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Dissertation Director: Kristjan Haule

Strongly-correlated materials are a rich playground for physical phenomena, exhibiting

complex phase diagrams with many competing orders. Ab initio insights into materi-

als combined with physical ideas provide the ability to identify the organizing princi-

ples driving the correlated electronic behavior and pursue first-principles design of new

compounds. Realistic modeling of correlated materials is an active area of research,

especially with the recent merger of density functional theory (DFT) with dynamical

mean-field theory (DMFT).

This thesis is structured in two parts. The first describes the methods and algorith-

mic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide

an overview of the two foundational theories, DMFT and DFT. In the second half of

Ch. 3, we describe some of the principles guiding the combination of the two theories

to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern

DFT+DMFT implementations, the hybridization expansion formulation of continuous-

time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as

well as a fast rejection algorithm for speeding-up the local trace evaluation. The fi-

nal chapter in the methods section describes an algorithm for direct sampling of the

partition function, and thus the free energy and entropy, of simple Anderson impurity

models within CTQMC.
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The second part of the thesis is a collection of applications of our ab initio approach

to key correlated materials. We first apply our method to plutonium binary alloys

(Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to

understand the observed photoemission spectra. Ch. 7 describes the computation of

spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films.

In the final two chapters, we turn our attention to the high-temperature superconduc-

tors. In the first, we show that the charge-transfer energy is a key chemical variable

which controls the superconducting transition temperatures across the cuprate fami-

lies. In the second, we extend this idea towards first-principles design of cuprates by

exploring a new family of copper oxysulfides.
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Chapter 1

Introduction

Condensed matter physics seeks to elucidate the principles governing the quantum be-

havior of macroscopic numbers of interacting particles. The field traces its origins

to the early twentieth century with the application of foundational work on quantum

mechanics to solid state systems. The resulting theories explained the electronic and

vibrational properties of simple metals and insulators. The field, characterized by close

collaboration between theory and experiment, has grown to encompass a wide variety of

observed phenomena in solids and in liquids, including superconductivity, magnetism,

and topological order. Condensed matter physics has a record of fruitful interplay with

other branches of physics and mathematics. For example, the methods of quantum field

theory have become indispensible in condensed matter, while conversely, the Landau-

Ginzberg theory of phase transitions and the renormalization group have grown far

beyond their condensed matter origins. Experiment continues to pose new questions,

from the discovery of new families of superconductors to truly two-dimensional mate-

rials in the form of graphene. The breadth of systems and phenomena encompassed,

combined with the sheer quantity of open questions, guarantees that condensed matter

will continue to be one of the largest and most vigorous fields of physics in the near

future.

The theoretical side of condensed matter physics has been guided throughout its

development by the principles of emergence and symmetry. Emergence is the idea that

the behavior of 1023 particles may be very different from that of individual particles.

The Wave (Fig. 1.1) is one realization of this principle. A more pertinent example is
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Figure 1.1: The Wave, an emergent phenomena in large crowds. The Wave is best described
by a characteristic width and velocity, quantities which have little do with the underlying
individual particles. These particles in general are quite complex, yet only a few key properties
(the presence of arms and a long-ranged interaction in the form of eyesight) are necessary to
determine the macroscopic behavior of Waves.

that of plasmons, quantized oscillations in the density of electrons in a metal. These

longitudinal modes can be visualized as sound waves propagating through the sea of

electrons1, and strongly affect the optical properties of metals, in particular, determin-

ing the characteristic color of copper and gold. Whereas the constituent electrons are

fermions, characterized by spin S = 1/2, charge e and a fundamental mass me, the

emergent plasmons are bosons, with integer spin, no charge and a mass dependent on

the specific material under consideration. It turns out that in most metals, the con-

stituent electrons still dominate the low-energy behavior, coexisting with the higher

energy plasmons. However, in some systems, the emergent modes control even the low-

energy physics. For example, the application of strong magnetic fields perpendicular to

clean two-dimensional systems of electrons, like graphene [1, 2], produces the fractional

quantum hall effect. Here, the low-energy excitations observed in electrical resistivity

measurements are particles with fractional charge and anyonic statistics. The fact that

emergent excitations are not adiabatically connected to the bare underlying particles

renders their general identification and treatment particularly challenging.

In this quest to identify the low-energy excitations, we are guided by symmetry. In

condensed matter, symmetry is particularly crucial for constraining crystal structures,

1The analogy is not complete, as plasmons are gapped due to the long-ranged nature of the Coulomb
interaction, and exist in the collisionless limit.
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classifying states separated by phase transitions, and reducing the computational ef-

fort needed to perform simulations. For example, in approaching a new compound

containing transition metals, one of the first questions to ask is the site symmetry

of the transition metal ion. Straightforward application of group theory allows us to

deduce the degeneracies of the d-electron energy levels directly from the crystal struc-

ture. Combined with knowledge of the valence, we have a reference frame to build

our understanding of the magnetic properties of the material. If the electron spins in

the material indeed overcome thermal and quantum fluctuations to order in a regular

arrangement, identification of the symmetry of the order parameter is one of the key

goals. This piece of information tells us about the critical behavior near the phase tran-

sition where the order appears, as well as how big of a unit cell we need for numerical

simulation. Finally, symmetries of a different kind, those of the antisymmetric nature

of fermionic wavefunctions with respect to the interchange of any two particles, has

deep consequences on the formulation of algorithms used to simulate such systems.

This thesis focuses mainly on computational techniques for understanding and de-

signing strongly-correlated materials. We lay out the framework of this field via two

stories, the first describing the effect of electron correlations, and the second dealing

with the development of electronic structure methods.

The Strong-Correlations Story: For the majority of materials, the framework of

independent electrons moving in the periodic potential generated by the lattice nuclei

is sufficient to account for the majority of properties. Simple metals, band insulators

and some semiconductors, generally composed of materials with partially filled s or p

shells, fall under this umbrella of weakly-correlated materials. The electron wavefunc-

tions are itinerant, forming plane waves modulated by the crystal potential, known as

Bloch states. Even when the effects of the mutual Coulomb repulsion are included, the

electrons can still be treated as (nearly) independent particles because the large over-

lap between s and p orbitals at neighboring sites allows the kinetic energy to dominate.

The electrons use this energy to screen the Coulomb interaction, rendering the effective

interaction between them small. This mechanism, empirically described by Landau’s

Fermi liquid theory, is a cornerstone in the framework for describing weakly-correlated
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materials.

However, in materials containing partially-filled d or f -shells, the effect of the

Coulomb interaction between electrons cannot be ignored, and the movement of each

electron is strongly correlated with those of its neighbors. These orbitals have small

spatial extents as compared to the interatomic spacing and electrons cannot effectively

screen each other when spatially confined. Therefore, electrons in these localized or-

bitals imbue atomic-like behavior into the material, which otherwise could be described

by the Bloch states. The interplay between the itinerant, band-like character of the s

and p electrons with the localized, atomic-like character of the d and f electrons poses

a strong theoretical challenge, and is the hallmark of the field of strongly correlated

electrons.

In strongly correlated materials, the internal degrees of freedom of the localized

electrons—spin, charge, orbital—often order at low temperatures to form a myriad of

states. Small changes in an external parameter (pressure, magnetic field, chemical dop-

ing) tunes the system through these states, forming complex phase diagrams (Fig. 1.2).

This large sensitivity to external perturbations is characteristic of strongly-correlated

systems, forming the foundation of their technological utility.

In theoretical approaches, the simplest model of a strongly-correlated system is the

one-band Hubbard model:

H = −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓. (1.1)

There are two noncommuting terms. The first describes the kinetic energy, capturing

the itinerant band-like nature of the electrons. The second describes the potential

energy in the form of a local on-site repulsion when two electrons occupy a single site.

This crude model captures the fundamental tension between band and atomic physics,

yet remains a challenge to solve. A key property of this model is the presence of a

metal-insulator transition (MIT), which we can rationalize based on limiting cases. In

the extreme atomic limit (t = 0) the system is a collection of isolated atoms, and thus

an insulator. In the extreme band limit (U = 0), the electrons form Bloch states and

is a metal. As we tune the ratio U/t, there must exist a metal-insulator transition.
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Figure 1.2: (left) The phase diagram of a typical weak-correlated metal, copper [3]. There
are no phase transitions with the application of pressure. (right) In contrast, V2O3, a canonical
example of a strongly-correlated compound, exhibits three phases as a function of pressure and
temperature [4]. Of particular interest is the metal-insulator transition between a paramagnetic
metal and a paramagnetic insulator occuring above ∼ 200 K as a function of pressure. Original
data from Ref. [5]. Each tick on pressure scale is 4 kbar.

The exact nature of this transition (precise location in the U/t vs. T vs. doping

phase diagram, fate of spin entropy, presence of superconductivity) is an active area of

research [6].

Conventional perturbative treatments rely on small corrections to an appropri-

ately chosen reference system. Due to the interplay between band and atomic physics

in strongly-correlated systems, perturbative methods are inadequate, especially those

based upon an expansion about the noninteracting limit. One line of theoretical at-

tack rests on the observation that the main effect of the onsite Coulomb repulsion is

to reduce the prevalence of doubly-occupied sites, leading to the observed macroscopic

properties. Theoretical techniques designed to handle this suppression of the section

of Hilbert space containing doubly-occupied sites include the Gutzwiller variational

approach and slave bosons.

A orthogonal approach is taken by dynamical mean-field theory (DMFT). Histor-

ically, the formulation was taken in two steps. First, Metzner and Vollhardt [7] con-

sidered a novel limit to the Hubbard model, that of infinite lattice coordination. Each

site is imagined to have an infinite number of neighbors, a construction equivalent
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to taking the infinite-dimensional limit. In exchange for tractability, this step dis-

cards spatial fluctuations. In the second step, Georges and Kotliar [8] noticed that the

infinite-dimensional Hubbard model was equivalent to a self-consistent quantum impu-

rity model. Quantum impurity models describe set of local quantum states interacting

with a bath (a continuum of non-interacting degrees of freedom). A concrete example is

an iron atom embedded in a simple metal. Quantum impurity models are well-studied

systems for which there already existed an entire suite of theoretical tools. The major

advance of this second step is that all these theoretical tools could be brought to bear

on the lattice problem. The early successes of DMFT included providing a clear de-

scription of the metal-insulator transition in the Hubbard model [9] and the associated

spectral transfer observed in optical conductivity measurements of V2O3 [10].

The above classes of techniques are deterministic and work in the thermodynamic

limit. A different class of algorithms based on repeated random sampling, called Monte

Carlo methods after the Monte Carlo Casino in Monaco, simulate a large (but finite)

section of a system, and use extrapolation to reach the thermodynamic limit. These

have the advantage that arbitrary interactions can be included, but suffer from finite

size effects due to the need for system-size extrapolation and the notorious fermion

minus sign problem. Since Monte Carlo methods are based on probabilities, the nega-

tive regions in fermionic wavefunctions cause rapid loss of numerical precision. Thus,

while bosonic systems containing thousands of particles can be simulated, effectively

reaching the thermodynamic limit, the majority of interesting fermionic systems re-

main intractable to Monte Carlo methods. There are key exceptions, and Monte Carlo

algorithms for quantum impurity models constitute one important case, which finds

application as the impurity solver at the heart of the DMFT algorithms.

The above approachs to strongly-correlated systems have mainly focused on simpli-

fied models. The techniques for realistically modeling weakly-correlated materials were

historically developed during the same period, which we describe in the next section.

The First-Principles Story: First-principles modeling of materials has grown

enormously to become an industry in the past several decades. In this field, also known

as ab initio modeling, practitioners specify only the type and positions of the atoms
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forming the crystal lattice and compute macroscopic quantities without any adjustable

parameters. The exponential rise of computational power, but more importantly, huge

advances in algorithmic developments, have fueled the growth of this field. The annec-

dotal question in the field is, “Would you rather have the algorithms of today running

on the machines of 1970, or vice versa?” The answer is that algorithmic developments

have far surpassed the growth of computational power. 2

For realistic modeling of solid state systems, density functional theory (DFT) is

the method of choice, having been the workhorse of the first-principles community for

several decades. The method’s ability to capture the chemistry of weakly-correlated

compounds and compute total energies allows quantitative structural and electronic

insights inaccessible by other methods. The historical development of DFT proceeded

in two steps. The first, by Hohenberg and Kohn [11], showed that the ground state

energy could be rewritten entirely in terms of (a functional of) the electronic density

n(r). This provided the theoretical basis for the subsequent construction of a compu-

tational practical DFT, a step taken by Kohn and Sham [12]. They noticed that the

problem of finding a practical approximation to the ground state energy functional and

solving for the electronic density could be accomplished by a mapping to an auxiliary

noninteracting system of fermions.

The ultimate goal of the field of first-principles modeling is to be able to solve the

inverse problem of materials design: a material with a given set of properties is desired,

and first-principles calculations would predict which elements should be combined to

form the desired compound. Contrast this with the direct problem, that of predicting

materials properties given the atomic constituents. The direct problem is generically

divided into two steps, (1) structural determination of the crystal lattice given the

chosen elements, and (2) computation of the materials properties given the structure.

Step (2) is relatively easy for weakly-correlated materials due to DFT, but remains

difficult for strongly-correlated materials. Step (1) is even harder. The inverse problem

is the most challenging of all.

2I have not been able to determine the source of this annecdote.
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Materials design of strongly-correlated compounds is even more challenging histori-

cally due to the lack of controlled methods. In an effort to fill this gap, steps have been

taken in the past decade to combine the realism of DFT with the ability DMFT to

capture the effect of correlations. The resulting framework, termed DFT+DMFT, has

produced realistic descriptions of compounds in regimes where the effective interaction

is manifestly local, such as heavy fermions and the magnetic state of cuprates. One of

the key outputs of DFT+DMFT is the one-particle electronic spectra, which can be

directly compared to photoemission experiments.

The first-principles field is characterized by tight coupling between experimental

observations, theoretical ideas and numerical computations. This is especially true for

DFT+DMFT since comparisons with experiment can help uncover algorithmic limita-

tions. Prior to the advent of electronic-structure methods, the workflow could be best

described by a single stage:

qualitative ideas −→ materials synthesis. (1.2)

The advent of first-principles methods has streamlined the guidance theorists can pro-

vide experimentalists by inserting an intermediate step where promising candidate ma-

terials can be directly identified:

qualitative ideas −→ computational screening −→ materials synthesis. (1.3)

The community also constantly feeds information backwards to improve the first-

principles methods. Additionally, computation can uncover new qualitative ideas.

qualitative ideas←− computational screening←− materials synthesis. (1.4)

The ability to synthesize materials and devices on short timescales means that theoret-

ical ideas can be quickly tested, leading to fruitful calibration of ideas and algorithms.

This thesis focuses on electronic structure methods as applied to strongly-correlated

systems, and is divided into two parts. The first half describes the main methods used,

beginning with a general introduction to DMFT in Chap. 2. We then describe the

formulation, development and implementation of the combination of DFT and DMFT
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within the linearized augmented planewave formulism in Chap. 3. We conclude the

methods section by describing the hybridization-expansion continuous-time quantum

monte carlo algorithm for solving impurity problems, and reciprocal distribution sam-

pling for computation of free energies. The second half covers applications to several

families of materials: heavy fermions, nickelates, and cuprates.
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Chapter 2

Dynamical Mean-Field Theory

The dynamical mean-field theory (DMFT) approach to treating strongly-correlated

systems replaces a lattice model by a a single-site quantum impurity problem embedded

in a self-consistently determined effective medium [7, 8]. It is a mean-field theory

in that inter-site quantum correlations are approximated by an averaged or effective

interaction. However, local on-site quantum dyanmics, which describe the hopping of

electrons between the site and the surrounding medium, are retained, hence the name

dynamical mean-field theory. For a brief digest, see Ref. [13], while Refs. [14, 15, 16]

give more detailed expositions.

The electronic behavior of correlated systems is characterized by the competition

between the kinetic energy and the Coulomb interaction. DMFT is a non-perturbative

technique which retains this competition while simplifying the computation, and is

able to span the full range of behavior from the localized atomic limit to the itinerant

band limit. One of its key early successes was a description of the Mott transition, the

metal-insulator transition driven by strong electron-electron repulsion. The theory is

quite flexible: DMFT can also describe ordered states, such as magnetism, charge-order

and superconductivity, whenever the order parameter is essentially local. Short-ranged

interactions neglected in the vanilla (single-site) DMFT formalism, known to be impor-

tant in some materials like the underdoped regime of high-temperature superconductors,

can be included via extensions of the self-consistency condition by mapping the lattice

to a small cluster of impurities [17].

Formally, DMFT consists of treating the self-energy as a local quantity, that is,
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neglecting its momentum dependence. This approximation is exact in the infinite-

coordination limit of lattices. However, in many models and real materials, the inter-site

corrlations are small and the DMFT approximation remains extremely valid, capturing

the essential correlation-driven behavior.

In all but the simplest of models, DMFT is a computational method, since the

solution of the impurity problem for arbitrary densities and interactions is intractable

analytically (although analytic methods give valuable insight into the behavior of the

impurity). The DMFT self-consistency equation is nonlinear, and the preferred method

of solution is iterative: an initial guess for the self-energy, usually taken to be zero, is

used to construct the lattice Green’s function G(iωn). This is then mapped to an

effective impurity problem, whose form usually takes that of an Anderson impurity

model (AIM), which produces a new self-energy used to create the next lattice Green’s

function. The cycle is iterated until the self-energy is converged. The solution of

the AIM is the most time-consuming step. To give an idea of scale, the single-site

approximation for the simplest models require minutes on modern computers (year

2012), while large clusters for more complex models require a modest several-thousand

cpu-hours for reasonable results.

In the following, we introduce the idea of DMFT by analogy with the standard Ising

mean-field theory. We then provide two views of the derivation of DMFT: one based

on the cavity construction, and second based on effective actions.

2.1 Primer: Ising Mean-Field Theory

The mean-field approximation as applied in the context of lattice models consists of

replacing the lattice with a single-site interacting with an external bath created by the

degrees of freedom on all the other sites. The simplest illustration of this idea is the

mean-field theory of the Ising model:

H = −J
∑
〈i,j〉

SiSj − h
∑
i

Si. (2.1)

The mean-field approach singles out a given site, say the 0th site, and replaces its

interaction with its neighboring sites with an averaged (mean) field by decoupling the
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interaction term:

H0 = −J
∑
〈i,0〉

SiS0 − hS0 ≈ −
(
J
∑
i

〈Si〉+ h

)
S0. (2.2)

If we further make the assumption of translational invariance, and write for the mag-

netization of the neighboring sites m = mi = 〈Si〉, we see that the 0th site is governed

by an effective hamiltonian,

Heff
0 = −heffS0 heff = JZm+ h, (2.3)

where Z is the number of neighboring sites. The effective field heff depends on the

magnetization m which can be self-consistently computed from the local hamiltonian

Heff
0 by constructing the partition function and taking the derivative with respect to

the magnetic field. For the Ising model, we find m = 〈S〉 = tanh(βheff), which can

be combined with the definition of the effective hamiltonian (Eq. 2.3 to arrive at the

self-consistency condition for the magnetization:

m = tanh(βJZm+ βh). (2.4)

The lattice problem has been replaced by a self-consistently determined single-site prob-

lem. The mapping is exact when the lattice coordination becomes large: as the number

of nearest neighbors of a site becomes large, it is intuitive that they can be replaced

by their average effect since fluctuations scale inversely with the (square-root) of the

number of nearest-neighbors.

The straight-forward extension of this mean-field concept to a quantum system is

the basis of DMFT, which we describe in the following.

2.2 Cavity Construction

The idea of the cavity construction is simple: derive an effective action for a single

site by integrating out the degrees of freedom of all other lattice sites. The resultant

single-site problem is in general insoluble, so specific approximations are made to retain

the essential strongly-correlated physics while rendering the problem tractable.



13

We present the derivation for the simplest case of the one-band Hubbard model.

The starting point is the partition function, written in functional form:

Z =

∫ ∏
iσ

Dc†iσDciσ e
−S . (2.5)

Here, i indexes the lattice sites and σ is the fermion spin. The action contains the

standard hopping and onsite repulsion terms,

S =

∫ β

0
dτ

∑
ijσ

c†iσ(δij∂τ − tij)cjσ + U
∑
i

ni↑ni↓

 . (2.6)

Next, we partition the system into the site of interest, which we will call the 0th and use

the notation dσ = c0σ for its operators. The rest of the system, containing the cavity

created by the absence of the 0th site, is denoted by (0). The action splits into three

parts, one for each subsystem and a hybridization describing the coupling between the

two:

S = S0 + Shyb + S(0), (2.7)

where

S0 =

∫ β

0
dτ
[
d†σ∂τdσ + Und↑nd↓

]
(2.8)

Shyb = −
∫ β

0
dτ
∑
iσ

[
ti0c
†
iσdσ + h.c.

]
(2.9)

S(0) =

∫ β

0
dτ

∑
ijσ

c†iσ(δij∂τ − tij)cjσ + U
∑
i

ni↑ni↓

 . (2.10)

Here, it is understood the sums over i and j exclude the 0th site. With this decompo-

sition, we formally integrate out all of the lattice except the 0th site in the expression

for the partition function:

Z = Z(0)

∫ ∏
σ

Dd†σDdσ e
−S0

〈
e−Shyb

〉
(0)
. (2.11)

The notation 〈〉(0) means the average over the cavity action S(0) and Z(0) is the cavity

partition function. We use the linked-cluster theorem to move the average into the

exponential. The partition function becomes

Z =

∫ ∏
σ

Dd†σDdσ e
−Seff , (2.12)
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where the effective action is

Seff = βF(0) + S0 +
∞∑
n=1

∑
i1···in

∑
j1···jn

∫ β

0

n∏
a=1

dτiadτja

n∏
a=1

t0iatja0

× d†σ(τi1) · · · d†σ(τin)G
(0)
i1···jn(τi1 · · · τin ; τj1 · · · τjn) dσ(τjn) · · · dσ(τj1). (2.13)

The connected 2n-point cavity Green’s function is denoted G(0). Generally we can drop

the constant βF(0), where F(0) = −T logZ(0) is the cavity free energy. The effective

single-site problem we have derived, in principle, contains complete information of all

local observables, which we could extract by coupling source fields to the d†σ operators.

However, the problem is intractable because of the presence of the 2n-point cavity

correlators.

The DMFT approximation consists of dropping all terms in the effective action

beyond the first:

SDMFT
eff = S0 +

∑
ijσ

∫ β

0
dτ

∫ β

0
dτ ′ d†σ(τ)t0iG

(0)
ij (τ − τ ′)tj0dσ(τ ′) (2.14)

When is this approximation justified? Analysis of the scaling of the Green’s functions

with the number of nearest neighbors Z|i−j| at a Manhattan distance of |i−j| shows that

in the infinite coordination limit (i.e. infinite dimensional limit), this approximation is

exact [15].

We rewrite the action to emphasize the effective-field by grouping together all the

one-particle terms:

SDMFT
eff [G0] = −

∑
σ

∫ β

0
dτ

∫ β

0
dτ ′ d†σ(τ)G−1

0 (τ − τ ′)dσ(τ ′) +

∫ β

0
dτ Und↑nd↓ (2.15)

where we have defined

G−1
0 (τ) = − ∂

∂τ
−
∑
ij

t0iG
(0)
ij (τ)tj0. (2.16)

This equation defines the effective field G0 experienced by the site, which intuitively is

constructed of processes which hop off the site t0i, propagate in the lattice G
(0)
ij , and

return to the site tj0. The Green’s function G0 plays the analogous role of the effective

hamiltonian heff in the Ising mean-field treatment.
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The last step is to derive the self-consistency condition by relating the cavity Green’s

function G(0) to local quantities. The relation between the cavity and full Green’s

function G is

G
(0)
ij = Gij −

Gi0G0j

G00
. (2.17)

The idea is to subtract out the paths which pass through the 0th site from the full

propagator Gij . In the non-interacting case, these paths are given by Gi0G
−1
00 G0j where

the inserted factor G−1
00 ensures pathes which leave and and return to the intermediate

0th site are only counted once. In the presence of interactions, this expression is exact

only in the infinite-dimensional case, as first derived by Hubbard [18].

Inserting this relation into the expression for the effective field G, we must compute

the sum

G−1
0 = iωn −

∑
ij

t0iGijtj0 +

(∑
i

t0iGi0

)2

G−1
00 . (2.18)

Since we are working in the infinite-dimensional limit, the self-energy is local, an ap-

proximation which can be justified by power counting [15]. Since the self-energy is

local, that is, k-independent, the Fourier transform of the full Green’s function takes

the form

Gk =
1

ζ − εk
, ζ = iωn − Σ(iωn). (2.19)

Using this form of Gk, we can derive the following two identities by Fourier transforms:

∑
i

t0iGi0 =
∑
k

εkGk = ζG00 − 1 (2.20)

∑
ij

t0iGijtj0 =
∑
k

ε2kGk = ζ2G00 − ζ. (2.21)

Using these expressions, we get for the effective field

G0 = Σ +G−1
00 (2.22)

Now that we have an expression for G0, and thus the DMFT effective action, purely in

terms of local quantities, we can compute any local observable, in particular, the local

Green’s function G00, giving us the DMFT self-consistency condition

G00(iωn) =

∫
D[d†d] d†(iωn)d(iωn) e−S

DMFT
eff [G0]. (2.23)
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When combined with the definition of the local part of the lattice Green’s function,

G00(iωn) =
∑
k

1

iωn − εk − Σ(iωn)
, (2.24)

the three equations 2.22, 2.23 and 2.24 form a closed non-linear set of expressions

which can be solved for the local self-energy Σ(iωn). These equations are analgous

to the self-consistent equation determining the magnetization in the Ising mean-field

theory. Likewise, when given the band dispersion εk and the onsite repulsion U , solution

of the DMFT equation produces the self-energy Σ, or equivalently, the lattice Green’s

function Gk.

In practice, the self-consistency equation is solved iteratively. An initial guess for

the self-energy Σ(iωn) is chosen, usually taken to be zero for a new calculation, or the

result of a previous converged run if we know it is a good starting point. Then, the

algorithm proceeds by cycling through the following steps:

• Compute the local Green’s function given Σ:

G00(iωn) =
∑
k

1

iωn − εk − Σ(iωn)
, (2.25)

• Compute the effective field:

G−1
0 = G−1

00 + Σ (2.26)

• Solve the impurity model for the local Green’s function

G00(iωn) =

∫
D[d†d] d†(iωn)d(iωn) e−S

DMFT
eff [G0]. (2.27)

• Extract the new self-energy:

Σ = G−1
0 −G−1

00 (2.28)

• Iterate these steps until the distance between the self-energy at the n-th and

(n+ 1)-th steps is less than some threshold ε:

||Σn+1 − Σn|| < ε (2.29)
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Since the effective field G0 acts as the free part of the local impurity problem, we

often decompose it into its constituent onsite impurity level Eimp and a hybridization

function ∆(iωn) which accounts for the retarded quantum processes hopping electrons

from the impurity into the effective medium and back:

G0(iωn) =
1

iωn − Eimp −∆(iωn)
. (2.30)

The hybridization is defined such that ∆(iωn →∞) = 0 so that the static component is

captured in Eimp. The full impurity Green’s function G is the solution to the impurity

problem,

G(iωn) =

∫
D[d†d] d†(iωn)d(iωn) e−S

DMFT
eff [G0], (2.31)

which must equal the local part of the lattice Green’s function G00,

1

iωn − Eimp −∆− Σ
=
∑
k

1

iωn + µ− εk − Σ
. (2.32)

These three equations form an alternative way of writing the DMFT self-consistency

condition, and we will use both in the following chapters.

2.3 Functional Approach

The effective action formalism is an elegant method for presenting a unified description

of various approaches to the many-body problem. The basic idea is to choose an

observable A and construct a functional Γ[A] which (a) is extremized at the true A of

the sytem, and (b) gives the free energy F when evaluated at its extremum (see Fig. 2.1).

