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ABSTRACT OF THE DISSERTATION

An Analysis of Electrohydrodynamic Stability and

Deformation in Immiscible Fluids

by Jia Zhang

Dissertation Director: Professor Hao Lin

The interactions between an electric field and fluid motion give rise to a class of complex

and important phenomena known as electrohydrodynamics. In this work, we developed

a set of analytical tools to provide basic understanding and quantitative prediction ca-

pabilities. Under this theme, three tasks have been accomplished. 1. A general solution

approach for the electrohydrodynamic instability of stratified immiscible fluids is pre-

sented. The problems of two and three fluid layers subject to normal electric fields are

analyzed. Analytical solutions are obtained by employing the transfer relations relating

the disturbance stresses to the flow variables at the interface(s). The results assume

a general format. Both new dispersion relations and those from various previous work

are shown to be special cases when proper simplifications are considered. As a specific

example, the stability behavior of a three-layer channel flow is investigated in details

using this framework. This work provides a unifying method to treat a generic class of

instability problems. 2. A transient analysis to quantify droplet deformation under DC

electric fields is presented. The full Taylor-Melcher leaky dielectric model is employed

where the charge relaxation time is considered to be finite. The droplet is assumed to

be spheroidal in shape for all times. The main result is an ODE governing the evo-

lution of the droplet aspect ratio. The model is validated by extensively comparing
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predicted deformation with both previous theoretical and numerical studies, and with

experimental data. Furthermore, the effects of parameters and stresses on deformation

characteristics are systematically analyzed taking advantage of the explicit formulae on

their contributions. The theoretical framework lays the foundation for the study of a

more complex problem, vesicle electrodeformation. 3. A transient analysis for vesicle

deformation under DC electric fields is developed. The theory extends from a droplet

model, with the additional consideration of a lipid membrane separating two fluids

of arbitrary properties. For the latter, both a membrane-charging and a membrane-

mechanical model are supplied. The main result is also an ODE governing the evolution

of the vesicle aspect ratio. The effects of initial membrane tension and pulse length are

examined. The model prediction is extensively compared with experimental data, and

is shown to accurately capture the system behavior in the regime of no or weak elec-

troporation. More importantly, the comparison reveals that vesicle relaxation obeys

a universal behavior regardless of the means of deformation. The process is governed

by a single timescale that is a function of the vesicle initial radius, the fluid viscosity,

and the initial membrane tension. This universal scaling law can be used to calculate

membrane properties from experimental data. Together, these projects provide power-

ful tools to analyze a broad class of problems involving electrostatics, hydrodynamics,

and membrane mechanics.
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Chapter 1

Introduction

Electrohydrodynamics (EHD) is the study of interactions between electric fields and

fluid motion [48, 67]. When an electric field is applied, electrostatic forces are usually

generated due to variations in fluid properties. These forces are often strong enough

to drive a hydrodynamic flow and lead to complex flow patterns such as instability

[5, 11, 27, 28, 39, 41, 42, 43, 46, 47, 56, 57, 61, 71, 76, 79, 78, 86] and interfacial

deformation [1, 2, 6, 7, 16, 19, 20, 24, 26, 37, 50, 66, 70, 73, 74, 77, 80]. Extensive EHD

research has been conducted due to its relevance in various industrial applications. On

the macroscale, EHD can be leveraged to enhance heat and mass transfer [85] and

pumping performance [45]. On the microscale, EHD is employed to generate droplets

[24], mix fluids [42], help purify DNA [86], and promote cell transfection [40]. In this

work, we are more interested in EHD flows with microscale configurations.

The electrostatic forces in EHD flows can be generated in two manners. In the first,

the fluid is usually a single electrolyte with concentration gradients. An electrical body

force is generated in the bulk, which couples the evolution of both the electric fields

and fluid motion. This type of flow is termed bulk-coupled EHD. In the second, two or

more immiscible fluids with different properties such as conductivity and permittivity

are often involved and the electrostatic forces are absent except at the fluid interfaces. In

this case, the hydrodynamic and electrical problems are coupled only through interfacial

matching conditions. This type of flow is termed surface-coupled EHD.

In this work, we focus on studying surface-coupled EHD flows. This type of flow is

more amenable to theoretical analysis, in contrast to the bulk-coupled problem which

usually requires numerical simulations. We have investigated three problems of signifi-

cance in both fundamental understanding and relevance to applications.
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1. We developed a general analysis for the EHD instability of stratified fluids. The

main contribution is that we present a unified approach which includes all pre-

vious studies as special limiting cases. In addition, using this method we have

also generated new dispersion relations not available before, which significantly

improve from the previous results when compared with experimental data. This

work has been summarized in a publication in Journal of Fluid Mechanics [88].

2. We developed a transient analysis of droplet deformations under electric fields.

The analysis is general by assuming arbitrary fluid properties. The results are

directly compared with numerical simulations and experimental measurements

to reveal good quantitative agreements. Such model is previously not available.

Furthermore, the effects of parameters and stresses on deformation characteristics

are systematically analyzed taking advantage of the explicit formulae on their

contributions. This work has been summarized in a manuscript submitted to

Journal of Fluid Mechanics [89].

3. Extending from task two above, we have also constructed an analytical solution

for transient, large electrodeformations of vesicles. In this case, we need to in-

corporate a membrane-charging and a membrane-mechanical model for the lipid

membrane in addition. Similarly, the results provide predictions in quantitative

agreements with experimental data, and physical insights on membrane behavior

and properties. This work has been summarized in a manuscript submitted to

Journal of Fluid Mechanics [90]. In what follows, the specific background and

motivation for each project is introduced.

1.1 Electrohydrodynamic instability

EHD instability has been an important subject of study due to its relevance in a variety

of microfluidic electrokinetic applications [8, 54, 56]. The present work is motivated by

the need to develop efficient microfluidic DNA purification devices. In this technique,

aqueous buffer with lysed cellular components flows in parallel with an organic liquid

(phenol) into a microchannel. Membrane and other components partition into the
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organic phase, whereas DNA remains in the aqueous phase, achieving a purification

effect. To enhance partitioning efficiency, the interfacial area between the two streams

needs to be maximized. In a microfluidic platform, this task can be accomplished by

breaking one stream (phase) into droplets using EHD instability and has been realized

by [86]. The EHD instability can arise in the bulk of a single, miscible fluid, or at

the interface of two immiscible fluids. In the first, bulk-coupled EHD instability, an

electrical body force appears explicitly in the Navier-Stokes equation [5, 11, 27, 28, 41,

42, 43, 61, 71]. This force drives the instability, and competes with a stabilizing effect

due to the diffusive relaxation of the electrical conductivity gradient. In the second,

surface-coupled EHD instability, the electrostatic forcing only appears in the interfacial

matching conditions [39, 46, 47, 55, 57, 76, 79, 78, 86]. For this case, the conductivity

discontinuity across the interface remains a source of the induced stress due to the

immiscibility, and the main stabilizing force is the surface tension between the fluids.

A comprehensive review summarizing the theoretical foundation, the Taylor-Melcher

leaky dielectric model, is given by Saville [67].

This work focuses on a solution method of the second kind, namely, surface-coupled

EHD instability. This type of problem is more amenable to theoretical analysis when

compared with its bulk-coupled counterpart due to the confinement of the electrostatic

forcing to the interfaces. Historically, analytical dispersion relations of the linearized

problem have been obtained, largely under two specific situations: 1) Re→ 0. Solutions

using this (Stokes flow) assumption can be found in, e.g. [12, 76, 78]. 2) An infinite

geometry with two- or three-layers of stratified fluid [46, 47, 49, 57]. In addition, some

authors also analyzed the stability behavior in the limit of a zero wavenumber (long

wave analysis, [39]). In all of the above, a common strategy involves the solution of the

electrical and the hydrodynamic problem separately, and the subsequent matching of

them at the interfaces. An eigenvalue problem is then formed from which the dispersion

relation is sought.

In this work, we present an alternative approach. We employ the ‘transfer rela-

tions’ to study the instability of two and three stratified fluid layers. The availability of

these relations ensures a straightforward solution without assumptions on the Reynolds
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number, the geometry, or fluid properties such as conductivity and permittivity. Conse-

quently, the results not only encompasses many disparate ones from the literature, but

also engender new ones that are previously not studied. Specifically, we will demon-

strate in that we can recover prior results by evaluating our solutions in the proper

simplifying limits. More importantly, the dispersion relations for the following new

cases are also presented:

(a) A two-layer channel flow with a finite Reynolds number;

(b) A three-layer problem with semi-infinite upper and lower layers, and with an

applied field normal to the fluid interfaces;

(c) A three-layer channel flow.

We pursue a more detailed investigation of the last case, namely, the three-layer

channel flow. This flow configuration is important for microfluidic mixing and droplet

generation applications, and has been experimentally implemented by Zahn and Reddy

[86]. We will map the instability behavior in the phase space of the conductivity and

permittivity ratios, and with respect to variations in applied field strength. More

interestingly, we examine and compare two distinctive instability modes termed the

“kink” and “sausage”. This case study demonstrates the utility of our method. This

work presents a unifying framework to treat a generic class of surface-coupled EHD

instability problem.

1.2 Electrohydrodynamic deformation of droplets

EHD deformation, also known as electrodeformation, of droplets is another class of

complex responses of fluids under the influence of an applied electric field. In this

case, electrostatic forces are similarly generated at the interface to drive the defor-

mation. Extensive research on this phenomenon has been conducted to study the

deformation due to its relevance in a variety of industrial applications, including elec-

trohydrodynamic atomization [84], electrohydrodynamic emulsification [32], and ink-

jet printing [4], among others. Historically, the deformation dynamics is divided into

two regimes: electrohydrostatics (EHS) and electrohydrodynamics (EHD). In the first,
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EHS deformation, the droplet is idealized as a perfect conductor immersed in a per-

fect insulating fluid; or both of the fluids are treated as perfect dielectrics with no

free charge [2, 16, 24, 50, 70, 73]. For this case, the electric field only induces a nor-

mal electrostatic stress, which is balanced by surface tension, and the final equilibrium

shape is always prolate. At the steady state, the hydrodynamic flow is usually absent.

In the second, EHD deformation, both fluids are considered to be leaky dielectrics

[1, 6, 7, 19, 20, 24, 26, 37, 66, 70, 74, 77, 80]. For this case, when an electric field

is applied, free charges accumulate on the droplet surface which induces a tangential

electrostatic stress in addition to the normal one. Driven by this force, the fluids inside

and outside the droplet present toroidal circulations and a viscous stress is generated

in response to balance the tangential electrostatic stress [74]. The droplet deforms into

either a prolate or an oblate spheroid shape depending on the specific electrical prop-

erties of the fluids. With different electrical properties, the effects of the electrostatic

and hydrodynamic stresses on droplet deformation are distinctive.

This work focuses on a solution method for problems of the second kind, namely,

EHD deformation. This type of problem is more challenging to solve. In the litera-

ture, all theoretical solutions were obtained largely under two specific assumptions: (i)

The deformations are small. The analysis is performed by assuming that the equilib-

rium shape of the droplet only slightly deviates from sphericity. Solutions using this

assumption can be found in [1], [74], and [77]. (ii) For large deformations, the shape

is assumed to be spheroidal during the entire deformation process. Results using this

assumption are given in [7]. When compared with experimental data, predictions from

the small-deformation theories always quantitatively underpredict the aspect ratio es-

pecially when the deformation is large. In contrast, the large-deformation theory has

a better agreement both qualitatively and quantitatively. In all of the above, the the-

oretical analysis only leads to solutions in the steady state. The Taylor-Melcher leaky

dielectric model [48, 67, 88] with the assumption of instantaneous charge relaxation

has always been used. On the other hand, the theoretical analysis of transient droplet

deformation seems to attract less attention. Only Dubash and Mestel [16] developed a

transient deformation theory for an inviscid, conducting droplet. This analysis, which
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solves a EHS deformation problem, is not applicable to study EHD deformations. In

general, to fully solve the transient EHD problem, numerical simulations have been

employed [6, 19, 26, 37].

In this work, we present a transient analysis of droplet deformation under direct-

current (DC) electric fields. Following Bentenitis and Krause [7], we assume the droplet

remains spheroidal in shape. The full Taylor-Melcher leaky dielectric model is employed

where the charge relaxation time is considered finite. In this framework, instantaneous

charge relaxation is treated as a special limiting case. This generalization allows direct

comparison with experimental data which were usually obtained in fluids with very

low conductivities ([24]). The main result is an ordinary differential equation (ODE)

governing the evolution of the droplet aspect ratio. The availability of this equation

allows us to explicitly analyze the effects of parameters and stresses on the deformation

characteristics. The model is validated by extensively comparing predicted deformation

with both previous theoretical and numerical studies, and with experimental data. The

current analysis provides a powerful tool to investigate the physical mechanisms of

large droplet electrodeformations, and offers insights not available from the numerical

models.

