is converted into 7 values of a univariate

feature, each value represents a channel group.
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• Three bivariate features: pairwise Euclidean distance, pairwise T-statistics, pair-

wise Pearson correlation. The bivariate features were first calculated in each

channel group, and then averaged over all the pairs in each channel group. Each

epoch of 36 channels is transformed into 7 values for each bivariate feature.

• One time-frequency feature: wavelet entropy. Wavelet analysis is first used to de-

compose each channel of EEG data into subbands, and then entropy is computed

using the calculated wavelet coefficients. In the last, we average the wavelet

entropy values within each channel group. Each time epoch of 36 channels is

transformed into 7 values of wavelet entropy for each channel group.

7.2.4 Feature Selection

For a time epoch, its total number of extracted first-level features is 9 × 7 + 3 × 7 + 1

× 7 = 91. As discussed in the previous chapter, we employed a second sliding window

to monitor the feature time series over time. Four temporal features are extracted

from each first-level feature time series. Then the total number of temporal features

is 91 × 4 = 364 features. We employed the Pudil’s floating search to select which

temporal features have strong discrimination power to separate the pre-event and non-

event epochs. In this study, we selected the best 8 temporal features from the 364

candidates. Each EEG epoch of 36 channels is represented by a feature vector of the

8 selected temporal features. In the online monitoring process, each EEG epoch in the

sliding window is converted into a 8-dimension feature vector and store in a constructed

pattern library.

7.2.5 Computational Settings

The proposed prediction framework has been implemented on the EEG recordings of

24 subjects using four choices of prediction horizons, five choices of window length, and

three choices of step length. The complete parameter settings of the prediction system

are summarized in Table 7.4.
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Table 7.4: Computational settings of the prediction framework for mental-state predic-
tion in a simulated driving environment.

Parameter Setting Setting Choices

Prediction Horizon 400, 600, 800, 1000 ms

1st-level sliding window window size: 1 s
(monitor raw time series) moving step length: 100 ms

2nd-level sliding window window size: 1, 2, 3, 4, 5 second
(monitor feature time series) moving step length: 100, 200, 300 ms

Online Prediction Scheme 1. Adaptive Probabilistic Prediction Scheme
2. Adaptive LDA-based Prediction Scheme

Feature Selection Method Pudil’s floating search based on 1-Nearest Neighbour
leave-one-out classification performance.

Nine univariate features: mean, variance, skewness
kurtosis, signal power, curve length, number of peaks
average nonlinear energy, variance to range ratio.

1st-level features Three pairwise bivariate measures: Euclidean distance
T-statistics, Pearson correlation.
One time-frequency measure: wavelet entropy
(features are averaged over each channel group
as shown in Figure 7.2.2)

1. accumulated vertical increase
2nd-level features 2. accumulated vertical decrease

(temporal pattern feature) 3. percentage of decline periods
4. amplitude range

7.2.6 Experimental Results

The averaged training and testing results over the 24 subjects for each prediction horizon

and frequency band are summarized in Table 7.5. The best testing performance of the

ATP prediction approach was achieved at a senblk of 0.83 and a speblk of 0.80 using

the prediction horizon of 400ms in frequency band 2-50 Hz. Correspondingly, table

7.6 gives the detailed prediction performances of the 24 subjects using the prediction

horizon of 400ms in frequency band 2-50 Hz. Figure 7.11, 7.12, and 7.13 show three best

prediction examples of the ATP prediction scheme for subject 2, 5, and 24, respectively,

using their best training parameter settings.

The best testing prediction performance of the ALP prediction scheme was achieved

at a senblk of 0.84 and a speblk of 0.60 using the prediction horizon of 400ms in frequency

band 8-13Hz. Correspondingly, table 7.7 gives the detailed prediction performances

of the 24 subjects using the prediction horizon of 400ms in frequency band 8-13 Hz.
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Figure 7.11, Figure 7.12, and Figure 7.13 show three best prediction examples of the

ALP prediction scheme for subject 2, 5, and 24, respectively, using their best training

parameter settings. Figure 7.16, 7.17, and 7.18 show three best prediction examples of

the ALP prediction scheme for subject 1, 5, and 9, respectively.