The construction of Γ relies on Legendre transforms and the utility of this formalism

lies in the ability to write Γ as a perturbation series in the interaction strength. When

the observable A is chosen to be the Green’s function G, the functional Γ is called the

Baym-Kadanoff functional. DMFT arises from choosing specific approximations to the

full Baym-Kadanoff functional. In the following, we first derive the Baym-Kadanoff

functional, then describe the DMFT approximation.

We begin with the free energy written in functional form:

e−βF =

∫
D[ψ†ψ] e−S . (2.33)
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Figure 2.1: (a) The free energy F = F [G], viewed as a functional of the Green’s function
G, is not stationary at the physical value G∗. (b) In contrast, the Baym-Kadanoff functional
Γ = Γ[G] is stationary at G∗ (in this case minimized), and has the value of the physical free
energy Γ[G∗] = F ∗ at its stationary point.

The observable of interest is the operator ψ†(rτ)ψ(r′τ ′), which produces the Green’s

function

G(r′τ ′; rτ) = −
〈
Tτψ(r′τ ′)ψ†(rτ)

〉
(2.34)

as its expectation value. We modify the action by adding a source term

e−βF =

∫
D[ψ†ψ] exp

(
−S −

∫
drdτdr′dτ ′ ψ†(rτ)J(rτ, r′τ ′)ψ(r′τ ′)

)
, (2.35)

so that the functional derivative of the free energy with respect to the source field J

gives us the Green’s function in the presence of the source field

δF [J ]

δJ
= G[J ]. (2.36)

The physical Green’s function G∗ is obtained by evaluating the above equation at J = 0,

and the physical free energy is likewise F ∗ = F [J = 0].

The idea of the Legendre transform is to consider the Green’s function G as the

independent variable rather than J , which is done by inverting this equation to obtain

J = J [G], which has the property that J [G∗] = 0. Substituting this into the free energy,

we get F = F [J [G]], which is shown in Fig. 2.1a. Finally, we form the Baym-Kadanoff

functional via the Legendre transform

Γ[G] = F [J [G]]− tr J [G]G. (2.37)

We prove that Γ[G] is extremized at the physical G∗ by using the chain rule:

δΓ[G]

δG
=
δF

δJ

δJ

δG
− δJ

δG
G− J = −J [G]. (2.38)
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Since J [G∗] = 0, we find that

δΓ

δG

∣∣∣∣
G∗

= 0, (2.39)

so Γ[G] is extremized at the physical Green’s function, and its value

Γ[G∗] = F [J [G∗] = 0] = F ∗ (2.40)

is the physical free energy.

With these preliminaries, we first construct the Baym-Kadanoff functional for a

hamiltonian without interactions, which we denote Γ0[G]. Since the action is quadratic,

we can explicitly write down the free energy

F0[J ] = − tr log(−G−1
0 + J), (2.41)

where G0 is the non-interacting Green’s function, a fixed input parameter. Following

the steps outlined above, the Green’s function in the presence of the source field is

G[J ] =
δF0[J ]

δJ
=

1

G−1
0 − J

, (2.42)

which we invert to obtain J0[G] = G−1
0 −G−1. We note that if we evaluate the expression

for the source field J0 of the noninteracting system using the physical Green’s function

G∗ for the interacting system, we get the physical self-energy of the interacting system,

since Σ∗ = G−1
0 − (G∗)−1 is the just Dyson’s equation. Using the expression for J0[G],

we arrive at the result for the noninteracting Baym-Kadanoff functional

Γ0[G] = − tr log(−G−1)− tr J0[G]G (2.43)

J0[G] = G−1
0 −G−1. (2.44)

It can be checked that the functional has the correct stationary properties.

In the presence of interactions, the Baym-Kadanoff is shifted from its free form by

additional terms which we denote Φ[G]:

Γ[G] = Γ0[G] + Φ[G]. (2.45)

Our goal is to determine Φ[G], called the Luttinger-Ward functional. To this end, we

use the fact that Γ[G] must be stationary at the physical Green’s function G∗ of the
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interacting system:

δΓ[G]

δG

∣∣∣∣
G∗

= G−1 −GδJ0[G]

δG
− J0[G] +

δΦ[G]

δG

∣∣∣∣
G∗

= 0 (2.46)

The first two terms cancel, and we get an equation which the Luttinger-Ward functional

must satisfy at the stationary point:

δΦ[G]

δG

∣∣∣∣
G∗

= Σ∗. (2.47)

This equation offers a simple diagrammatic recipe: construct Φ[G] by summing all two-

particle irreducible skeleton graphs. The the functional derivative amounts to opening

one (interacting) Green’s function line, and the self-energy is defined as the sum of all

one-particle irreducible diagrams, so Φ[G] must contain two-particle irreducible quan-

tities. The complication of skeleton graphs arises because the derivative is with respect

to G and not G0 [19, 20].

To summarize, the Baym-Kadanoff functional for a general interacting system char-

acterized by a noninteracting Green’s function G0 is

Γ[G] = − tr log(−G−1)− tr J0[G]G+ Φ[G] (2.48)

J0[G] = G−1
0 −G−1, (2.49)

where the Luttinger-Ward functional Φ[G] captures the effect of interactions, and is

the sum of all two-particle irreducible skeleton diagrams. The stationary point of the

functional is the physical Green’s function G∗ and its value Γ[G∗] = F ∗ is the free

energy.

In this functional framework, he DMFT approximation is simple to state: include

only local diagrams in Φ[G]. Technically, this means

δΦDMFT[G]

δGij
= 0 for i 6= j, (2.50)

where i and j index lattice sites. This implies the self-energy is local, which is an

equivalent statement of the DMFT approximation:

ΣDMFT
ij = δij

δΦDMFT[G]

δGii
(2.51)
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Furthermore, if we have a translationally invariant system, we construct ΦDMFT[G] such

that the self-energy is independent of the lattice site i. An advantage of the functional

formalism is that there is no need to appeal to the infinite-dimensional limit since it is

clear which diagrammatic contributions are discarded.

Practical construction of the DMFT Luttinger-Ward functional requires mapping

the lattice to an impurity problem, whose Green’s function we denote G. The impurity

problem is described by the functional

Γimp[G] = − tr log(−G−1)− tr J0[G]G + Φimp[G] (2.52)

J0[G] = G−1
0 − G−1 (2.53)

If we choose G−1
0 so that the solution of the impurity problem G = Gii of the lattice,

then the impurity self-energy equals the DMFT approximation to the lattice self-energy.

2.4 Impurity Solvers

We conclude with a brief discussion of various impurity solvers used to solve the auxil-

iary Anderson impurity model. The earliest solvers were based on iterated perturbation

theory (IPT), a scheme based on solving the impurity problem perturbatively by ex-

panding in the interaction U up to second-order. In the half-filled case, IPT successfully

captured the Mott transition (see Appendix E for details).

However, DMFT on all but the simplest lattices and at arbitrary points in the

temperature-doping phase diagram requires impurity solvers capable of handling more

complex atomic interactions (including Hund’s coupling) and arbitrary hybridization

functions. Methods based on the Bethe ansatz, while exact, are constrained to linear

bath dispersions and the Kondo regime [21]. Slave boson techniques [22, 23, 24] give

valuable physical insight but again are applicable in limited regimes and display an

unphysical phase transition due to boson condensation.

Computational methods based on resummation of salient classes of diagrams in-

creased the flexibility of the impurity solver. In particular, those based on the non-

crossing approximation (NCA) and one-crossing approximation (OCA) allowed access

to physics of realistic models, but the approximations still lead to a slight noncausality
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in the DMFT equations. Exact diagonalization (ED) and the numerical renormalization

group (NRG) can be used to access extremely low temperatures.

The modern impurity solvers of choice are those based on quantum Monte Carlo

(QMC). The Hirsch-Fye algorithm [25], which mapped the Anderson impurity model to

a set of auxiliary Ising spin, was the first widely used QMC impurity solver. The formu-

lation of continuous-time quantum monte carlo algorithms (CTQMC) [26, 27, 28, 29, 30]

allowed DMFT to be applied to systems with realistic atomic interactions, access short-

ranged spatial fluctuations via clusters, and probe lower temperatures regimes and

stronger interaction strengths. The major advantage of QMC algorithms are their abil-

ity to solve the impurity problem exactly, the trade-off being that the output self-energy

is given on the imaginary axis, requiring a procedure known as analytic continuation to

extract real-axis quantities. Additionally, in some regimes, the fermionic sign problem

forbids the application of QMC due to an exponential loss in accuracy. In Chapter 4,

we describe the hybridization-expansion formulation of CTQMC used for the majority

of this work.
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Chapter 3

DFT+DMFT

There is enormous interest in extending the DMFT treatment of simple models to

realistic correlated materials. Density functional theory (DFT) is the standard method

routinely used to model weakly-correlated compounds. The idea of DFT+DMFT is to

combine the strengths of each method: DFT is used to capture the physics of the weakly-

correlated s and p bands, while DMFT describes the physics of the strongly-correlated

d and f orbitals. The challenge is to merge the two theories in a self-consistent manner.

The combination of DFT+DMFT is currently considered the most powerful and

practical method for ab initio modeling of correlated materials. Our implementation

is able to describe heavy quasiparticles in renormalized metals, the paramagnetic Mott

state, as well as magnetically- and charge-ordered states in compounds. The method

produces spectral functions which can be directly compared to experimental techniques

such as photoemission and optics. We have coded an implementation of DFT+DMFT

using full-potential basis sets, as described in Ref. [31], to which we refer the reader

interested in details. In this chapter, we describe the formal structure of DFT, followed

by the author’s contributions towards its implementation in full-potential basis sets.

In particular, we we address the challenge of applying the principle of locality for

identifying correlated subspaces within a material, within which DMFT is used to

provide an accurate description of correlations.
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3.1 Density Functional Theory

Density functional theory is one of the foundational techniques used by physicists and

chemists to realistically model quantum mechanical systems. The approach is often

called first-principles or ab initio because no free parameters are needed beyond the

specification of the nuclear locations and atomic numbers. DFT can be implemented

both in real space to describe isolated molecules, and in momentum space for crystal

lattices. The key output of DFT is insight into the ground state (zero temperature)

properties, including the charge density, equilibrium structure, binding energies, and in

the case of weakly-correlated materials, reasonable bandstructures and band gaps. The

reason for DFTs enormous impact lies in its low computational effort: results for simple

materials can be obtained on a modern laptop in under an hour and for complicated

structures in a few days on a moderately-sized computer cluster of a hundred CPUs.

In this section on DFT, we briefly describe its theoretical foundations as first derived

by Hohenberg and Kohn [11], and Kohn and Sham [12]. We start from the “standard

model” of solid state physics, describing a (nonrelativistic) lattice of nuclei and their

associated electrons:

H = − ~2

2me

∑
i

∇2
i −

~2

2MI

∑
I

∇2
I

+
1

2

∑
i 6=j

e2

|ri − rj |
+
∑
i,I

e2ZI
|ri −RI |

+
1

2

∑
I 6=J

e2ZIZJ
|ri − rj |

,

(3.1)

where me and ri are the mass and position of the i-th electron, and MI , ZI and RI are

the mass, atomic number and position of the I-th nucleus. The first two terms describe

the electronic and nuclear kinetic energies, while the last three describe the Coulomb

interaction between the particles.

Since the nuclear masses are at least three orders of magnitude larger than the

electron mass, we can first hold the nuclei fixed and the electrons quantum mechanically,

then compute the quantum mechanical motion of the nuclei in the effective potential

generated by the electrons. This two-step technique is called the Born-Oppenheimer

approximation. In electronic structure calculations with DFT, we only consider the first
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step, which simply means removing the nuclear kinetic energy from the hamiltonian:

H = − ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj |
+
∑
i

Vext(ri) + Eion (3.2)

where Eion is the constant term arising from the inter-nuclei Coulomb repulsion and

Vext(r) =
∑
I

e2ZI
|r−RI |

(3.3)

is the external potential created by the nuclei.

The brute force route would be to solve the Schrödinger equation H|Ψ〉 = E|Ψ〉

for the many-body wavefunction |Ψ〉, an enormously difficult task. Hohenberg and

Kohn [11] proposed a new point of view: instead of the wavefunction Ψ, use the charge

density

n(r) = 〈Ψ|ψ†(r)ψ(r)|Ψ〉 (3.4)

as the basic variable. The reduction in complexity is drastic: instead of working with

a 3N -dimensional object, we can manipulate just the 3-dimensional density function.

Hohenberg and Kohn proved two basic theorems which create the foundation for DFT.

In what has become known as the Hohenberg-Kohn theorem, they showed that the

many-body ground state |Ψ〉 is uniquely determined by n(r), and vice versa. The proof

proceeds by contradiction. Assume that two external potentials Vext(r) and V ′ext(r),

when plugged into the Schrödinger equation, give the same charge density n(r). Label

the two hamiltonians constructed from the two external potentials by H and H ′, the

corresponding ground states |Ψ〉 and |Ψ′〉, and their energies E and E′. Let us construct

an inequality between the two energies:

E′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H + V ′ext − Vext|Ψ〉. (3.5)

The inequality holds because |Ψ〉 is not the ground state of H ′. Thus we have the

relation

E′ < E +

∫
dr (V ′ext(r)− Vext(r))n(r) (3.6)

between the two energies. Exchanging the primes in the above derivation, we get

E < E′ +

∫
dr (Vext(r)− V ′ext(r))n(r), (3.7)
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since we assumed that n(r) and n′(r) were equal. Adding these two equations, we arrive

at a contradiction:

E + E′ < E + E′. (3.8)

Thus the charge density n(r) uniquely determines the potential Vext(r), and thus the

many-body ground state |Ψ〉. The converse is simple, since Eq. 3.4 uniquely prescribes

how the density is related to the wavefunction.

Hohenberg and Kohn proved a second, variational principle. It states that there

exists a universal functional F [n] of the charge density such that the functional

E[n] = F [n] +

∫
drn(r)Vext(r) + Eion, (3.9)

for fixed particle number, is minimized for the ground state density, and takes on the

value of the ground state energy at the minimum. The proof proceeds by construction.

Since the ground state wavefunction is a functional of the density |Ψ〉 = |Ψ[n]〉, we

define the functional

F [n] = − ~2

2me

∑
i

〈Ψ[n]|∇2
i |Ψ[n]〉+

1

2

∑
i 6=j
〈Ψ[n]| e2

|ri − rj |
|Ψ[n]〉. (3.10)

This functional is clearly independent of Vext, and thus is a fundamental property of

the interacting electron fluid, capturing the kinetic and Coulomb potential energies.

The functional E[n] defined above is just the expectational value of the Hamiltonian

in the state |Ψ〉, and since |Ψ〉 is uniquely determined by the density n(r) due to the

Hohenberg-Kohn theorem, E[n] is minimized at the ground state density and takes on

the value of the ground state energy at its minimum. The expression of the ground

state energy as a functional of the charge density gives DFT its name.

If a sufficiently simple expression for F [n] were known, the problem of determining

the ground state energy and density in a given external potential would be easy, since it

only requires the minimization of a functional of the 3-dimensional density function. We

can write an explicit expression for one contribution to F [n]: the Hartree component

of the Coulomb energy

F [n] =
e2

2

∫
drdr′

n(r)n(r′)

|r− r′| +G[n] (3.11)
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Here G[n] describes the kinetic energy and the portion of the potential energy not

captured by the Hartree term. Finding a good expression for G[n] is a challenge.

The current, practical implementations of DFT owe their existence to Kohn and

Sham [12], who proposed the following expression:

G[n] = Ts[n] + Exc[n], (3.12)

where Ts[n] is the kinetic energy of an auxiliary system of noninteracting electrons

with density n(r) and Exc[n] is the exchange and correlation energies of an interacting

system with density n(r). Furthermore, they proposed to approximate Exc[n] by the

expression

Exc[n] =

∫
drn(r)εxc(n(r)), (3.13)

where εxc(n) is the exchange and correlation energy per electron. The key physical

assumption is that the exchange and correlation energies can be well-approximated to be

local, depending on the charge density at only one point in space. 1 Usually, the function

εxc(n) is computed once for a uniform electron gas for a range of densities n using many-

body techniques, e.g. quantum monte carlo [32], then appled in each DFT calculation.

Kohn and Sham’s form for Exc[n] is called the local density approximation (LDA),

a term which has become synonymous with DFT in colloquial usage. LDA produces

unphysical results in strongly-correlated systems, and we discuss a more appropriate

approximation in Section 3.3.

To understand more explicitly how the auxiliary noninteracting electrons are intro-

duced to represent the kinetic energy, consider the hamiltonian for N noninteracting

particles,

H =
N∑
i

[
− ~2

2me
∇2
i + VKS(ri)

]
, (3.14)

where the Kohn-Sham potential VKS(r) will be specified later. To find the ground state

density, we solve for the N lowest single-particle eigenstates |φi〉 and eigenenergies εi

via the Kohn-Sham Schrödinger equation,[
− ~2

2me
∇2 + VKS(r)

]
|φi〉 = εi|φi〉, (3.15)

1For example, a non-local density approximation would be Exc[n] =
∫
drdr′ n(r)K(r, r′)n(r′), for

some function K(r, r′).
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and form the sum of these N lowest eigenstates

n(r) =
N∑
i=1

|φi(r)|2. (3.16)

The assumption that the many-body ground state density could be represented by the

sum of noninteracting eigenstates lacks rigorous proof, but works well in practice. Now

that the system is represented both as a set of Kohn-Sham states |φi〉 and as a density

n(r), we can evaluate the kinetic energy term in the functional G[n] via the standard

expression

Ts[n] = − ~2

2me

N∑
i=1

∫
drφ∗i (r)∇2φi(r), (3.17)

which is much simpler than attempting to find an expression in terms of the density,

even though it is guaranteed to exist. 2

How is VKS chosen so that the solution of the Kohn-Sham Schrödinger equation

gives the ground state density and energy derived from the functional approach of

Hohenberg and Kohn? To derive the result, we use the stationary property of E[n].

Since the density is represented in terms of the Kohn-Sham states, we use the chain

rule and vary the functional against (the conjugate) φ∗i (r):

0 =
δ

δφ∗i

E[n]−
N∑
j=1

εj(φ
∗
jφj − 1)

 , (3.18)

where we fix normalization of the states φi via a Lagrange multipliers εi. Doing the al-

gebra, we obtain precisely the Kohn-Sham equation 3.14 with the Kohn-Sham potential

given by

VKS(r) = Vext(r) +

∫
dr′

e2

|r− r′|n(r′) + Vxc(r), (3.19)

where the LDA exchange-correlation potential is

Vxc(r) =
d(n(r)εxc(n(r)))

dn(r)
(3.20)

The reformulation in terms of an auxiliary Schrödinger equation and the local density

approximation are the two key contributions of the Kohn-Sham paper which trans-

formed DFT into practical computational tool. Computationally, the minimization of

2See, for example, the Thomas-Fermi approximation.
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the functional E[n] has been replaced by the simpler and standard task of solving an

eigenvalue problem. Since the Kohn-Sham potential VKS depends on the density, the

equation is nonlinear and the solution is found iteratively. A trial density n0(r) is cho-

sen and used to construct the potential VKS. The eigenvalue equation is solved for the

eigenstates |φi〉, from which a new density n1(r) is constructed. The process is iterated

until the charge difference falls below a chosen threshold. From the converged results,

the ground state energy is computed via

E =
∑
i

εi −
e2

2

∫
drdr′

n(r)n(r′)

|r− r′| + Exc[n]−
∫
drn(r)Vxc(r), (3.21)

which is derived by multiplying the Kohn-Sham equation 3.14 from the left by 〈φi| and

summing over i.

It is important to note that the Kohn-Sham eigenvalues εi and eigenstates |φi〉,

in principle, are not physical. They were introduced only as a practical method for

representing the kinetic energy and to allow for simple approximations to Exc. This

point demonstrated even more clearly by the fact that the energy is not simply the

sum of the eigenvalues εi, but must be evaluated via Eq. 3.21. However, for weakly-

correlated system, the Kohn-Sham energies are a good representation of the actual

electronic bandstructure which compares well with experiment.

3.2 Full-Potential Methods

We seek to find a DFT implementation of high accuracy as a starting point to build

our DFT+DMFT implementation. When the DFT formalism is applied to crystals, the

lattice potentials, charge density and Kohn-Sham states must be represented on some

discrete mesh in some chosen basis so that the computer can diagonalize the matrix

constructed. The goal is to choose a basis which captures as much structure with as

few mesh points possible. One popular basis is planewaves. The Kohn-Sham equations

are mathematically simple to formulate in this basis, but they are not very efficient for

describing the rapid spatial variation of potentials, densities and wavefunctions near the

atomic nuclei, requiring a huge number of basis states. Pseudopotential methods have

alleviated this problem [33, 34], but the challenge of generating good pseudopotentials,
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especially for the f -shell elements crucial for strongly-correlated physics, renders this

technique less than ideal for DFT+DMFT.

Let us enumerate the various choices of bases in a crystal characterized by discrete

translational symmetry. Two obvious bases are Bloch states |nk〉, and planewaves,

which we write as |kK〉 where k runs over the first Brillouin zone and the discrete K

runs over multiples of the reciprocal lattice vectors. The dual to the planewave basis is

the real space basis |Rr〉, where r runs over the first unit cell and R is discrete and runs

over multiples of the real-space lattice vectors. In the augmented planewave family of

methods, which we will introduce shortly, we define spherical volumes of space called

muffin-tins around each atom in the unit cell, which we will index by τ . If we wish to

faithfully represent only the Hilbert space contined within the MTs, we can replace r

with the set of indices (τκlm) which we will call the DMFT basis. Conceptually, we

imagine a new basis within the τ -th MT, defined in terms of the spherical harmonics

(lm) and some complete set of radial functions indexed by κ:

〈r|Rτκlm〉 = uτκl (rτ )Ylm(r̂τ ) (3.22)

Here rτ = r − ~τ is the position vector inside the τ -th MT sphere. Thus, we have the

following list of equivalent basis sets spanning the Hilbert space within the MTs:

|nkσ〉 ↔ |kKσ〉 ↔ |Rrσ〉 ↔ |Rτκlmσ〉, (3.23)

where we have reintroduced spin. For notational convenience, we define an aggregate

orbital index L ≡ (lmσ) and a single crystal-wide index α ≡ (Rτ) for all MTs, so the

DMFT basis is written |ακL〉.

The DMFT basis is not orthonormal. This fact originates from the radial functions

uτκl are often neither orthogonal nor normalized in the κ subspace. In Appendix A,

we describe in more detail the standard issues and establish the notation we use to

represent nonorthonormal bases. For example, unity in the DMFT basis is

1 =
∑
ακL

|ακL〉〈ακ̄L|, (3.24)

where the bar denotes the dual basis.
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For our DFT+DMFT implementation, we chose to build off of a DFT code written

in the augmented planewave (APW) basis (for an invaluable introduction and technical

details, see Ref. [35]). This method is one of the most accurate types of DFT, as no

approximations are made to the lattice potential near the atomic nuclei, hence the

term “full-potential”. The APW methods are capable of accurately describing the

rapid variations of wavefunctions near the nuclei as well as relativistic effects (spin-

orbit physics) which dominate the behavior of the late d-shell and f -shell elements. In

the APW formalism, the space within the crystal is partitioned into muffin-tins (MTs)

centered about the atomic nuclei, and the interstitials comprised of the space between

the muffin-tins. The size of the muffin-tins are specified by an input parameter, the

muffin-tin radius RMT, chosen so that the MTs of different atoms do not overlap.

The idea of the APW basis is to match the basis set to the spatial structure of the

wavefunction. In the interstitials, where the lattice potential varies slowly, planewaves

are a good choice. Near the atomic nuclei, the strong effect of the nuclear Coulomb po-

tential causes the wavefunctions to behave like the solutions of the atomic Schrödinger

equation, so we “augment” the plane waves and use spherical harmonics and radial solu-

tions to the Schroödinger equation as a basis within the MTs. Matching the planewaves

to the atomic-like basis at the MT boundary is accomplished by the formula for ex-

panding planewaves in terms of spherical harmonics

eikr = 4π
∑
L

iljl(kr)Y
∗
L (k̂)YL(r̂), (3.25)

where jl are the spherical Bessel functions. With this motivation in mind, the APW

basis states are written

χk+K(r) =


ei(k+K)·r r 6∈ Sτ∑
κL

AτκLk+Ku
τκ
l (rτ )YL(r̂τ ) r ∈ Sτ

(3.26)

where Sτ denotes the volume of space contained in the muffin-tin around the τ -th atom,

and rτ = r− ~τ is the coordinate vector with its origin at the τ -th atom. Here, YL are

the spherical harmonics and uτκl are radial functions, which are generally chosen to

be the regular solutions to the atomic Schrödinger equation at a chosen energies Eτκl



32

within the MT. The coefficients AτκLk+K are fixed by the requirement that the interstitial

planewaves smoothly match the atomic-like basis via Eq. 3.25:

AτκLk+K =
4π

uτκl (RτMT)
jl(|k + K|RτMT)Y ∗L (k̂ + K) (3.27)

We note that the APW basis transforms like planewaves under crystal symmetries.

When we diagonalize the Kohn-Sham equation, the resulting Kohn-Sham eigenstates

ψnk(r) are superpositions of the basis functions

ψnk(r) =
∑
K

CK
nkχk+K(r) =


unk(r)eik·r r 6∈ Sτ∑
κL

AτκLnk uτκl (rτ )YL(r̂τ ) r ∈ Sτ
(3.28)

Here, we have defined

unk(r) =
∑
K

CK
nke

iK·r (3.29)

AτκLnk =
∑
K

AτκLk+KC
K
nk (3.30)

With these definitions, we can write explicitly several key physical quantities. The

Kohn-Sham Green’s function is

Ĝ(ω) =
∑
nkσ

|nkσ〉 1

ω + µ− εnkσ
〈nkσ|. (3.31)

The density of states is

ρ(ω) = − 1

π
Im tr Ĝ(ω) =

∑
nkσ

δ(ω + µ− εnkσ). (3.32)

Projections onto a subspace, for example the projection onto a given orbital L in the

α-th MT sphere, can be written

PαL =
∑
κ

|ακL〉〈ακ̄L|. (3.33)

Then, the (partial) Green’s function in this subspace is simply ĜαL(ω) = PαLĜ(ω)PαL

and the partial density of states is

ραL(ω) = − 1

π
Im trPαLĜ(ω)PαL (3.34)

=
∑
κ

∑
nkσ

〈ακ̄L|nkσ〉δ(ω + µ− εnkσ)〈nkσ|ακL〉. (3.35)
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The matrix elements appearing in the density of states often recur so we introduce

the following notation for them:

Aακ̄Lnkσ = 〈ακ̄L|nkσ〉 or equivalently |nkσ〉 =
∑
ακL

Aακ̄Lnkσ |ακL〉. (3.36)

For example, with this notation, the partial density of states becomes

ραL(ω) =
∑
κ

∑
nkσ

Aακ̄LnkσA
∗ακL
nkσ δ(ω + µ− εnkσ) (3.37)

=
∑
κκ′

∑
nkσ

Aακ̄LnkσA
∗ακ̄′L
nkσ 〈uακ

′
l |uακl 〉δ(ω + µ− εnkσ). (3.38)

Generally, if we want to write the matrix elements exclusively in either the original or

the dual basis, we will get factors of the overlap S ∼ 〈uακ′l |uακl 〉.

3.3 The Locality Principle: Projection and Embedding

The main conceptual challenge to combining DFT with DMFT lies in the delineation

of the correlated subspace, a hurdle which does not exist in the application of DMFT to

model hamiltonians. We seek to use DMFT to model the effect of strong-correlations

within the localized d and f orbitals. However, in a real material, the d and f orbitals

are embedded in a medium composed of the weakly-correlated s and p shells, and

electrons freely hop between the two subspaces due to orbital overlaps. In fact, formally

it makes no sense to speak of s-p-d-f orbitals because these concepts are only well-

defined in systems with continuous rotational symmetry, like an isolated atom. How

should we partition the Hilbert space into a weakly-correlated subspace and a strongly-

correlated subspace, to which we apply DMFT?

The principle which underlies the local density approximation and DFT+DMFT is

locality. In weakly-correlated materials, Coulomb interaction is strongly screened and

the behavior of electrons at two different points in space are essentially uncorrelated.