1.3 Electrohydrodynamic deformation of vesicles

Similar to droplets, vesicles also deform due to charge accumulation. In addition, in

this problem, we also need to consider a lipid membrane, and incorporate its effects

with a membrane-charging and a membrane-mechanical model. Vesicles are widely

used as a model system for biological cells due to their simplicity and controllability.

The deformation of the lipid membrane, in particular under an applied electric field

(electrodeformation), is often explored to probe membrane properties [35, 53] and to

detect pathological changes in cells [83].

In the past decade, vesicle electrodeformation has become a significant subject of

study, and earlier work can be divided into two categories. In the first category, an
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alternating-current (AC) field is applied, which often induces stationary and small de-

formations [3, 15, 35, 53]. Correspondingly, an electrohydrodynamic theory in the

small-deformation limit was developed to interpret the data trends [81]. In the sec-

ond, under DC electric fields, vesicles usually exhibit large and transient deformations

due to the large field strengths commonly applied [31, 62, 63, 64]. Recently, using high-

resolution, high-speed optical imaging Riske and Dimova [62] acquired a large amount of

data capturing the complex deformation-relaxation behavior of the vesicles. Although

some qualitative and scaling arguments were presented [15], the data was not fully in-

terpreted due to the absence of a predictive model. Meanwhile, Sadik and co-authors

[64] experimentally examined vesicles in the large-deformation regime with aspect ratios

reaching ten. A large-deformation theory was also presented, which provided quantita-

tive agreement with the data therein. However, the model was semi-empirical in that

the hydrodynamic problem was not rigorously treated, but followed an empirical ap-

proach by Hyuga and co-authors [29, 30]. In general, a rigorous and transient analysis

needs to be developed to understand the complex deformation-relaxation behavior, and

to provide insights on the underlying physical processes.

In this work, we develop a transient analysis for vesicle electrodeformation. The

theory is derived by extending our droplet model, with the additional consideration of

a lipid membrane separating two fluids of arbitrary properties. For the latter, both

a membrane-charging and a membrane-mechanical model are supplied. Similar to the

droplet model, the main result is also an ODE governing the evolution of the vesicle

aspect ratio. The effects of initial membrane tension and pulse length are examined.

The model prediction is extensively compared with experimental data from Riske and

Dimova [62] and Sadik et al. [64], and is shown to accurately capture the system

behavior in the regime of no or weak electroporation. More importantly, the comparison

reveals that vesicle relaxation obeys a universal behavior, and is governed by a single

timescale that is a function of the vesicle initial radius, the fluid viscosity, and the initial

membrane tension. This behavior is regardless of the means of deformation, either via

AC/DC electric field, or via mechanical stretching. This universal scaling law is a main

contribution of the current work, and can be used to calculate membrane properties
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from experimental data.
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Chapter 2

A General Analysis for The Electrohydrodynamic

Instability of Stratified Immiscible Fluids

2.1 Introduction

In this chapter, we present an analysis for the EHD instability of immiscible stratified

fluids. Different from previous approaches, which solve the linearized problem for each

specific case, we generalized the solution method by directly employing the ‘transfer

relations’ relating interfacial disturbance stresses to disturbance flow variables. The

concept for these relations was first introduced by J. R. Melcher [27, 28, 87], and the

complete form is found in his classical text [44]. The broad utility of these relations,

however, does not seem to have been widely appreciated. Only the hydrodynamic (but

not the electrical) transfer relations has been used to analyze a three-layer channel

flow in the limit of an infinite conductivity ratio [86]. Here we extend from this work

by utilizing both hydrodynamic and electrical transfer relations. We assume that the

fluids have arbitrary properties such as viscosity, permittivity, and conductivity without

making any idealizations. We will first introduce the method using an exemplary two-

layer configuration then we extend the analysis to a three layer geometry. The results

are generalized dispersion relations previously not available and include many those

from earlier work as special limiting cases. This work has been published in Journal of

Fluid Mechanics [88].

2.2 Theory

The schematics of two generic problem configurations are shown in figure 2.1. In figure

2.1(a), two fluid layers (denoted by 1 and 2) of thickness a and b are placed in a straight
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channel. The interfacial position is denoted by ζ. In figure 2.1(b), an additional layer

(fluid 3) is considered, and is assumed to have identical properties as fluid 1. The upper

and lower interfacial positions are denoted by ζu and ζl, respectively. The governing

equations for each layer are the incompressible Navier-Stokes equation and the Ohmic

equation for current conservation:

ρj

(
∂vj
∂t

+ vj · ∇vj
)

= −∇pj + µj∇2vj , ∇ · vj = 0, (2.1)

∇ · σj∇φj = 0. (2.2)

Here the subscript j (j = 1, 2 for the two-layer, and 1, 2, 3 for the three-layer problem,

respectively) denotes each fluid layer. ρ, v, p, µ, and φ are the fluid density, velocity,

pressure, viscosity, and the electric potential, respectively. We assume instantaneous

charge relaxation such that (2.2) is applicable. The electrical conductivity, σ, and the

permittivity, ε, of each layer remain constant. A potential φ = φo is applied at the lower

channel wall, and the upper wall is grounded. This arrangement leads to an applied field

normal to the undisturbed fluid interface(s). The velocities obey the no-slip condition

on the walls. The following interfacial jump conditions are prescribed:

||∇φ · t|| = 0, ||σ∇φ · n|| = 0, ||v|| = 0, ||τ · n||+ γ(∇ · n)n = 0. (2.3)

Here || · || denotes a jump across an interface, γ is the surface tension coefficient, and t

and n are the unit tangential and normal interfacial vector, respectively. The tensor τ

includes contributions from both the hydrodynamic and electrostatic stresses:

τ ≡ −pI + µ(∇v +∇vT ) + εEE − 1

2
ε(E ·E)I, (2.4)

where I is the unit tensor, and E = −∇φ is the electric field.

In what follows, we first solve the two-layer problem (figure 2.1a) to illustrate the

solution process; the results for the three-layer problem (figure 2.1b) then follow in

a straightforward manner. We perform a temporal linear stability analysis using the
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Figure 2.1: Schematics of the two generic problem configurations.

following decomposition:

f = fo + f̂(y) exp(ikx+ st), (2.5)

where f is a generic flow variable, fo is the base (undisturbed) state, f̂ is the complex

disturbance amplitude, k is the wavenumber, and s is the growth rate. We assume that

the base flow is quiescent, vo,j = 0. This assumption is required by the applicability

of the transfer relations, and does not affect the generality of the analysis (see §2.3.2).

The undisturbed electric fields (aligned in the y-direction) are:

Eo,1 = Eapp(n+ 1)/(n+ σr), Eo,2 = σrEo,1, (2.6a)

Eapp = φo/(a+ b), n ≡ a/b, σr ≡ σa/σb. (2.6b)

Equations (2.1-2.3) can be linearized using the decomposition (2.5). The results are

(
D2
y − k2

)
φ̂j = 0, (2.7)
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(
D2
y − δ2

j

) (
D2
y − k2

)
ψ̂j = 0, δ ≡

[
k2 +

sρ

µ

] 1
2

, (2.8)

φ̂α1 = φ̂β2 = 0, σrDyφ̂
β
1 = Dyφ̂

α
2 , −Eo,1ζ̂ + φ̂β1 = −Eo,2ζ̂ + φ̂α2 , (2.9)

ûα1 = v̂α1 = ûβ2 = v̂β2 = 0, ûβ1 = ûα2 = û, v̂β1 = v̂α2 = sζ̂, (2.10)

T̂ βyy1 − T̂αyy2 + Ŝβyy1 − Ŝαyy2 − γk2ζ̂ = 0, (2.11)

T̂ βyx1 − T̂αyx2 + Ŝβyx1 − Ŝαyx2 = 0. (2.12)

Here Dy is a derivative with respect to y, ψ̂ is a stream function which relates to the

velocities as (Dyψ̂, −ikψ̂) = (û, v̂), T̂ and Ŝ denote the hydrodynamic and electrostatic

stresses, and the superscripts α and β denote an evaluation at the upper and lower

boundary of the fluid layer (1 or 2), respectively. In general, an analytical solution of

this linear system can be pursued, and the results are expressed in terms of hyperbolic

functions. An eigenvalue problem is then formulated to solve for s, the growth rate, and

the array of coefficients for the hyperbolic functions form the corresponding eigenvector

(see, e.g. [47, 57]). In the present work, we adopt an alternative, convenient approach

employing the transfer relations by Melcher [44]. For a generic fluid layer with density

ρ, viscosity µ, and a thickness 4, the transfer relations read

 −Dyφ̂
α

−Dyφ̂
β

 = k

 − coth(k4) csch(k4)

−csch(k4) coth(k4)

 φ̂α

φ̂β

 , (2.13)



T̂αyy

T̂ βyy

T̂αyx

T̂ βyx


=



A B iC iD

−B −A iD iC

−iC iD E F

iD −iC −F −E





v̂α

v̂β

ûα

ûβ


. (2.14)

Evidently, these relations relate the interfacial disturbance electric fields and hydrody-

namic stresses to the disturbance flow variable amplitudes (φ̂, û, v̂). These relations

are general properties of the system (2.7), (2.8), independent of the boundary matching

conditions (2.9-2.12). In other words, they are valid regardless of the specific boundary
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values. The ‘transfer coefficients’ A− F are combinations of hyperbolic functions,

A =
−µ(δ2 − k2)

kG

(
k

δ
coth(δ∆)− coth(k∆)

)
, (2.15)

B =
µ(δ2 − k2)

kG

(
k

δ
csch(δ∆)− csch(k∆)

)
, (2.16)

C = − µ
G

[
δ

(
1 +

3k2

δ2

)
(csch(k∆)csch(δ∆)− coth(k∆) coth(δ∆)) + k

(
3 +

k2

δ2

)]
,

(2.17)

D =
µ(δ2 − k2)

δG
(coth(δ∆)csch(k∆)− coth(k∆)csch(δ∆)), (2.18)

E =
−µ(δ2 − k2)

δG

(
k

δ
coth(k∆)− coth(δ∆)

)
, (2.19)

F =
−µ(δ2 − k2)

δG

(
csch(δ∆)− k

δ
csch(k∆)

)
, (2.20)

G ≡ 1 +
k2

δ2
+

2k

δ
(csch(k∆)csch(δ∆)− coth(k∆) coth(δ∆)), (2.21)

where G is a common denominator shared by all coefficients, and δ is defined in (2.8).

A brief explanation of the derivation of the transfer relations is found in Appendix

A. Interested readers are referred to Melcher (1981, §2.16, §7.19) for further details.

Note that our definitions of C and D differ from those by Melcher by a factor of i.

This convenient change ensures that all coefficients in the final results (2.26), (2.33),

(2.34) are real if s itself is real. Equation (2.13) holds regardless of the orientation of

the applied field. If we further consider a normal applied field, Eo, the disturbance

magnitudes of the electrostatic stress, Ŝ, can be expressed as

Ŝyy = −εEoDyφ̂, Ŝyx = ikεEo(Eoζ̂ − φ̂). (2.22)
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With the help of (2.13), we can construct a transfer relation between Ŝ and φ̂, ζ̂:



Ŝαyy

Ŝβyy

Ŝαyx

Ŝβyx


= kεEo



− coth(k4) csch(k4) 0 0

−csch(k4) coth(k4) 0 0

−i 0 iEo 0

0 −i 0 iEo





φ̂α

φ̂β

ζ̂α

ζ̂β


. (2.23)

Note that (2.23) is specific to the configuration of a normal applied field due to the

dependence of (2.22) on the base state. A similar relation for a parallel applied field

can also be derived (not shown here). The availability of (2.14), (2.23) enables a

straightforward and systematic solution method of the normal-mode problem, following

the steps below. First, (2.9), (2.10) are used to reduce the independent disturbance

variables to two, namely, ζ̂ and û, where û is the interfacial streamwise velocity defined

in (2.10). Note that in doing so, we also use the transfer relation (2.13) to eliminate the

derivatives in favor of the potentials in (2.9). In the next step, (2.14), (2.23) are used

to evaluate the stress conditions (2.11), (2.12). For example, the first term in (2.11)

can be expressed with the help of (2.14) as

T̂ βyy1 = −Bav̂α1 −Aav̂β1 + iDaû
α
1 + iCaû

β
1 = −Aasζ̂ + iCaû, (2.24)

where a subscript a implies that A − F are evaluated with the properties of fluid 1

(ρa, µa, and thickness a), and we have used (2.10), namely, ûα1 = v̂α1 = 0. The final

results are assembled in a matrix format to yield:

 −(Aa +Ab)s+QNg − γk2 i (Ca − Cb)

−i(Ca − Cb)s+ iQTh −(Ea + Eb)

 ζ̂

û

 = 0, (2.25a)

QN = kεbE
2
o,1(σr − 1)(σ2

r − εr), QT = kεbE
2
o,1σr (εr − σr) , εr ≡ εa/εb, (2.25b)

g =
1

tanh(ka) + σr tanh(kb)
, h =

tanh(ka) + tanh(kb)

tanh(ka) + σr tanh(kb)
. (2.25c)

Similarly, Ab − Fb are the resulting coefficients for fluid 2. The factors QT and QN

arise from the effects of the tangential and normal electrical stresses, respectively, and
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our notations follow those of Li et al. [39]. They are important in predicting the

stabilizing/destabilizing effects of these stresses, which we further discuss below. The

dispersion relation is obtained by requiring the matrix to be singular:

(Ca − Cb) [− (Ca − Cb) s+QTh] + (Ea + Eb)
[
(Aa +Ab) s−QNg + γk2

]
= 0. (2.26)

The growth rate s can be solved given a wavenumber k.