From the figure demonstrations, one can observe that the proposed ATP predic-

tion scheme achieved very attractive prediction performance. Averaged over 24 sub-

jects, 83% target events were correctly predicted while 80% of the time is not in false-

prediction periods. The LDA-based ALP prediction scheme had a similar sensitivity of

84%. However, it was achieved at a specificity of 60%. That is 40% of the time is under

false-prediction periods. From the demonstrations Figures 7.16, 7.17, and 7.18, one can

observe that the prediction of ALP scheme is very sensitive around the LDA decision

boundary (the horizontal line at zero). In many false prediction cases, the prediction

values of the LDA classifier is only slightly higher than zero, and classified as pre-event

cases. To make the prediction more robust againt boundary noises, one can shift the

decision bounary a little higher to eliminate much of the false predictions. There are

also many other options of other classification technqieus to tackle this problem, which

is out of the scope of this study. We employ the default decision boundary of LDA

throughout this study.

In this application example, it clearly shows that the adaptive-threshold-based ATP

prediction scheme is less sensitive to pattern noises. This is because a prediction is only

triggered if the monitored pattern is already identified as a pre-event pattern in the

pattern library with a prediction score of higher than the score-threshold. All patterns

other than the identified pre-event patterns cannot trigger any warning alarms. This

makes the proposed probabilistic ATP prediction very attractive in real-life applications.

7.3 Conclusion

In this chapter, we implemented the proposed online monitoring and prediction frame-

work to solve two challenging real-world problems based on EEG time series data. The

proposed adaptive prediction schemes ATP and ALP were evaluated. In the seizure
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Figure 7.11: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 2 using the prediction horizon of H= 400 ms with Lmw = 4000 ms
and Lstep= 100 minute. The vertical black lines indicate the onset starting times of the
occurred seizures. The red line represents the prediction alarms. The non-zero values
in the red line indicate prediction alarms.

Figure 7.12: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 5 using the prediction horizon of H=400 ms with Lmw = 5000 ms
and Lstep= 100 ms. The vertical black lines indicate the onset starting times of the
occurred seizures. The red line represents the prediction alarms. The non-zero values
in the red line indicate prediction alarms.
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Table 7.5: The averaged training and testing results over the 24 subjects for each
prediction horizon and frequency band. The best testing prediction performance of ATP
approach was achieved at senblk=0.83 and speblk = 0.80 using the prediction horizon
of 400ms and the frequency band 2-50 Hz. The best testing prediction performance
of the LDA-based prediction scheme was achieved at senblk=0.843 and speblk = 0.60
using the prediction horizon of 400ms and frequency band 8-13Hz.

ATH LDA

Frequency Horizon Training Testing Training Testing
Band (Hz) (100 ms) Senblk Speblk Senblk Speblk Senblk Speblk Senblk Speblk

4 0.71 0.77 0.77 0.63 0.89 0.65 0.81 0.62
6 0.72 0.72 0.76 0.56 0.84 0.63 0.80 0.58

8-13 Hz 8 0.85 0.57 0.81 0.51 0.85 0.57 0.81 0.51
10 0.81 0.55 0.81 0.51 0.81 0.55 0.81 0.51

4 0.67 0.75 0.71 0.68 0.9 0.64 0.8 0.56
6 0.71 0.71 0.77 0.62 0.86 0.63 0.75 0.52

13-30 Hz 8 0.73 0.68 0.83 0.55 0.87 0.59 0.8 0.49
10 0.73 0.66 0.82 0.55 0.89 0.57 0.8 0.47

4 0.82 0.90 0.79 0.83 0.91 0.66 0.81 0.61
6 0.87 0.82 0.83 0.75 0.84 0.63 0.80 0.58

2-50 Hz 8 0.88 0.8 0.83 0.71 0.84 0.57 0.81 0.51
10 0.88 0.78 0.85 0.67 0.81 0.55 0.81 0.51

4 0.34 0.89 0.39 0.8 0.92 0.65 0.8 0.59
6 0.48 0.77 0.52 0.68 0.92 0.61 0.81 0.53

1-100 Hz 8 0.56 0.72 0.63 0.61 0.88 0.58 0.81 0.48
10 0.6 0.67 0.69 0.55 0.83 0.59 0.74 0.5