LDA exploits this fact and approximates the dependence of the exchange and correlation

energies on the charge density as completely local in space. In strongly-correlated

materials, the behavior of electrons in the weakly-correlated s and p bands are still well-

described by LDA. However, embedded in this weakly-correlated medium are regions
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of electronic density where the electrons cannot be treated as independent particles.

A simple concrete example is the d-shells in the oxide V2O3: disturbing the density

at one spatial point of a d-orbital strongly perturbs the electrons in the rest of the

d-orbital. We envision this d-orbital as the fundamental correlated local object in the

material V2O3. The local correlated objects need not correspond to the atomic orbital:

in materials where atoms dimerize, for example VO2, the fundamental object is a pair

of atoms. In molecules, the molecular orbitals constitute the correlated objects. In

summary, the spatially pointwise locality of LDA is replaced by locality of discrete

correlated subspaces.

Implementations of LDA+DMFT must provide tools for identifying these local cor-

related objects. Once identified, DMFT is used to treat the interactions in the subspace

spanned by these local objects, and it does so exactly since QMC methods sum up all

local diagrams. The remaining weakly-correlated subspace is treated with DFT. In ap-

plications of DMFT to crystalline solids, current implementations identify atomic-like

orbitals of the d or f elements as the local correlated objects, but we stress the concept

of locality is general.

In addition to locality, an implementation of DFT+DMFT must specify the form

of the interactions within the local correlated subspace. In a correlated material, the

Coulomb interaction within the identified local orbitals, while strong, are screened by

the weakly-correlated s and p bands. Choosing atomic-like orbitals allows us to use

intuition from atomic physics to specify a reasonable form of the Coulomb interaction

via renormalized Slater integrals. In practice, we renormalize F 2, F 4 and F 6 by about

30%, and F 0 is strongly screened, and can be computed, for example, via constrained

LDA [36]. The concepts and algorithms for computing the interaction strength within

correlated subspaces remain under active development [37, 38].

DMFT solves a local impurity problem, defined through the self-consistency condi-

tion

Ĝimp(ω) =
∑
LL′

|L〉
(

1

ω − Eimp −∆− Σ

)
LL′
〈L′| = P̂ Ĝ(ω). (3.39)

The states |L〉 span the space of the local correlated object which has been mapped
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to an impurity problem. The operator P̂ implements the projection of the correlated

electron subspace Gimp out from the full lattice Green’s function G:

Gimp = P̂G. (3.40)

The reverse operation Ê of inserting the local time-dependent self-energy Σimp, the

result of the DMFT solution of the local impurity problem, back into the lattice to give

the lattice self-energy Σ is called embedding :

Σ = ÊΣimp. (3.41)

The various DFT+DMFT implementations differ not only in the choice of local states,

but also in the choice of the projection-embedding step.

Projection and embedding connect the atomic physics with the solid state physics.

DFT+DMFT effectively creates a translation table between atomic physics and the

lattice. For example, if the impurity solution exhibits a Kondo peak, this implies the

presence of heavy quasiparticles in the lattice. If original DFT solution was metallic,

but the solution of the DFT+DMFT impurity problem is gapped, then we have a Mott

insulator. Finally, if the impurity acquires a magnetic moment, this implies long-ranged

magnetic order in the lattice. The solution of the impurity problem is strongly depen-

dent on its valence, which is controlled by the quantity of charge defined as correlated

in the projection step. Thus, one stringent check of the physical reasonableness of

a projection-embedding scheme is to examine the valence of the solution, which can

be compared against experiment (for example, X-ray absorption spectroscopy). The

chosen projector must map to the correct Anderson impurity model!

Various choices of orbitals spanning the correlated subspace have been proposed

in the literature, including tight-binding LMTO’s [39, 40], non-orthogonal LMTO’s

[41], Nth-order Muffin-Tin orbitals [42], numerically-orthogonalized LMTO’s [43], and

maximally-localized Wannier orbitals [44, 45]. Maximally-localized Wannier orbitals

are appealing because of their elegant mathematical properties [46]. However, our

experience has been that the extracted valence is often too large, especially for materials

which are not extremely localized. Localized basis sets are a better starting point, but
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their non-orthogonality pose a challenge. Straighforward orthogonalization mixes the

angular character of the orbitals, leading to incorrect electron counts in each angular

momentum shell. For example, within modern DFT implementations, cerium metal

has approximately one 4f electron. Näıve orthogonalization results in a considerably

higher 4f electron count, causing the lattice to be mapped to an unphysical impurity

problem.

Even more challenging is the formulation of the correlated orbitals in APW basis

sets. Multiple basis functions, indexed by κ, are used in a single angular momentum

channel to provide enough variational freedom to accurately describe the bands. To

implement DMFT in such basis sets, the group of orbitals representing the correlated

electrons in the solid must be contracted to form a single set of atomic-like orbitals.

How should we collapse the κ space onto a single orbital?

Below we enumerate three proposals for the projection P̂ and embedding Ê opera-

tions. The first two are used in the current literature, and the last is our own. We have

implemented all three in our code.

Ĝαimp(ω) =
∑
κ

P 0
ακĜ(ω)P 0

ακ Σ̂(ω) =
∑
ακ

P 0
ακΣ̂α

imp(ω)P 0
ακ (3.42)

Ĝαimp(ω) = P 1
αĜ(ω)P 1

α Σ̂(ω) =
∑
α

P 1
αΣ̂α

imp(ω)P 1
α (3.43)

Ĝαimp(ω) = P 2
αĜ(ω)P 2

α
† Σ̂(ω) =

∑
α

P 2†
α Σ̂α

imp(ω)P 2
α (3.44)

where the projection operators (not to be confused with the symbol P̂ for the general

concept of projection) are

P 0
ακ =

∑
L

|ακL〉〈ακ̄L| (3.45)

P 1
α =

∑
L

|α0L〉〈α0̄L| (3.46)

P 2
α =

∑
L

∑
nkσ

|α0L〉Aα0̄L
nkσf

αL
nkσ〈nkσ| (3.47)

and the coefficients for our projection scheme are

fαLnkσ =

√∑
κA

ακ̄L
nkσA

∗ακL
nkσ

Aα0̄L
nkσA

∗α0L
nkσ

. (3.48)
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Without loss of generality, we have chosen to project to the zeroth unit cell R = 0 in

the above.

The operators P implement the projection and embedding. The first two, P 0
ακ and

P 1
α are true projection operators in the sense of linear algebra, since P 2 = P . The

third, P 2
α, is not as it has the renormalizing factor fαLnkσ which, as we shall see below,

corrects for missing spectral weight. When applied to the lattice Green’s function Ĝ(ω),

the projection operators produce the correlated impurity Green’s function at the α-th

muffin-tin:

Ĝαimp(ω) = PαĜ(ω)Pα. (3.49)

The impurity Green’s function lives in the space spanned by the local orbitals |L〉,

which we generalize to index spherical harmonics |lm〉, cubic harmonics, or relativistic

harmonics |jmj〉, depending on the system symmetry. We choose this basis to minimize

the off-diagonal elements of the correlated Green’s function in order to reduce the

minus-sign problem in Monte Carlo impurity solvers. The dual operation of embedding

is accomplished by inserting the impurity self-energy into every muffin-tin:

Σ̂(ω) =
∑
α

PαΣ̂α
imp(ω)Pα. (3.50)

The lattice self-energy Σ̂(ω) is nonzero inside every muffin-tin in the crystal. In the

common case of single site DMFT for translationally invariant systems, the impurity

self-energy is independent of the atom, Σ̂α
imp = Σ̂imp so we are inserting the same

self-energy into each muffin-tin.

All three of the proposed schemes implement atomic-like orbitals, since they project

to the local basis, but we believe our proposal is the most advantageous. We judge

their quality by asking if they (i) capture all the spectral weight in the given angular

momentum channels, (ii) lead to causal DMFT equations, and (iii) preserve angular

momentum character.

The first scheme P 0
ακ integrates all the spectral weight in each angular momen-

tum channel (the sum of κ), thereby projecting purely onto the angular momentum

eigenfunctions |L〉. By construction, this scheme clearly preserves angular momentum

character. Additionally, P 0
ακ captures all the spectral weight: application of Eq. 3.34
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to Ĝαimp will give the same partial density of states as DFT (Eq. 3.37). This projection

scheme is attractive for the further reason that summation over κ implies no informa-

tion is retained about the radial dependence of the self-energy, a fact which meshes

with the intuition that the impurity solver within the DMFT should only know about

angular character. However, this scheme leads to noncausal DMFT equation, which

manifests itself in the imaginary part of the hybridization ∆ becoming positive. This

can be clearly seen in the case of a diverging self-energy Σimp(iωn ∼ 0) → −i∞, as is

the case in the Mott insulating state. In this case, the DMFT self-consistency equation

simplifies to

1

Σ̂α
imp + ∆α

=
∑
κ

1

Σ̂α
imp

. (3.51)

Solving for the hybridization gives

∆α =

(∑
κ

1

Σ̂α
imp

)−1

− Σ̂α
imp =

(
1

Nκ
− 1

)
Σ̂α

imp. (3.52)

Since the number of local orbitals Nκ > 1, the coefficient (N−1
κ − 1 is negative, so the

hybridization becomes noncausal.

We note that the first projection P 0
ακ is implemented in the QTL package [47] of

Wien2K[48]. The LDA+U implementation within Wien2K [49] also uses P 0
ακ, but

this does not generate a causality problem since it is only in DFT+DMFT that we

must compute the hybridization function. Additionally, simple impurity solvers such

as Hubbard-I [50] do not incorporate a true hybridization so they also avoid issues with

causality.

The second scheme P 1
α projects only to κ = 0 radial state, in addition to the atomic

angular momentum channels. Since this scheme truly is a projection operation (no sum

over κ), causality is automatically satisfied. However, spectral weight from the κ ≥ 1

orbitals are not captured, as the computation of the partial density of states shows:

ραL(ω) =
∑
nkσ

Aα0̄L
nkσA

∗α0L
nkσ δ(ω + µ− εnkσ). (3.53)

Comparing this with Eq. 3.37 for the DFT partial density of states, we see P 1
α misses

the sum over κ. This scheme does not capture a portion of the electron density which
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should be considered correlated, causing the DMFT impurity problem to have the wrong

valence.

The strategy we use in the construction of our scheme P 2
α is to begin with P 1

α, which

is causal, but renormalize the projector elements in such a way that the partial density

of states is preserved. This is accomplished by the coefficients fαLnkσ. We can check that

P 2
α captures spectral weight by computing the partial density of states:

ραL(ω) = − 1

π
Im trPαLĜ

α
imp(ω)PαL = − 1

π
Im trPαL

(
P 2
αĜ

α
imp(ω)P 2†

α

)
PαL (3.54)

=
∑
L

∑
nkσ

Aα0̄L
nkσf

αL
nkσδ(ω + µ− εnkσ)fαLnkσA

∗α0L
nkσ (3.55)

The renormalization factors fαLnkσ were chosen so that they would exactly replace the

matrix elements

(fαLnkσ)2 ·Aα0̄L
nkσA

∗α0L
nkσ =

∑
κ

Aακ̄LnkσA
∗ακL
nkσ , (3.56)

restoring the sum over κ and reproducing the exact DFT partial density of states.

By renormalizing the projector in the Bloch basis |nkσ〉, we slightly give up purity of

angular momentum character in return for capturing all the correlated electron density.

We have based our code which implements the projection P 2
α on the QTL package of

P. Novak [47].

All of the above projection schemes lead to a slightly nonorthonormal local basis

because (i) we never use complete Bloch states up to infinite energy in practical com-

putation when computing overlaps and inserting resolutions of unity, and (ii) the APW

basis is overcomplete. To remedy this loss of spectral weight, we orthonormalize the

projector. For example, in the case of P 2
α, we compute the overlap

OαLL′ =
∑

nkσ∈L
〈α0̄L|P 2

α|nkσ〉〈nkσ|P 2†
α |α0L′〉, (3.57)

where L denotes the Hilbert space of bands, generally specified by an energy window

about the Fermi level, that we keep in our DFT+DMFT implementation. Then we

symmetrically orthogonalize the projection scheme by replacing projector with

(P 2
α)Lnkσ → (P̃ 2

α)Lnkσ =
∑
L′

(
1√
Oα

)
LL′
〈α0̄L′|P 2

α|nkσ〉 (3.58)

which we use to extract the correlated subspace of the full lattice Green’s function

G(ω).
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Chapter 4

Continuous-Time Quantum Monte Carlo

The Anderson Impurity Model (AIM) is one of the canonical models in condensed

matter physics, describing a localized level embedded in a sea of conduction electrons.

The motivation for the model arose for the need to describe the magnetic behavior of

impurities embedded in metals [51]. It is the simplest example of a strongly-correlated

model, with interactions localized onto a single site. The model has stimulated the

development of a wealth of physical ideas, only to be paralleled by the number of

techniques developed to tackle its solution over its half-century of existence. These

include the first perturbative calculations of the Kondo model [52], scaling [53, 54], the

numerical renormalization group [55], applications of the Bethe ansatz [21], slave bosons

in the context of heavy fermion materials [22] and the Hirsch-Fye quantum Monte Carlo

algorithm [25].

The solution of an AIM lies at the heart of every DMFT implementation, and in

this chapter, we describe one particularly powerful method for its solution: continuous-

time quantum Monte Carlo (CTQMC) [30]. This exact method relies on expanding the

partition function of the AIM about the local atomic limit in powers of the hybridization.

The expansion is sampled via Monte Carlo importance sampling in the form of the

Metropolis-Hastings algorithm. The advantage of this method is its generality and

reduced computational time, especially in the strongly-interacting regime relevant for

Mott physics.

We begin by deriving the hybridization expansion, followed by the Monto Carlo

updates needed to sample the partition function, and conclude with brief comments on
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optimizations which allow fast rejections, avoiding the need to perform the expensive

atomic-trace computation.

4.1 Hybridization Expansion

The hybridization formalism for performing Monte Carlo simulations of the AIM was

first presented in Ref. [27] and extended in Ref. [28] and Ref. [29]. This method is

state-of-the-art, replacing the earlier Hirsch-Fye impurity solver, allowing over an order

of magnitude lower temperatures in realistic atomic interaction regimes. The term

continuous-time arises because there is no discretization of the time domain in CTQMC,

as compared previous Monte Carlo schemes like the Hirsch-Fye algorithm, which divided

the imaginary time interval [0, β] into a fixed number Nτ of time-slices.

We first develop the formalism with spinless fermions to illustrate its essential fea-

tures before generalizing to spin-ful and multi-orbital systems. The hamiltonian con-

tains three terms,

H = Himp +Hbath +Hhyb, (4.1)

describing the impurity, the bath of conduction electrons, and hopping processes hy-

bridizing the two flavors of electrons:

Himp = εdd
†d (4.2)

Hbath =
∑
k

εkc
†
kck (4.3)

Hhyb =
∑
k

Vkc
†
kd+ h.c. (4.4)

Throughout the following, we take the bath as the reference system, and ask how the

system is modified by the addition of the impurity and hybridization. The quantity we

formally manipulate is the partition function, in the path integral representation:

Z =

∫
D[c†c d†d] e−Simp−Sbath−Shyb (4.5)

Our first goal is to express the partition function solely in terms of the impurity degrees

of freedom, which are finite in number and thus amenable to computer simulation.
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Since the conduction electrons are non-interacting, we can integrate them out, and the

partition function factors into two terms:

Z = Zbath · Zimp (4.6)

Zbath =
∏
nkσ

β(−iωn + εk) (4.7)

Zimp =

∫
D[d†d] e−Seff[d†,d] (4.8)

The effective action describes the original impurity physics plus an additional term

capturing retarded processes where impurity electrons hop into the bath and then return

to the impurity:

Seff[d†, d] = Simp +
∑
σ

∫ β

0
dτ

∫ β

0
dτ ′ d†(τ)∆(τ − τ ′)d(τ ′) (4.9)

In the second term, which we denote ∆S, the hybridization function

∆(iωn) =
∑
k

|Vk|2
iωn − εk

(4.10)

quantifies the strength of hopping at various energies. We have reduced the problem to a

finite-sized impurity hamiltonian with the effects of the hopping Vk and conduction bath

captured by a single hybridization function ∆(iωn). We can choose any hybridization

of our liking; a flat band, semicircle and lorentzian are three popular choices.

The quantity of interest is Zimp, which captures the perturbation of the impurity on

the noninteracting conduction bath. To express the Grassman integration over d and

d† in a manner amenable to computation, we Taylor series expand in the hybridization

term:

Zimp =

∞∑
k=0

1

k!

∫
D[d†d] e−Simp (−∆S)k (4.11)

= Z0

∞∑
k=0

1

k!

∫ β

0
dτ1 · · · dτk

∫ β

0
dτ ′1 · · · dτ ′kZ(τ1 · · · τk; τ ′1 · · · τ ′k), (4.12)

where the integrand is

Z(τ1 · · · τk; τ ′1 · · · τ ′k)

=
〈
Tτ d(τ ′1)d†(τ1) · · · d(τ ′k)d

†(τk)
〉

0
·∆(τ1 − τ ′1) · · ·∆(τk − τ ′k). (4.13)
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The minus sign in −∆S has been absorbed by reordering −d†∆d = dd†∆. We have ex-

pressed the Grassman integral over the impurity degrees of freedom using the standard

expression for time-ordered correlation functions∫
D[d†d] e−SimpO(τ1 · · · τk) ≡ Z0 〈Tτ O(τ1 · · · τk)〉0 , (4.14)

where the normalization

Z0 =

∫
D[d†d] e−Simp (4.15)

is the impurity partition function.

As formulated, the integrands in the hybridization expansion can be both negative

and positive, and thus the series cannot be efficiently sampled via Monte Carlo. The

solution is to group together all the diagrams at a given expansion order k in the form

of a determinant. We show this grouping explicitly for the second-order term:

1

2!

∫ β

0
dτ1dτ2

∫ β

0
dτ ′1dτ

′
2

〈
Tτ d(τ ′1)d†(τ1)d(τ ′2)d†(τ2)

〉
0
·∆(τ1 − τ ′1)∆(τ2 − τ ′2) (4.16)

Considering just the un-primed τi integrals, there are two wedges in the integral phase

space defined by W = {(τ1, τ2) : τ1 < τ2} and vice versa. The idea is to convert the

un-primed integrals from over both wedges into an integral over just one wedge:∫ β

0
dτ1dτ2 f(τ1, τ2) =

∫ β

0
dτ1

∫ β

τ1

dτ2 f(τ1, τ2) +

∫ β

τ2

dτ1

∫ β

0
dτ2 f(τ1, τ2) (4.17)

=

∫ β

0
dτ1

∫ β

τ1

dτ2 [f(τ1, τ2) + f(τ2, τ1)] (4.18)

The price we pay the integrand becomes a sum of two terms. When we swap the two

times in the time-ordered impurity trace, we can reorder the operators and get sign

corresponding to the parity of the permutation, in this case a single minus sign:

〈
Tτ d(τ ′1)d†(τ2)d(τ ′2)d†(τ1)

〉
0

= −
〈
Tτ d(τ ′1)d†(τ1)d(τ ′2)d†(τ2)

〉
0

(4.19)

The impurity trace factors out of the two terms in the integrand. The minus sign

combined with the swap in arguments in the hybridization functions ∆(τi − τj) gives
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the determinant:

1

2!

∫ β

0
dτ1

∫ β

τ1

dτ2

∫ β

0
dτ ′1

∫ β

0
dτ ′2

〈
Tτ d(τ ′1)d†(τ1)d(τ ′2)d†(τ2)

〉
0

× det

∆(τ1 − τ ′1) ∆(τ1 − τ ′2)

∆(τ2 − τ ′1) ∆(τ2 − τ ′2)

 (4.20)

Finally, we can absorb the 1/2! prefactor by again replacing the integral over the primed

imaginary times τ ′i by an integral over a single wedge. This time, the integrand is

invariant under permutations of the times τ ′1 and τ ′2 because both the both the impurity

trace and the determinant are antisymmetric objects—the impurity trace acquires a

minus sign when two operators are swapped while the determinant acquires a minus

sign when two columns are swapped. Thus, our final formula at second-order is∫
W
dτ1dτ2

∫
W
dτ ′1dτ

′
2

〈
Tτ d(τ ′1)d†(τ1)d(τ ′2)d†(τ2)

〉
0
· detM−1({τi}, {τj}) (4.21)

where we have defined the hybridization matrix (M−1)ij = ∆(τi − τ ′j). We write M−1

because it will prove simpler to manipulate its inverse in the following.

Generalizing this argument to an arbitrary perturbation order k, we arrive at the

hybridization expansion of the partition function amenable for Monte Carlo sampling:

Zimp = Z0

∞∑
k=0

∫
W
dτ1 · · · dτk

∫
W
dτ ′1 · · · dτ ′k Z(τ1 · · · τk; τ ′1 · · · τ ′k), (4.22)

where the integration region is a wedge W = {(τ1, · · · , τk) : τ1 < · · · < τk} and the

integrand is

Z(τ1 · · · τk; τ ′1 · · · τ ′k) =
〈
Tτ d(τ ′1)d†(τ1) · · · d(τ ′k)d

†(τk)
〉

0
· detM−1({τi}, {τj}) (4.23)

with the hybridization matrix (M−1)ij = ∆(τi − τ ′j).

4.2 Metropolis-Hastings Sampling

We use Markov-chain Monte Carlo to sample the hybridization expansion Eq. 4.22 (see,

for example, Ref. [56] for an introduction). We use the Metropolis-Hastings algorithm

to sample a distribution over the configuration space {i} with probabilities Pi. The

transition probabilies T (i→ j) for stepping from configuration i to j is written

T (i→ j) = w(i→ j)A(i→ j) (4.24)
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where w(i → j) is the probability of proposing the move from i to j, and acceptance

probability is

A(i→ j) = min

(
1,
Pj
Pi

w(j → i)

w(i→ j)

)
. (4.25)

In the hybridization expansion, we are sampling over a semi-discrete space, consisting

of the countably-infinite collection of 2k-dimensional integral phase spaces. A Monte

Carlo configuration consists of the 2k times Dk = (τ1, · · · , τk; τ ′1 · · · τ ′k) for the creation

and annihilation operators.

The moves we use to step through the semi-discrete phase space D =
⊕∞

k=0Dk
consist of adding or removing two operators, one creation and one annihilation. When

we add two operators, the proposal probability density is

w(Dk → Dk+1) =
1

β2
, (4.26)

because we have an equal probability of inserting the creation operator at any point

in the interval [0, β], and likewise for the annihilation operator. When we remove two

operators, we choose one of the (k+ 1) creation operators for removal, and likewise for

the annihilation operators, so we get

w(Dk+1 → Dk) =
1

(k + 1)2
. (4.27)

The probability density for a given configuration is given by the integrands of the hy-

bridization expansion Eq. 4.23, which we denote Z(Dk) in short. Thus the Metropolis-

hastings acceptance probability for adding a pair of operators is

A(Dk → Dk+1) = min

(
1,

β2

(k + 1)2

Z(Dk+1)

Z(Dk)

)
(4.28)

while the equivalent expression for removing a pair of operators is

A(Dk → Dk−1) = min

(
1,
k2

β2

Z(Dk−1)

Z(Dk)

)
(4.29)

4.3 General Models

The generalization of this formalism to models with arbitrary impurity Hilbert spaces

and hybridization functions is straightforward. In the following derivation, we can
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consider the impurity to be a general local object, which can be a multi-orbital atom

or a cluster of atoms. The effective action for an impurity model where there are

α = 1 · · ·Nb flavors of local electrons d†α, with the bath electrons are already integrated

out, is

Seff = Simp +
∑
αα′

∫ β

0
dτ

∫ β

0
dτ ′ d†α(τ)∆αα′(τ − τ ′)dα′(τ ′). (4.30)

Performing the same steps as above, arrive at the hybridization expansion

Zimp = Z0

∞∑
k=0

∑
α1···αk

∑
α′1···α′k

∫
W
dτ1 · · · dτk

∫
W
dτ ′1 · · · dτ ′k Z(Dk), (4.31)

where the integrand is

Z(Dk) =
〈
Tτ dα′1(τ ′1)d†α1

(τ1) · · · dα′k(τ ′k)d
†
αk

(τk)
〉

0
· detM−1(Dk) (4.32)

and the hybridization matrix is (M−1)ij = ∆αi,α′j
(τi − τ ′j). The proposal probability

for adding a pair of operators is modified. For each operator, in addition to choosing a

time in the interval [0, β], we choose one of the Nb baths, so we have

w(Dk → Dk+1) =
1

(Nbβ)2
. (4.33)

The proposal probability for removal is unmodified so the acceptance probabilities for

Monte Carlo sampling just acquire extra factors of N2
b :

A(Dk → Dk+1) = min

(
1,

(
Nbβ

k + 1

)2 Z(Dk+1)

Z(Dk)

)
(4.34)

A(Dk → Dk−1) = min

(
1,

(
k

Nbβ

)2 Z(Dk−1)

Z(Dk)

)
(4.35)

There is one additional simplification which occurs in the case when the hybridiza-

tion matrix is block diagonal, where each block has dimension Na
b and there are Nb

blocks in total. In this block diagonal case, the hybridization terms in the impurity

effective action separate

Seff = Simp +

Nb∑
a=1

Sahyb (4.36)

Sahyb =
∑
αα′

∫ β

0
dτa

∫ β

0
dτ ′a d

†
aα(τa)∆

a
αα′(τa − τ ′a)daα′(τ ′a), (4.37)
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which means in the hybridization expansion, we generate a separate series in each

hybridization term Sahyb, obtaining

Zimp = Z0

∞∑
k1···kNb

Nb∏
a=1

∑
αa1···αaka

∑
α′a1···α′aka∫
W
dτa1 · · · dτaka

∫
W
dτ ′a1 · · · dτ ′aka Z(D1

k1
· · · DNbkNb ), (4.38)

with the integrands

Z(D1
k1
· · · DNbkNb ) =

〈
Tτ

Nb∏
a=1

daα′a1
(τ ′a1)d†aαa1

(τa1) · · · daα′aka (τ ′aka)d†aαaka (τaka)

〉
0

×
Nb∏
a=1

detM−1(Daka) (4.39)

and the hybridization matrices
(
M−1(Daka)

)
ij

= ∆a
αai,α

′
aj

(τai − τ ′aj). The hybridization

determinant has factored into a product of individual determinants, one for each block.

When adding two operators, we first choose one of the Nb blocks, then one of the Na
b

operators within the block. For the second operator, we can only choose one of the

Na
b operators within the same block since the integrand vanishes otherwise. Thus, the

proposal probability density for adding a pair of operators is

w(Daka → Daka+1) =
1

Nb

1

(Na
b β)2

. (4.40)

When we remove two operators, we again choose a one of the Nb blocks in which to

operate, a removal probability of

w(Daka+1 → Daka) =
1

Nb

1

(ka + 1)2
. (4.41)

Assembling the factors, we arrive at the acceptance probabilities for the general model

A(Daka → Daka+1) = min

(
1,

(
Na
b β

ka + 1

)2 Z(· · · Daka+1 · · · )
Z(· · · Daka · · · )

)
(4.42)

A(Daka → Daka−1) = min

(
1,

(
ka
Na
b β

)2 Z(· · · Daka−1 · · · )
Z(· · · Daka · · · )

)
(4.43)

The most computationally expensive part of the Monte Carlo sampling is the compu-

tation of the impurity traces 〈· · ·〉0 in the acceptance probabilities, so it is imperative

we find efficient ways to evaluate this trace. We note that the hybridization determi-

nant ratios are not the bottleneck in general models, and can be computed cheaply via

Sherman-Morrison formulas.
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4.4 Evaluating the Impurity Trace

The impurity trace consists of a time-ordered correlation function. We compute the

trace by first explicitly time-ordering the operators creation and annihilation operators,

which we will denote F i:

〈Tτ F1(τ1) · · ·Fk(τk)〉0 = sgnP ·
〈
FP(1)(τP(1)) · · ·FP(k)(τP(k))

〉
0
. (4.44)

Here, P denotes the permutation necessary for placing the operators in the time-ordered

sequence. Since the impurity has a finite number of degrees of freedom, we express the

operators in a complete basis of impurity states and take the trace. For example, if we

use the impurity eigenstates |n〉 and eigenenergies En as the complete basis, we evaluate

〈Fk(τk) · · ·F1(τ1)〉0 =∑
n1···nk

[
e−Enk (β−τk)F knk,nk−1

e−Enk−1
(τk−τk−1) · · · e−En1 (τ2−τ1)F 1

n1,nk
e−Enkτ1

]
(4.45)

where the matrix elements are denoted F imn ≡ 〈m|F i|n〉. In the atomic eigenstate basis,

the creation and annihilation operators are nontrivial matrices, while the time-evolution

operators are simple. Alternatively, we could have chosen the direct product basis of the

single-particle operators F i, in which the creation and annihilation operators are simple

while the time-evolution operators are dense matrices. This approach to evaluating the

impurity trace has been pursued via applications of the Krylov method [57, 58].