The solution of the three-layer problem follows the same approach. The details are

not presented. The resulting matrix format of the stress conditions is



−(Aa +Ab)s+QNg1 − γk2 −Bbs+QNh1 i (Ca − Cb) −iDb

−Bbs+QNh1 −(Aa +Ab)s+QNg1 − γk2 iDb −i(Ca − Cb)

−i(Ca − Cb)s+ iQT g2 −(iDbs− iQTh2) −(Ea + Eb) −Fb
iDbs− iQTh2 i(Ca − Cb)s− iQT g2 −Fb −(Ea + Eb)




ζ̂u

ζ̂l

ûu

ûl


= 0. (2.27)

Here the four rows represent the normal and tangential stress conditions at the upper

(ζu) and lower (ζl) interfaces, respectively. ûu and ûl are the interfacial streamwise

disturbance velocities, also at y = ζu, ζl. Similar to the two-layer problem, all other

disturbance variables are eliminated in favor of these four, using continuity conditions

at the interfaces. The coefficients of A − F , QT and QN assume the same definitions

as in (2.15-2.20) and (2.25b). However, note that now Eo,1 has a different value for the

three-layer problem, namely, Eo,1 = φo/ (2a+ bσr) instead. g1,2 and h1,2 are similar to

g and h, and are given by the following expressions:

g1 = [tanh(ka) sinh(kb) + σr cosh(kb)]/Ho, (2.28)

h1 = −σr/Ho, (2.29)
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g2 = [(tanh2(ka) + σr) sinh(kb) + (σr + 1) tanh(ka) cosh(kb)]/Ho, (2.30)

h2 = −(σr − 1) tanh(ka)/Ho, (2.31)

Ho = (tanh2(ka) + σ2
r ) sinh(kb) + 2σr tanh(ka) cosh(kb). (2.32)

The eigenvalue problem gives rise to two branches of dispersion relations:

(Ca − Cb +Db)[−(Ca − Cb +Db)s+QT (g2 + h2)]

+(Ea + Eb − Fb)[(Aa +Ab +Bb)s−QN (g1 + h1) + γk2] = 0, (2.33)

(Ca − Cb −Db)[−(Ca − Cb −Db)s+QT (g2 − h2)]

+(Ea + Eb + Fb)[(Aa +Ab −Bb)s−QN (g1 − h1) + γk2] = 0. (2.34)

The corresponding eigenvectors are

[1, 1, λK , −λK ]T , [1, −1, λS , λS ]T , (2.35)

where λK and λS are constants. The first eigenmode yields a wavy, sinusoidal pattern

where the interfaces are in-phase (ζ̂u = ζ̂l). We term this mode ‘kink’ following one

of us [86]. In the second mode, the interfaces deform symmetrically with respect to

the centerline (ζ̂u = −ζ̂l), which we term ‘sausage’. Typical streamlines are shown in

figure 2.2. Note that the two modes directly arise from the eigenvalue problem (2.27),

whereas in both [49] and [57], an a priori symmetry or anti-symmetry was assumed.

Equations (2.26), (2.33), (2.34) are the main results of the current analysis.

We remark that the above solution approach has several important advantages.

First, formulating the eigenvalue problem in terms of the disturbance variables (φ̂, ζ̂, û, v̂)

is more physical than in terms of the algebraic coefficients (e.g. in [47]). The eigen-

modes yield clear physical meanings in this formulation. Second, the approach provides

a systematic treatment for a generic class of problems. We emphasize that obtaining

the transfer relations is indeed equivalent to solving the linear problem as pursued by
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Figure 2.2: Typical streamline patterns for the (a) kink and (b) sausage mode of the
three-layer problem. The dashed lines denote the interfacial positions. A ‘+’ or ‘−’
sign denotes a local maximum or minimum of the stream function, respectively.

previous authors. However, once they are available, they can be immediately applied to

assemble the eigenvalue problem. Last but not least, the results assume broad general-

ity. Below we show that both new dispersion relations and those from prior work can be

obtained as special cases of our general solution by considering proper simplifications.

2.3 Specific cases

2.3.1 Two semi-infinite layers (a, b→∞)

We first show that the result for two semi-infinite layers can be obtained by simply

taking the limit of a, b→∞ in the coefficients in (2.26):

(C∞a − C∞b ) [− (C∞a − C∞b ) s+QTh
∞]+(E∞a + E∞b )

[
(A∞a +A∞b ) s−QNg∞ + γk2

]
= 0,

(2.36a)

A∞ = µδ (δ + k) /k, C∞ = µ (δ − k) , E∞ = µ (δ + k) , (2.36b)

g∞ = 1/ (1 + σr) , h∞ = 2g∞. (2.36c)

The transfer coefficients A∞, C∞, E∞ are noticeably simplified in their expressions.

However, they still do depend on the specific fluid properties, namely, ρ and µ. This

configuration was first studied by Melcher [47] without assuming an instantaneous
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charge relaxation. Equation (2.36a) agrees with (19) therein if the proper limits of

εa/σa, εb/σb → 0 are taken in the latter equation. In general (2.36a) has a complex

dependence on s through the variable δ in the coefficients (see (2.8)). An explicit expres-

sion for s, however, can be obtained by further considering the zero-Reynolds-number

limit. Here due to the absence of an apparent velocity scale, we define the Reynolds

number as

Re ≡ ρs/µk2. (2.37)

With this definition, a small Reynolds number means that the viscous diffusion time,

ρ/µk2, is much smaller than the instability time, 1/s. Evaluating (2.36a) in the limit

of Re→ 0 yields

s =
(
QNg

∞ − γk2
)
/2k(µa + µb). (2.38)

When compared with (2.36a), the most important feature of (2.38) is that the effect of

the tangential electrical stress (QT ) disappears, and the stability completely depends

on the balance between the normal electrical stress (QN ) and the surface tension. The

latter is always stabilizing, whereas the former may stabilize or destabilize the flow

depending on the sign of QN , or equivalently, (σr − 1)(σ2
r − εr). A sufficient (but not

necessary) condition for stability is found for (σr − 1)(σ2
r − εr) < 0. In general, in the

limit of Re→ 0, an explicit expression for s is always attainable. Similar situations are

found below.

2.3.2 Two finite layers

This configuration is of great interest to microfluidic applications where the liquids are

confined in a channel. Note that equation (2.26) presents a general dispersion relation

for an arbitrary Reynolds number, and is one of the new results generated by this work.

To consider the solution in the zero-Reynolds-number limit, we evaluate A−F in (2.26)

in the limit of ρs/µk2 → 0. We denote the resulting coefficients by A0 − F 0,

A0 = 2µk
[
coth(k4) + csch2(k4)k4

]
/
[
1− csch2(k4) (k4)2

]
, (2.39)



19

B0 =
−2µk [csch(k4) + coth(k4)csch(k4)k4]

1− csch2(k4) (k4)2 , (2.40)

C0 =
2µk342csch2(k4)

1− csch2(k4) (k4)2 , (2.41)

D0 =
2µk24csch(k4)

1− csch2(k4) (k4)2 , (2.42)

E0 =
−2µk

[
csch2(k4)k4− coth(k4)

]
1− csch2(k4) (k4)2 , (2.43)

F 0 =
2µk [coth(k4)csch(k4)k4− csch(k4)]

1− csch2(k4) (k4)2 . (2.44)

The coefficients QT , QN , g, and h are not affected by this evaluation. We immediately

note that A0 − F 0 no longer depend on s because δ → k. An explicit solution for s is

obtained as

s =

(
E0
a + E0

b

) (
QNg − γk2

)
−
(
C0
a − C0

b

)
QTh(

E0
a + E0

b

) (
A0
a +A0

b

)
−
(
C0
a − C0

b

)2 . (2.45)

In general, both the tangential and normal electrical stresses contribute to the growth

rate, as indicated by the presence of QT and QN . The influence of the tangential stress

disappears if we further assume µa = µb, and a = b, such as to recover the results by

Uguz et al. [78]. This simplification sets C0
a − C0

b to zero, and (2.45) becomes

s =
(
QNg − γk2

)
/2A0

a. (2.46)

Equation (2.46) shares similarity with (2.38), in that the stability is completely de-

termined by the balance between the normal electrical stress and the surface tension.

This case has been studied in great detail by Uguz and Aubry (2008, cf. equation (51)

therein), and is not further discussed. The result by Thaokar and Kumaran [76] is

obtained if (2.46) is evaluated in the limit of k → 0 (cf. equation (46) therein). We

remark that when comparing (2.46) with equation (51) in [78], we find that the addition

of a non-uniform base flow (which is present in [78], but not in the current analysis)

only induces a simple convection which manifests itself in the imaginary part of the

growth rate. The base flow can have a more complex effect on the growth rate for the

case of Re 6= 0. For example, Li et al. [39] performed a long-wave analysis with a finite
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Re. The results show that the non-uniform base flow also affects the real part of the

growth rate in the first-order correction term.

2.3.3 Three layers, infinite domain (a→∞)

This problem was first considered by Michael and O’Neill [49], where an insulating

fluid was sandwiched in between two conducting fluids of semi-infinite geometry (σr →

∞, n → ∞), and was subject to a normal applied field. A more recent work by [57]

considered the same geometry, but with a parallel field, and the fluids were assumed to

have arbitrary permittivity and conductivity values. In both of the studies, symmetry

(ζ̂u = ζ̂l) or anti-symmetry (ζ̂u = −ζ̂l) was assumed a priori in the analysis. Here

as we have demonstrated above, these two modes arise naturally from the eigenvalue

problem (2.27). In fact, should the properties of fluid 3 differ from those of fluid

1, the symmetry/anti-symmetry will break, and the upper and lower interfaces may

grow/decay with a relative phase angle other than 0 or π. The dispersion relations for

this geometry with a normal applied field can be achieved by simply replacing Aa, Ca, Ea

with A∞a , C
∞
a , E

∞
a (defined in (2.36b)), and g1,2, h1,2 with g∞1,2, h

∞
1,2:

g∞1 =
tanh (kb) + σr

(1 + σ2
r ) tanh (kb) + 2σr

, (2.47)

g∞2 =
(1 + σr) [tanh (kb) + 1]

(1 + σ2
r ) tanh (kb) + 2σr

, (2.48)

h∞1 =
−σr

(1 + σ2
r ) sinh (kb) + 2σr cosh (kb)

, (2.49)

h∞2 =
1− σr

(1 + σ2
r ) sinh (kb) + 2σr cosh (kb)

. (2.50)

The result is a simple notation change from (2.33), (2.34), and is not presented here.

Note that this result is new due to an arbitrary σr, in contrast to the limit of σr →∞

considered by Michael and O’Neill [49] for a normal field. To recover the latter, we take

this limit for QT , QN , g
∞
1,2, and h∞1,2 to yield:

QN (g∞1 ± h∞1 ) |σr→∞ = kεb (φo/b)
2 [coth (kb)∓ csch(kb)] , (2.51)
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QT (g∞2 ± h∞2 ) |σr→∞ = 0. (2.52)

These terms are the only ones affected by a change in σr. The effect of tangential

electrical stress disappears again, and the dispersion relations become equation (5.23)

in Michael and O’Neill [49] (presented in Appendix B). Following the same procedure

and considering a parallel field instead, the result by Papageorgiou and Petropoulos

[57] can also be obtained, which we do not show.

2.3.4 Three finite layers

This flow configuration is also commonly adopted in microfluidic applications for fluid

handling or mixing purposes. For this case equations (2.33), (2.34) provide the general

dispersion relations for the two modes under a normal applied field, and are the most

significantly new results from the current work. In the special case of σr → ∞, which

is a finite-depth counterpart to that considered by [49] in an infinite domain, (2.33),

(2.34) recover (77) in [86]. The resulting limiting values for the factors QN (g1 ± h1)

and QT (g2 ± h2) are the same as in (2.51), (2.52), although a is finite in this case. (In

deriving (2.51), (2.52), a→∞ has been assumed.)

In the next section, we further investigate in detail the instability behavior for

this flow configuration, and provide a comprehensive characterization based on the

analytical results.