Figure 7.13: The prediction outcome of the adaptive-threshold-based ATP prediction
scheme for patient 24 using the prediction horizon of H=400 ms with Lmw = 4000 ms
and Lstep= 100 ms. The vertical black lines indicate the onset starting times of the
occurred seizures. The red line represents the prediction alarms. The non-zero values
in the red line indicate prediction alarms.

prediction problem. The ALP prediction scheme achieved a little better prediction per-

formance than the ATP prediction scheme. The overall testing prediction accuracies

for the ALP scheme and ATP scheme are 80% and 77%, respectively, averaged over 10
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Figure 7.14: The effectiveness of the adaptive online updating scheme ATP using the
EEG frequency band 2-50 Hz. The ATP scheme was performed on the EEG with the
first portion of total events, and the obtained score threshold was kept unchanged in
the remaining EEG recordings. The horizontal axis indicates the portion of seizures
the ATP scheme was actively performed. The point 0 indicates that the initial score
threshold was unchanged throughout the prediction process; and the point 1 means that
the threshold was updated after each seizure onset. It shows clearly that the overall
prediction accuracies increased as more events were used to train the ATP prediction
scheme. The strong increase trend of prediction accuracy indicates that the adaptive
updating scheme ATP is effective to increase online prediction performance over time.
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Figure 7.15: The effectiveness of the adaptive online updating scheme ATP using the
EEG frequency band 8-13 Hz. The ATP scheme was performed on the EEG with the
first portion of total events, and the obtained score threshold was kept unchanged in
the remaining EEG recordings. The horizontal axis indicates the portion of seizures
the ATP scheme was actively performed. The point 0 indicates that the initial score
threshold was unchanged throughout the prediction process; and the point 1 means that
the threshold was updated after each seizure onset. It shows clearly that the overall
prediction accuracies increased as more events were used to train the ATP prediction
scheme. The strong increase trend of prediction accuracy indicates that the adaptive
updating scheme ATP is effective to increase online prediction performance over time.
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Figure 7.16: The prediction outcome of the LDA-based ALP prediction scheme for pa-
tient 1 using the prediction horizon of H= 400 ms with Lmw = 1000 ms and Lstep= 100
ms. The vertical black lines indicate the onset starting times of the occurred seizures.
The piecewise horizontal line indicates the adaptive threshold, which is updated after
each seizure onset. The red line represents the prediction alarms. The non-zero values
in the red line indicate prediction alarms.

Figure 7.17: The prediction outcome of the LDA-based LDA-based prediction scheme
for patient 5 using the prediction horizon of H=400 ms with Lmw = 4000 ms and
Lstep= 300 minute. The vertical black lines indicate the onset starting times of the
occurred seizures. The blue line represents the prediction value of the LDA classifier.
If the prediction value is higher than 0, a monitored pattern is classified as pre-seizure,
a warning is triggered; otherwise, the pattern is classified as non-event. The LDA
hyperplane is updated after each seizure onset. The red line represents the prediction
alarms. The non-zero values in the red line indicate prediction alarms.
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Table 7.6: The training and testing results of the adaptive-threshold-based ATP predic-
tion scheme for the 24 subjects using the prediction horizon of 400 ms and the frequency
band of 2-50 Hz.