In our implementation, we use the atomic eigenbasis and take advantage of the

symmetries in our system to construct “superstates”. If we have a set of operators (for

example N , S and Sz) which commute with the Hamiltonian H, then we can decompose

the atomic Hilbert space into block diagonal form, where each block is a group of states

with definite quantum numbers in the commuting operators. The impurity operators F i

has nonzero matrix elements only between two of these blocks. Thus, it is convenient to

group together the states within each block and call them a superstate |a,m〉, where a

labels the superstate and m labels the individual states grouped to form the superstate.

The action of an operator F i|a,m〉 = |b, n〉 takes us uniquely between two superstates

a and b. Storing a single index array F i(a) = b for each operator allows us to figure
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out which superstates are visited under a given sequence of operators in the impurity

trace. The representation of the operators F i has been reduced to small matrix blocks

(F iab)mn = 〈a,m|F i|b, n〉.

As implemented in our code, the evaluation of the impurity trace proceeds as follows:

for each superstate |a〉, we use to index array F i(a) to step through the sequence of 2k

operators describing the current Monte Carlo configuration, and find those “strings”

of superstates a0 − a1 − . . . − a2k which survive the time evolution from 0 to β. For

those strings which survive, we compute the trace of the matrix product of the impurity

operators along with the time-evolution operators, and sum them together to obtain

the total impurity trace.

4.5 Fast Rejection via Lazy Evaluation

The vast majority of proposed moves are rejected. For example, in 5-orbital systems

with realistic atomic interactions, the regime relevant for 3d elements, less than 5% of

moves are accepted at temperatures near 100 K. Often, the acceptance rate is below

1%. These statistics suggest computational gains could be made if we quickly filter out

moves with low acceptance probabilities. As described in Ref. [28], a scheme based on

storing a string of matrix products from the left and right on the time interval [0, β]

already allows for efficient filtering of proposed moves. In this section, we present an

additional fast rejection scheme based on bracketing the randomly chosen acceptance

threshold.

The idea is to transpose the order of the acceptance probability computation with

the coin-flipping in the Monte Carlo sampling. In the conventional sampling procedure,

we compute the acceptance probability A = A(i → j) for a given proposed move, and

actually accept the move if A > P , where P is a randomly chosen number in the interval

[0, 1]. In our fast rejection scheme, we first flip the coin to obtain P , then we lazily

evaluate rough bounds Amin < A < Amax for the acceptance probability. If Amax < P ,

we reject the move. If Amin ≥ P , we accept the move. If we cannot decide, we refine

the bounds on A with the minimal of effort, and perform the comparison again. This
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cycle is repeated until we can make a decision on whether to accept the move.

We compute our bounds by evaluating as few superstate matrix product strings as

possible. Given a matrix product representing one string of surviving superstates

Ta = trU2kF2kU2k−1F2k−1 · · ·U1F1U0 (4.46)

where Ui are the time-evolution operators, we use the fact that ||Fi|| < fi are bounded

to construct an approximation for the partial trace

T̃a = trU2kf2kU2k−1f2k−1 · · ·U1f1U0 (4.47)

which is easy to compute since it only involves summing the sequence of exponents

Ei(τi−τi−1) arising from the time-evolution operators. This approximation bounds the

exact partial trace as |Ta| < T̃a. The full impurity trace T is then bounded by

|T | =
∣∣∣∣∣∑
a

Ta

∣∣∣∣∣ <∑
a

|Ta|, (4.48)

which allows us to compute rough upper Amax and lower Amin bounds on our acceptance

probability A. Often, this approximation is sufficient to reject the move.

If we cannot reject or accept the move outright, we proceed to compute the exact

partial trace Ta for the superstate string with the largest approximation T̃a. This allows

us to refine our bounds on the total trace

|T − Ta| <
∑
b 6=a
|Tb|, (4.49)

and tighten our upper and lower bounds on the acceptance probability A. We iterate

until we are able to definitively accept or reject the proposed move. This algorithm

provides up to a five-fold factor of speed-up with respect to the original code utilizing

the left-right matrix products.
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Chapter 5

Reciprocal Distribution Sampling

Algorithms for direct evaluation of the partition function are useful since they allow

access to the free energy, and thus, thermodynamic quantities. In this chapter, we

describe an algorithm for evaluation of the reciprocal of the partition function in the

context of CTQMC for SU(N) Anderson impurity models. The result allows for the

computation of the entropy via S = β(E−F ), and for generalizations to the lattice via

DMFT in the future.

5.1 Sampling the Reciprocal Distribution and Phase Space

Volume

We want to sample the impurity partition function within the hybridization expansion

continuous-time quantum Monte Carlo solver. The general approach we will take is to

sample the reciprocal distribution, a concept which is applicable in any Monte Carlo

scheme where we have access to the phase space volume. For example, if f(x) is

our distribution function, the sampling of normal observables A(x) is equivalent to

evaluating

〈A〉 =

∫
dx f(x)A(x)∫
dx f(x)

. (5.1)

If we take our observable to be the reciprocal distribution A = 1/f , then we sample〈
1

f

〉
=

∫
dx∫

dx f(x)
≡ V

Z
. (5.2)

Often, there are regions where f vanishes, so in fact the phase space volume is

V =

∫
dx θ(f(x) 6= 0), (5.3)
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that is, we restrict the integral regions of finite f since the importance sampling ignores

regions of zero probability. Reciprocal distribution sampling gives us direct access to

the unnormalized distribution, provided we know the phase space volume V . In most

simulations of physical systems, the unnormalized distribution is the partition function,

a quantity of key interest.

As an example, consider sampling the reciprocal Boltzman distribution at a fixed

energy E: 〈
eE(X)/T δ(E(X)− E)

〉
=

∫
dX

e−E(X)/T

Z
eE(X)/T δ(E(X)− E) (5.4)

=
1

Z

∫
dX δ(E(X)− E) (5.5)

≡ g(E)

Z
. (5.6)

Since we sample at fixed energy, the phase space volume V is the familiar density of

states. For CTQMC, we sample at fixed perturbation order k, so V will be the number

of diagrams at that pertubation order.

5.2 Spinless Fermions

The expansion of the partition function in CTQMC for spinless fermions is

Z = Z0

∞∑
k=0

∫ β

0
dτ1

∫ β

τ1

dτ2 · · ·
∫ β

τk−1

dτk

∫ β

0
dτ ′1

∫ β

τ ′1

dτ ′2 · · ·
∫ β

τ ′k−1

dτ ′k

× Z(τ1 · · · τk; τ ′1 · · · τ ′k), (5.7)

where we write Z0 for the atomic partition function and the integrand is

Z(τ1 · · · τk; τ ′1 · · · τ ′k) =
〈
Tτψ(τ ′1)ψ†(τ1) · · ·ψ(τ ′k)ψ

†(τk)
〉

0
detM−1 ≡ Z(Dk), (5.8)

and the k × k matrix (M−1)ij = ∆(τi − τ ′j).

We sample the reciprocal distribution at fixed perturbation order k,〈
δk,k′

Z(Dk′)

〉
=
Z0

Z

∫
W
dτ1 · · · dτk

∫
W
dτ ′1 · · · dτ ′k θ(Z(Dk) 6= 0) ≡ Z0

Z
Vk, (5.9)

where the integration region W is shorthand for the wedge 0 < τ1 < · · · < τk < β. This

gives us the inverse partition function, up to factors of the atomic partition function

Z0 (which is easily computed) and the diagram density Vk.
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Let us compute Vk. For k = 0, the volume is just unity. For k ≥ 1, we have

Vk =

∫
W
dτ1 · · · dτk

∫
W
dτ ′1 · · · dτ ′k θ(Z(Dk) 6= 0). (5.10)

The distribution Z(Dk) is composed of two parts, an atomic trace and a hybridization

determinant. The determinant never vanishes if ∆(τ) is always nonzero, a reasonable

assumption for physical systems. However, if we assume the atomic action conserves

particle number (no terms like ψ† or ψ in isolation), the trace can vanish due to Fermi

statistics. There are only two arrangements of the 2k creation and annihilation opera-

tors which survive: ψψ†ψψ† · · · and ψ†ψψ†ψ · · · . The volume of a particular arrange-

ment of the 2k operators is β2k/(2k)! so we arrive at

Vk =


1 k = 0,

2 · β
2k

(2k)!
k ≥ 1.

(5.11)

In practice, we sample 1/VkZ0Z(Dk) for each perturbation order k so that we obtain

exactly 1/Z at each order. This quantity can be easily computed from the acceptance

probabilities. Recall the probability to add two operators is

p(Dk → Dk+1) =
β2

(k + 1)2

Z(Dk+1)

Z(Dk)
. (5.12)

Rearranging, we get the new Vk+1Z0Z(Dk+1) in terms of VkZ0Z(Dk) as follows:

Vk+1Z0Z(Dk+1) = VkZ0Z(Dk) · p(Dk → Dk+1) · Vk+1

Vk

(k + 1)2

β2
. (5.13)

The ratio of volumes is

Vk+1

Vk
=


β2 k = 0,

β2

(2k + 2)(2k + 1)
k ≥ 1,

(5.14)

which allows us to update our observable when adding two operators as follows:

Vk+1Z0Z(Dk+1) = VkZ0Z(Dk) · p(Dk → Dk+1) ·


1 k = 0,

(k + 1)2

(2k + 2)(2k + 1)
k ≥ 1.

(5.15)

A similar calculation for the removal of two operators gives

Vk−1Z0Z(Dk−1) = VkZ0Z(Dk) · p(Dk → Dk−1) ·


1 k = 1,

(2k)(2k − 1)

k2
k ≥ 2.

(5.16)
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Thus, as we importance sample, we simply store the list of observables 1/VkV0Z(Dk).

The CTQMC histogram is strongly peaked around a particular perturbation order 〈k〉,

so we use only the sampled values near 〈k〉 to calculate 1/Z to better precision.

5.3 One-Band Model

Including spin leads to some minor complications but the idea is the same. For this

derivation, we assume the hybridization conserves spin, that is

S = S0 +
∑
σ

∫ β

0
dτ

∫ β

0
dτ ′ ψ†σ(τ)∆σ(τ − τ ′)ψσ(τ ′) ≡

∑
σ

Sσhyb. (5.17)

The expansion of the partition function now contains two sums,

Z = Z0

∑
k↑k↓

1

k↑!

1

k↓!

〈
Tτ (−S↑hyb)k↑(−S↓hyb)k↓

〉
0

(5.18)

= Z0

∑
k↑k↓

∫
W

k↑∏
i

dτ↑i

∫
W

k↑∏
i

dτ ′↑i

∫
W

k↓∏
i

dτ↓i

∫
W

k↓∏
i

dτ ′↓i (5.19)

× Z(τ↑1 · · · τ↑k; τ ′↑1 · · · τ ′↑k; τ↓1 · · · τ↓k; τ ′↓1 · · · τ ′↓k). (5.20)

Ultimately we want to sample the reciprocal distribution at a given total perturbation

order k = k↑ + k↓, but as an intermediate step, we sample at fixed k↑ and k↓:〈
δk↑,k′↑δk↓,k↓

Z(Dk′↑k′↓)

〉
=
Z0

Z

∫
W

k↑∏
i

dτ↑i

∫
W

k↑∏
i

dτ ′↑i

∫
W

k↓∏
i

dτ↓i

∫
W

k↓∏
i

dτ ′↓i θ(Z(Dk↑k↓) 6= 0)

≡ Z0

Z
Vk↑k↓ .

It turns out the joint volume factors as Vk↑k↓ = Vk↑Vk↓ . To derive this, first note that

the hybridization determinant again never vanishes, so Fermi statistics controls when

the distribution vanishes. The volume of a particular arrangement of all 2(k↑ + k↓)

operators is

single wedge volume =
β2k↑+2k↓

(2k↑ + 2k↓)!
. (5.21)

The number of ways we can interleave the 2k↑ up-spin operators with the 2k↓ down-spin

operators is
(2k↑+2k↓

2k↑

)
. Let us assume the atomic interactions conserve spin and particle

number. Amongst the up-spins, we must arrange the ψ†↑ and ψ↑ in alternating order to
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have a non-vanishing trace. There are two ways to do this. The situation is identical

with the down-spin operators. The phase space is

Vk↑k↓ = 22 · (2k↑ + 2k↓)!

(2k↑)!(2k↓)!
· β2k↑+2k↓

(2k↑ + 2k↓)!
=
∏
σ

2β2kσ

(2kσ)!
=
∏
σ

Vkσ . (5.22)

Actually, this derivation only holds if both k↑ > 0 and k↓ > 0. Taking into account the

special cases, we again find that Vk↑k↓ = Vk↑Vk↓ , with Vk defined as in Eq. 5.11.

Now we compute the volume when we sample all diagrams contributing to a fixed

total perturbation order:〈
δk↑+k↓=k

Z(Dk↑k↓)

〉
=
Z0

Z

∑
k↑k↓

Vk↑k↓δk↑+k↓=k =
Z0

Z

k∑
k↑=0

Vk↑Vk−k↑ ≡
Z0

Z
Vk. (5.23)

Evaluating the summation gives us the 2-bath volume:

Vk =


1 k = 0,

2(22k − 2)
β2k

(2k)!
k ≥ 1.

(5.24)

Again we sample the distribution multiplied by the volume VkZ0Z(Dk↑k↓), where the

constraint k↑ + k↓ = k is understood. For the addition of two up-spin operators, the

update formula is

Vk+1Z0Z(Dk↑+1,k↓) = VkZ0Z(Dk↑k↓)

× p(Dk↑k↓ → Dk↑+1,k↓) ·


2 k = 0,

22k+2 − 2

22k − 2

(k↑ + 1)2

(2k + 2)(2k + 1)
k ≥ 1.

(5.25)

Swapping k↑ ↔ k↓ gives the formula for the addition of two down-spin operators. A

similar calculation for the removal of two operators gives

Vk−1Z0Z(Dk↑−1,k↓) = VkZ0Z(Dk↑k↓)

× p(Dk↑k↓ → Dk↑−1,k↓) ·


1

2
k = 1,

22k−2 − 2

22k − 2

(2k)(2k − 1)

k2
↑

k ≥ 2.
(5.26)
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5.4 Arbitrary Number of Diagonal Baths

For N baths, where we assume each bath is one-dimensional and there are no inter-bath

hoppings, we find that the phase space volume is the product

Vk =
∑

k1···kN

Vk1 · · ·VkN δk1+···+kN=k. (5.27)

There are many terms in this sum, due to the special case for k = 0 in the formula for

Vkα . Writing the single bath volume as

V
(1)
k =

2β2k

(2k)!
− δk=0 ≡ V̄k − δk=0, (5.28)

and inserting this into the general volume expression gives

Vk =
∑

k1···kN

V̄k1 · · · V̄kN

1−
∑
α

δkα=0

V̄kα
+
∑
{α1α2}

δkα1=0

V̄kα1

δkα2=0

V̄kα2

+ · · ·

±
∑

{α1···αN}

δkα1=0

V̄kα1

· · ·
δkαN=0

V̄kαN

 δk1+···+kN=k, (5.29)

where, for example, by
∑
{α1α2} we mean the sum over all unordered pairs (α1, α2)

where α1 6= α2. Since V̄k=0 = 2, we simplify to obtain

Vk =
β2k

(2k)!

N∑
α=0

(−)α
(
N

α

)
· 2N−α

∑
k1···kN−α

(2k)!

(2k1)! · · · (2kN−α)!
· δkα1+···kαN−α=k (5.30)

=
β2k

(2k)!

N∑
α=0

(−)α
(
N

α

)N−α∑
η=0

(
N − α
η

)
(N − α− 2η)2k. (5.31)

For the special case k = 0, the volume Vk = 1.

For the addition of two operators in bath α, we need the ratio

Vk+1

Vk

(kα + 1)2

β2
=

N2(kα + 1)2

(2k + 2)(2k + 1)

(
gN,k+1

gN,kN2

)
. (5.32)

Similarly, for the removal of two operators in bath α, we need the ratio

Vk−1

Vk

β2

k2
α

=
(2k)(2k − 1)

N2k2
α

(
gN,k−1N

2

gN,k

)
. (5.33)

The expressions in parenthesis are close to unity, except at small perturbation order k.

We tabulate for small N the expressions for gk in Table. 5.1.
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N gN,k

1 1
2 22k − 2
3 32k − 3 · 22k + 6
4 42k − 4 · 32k + 10 · 22k − 16
5 52k − 5 · 42k + 15 · 32k − 30 · 22k + 45
6 62k − 6 · 52k + 21 · 42k − 50 · 32k + 90 · 22k − 126

Table 5.1: Table of polynomials gk for Eq. 5.33.

5.5 Thermodynamic Quantities

Sampling the partition function Z allows us to compute the free energy F = −T logZ.

If additionally we had access to the energy E, we could compute the entropy S =

β(E − F ) = βE + logZ. Usually, computation of the entropy requires an integration

over temperature, as described in Appendix F, while this approach is single-point in

temperature. We describe the details of these thermodynamic quantities in the following

section.

In the Anderson impurity model, since the conduction bath is noninteracting, we

can factor the partition function into the form

Z = Zbath · Zimp (5.34)

Zbath =
∏
nkσ

β(−iωn + εk) ≡
∏
nkσ

β(−g−1
k (iωn)) (5.35)

Zimp =

∫
D[ψ†ψ] e−Seff (5.36)

where Seff is defined as in Eq. 5.17. With this convention, the free energy decom-

poses into two terms F = Fimp + Fbath. In CTQMC, we only compute the impurity

contribution since we drop Zbath from our formulas.

For formal manipulation, it is useful to work in terms of the effective-action formal-

ism. The Baym-Kadanoff functional for the free energy at the saddle point is

F = tr logG− tr ΣG+ Φ[G]. (5.37)

Here, the Green’s function is

G =

iωn − Eimp − Σ V

V (iωn − εk)δkk′

−1

=

Gdd Gdk′

Gkd Gkk′

 (5.38)
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and the trace tr ≡ β−1
∑

nkσ has units of energy. The Luttinger-Ward functional, which

collects all the skeleton diagrams, is denoted Φ[G]. The various propagators are defined

as follows:

Gdd =
1

iωn − Eimp −∆− Σ
(5.39)

Gkd = Gdk = gkV Gdd (5.40)

Gkk′ = gkδkk′ + gkV GddV gk′ (5.41)

and the quantities relating to the bare conduction bath are

gk =
1

iωn − εk
∆ = V 2

∑
k

gk (5.42)

Using these equations, we can separate the formal expression of the free energy into

the impurity and bath contributions. Applying the formula for determinants of block

matrices to the first term tr logG,

det

A B

C D

 = det(A) · det(D − CA−1B), (5.43)

we can separate the bath contribution in the first term to obtain

Fbath = tr log g (5.44)

Fimp = tr logGdd − tr ΣGdd + Φ[Gdd] (5.45)

The interaction terms only depend on the impurity Green’s function.

In this same framework, the energy is

E = trH0G+
1

2
tr ΣG, (5.46)

where H0 denotes the single-particle part of the hamiltonian, namely

H0 =

Eimp V

V εk

 . (5.47)

The second term in the energy is tr ΣGdd, while the first can be decomposed into the
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impurity and bath contributions:

trH0G = tr

EimpGdd + V
∑

kGkd · · ·

· · · V Gdk′ + εkGkk′

 (5.48)

= 2 tr ∆Gdd + tr
∑
k

εkGkk. (5.49)

We can separate the bath contribution out of the second term:

tr
∑
k

εkGkk = tr
∑
k

εkgk + trGddV
2
∑
k

εkg
2
k (5.50)

= tr εg − tr ∆Gdd + trGddiωnV
2
∑
k

g2
k (5.51)

We want to perform the momentum summation in the second term to rewrite it in

terms of the hybridization ∆. In order to do so, we eliminate the double pole by using

g2
k(iωn) = − ∂

∂(iωn)
gk(iωn) (5.52)

to finally obtain

Ebath = tr εg (5.53)

Eimp = tr ∆Gdd − tr
∂∆(iωn)

∂ log(iωn)
Gdd +

1

2
tr ΣGdd. (5.54)

In this equation, imp is the thermodynamic energy contribution of the impurity, and

not the impurity level denoted by the same symbol in Eq. 5.47. The first kinetic term

Ekin = tr ∆Gdd and the last potential term tr ΣGdd/2 are easy to compute with high

precision via the CTQMC sampling [28]. The logarithmic kinetic correction due to

frequency dependence of the hybridization function is evaluated by subtracting out the

analytic tails at large iωn.

We show in Fig. 5.1 the various energetic contributions for the single-orbital An-

derson impurity model at half-filling in the Bethe lattice. The Bethe lattice has a

semi-circular density of states, giving the hybridization function

∆(z) =
1

2
(z −

√
z2 −D2), (5.55)

where D is the half-bandwidth, and from which we can evaluate the logarithmic term

analytically. We find that all three terms are of the same order of magnitude at low
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Figure 5.1: Contributions of each of the three terms in Eq. 5.54 to the total energy for the
one-orbital Anderson impurity model at half-filling on the Bethe lattice. Energies in units of
the half-bandwidth D.
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Figure 5.2: Entropy for the same impurity model as Fig. 5.1 computing using reciprocal
distribution sampling.
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temperatures. In Fig. 5.2 we plot the entropy of the same model computed by the

reciprocal distribution sampling algorithm.

The advantage of sampling the reciprocal distribution is its high accuracy and low

computational cost. There is essentially no additional overhead in sampling the recip-

rocal distribution at each perturbation order. Future directions include extending the

derivation to models with general atomic interactions, for example, to cluster models or

multi-orbital systems where the atomic interactions do not conserve orbital number.
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Chapter 6

Valence Fluctuations and Quasiparticle Multiplets

in Pu Chalcogenides and Pnictides

The application of our code to plutonium binary alloys was one of the first tests of

our DFT+DMFT implementation in the full-potential basis. Plutonium is an element

with enormous importance to our nation’s energy and weapons needs [59]. Plutonium is

mostly known for its nuclear properties, but its structural and electronic properties hap-

pen to also be incredibly complex, exhibiting six distinct phases as a function of temper-

ature (Fig. 6.1). Compounds containing plutonium are key test cases for two reasons.

First, its partially-filled 5f -shell is extremely small compared to the lattice spacing,

causing the element to retain much of its atomic character even when embedded in a

solid. This provides an ideal system to test the local approximation lying at the heart of

DMFT. Second, plutoniuim lies at the boundary of the localization-delocalization tran-

sition in the actinide series (Fig. 6.2). The early actinides exhibit itinerant electronic

behavior, while the late actinides are localized. The active 5f -electrons in plutonium

can be driven to be metallic or insulating as a function of external parameters like

pressure and temperature, or as a function of chemistry via alloying.

In this chapter, published as Ref. [61], we compare the effect of alloying pluto-

nium with an element from the nitrogen column (pnictide) versus the oxygen column

(chalcogenide). Experimentally, it is known that these two families of compounds ex-

hibit contrasting electronic behavior, which we seek to understand using our electronic

structure methods. In this work, the spectra of these compounds are computed with
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Figure 6.1: The rich electronic and structural behavior of plutonium [60]. (left) As a function
of temperature, Pu exhibits six distinct structural phases with differing electronic properties.
The comparatively sedate behavior of aluminum is shown for comparison. (right) The charge
density of α-plutonium, showing the extreme spatial localization of the 5f -electrons as compared
to the lattice spacing.

DFT+DMFT and interpreted with the aid of valence histograms and slave-boson cal-

culations. We find the chalcogenides are mixed-valent (nf = 5.2) materials with a

strongly T -dependent low-energy density of states and a triplet of quasiparticle peaks

below the Fermi level. Furthermore, we predict a doublet of reflected peaks above the

Fermi level. In the pnictides, the raising of f6 states relative to f5 suppresses valence

fluctuations, resulting in integral-valent (nf = 5.0) local moment metals.

6.1 Introduction

The stark contrast in behavior between the plutonium monochalcogenides and monop-

nictides is a longstanding issue in strongly-correlated physics (Fig. 6.3). The pnictides

(PuSb, PuAs, PuP) are comparatively simple metals [62] with embedded f -moments

arising from trivalent Pu ions which order in the range Tc = 85 to 126 K [63]. In con-

trast, the chalcogenides (PuTe, PuSe, PuS) exhibit seemingly contradictory behavior:

they have a large room temperature specific heat [64], yet the resistivity indicates a

small gap [65, 66, 67]. Also, their lattice constant rules out the full-shell divalent Pu

state, yet the susceptibility shows no evidence of Curie-Weiss behavior [63]. Further-

more, photoemission observes a triplet of peaks (the “photoemission triplet”) near the

Fermi level [68, 69, 70, 71] whose origin is still hotly debated [68, 69].
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Figure 6.2: In the actinide series, plutonium lies at the border between itinerant and localized
electronic behavior. Alloying plutonium with an element from the pnictide or chalcogenide
stabilizes tips the scale to favor one behavior over the other. All binary alloys considered in
this work form rock salt crystal structures.

Figure 6.3: Observed electrical resistivities of representative plutonium alloys as a function of
temperature. (left) The pnictide PuSb exhibits metallic behavior: the resistivity decreases as
the temperature is lowered in the relevant range of 0-100 K [62]. (right) The chalcogenide PuTe
is insulating [67]. The strong rise in resistivity with the decrease in temperature indicates the
presence of a gap.
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The contrast between the Pu chalcogenides and pnictides exemplifies the view that

the Pu 5f electrons sit at the edge of a localization-delocalization transition, where

small changes in their electronic environment can drive a transition to itinerancy or lo-

calization, thus posing a major challenge to electronic structure methods. Theoretical

studies of the chalcogenides within LDA [72, 73] predict a metal and do not account for

the photoemission triplet. Methods treating correlations beyond LDA have improved

the situation, but cannot fully integrate the available experimental data within a single

theory. Non-charge-self-consistent LDA+DMFT with FLEX [74] predicts metallic be-

havior and misses the photoemission triplet. Adding charge-self-consistency [75] opens

a gap, but still misses the photoemission triplet. LDA+DMFT with either exact di-

agonalization in a small Hilbert space [76] or Hubbard-I [77] as the impurity solver

describes the photoemission triplet but fails to explain the resistivity.

In this article, we elucidate the mechanism driving the electronic trends between the

pnictides and chalcogenides within a single framework. We find that the chalcogenides

are mixed-valent compounds where valence fluctuations combine with the underlying Pu

atomic multiplet structure to drive the formation of a multiplet of many-body quasipar-

ticle peaks (“quasiparticle multiplets”) which correspond to the observed photoemission

triplet. These heavy quasiparticles strongly affect the density of states at the Fermi

level as a function of temperature, corroborating the gap-like resistivity and large spe-

cific heat at room temperature. Using analytic methods, we provide a description of

the quasiparticle multiplet formation and their coexistence with the development of a

gap. In contrast, the chemistry of the pnictides shifts the atomic multiplet energies,

rendering valence fluctuations too costly, thereby localizing the f electrons.