2.4 Instability behavior for a three-layer channel flow

2.4.1 The zero-Reynolds-number limit (Re→ 0)

As demonstrated above, explicit expressions for the growth rate can be obtained in this

limit due to the decoupling of s from the transfer coefficients A − F . The availability

of these expressions helps to illustrate the general characteristics of the instability.

Without losing generality, we also assume µa = µb, and a = b. The dispersion relations
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as derived from (2.33), (2.34), after considering ρs/µk2 → 0, read:

sK =
−D0

aQT (g2 + h2) +
(
2E0

a − F 0
a

)
QN (g1 + h1)−

(
2E0

a − F 0
a

)
γk2

− (D0
a)

2 + (2E0
a − F 0

a ) (2A0
a +B0

a)
, (2.53)

sS =
D0
aQT (g2 − h2) +

(
2E0

a + F 0
a

)
QN (g1 − h1)−

(
2E0

a + F 0
a

)
γk2

− (D0
a)

2 + (2E0
a + F 0

a ) (2A0
a −B0

a)
, (2.54)

where the superscripts K and S denote the kink and sausage mode, respectively. In

general both the tangential and normal electrical stresses contribute to the stability

(shown by the presence of QT and QN ). Furthermore, it is straightforward to verify

that all coefficients D0
a, 2E0

a±F 0
a , 2A0

a±B0
a, g1±h1, g2±h2, and the denominators are

positive for all wavenumbers. The signs of QT and QN therefore solely determine the

stabilizing or destabilizing behavior of the stresses they respectively represent. Due to

the simple dependence of QT and QN on σr, εr, the evaluation is straightforward. The

results are summarized in figure 2.3. In the plots, T denotes a region of a destabilizing

tangential stress, and N denotes a region of a destabilizing normal stress, in the phase

space of σr and εr. It is interesting to note from (2.53), (2.54) that the tangential stress

has opposite effects on the kink and sausage mode, due to the sign of the respective

terms involving QT . The effect of the normal stress is consistent for both modes.

Evidently, the flow is the most susceptible to instability if both stresses are destabilizing.

On the other hand, if both are stabilizing (the shaded areas in figure 2.3), then it is

sufficient to predict stability due to the stabilizing nature of the surface tension. Note

that these observations hold true generally regardless of the specific parameters we use

(e.g. Eapp, µ, ρ, etc.). The results above elucidate the importance of the contour lines,

namely, σr = εr, σ
2
r = εr, and σr = 1, in demarcating the different regions of stability

behavior. Next, we resort to numerical evaluations of (2.33), (2.34) to directly compute

the growth rates for arbitrary Reynolds numbers and fluid properties. We will observe

that although deviations from the zero-Re behavior are expected, results from figure

2.3 can still serve as a guide to understand the general system behavior.
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Figure 2.3: Phase diagram for the (a) kink, and (b) sausage mode. Here T denotes a
destabilizing tangential stress; and N , a destabilizing normal stress. The shaded areas
denote regions of stability where both stresses have stabilizing effects.

2.4.2 Finite Reynolds numbers

We consider the general stability behavior by numerically solving (2.33), (2.34) with

generic fluid properties. The input parameters are shown in table 2.1. These param-

eters are chosen to best approximate the experimental conditions used by Zahn and

Reddy [86]. The permittivity ratio, εr, the conductivity ratio, σr, and the electric field

strength, Eapp, are set to be free parameters. The instability behavior with respect to

the variations in these three parameters is the main focus of the following study. From

equations (2.33), (2.34), the growth rate, s, is generally a complex number for given

fluid properties, wavenumber, and electric field strength. We use Muller’s method to

solve for s numerically.

We begin by examining the behavior of the dispersion curves. In figure 2.4, the real

part of the growth rate, sr, is plotted against the dimensionless wavenumber, kb, at

different electric field strengths. For this case, the conductivity and permittivity ratios

are chosen to be σr = 5, and εr = 3, respectively. It is found that for both the kink

and sausage modes the electric field has a destabilizing effect. The flow is unstable at

low wavenumbers, and stable at high wavenumbers where surface tension dominates.

As the field strength increases, the maximum growth rate (denoted by smax) increases.

The corresponding wavenumber, kmax, also increases. For microfluidic experiments,

this result suggests the formation of smaller droplets at higher fields. When compared
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Symbol Description Value
ρa Density of fluid 1 and 3 103 kg/m3

ρb Density of fluid 2 1.33× 103 kg/m3

µa Viscosity of fluid 1 and 3 10−3 kg/s ·m
µb Viscosity of fluid 2 3.52× 10−3 kg/s ·m
εb Permittivity of fluid 2 7.0092× 10−11 F/m
γ Surface tension 10−4 N/m
a, b Thicknesses of the fluid layers 50 µm
n Fluid thickness ratio 1

Table 2.1: List of model parameters. The parameters are chosen following Zahn and
Reddy [86].
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Figure 2.4: The real growth rate as a function of the wavenumber for the (a) kink, and
(b) sausage mode. The wavenumber at which the maximum growth rate (smax) occurs
is denoted kmax (see, e.g. the black dots for Eapp=4 kV/cm).

against each other, the kink mode is slightly more unstable. This trend can be in part

explained using the results for Re → 0 (§2.4.1). For σr = 5, and εr = 3, the system

falls in the upper-left region of the phase space (figure 2.3), where both the tangential

and normal stress are destabilizing for the kink mode; whereas for the sausage mode,

these two stresses are counter-effective on the growth rate. The kink mode is therefore

anticipated to be more unstable. Further quantitative comparison between the two

modes are found in figure 2.8 below.

Next, the growth rate is shown in the phase space of σr and εr. Here the contours

are of the maximum growth rate, smax, defined in figure 2.4. The applied field strength

is Eapp = 3 kV/cm. The neutral stability curves are the zero-value contours, which
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Figure 2.5: Contour plot of the maximum growth rate (smax, in the unit of s−1) for
the (a) kink, and (b) sausage mode. Here S denotes a stable region, and U denotes an
unstable region.

demarcate the stable (S) and unstable (U) regions. Note that the contours do in part

follow the three dividing lines (σr = εr, σ
2
r = εr, and σr = 1, all dashed). In particular,

the stability regions contain those noted in figure 2.3, except for a small area in figure

2.5(a) for the kink mode. Two interesting features of figure 2.5 are noteworthy. First,

for high values of σr, smax is independent of εr. This is a natural consequence of the

fact that for σr → ∞, QT = 0, and QN no longer depends on εr (equations (2.51),

(2.52), which apply to both infinite and finite values of a). Likewise, at small values of

σr (σr → 0), the growth rates are independent of σr, and scale approximately linearly

with εr. This trend is again explained by the scaling behavior of QN and QT . From

equation (2.25b) we obtain:

QN |σr→0 = kεbE
2
o,1εr, QT |σr→0 = 0. (2.55)

That is, the destabilizing effect of the tangential stress vanishes, and the destabilizing

effect of the normal stress scales with εr.

The corresponding wavenumber, kmax, exhibits a similar pattern, as shown in figure

2.6. The independence on εr for the high-σr region, and on σr for the low-σr region are

explained with the same qualitative arguments above. Furthermore, for the unstable

regions for both the kink and sausage modes, kmax in general scales positively with
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Figure 2.6: Contour plot of the maximum wavenumber (kmax) for the (a) kink, and (b)
sausage mode.

σr and εr. Most interestingly, by comparing figure 2.6 with figure 2.5, we observe a

positive correlation between kmax and smax. This observation has important physical

implications: a slower mixing between the two fluids (corresponding to a smaller value

of smax) produces larger droplets (corresponding to a smaller value of kmax), whereas

a more rapid mixing produces smaller droplets.

Next, in figure 2.7, we investigate the effects of applied electric field on the neutral

stability curves (smax = 0). Three field strength, namely, Eapp=1, 3, and 5 kV/cm, are

examined. For both the kink and sausage modes, the stability regions shrink along with

an increase in field strength, indicating the overall destabilizing effect for the latter. In

comparison, the field strength affects the kink mode more than the sausage mode. The

stability region shrinks more slowly for the latter, and always encompasses the predicted

stable region in the zero-Re limit (see figure 2.3).

Finally, in figure 2.8, we compare the growth rates for the kink and sausage modes.

For a given set of parameters (σr, εr,and Eapp), although many modes are theoretically

unstable, only the one with the fastest growth rate is likely observed experimentally.

In figure 2.8(a), the solid curve is obtained by setting equal the maximum growth rate,

smax, for the kink and sausage modes (sKmax = sSmax). In the domain denoted ‘kink

dominant’, sKmax > sSmax, and the kink mode prevails. similarly, the ‘sausage dominant’

area is determined by the condition sKmax < sSmax. Close to the boundary where the
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Figure 2.7: The effect of the applied electric field on the neutral stability curve for
the (a) kink, and (b) sausage mode. The stable region shrinks as the field strength
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Figure 2.8: (a) Comparison of the maximum growth rate between the kink and sausage
modes for Eapp=3 kV/cm. A kink dominant region suggests that the kink mode grows
more rapidly than the sausage mode. (b) An increasing field strength expands the
kink-dominant region at the expense of the sausage-dominant region.
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kmax
Eapp (kV/cm) Mode Measured Current model ZR2006

2.67 sausage 2.3 5.1 2.2
2.73 sausage 4.1 5.2 2.2
2.80 sausage 5.1 5.4 2.3
2.93 kink 5.5 4.2 2.5
3.00 kink 5.5 4.3 2.5

Table 2.2: Comparison of the wavenumber for the fastest-growing mode, kmax, from
measurements by Zahn and Reddy (2006, denoted ”measured”), the current model, and
the prediction via a simplified model assuming σr → ∞ (also from Zahn and Reddy
[86], denoted ”ZR2006”).

two growth rates equate, and the two modes compete closely with each other, we may

observe ‘mixed’ patterns where both are present and are superimposed on each other. In

figure 2.8(b), the effect of the electric field on mode dominance is examined. The general

trend reveals that an increased field strength expands the kink-dominant domain.

2.4.3 A comparison with experimental data

For the final part of the study, we compare our theoretical prediction with available

experimental data, e.g. from Zahn and Reddy [86]. We choose to compare the fastest-

growing wavenumber, kmax, as it is the only quantitative measurement provided. The

experimental observation determines whether the observed mode is kink or sausage. We

then use (2.33), (2.34) to evaluate kmax. The results are tabulated in table 2.2. Based

on the experimental configuration, we use σr = 541, εr = 11. Other parameters follow

table 2.1. The field strength, Eapp, varies from 2.67 to 3.00 kV/cm. For comparison, the

predicted kmax by Zahn and Reddy [86] is also presented, where they assumed σr →∞

in the calculation. The results reveal that our prediction very reasonably reproduces

the observed values (except for Eapp=2.67 kV/cm), despite that the model is two-

dimensional, whereas the experimental geometry is intrinsically three-dimensional. In

contrast, the more idealized prediction from Zahn and Reddy [86] yields a much more

significant discrepancy. This comparison demonstrates that the current, more complete

model is an important improvement from the previous ones.
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2.5 Conclusions

In conclusion, we have systematically analyzed the stability of electrified and stratified

fluids using the Taylor-Melcher leaky dielectric model. The transfer relations developed

by Melcher are universally applicable to this (and many other) class of problems, and

can be used to obtain analytical dispersion relations in a straightforward manner. Both

new results and those from previous work are derived as special cases of the general

solutions presented. Although we only consider a normal applied field in the limit of

instantaneous relaxation, other problems such as those with a parallel applied field and

a finite relaxation time can be treated similarly. In addition, this approach can also be

potentially applied to different geometric configurations, e.g. to a cylindrical geometry

with axisymmetry. However, for this case the transfer relations need to be derived first

by solving equations (A.1-A.5) in the corresponding coordinate system.
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Chapter 3

A Transient Analysis for Droplet Electrodeformations

3.1 Introduction

In this chapter, we develop a transient analysis for droplet electrodeformations. The

droplet interface separates two fluids phases with arbitrary properties including viscos-

ity, conductivity, and permittivity. The droplet is assumed to be spheroidal in shape

with volume conservation. The Taylor-Melcher leaky dielectric model is adopted, where

the electrical and the hydrodynamic problem can be solved separately, and then coupled

at the interface with stress matching conditions. We first consider the general situa-

tion of a finite relaxation time. In this framework, instantaneous charge relaxation is

treated as a special limiting case. The equations are recast into a rotational spheroidal

coordinate system, and reduced to the single ODE governing the change of the aspect

ratio as a function of time. The model is extensively validated by comparing predicted

deformation with both previous theoretical and numerical studies, and with experimen-

tal data. This work is a necessary building block for the more complex task in the next

chapter, namely, the development of a vesicle electrodeformation model. This work has

been summarized in a manuscript submitted to Journal of Fluid Mechanics [89].