Settings Training Testing Non-Update

Sub Lmw (100ms) L+ step (100ms) Horizon (100ms) senblk speblk senblk speblk senblk speblk
1 50 1 4 0.77 0.95 0.75 0.88 0.00 0.97
2 40 1 4 0.85 0.91 0.69 0.89 0.08 0.98
3 50 1 4 0.86 0.88 0.86 0.75 0.00 0.99
4 50 1 4 0.88 0.86 0.81 0.69 0.00 1.00
5 50 1 4 0.71 0.91 0.79 0.89 0.00 0.99
6 30 1 4 0.80 0.94 0.79 0.82 0.00 1.00
7 40 1 4 0.79 0.93 0.72 0.83 0.06 0.98
8 50 1 4 0.81 0.94 0.87 0.87 0.07 0.97
9 30 1 4 0.75 0.97 0.80 0.94 0.00 0.99
10 30 1 4 0.76 0.92 0.94 0.84 0.00 1.00
11 30 1 4 0.93 0.85 0.85 0.73 0.00 0.97
12 30 1 4 0.84 0.87 0.74 0.78 0.11 0.97
13 30 1 4 0.87 0.88 0.86 0.81 0.07 0.98
14 40 1 4 0.76 0.92 0.85 0.80 0.00 0.99
15 40 1 4 0.75 0.90 0.82 0.85 0.00 0.99
16 30 1 4 0.89 0.82 0.65 0.77 0.00 1.00
17 40 1 4 0.88 0.96 0.71 0.95 0.00 1.00
18 40 1 4 0.71 0.86 0.93 0.85 0.00 0.97
19 30 1 4 0.79 0.91 0.56 0.90 0.00 0.99
20 40 1 4 0.94 0.78 0.89 0.76 0.06 0.98
21 50 2 4 0.82 0.74 0.50 0.87 0.27 0.86
22 40 1 4 0.85 0.98 0.83 0.90 0.00 1.00
23 50 1 4 0.79 0.87 0.77 0.73 0.15 0.94
24 40 1 4 0.89 0.96 0.94 0.90 0.06 1.00

Ave. 0.82 0.90 0.79 0.83 0.04 0.98

PA 0.86 0.81 0.52

Figure 7.18: The prediction outcome of the LDA-based ALP prediction scheme for
patient 17 using the prediction horizon of H= 400 ms with Lmw = 1000 ms and Lstep=
100 ms. The vertical black lines indicate the timings of seizure onset. The piecewise
horizontal line indicates the adaptive threshold, which is updated after each seizure
onset. The red line represents the prediction alarms. The non-zero values in the red
line indicate prediction alarms.
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Figure 7.19: The effectiveness of the adaptive online updating scheme ALP using the
EEG frequency band 2-50 Hz. The ALP scheme was performed on the EEG with
the first portion of total events, and the obtained LDA classification hyperplane was
kept unchanged in the remaining EEG recordings. The horizontal axis indicates the
portion of seizures the ALP scheme was actively performed. The point 0 indicates that
the initial LDA classification hyperplane was unchanged throughout the prediction
process; and the point 1 means that the threshold was updated after each seizure
onset. It shows clearly that the overall prediction accuracies increased as more events
were used to train the ATP prediction scheme. The strong increase trend of prediction
accuracy indicates that the adaptive updating scheme ALP is effective to increase online
prediction performance over time.
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Figure 7.20: The effectiveness of the adaptive online updating scheme ALP using the
EEG frequency band 8-13 Hz. The ALP scheme was performed on the EEG with
the first portion of total events, and the obtained LDA classification hyperplane was
kept unchanged in the remaining EEG recordings. The horizontal axis indicates the
portion of seizures the ALP scheme was actively performed. The point 0 indicates that
the initial LDA classification hyperplane was unchanged throughout the prediction
process; and the point 1 means that the threshold was updated after each seizure
onset. It shows clearly that the overall prediction accuracies increased as more events
were used to train the ATP prediction scheme. The strong increase trend of prediction
accuracy indicates that the adaptive updating scheme ALP is effective to increase online
prediction performance over time.
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Table 7.7: The training and testing results of the LDA-based prediction scheme for the
24 subjects using the prediction horizon of 400 ms and the frequency band of 8-13 Hz.