6.2 Numerical Method and Results

We use LDA+DMFT [9, 14] with OCA [78] as the impurity solver to model the chalco-

genides and pnictides, taking PuTe and PuSb as representatives of the two groups due

to the special attention [65, 67, 68, 71, 62] accorded to them in the available exper-

imental data. In our calculations, we use the projective orthogonalized LMTO basis

set [79]. We use F 0 = 4.5 eV for the Hartree component of the Coulomb interaction,
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Figure 6.4: Computed spectra for (a) PuTe and (b) PuSb, separated into f and non-f (uncor-
related spd) partial densities, compared with photoemission [71]. A triplet of peaks are present
in PuTe, as well as a predicted reflected doublet of peaks (arrows), while neither appear in
PuSb. Application of broadening (40 meV) has blurred the gap in PuTe (see Fig. 6.5).

consistent with previous work [80, 81, 82]. The remaining Slater integrals F 2 = 6.1 eV,

F 4 = 4.1 eV and F 6 = 3.0 eV are calculated using Cowan’s atomic structure code [83]

and reduced by 30 % to account for screening. The double counting energy is taken

to be EDC = U(n0
f − 1/2) − J(n0

f − 1)/2 where n0
f = 5 is the central f -valence. We

want to emphasize that identical correlations are applied to PuTe and PuSb, which

translates to using a single set of atomic parameters Fn and EDC for all computations.

The differences in physics originate entirely from changing the alloying element from

Te to Sb in the chemical structure.

In Fig. 6.4, we show the computed spectral functions for PuTe and PuSb, resolution-

broadened by 40 meV and overlaid with experimental photoemission data [71]. The

calculations clearly corroborate the presence of the photoemission triplet in PuTe at
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Figure 6.5: Detail of PuTe spectrum near Fermi level, showing development of gap and
formation of main quasiparticle peak with decreasing temperature.

the correct energies, and their absence in PuSb. Furthermore, we predict the existence

of a doublet of peaks (arrows) in PuTe at reflected energies about the Fermi level.

The strong temperature dependence of all five peaks indicates they are quasiparticle

resonances. Examining the main quasiparticle peak at the Fermi level (Fig. 6.5), we

find it is composed of heavily renormalized quasiparticles with Z ≈ 0.1, giving a greatly

enhanced specific heat. Additionally, the peak sharpens with decreasing temperature,

considerably reducing the density of states at the Fermi level, leading to the formation

of a gap and the observed temperature dependence in the specific heat [64]. Together,

the reduction of Fermi level density and heavy renormalization explain how a gap-like

resistivity can coexist with a large specific heat coefficient at room temperatures.

A useful way to analyze the Pu atomic environment is to quantify the amount of time

the f -electrons spend in each atomic configuration as they fluctuate between the atom

and conduction band. To this end, we project the DMFT ground state |Ω〉 onto the

Pu f -electron atomic eigenstates, resulting in the probabilities Pm = Z−1〈Ω|Xmm|Ω〉,

where Z =
∑

m〈Ω|Xmm|Ω〉 is the normalization and Xmm is the Hubbard operator

which projects onto the mth atomic eigenstate [82]. Plotting Pm against the atomic

energies gives a valence histogram (Fig. 6.6) which graphically represent the relative

weights of the atomic configurations comprising |Ω〉. The f valence can then be defined

by 〈nf 〉 =
∑

m Pmnm, where nm is the number of electrons in the mth state.
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Figure 6.6: Valence histograms obtained by projection of DMFT solution (T = 60 K) onto
Pu atomic eigenstates, plotted with energies relative to lowest-energy atomic state. The height
of each bar represents the percentage of time the atom spends in each configuration. PuTe is
strongly mixed-valent due to the small energy cost (≈ 0.5 eV) of valence fluctuations from f5

to f6, while PuSb is integral valent due to the large cost of fluctuations to both f4 and f6. In
PuTe, additional fluctuations to atomic multiplets 6H7/2 and 6F5/2 are crucial to the creation
of the photoemission triplet. All quantum numbers are gathered into a single index m or n used
in the slave-boson calculation. Approximate term symbols are given although L and S strictly
are not good quantum numbers.

The histograms show that the Pu atom is restricted to just one or two valences in

both compounds. In fact, the atom mostly exists in a single f5 configuration (6H5/2,

tall blue bar), which we loosely call the “ground state”. However, PuTe differs from

PuSb in that its electrons have an over 20 % probability to fluctuate to the lowest

f6 state (7F0, leftmost red bar) due to this state’s small 0.5 eV separation from the

“ground state”. The resulting mixed-valent (〈nf 〉 = 5.2) Pu atom strongly suggests a

Kondo-like, and thus nonmagnetic, ground state in PuTe. Additionally, the proximity

in energy of the next two higher f5 states (6H7/2 at 0.5 eV and 6F5/2 at 0.9 eV) renders
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these multiplets accessible to valence fluctuations, which will play a role in generating

the photoemission triplet. In contrast, the Pu atom is integral-valent (〈nf 〉 = 5.0) in

PuSb. Within LDA, the j = 5/2 f -bands are higher in energy in PuSb, raising the

energy of the f6 states relative to the f5. The resulting 1.5 eV gap locks Pu into the

lowest f5 state and PuSb remains a local moment metal.

6.3 Slave-Boson Analysis

To gain additional insight into the LDA+DMFT solution, we construct a Hamiltonian

for the DMFT quantum impurity. The histograms indicate we only need to keep two

valences in the atomic Hilbert space for a low-energy model,

Hatom =
∑
m

Efmf
†
mfm +

∑
n

Ebnb
†
nbn, (6.1)

where the auxiliary fermions f †m|0〉 = |m; f5〉 and bosons b†n|0〉 = |n; f6〉 create the

atomic eigenstates, and Efm and Ebn are the corresponding atomic eigenenergies. The

Hamiltonian is supplemented by the constraint Q =
∑

m f
†
mfm +

∑
n b
†
nbn = 1, in

the same spirit as the slave-boson construction [22, 84]. The atom hybridizes with an

auxiliary conduction bath,

Hc,mix =
∑
kα

εkαnkα +
∑
kα

(Vkαd
†
αckα + h.c.), (6.2)

where d†α creates an electron in the αth atomic crystal field basis and k is the dispersion

of the conduction bath. Since we work in the atomic eigenbasis, we eliminate d† in favor

of the auxiliary particles by expanding d†α = b†n(Fα†)nmfm, where (Fα†)nm = 〈n|d†α|m〉

are the matrix elements of the physical electron creation operator.

This model is equivalent to the slave-boson treatment of the multi-orbital Anderson

impurity model [23, 24], so we can compute the mean-field solution and fluctuations.

At the mean-field level, we replace the bosonic operators by their averages,
〈
b†n
〉2

=

〈bn〉2 ≡ zn which are the probabilities of the f6 atomic states (red bars in Fig. 6.6).

Then, the physical Green’s function is

Gα′α(iω) =
∑

m′n′nm

Fα
′

m′n′(F
α†)nm

√
zn′znG

f
m′m(−iω), (6.3)
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where the auxiliary f propagator and hybridization are

Gf (iω)−1
m′m = (iω − Efm − λ)δm′m + i∆m′m sgnω, (6.4)

∆m′m =
∑
n′nα

Fαm′n′(F
α†)nm

√
zn′zn∆αα, (6.5)

and the hybridization ∆αα′ is approximated as an energy-independent constant. Here, λ

is the Lagrange multiplier used to maintain 〈Q〉 = 1. The crucial minus sign Gfm′m(−iω)

arises because the propagation of a physical electron ∼
〈
d(τ)d†

〉
corresponds to an f -

hole.

In the Kondo regime, the mean-field equations (see Appendix C for an introduction

to the method and detailed derivation of these results) give

TK ' De−
π(〈Eb〉−Ef0 )

∆00/z
∏
m 6=0

(
D

Efm − Ef0

)∆mm/∆00

, (6.6)

where z =
∑

n zn is the total f6 probability and
〈
Eb
〉

= z−1
∑

nE
b
nzn is the weighted

average of the f6 energy levels. We ignored the off-diagonal components of Gfm′m, which

are negligible compared to the diagonal components when |Efm′ −E
f
m| � ∆m′m. In the

Kondo regime, λ ≈ −Ef0 , pinning the lowest f propagator near the Fermi level.

For PuTe, we explicitly evaluate the sum in (6.3) to determine the origin of the

photoemission triplet. Keeping just z0 ≈ 0.20 since the remaining zn are negligible (see

Fig. 6.6), we find that only three matrix elements have significant weight: F
5/2
00 , F

5/2
02

and F
7/2
01 . Again ignoring off-diagonal terms, we find for the physical Green’s function

G5/2(ω) = z0|F 5/2
00 |2Gf00(−ω) + z0|F 5/2

02 |2Gf22(−ω), (6.7)

G7/2(ω) = z0|F 7/2
01 |2Gf11(−ω). (6.8)

The selection rules contained in the matrix elements determine the spin-orbit struc-

ture of the spectrum: G5/2 contains the main peak at the Fermi level and the weaker

peak at −0.9 eV (labeled by brackets in Fig. 6.4), while G7/2 contributes the third

peak at −0.5 eV. Plugging in D = 1.0 eV and ∆5/2 = ∆7/2 = 0.04 eV into (6.6)

gives TK ≈ 500 K in PuTe, so the peaks have sufficient width to be seen in photoe-

mission. Numerical solution of the mean-field equations with a small hybridization
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gap, ∆αα(ω) = ∆αα[θ(ω − Eg) + θ(−ω − Eg)], confirms that for 2Eg . TK, the reso-

nances are not destroyed. Thus, in PuTe, valence fluctuations create three Kondo peaks

in the DMFT quantum impurity with spacings determined by the underlying atomic

multiplets, corresponding to the quasiparticle triplet in the lattice.

Proceeding to PuSb, the decrement in valence allows Pu to fully transfer three

electrons to the pnictogen and exist purely in a trivalent state. Energetically, this is

accomplished by raising the f6 multiplets with respect to the f5 states, inducing a

four-fold increase in
〈
Eb
〉
− Ef0 from 0.5 eV to 2.0 eV. This exponentially suppresses

the Kondo temperature of PuSb to under 1 K, eliminating the Kondo peaks, localizing

the f -electrons and allowing magnetically-ordered states at low temperature.

To explain the Hubbard bands and reflected doublet of peaks above the Fermi level,

we compute corrections to the mean-field solution. These corrections show that the

bare atomic multiplets generate Hubbard bands, which are too broad to be seen in

Fig. 6.4. We emphasize that the photoemission triplet is not directly attributed to

atomic multiplets, but rather to quasiparticles. Additionally, the corrections to mean-

field show that the reflected doublet of peaks arises from overlap of the ground state

Kondo singlet with two excited Kondo singlets (Fig. 6.7). While the ground state is

primarily a singlet formed between f0 and a conduction electron, the two excited states

are singlets formed with f1 and f2 in place of f0. Since the atomic multiplets f1 and f2

lie at energies 0.5 eV and 0.9 eV above f0, the two excited Kondo singlets lie at these

energies as well. To generate the spectrum, an electron is first added to the ground

state singlet to create a photoelectron state (Fig. 6.7d), which is overlapped with the

excited singlets. The overlap is non-zero since all states have an f6 component due to

valence fluctuations, resulting in a doublet of reflected peaks.

6.4 Summary

Our LDA+DMFT calculations account for the complex trends observed in experiment

across the Pu chalcogenides and pnictides. These include the formation of a low-

temperature gap at the Fermi level accompanied by quasiparticle multiplets in the
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Figure 6.7: Valence histograms of states responsible for the predicted doublet of peaks above
the Fermi level in PuTe. Histograms (a)-(c) depict the ground state and two excited Kondo
singlets respectively. All three state have significant f6 weight (arrows) due to strong valence
fluctuations. Histogram (d) is the photoelectron state d†|GS〉 generated by the addition of an
electron to the ground state. Since d† destroys fm and creates b†, the result is a state which is
entirely f6 in character. The large f6 admixture in the excited singlets means they will overlap
strongly with the photoelectron state, giving rise to the doublet of peaks at 0.5 eV and 0.9 eV.

photoemission spectrum. Our theory elucidates the mechanism for the emergence of

the quasiparticle multiplet excitations. These excitations represent the remnants of

the atomic structure in the low-energy spectra, which is entirely described in terms of

quasiparticles. The spectra and f -occupancy confirm that the chalcogenides are corre-

lated low-carrier materials in the mixed-valent regime. The chemistry of the pnictides

increases the cost of fluctuations and renders the pnictides divalent, thereby eliminating

the quasiparticle multiplets.

Our theory has several experimental consequences for the chalcogenides: there

should be a quasiparticle doublet at positive energies 0.5 eV and 0.9 eV which can

be probed by inverse photoemission techniques. Furthermore, the quasiparticle mul-

tiplets can be detected as side-peaks in the optical conductivity, again at 0.5 eV and

0.9 eV. It would be interesting to study the temperature dependence of both the pho-

toemission and optics near the coherence temperature (500 K) as we expect strong

temperature dependence due to the many-body nature of the quasiparticle multiplets.

Finally, the mechanism we outline is fairly general and applies to other correlated mate-

rials, provided the coherence temperature is large enough to be observed and less than

the atomic multiplet splitting.
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Chapter 7

Optical Conductivity in Lanthanum Nickelate Films

The rare-earth nickelates RNiO3 are a well-studied family of perovskites, consisting of

a cubic lattice of nickel ions with an oxygen lying on the edge between each nearest

neighbor pair of nickels (Fig. 7.1). The rare earth ions R are situated at the center of the

nickel cubes. As the Ni-O bond length is fairly rigid, the ionic radius of R determines the

amount of distortion away from a perfect cubic lattice: the Ni-O-Ni bonds cooperatively

buckle to match the volume of the nickel cubes to the space filled by the R ion. This

buckling is quantified by the Goldschmidt tolerance factor t = dR−O/
√

2dNi−O, where

dR−O is the distance between the rare-earth and the nearest oxygen, and dNi−O is the

Ni-O bond length [85]. As the value of t decreases from unity, lattice buckling increases.

Structure has a strong effect on the electronic behavior of the nickelates. As shown

in Fig. 7.2, the RNiO3 family exhibits a metal-insulator transition as a function of

the ionic radius of the rare-earth R or equivalently the tolerance factor t. The nicke-

lates are charge-transfer insulators [86]. The nickelate with the largest rare-earth ion,

LaNiO3, does not exhibit any phase transitions. As the radius of R is decreased, the

conventional physical picture argues that the increase in Ni-O-Ni bond bending de-

creases orbital overlaps, thereby reducing the kinetic energy. The Coulomb repulsion

on the localized 3d orbitals on the nickel sites remains unchanged. Thus the overall

strength of correlations is enhanced, favoring the insulating state and concommitant

charge and spin ordering. In PrNiO3 and NdNiO3, the metal-insulator transition is

concommitant with antiferromagnetic ordering, whereas for the SmNiO3 and beyond,

the metal-insulator transition separates from the magnetic ordering temperature of the
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Figure 7.1: Two views of the perovskite LaNiO3 showing the nickel ions forming a cubic
lattice, surrounded by octahedral cages of oxygens.

Figure 7.2: (left) Phase diagram of the rare-earth nickelates as a function of temperature and
tolerance factor[87]. There is a systemmatic trend with the tolerance factor, or equivalently, the
rare-earth ionic radius. (right) Schematic model describing the metallic and insulating states.

3d electrons.

In some ways, the rare-earth nickelates are more complex than the cuprates be-

cause of orbital degrees of freedom: the 3d7 electronic configuration of the nickel ion

combined with the octahedral environment formed by the oxygen cages implies one

electron will occupy the two eg orbitals. The interplay between the spin, orbital and

structural degrees of freedom in this strongly-correlated family of compounds makes

them a challenge for first-principles modeling, and a stringent test of our DFT+DMFT

implementation.

This chapter contains our contributions to the work published in Refs. [88] and [89].
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Figure 7.3: (left) The resistivity of bulk polycrystalline LaNiO3 shows metallic behavior [92].
(right) Low-temperature zoom of resistivity, plotted as a function of T 2 [92]. The straight line
implies Fermi liquid behavior.

7.1 Introduction

The proposal of superconducting superlattices formed by layering the two perovskites

LaNiO3 and LaAlO3 is an ambitious attempt to engineer novel electronic states [90, 91].

LaAlO3 (LAO) is wide band gap insulator, while LaNiO3 (LNO) is a correlated metal

(Fig. 7.3). Structurally, LNO is similar to the copper-oxide superconductors, but its

electronic state differs in one key respect: it has one electron in two degenerate eg

orbitals. In order to mimic cuprate superconductivity, the proposals call for synthesizing

superlattices of LAO/LNO. The symmetry of the nickel site in LNO is now tetragonal,

breaking the degeneracy between the dx2−y2 and dz2 orbitals. Combined with the lack

of hopping perpendicular to the NiO2 planes in the LNO, since it has been sandwiched

between layers of insulating LAO, the proposal hoped to create a single half-filled

band of 2D electrons in a non-cuprate-based material. Successfully inducing strongly-

correlated superconductivity in the assemblage of two non-superconducting materials

would be a breakthrough.

However, our limited understanding of LNO in isolation hinders the ability to re-

liably predict its behavior in heterostructures. A detailed optical study of this oxide,

combined with realistic first-principles modeling would be of great use. Additionally,

LNO has not been thoroughly characterized in thin-film form. A second, more fun-

damental reason for studying LNO lies in understanding spectral weight transfer in
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strongly-correlated systems [10]. Starting from the insulating side of a metal-insulator

transition, the creation of the low-energy conducting quasiparticles involves the transfer

of spectral weight across many eV of energy. LNO offers a clean system to study this

spectral weight transfer as it does not exhibit any competing spin, charge or structural

orderings.

The experimental data to which we compare our theoretical results are epitax-

ial LNO films grown by pulsed laser deposition, controlled by reflection high-energy

electron diffraction (RHEED) [88, 89]. The films were grown on LaAlO3 (LAO) and

SrTiO3 (STO) substrates, with -1.2% and +1.7% lattice mismatches, respectively. Two

thicknesses of films were grown on both substrates: thick films of height 200 nm, and

ultrathin films of height 12 nm (equivalent to approximately 510 and 30 unit cells

thick, respectively). Optical measurements were performed carried out via variable

angle spectroscopic ellipsometry (VASE) between 20 and 298 K.

The DFT bandstructures were computed within the FP-LAPW scheme [48] using

room temperature bulk LNO structural parameters [93], as well as the strained struc-

tures as determined for LNO epitaxy on STO and LAO [94]. The calculations were

performed on a 9 × 9 × 9 k-space grid with RKMAX set to 9.0, and converged to

0.1 mRy in energy and 0.0005 in charge distance.

Charge self-consistent DFT+DMFT [9] calculations were performed using the im-

plementation described in Ref. [31]. We used U = 7.3 eV and J = 1 eV for the strength

of the Coulomb repulsion on Ni d-orbitals, and Edc = U(nd− 1/2)−J(nd− 1)/2 as the

standard double counting energy, where nd = 7.3 is the average d valence. A range for

J and U was determined based on previous studies of this class of compounds and then

scanned to obtain the best fit to our optics data as well as to ARPES [95] and thermal

measurements [96]. In order to compute the optical conductivity, we analytically con-

tinued the self-energy using modified Gaussians [31] and cross-checked the result with

maximum entropy. The conductivity was then computed using the DFT momentum

matrix elements and convolving the correlated Greens function for all values between

6 eV and 6 eV, relative to the Fermi level.
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Figure 7.4: Resistivity of LaNiO3 thin films deposited on SrTiO3 (STO) and LaAlO3 (LAO).
We note the resistivity of the films are two to three times larger than bulk measurements. Figure
courtesy Ref. [88].

7.2 Optical Conductivity of LNO Films

Resisitivity data of the thick LNO films, plotted in Fig. 7.4 over a wide temperature

range, show metallic behavior similar to the bulk polycrystalline samples. The 100-

200 nm thick films are expected to be essentially strain-free, while the ultrathin films

are expected to be coherently strained due to the lattice mismatch with the substrate.

For these thick films, we find the LNO films on LAO to be more metallic than those on

STO.

To probe the electronic structure, the optical conductivity σ(ω) was measured, which

is related to the complex dielectric function via ε(ω) = 1− 4πσ(ω)/iω. The real (dissi-

pative) part of the conductivity measured at room temperature is plotted in Fig. 7.5.

The most surprising aspect is the lack of a well-defined Drude peak, considering the

metallic transport of LNO. The main features above 1 eV, which have been labeled

B-E, vary little across the films. However, the mid-infrared feature A exhibits stronger

variation, presumably due to strain at the interface, even though the majority of the

200 nm thick film should be relaxed. The broad peaks centered at ≈ 300 cm−1 are due

to phonons.
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Figure 7.5: (left) Real part of the optical conductivity for three different thick LNO films
measured at T = 298 K. The inset shows a rough sketch of the LNO density of states and
interband transitions contributing to various observed peaks. (right) Partial density of states
for LNO computed using DFT for bulk lattice parameters. The inset shows a comparison
between the DFT optics as compared to the curve measured on the 100 nm LNO film on STO.
The film shows a distinct lack of a Drude peak, in contrast to the DFT results. The sharp peaks
observed at ≈ 0.05 eV are due to phonons. Figure courtesy Ref. [88].

We turn to DFT calculations to assist our understanding. In right panel of Fig. 7.5,

we plot the calculated LDA partial density of states. At the Fermi level, there is a finite

density of states arising from bands of nickel eg character, so we expect a robust Drude

peak. The inset in Fig. 7.5 shows a comparison between the calculated DFT optics

and experiment. The agreement at energies above ≈ 2 eV is acceptable. Decomposing

the optical transitions between filled and unfilled states, we attempt to assign features

B-D in Fig. 7.5 (left) to specific interband transitions. We suggest that B corresponds

to transitions from the Ni t∗2g and e∗g levels to the Ni e∗g orbitals. C could be due to

transitions from the O 2p to the e∗g orbitals. D and E may be the result of transitions

from t∗2g to the La 4f and 5d levels and from the bonding Ni eg and t2g orbitals to the e∗g

orbitals. However, there are strong deviations at low energies: DFT does not capture

feature labeled A and produces a strong Drude peak, in contrast to experiment. These

mismatches suggest correlations play an important role in LNO, and that methods such

as DFT+DMFT, which capture the spectral weight rearrangement caused by electronic

interactions, must be used for realistic descriptions.
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7.3 Temperature-Dependence of Spectral Weight Transfer

In an effort to reduce the amount of structural defects due to the relaxation of the

epitaxial strain, and to compare with the ostensibly “bulk” nature of the thick films,

ultrathin samples of LNO on LAO and STO were synthesized [89]. The DFT+DMFT

calculations have a better chance of good agreement with the optics measured on these

cleaner, fully strained samples.

We show in Fig. 7.6 the real part of the optical conductivity for the ultrathin LNO

samples grown on LAO and STO respectively (plotted on a log-log scale). In both films,

a clear Drude peak characteristic of metals is visible. Four peaks A-D were observed,

in agreement with the thick films. Additionally, an enhancement in the spectral weight

under the Drude peak is observed as the temperature is lowered. In order to quantify the

origin of this spectral weight transfer, the ratio of the low-temperature optics curves

to the curve at room temperature was plotted. It was concluded that much of the

weight is transferred from feature C located at 2 to 3 eV into the Drude peak as the

temperature is lowered. The area under the Drude peak measures the kinetic energy

Kexp of the conducting electrons. In the inset in Fig. 7.8, the extracted kinetic energies

for the two thick (bulk) films as well as the two thin films is plotted. We find that both

compressive (LAO) and tensile (STO) epitaxial strain enhances the weight under the

Drude peak.

These results pose a challenge for first-principles methods. In Fig. 7.7, we plot the

electronic spectral function A(k, ω) for LNO computed using DFT+DMFT for bulk

lattice parameters at 116 K. This quantity is directly probed in ARPES measurements,

and gives valuable insight into the optical properties. The DFT+DMFT spectrum is

strongly rearranged and broadened as compared to the bare LDA bandstructure. The

nickel eg bands, which cross the Fermi level, are broadened at higher energies, but

remain sharp near the Fermi level. Thus we expect a robust, but reduced, Drude peak.

Due to the renormalization factor Z ≈ 1/2 to 1/3, the eg bands are compressed, which

we expect to cause peaks A and B to shift downwards in energy. The strong broadening

of the t2g and oxygen 2p bands will cause the higher-energy features C-E to become
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Figure 7.6: (left) Real part of the optical conductivity for LNO on LAO and STO, at four
different temperatures. There is a clear Drude peak, which shows enhancement with the decrease
in temperature. We show in the inset the interband transitions contributing to the features A-D,
in agreement with the thick films (Fig. 7.5). The peaks at ≈ 0.04 eV are phonons. (right) Ratio
of real part of optical conductivity at low temperatures to the curve at T = 298 K for LNO films
on LAO and STO. This plot shows the spectral weight transfer from high energies, especially
feature C, to the Drude peak, as the temperature is lowered. Figures courtesy Ref. [89].

much less sharp.

In Fig. 7.8, we plot the DFT+DMFT optical conductivity. DFT+DMFT provides

a more accurate description of our experimental data than LDA. In particular, feature

A is not evident in the LDA σ1(ω) but is present in the DFT+DMFT results. The

two peaks seen at 1 eV and 1.5 eV (A and B, respectively) in LDA shift to lower

energy when correlations are included in DFT+DMFT, resulting in better agreement

with experiment. In this picture, feature A is due to interband transitions from the

t∗2g and e∗g orbitals. A redshift of feature C is also evident in DFT+DMFT, consistent

with the scenario in which electronic correlations suppress the energy of interband

transitions due to the quasiparticle renormalization. We note that even though the

DFT+DMFT results reproduce the key experimental trends, the agreement is less than

perfect. This is not surprising given that optics is one of the most challenging probes to

match well theoretically. This is because the description of the optics data relies on the

convolution of two Green’s functions, which in turn is very sensitive to any small errors

in the individual Green’s functions. However, DFT+DMFT undoubtedly brings the

bare LDA integrated spectral weight SW into better agreement with experiment. As
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Figure 7.7: The spectral function A(k, ω) for LaNiO3 computed using DFT+DMFT for bulk
lattice parameters at T = 116 K. The thin lines are the bare DFT bands. See text for description.

shown in Fig. 7.8 (bottom), DFT+DMFT transfers weight to higher energies, resulting

in a ratio SWexp/SWDMFT closer to unity.

The temperature dependence of the spectral weight transfer is also poses a challenge

for theory. We display in Fig. 7.9 the temperature dependence of the computed optics

curves. In contrast to experiment, we find that most of the spectral weight transfer

occurs between the low-energy feature A and the Drude peak, rather than the higher

interband peak C. Additionally, for the curves on STO, we observe that feature C fills

in with the decrease in temperature, in opposition to experimental observations. We

conclude that further studies are necessary to understand the temperature dependence

of optical weight transfer in realistic models.

Returning to the Drude peak itself, one possible way to reconcile presence of a

Drude peak in the ultrathin samples, but its absence in the thick samples is to point to

sample morphology. In Fig. 7.10, we depict an educated guess regarding the structure of

the LNO films. In thick films, the relaxation of epitaxial strain drives the formation of
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Figure 7.8: (top) Real part of the optical conductivity for an ultrathin 12 nm LNO film
(compressively strained) on LAO substrate. Plotted for comparison are the computed LDA
and LDA+DMFT optical conductivities. LDA+DMFT provides a better match to the features
and spectral weight within the Drude peak. (inset) Electronic kinetic energy as determined by
integrating under the Drude peak. (bottom) Ratio of integrated spectral weight obtained in
experiment to the theoretically calculated weight in LDA and DFT+DMFT. Figure courtesy
Ref. [89].

Figure 7.9: Temperature dependence of the optical conductivity of LNO on LAO (left) and
STO (right) computed using DFT+DMFT. We find that the transfer of spectral weight is mostly
between the Drude peak and the low-lying feature A, rather than with peak C as observed in
experiment.
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Figure 7.10: An educated guess regarding the structure of the thick (left) and ultrathin
(right) LNO films. In thick films, the relaxation of epitaxial strain drives the formation of
defects, causing poor electronic conduction and a large scattering rate of the Drude peak in the
optical conductivity. In the thin films, the lack of defects due to strain relaxation gives good
conductivity and a sharper Drude peak.

defects, causing poor electronic conduction and a large scattering rate of the Drude peak

in the optical conductivity. In fact, there should be varying scattering rates since optics

is a bulk-averaging probe. For the ultrathin films, the LNO film is coherently strained.