3.2 Theory

A schematic of the problem configuration is shown in figure 3.1(a). An uncharged,

neutrally buoyant liquid droplet of radius r0 is suspended in another fluid, and is subject

to an applied electric field of strength E0. We assume that the fluids are immiscible

leaky dielectrics with constant electrical and mechanical properties. σ, ε, and µ are

the electrical conductivity, permittivity, and fluid viscosity, and the subscripts i and e
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denote internal and external, respectively. Under the influence of an applied electric

field, free charges accumulate at the interface, which induces droplet deformation and

EHD flows both inside and outside the droplet. Taylor [74] predicted that droplets may

deform into prolate or oblate shapes depending on the electrical properties of the fluids.

In the following analysis, we focus on developing a solution for prolate deformations,

whereas a solution for oblate deformations can be pursued in a similar manner (not

presented here).

We assume that the droplet remains spheroidal in shape throughout the process.

This approximation is consistent with experimental observations in [24] and [7]. Follow-

ing Taylor [73], Bentenities and Krause [7], and Dubashe and Mestel [16], the natural

coordinate system to analyze this problem is the prolate spheroidal coordinate system,

and a schematic is shown in figure 3.1(b). The geometry is assumed to be axisymmet-

ric about the z axis, which aligns with the direction of the applied electric field. The

spheroidal coordinates (ξ, η) are related to the cylindrical coordinates (r, z) through

the equations:

z = cξη, (3.1)

r = c
√

(ξ2 − 1)(1− η2). (3.2)

Here c =
√
a2 − b2 is chosen to be the semi-focal length of the spheroidal droplet, and

a and b are the major and minor semi-axis, respectively. The contours for constant ξ

are spheroids, and ξ ∈ [1, +∞). The contours for constant η are hyperboloids, and

η ∈ [−1, 1]. The surface of the prolate spheroid is conveniently given as

ξ = ξ0 ≡
a

c
. (3.3)

For the derivation below, we further assume that the volume of the droplet is conserved.

We subsequently obtain

a = r0(1− ξ−2
0 )−

1
3 , b = r0(1− ξ−2

0 )
1
6 . (3.4)

Therefore, the droplet geometry is completely characterized by a single parameter, ξ0,
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Figure 3.1: (a) A schematic of the problem configuration. (b) The prolate spheroidal
coordinate system.

which evolves in time along with deformation. The critical idea of the current analysis

is to express all variables, e.g. the electric potential and the stream function in terms

of ξ0.

In what follows, we will solve the electrical problem first, followed by a solution of

the hydrodynamic problem. An ODE for ξ0 is obtained by applying both the stress

matching and kinematic conditions.

3.2.1 The electrical problem

The electric potentials inside and outside the droplet obey the Laplace equation ac-

cording to the Ohmic law of current conservation with uniform electrical conductivity:

∇2φi = ∇2φe = 0. (3.5)

The matching conditions at the interface are

||∇φ · t|| = 0, at ξ = ξ0, (3.6)

∂q

∂t
− ||σ∇φ · n|| = 0, at ξ = ξ0. (3.7)
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Here || · || denotes a jump across an interface, and t and n are the unit tangential and

normal interfacial vector, respectively. q = || − ε∇φ · n|| is the surface charge density.

Note that in equation (3.7), we have included the displacement current, ∂q/∂t. This

term is particularly important for fluids with very low conductivities (for example, those

used in [24]) such that the interfacial charging time becomes comparable to the defor-

mation time. However, we have ignored the effect of surface charge convection which

is shown to be small by numerical simulations [19]. Equation (3.7) can be rewritten in

terms of the electric potentials,

(
εe
c

∂φe
∂ξ

− εi
c

∂φi
∂ξ

)
d c
hξ

dt
− (

εe
hξc

∂φe
∂ξ
− εi
hξc

∂φi
∂ξ

)
dc

dt

+ (
εe
hξ

∂2φe
∂ξ∂t

− εi
hξ

∂2φi
∂ξ∂t

) +
1

hξ
(σe

∂φe
∂ξ
− σi

∂φi
∂ξ

) = 0, at ξ = ξ0. (3.8)

Here hξ is a metric coefficient of the prolate spheroidal coordinate system. The displace-

ment current consists of two parts, represented by the first three terms on the LHS of

the above equation. The first two terms result from a change in the droplet shape, and

the third results from the charging process as if the shape remains unchanged. Here,

we assume that the first term is negligible compared with the other two, and equation

(3.8) can be further simplified to be

εe
∂2φe
∂ξ∂t

− εe
c

∂φe
∂ξ

dc

dt
− εi

∂2φi
∂ξ∂t

+
εi
c

∂φi
∂ξ

dc

dt
+ σe

∂φe
∂ξ
− σi

∂φi
∂ξ

= 0, at ξ = ξ0. (3.9)

Indeed a consistency check a posteriori justifies the simplification. Far away from the

droplet surface the electric field is uniform,

−∇φe = E0z, at ξ →∞. (3.10)

We also require that φi remains finite at ξ = 1. For the initial condition, we assume

both the electric potential and the normal component of the displacement vector are

continuous:

εe
∂φe
∂ξ

= εi
∂φi
∂ξ

, φe = φi, at ξ = ξ0, t = 0. (3.11)
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Solutions for the electric potentials have been obtained previously without including

the displacement current [7, 74]. With its inclusion the approach is similar and the

results are

φe = E0r0 [−λξ + αQ1(ξ)] η, (3.12)

φi = E0r0βξη. (3.13)

Here, Q1(ξ) is a 1st-degree Legendre polynomial of the second kind. λ ≡ c/r0 is

the dimensionless semi-focal length. The coefficients α and β are determined by the

interfacial matching conditions (3.6) and (3.9) which gives

α =
βξ0 + λξ0

Q1(ξ0)
, (3.14)

τ1

τ2

[
Q

′
1(ξ0)ξ0

Q1(ξ0)
− 1

εr

]
dβ

dτ
+

[
τ1

τ2

(
Q

′
1(ξ0)

Q1(ξ0)
+
Q

′′
1(ξ0)Q1(ξ0)−Q′2

1 (ξ0)

Q2
1(ξ0)

ξ0

)
dξ0

dτ

−τ1

τ2

(
Q

′
1(ξ0)ξ0

Q1(ξ0)λ
− 1

εrλ

)
dλ

dξ0

dξ0

dτ
+
Q

′
1(ξ0)ξ0

Q1(ξ0)
− 1

σr

]
β + λ

[
Q

′
1(ξ0)ξ0

Q1(ξ0)
− 1

]

+
τ1

τ2

[
Q

′
1(ξ0)

Q1(ξ0)
+
Q

′′
1(ξ0)Q1(ξ0)−Q′2

1 (ξ0)

Q2
1(ξ0)

ξ0

]
λ
dξ0

dτ
= 0, (3.15)

α(0) = λξ0 (εr − 1) , β(0) =
εrλ
(
Q1(ξ0)−Q′

1(ξ0)ξ0

)
εrQ

′
1(ξ0)ξ0 −Q1(ξ0)

. (3.16)

Here εr ≡ εe/εi and σr ≡ σe/σi are the permittivity ratio and the conductivity ratio,

respectively. τ1 ≡ εe/σe is an electrical charging time. τ2 ≡ r0µe/γ is a characteristic

flow timescale used below in the hydrodynamic problem, and γ is the coefficient of

surface tension. In the above equations, a dimensionless time τ ≡ t/τ2 has been used.

In general, equation (3.15) needs to be integrated together with an ODE for ξ0 to obtain

α and β. However, in the limit of instantaneous-charge-relaxation time, τ1/τ2 → 0, and

equation (3.15) can be simplified to be

[
Q

′
1(ξ0)ξ0

Q1(ξ0)
− 1

σr

]
β + λ

[
Q

′
1(ξ0)ξ0

Q1(ξ0)
− 1

]
= 0. (3.17)
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This result is equivalent to a solution employing the simplified boundary condition

||σ∇φ · n|| = 0 in place of equation (3.7).

The normal and tangential electrostatic stresses are given by,

Sξξ =
ε

2

(
E2
ξ − E2

η

)
, Sξη = εEξEη, (3.18)

where Eξ = −(∂φ/∂ξ)/hξ and Eη = −(∂φ/∂η)/hη are the normal and tangential electric

fields, respectively. hη is a metric coefficient of the prolate spheroidal coordinate system.

These stresses can be evaluated with the solutions (3.12) and (3.13), and will be used

in the stress matching conditions below.

3.2.2 The hydrodynamic problem

In the regime of low-Reynolds-number flow, the governing equation for the hydrody-

namic problem can be rewritten in terms of the stream function, ψ, as

∇4ψ = 0. (3.19)

Here, the stream function is related to the velocity components as

u = − 1

hξhθ

∂ψ

∂ξ
, v =

1

hηhθ

∂ψ

∂η
. (3.20)

hθ is a metric coefficient of the prolate spheroidal coordinate system. At the interface, u

and v represent the tangential and normal velocities, respectively, and they are required

to be continuous

ue = ui, ve = vi, at ξ = ξ0. (3.21)

In addition, we prescribe a kinematic condition relating the interfacial displacement to

the normal velocity,

v(ξ = ξ0, η) =
r0

(
1− ξ−2

0

)−5/6

3ξ2
0

(
1− 3η2

)√
ξ2

0 − η2

dξ0

dt
. (3.22)

The total force on the interface resulting from the electrical stress, the hydrodynamic
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stress, and the surface tension should be balanced at every point. However, this con-

straint is impossible to satisfy exactly within the framework of spheroidal deformation.

Various authors developed reduced stress-balance conditions instead [7, 16, 70, 73].

Here we follow the integrated formulae proposed by Sherwood [70] and Dubash and

Mestel [16] ∫
u ·
(
T eξη − T iξη + Seξη − Siξη

)
ds = 0, (3.23)

∫
v ·
(
T eξξ − T iξξ + Seξξ − Siξξ − γ

(
1

R1
+

1

R2

))
ds = 0. (3.24)

Equations (3.23) and (3.24) represent a global balance of the tangential and normal

stresses, respectively derived from energy principles. Here T denotes the hydrodynamic

stress, R1 and R2 are the two principal radii of the curvature, and the integration is

carried over the interface.

The general solution to (3.19) was proposed by Dassios et al. [13] using the method

of semi-separation:

ψ = g0(ξ)G0(η) + g1(ξ)G1(η) +

∞∑
n=2

[gn(ξ)Gn(η) + hn(ξ)Hn(η)] . (3.25)

Here Gn and Hn are Gegenbauer functions of the first and second kind, respectively.

gn and hn are linear combinations of Gn and Hn. The detailed expressions for Gn, Hn,

gn, and hn are found in [13]. Interested readers are referred to [13] for further details.

After considering that the far field is quiescent, and that the velocities remain finite at

ξ = 1, the stream functions can be simplified to be

ψe =

∞∑
n=1

[
A2n−1

2n+1H2n−1(ξ) +A2n+1
2n+1H2n+1(ξ) +A2n+3

2n+1H2n+3(ξ)
]
G2n+1(η), (3.26)

ψi =
∞∑
n=1

[
B2n−1

2n+1G2n−1(ξ) +B2n+1
2n+1G2n+1(ξ) +B2n+3

2n+1G2n+3(ξ)
]
G2n+1(η), (3.27)

where A and B are unknown coefficients satisfying the relations A2n+3
2n+1 = A2n+1

2n+3,

B2n+3
2n+1 = B2n+1

2n+3 . In general, these coefficients are inter-dependent, and the full so-

lution can be obtained only with the entire infinite series. Here we seek a truncated
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solution as an approximation,

ψe =
[
A1

3H1(ξ) +A3
3H3(ξ)

]
G3(η), (3.28)

ψi =
[
B3

3G3(ξ) +B5
3G5(ξ)

]
G3(η). (3.29)

Indeed, G3(η) gives a functional form in η confirming with that in equation (3.22),

which can be rewritten as

v(ξ = ξ0, η) =
2c2
√
ξ0 − 1r0

(
1− ξ−2

0

)−5/6

3ξ2
0

G
′
3(η)

hηhθ

dξ0

dt
. (3.30)

This agreement in part validates the spheroidal shape assumption: the shape represents

the leading mode in the infinite series.