Settings Training Testing Non-Update

Sub Lmw (100ms) L+ step (100ms) Horizon (100ms) senblk speblk senblk speblk senblk speblk
1 10 1 4 1.00 0.69 0.92 0.70 0.92 0.66
2 20 1 4 0.85 0.73 0.69 0.63 0.46 0.78
3 40 1 4 0.86 0.65 0.64 0.68 0.64 0.59
4 20 1 4 0.88 0.73 0.81 0.61 0.94 0.57
5 40 1 4 0.93 0.72 1.00 0.67 0.43 0.85
6 20 1 4 0.93 0.65 0.86 0.60 0.50 0.58
7 10 1 4 1.00 0.65 0.78 0.69 0.78 0.72
8 50 1 4 0.88 0.59 0.80 0.48 0.87 0.53
9 10 1 4 1.00 0.58 0.80 0.56 0.60 0.61
10 40 1 4 0.82 0.58 0.88 0.63 0.88 0.38
11 40 1 4 0.71 0.60 0.54 0.58 0.54 0.68
12 20 1 4 0.95 0.64 0.84 0.63 0.84 0.55
13 10 1 4 0.73 0.61 0.64 0.61 0.50 0.60
14 10 1 4 0.95 0.59 0.95 0.57 0.75 0.65
15 40 1 4 0.67 0.67 0.55 0.73 0.27 0.90
16 10 1 4 0.83 0.68 0.94 0.62 0.41 0.69
17 30 1 4 1.00 0.66 0.86 0.65 0.71 0.56
18 20 1 4 0.86 0.75 0.64 0.70 0.29 0.78
19 30 1 4 0.89 0.62 1.00 0.67 0.33 0.87
20 40 1 4 0.94 0.63 0.89 0.54 0.78 0.76
21 10 1 4 0.91 0.61 0.86 0.54 0.64 0.78
22 10 1 4 0.92 0.56 0.75 0.53 0.50 0.83
23 10 1 4 0.93 0.69 0.92 0.70 0.62 0.69
24 30 1 4 0.83 0.60 0.82 0.55 0.71 0.62

Ave. 0.89 0.65 0.81 0.62 0.62 0.68

PA 0.77 0.72 0.65

patients. In the driving EEG prediction problem, the ATP scheme generated a con-

siderable better prediction performance than the ALP scheme. Using the best training

settings, the overall testing prediction accuracies for the ATP scheme and ALP scheme

are 82% and 72%, respectively, averaged over 24 subjects.

The big advantage of ALP scheme is that it employs statistics and optimization

theory to obtain a decision boundary to classify pre-event and non-event patterns. The

main drawback of this scheme is that the constructed pattern library is incrementally

increasing. The computational load to train the LDA classifier online is thus incremen-

tally increasing over time. The other drawback of ALP scheme is that its prediction

performance may be seriously deteriorated by monitoring noises and outliers. The

online noises around the decision boundary of LDA classifier may lead to many false

predictions. While outliers of monitored patterns may deteriorate the quality of the

trained LDA decision boundary.

The probabilistic ATP scheme constructs a pattern library based on pattern clusters
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in discrete feature space. Thus a resulting advantage of the ATP scheme is that the

size of the pattern library is limited. Since the total number of pattern clusters is a

known number. In real-life applications, the pattern-cluster library can only take a very

small space and is very computational efficient. For example in the seizure prediction

case, the total number of stored pattern clusters is around a level of one thousand, and

the number of identified pre-seizure pattern clusters is around a level of one hundred.

Another significant advantage of the ATP scheme is that it is not sensitive to pattern

noises and outliers in the online monitoring process. A prediction is only triggered if

the monitored pattern cluster is an already identified as a pre-event pattern cluster in

the pattern library. All other monitored patterns (including any pattern noises and

outliers) cannot trigger any warning alarms. This makes the proposed probabilistic

ATP prediction very attractive in real-life applications. However, one drawback of the

ATP scheme is that much effort have to be taken on the discretization of each selected

feature space. An appropriate discretization of the feature space is crucial in the APT

prediction scheme.

In general, the proposed adaptive online prediction framework with two prediction-

rule schemes generated very attractive prediction performances on the two challenging

online prediction problems. The general structure of the online monitoring and predic-

tion framework make it convenient to be applied to a wide range of prediction problems

of complex time series events using a prediction horizon. The proposed framework is a

fundamental contribution to the field of time series data mining. Especially, the pro-

posed framework provide a useful analytical tool for multichannel nonstationary time

series data.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

This dissertation research made an extensive study on time series prediction prob-

lems. The time series feature extraction techniques and the start-of-the-art prediction

models were reviewed. The serious drawbacks of the existing methods for complex non-

stationary time series motivate the directions of this research. This research presents

two novel adaptive online monitoring and prediction frameworks as well as a robust

algorithm for time series feature extraction. The proposed approaches have made orig-

inal and fundamental contributions to the fields of online monitoring and prediction of

massive non-stationary noisy time series data.