The lack of defects due to strain relaxation implies a much sharper Drude peak. A

possible test of this hypothesis is to compare the thick versus the ultrathin samples.

We should find the Drude weight is only broadened about zero frequency, and not

shifted to higher energies, but this comparison is difficult across sample preparations.

7.4 Summary

The optical conductivity of LNO films of varying thicknesses was measured on two dif-

ferent substrates: LAO and STO. The thick films, which are ostensibly fully relaxed,

show no Drude peak, while the fully strained thin films exhibit enhanced metallicity

and a clear Drude peak. The strong correlations present in the films cause spectral

weight transfer over several eV of energy, which require many-body methods for ac-

curate description. DFT+DMFT provides a satisfactory model of the higher energy

features, above ≈ 1 eV, but there are discrepancies at low energies and in temperature

trends. Considerations of sample disorder, the choice of orbitals within DFT+DMFT

and double-counting corrections could help improve the agreement between theory and

experiment.
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Chapter 8

Correlating Superconducting Transition

Temperatures in Hole-Doped Cuprates with the

Charge-Transfer Energy

Superconductivity is a remarkable quantum state of matter some materials enter when

cooled below a transition temperature, known as the critical temperature Tc. Depending

on the material, the critical temperatures range from millikelvin to over 130 K. In

terms of transport, the state is characterized by zero electrical resistivity, making them

natural candidates for technological applications. However, even more remarkable is the

thermodynamic property known as the Meissner effect: a superconducter completely

expels magnetic fields below its transition temperature, even if the sample is cooled

in-field (Fig. 8.1).

The history of superconductivity began with the discovery in 1911 by Kamerlingh

Onnes that elemental mercury became superconducting at 4.2 K. The transition tem-

peratures of these “conventional” superconductors inched upwards with the synthesis

of simple binary metals (Fig. 8.1). The development of the BCS theory in 1957 [98]

led to a firm microscopic understanding of conventional superconductors, showing that

the interaction between electrons and phonons glued pairs of electrons together into

Cooper pairs. It was believed that Tc’s could never rise far above 30 K. In 1986, Bed-

norz and Müller discovered a new class of superconductors based on strongly-correlated

transition metal oxides with complicated stoichiometries and materials chemistry [99].



85

Figure 8.1: (left) Superconductors completely expel (quasi-static) magnetic fields, a phenom-
ena termed the Meissner effect (image courtesy Wikipedia). (right) The trend of superconduct-
ing transition temperatures versus the year of discovery. The conventional superconductors,
well-described by the BCS theory, show a slow upward trend stretching a century. In contrast,
the high-temperature superconductors were first discovered in 1986, and in the time-span of a
few years, their transition temperatures were pushed to above 130 K, but have not increased
much further ever since. Figure courtesy Ref. [97].

In the span of a few years, the transition temperatures in these high-temperature su-

perconductors jumped to over 130 K, above the boiling temperature of liquid nitrogen.

However, the transition temperatures have not risen much in the intervening quarter

of a century, and a concensus in theoretical understanding has likewise been slow to

emerge.

The superconducting cuprates derive from a group of insulating, antiferromagnetic

parent compounds. As explained in Fig. 8.3, the strength of electronic correlations in

the cuprates is controlled by the the charge-transfer energy. The copper ions in the

CuO2 planes are divalent, adopting a 3d9 configuration, leaving one hole per Cu site.

The copper atoms are surrounded by a tetragonally distorted oxygen cage, so group

theoretical arguments combined with electrostatics of the negative oxygen ions imply

the hole in the d-shell must reside in the eg orbitals. The combination of crystal field

splittings and the lack of orbital overlaps along the c-axis lowers the 3dz2 orbital below

the Fermi level, rendering it fully filled by electrons. The hole resides in the half-

filled 3dx2−y2 orbital, which hybridizes strongly with the in-plane oxygens. In these

parent compounds, the lattice of S = 1/2 holes are localized due to the strong coulomb

repulsion, and orders antiferromagnetically. The planes of CuO2 planes are separated



86

Cu

O

O

Figure 8.2: (left) The cuprates are layered compounds, containing square CuO2 planes sepa-
rated by spacer layers, generally composed of rare earth elements. The Cooper pairs responsible
for superconductivity reside in the CuO2 planes, which are the common structural motif across
all members of the cuprate family. The spacer layers distinguish one cuprate from another, and
their chemical properties tune the transition temperatures. (right) A vertical view of one CuO2

plane, showing the square lattice of coppers, with the oxygens lying on the bonds.

by spacer layers, usually containing rare-earth elements.

Chemical doping p tunes through the cuprate phase diagram, as shown in Fig. 8.4.

The doping is accomplished by varying the chemical composition of the spacer lay-

ers. Pushing the valence of the copper in the CuO2 planes away from the integer 3d9

valence results in suppression of antiferromagnetic order and produces a dome of su-

perconductivity in the doping-temperature phase diagram. Further doping produces a

Fermi liquid. Doping with holes (p > 0) produces a much larger region of superconduc-

tivity than doping with electrons, as well as a finite-temperature phase known as the

pseudogap, which exhibits various anomalous properties.

There is no universally accepted low-energy theory of cuprate superconductivity.

However, since modern electronic structure methods can realistically capture interme-

diate energy scales (at the level of chemical bonding), we can approach the problem

semi-empirically. In this work, we use first-principles calculations to extract two essen-

tial microscopic parameters, the charge-transfer energy and the inter-cell oxygen-oxygen

hopping, which correlate with the maximum superconducting transition temperature

Tc,max across the cuprates. We explore the superconducting state in the three-band

model of the copper-oxygen planes using cluster Dynamical Mean-Field Theory. We

find that the variation in the charge-transfer energy largely accounts for the empirical
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Figure 8.3: The cuprates are charge-transfer insulators (CTI), not Mott insulators (MI).
In transition metal oxides, the presence of two different chemical species introduces a new
energy scale in addition to the Coulomb repulsion U which controls the strength of electronic
correlations: the relative energy level alignment between the transition metal 3d orbital εd
and the oxygen 2p orbital εp. In Mott insulators, U is the smallest energy scale, the lowest-
energy excitation is between the lower and upper Hubbard bands on the 3d site. In contrast,
when εd − εp < U , the hopping of charge between the two chemical species is the lowest-
energy excitation, termed a charge-transfer process, which controls the strength of electronic
correlations. Image courtesy of Ref. [100].

Figure 8.4: General doping-temperature phase diagram of the cuprate superconductors, show-
ing the antiferromagnetic, superconducting and metallic phases [101]. Arrows mark the doping
ranges experimentally accessible for various compounds.
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trend in Tc,max, resolving a long-standing contradiction with theoretical calculations.

8.1 Introduction

Despite an immense body of theoretical and experimental work, we have limited micro-

scopic insights of which materials-specific parameters govern the trends in the maximum

transition temperature Tc,max across the copper oxide superconductors. Structurally,

all the cuprate families have in common CuO2 planes which support superconductivity.

They are described by the chemical formula XSn−1(CuO2)n, where n CuO2 planes are

interleaved with n − 1 spacer layers S to form a multi-layer. These multi-layers are

then stacked along the c-axis, separated by a different spacer layer X. Empirically, it

is known that Tc,max is strongly materials-dependent, ranging from 40 K in La2CuO4

to 138 K in HgBa2Ca2Cu3O8. Additionally, Tc,max can be tuned both as a function of

doping and the number n of CuO2 planes.

Studies linking the known empirical trends to microscopics have generally estab-

lished that the properties of the apical atoms (O, F or Cl, depending on the cuprate

family) are the relevant materials-dependent parameters. However, conclusions vary

regarding their effects on electronic properties, especially in multi-layer cuprates where

not all CuO2 have apical atoms. Early theoretical work by Ohta, et. al., found corre-

lations between Tc and the Madelung potential of the apical oxygen, arguing that the

apical potential controls the stability of the Zhang-Rice singlets [102]. They conclude

that d apical
Cu−O, the distance between the Cu and apical O, is uncorrelated with super-

conductivity. In a more recent DFT study, Pavarini, et. al., argue that d apical
Cu−O tunes

between the single-layer cuprate families, affecting the electronic structure primarily

via the one-electron part of the Hamiltonian [103]. Moving the apical oxygens away

from the copper oxide plane allows stronger coupling of in-plane O 2p orbitals to the

Cu 4s, enhancing the strength of longer ranged hoppings. This effect is characterized

by the increase of a range parameter r ∼ t′/t, describing the relative strength of the

next-nearest neighbor hopping t′ to nearest neighbor hopping t in a one-band model.

They find that materials with larger r have larger Tc,max. Many-body corrections to t′

were included by Yin, et. al. [104].
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Figure 8.5: Parameters of the three-band p-d model for the CuO2 planes in the cuprate
superconductors. We show the two shortest-ranged oxygen-oxygen hoppings tpp and tpp′ , and
the on-site energies εd and εp.

The development of cluster Dynamical Mean-Field Theory (c-DMFT) combined

with first-principles calculations (for reviews, see [105, 17]) has advanced our qualitative

and quantitative understanding of the cuprates [106, 107]. A satisfactory description of

these materials at intermediate energy scales has been achieved, and the consensus is

that the cuprates lie in the regime of intermediate correlation strength [108, 109, 110,

111] near the Zaanen-Sawatzky-Allen (ZSA) boundary [86]. However, all numerical

studies [112, 113, 114] contradict the empirical trend of Tc,max with the range parameter

r.

In this work, we address the origin of the variation of the experimental Tc,max across

the cuprates using recent advances in electronic structure methods. We carry out

first-principles calculations of the hole-doped cuprates, extract chemical parameters

by downfolding to the 3-band p-d model, and correlate them against Tc,max. Using

c-DMFT, we explore the superconducting state and identify which parameter is the

key driver of transition temperatures, resolving the conflict between numerics and the

empirical findings of Ref. [103]. We conclude with suggestions for possible improvements

in materials design to reach higher critical temperatures.
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Figure 8.6: In single-layer cuprates, increasing the apical oxygen distance reduces the charge-
transfer energy.

8.2 Extracting Chemical Parameters and Identifying Correla-

tions

Effective low-energy hamiltonians containing the minimal set of bands are important

tools for understanding chemical trends. We use the Wien2K code [48] to perform Lin-

earized Augmented Plane Wave (LAPW) calculations on all major copper oxide fam-

ilies, and then extract model hamiltonian parameters by downfolding [115] to orbitals

constructed in the manner described in Ref. [31]. In this work, we choose to downfold to

a 3-band hamiltonian describing the in-plane Cu-3dx2−y2 and O-2p orbitals (Fig. 8.5).

We believe four parameters capture the essential physics: the charge-transfer energy

εd−εp between the Cu and O atoms, the direct Cu-O hopping tpd and the two shortest-

ranged O-O hoppings tpp, and tpp′ . The extracted values are tabulated in Table D.1 in

Appendix D.

We find that only two parameters, εd − εp and tpp′ , vary significantly across the

cuprates. Although not crucial for our subsequent work, one would like to have a simple

structural explanation for these trends. For the single-layer cuprates, the variation can

be directly connected to d apical
Cu−O (also tabulated in Table I). As we bring the negatively-

charged apical oxygen towards the CuO plane, the resulting electrostatic repulsion

suppresses the hopping tpp′ , since tpp′ describes transitions of electrons past the Cu site,
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and provides justification for fact that tpp′ is smaller than tpp [112]. This mechanism for

the dependence of hoppings on d apical
Cu−O has been pointed out in Ref. [103] for one-band

models. However, we show in Fig. 8.6 that the electrostatic repulsion simultaneously

increases εd−εp by rendering it costly to place an electron on the Cu site. These simple

structural trends are less clear for multi-layer cuprates, where additional variables such

as the inter-layer distance introduce additional complexity.

Having identified the two relevant parameters, we plot Tc,max against these quantities

in Fig. 8.7a and Fig. 8.7b to identify possible correlations. Beginning with La2CuO4

(LSCO), the limiting case among the cuprates since it has the largest εd − εp as well

as the smallest tpp′ , the figures show that both (i) decreasing εd− εp and (ii) increasing

tpp′ correlates with a enhanced Tc,max. To map our results to the one-band Hubbard

model, we integrate out the oxygen orbitals to extract the range-parameter r ∼ t′/t

(shown in Fig. 8.7c), and use the fact that the effective one-band correlation strength

is controlled by εd − εp in charge-transfer materials [116]. Our results show that both

the correlation strength and range parameter vary significantly across the cuprates, in

contrast with Ref. [103] which focused only on the latter.

8.3 Calculating Transition Temperatures Using Cluster-DMFT

In order to clarify how the identified microscopic parameters control Tc,max, we use

c-DMFT in the cellular form [105, 17] with a 2 × 2 cluster of impurities to solve the

downfolded three-band model. The non-local self-energy in c-DMFT captures the short-

ranged correlations which are crucial to describe d-wave superconductivity. Since the

fermionic minus sign problem prevents impurity solvers based on quantum monte carlo

from accessing the low-temperature superconducting regime, we use finite-temperature

exact diagonalization (ED) at T = 30 K as the impurity solver [117]. In this work, we

extend previous c-DMFT calculations of the one-band model [113, 118] to the three-

band model, with realistic parameters obtained from first-principles calculations. The

refinement captures the admixture of the Cu and O character near the Fermi level via a

bath representing both the Cu and O degrees of freedom in the DMFT self-consistency

condition.
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Figure 8.7: Correlations of Tc,max in the copper oxides with the microscopic parameters of the
three-band model Hamiltonian with (a) the charge-transfer energy εd − εp (b) the next-nearest
neighbor oxygen-oxygen hopping tpp′ (c) the effective one-band range parameter r ∼ t′/t. The
trend of the dependence of the one-band range parameter agrees with Ref. [103].
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The three-band hamiltonian we treat with c-DMFT is as follows:

H =
∑
iαjβσ

tαβij c
†
iασcjβσ +

∑
iασ

εαniασ + Udd
∑
iσ

nid↑nid↓

where i, j run over the in-plane CuO2 unit cells, α, β label the orbitals px, py and

dx2−y2 , and σ is the electron spin. The hoppings tαβij and onsite energies εα are those

sketched in Fig. 8.5, except for the d-orbital onsite energy, where we subtract out a

doping- and material-independent double-counting correction Edc to account for corre-

lations included in both LDA and DMFT. The atomic double-counting [39], which is

very successful for all-electron DFT+DMFT [31], cannot be used because the Wannier

functions of the three-band model significantly depart from the atomic wavefunctions.

To determine Edc for the Wannier representation, we match the low-energy Matsubara

Green’s function of the three-band model to the corresponding quantity in the ab initio

all-electron calculation (see Fig. D.2). A good match was attained for Edc = 3.12 eV

for an dx2−y2 on-site Coulomb repulsion of Udd = 8 eV.

To test our method, we use the extracted parameters for the canonical cuprate

LSCO and explore the T = 0 phase diagram as a function of doping. Our results,

shown in Fig. 8.8, are qualitatively similar to experiment. The calculations stabilize

antiferromagnetism for low dopings x < 0.05, which gives way to a dome of d-wave

superconductivity. The static order parameter ∆ = 〈〈c1c2〉〉τ=0, where 1 and 2 are

nearest neighbor sites on the impurity plaquette, reaches a maximum ∆max near x ∼

0.13. We take the magnitude of ∆max as a proxy for the maximum superconducting

temperature Tc,max. The zero-frequency limit of the anomalous self-energy Σan is an

additional indicator of superconductivity, which our results show qualitatively follows

the magnitude of the order parameter.

We argue that although two independent low-energy parameters correlate with the

experimental Tc,max, it is the charge-transfer energy that controls the variation in ∆max,

and thus Tc,max, across the cuprate families. To address this issue, we take the most

correlated cuprate, LSCO, and compute ∆max as we either (i) decrease εd−εp or (ii) in-

crease tpp′ . Fig. 8.9a shows that reducing the correlation strength for fixed tpp′ enhances

the order parameter ∆, in agreement with the empirical trend in Fig. 8.7a. However,
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Figure 8.8: Calculated doping dependence for LSCO of the staggered magnetization Sz =
1
2 (n↑ − n↓) and static d-wave superconducting order parameter ∆ ∼ 〈cc〉τ=0. We plot 10∆ to
fit it on the same scale as Sz. Optimal superconducting strength ∆max is obtained for doping
xopt ≈ 0.13. The real part of the anomalous self-energy Re Σan(ω = 0) follows qualitatively the
order parameter ∆. The calculations were performed at T = 30 K with c-DMFT and an ED
impurity solver, using an 8-site discretization of the bath.

Fig. 8.9b shows that increasing tpp′ across the physical parameter regime hardly mod-

ifies ∆max, in contrast with the empirical trend in Fig. 8.7b. Further increasing tpp′

to larger, unphysical values strongly suppresses Tc,max. Thus, our calculations sup-

port the hypothesis that a larger hopping range r suppresses Tc,max, in agreement with

calculations on the one-band [113, 114] and three-band [112] models.

The dependence of Tc,max on the two controlled parameters can be simply ratio-

nalized. For εd − εp, its large value in the strong correlation limit suppresses charge-

fluctuations, rendering the residual superexchange interaction between the doped holes

weak, resulting in low superconducting temperatures. As we decrease εd − εp, super-

conducting tendencies increase as we pass through the intermediate correlation regime,

until we reach the weak correlation limit. Although the ground state of the 3-band

model for large Udd and εd − εp ∼ 0 has not been rigorously established, we expect the

large kinetic energy to suppress the effective interactions and thus superconductivity.

Thus, we believe intermediate correlation strengths, a regime intimately related to the

charge-transfer metal-to-insulator transition, is a crucial ingrediate for cuprate super-

conductivity. Turning to tpp′ , we find that increasing this hopping amplitude lowers
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Figure 8.9: Optimal superconducting order parameter ∆max of LSCO as we (a) decrease the
charge-transfer energy εd − εp and (b) increase oxygen-oxygen hopping tpp′ . Shaded are the
physical ranges spanned by the cuprate families.

the van Hove singularity at (0, π) away from the Fermi level. The resulting decrease in

density of states suppresses Tc, an effect which simple methods capture [119].

8.4 Summary

We have used electronic structure methods to identify the dependence of Tc,max on two

fundamental parameters: the charge-transfer energy εd−εp and inter-cell oxygen-oxygen

hopping tpp′ . We find that the position of the apical oxygen tunes both parameters, but

the strength of superconductivity, ∆max, is mainly sensitive to εd−εp. We expect future
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refinements to explain the remaining variability in Tc,max. Our work provides a nat-

ural interpretation of experiments where epitaxial compression in LSCO resulted in a

remarkable enhancement of Tc [120]. Epitaxy increases d apical
Cu−O and thus reduces εd− εp.

Furthermore, our result provides microscopic insight into the multi-layer cuprates, such

as Bi-2223: in addition to layer-dependent doping [121], the smaller value of the charge-

transfer energy in the outer layers may explain the enhancement of superconductivity

in the outer layers. It has been suggested theoretically and demonstrated experimen-

tally [122] that proximity to a metallic layer reduces the charge-transfer energy. Using

this principle in heterostructure design should result in even higher transition temper-

atures.
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Chapter 9

Engineering the Charge-Transfer Energy in

Cuprates

The work in Chapter 8 generated a clear direction for enhancing the superconducting

transition temperatures of the cuprates: decrease the charge-transfer energy. In this

chapter, we show that chemical substitution, combined with strain, allows the charge-

transfer energy in hole-doped cuprates to be broadly tuned. We theoretically charac-

terize the structural and electronic properties of the family of compounds R2CuO2S2,

constructed by sulfur replacement of the apical oxygens and rare earth substitutions

in the parent cuprate La2CuO4. Additionally, the enthalpies of formation for possible

synthesis pathways are determined.

9.1 Introduction

In weakly correlated systems, analytic and computational tools, such as density func-

tional theory (DFT), have achieved a level of control where one can reasonably contem-

plate materials design [123, 124]. The corresponding methods for strongly-correlated

systems have not reached similar levels of accuracy. Nevertheless, materials design of

correlated systems is still valuable as a tool to test our physical understanding and,

should the materials be synthesized, provide experimental feedback to accelerate devel-

opment of theoretical techniques.

The high-temperature cuprate superconductors have the highest transition temper-

atures known, but despite intense theoretical and experimental study, we have limited
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first-principles understanding of the chemical parameters controlling these transition

temperatures. Recently, based on a systemmatic ab initio study of the cuprates [125],

we proposed that the charge-transfer energy εd−εp controls the trends in the maximum

superconducting transition temperature Tc,max. Since the cuprates are charge-transfer

materials, εd − εp controls the strength of correlations. We found that starting with

the most correlated cuprate La2CuO4, decreasing the strength of correlations enhances

Tc,max. A differing conclusion was reached by Sakakibara, et. al., who concluded that

the reducing the mixture of the Cu dz2 orbital with the in-plane dx2−y2 orbital en-

hanced Tc,max [126, 127]. These studies pose a challenge for materials design to test

their theoretical proposals.

In this work, we focus on our hypothesis regarding the charge-transfer energy and

propose a family of hypothetical cuprate superconductors based on La2CuO2 to tune

εd − εp. We show that chemical substitution of the apical oxygens by sulfur produces

sufficiently large effects in εd−εp to warrant careful study. We then examine the question

of structure, performing necessary checks on the stability of the proposed compounds

and related synthesis pathways.

9.2 Chemical Tuning of the Charge-Transfer Energy

We choose the T -type layered perovskite La2CuO4 (LCO) as our structural starting

point. This single-layered cuprate is well-studied, supports a broad range of doping,

and exhibits the largest charge-transfer energy of all the hole-doped cuprates. Guided

by the intuition that the larger, more covalent, apical ions would decrease εd − εp, we

replace the apical oxygens in LCO with sulfur to form the copper oxysulfide La2CuO2S2.

Due to the larger ionic radii of sulfur as compared to oxygen, we expect the LaS charge

reservoir layers to be crowded. To compensate for this large sulfur in the charge reservoir

layers, we explore the effect substitution of the large La ion with smaller trivalent

ions R =Y, Lu, Sc, Ga. We structurally relax, within a single unit cell, the entire

family of copper oxysulfides R2CuO2S2. We used the VASP [128, 129, 130, 130] density

functional software package with PAW potentials [131, 132]. Finally, we extract εd− εp
by performing a full-potential calculation on the relaxed structure using Wien2K [48],
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Figure 9.1: Plot of the charge-transfer energy (εd − εp) vs. the apical atom distance from

the CuO2 plane (d apical
Cu−O) for the family of hypothetical copper oxysulfides R2CuO2S2 (squares)

and the parent compound La2CuO4 (circle). The oxysulfides are formed by the substitution
of apical oxygens by sulfur (arrows in inset figure of crystal structure). Chemical substitution
allows us to span nearly the entire range of charge-transfer energies (shaded bar) found in the
cuprates.

then downfolding [115] to orbitals constructed in the manner described in Ref. [31].

The charge-transfer energies for the parent compound La2CuO4 and the family of

hypothetical oxysulfides R2CuO2S2 are shown in Fig. 9.1. The substitution of sulfur

alone, leaving the La ion unmodified, decreases the charge-transfer energy by 0.6 eV,

a significant reduction given that εd − εp spans a range of 1.4 eV across all cuprate

families. If no competing electronic or structural orders are introduced, we predict

La2CuO2S2 to have a higher superconducting transition temperature than LCO (which

has a Tc,max of 38 K). Further substitution of La by trivalent cations of varying ionic

radii allows us to span nearly the entire range of charge-transfer energies found in the

cuprates. Näıvely, the Ga analogue should have the highest Tc,max, since it has the

smallest εd− εp. Additionally, we find that the apical atom distance d apical
Cu−O is increased
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Figure 9.2: Fully relaxed conventional cell lattice parameters for R2CuO2S2 family of com-
pounds (squares) as compared to La2CuO4 (dot). Sulfur substitution increases both the a and
c lattice parameters. The trend is accounted for by the decrease in ionic radii of the cation
(La→Y→Lu→Sc→Ga), with La having the largest radius. The dotted line is a guide to the
eye.

by as much as 0.2 Åin the oxysulfides, due to the large size of sulfur.

The structural effects of the sulfur and rare-earth substitutions can be rationalized

entirely due to trends in ionic radii, as shown via a scatter plot of the a- and c-axis

lattice constants of the proposed compounds (Fig. 9.2). The ionic radius of sulfur is

greater than that of oxygen by 0.4 Å, a significant amount. Apical sulfur substitution

alone enhances the c-axis length by over 1.5 Årelative to the parent compound LCO, in

agreement with the fact that there are four sulfur layers in the conventional cell, giving

∆c ≈ 4×0.4 Å. This chemically induced strain may be beneficial for superconductivity

since it is known uniaxial compression strongly suppresses Tc in La2CuO4 [133], a

point we will subsequently address. In contrast, the in-plane constant exhibits only a

slight expansion by 0.2 Å, due to the restraining effect of the stiff Cu-O bonds. The

subsequent rare-earth substitutions in the oxysulfides drive a clear structural trend,

with both lattice parameters contracting in parallel with the decreasing ionic radius

of the rare-earth ion R. The same trend is experimentally observed in the T ′-type

R2CuO4 family [134].
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Figure 9.3: (top) Two structural modifications which tune the charge transfer energy of
La2CuO4: (dots) uniform c-axis strain, and (squares) tweaking only the apical oxygen position

d apical
Cu−O with all other atoms held fixed. We place both curves on the same plot since uniform

strain also changes the apical distance. The dotted line denotes the equilibrium d apical
Cu−O. We

find that εd− εp decreases as the apical oxygen is pulled away from the CuO2 plane. The effects
due to the Madelung potential, as indicated by the difference between the two curves, is the
same order of magnitude as crystal fields. Noting the vertical scale, pressure has a relatively
small effect compared to chemical substitution. (bottom) The same plot for La2CuO2S2. We
find the opposite trend, that εd− εp increases as the apical sulfur is pulled away from the CuO2

plane.
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In order to disentangle the structural contributions driving variations in the charge-

transfer energy, we track the change in εd−εp as we (1) vary the c-axis parameter, mod-

eling uniform uniaxial strain and (2) vary d apical
Cu−O alone with all other atomic positions

fixed. The difference in the resultant εd−εp between these two structural configurations

provides a rough proxy for the magnitude of effects due to the Madelung potential as

compared to the local crystal fields generated in part by the apical atom. For the par-

ent compound LCO (Fig. 9.3 top), c-axis compression enhances εd − εp. This increase

in correlation strength provides a natural explanation for the observed suppression of

superconductivity with uniaxial pressure [133]. Modifying d apical
Cu−O alone has a similar,

albeit smaller, effect. The difference between the two curves is of the same magnitude

as the total shifts in εd− εp, so we conclude that crystal fields and Madelung potentials

have similar energy scales, making first-principles calculations necessary for quantita-

tive insight. In comparison, strain has the opposite effect in the hypothetical compound

La2CuO2S2 (Fig. 9.3 bottom), with c-axis compression driving a reduction in εd − εp.

Thus, Tc,max should be observed to trend in the opposite direction as compared to the

parent compound.

9.3 Structural and Thermodynamic Stability

Finally, we check the structural and thermodynamic stability of the hypothetical oxy-

sulfides. Determining the lowest-energy structure of a general multi-element compound

is extremely challenging, and the checks we perform are by no means exhaustive. How-

ever, guided by knowledge of typical competing phases and structural distortions, we

show the R2CuO2S2 family passes several basic criteria for stability.