Equations (3.21-3.24) are combined to solve for the five unknown variables, namely,

A1
3, A3

3, B3
3 , B5

3 , and ξ0. Specifically, equations (3.21) and (3.22) are first used to

eliminate the A1
3, B3

3 , B5
3 ,

A1
3 = H3(ξ0)A3

3 −M
dξ0

dt
, (3.31)

B3
3 =
−G5(ξ0)H

′
3(ξ0)A3

3 +G
′
5(ξ0)M dξ0

dt

N
, (3.32)

B5
3 =

G3(ξ0)H
′
3(ξ0)A3

3 −G
′
3(ξ0)M dξ0

dt

N
, (3.33)

where M ≡ 2r3
0/3(ξ3

0− ξ0), and N ≡ G3(ξ0)G
′
5(ξ0)−G′

3(ξ0)G5(ξ0). Further considering

equation (3.23), we can express A3
3 in terms of ξ0,

cr2
0εiE

2
0

{
ξ0β

2 − εr(λ− αQ′
1(ξ0))(λξ0 − αQ1(ξ0))

}
f11(ξ0)

A3
3 =

−µi {(µr − 1)f12(ξ0) + f13(ξ0)}M dξ0
dt

−µi {µrf14(ξ0) + f15(ξ0)} ,

(3.34)

where µr ≡ µe/µi is the viscosity ratio. The detailed expressions of f11(ξ0) − f15(ξ0)

are found in the Appendix C. This expression is inserted into equation (3.24) to obtain
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the final result, an ODE governing the evolution of the ξ0,

dξ0

dτ
= − 1

F

[
QNf21(ξ0) +QT

µrf22(ξ0) + f23(ξ0)

µrf14(ξ0) + f15(ξ0)
− f24(ξ0)

]
, (3.35a)

QN =
CaE
λ2

[
(λ− αQ′

1(ξ0))2 + (λ− αQ1(ξ0)/ξ0)2 − 2β2/εr

]
, (3.35b)

QT =
CaE
λ2

[
(λ− αQ′

1(ξ0))(λ− αQ1(ξ0)/ξ0)− β2/εr

]
. (3.35c)

The detailed expressions of f21(ξ0) − f24(ξ0), and F are also found in the Appendix

C. The coefficients α and β are given by equations (3.14) and (3.15), respectively.

CaE ≡ r0εeE
2
0/γ is the electric capillary number. In equation (3.35a), the three terms

in the numerator on the RHS represent the contributions from the normal stress, the

tangential stress, and the surface tension, respectively. At the equilibrium, the balance

of the three forces determines the final shape. The leading coefficients QN and QT arise

exclusively from the electrostatic stresses, and can be used to estimate their respective

influence on deformation. In the limit of instantaneous relaxation, and by considering

equations (3.14) and (3.17), QN and QT can be simplified to be

QN = CaEK
2(σ2

r + 1− 2σ2
r/εr), QT = CaEK

2σr(1− σr/εr), (3.36)

K ≡ Q1(ξ0)− ξ0Q
′
1(ξ0)

Q1(ξ0)− σrξ0Q
′
1(ξ0)

. (3.37)

For this case, the evolution of ξ0 is governed by a single timescale, τ2. Once ξ0 is

obtained by solving the equations (3.15) and (3.35a), the aspect ratio is calculated by

the formula

a

b
= (1− ξ−2

0 )−
1
2 . (3.38)

3.3 Comparison with previous results

In this section, we compare our model prediction extensively with results from previous

work. The comparisons with theoretical/numerical results and experimental data are

respectively presented in §3.3.1 and §3.3.2.
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Figure 3.2: The equilibrium aspect ratio as a function of electric capillary number. The
parameters are σr = 1.19× 10−2, εr = 3.24× 10−1, and µr = 7.33× 10−2.

3.3.1 Comparison with previous theories and simulation

We first consider the equilibrium shape, and compare our results with those from Ben-

tenitis and Krause [7]. For this case, the LHS of equation (3.35a) is simply set to zero,

resulting in the so called discriminating equation,

QNf21(ξ0) +QT
µrf22(ξ0) + f23(ξ0)

µrf14(ξ0) + f15(ξ0)
= f24(ξ0). (3.39)

Here QN and QT are given by equation (3.36). ξ0 is solved as a root(s) of this equa-

tion from which the equilibrium aspect ratio, a/b, can be obtained. Equation (3.39)

shows that the equilibrium shape is only determined by the dimensionless parameters

CaE , σr, εr, and µr. A comparison with the theoretical prediction by Bentenitis and

Krause [7] is shown in figure 3.2. Note that in this earlier work, the authors solved

for the equilibrium shape directly without obtaining the transient solution. A good

agreement is observed, although a different stress matching condition has been used by

Bentenitis and Krause [7] (see equations (38) and (45) therein).

We next compare with the results from Dubash and Mestel [16]. In this work,

the authors developed a theoretical model, also with the spheroidal shape assumption,

to predict the transient deformation of a conducting, inviscid droplet immersed in a
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Figure 3.3: The deformation of a conducting droplet in a highly viscous medium. (a)
CaE = 0.18 and 0.204. (b) CaE = 0.206 and 0.21. The dimensionless time τ is defined
as τ = t/τ2, where τ2 = r0µe/γ.

viscous, nonconductive solution. This special consideration leads to significant simpli-

fications: both the electric and hydrodynamic fields are absent within the droplet. In

addition, at the equilibrium state (if one is permitted), the hydrodynamic flow outside

the droplet is also quiescent, giving rise to the phenomenon termed EHS.

In our generalized framework, the solution for this case is simply achieved by setting

σr → 0 and µr → ∞ in equations (3.35a) and (3.36). Note that σr → 0 directly leads

to instantaneous charge relaxation. The resulting comparisons are shown in figure 3.3

in which the aspect ratio (a/b) is plotted as a function of time for four different electric

capillary numbers (CaE). For the two lower values of CaE , the current model has

excellent agreement with both the theoretical and numerical predictions by Dubash and

Mestel [16] (figure 3.3a). For these CaE values, final equilibria are achieved. As CaE

increases (figure 3.3b), the deformation becomes unstable and an equilibrium shape is

no longer possible. The rapid expansion with a sharp slope at the later stage preludes

droplet breakup. For these two cases, the theoretical models still agree with each other,

whereas some discrepancies exist with respect to the numerical simulation, in particular

for CaE=0.206. However, this discrepancy is in general only noticeable when the CaE

number is above and very close to the critical threshold of breakup (CaE ∼0.2044 for

the case studied), due to a slight underprediction of the rate of deformation by the
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theoretical models. A similar trend is observed when comparing with the numerical

simulation by Hirata et al. [26] (not shown). Overall, our model can serve as a good

approximation to the numerical model which is considered more accurate.

3.3.2 Comparison with experimental data

The main source of experimental data comes from Ha and Yang [24]. We also begin with

an examination of the final aspect ratio when an equilibrium shape can be achieved.

Figure 3.4 shows the equilibrium aspect ratio of a castor oil droplet immersed in silicone

oil from Ha and Yang [24], as well as predicted by various models. The current predic-

tion is shown as a solid line, whereas the results from first-order [74] and second-order

[1] theories are shown as dot-dashed and dashed lines, respectively. Following Lac and

Homsy [37], we rescale CaE to best match Ajayi’s second-order correction. This rescal-

ing is equivalent to adjusting the surface tension from γ = 3.3× 10−3 N/m used by Ha

and Yang [24] (which is a fitting parameter in that work) to γ = 4.3× 10−3 N/m. The

latter value is close to the lower bound, γ = 4.5 × 10−3 N/m, measured by Salipante

and Vlahovska [65]. In addition, we use σr = 0.03 according to the measurements by

Torza et al. [77], Vizika and Saville [80], and Salipante and Vlahovska [65], which is

slightly different from the value of σr = 0.04 used by Lac and Homsy [37]. The results

show good agreement between the current model and the experimental data. Most

importantly, our theory correctly predicts a critical CaE (∼0.244) for droplet breakup.

In contrast, the small deformation theories can not capture this critical phenomenon.

We have also compared our theoretical prediction with the experimental data from

Bentenitis and Krause [7], which measured the equilibrium aspect ratio of a DGEBA

droplet immersed in a PDMS solution. Since our result is in good agreement with the

theoretical prediction in the same work (see figure 3.2), which in turn agrees well with

the data, the comparison is not shown here for brevity.

Next, we will compare the transient solution from our model with data from Ha and

Yang [24]. In figure 3.5(a), the data is extracted from figure 3 in the latter work, which

captures the deformation of a water droplet in silicone oil. The droplet is fitted with

an ellipse at every instant, based on which the aspect ratio is calculated. A 10% fitting
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Figure 3.4: The prediction from current model is compared with the small deformation
theories [1, 74] and experimental data [24]. The parameters are σr = 0.03, εr = 0.73,
and µr = 1.14.

error is estimated, and is shown as error bars in figure 3.5(a) (the same approach is

adopted to extract the data presented in figures 3.5b and 3.6). The model prediction is

calculated with equations (3.35a) and (3.36), and with σr = 1× 10−6, εr = 3.55× 10−2,

µr = 1000, E0 = 3.2 kV/cm, r0 = 0.25 cm, and µe = 0.98 Pa · s all directly taken from

Ha and Yang [24]. For medium permittivity, we use εe = 2.478×10−11 F/m following the

measurements by Torza et al. [77], Vizika and Saville [80], and Salipante and Vlahovska

[65]. For surface tension, we use γ = 3.037 × 10−2 N/m, which is consistent with the

values reported by Torza et al. [77] and Vizika and Saville [80]. In this case, the model

is able to predict the deformation process with good quantitative accuracy. In figure

3.5(b), a similar comparison is shown for a water-ethanol droplet in silicone oil. The

data is based on figure 4 in [24]. For our calculation, σr = 1×10−5, εr = 0.05, µr = 23.3,

E0 = 4.5 kV/cm, r0 = 0.14 cm, µe = 0.98 Pa · s, and εe = 2.478× 10−11 F/m. Because

the droplet is doped with polyvinylpyrrolidone (a polymer solution), the surface tension

is not directly available, and is used as a fitting parameter instead to generate the best

agreement between theory and data. The resulting value is γ = 3.432×10−2 N/m, 11%

higher than that for water/silicone oil which is used in figure 3.5(a).

In contrast to the regime of instantaneous charge relaxation examined in figure 3.5,
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Figure 3.5: Comparison of transient droplet deformation. (a) A water droplet in silicone
oil. The parameters are σr = 1× 10−6, εr = 3.55× 10−2, µr = 1000, E0 = 3.2 kV/cm,
r0 = 0.25 cm, µe = 0.98 Pa · s, εe = 2.478×10−11 F/m, and γ = 3.037×10−2 N/m. (b)
A water-ethanol droplet in silicone oil. The parameters are σr = 1 × 10−5, εr = 0.05,
µr = 23.3, E0 = 4.5 kV/cm, r0 = 0.14 cm, µe = 0.98 Pa · s, εe = 2.478 × 10−11 F/m,
and γ = 3.432× 10−2 N/m.

figure 3.6 represents droplet deformation in the finite-charging-time regime. The data

is extracted from figure 7 in [24]. For this case, the droplet is made of castor oil, and

is immersed in silicone oil. The extremely low conductivities of these media lead to

a charging time (∼seconds) comparable to the deformation time, and the full model,

equations (3.35a-3.35c), has to be used. For our calculation, σr = 0.03, εr = 0.73,

µr = 1.14, E0 = 3.2 kV/cm, r0 = 0.16 cm, µe = 0.9 Pa · s, εe = 2.478× 10−11 F/m, and

γ = 5 × 10−3 N/m. Note that the values for the surface tension and the conductivity

ratio follow the measurements by Torza et al. [77], Vizika and Saville [80], and Salipante

and Vlahovska [65] which are believed to be more accurate than the original values of

σr = 0.1 and γ = 3.3 × 10−3 N/m given by Ha and Yang [24]. In addition, the

actual conductivity of silicone oil varies from 10−10 S/m to 10−13 S/m in the literature

[33, 58, 65]. In figure 3.6, we show the calculation with three representative values within

this range, namely, σe = 1× 10−10, 7× 10−12, and 1× 10−12 S/m. The best agreement

is found for σe = 7 × 10−12 S/m. For comparison, the calculation according to the

instantaneous-charge-relaxation model (equations (3.35a) and (3.36)) is also shown,

and is denoted by ICR. This simplified model clearly overpredicts deformation by a

significant degree.
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Figure 3.6: Droplet deformation in the limit of extremely low conductivities. The
parameters are σr = 0.03, εr = 0.73, µr = 1.14, E0 = 3.2 kV/cm, r0 = 0.16 cm,
µe = 0.9 Pa · s, εe = 2.478 × 10−11 F/m, and γ = 5 × 10−3 N/m. The best agreement
between the data and the theory is found for σe = 7 × 10−12 S/m. For reference,
the dotted line shows the calculation according to the instantaneous-charge-relaxation
(ICR) model.

In general, our model agrees well with experimental data in both steady and tran-

sient states, and for a large parametric range. These comparisons provide a strong

validation for our model.

3.4 The effects of stresses on deformation

In this section, we demonstrate the utility of our theoretical results by analyzing in-

depth the governing equation. For simplicity, we focus on the regime of instantaneous

relaxation, where QN and QT are given by equation (3.36). A main contribution of the

current work is that equation (3.35a) clearly separates the effects by different forces.