Chapter 4 presents an adaptive prediction framework which was built based on the

concept of reinforcement learning. The proposed framework is a baseline sample-based

approach, which compares the query time series patterns with the patterns from a

baseline with known class information (normal or abnormal). The search of the best

matching patterns within the whole database can be achieved by employing a KNN

method. The two baselines were updated online with a gradient-based reinforcement

learning algorithm according to prediction feedbacks. If a prediction is wrong, it pun-

ishes the ‘bad’ baseline samples according to their contributions to this false prediction.

If a prediction is correct, then the ‘good’ baseline samples are enhances according to

their contributions to the right prediction. By doing so, the proposed framework is sup-

posed to collect the more and more predictive baseline patterns over time. Using EEG

recordings from five patients with epilepsy, we have demonstrated that the adaptive

learning framework considerably improved the prediction performance of the system
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based on the time block-based sensitivity/specificity and ROC analysis. However, like

many other reinforcement learning problems, the proposed reinforcement learning sys-

tem may require a large number of seizures to construct the most representative and

informative baselines for each individual patient. However, the current available seizures

for each patient were too few (7 to 23) to train the reinforcement learning system. We

anticipate that the performance of the proposed reinforcement learning prediction sys-

tem could be further improved with more EEG data and seizure onsets available for

each patient.

Chapter 5 proposes a new online time series segmentation algorithm TSTD and

SWTD. The current segmentation approaches highly rely on some data-specific decom-

position strategies, which lead to a tedious parameter tuning procedure in practice.

Another bottleneck problem of online segmentation algorithms is the high computa-

tional complexity. To tackle these problems, we present an online time series segmen-

tation approach that is accurate, fast, and easily applicable to various time series with

different scales. In particular, the proposed online segmentation framework has three

important features. Firstly, it employs a data-independent decomposition strategy,

which employs a scaled universal statistical threshold measure to control approxima-

tion accuracy directly regardless of data values. Secondly, it employs a novel two-stage

top-down segmentation algorithm, which is capable of achieving a guaranteed approxi-

mation accuracy for various time series without a tedious threshold turning process. At

last, it employs a closed-form online updating formulas and achieves a very low com-

puting cost to process massive time series streams online. The complexity of processing

a new incoming data point is only O(1). It is very easy to setup the parameters of

SWTD compared with many others that employ data-dependent threshold strategies.

We employed only one parameter setting (R2∗
kp = 0.95 and R2∗

on = −1) in the numerical

experiments of 24 real-world time series. The experimental results showed that the

proposed online SWTD works very fast online while achieving a high approximation

accuracy for all data sets with only one parameter setting. The proposed online seg-

mentation approach SWTD has a great potential to work well for online monitoring

and processing of highly nonstationary time series without a tedious parameter tuning
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process. Based on this algorithm, one can represent massive time series by their key

skeleton points, which are efficient to deal with in a very low dimensionality.

Chapter 6 develops a general online monitoring and prediction framework for time

series event. The proposed prediction framework employs a feature selection technique

to select the event-related first-level characteristic features from raw time series. A

two-sliding-window approach is proposed for online monitoring time series and tem-

poral feature extraction. The first-level sliding window extracts the selected first-level

characteristic features from raw time series; and the second-level sliding window ex-

tracts the temporal patterns of the first-level features. A pattern library is constructed

to store the window-monitored time series patterns and some statistics of their occur-

rence history related to a target event (such as occurrence frequency in pre-event and

non-event period, occurrence spectrum in different pre-event periods). Given a pattern

library, we propose two different prediction schemes to construct online prediction rules.

The first one is a probabilistic adaptive-threshold prediction (ATP) scheme which em-

ploys the concept of pattern cluster. A pattern-cluster library is constructed in discrete

feature space. A probabilistic formula is proposed to estimate the pre-event likelihood

of each stored pattern-cluster based statistics of its occurrence history. An optimized

score threshold that maximizes the prediction performance over the monitoring history

is identified to discriminate pre-event and non-event pattern clusters. The threshold

is re-optimized after each occurrence of a target event. A big advantage of this ap-

proach is that the size of pattern-library is limited by the maximum number of pattern

cluster. The drawback is that some efforts are needed to find the most appropriate

discretization criterion in each feature space. The second proposed prediction approach

is an adaptive LDA-based prediction (ALP) scheme, which performs online pattern-

discovery and prediction in continuous feature space. In the ALP scheme, the pattern

library only stores the monitored feature vectors and their class labels (pre-event or

non-event). Then the pattern-discovery problem can be formulated as a typical binary

classification problem. The popular binary classification technique LDA is employed to

to construct an optimal hyperplane to classify the feature vectors of the two classes.