In La2CuO4, when the large La ion is replaced by the smaller Nd and Pr atoms, the

oxygens in the rock-salt LaO layers in the T -type structure tend to be unstable towards

rearrangement into the fluorite structure, forming the T ′-type structure associated with

the electron-doped cuprates [135]. We check whether our T -type oxysulfides are locally

stable against distortion into the T ′-type structure by performing a full structural re-

laxation in a 2×2×1 supercell with no symmetry constraints. We choose Sc2CuO2S2

as a representative compound, since we believe that the smaller Sc cation will help



103

Figure 9.4: Octahedral rotations in Sc2CuO2S2 as shown by (a) a view along the a-axis, and
(b) a section of the CuO2 plane. We structurally relaxed a 2×2×1 supercell with no symmetry
constraints. While there is no out-of-plane buckling of the Cu-O bonds, the small Sc ion causes
strong in-plane rotations of the octahedral cages (denoted a0a0c−p in Glazer notation). The
compound remains in the tetragonal T -type phase.

create room for the large sulfur anion. The resultant structure (Fig. 9.4) shows strong

octahedral rotations along the c-axis, denoted a0a0c−p in Glazer notation [136]. Per-

ovskite structures often exhibit octahedral rotations when the Goldschmidt tolerance

factor t = (rA + rO)/
√

2(rB + rO) is less than unity as the octahedra rotate to fill the

empty space left by substitution of small rare-earth ions. However, we find the T -type

structure to be locally stable and expect the rotations to be smaller in magnitude for

the larger R =La ion. Additionally, the system remains tetragonal and shows no out-of-

plane buckling of the Cu-O bonds known to be detrimental to superconductivity [137].

We note that recent advances have allowed experimental control over the two compet-

ing structures in compound synthesis [134], which will help overcome these structural

hurdles.

In addition to local structural stability, we check the thermodynamic stability of

the proposed compounds with respect to competing phases. We assemble the com-

puted internal energies of formation ∆E = Eproducts − Ereactants in Table 9.1 (units of

kJ/mol). That the quantities are positive imply the that these standard pathways are

not energetically favorable. However, it is known that many functional materials are
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∆E ∆V Synthesis pathway

141 -7.3 La2O2S + CuS → La2CuO2S2

223 -3.4 Y2O2S + CuS → Y2CuO2S2

267 -5.0 Lu2O2S + CuS → Lu2CuO2S2

356 -3.0 Sc2O2S + CuS → Sc2CuO2S2

101 -4.9 La2O2S2 + Cu → La2CuO2S2

148 -3.3 La2O3 + CuS → La2CuO3S
454 -0.7 Sc2O3 + CuS → Sc2CuO3S
97 -4.9 La2O2S + CuO → La2CuO3S

269 2.8 Sc2O2S + CuO → Sc2CuO3S

28 -5.1 La2O3 + CuO → La2CuO4

Table 9.1: Synthesis pathways for various cuprate oxysulfides based on substitution of sulfur for
both (top block) or only one (middle block) of the apical oxygens in R2CuO4. Energies in kJ/mol
and volumes in kJ/mol/GPa. Since the energies of formation (∆E = Eproducts − Ereactants)
are positive, none of these pathways appear favorable at ambient conditions. However, high-
pressure synthesis will help stabilize these pathways, since the majority of volume differentials
(∆V = Vproducts − Vreactants) are negative. We benchmark our method against the standard
synthesis pathway for La2CuO4, shown on the last line. Surprisingly, ∆E is +28 kJ/mol, so
either DFT systemmatically overestimates enthalpies (which means the actual enthalpies for our
hypothetical compounds are smaller, in our favor), or we must add a bi-directional uncertainty
of ±30 kJ/mol to the computed enthalpies. Additionally, positional entropy of the apical S in
the half-substituted R2CuO3S compounds should also assist in synthesis.

metastable, protected from decay by large energetic barriers, resulting in technologi-

cally useful lifetimes [124]. Typical energetic deficits range from 5 to 30 kJ/mol, when

translated to the oxysulfide compound stoichiometries. Accompanied by the fact that

the volume differentials ∆V = Vproducts−Vreactants are negative, high pressure synthesis

may allow the products to form. Furthermore, we included in Table 9.1 compounds of

the form R2CuO3S, where only half of the apical oxygens are replaced by sulfur. The

configurational entropy of the sulfur-oxygen arrangement in the charge-reservoir blocks

will further encourage product formation.

9.4 Summary

We have identified chemical handles which allow us to broadly tune the charge-transfer

energy in the hypothetical R2CuO2S2 family of copper oxysulfides. If the systems are

synthesized, this broad tunability allows us to test our hypothesis regarding the correla-

tion between the charge-transfer energy and the maximum superconducting transition

temperatures. Natural extensions of our work include testing for competing T ′-type
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phases, like those found in the electron-doped cuprates. Additionally, similar substitu-

tions could be pursued in the Bi, Tl and Hg-based cuprates.
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Chapter 10

Conclusion

In this thesis, we have discussed the DFT+DMFT framework, through which we have

pursued an ab initio understanding of strongly-correlated materials. These theoretical

techniques are under active development, and we hope that in the near future, they will

reach the level of stability and predictive power of DFT. We believe that the modeling of

strongly-correlated materials, as well as rational design of new compounds, is a fruitful

direction of research. Additionally, the increase in computational power has begun to

allow large-scale scans of materials phase space, providing a complementary, global view

of materials.

In the vein of research outline in this thesis, there are natural open questions in both

method development and applications. The algorithms presented for entropy should be

generalized for arbitrary interactions and extended to lattice systems. The pursuit of

truly ab initio determination of the interaction parameters U and J remain an open

problem. In the cuprates, the presence of disorder, constraints on doping, and structural

stability introduce uncontrolled variables. Computation of the superconducting order

parameter within a first-principles framework would help clarify the trends we have

observed in the charge-transfer energy. Additionally, molecular beam epitaxy allows

the synthesis of novel compounds with extreme precision. Juxtaposing the copper-

oxygen planes in the cuprates with other structural motifs may lead to new insights

into the mechanism of superconductivity.
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Appendix A

Nonorthonormal Basis Sets

When discussing the APW and DMFT bases, we must establish some notation for

nonorthonormal basis sets. We must do this because the basis sets used in DFT calcu-

lations (namely the APW sets) are not orthonormal and this fact directly impacts our

construction of the DMFT impurity Green’s function.

Consider a nonorthonormal basis |uκ〉, written with superscripts, which spans some

Hilbert space. To deal with the nonorthonormality, conceptually and notionally, the

best thing to do is to introduce a basis |uκ〉, written with subscripts, dual to the original

basis |uκ〉. We want the dual basis to obey the following nice properties:

δκλ = 〈uκ|uλ〉 = 〈uκ|uλ〉 (A.1)

1 =
∑
κ

|uκ〉〈uκ| =
∑
κ

|uκ〉〈uκ| (A.2)

To create such a dual basis, we first define the overlap matrix Sκλ = 〈uκ|uλ〉, which is

Hermitian and written with superscripts. Its inverse, written with subscripts, is defined

by
∑

λ(S−1)κλS
λµ = δµκ . Then the key equation defining a dual basis having all these

properties is

|uκ〉 =
∑
λ

|uλ〉(S−1)λκ, (A.3)

and so we see that (S−1)κλ = 〈uκ|uλ〉. Any arbitrary state |ψ〉 can be expanded in

terms of either basis,

|ψ〉 =
∑
κ

ψκ|uκ〉 =
∑
κ

ψκ|uλ〉Sλκ =
∑
κ

ψλ|uλ〉. (A.4)
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From this, we see that the matrix elements transform as

ψλ = Sλκψκ. (A.5)

In the following, instead of writing raised and lowered indices, we will denote the dual

basis by placing a bar over the appropriate index. With this notation, the position

(subscript or superscript) of the index does not matter. Writing out the formulas

defining unity and the overlap, we get

δκλ = 〈κ̄|λ〉 = 〈κ|λ̄〉 Sκλ = 〈κ|λ〉 (A.6)

1 =
∑
κ

|κ〉〈κ̄| =
∑
κ

|κ̄〉〈κ| (S−1)κλ = 〈κ̄|λ̄〉 (A.7)

and the transformation (index “raising” and “lowering”) equations are

|κ̄〉 =
∑
λ

|λ〉(S−1)λκ ψκ = Sκλψλ̄ (A.8)

|κ〉 =
∑
λ

|λ〉Sλκ ψκ̄ = (S−1)κλψλ. (A.9)

We use the “bar” notation in our discussion of the implementation of DFT+DMFT in

the FP-LAPW formalism.
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Appendix B

APW Symmetries

Taking advantage of lattice symmetries reduces the computational cost of calculating

the projector. The symmetries are described by a space group whose elements are

denoted Γα, where α = 1, 2, . . . , N indexes the N elements of the space group. The

space group elements are decomposed into a rotation R(θ, φ, ψ) followed by a translation

Tt, so Γα = TtαRα. The key matrix element to calculate is 〈τiκlm|nk〉, where we have

assumed the DMFT basis is located in the first unit cell (R = 0), and ignored spin.

Here, the crystal momentum k runs over the entire Brillouin zone, and i indexes the

equivalent atoms in the unit cell.

Now we make use of symmetries. We only need to specify the KS eigenstates in

the irreducible Brillouin zone, |nkIBZ〉, and from this the full set of eigenstates can be

generated by Γ−1
α |nkIBZ〉. Additionally, we only need to specify the DMFT orbitals

at the origin |κlm〉. We can transform these orbitals to be centered at the position

of the first atom τ1 by applying Tτ1 |κlm〉. Additionally, if we want the orbitals to

be oriented at some arbitrary direction with respect to the global coordinate system,

we can first apply a local rotation R0. Thus the DMFT basis for the first atom is

|τ1κlm〉 = Tτ1R0|κlm〉. Finally, orbitals for the remainder of the equivalent atoms are

generated by applying the space group operations |τiκlm〉 = Γi|τ1κlm〉, where the space

group element Γi takes us from the first to the ith atom.

Assembling all the pieces, we have

〈κlm|Γ−1
1 Γ−1

i Γ−1
α |nkIBZ〉 =

∑
G

〈κlm|Γ−1
1 Γ−1

i Γ−1
α |G〉〈G|nkIBZ〉, (B.1)
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where we have defined Γ1 ≡ Tτ1R0. Since the APW code specifies the eigenvectors in

the APW basis |G〉, we inserted unity in the form of 1 =
∑

G |G〉〈G| after the equality.

We concentrate on computing 〈κlm|Γ−1
1 Γ−1

i Γ−1
α |G〉.

We need to figure out how Γ−1 acts on APW states |G〉. Since the APW states

transform like plane waves, we have

〈r|Γ−1|G〉 = 〈Γr|G〉 = 〈TtRr|G〉 = 〈Rr + t|G〉 = ei(Rr+t)·G = eit·G〈r|R−1G〉, (B.2)

which can be summarized as

Γ−1|G〉 = eit·G|R−1G〉. (B.3)

Applying this formula three times, we get

Γ−1
1 Γ−1

i Γ−1
α |G〉 = ei(tα·G+ti·R−1

α G+τ1·R−1
i R−1

α G)|R−1
0 R−1

i R−1
α G〉 (B.4)
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Appendix C

Slave-bosons for the Anderson Impurity Model

This appendix details the slave-boson mean-field theory for the Anderson impurity

model. We work in the infinite-U limit and with multiple impurity levels to model the

effects of spin-orbit splitting on the Kondo resonance. We also consider the effect of a

conduction band gap at the fermi level on Kondo and multiplet physics.

We take as our model the Anderson impurity hamiltonian generalized to multiple

orbitals, indexed by m. For example, in the case of the f -shell, spin-orbit coupling

splits the fourteen orbitals into a j = 5/2 sextet and a j = 7/2 octet. We map these

quantum numbers |j jz〉 onto a single index |m〉. The impurity electrons hybridize with

a single band of conduction electrons,

H =
∑
~kσ

ε~kn~kσ +
∑
m

εmnm +
∑
~kσm

(V~kσmd
†
mc~kσ + h.c.) +

U

2

∑
m′ 6=m

nm′nm. (C.1)

We take the fermi level to be at zero, so the impurity levels εm are negative. Unfor-

tunately, the current basis doesn’t make the symmetries of the hopping process clearly

appear in the matrix elements V~kσm. In particular, if we consider the conduction elec-

trons to be in a large spherical box, the model posses rotational symmetry, so angular

momentum must be conserved.

Conservation of angular momentum means that hoppings out of the f -shell only

couple to the j = 5/2 and j = 7/2 modes of the conduction electrons. Given these

symmetries, it’s better to work in the radial spin-orbit coupled basis |km〉 for the

conduction electrons as well where m is the mapped quantum number which runs over

the fourteen angular momentum states and k is the radial quantum number. There is
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no translational symmetry due to the presence of the impurity so linear momentum is

not conserved in the hopping process.

With this change of basis, our hamiltonian becomes,

H =
∑
km

εkmnkm +
∑
m

εmnm +
∑
km

(Vkmd
†
mckm + h.c.) +

U

2

∑
m′ 6=m

nm′nm. (C.2)

Although we choose the same notation as in the first version of the hamiltonian, the

conduction dispersion εk is now the radial dispersion for the fourteen relevant angular

modes.

The next step is to implement the infinite-U limit by introducing slave-bosons b and

b† via the subsitution d†m → f †mb. The idea is to remap the original impurity hilbert

space {|0〉, d†m|0〉} onto {b†|0〉, f †m|0〉}. However, we need to make sure we stay within

the physical hilbert space since states like |0〉 and f †mf
†
m′ |0〉 are unphysical. To do this,

we introduce the charge operator

Q = b†b+
∑
m

f †mfm. (C.3)

We must constrain Q to unity at all times, which we do by using a functional δ-function,∏
τ

δ(Q(τ)− 1) =
∏
τ

∆τ

∫
dλ

2π
e−i∆τλ(τ)(Q(τ)−1) (C.4)

=

∫
Dλ e−

∫ β
0 dτ iλ(τ)(Q(τ)−1). (C.5)

Here, we work at finite temperature β with ∆τ = β/N , where N is the number of time

steps before the continuum limit is taken. The effect of the constraint is into introduce

a new bosonic field λ, which has units of temperature β−1. When we make the slave-

boson subsitution, the interaction term disappears because there can be at most one

electron occupying the impurity level in the infinite-U limit.

Including the constraint, we arrive at the infinite-U lagrangian,

L(τ) =
∑
km

c†km(∂τ + εkm)ckm +
∑
m

f †m(∂τ + εm + iλ)fm

+
∑
km

(Vkmf
†
mbckm + h.c.) + b†(∂τ + iλ)b− iλ. (C.6)

The partition function is given by,

Z =

∫
D[f †fb†b c†cλ] e−S , S =

∫ β

0
dτ L(τ). (C.7)
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C.1 Review of Mean-field theory

There are two ways to do mean-field theory, differing on whether or not the fermionic

fields are integrated out. For sake of simplicity, let’s consider the following action with

only one bosonic field φ,

Z =

∫
D[ψ†ψφ] e−S[ψ†ψφ]. (C.8)

The goal is to find the one configuration of the bosonic field φ0(τ), called the mean-

field configuration or simply mean-field, which minimizes the free energy F = −T logZ.

This approximation freezes out quantum fluctuations (these quantum fluctuations are

represented by the path integral over φ, which will disappear), meaning the mean-field

is effectively classical.

The more intuitive approach is to immediately make the mean-field approximation

φ(τ) = φ0 = const. Generally, we assume the mean-field is independent of time,

although there are cases where the mean-field configuration is time-dependent. Taking

φ constant means the action becomes a regular function of φ and that the path integral

over φ can be done since
∫
Dφ = 1. Thus we get for the partition function

Z(φ0) =

∫
D[ψ†ψ] e−S[ψ†ψ](φ0). (C.9)

Minimizing F is equivalent to extremizing Z, so we need to solve

0 =
∂Z

∂φ0
= −

∫
D[ψ†ψ]

∂S

∂φ0
e−S(φ0) = −

〈
∂S

∂φ0

〉
MF

. (C.10)

The brackets denote the expectation value under the path integral with φ already taken

equal to its mean-field value φ0.

The equation can be simplified even further by recalling that

S =

∫
dτ
(
ψ†∂τψ + φ∂τφ+H

)
. (C.11)

When we make the mean-field approximation, the term φ∂τφ vanishes, and when we

take the derivative with respect to φ0, we kill the first term ψ†∂τψ. These manipulations

reduce our extremization condition to

0 =

∫
dτ

〈
∂H

∂φ0

〉
MF

. (C.12)
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If the physics is time-translation invariant, meaning H is time-independent, then the

expectation of the any combination of operators 〈ψ†(τ)ψ(τ) · · · 〉 is independent of the

time τ at which the expectation is taken. Specifically, the expectation of ∂H is inde-

pendent of time, so we can replace the integral over τ by a factor of β, which then drops

out of the equation. The final form of our condition is

0 =

〈
∂H

∂φ0

〉
MF

, (C.13)

called the mean-field equation (MFE). The quantity H = H(φ0) is called the mean-

field hamiltonian from which we can often derive a good deal of insight. The task is to

calculate the expectation value and then solve for value of φ0 which minimizes the free

energy. It’s worth mentioning that the MFE is often solved at T = 0, a limit which can

be taken only after we have derived the MFE.

The second, more formal and perhaps less intuitive approach is to integrate over

the fermionic degrees of freedom first, leaving only the bosonic field φ,

Z =

∫
Dφ e−Seff[φ]. (C.14)

Again we make the (temporally constant) mean-field approximation φ(τ) = φ0, whereby

the path integral vanishes and we are left with

Z = e−Seff(φ0). (C.15)

In this simple form, we see that the mean-field free energy F = TSeff(φ0). The extrem-

ization condition is

0 =
∂Seff

∂φ0
, (C.16)

which is the MFE.

Each method has its strengths. The second approach generally requires the evalu-

ation of various traces (in the form of Matsubara summations) when the fermions are

integrated out. This can be a delicate step especially when branch cuts are involved.

In contrast, the hard part of the first method is evaluation of the expectation values

∼ 〈ψ†ψ〉, which require the computation of Green’s functions from diagrammatics.

In the following sections, we will use the first method to obtain the mean-field theory

for the AIM.
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C.2 Mean-Field Equations of the Anderson Impurity Model

The first step is to establish notation for the mean-fields. For the bosons b, it turns out

the mean-field is purely real, so we replace b(τ), b†(τ)→ √z. The constraint field λ will

turn out to be purely imaginary, so we replace λ(τ)→ −iλ. Making these substitutions,

we get the mean-field hamiltonian,

HMF =
∑
km

εkmnkm +
∑
m

(εm + λ)nm

+
√
z
∑
km

(Vkmf
†
mckm + h.c.) + λ(z − 1). (C.17)

We can read out a good deal of physics from the form of HMF. The hamiltonian is

of the single-particle form, and is separable into a sum of terms, one for each angular

momentum mode m, so we can consider them separately. The f density of states

for mode m is a lorentzian centered at the renormalized energy εm + λ with width

proportional to a renormalized hybridization strength ∼ zV 2. Alternatively, we can

think of a set of bare atomic f levels at energies εm which all have been rigidly translated

by an amount λ and broadened by ∼ zV 2. In this model, multiplets are renormalized

atomic levels.

Having interpreted the result, we will solve the mean-field equations which give the

values of z and λ. Taking the derivatives with respect to
√
z and λ, we arrive at

0 =
∑
km

Vkm〈f †mckm〉+ λ
√
z (C.18)

0 =
∑
m

〈nm〉+ z − 1. (C.19)

In deriving these equations, we took Vkm and 〈f †mckm〉 to be real.

To compute the expectation values, we need the f -f and f -c Green’s functions,

which we will derive from diagrammatics. We’ll work with retarded propagators since

we eventually want physical quantities (retarded Green’s functions do not have factors

of the Fermi-Dirac distribution). The f Green’s function is

Gfm(ω) =
1

ω − εm − λ−∆m(ω)
, (C.20)
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where the hybridization is

∆m(ω) = z∆0
m(ω) =

∑
k

zV 2
km

ω − εkm + iη
. (C.21)

We can get a very explicit expression for the hybridization by taking the thermodynamic

limit and by assuming that the matrix element V is momentum independent,

∆m(ω) =

∫
dε ρm(ε)zV 2

m

1

ω − ε+ iη
. (C.22)

Here, ρm is the density of states of the m conduction band, ρm(ε) =
∑

k δ(ε − εkm).

Using Cauchy’s principal value formula, we get

∆m(ω) = zV 2
m · P

∫
dε
ρm(ε)

ω − ε − iπρm(ω)zV 2
m. (C.23)

The integral takes a little care to evaluate. In the limit of a wide flat conduction band

from −D to to D,

P
∫ D

−D
dε

1

ω − ε = log

∣∣∣∣ω −Dω +D

∣∣∣∣→ 2ω

D
, (ω � D), (C.24)

which is small so we can ignore it. As a consequence of these approximations, we need to

keep in mind that our results are only valid for energies well away from the bandwidth

D. The result for the hybridization is

∆m(ω) ≡ −i∆m ≡ −iz∆0
m = −iπρmzV 2

m. (C.25)

Now we can calculate the f -electron occupancy via an expression reminiscent of the

Friedel sum rule,

〈nm〉 =

∫
dω f(ω) · − 1

π
Im

1

ω − εm − λ+ i∆m
. (C.26)

Taking the limit T = 0, we get

〈nm〉 =

∫ 0

dω
1

π

∆m

(ω − εm − λ)2 + ∆2
m

=
1

π
arctan

∆m

εm + λ
. (C.27)

The f -c Green’s function can be written in terms of the full f -f propagator and the

bare c-c propagator,

Gfckm(ω) =
√
zVkmG

f
m(ω)G

c(0)
km (ω), (C.28)

G
c(0)
km (ω) =

1

ω − εkm + iη
. (C.29)
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The expectation value, summed over the radial momenta, is again given by a Friedel

sum rule-like expression,

∑
k

Vkm〈f †mckm〉 =
∑
k

√
zV 2

km

∫
dω f(ω) · − 1

π
ImGfm(ω)G

c(0)
km (ω) (C.30)

=
√
z

∫
dω f(ω) · − 1

π
ImGfm(ω)∆0

m(ω). (C.31)

Working at T = 0 and noting that the hybridization is purely imaginary, we get

√
z∆0

m

π

∫ 0

−D
dω

ω − εm − λ
(ω − εm − λ)2 + ∆2

m

=

√
z∆0

m

2π
log

(εm + λ)2 + ∆2
m

D2
. (C.32)

This completes the evaluation of the expectation values.

Now we can write down explicitly the mean-field equations:

1− z =
1

π

∑
m

arctan
z∆0

m

εm + λ
, (C.33)

−λ =
∑
m

∆0
m

π
log

√
(εm + λ)2 + (z∆0

m)2

D
. (C.34)

C.3 Solution for Degenerate Orbitals

The sums over the orbital index m are replaced by factors of N when the orbitals are

equivalent, meaning their energies, hybridizations and associated conduction density of

states are all the same. It is convenient to work with new mean-fields, the renormalized

impurity level E = ε + λ and the renormalized hybridization ∆ = z∆0 = πρzV 2. In

this simplifying limit, we find the mean-field equations become

∆0 −∆ =
N∆0

π
arctan

∆

E
, (C.35)

ε− E =
N∆0

π
log

√
E2 + ∆2

D
. (C.36)

These equations can be recast into a particularly attractive form by introducing a

complex quantity Z = E + i∆ and observing that arctan(∆/E) = argZ is an angle

and
√
E2 + ∆2 = |Z| is a magnitude. Now the mean-field equations can be combined

to give

Z0 − Z =
N∆0

π
log

Z

D
, (C.37)

where we write Z0 = ε+ i∆0.
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This equation is transcendental, so they cannot be solved exactly. They can be

solved numerically, taking care to place the branch cut of the logarithm appropriately

(i.e. choice in branch of the arctan). However, let’s say we were interested in the case

when |E| � |ε| and z � 1, called the Kondo regime. In this regime, we can drop Z

from the left hand side and solve to get

Z = D exp

(
πZ0

N∆0

)
= Deπε/N∆0

(cos
π

N
+ i sin

π

N
).

(C.38)

The magnitude of Z defines a new scale called the Kondo temperature,

TK ≡ |Z| =
√
E2 + ∆2 = D exp

( πε

N∆0

)
. (C.39)

The real and imaginary parts of Z are the renormalized impurity level and width,

E = TK cos(π/N), (C.40)

∆ = TK sin(π/N). (C.41)

Both quantities are proportional to TK, a scale generated from the cutoff with exponen-

tial dependence on the bare parameters. Thus, in the Kondo regime when both |ε| and

∆0 are much larger than TK, our solutions justify the approximation made. Finally,

the phase of Z is the impurity occupation in units of π,

〈nf 〉 =
argZ

π
=

1

π
arctan

∆

E
=

1

N
. (C.42)

The mean-field results allows us to explore the N -dependence of the physics. The

Kondo temperature increases with increasing N since TK ∼ e−1/N . For the case of

a single impurity level, the Kondo resonance is pinned exactly at the Fermi surface

(E = 0) and its width is equal to the Kondo temperature (∆ = TK). As we increase N ,

weight shifts from the width to the impurity level, moving it above the Fermi surface.

As N →∞, the Kondo peak is located at E → TK and has lost all weight (∆→ 0).

These mean-field results also allow us to extract the beta function for the dimension-

less Kondo coupling J = ρNV 2/π|ε|, which represents second-order processes where an

electron hops onto the impurity level and then off again. The beta function provides
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the answer to the question of how J must change as high-energy degrees of freedom are

successively integrated out in order to give the same low-energy physics. In the Kondo

model, the low-energy physics is described by TK and integration over high-energies is

equivalent to decreasing the cutoff D. The key relation is the definition of the Kondo

temperature,

TK = De−1/J , (C.43)

Differentiating both sides by D gives,

0 = 1 +D
∂DJ

J2
→ ∂J

∂ logD
= −J2, (C.44)

which is the beta function. The Kondo temperature TK is the physical low-energy scale

in the problem, so it is unchanged when high-energy features, namely the cutoff D, are

varied. The negative sign is crucial, because it implies the coupling becomes weak at

high-energies, and its presence is the definition of asymptotic freedom.

Finally, we can compute the physical impurity Green’s function

Gdm(t) = −i
〈
Tdm(t)d†m

〉
= −i

〈
b†(t)fm(t)f †mb

〉
. (C.45)

The bosons are replaced by their mean-field value so the result is just the f Green’s

function rescaled:

Gdm(ω) =
z

ω − Em + i∆m
. (C.46)

This expression does not obey the conventional normalization of the spectral function∫
dω (−1/π) ImG(ω) = 1, and instead we have∫

dω
1

π

z∆m

(ω − Em)2 + ∆2
m

= z � 1. (C.47)

The mean-field approximation captures only the quasiparticle spectral weight. Describ-

ing the remaining, high-energy physics requires the inclusion of fluctuations, which we

describe in a later section.

C.4 Solution for Atomic Multiplets

When the impurity levels do not all have the same energy, the Kondo resonance is

split into a multiplet of peaks spaced by the original impurity energy splittings. Again,
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we denote by Em = εm + λ the renormalized impurity levels and define the complex

quantities Zm = Em + i∆m, Z0
0 = ε0 + i∆0

0. The mean-field equations can be cast into

the following form:

Z0
0 − Z0 =

∆0
0

π

∑
m

(
∆0
m

∆0
0

log
|Zm|
D

+ i argZm

)
. (C.48)

This isn’t quite as pretty as in the degenerate case because the hybridizations ∆0
m in

general can be different for each orbital channel. In the Kondo regime, again |E0| � |ε0|

and z � 1 so we can drop Z0 from the left hand side. Isolating the zeroth term in the

sum gives

∆0
0

π
log

Z0

D
= Z0

0 −
∑
m6=0

(
∆0
m

∆0
0

log
|Zm|
D

+ i argZm

)
,

whereupon we solve for Z0 to arrive at

Z0 = −De−π|ε0|/∆0
0

∏
m 6=0

(
D

|Zm|

)∆0
m/∆

0
0

e−i argZm .