In the numerator of the RHS, the three terms represent respectively the effects of

the normal stresses (both electrical and hydrodynamic), the tangential stresses (both

electrical and hydrodynamic), and the surface tension. Furthermore, all the functions

in this equation are positive (f14, f15, f21 − f24, F ), such that the signs of QN and

QT completely determine whether the normal and tangential stresses would promote
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or suppress deformation. Due to the inverse relationship between ξ0 and the aspect

ratio, a/b (see equation (3.38)), a positive QN or QT indicates a positive contribution.

Evidently, surface tension always resists deformation. Because QN and QT depend

exclusively on the electrical properties in a simple manner (see equation (3.36)), their

influences can be conveniently analyzed using a phase diagram shown in figure 3.7.

The dashed and dotted lines correspond to QN = 0 and QT = 0, respectively. These

lines separate the phase space into three regimes, where N and T denote the normal

and tangential stresses, and the superscripts ′+′ and ′−′ denote a positive or negative

contribution to deformation, respectively. In addition, the solid line is obtained by

solving for the root of Taylor’s discriminating function [74], which separates the prolate

(denoted by ′Pr′) and oblate (denoted by ′Ob′) regimes (this line can be equivalently

obtained by looking for the steady-state solution of a/b = 1 from equation (3.39)).

Figure 3.7 can be used to shed light on the physical processes governing deformation.

First, the line for QT = 0 separates the T+ and T− regimes, which corroborates with

the previous results [37, 74]. On this dividing line, the velocity field becomes zero,

so does the tangential electrical stress. In [37], the viscosity ratio has opposite effects

on deformation in the T+ and T− regimes. This behavior is clearly explained by

equation (3.35a). Second, there is a small region within the oblate regime, namely, the

area between the solid and dashed lines where QN is positive. This suggests that the

normal stress still tends to stretch the droplet along the direction of the applied field.

However, because QT is negative, the tangential stresses overcome the normal stresses,

and stretch the droplet into an oblate shape. This new insight is not available from

previous analysis or simulations.

Third, in the prolate regime where QN is always positive, the sign of QT leads

to different deformation behavior. Figure 3.8 shows the equilibrium aspect ratio as a

function of CaE for three specific cases. Note that the new variable

D =
a− b
a+ b

. (3.40)

In this new definition, D = 0 corresponds to a/b = 1, and D = 1 corresponds to
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Figure 3.7: Phase diagram for droplet deformation. Here the dotted line is calculated
by satisfying QT = 0. The solid line is calculated by solving for the root of Taylor’s
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prolate and oblate deformation, respectively. N and T denote the effect of normal and
tangential stresses, respectively, and a ′+′ or ′−′ sign denotes facilitating or suppressing,
respectively.

a/b → ∞. For all three cases, εr = 10 and µr = 1. For σr = 0.05, QT > 0. We

observe hysteresis, and D approaches 1 rapidly in the upper brunch. The cases of

σr = 1 and σr = 30 correspond to QT = 0 and QT < 0, respectively. In general,

as QT decreases, the deformation becomes weaker for comparable CaE values. Most

interestingly, for σr = 30 (QT < 0), D converges to a value less than 1 in the limit

of CaE → ∞. This means that even for the very large applied electric field strength,

a finite equilibrium aspect ratio can be achieved. We emphasize this scenario is only

possible in the T− regime. For large E0 values, corresponding to large CaE , the resistive

effect from surface tension is negligible, and the only way to obtain a finite equilibrium

aspect ratio is therefore by balancing the normal and tangential stresses. Since QN is

positive, QT has to be negative.

3.5 Conclusions

In conclusion, we have developed a transient analysis to quantify droplet deformation

under DC electric fields. The full Taylor-Melcher leaky dielectric model is employed



47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CaE

D

 

 

σr = 0.05
σr = 1
σr = 30

10
0

10
1

10
2

10
3

10
4

0

0.5

1

Figure 3.8: The behavior of equilibrium droplet deformation in different regimes. For
σr = 0.05, QT > 0; σr = 1, QT = 0; σr = 30, QT < 0. As CaE → ∞, an equilibrium
shape is only possible in the T− regime. Other parameters are εr = 10 and µr = 1.

where the charge relaxation time is considered finite. In this framework, instantaneous

charge relaxation is treated as a special limiting case. The droplet is assumed to be

spheroidal in shape for all times. The main result is an ODE governing the evolution of

the droplet aspect ratio. The model is validated by extensively comparing predicted de-

formation with both previous theoretical and numerical studies, and with experimental

data. In particular, the experimental results by Ha and Yang [24], which were obtained

with extremely low medium conductivities are well captured by the simulation with

the finite-time charge-relaxation model. The model is used to analyze the effects of

parameters and stresses on the deformation characteristics. The results demonstrate

clearly that in different regimes according to the sign of QT , the stresses contribute

qualitatively differently to deformation. Last but not least, this work lays the foun-

dation for the study of a more complex problem, namely, vesicle electrodeformation,

which is presented in the next chapter.
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Chapter 4

A Transient Analysis for Vesicle Electrodeformations

4.1 Introduction

In this chapter, the problem of vesicle electrodeformation is tackled, and a solution

is pursued in the similar manner as in the case of the droplet deformation. However,

the extension from the droplet to vesicle model is not trivial. In contrast to droplet

deformation, vesicle deformation exhibits more complex physical behavior. The differ-

ence between droplets and vesicles mainly lies in two aspects. First, contrary to the

droplet interface, the lipid membrane is essentially impermeable. When an electric field

is applied, charges accumulate at both sides of the lipid membrane, which behaves like

a capacitor. Thus an electric potential is built up across the vesicle membrane, which

is known as the transmembrane potential (TMP). When the TMP exceeds a critical

threshold, 0.2-1 V [10, 62, 75], the membrane becomes permeable and the conductivity

of the membrane increases significantly. Second, the mechanical response of a mem-

brane is different from that of a droplet interface in that it consists of two parts: bending

resistance and membrane tension. One can easily shows that the bending resistance

only has a small contribution to the membrane force such that it could be neglected.

However, the membrane tension may have significant effects on the membrane force

especially when the deformation is large. In the current work, we consider both effects.

A transient analysis is presented to predict both vesicle deformation and relaxation,

and to study in-depth their relations with initial membrane tension and pulse length.

More importantly, it is found that vesicle relaxation obeys a universal behavior, and

is governed by a single timescale that is a function of the vesicle initial radius, the

fluid viscosity, and the initial membrane tension. This work has been summarized in a

manuscript submitted to Journal of Fluid Mechanics [90].
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Figure 4.1: A schematic of the problem configuration. The original radius of the vesicle
is r0. The conductivity is denoted by σ, the permittivity is denoted by ε, the viscosity
is denoted by µ, and the subscripts i and e denote intravesicular and extravesicular,
respectively. The strength of the applied electric field is E0.

4.2 Theory

The problem configuration is identical to that in figure 3.1 in Chapter 3, except that

the droplet interface is replaced by an infinitesimally thin membrane (figure 4.1). Con-

sequently, charges of opposite signs are allowed to accumulate on the two sides of the

membrane. All notations, as well as the prolate spheroidal coordinate system follow

those from Chapter 3. The electrical and mechanical models for the membrane are

described later.

4.2.1 The electrical problem

The electric potential is described by the same Laplace equations as in Chapter 3:

∇2φi = ∇2φe = 0. (4.1)
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However, at the membrane the matching conditions are modified:

σe
hξ

∂φe
∂ξ

=
σi
hξ

∂φi
∂ξ

= Cm
∂ c
hξ

(φe − φi)
∂t

+
Gmc

hξ
(φe − φi), at ξ = ξ0. (4.2)

Here Cm and Gm denote the membrane capacitance and conductance, respectively.

This membrane-charging model is commonly adopted by many previous research [14,

22, 40, 34, 68]. The displacement currents from the electrolytes are not included, which

approximation is valid when the Maxwell-Wagner timescale, TMW = (εi + 2εe)/(σi +

2σe), and the charge relaxation timescale, Tcr = ε/σ, are small when compared with the

membrane-charging time, Tch = r0Cm(1/σi + 1/2σe), and the deformation time, Td =

µe/εeE
2
0 . However, the last two times are in general comparable with each other. The

first term on the RHS of equation (4.2) represents capacitive charging of the membrane,

which includes the effect of membrane deformation. However, the contribution from this

effect is usually small, and is neglected in the current analysis for simplicity. Equation

(4.2) can be consequently reduced to

σe
hξ

∂φe
∂ξ

=
σi
hξ

∂φi
∂ξ

=
Cmc

hξ

∂(φe − φi)
∂t

+
Gmc

hξ
(φe − φi), at ξ = ξ0. (4.3)

Equation (4.3) can be further simplified by considering different stages of charging. In

the first stage, the TMP, Vm ≡ (φi−φe)ξ=ξ0 , grows continuously in magnitude, but the

membrane is not permeabilized. Under this condition, Gm is near zero, and equation

(4.3) becomes

σe
hξ

∂φe
∂ξ

=
σi
hξ

∂φi
∂ξ

=
Cmc

hξ

∂(φe − φi)
∂t

, at ξ = ξ0. (4.4)

In the second stage, the maximum TMP reaches the critical threshold, Vc, for electropo-

ration to occur [9, 21, 23, 38, 59, 72, 82]. The membrane becomes permeable to ions, and

Gm increases significantly to limit further growth of the TMP. In general, the exact val-

ues of Vm and Gm depend on the detailed electroporation conditions and variables such

as pore density and pore area [40]. The solution usually requires a complex numerical

simulation which is beyond the scope of the theoretical analysis pursued in this paper.
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However, a comprehensive model study by Li and Lin [40] showed that the maximum

TMP remained at the critical level in the presence of the pulse post-permeabilization.

In this work, we adopt an approximate model for this stage. We assume that once the

maximum value of Vm reaches Vc, it no longer grows and “freezes” in time. In addition,

the membrane is completely permeabilized, and equation (4.3) is replaced by

σe
hξ

∂φe
∂ξ

=
σi
hξ

∂φi
∂ξ

, Vm = Vc, at ξ = ξ0. (4.5)

Note that electroporation only occurs for sufficiently strong electric fields, and equation

(4.5) is not needed for some of the cases studied below where Vc is never reached. Far

away from the vesicle surface, the electric field is uniform

−∇φe = E0z, at ξ →∞. (4.6)

We also require that φi remains finite at ξ = 1. For initial condition, we solve equations

(4.1) and (4.4) with Vm = 0.

The general solution of the electric potentials for both the exterior and interior of

the vesicle can be obtained following a similar procedure outlined in Chapter 3:

φe = E0r0 [−λξ + αQ1(ξ)] η, (4.7)

φi = E0r0βξη. (4.8)

Here, Q1(ξ) is a 1st-degree Legendre polynomial of the second kind. λ ≡ c/r0 is the

dimensionless semi-focal length. The coefficients α and β are again obtained by applying

the matching conditions. In the absence of electroporation, they are given as

α =
β + σrλ

Q
′
1(ξ0)σr

, (4.9)
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[
Q1(ξ0)

Q
′
1(ξ0)σr

− ξ0

]
dβ

dτ
−
[
Q1(ξ0)Q

′′
1(ξ0)−Q′2

1 (ξ0)(1− σr)
Q

′2
1 (ξ0)σr

dξ0

dτ
+

τ2

τ1λ

]
β

−
[(

ξ0 −
Q1(ξ0)

Q
′
1(ξ0)

)
dλ

dξ0
+
λQ

′′
1(ξ0)Q1(ξ0)

Q
′2
1 (ξ0)

]
dξ0

dτ
= 0, (4.10)

α(0) =
λξ0(σr − 1)

Q
′
1(ξ0)ξ0σr −Q1(ξ0)

, β(0) = −λσr + α(0)Q
′
1(ξ0)σr. (4.11)

Here σr ≡ σe/σi is the conductivity ratio. τ1 ≡ r0Cm/σi is a membrane-charging time.

τ2 ≡ r0µe/Γ0 is a characteristic flow timescale. Γ0 is the initial membrane tension

introduced below. The dimensionless time τ defined as τ ≡ t/τ2 has been used. Note

that the definition of these times slightly deviates from those used in Chapter 3 due to

the difference between droplet and vesicle. However, τ2 remains formally the same by

replacing γ in Chapter 3 with Γ0.

After the maximum value of Vm reaches the critical threshold, electroporation oc-

curs. α and β are calculated by equation (4.5) which yields

α =
−Vc/(E0r0)− λξ0(σr − 1)

Q1(ξ0)−Q′
1(ξ0)ξ0σr

, β = −λσr + αQ
′
1(ξ0)σr. (4.12)

The expressions for the normal and tangential electrostatic stresses are found in

Chapter 3 and not repeated here.