The LDA hyperplane is retrained after each occurrence of a target event. The most
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advantage of this scheme is that optimization and statistics theory can be employed

to find the optimized hyperplane in continuous feature space. However, one drawback

of this approach is that the size of pattern-library keeps on increasing over time. One

solution to this problem is to use the recent monitored patterns, and discard the far

away ones.

Chapter 7 applied the proposed online monitoring and prediction framework to two

challenging real-world problems based on EEG time series data. With significant pre-

diction results, the proposed adaptive prediction schemes ATP and ALP successfully

demonstrated their superior prediction ability for online monitoring and prediction of

massive non-stationary time series data. In the seizure prediction problem, the ALP

prediction scheme achieved a little better prediction performance than the ATP pre-

diction scheme. The overall averaged testing prediction accuracies for the ALP scheme

and ATP scheme are 80% and 77%, respectively. In the driving EEG prediction prob-

lem, the ATP scheme generated a considerable better prediction performance than the

ALP scheme. Using the best training settings, the overall averaged testing prediction

accuracies for the ATP scheme and ALP scheme are 82% and 72%, respectively. We

notice that one drawback of the ALP scheme is that its prediction performance may

be seriously deteriorated due to online noises around the decision boundary which may

lead to many false predictions. On the other hand, the ATP scheme is not sensitive to

pattern noises and outliers. A prediction is only triggered if the monitored pattern clus-

ter is an identified pre-event pattern cluster in the pattern library. All other monitored

patterns including noises and outliers cannot trigger any warning alarm. This makes

the proposed probabilistic ATP prediction very attractive in real-life applications.

In general, the proposed adaptive online prediction framework generated very at-

tractive prediction performances on the two challenging online prediction problems.

The general structure of the online monitoring and prediction framework enable it to

be applicable to a wide range of prediction problems of complex time series events us-

ing a prediction horizon. The proposed framework is a fundamental contribution to the

field of time series data mining, especially for the analysis of multichannel nonstationary

and chaotic time series data.
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8.2 Future Research

Future work can be proceed in the following directions:

• Apply the proposed online monitoring and prediction framework to many other

time series prediction problems. Such as the online prediction of financial time

series events. The temporal pattern analysis of financial time series has been

demonstrated useful to predict some specific events, such as abrupt large rises or

drops of stock prices. We will evaluate the prediction approach on prediction of

financial time series event in the future.

• Investigate more on online incremental learning and prediction approaches. In the

prediction framework, the prediction rule is retrained after each occurrence of a

target event. In the retrain process of ALP scheme, the new decision boundary is

obtained by training on the whole updated pattern library again, and did not use

any information about the current information. In an online prediction model, it

is desirable to achieve incremental online learning. That is we do not necessary

to train the decision boundary from the very beginning. If new patterns are

added into the pattern library, the new decision boundary is adjusted only use

the information of the current boundary and the new pattern samples. Online

SVM model is a promising direction to achieve this goal.

• Develop new feature selection algorithms. In this research, we employ the popular

feature selection approach, the Pudil’s floating search. Feature selection is an very

important problem for pattern classification systems. How to select good features

are very important to many data mining applications. However, we notice that the

current feature selection algorithms are far from perfect. Based on the concept of

minimum correlation and maximum relevance, we may proceed further to develop

new feature selection algorithms which could extract the most important features

embedded in a high dimensional space.

• Develop new time series distance measure based on the proposed time series seg-

mentation algorithm TSTD. A possible application is to facilitate the calculation
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of the current dynamic time warping (DTW) algorithms. A preliminary study of

the skeleton-based dynamic time warping (SDTW) algorithm is discussed in the

following subsection. More experiments are needed to evaluate the performance

and limitations of SDTW.
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