As before, we define the magnitude of this expression to be the Kondo temperature

TK,0 of the lowest level,

TK,0 = De−π|ε0|/∆
0
0

∏
m6=0

(
D√

E2
m + ∆2

m

)∆0
m/∆

0
0

. (C.49)

This expression isn’t satisfactory because the renormalized quantities Em and ∆m ap-

pear in the right hand side. We remedy this by noting that the lowest (zeroth) impurity

level is renormalized to nearly the Fermi level, meaning λ ∼ −ε0, a fact which will be

shown below. Then, Em = εm +λ = εm− ε0 equal to the bare impurity level splittings,

which are much greater than the renormalized hybridizations ∆m, allowing us to drop

the ∆2
m under the square root. Then, |Zm| ≈ εm − ε0 and we get

TK,0 = De−π|ε0|/∆
0
0

∏
m6=0

(
D

εm − ε0

)∆0
m/∆

0
0

. (C.50)

[what about the fact that the bottom level should be doubly degenerate?] Then, the

zeroth renormalized impurity level and width are

E0 = −TK,0 cos

∑
m 6=0

arctan
∆m

Em

 (C.51)

∆0 = TK,0 sin

∑
m 6=0

arctan
∆m

Em

 . (C.52)
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Again, to eliminate renormalized quantities from the right hand side, we use the ap-

proximation Em ≈ εm − ε0 and define the Kondo temperature of the mth Kondo peak

by its width, TK,m = ∆m. Additionally, since ∆m � Em, we can approximate the

arctangents by the value of their arguments. Finally, we can expand out the sine and

cosine to get

E0 = −TK,0 +
TK,0

2

∑
m 6=0

TK,m

εm − ε0

2

(C.53)

∆0 = TK,0

∑
m6=0

TK,m

εm − ε0
. (C.54)

Thus, the presence of split atomic levels shifts the Kondo peak up towards the Fermi

surface from its original (single impurity level) value of E0 = −TK,0.

C.5 Effects of a Conduction Gap

There are cases (Kondo insulators come to mind) when the conduction band has a gap

at the Fermi energy, leading to insulating behavior. In these systems, the ordinary

hybridization gap E
(0)
g from band theory is strongly renormalized to give an extremely

narrow gap Eg, turning band gap insulators into semiconductors. Within the DMFT

framework, we can describe these lattice effects via an effective impurity model where

the only difference between the previous cases is the presence of the already renormal-

ized gap in the conduction density of states ρm(ω). The goal of this section is to find

the effect this gap on the Kondo physics.

We will take as our conduction band ρm(ω) = ρm · (θ(ω−Eg) + θ(−ω−Eg)), which

is constant everywhere except within the gap of width 2Eg. The key affected quantity

is the hybridization, whose real part is now nonzero and will require careful evaluation

of principal value integral in (C.23) to determine its value. In the text below, we will

write the real and imaginary parts of the hybridization as ∆m(ω) = ∆′m(ω) + i∆′′m(ω),

which is not to be confused with the constant ∆m = πρmzV
2
m.

Using the gapped density of states, the principal value integral becomes

P
∫ −Eg
−D

dε

ω − ε + P
∫ D

Eg

dε

ω − ε = log

∣∣∣∣(ω +D)(ω − Eg)
(ω + Eg)(ω −D)

∣∣∣∣→ log

∣∣∣∣ω − Egω + Eg

∣∣∣∣ , (C.55)
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where we assume ω � D. Rewriting this result using the definition of the arctanh in

terms of the logarithm,

arctanh z =
1

2
log

1 + z

1− z , (C.56)

we get the real part of the hybridization,

∆′m(ω) = zV 2
m · P

∫
dε
ρm(ε)

ω − ε = −2∆m

π
·


arctanh(ω/Eg) (|ω| < Eg)

arctanh(Eg/ω) (|ω| > Eg)

. (C.57)

The imaginary part is directly proportional to the conduction density of states, so it

acquires a gap,

∆′′m(ω) = −πρm(ω)zV 2
m =


−η (|ω| < Eg)

−∆m (|ω| > Eg)

, (C.58)

where the regulator η is a small positive number.

With these expressions for the hybridization, we can compute the f -electron Green’s

function,

Gfm(ω) =
1

ω − Em −∆′m(ω)− i∆′′m(ω)
, (C.59)

where we write Em = εm + λ for the location of the renormalized impurity level.

Taking the imaginary part, we arrive at an explicit expression for the f -electron

spectral function,

− 1

π
ImGfm(ω) =


δ
(
ω − Em + 2∆m

π arctanh
Eg
ω

)
(|ω| < Eg)

1

π

∆m(
ω − Em + 2∆m

π arctanh
Eg
ω

)2
+ ∆2

m

(|ω| > Eg)
. (C.60)

This spectral function is plotted in Fig. C.1. The next step is to find the f -occupancy,

〈nm〉 =

∫ −Eg
dω

1

π

∆m

(ω − Em + (2∆m/π) arctanh(Eg/ω))2 + ∆2
m

+

∫ 0

−Eg
dω δ(ω − Em + (2∆m/π) arctanh(ω/Eg)), (C.61)

where we worked at T = 0. These integrals must be evaluated numerically.
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Figure C.1: The spectral density −(1/π)ImGfm(ω) for the f electron with (shaded) and with-
out (line) a conduction band gap. The physical picture is as follows: without the gap, the
density of states was a simple lorentzian of width ∆m centered at an energy εm+λ ≡ Em above
the fermi surface. Turning on the gap causes the f -density to vanish within the gap, but also
leaves the spectrum relatively unchanged outside the gap. The total spectral weight must be
conserved, so the original weight within the gap is collected into a single delta peak located
near the renormalized f -level.

We also need the second expectation value, which expands into a sum of three terms

now that ∆′m(ω) is nonvanishing:

∑
k

Vkm〈f †mckm〉

=
√
z

∫ −Eg
dω

1

π

∆m

(ω − Em + (2∆m/π) arctanh(Eg/ω))2 + ∆2
m

(
−2∆0

m

π
arctanh

Eg
ω

)
+
√
z

∫ 0

−Eg
dω δ(ω − Em + (2∆m/π) arctanh(ω/Eg))

(
−2∆0

m

π
arctanh

ω

Eg

)
+
√
z

∫ −Eg
−D

dω
ω − Em + (2∆m/π) arctanh(Eg/ω)

(ω − Em + (2∆m/π) arctanh(Eg/ω))2 + ∆2
m

(
∆0
m

π

)
. (C.62)

With these expressions, we can solve the MFE numerically.

C.6 Beyond Mean-Field: Fluctuations

Quantum fluctuations of fields around their mean-field values will give rise to new

physics. This is perhaps best shown in the second approach, when the fermions of

our simplified system have already been integrated out and the action is a functional

Seff[φ]. The idea is to Taylor expand the action about the mean-field value φ0, so that
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the resulting expression is in powers of ∆φ ≡ φ− φ0, giving:

Seff[φ](φ0) = Seff[φ0] +

∫
dτ ∆φ(τ)

(
δSeff

δφ

)
φ0

+

∫
dτ

∫
dτ ′∆φ(τ)

(
δ2Seff

δφ(τ)δφ(τ ′)

)
φ0

∆φ(τ ′) + · · ·

The coefficients of the expansion,

S1(τ ;φ0) =

(
δSeff

δφ

)
φ0

(C.63)

S2(τ, τ ′;φ0) =

(
δ2Seff

δφ(τ)δφ(τ ′)

)
φ0

, (C.64)

are just ordinary functions of time and the scalar φ0. We see now that the MFE can

equivalently be thought of as the condition that the linear coefficient vanishes for all

time, S1(τ ;φ0) = 0. Truncating the series to quadratic order, we get the partition to

second order:

Z(φ0) = Z0

∫
D[φ] e−

∫
dτ

∫
dτ ′∆φ(τ)S2(τ,τ ′;φ0)∆φ(τ ′)

= Z0

(
detS2(τ, τ ′;φ0)

)−1/2 ≡ Z0Z2,

where Z0 = e−Seff(φ0) is the mean-field partition function. The mean-field free energy

F0 = −T logZ0 acquires a correction F2 = −T logZ2. If F2 � F0, then we have

confirmation that our choice of mean-field was correct.

Alternatively, we could have expanded

H =
∑
km

εkmnkm +
∑
m

(εm + λ0 + λ)nm +
∑
km

{Vkmf †m(
√
z + b)ckm + h.c.}

+ (λ0 + λ){b†b+
√
z(b+ b†) + z − 1}. (C.65)

0 =
∑
km

Vkm

〈
f †mckm

〉
+ λ0

√
z + 〈λb〉+

〈
λb†
〉

(C.66)

0 =
∑
m

〈nm〉+
〈
b†b
〉

+ z − 1. (C.67)

The lowest-order correction to the boson self-energy is a f -c bubble, which gives a

contribution

Σ(iω) = − 1

β

∑
km

∑
iΩ

(−Vkm)
1

iΩ− Em + i∆m sgn Ω
· 1

−iω + iΩ− εkm
(−Vkm), (C.68)
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where the external energy iω is bosonic while the loop energy iΩ is fermionic, and the

minus sign is due to the fermion loop. There are two types of Matsubara frequencies

in this expression:

• The sum over internal Matsubara frequency (iΩ) can either be done directly, or

converted into contour integrals. This trick is called the Matsubara summation

technique, and is not to be confused with analytic continuation, which strictly

applies to external frequencies.

• The external frequency (iω) is treated as a Matsubara frequency while all the in-

ternal Matsubara sums are performed. In particular, if iΩ is an internal fermionic

frequency, and iω is an external bosonic frequency, then f(iΩ+ iω) = f(iΩ) when

the Matsubara sum over iΩ is performed. Only afterwards, at the end of the

calculation, is the external frequency analytically continued to the real axis. For

example, iω → ω + i0 for retarded quantities.

First, we perform the Matsubara sum via the Matsubara formula β−1
∑

iΩ h(iΩ) =

−
∫

(dz/2πi)h(z)f(z), to get

Σ(iω) =
1

π

∑
m

∆0
m

∫
dε

∫
dz

2πi

1

z − Em + i∆m sgn Im z
· 1

−iω + z − εf(z), (C.69)

where we have assumed a flat conduction band. The sgn Im z is a significant feature

whose analytic structure we now analyze. The first factor has a branch cut along the

real axis and no poles, which can be seen by writing

sgnx = lim
s→0

2

π
arctan

x

2πs
= lim

s→0

2

π

1

2i
log

1 + ix/2πs

1− ix/2πs = lim
s→0

1

iπ
log
−x+ i2πs

x+ i2πs
, (C.70)

which when extended to the complex plane has a branch cut along the imaginary axis.

To create a sign function along the imaginary axis, we rotate this expression by 90

degrees, meaning sgn Im z = sgn(−iz). The result is a branch cut along the real axis.

The second factor has a simple pole at ε+ iω.
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Distorting the contour into a clockwise circle about the simple pole and two inte-

grations just above and below the branch cut, we get

Σ(iω) = − 1

π

∑
m

∆0
m

∫
dε

(
f(ε)

iω + ε− Em + i∆m sgnω

+

∫
dx

1

π

∆m

(x− Em)2 + ∆2
m

f(x)

x− ε− iω . (C.71)

Here, we have used the periodicity of the Fermi function to write f(ε + iω) = f(ε).

Also, sgn Im(ε+ iω) = sgnω since ε arises from a momentum sum and thus lives on the

real axis.

At T = 0, the first integral is evaluated by decomposition into real and imaginary

parts:∫ 0

−D
dε

ε− Em − iω − i∆m sgnω

(ε− Em)2 + (ω + ∆m sgnω)2

=
1

2
log

E2
m + (ω + ∆m sgnω)2

D2
− i
(

arctan
−Em

ω + ∆m sgnω
+
π

2
sgnω

)
, (C.72)

where we simplified sgn(ω+ ∆m sgnω) = sgnω and assumed the bandwidth D is larger

than all other scales. For the second integral, we evaluate the ε integral first, giving∫
dε

1

x− ε− iω =

∫
dε

x− ε+ iω

(x− ε)2 + ω2
(C.73)

=
1

2
log

(x−D)2 + ω2

(x+D)2 + ω2
+ iπ sgnω −→ iπ sgnω. (C.74)

The real part vanishes in the limit of a large symmetric bandwidth D (equivalent to

taking the principal value). Now we evaluate the x integral, again at T = 0:

iπ sgnω

∫ 0

−∞
dx

1

π

∆m

(x− Em)2 + ∆2
m

= i

(
arctan

−Em
∆m

+
π

2

)
sgnω (C.75)

This completes the evaluation of the self-energy. We assemble here the main results:

the Matsubara self-energy is

Σ(iω) = − 1

π

∑
m

∆0
m

[
1

2
log

E2
m + (ω + ∆m sgnω)2

D2

+ i

(
arctan

Em
ω + ∆m sgnω

− arctan
Em

∆m sgnω

)
. (C.76)

This can be simplified to the following form which is easier for analytic continuation:

Σ(iω) = − 1

π

∑
m

∆0
m

[
1

2
log

E2
m + ∆2

m

D2
+ log

iω − Em + i∆m sgnω

−Em + i∆m sgnω

]
. (C.77)
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From this, we can compute the retarded and advanced self-energies by analytically

continuing just above or below the real axis:

Σ(ω ± i0) = − 1

π

∑
m

∆0
m

[
1

2
log

(ω − Em)2 + ∆2
m

D2

± i
(

arctan
ω − Em

∆m
+ arctan

Em
∆m

)
, (C.78)

The physical quantity of interest is the d Green’s function. Fluctuations about the

bosonic mean-field give a correction in the form of a b -f bubble, given by

Gd(2)
m (iω) =

1

β

∑
iΩ

1

iΩ− Em + i∆m sgn Ω
· 1

iΩ− iω − λ− Σ(iΩ− iω)
(C.79)

= −
∫

dz

2πi

1

z − Em + i∆m sgn Im z
· f(z)

z − iω − λ− Σ(z − iω)
. (C.80)

The object we whose analytic structure we must analyze carefully is the self-energy,

Σ(z) = − 1

π

∑
m

∆0
m

[
1

2
log

E2
m + ∆2

m

D2
+ log

z − Em + i∆m sgn Im z

−Em + i∆m sgn Im z

]
.

There is a branch cut along the real axis due to the sgn Im z, but are there any other

non-analyticities? First consider the logarithm. The branch points are located when

the argument vanishes, meaning z+ i∆m sgn Im z = Em must be satisifed. This has no

solutions for Im z 6= 0 so it the logarithm contributes no new branch cuts. We conclude

the self-energy only has a single cut along the real axis, which is shifted to Im z = ω

when the self-energy is evaluated at Σ(z − iω).

From the above analysis, we find our contour integral has two cuts: one is along the

real axis from the fermion propagator, and the second is at Im z = ω due to the shifted

self-energy. The contribution from the real axis cut is

∫
dx

1

π

1

(x− Em)2 + ∆2
m

· f(x)

x− iω − λ− Σ(x− iω)

≈ θ(−Em)
1

Em − iω − λ− Σ(Em − iω)
. (C.81)

Using f(x+ iω) = −nB(x), the contours along Im z = ω give

P
∫
dx

2πi

nB(x)

x− Em + i∆m sgnw
· 2iΣ2(x+ i0)

(x− λ− Σ1(x))2 + Σ2(x+ i0)2
(C.82)
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The contribution from the pole in the bose function vanished because Σ2(0) = 0. This

entire expression is essentially ∼ α sgnω + β which is an uninteresting constant when

iω is analytically continued.

Taking just the real axis contribution, and considering the Kondo regime when

Em < 0, we get

Gd(2)
m (ω) ' − 1

ω − Em + λ+ Σ(Em − ω)
(C.83)

with the self-energy

Σ(Em − ω) = −
∑
n

∆0
n

2π
log

(ω + En − Em)2 + ∆2
n

D2

+
i

π

(
arctan

ω + En − Em
∆n

+ arctan
En
∆n

)
(C.84)

We can eliminate the bandwidth by noting the following:

1 = eπε0/∆
0
0

∏
m

(
D

|Zm|

)∆0
m/∆

0
0

. (C.85)

Inverting and taking the logarithm, we get

0 = −ε0 −
∑
m

∆0
m

π
log

(
D

|Zm|

)
= −ε0 −

∑
m

∆0
m

2π
log

D2

E2
m + ∆2

m

, (C.86)

which can be inserted into the above expression for the Green’s function to eliminate

the bandwidth D:

Gd(2)
m (ω) ' − 1

ω − εm − ε0 + Σ(Em − ω)
(C.87)

with

Σ(Em − ω) = −
∑
n

∆0
n

2π
log

(ω + En − Em)2 + ∆2
n

E2
n + ∆2

n

+
i

π

(
arctan

ω + En − Em
∆n

+ arctan
En
∆n

)
. (C.88)
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Appendix D

Downfolding and Cluster-DMFT Implementation

Notes

D.1 Table of Parameters

We summarize in Table D.1 the parameters extracted via downfolding for the three-

band model and discuss the details of the downfolding procedure.

The charge-transfer energy εd − εp is a localized, atomic-like quantity. Inherent

in the downfolding procedure is a tradeoff between atomic character versus faithful

representation low-energy bands. In order to preserve as much as possible the atomic

character, we implemented the first step of the downfolding procedure described in

Ref. [115]. We chose as initial orbitals gn(r) the LDA+DMFT basis constructed in the

manner described in Ref. [31]. The downfolding procedure is robust: we cross-checked

our results by using Wien2Wannier [138] and Wannier90 [139] to perform the same

downfolding procedure. Our code differs slightly in the choice of radial dependence of

the trial orbitals gn(r). Again, in order to preserve the atomic character, we disabled the

minimization of both spread functionals and did not use an inner window to constrain

the Fermi surface. We find the extracted parameters differ by less than 5%.

In order to connect with prior work [103], we compute the range parameter r ∼ t′/t

using Löwdin downfolding. Beginning with the three-band model,

H =


εd 2tpd sin kx

2 −2tpd sin
ky
2

2tpd sin kx
2 εp + 2tpp′ cos kx −4tpp sin kx

2 sin
ky
2

−2tpd sin
ky
2 −4tpp sin kx

2 sin
ky
2 εp + 2tpp′ cos ky

 ,
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we integrate out the oxygen bands to arrive at the effective one-band hamiltonian,

Heff(ω) = εd + tpd ·
∑2

i=0Ai(ω)ai(k)∑2
i=0Bi(ω)ai(k)

,

where we have defined the Fourier harmonics as

a0(k) = 1

a1(k) = −2(cos kx + cos ky)

a2(k) = 4 cos kx cos ky

and the coefficients are

A0 = 4tpd(ω − εp + 2tpp) B0 = (ω − εp)2 − t2pp

A1 = tpd(ω − εp + 2tpp′ + 4tpp) B1 = tpp′(ω − εp)− 2t2pp

A2 = 2tpd(tpp + tpp′) B2 = t2pp′ − t2pp.

Taking advantage of the fact that B1/B0 and B2/B0 are small, we expand out the

denominator and collect coefficients of the Fourier harmonics to arrive at the range

parameter

r ∼ t′

t
=
B0A2 −A0B2

B0A1 −A0B1

∣∣∣∣
ω=εF

(D.1)

This procedure preserves the Fermi surface and faithfully represents the low-energy

band-structure. Since we prioritized the faithful representation of the atomic quantities

over the non-local hopping parameters, our values of r ∼ t′/t are smaller than those

found in Ref. [103]. However, the trends remain unchanged.

D.2 Numerical Method

We solve the three-band hamiltonian (Eq. 8.3) using c-DMFT. We use in this work the

realistic set of parameters shown in Table (D.1). We choose a 2×2 cluster in the cellular

form [140]. Cluster DMFT improves on the single site DMFT by adding a non-local

self-energy. In Fig. D.1.a we show the 2×2 copper plaquette used as a unit cell through
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Figure D.1: (a) The d-p theoretical lattice model contains the p(x,y) orbitals of the in-plane
oxygen atoms (small circles) and the dx2−y2 orbital of the copper atoms (large circles). The
figure shows the four copper plaquette unit-cell used in the cellular DMFT calculations. (b)
The associated Anderson impurity model (AIM) contains four impurities (circles), each of them
is independently connected to a bath discretized in eight sites (stars). There is not direct
hybridization between the impurities, but the latter are connected by second order process
through the bath (dashed lines). The sites of the bath are connected by direct and long-range
hoppings.

the calculations. The lattice Green’s function of the four Copper site plaquette is given

by:

Gk(iωn) = (iωn + µ−Hk −Σ(iωn))−1 , (D.2)

where Hk is the Fourier transform of the uncorrelated part of the Hamiltonian defined

in Eq. (8.3). Σ is the cluster self-energy matrix being nonzero only for the matrix

elements connecting the dx2−y2 orbitals.

The self energy matrix in Eq. (D.2) is obtained by solving an 2×2 impurity Anderson

model (shown in Fig. D.1.b) subject to the DMFT self-consistency condition:

(iω − Eimp −Σ(iω)−∆(iω)) = P̂

(
1

Nk

∑
k∈BZ

Gk(iω)

)−1

, (D.3)

where the sum runs over the reduced Brillouin Zone (BZ), and P̂ is projecting the

averaged green function onto the impurity cluster subspace.
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In this work we use the exact diagonalization impurity solver algorithm [117]. To

solve the cluster impurity problem, we express it in the form of a Hamiltonian Himp

with a discrete number of bath orbitals coupled to the cluster and use the Lanczos

algorithm to converge the ground state of the Hamiltonian and the lower states of the

spectrum. The ED method in conjunction with c-DMFT has been widely used for the

one-band model [118, 113, 141].

The Anderson Impurity Model (AIM) is defined by :

Himp =
∑
mnσ

εnmnσ(a†mσanσ + h.c.) +
∑
mnσ

εamnσ(a†mσa
†
n−σ + h.c.)+

∑
miσ

Vmiσ(a†mσciσ + h.c.) + µ
∑
mσ

c†mσcmσ +
∑
iσ

Un̂i↑n̂i↓. (D.4)

The fermionic operators a†mn (amn) creates (destroys) a particle in the bath, and the

fermionic operators c†mn (cmn) creates (destroys) a particle in the cluster of impurities.

The indices m,n are running over the bath sites, and the index i is running over

the impurity sites, the sites of the bath are connected by long-range hopping matrix

elements through the particle-hole (particle-particle) channel εn (εa), the non-correlated

sites of the bath are also connected to the correlated impurities by the matrix elements

Vmi, the onsite repulsion at the impurity sites is U (equal to the Coulomb repulsion

of the Copper site Ud), and µ is the chemical potential. We define ε as the extended

matrix which contains the normal εn and anomalous εa blocks in the Nambu basis:

ε =

 εn εa

(εa)T −(εn)T

 (D.5)

The Weiss field G(iωn) = iωn −∆(iωn) − Eimp is constructed from the parameters of

the AIM:

∆(iωn) = V† (iωn − ε)−1 V (D.6)

The parameters of (D.4) are determined by imposing the self-consistency condition in

Eq. (D.3) using a conjugate gradient minimization algorithm:

d =
∑

ω<ω0,αβ

∣∣∆ED
αβ (iωn)−∆αβ (iωn)

∣∣2 (D.7)



150

Where αβ are running over the matrix elements, ω0 = 20 is a hard cutoff on the sum-

mation and ∆ED is the function (D.6) of the Hamiltonian parameters. The fitting

procedure is not exact due to the discretization of the bath and is an additional ap-

proximation to the c-DMFT scheme. In this work we considered a bath discretised with

8 energy levels. Finally, once the Hamiltonian parameters are obtained by the fitting

procedure, we obtain the low energy spectrum by the Lanczos procedure. We impose

an energy cutoff Emax such that the Boltzman weight e−β(Emax−E0) < 0.001, where E0

is the ground state energy. We discard all the eigenstates which have an energy larger

than the cutoff Ei − E0 > Emax. Once the eigenstates are obtained we compute the

Boltzman weighted average to get the dynamical and static observables.

In this work we consider two different instabilities: i) the superconducting phase,

and ii) the long-range magnetic ordered phase. The former is computed in the Nambu

basis, and the Hilbert space is block diagonalized by the spin Sz quantum numbers,

and the latter is obtained in the tensor product of the up and down spins. Since the

number of particles is not a good quantum number in the superconducting phase, we

work at fixed chemical potential. For the magnetic phase we found a better convergence

when working at fixed density, with a free chemical potential.

For the determination of the phase diagram we used physical observables readily

available from the 2 × 2 cluster of impurities, such as the staggered magnetization

Sz = 1
2 (n↑ − n↓), the superconducting order parameter ∆ = 〈〈c1c2〉〉(τ=0) (where 1

and 2 are nearest neighbor links of the impurity plaquette) and the anomalous self-

energy at zero frequency Σan ≡ Σan
12(ω = 0). We emphasize that the computed order

parameters do not rely on any additional procedure, such as the Σ-periodization [140],

which interpolates and extrapolates the discrete cluster quantities to the continuum in

k-space.

Finally, we discuss the computation of the double-counting correction Edc. Since

the Wannier functions of the three-band p-d model is not atomic-like, we cannot use

the atomic double-counting proposed in Ref. [39]. Rather, we first perform the ab initio
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Figure D.2: (a) Density of states of LSCO from the all-electron DFT+DMFT calculation.
(b) All-electron Matsubara Green’s function for the Cu 3dx2−y2 orbital used as reference to fix
double-counting in three-band p-d model. The temperature is β = 50 eV−1.

all-electron calculation using the atomic double-counting,

Edc = U

(
nd0 −

1

2

)
− J

(
nd0

2
− 1

2

)
, (D.8)

with nd0 = 9, the natural value derived from chemical valence counting. We use U =

10 eV and J = 0.7 eV. The atomic form of the double-counting is appropriate here

because treating the full energy window causes the orbitals to be very atomic-like.

In Fig. D.2a, we plot the density of states from the all-electron calculation, which

exhibits the charge-transfer gap of the correct magnitude (slightly less than 2 eV).

Then, we select the double-counting in the p-d model so the Matsubara Green’s function

matches the corresponding quantity in the all-electron calculation (Fig. D.2b). We find

that Edc = 3.12 eV gives a good match, and use this value for all subsequent model

calculations. Finally, we use a reduced onsite-repulsion U3-band ≈ U − 2J for our 3-

band calculations to capture the effect of the Hund’s coupling present in the all-electron

calculation.
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Appendix E

Iterated Perturbation Theory

Why does iterated perturbation theory (IPT) capture the Mott transition of the half-

filled Hubbard model? IPT is DMFT with the impurity self-energy computed via a

diagrammatic expansion in U to second order. It is surprising that a truncated pertur-

bative calculation in the interaction strength, captures the nonperturbative physics of

the Mott transition.

The reason for its success is the simplicity of the strong-coupling limit [142]. We

know the exact answer for the atomic Green’s function (∆/U → 0) at the particle-hole

symmetric point,

G(iωn) =
1

2

(
1

iωn + U/2
+

1

iωn − U/2

)
=

1

iωn − Σ(iωn)
, (E.1)

from which we can extract the atomic self-energy:

Σ(iωn) =
1

iωn

U2

4
. (E.2)

The self-energy is proportional to U2 only, without any higher powers.

The diagrammatics of IPT gives the same answer. In the extreme atomic limit,

G−1
0 = iωn, and the polarization bubble in the self-energy is

P (iνn) = − 1

β

∑
iωn

1

iωn

1

iνn + iωn
=

∮
dz

2πi

1

z

f(z)

iνn + z
=


0 iνn 6= 0

−f ′(0) iνn = 0

(E.3)

Then the self-energy is

Σ(iωn) =
(−U)2

β

∑
iνn

1

iωn − iνn

(
β

4
δiνn,0

)
=

1

iωn

U2

4
, (E.4)

which is the atomic expression. IPT can be extended away from half-filling [143].
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Appendix F

Entropy via Integration

The conventional technique for computing the entropy in numerical simulations is

through a temperature integration of the total energy [144]. This requires requires

a sequence of simulations for a sequence of temperatures extending upwards from the

desired temperature to onstensibly infinite temperature, and knowledge of the infinite-

temperature limit of the entropy S∞.

The derivation begins with formula for the entropy in terms of the specific heat,

S =

∫ T

0
dT

CV
T

= S∞ −
∫ ∞
T

dT

T

∂E

∂T
. (F.1)

We change variables to reciprocal temperature β = 1/T and use integration by parts

to remove the temperature derivative on E to obtain

S(β) = S∞ + βE(β)−
∫ β

0
dβ E(β). (F.2)

In the case of the one-orbital Anderson impurity model, S∞ = log 4.