4.2.2 The hydrodynamic problem

The governing equation and boundary conditions for the hydrodynamic problem are the

same as in Chapter 3 except that the following stress matching condition is prescribed

instead:

||τ · n|| = fmem. (4.13)

Here fmem is the surface force density arising from the vesicle membrane. The tensor

τ includes contributions from both the hydrodynamic and electrostatic stresses:

τ ≡ −pI + µ(∇v +∇vT ) + εEE − 1

2
ε(E ·E)I. (4.14)
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4.2.3 The membrane-mechanical model

The surface force density at the vesicle membrane essentially consists of two parts

[69, 81]

fmem = fκ + fΓ. (4.15)

Here fκ is the surface force density induced by bending resistance. fΓ = 2ΓHn−∇sΓ

is the surface force density induced by the membrane tension. H is the mean curvature,

and Γ is the local membrane tension. We can easily verify that fκ is several orders

of magnitude smaller than fΓ, and is therefore not included in the current analysis.

The local membrane tension, Γ, is calculated by assuming an effective tension which is

uniform over the entire membrane [25, 81]. An increase of the homogeneous tension,

Γh, from the initial tension, Γ0, leads to an increase in the apparent membrane area

[17, 18, 25, 35]:

∆ =
kBT

8πκ
ln

Γh
Γ0

+
Γh − Γ0

Ka
. (4.16)

Here ∆ is the increase in the apparent membrane area relative to the initial spherical

state,

∆ =
1

2

(
1− ξ−2

0

)− 2
3

[
1− ξ−2

0 +
(
ξ2

0 − 1
) 1

2 arcsin
(
ξ−1

0

)]
− 1. (4.17)

Ka is the elastic stretching modulus. κ is the bending rigidity. Equation (4.16) indicates

that Γ0, κ, and Ka are the important parameters in determining membrane tension.

κ and Ka are usually constants for a specific vesicle type, and their values are often

readily obtained from previous work [35, 36, 51]. On the other hand, Γ0 is specific to

an individual vesicle, and its value can not be directly determined from experimental

measurements. The relation between ∆ and Γh for different choices of Γ0 is shown in

figure 4.2. When ∆ is small, the membrane area increases through the flattening of the

undulations, and Γh shows an exponential correlation with ∆. When ∆ is sufficiently

large, a linear behavior is observed instead, and the membrane area increase is mainly

due to elastic stretching. Moreover, a larger Γ0 always leads to a larger Γh for the same

value of ∆.
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Figure 4.2: The relative increase of the apparent area, ∆, as a function of membrane
tension, Γh, for different values of initial membrane tension, Γ0. The inset shows the
linear regime for larger Γh values.

4.2.4 General solution

A solution for vesicle electrodeformation can be obtained by solving the governing equa-

tions of both the electrical and hydrodynamic problems, with the help of the matching

conditions. The solution strategy is identical to that presented in Chapter 3, with

only differences in the detailed matching conditions for both the electric field and the

interfacial forces. For brevity, only the final governing equation for ξ0 is presented here:

dξ0

dτ
= − 1

F

[
QNf21(ξ0) +QT

µrf22(ξ0) + f23(ξ0)

µrf14(ξ0) + f15(ξ0)
− Γh

Γ0
f24(ξ0)

]
, (4.18a)

QN =
CaE
λ2

[
(λ− αQ′

1(ξ0))2 + (λ− αQ1(ξ0)/ξ0)2 − 2β2/εr

]
, (4.18b)

QT =
CaE
λ2

[
(λ− αQ′

1(ξ0))(λ− αQ1(ξ0)/ξ0)− β2/εr

]
. (4.18c)

The functions f14(ξ0), f15(ξ0), f21(ξ0) − f24(ξ0), and F are the same as those used in

Chapter 3, and the detailed expressions are found in the Appendix therein. The factors

QN and QT again arise from the effects of the tangential and normal stresses, respec-

tively. CaE ≡ r0εeE
2
0/Γ0 is the modified electric capillary number. In the absence

of electroporation, the coefficients α and β are given in equations (4.9) and (4.10).
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Once the electroporation occurs, equation (4.12) is used instead. Similar to the droplet

model, an examination of the three terms in the numerator of equation (4.18a) reveals

the contribution from the normal stress, tangential stress, and membrane tension, re-

spectively. The balance between these three terms determines the equilibrium vesicle

shape. The above equations are solved until the end of the pulse, t = tp.

In the context of vesicle electrodeformation, the relaxation process is equally im-

portant, and is more revealing of the underlying physical processes. The governing

equations are presented below. In the absence of electroporation, equation (4.1) is

solved without an applied electric field. The resulting equation for ξ0 remains the same

as equation (4.18a). The coefficients of QN , QT , α, and β are given as

QN =
εeV

2
c

λ2r0Γ0

[
α2
(
Q

′2
1 (ξ0) +Q2

1(ξ0)/ξ2
0

)
− 2β2/εr

]
, (4.19)

QT =
εeV

2
c

λ2r0Γ0

[
α2Q1(ξ0)Q

′
1(ξ0)/ξ0 − β2/εr

]
, (4.20)

α =
β

Q
′
1(ξ0)σr

, (4.21)

[
Q1(ξ0)

Q
′
1(ξ0)σr

− ξ0

]
dβ

dτ
−
[
Q1(ξ0)Q

′′
1(ξ0)−Q′2

1 (ξ0)(1− σr)
Q

′2
1 (ξ0)σr

dξ0

dτ
+

τ2

τ1λ

]
β = 0, (4.22)

α(τp) =
Vm(τp)

Vc(Q
′
1(ξ0)ξ0σr −Q1)

, β(τp) =
Vm(τp)Q

′
1(ξ0)σr

Vc(Q
′
1(ξ0)ξ0σr −Q1)

. (4.23)

In equation (4.23), the initial conditions for α and β are obtained by solving equations

(4.1) and (4.4), and requiring that Vm assumes the value at the end of the pulse. τp

is the dimensionless time, tp/τ2. Note that in this case, although the pulse is switched

off, the electric field is in general not zero, due to the capacitive discharging of the

membrane. In this case, the TMP will decreases from its peak value to zero on the

membrane-charging timescale, Tch.

When electroporation is present, the discharging process is slightly more complex.

The full membrane-charging model (4.3) is used. In order to determine the membrane

conductance, Gm, we simply assume that it remains unchanged from the moment the
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pulse ceases, namely,

Gm = −σeβE0

λVc
. (4.24)

The resulting equation for ξ0 again does not formally deviate from equation (4.18a).

The coefficients of QN , QT , α, and β are

QN =
εeV

2
c

λ2r0Γ0

[
α2
(
Q

′2
1 (ξ0) +Q2

1(ξ0)/ξ2
0

)
− 2β2/εr

]
, (4.25)

QT =
εeV

2
c

λ2r0Γ0

[
α2Q1(ξ0)Q

′
1(ξ0)/ξ0 − β2/εr

]
, (4.26)

α =
β

Q
′
1(ξ0)σr

, (4.27)

[
Q1(ξ0)

Q
′
1(ξ0)σr

− ξ0

]
dβ

dτ
−
[
Q1(ξ0)Q

′′
1(ξ0)−Q′2

1 (ξ0)(1− σr)
Q

′2
1 (ξ0)σr

dξ0

dτ
+

τ2

τ1λ

−τ2Gm
Cm

(
Q1(ξ0)

Q
′
1(ξ0)σr

− ξ0

)]
β = 0. (4.28)

4.2.5 A similarity solution for vesicle relaxation

The governing equation for the relaxation process can be further simplified following

two considerations. First, we may ignore the membrane-discharging process. The

membrane-charging/discharging time, Tch, is on the order of 1 ms, which is in general

much shorter than the relaxation time observed in the experiments, namely, a few tens

of ms or longer. The relatively small effect of discharging on relaxation is clearly seen in

figure 4.3 presented in the following section. Without including the discharging process,

the coefficients QT and QN in equation (4.18a) are simply set to zero. Second, in the

membrane-mechanical model (4.16), the first and second term on the RHS represent

the effects of undulation unfolding and elastic stretching, respectively. For moderate

values of Γ0, and for small-to-moderate deformations, the second term can be ignored,

and the membrane-mechanical model becomes

∆ =
kBT

8πκ
ln

Γh
Γ0
. (4.29)
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Substituting QT = QN = 0 and equation (4.29) into (4.18a), we obtain

dξ0

dτ
=

1

F
exp(

8πκ∆

kBT
)f24(ξ0). (4.30)

This equation is conveniently rewritten in terms of the aspect ratio as

dab
dτ

= − 1

F
exp(

8πκ∆

kBT
)(ξ2

0 − 1)−
3
2 f24(ξ0). (4.31)

Note that in this equation, κ, the bending rigidity, is regarded constant for a specific

vesicle type, and µr (embedded in F , see Appendix C) is close to 1 as both the fluids

are usually aqueous. In addition, ∆, the relative increase of apparent membrane area,

depends exclusively on ξ0, hence a/b according to equation (4.17), and (3.38). Under

these assumptions, we observe that equation (4.31) is completely autonomous, and the

relaxation process is governed by the dimensionless time, τ = t/τ2, where τ2 = r0µe/Γ0.

This result suggests that the relaxation of vesicles with different initial radius, r0, and

initial tension, Γ0, obeys a similarity behavior with the proper scaling suggested above.

This behavior is demonstrated by both simulation and analysis of previous experimental

data below.

4.3 Results

For all results below, we assume the lipid membrane to be made of egg-PC following

Riske and Dimova [62] (henceforth abbreviated as ′RD05′) and Sadik et al. [64] (hence-

forth denoted as ′S11′). The bending rigidity is taken to be κ = 2.47×10−20 J [35]; the

elastic modulus, Ka = 0.14 N/m [36, 51]; the membrane capacitance, Cm = 0.01 F/m2

[52]; the intravesicular and extravesicular viscosities, µi = µe = 10−3 Pa · s; the in-

travesicular and extravesicular permittivities, εi = εe = 7 × 10−10 F/m. The critical

transmembrane potential is assumed to be Vc = 1 V [60].
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4.3.1 The effects of Γ0 and tp

We begin by examining the effects of Γ0 on vesicle electrodeformation and relaxation.

Figure 4.3 shows the typical system behavior for values of Γ0 ranging from 10−7 −

10−3 N/m. The intravesicular and extravesicular conductivities are σi = 6× 10−4 S/m

and σe = 4.5 × 10−4 S/m, respectively following RD05. The field strength is E0 =

1 kV/cm, the pulse length is tp = 250 µs, and the initial radius is r0 = 15 µm. Figure

4.3(a) shows the evolution of Vm at the cathode-facing pole, which demonstrates only a

weak dependence on Γ0. The threshold for electroporation (1 V) is reached just before

the end of the pulse, and its effects are present yet negligible. The discharging occurs

on the relatively short timescale of 1 ms as we discussed above. Figure 4.3(b) shows

the evolution of the aspect ratio, a/b. The discharging process manifests itself as a

sudden and slight decrease in the aspect ratio immediately after the pulse ceases; its

effects can in general be ignored without significantly altering the relaxation behavior.

A smaller value of Γ0 leads to a larger aspect ratio, and a longer relaxation process.

The maximum aspect ratio, [a/b]max, is plotted as a function of Γ0 in figure 4.3(c). As

the initial membrane tension decreases toward zero, the maximum achievable aspect

ratio saturates.

The similarity behavior in the relaxation process is demonstrated in figure 4.3(d).

The descending branches of the curves (t > tp) shown in figure 4.3(b) are rescaled in

terms of τ = t/τ2, and shifted horizontally. In comparison, the thick solid curve is

obtained by directly solving equation (4.31). The convergence of all curves validates

that τ2 = r0µe/Γ0 is the single timescale governing vesicle relaxation.

The effects of tp are examined in figure 4.4. The parameters are the same as in

figure 4.3, and we fix Γ0 at 1 × 10−6 N/m. Figure 4.4(a) shows that a longer pulse

consistently leads to greater deformation, and the aspect ratio increases along the same

envelope. The relaxation times are approximately the same for all cases, because τ2

remains unchanged. The discharging process is in general more conspicuous with longer

pulses. In figure 4.4(b), the relaxation curves are again shifted horizontally and rescaled

with τ2 to show good agreement with the similarity solution (thick solid line). Note
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Figure 4.3: Vesicle deformation-relaxation as a function of Γ0. The governing param-
eters are σi = 6 × 10−4 S/m, σe = 4.5 × 10−4 S/m, E0 = 1 kV/cm, tp = 250 µs, and
r0 = 15 µm. (a) The transmembrane potential at the cathode-facing pole. (b) The
time-course of the aspect ratio. (c) The maximum aspect ratio as a function of Γ0. (d)
The similarity behavior in relaxation. The descending branches from (b) are rescaled
with τ = t/τ2. The thick solid curve is directly obtained by integrating equation (4.31).
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Figure 4.4: Vesicle deformation-relaxation as a function of tp. The parameters are the
same as in figure 4.3. The initial tension is set to be constant, Γ0 = 1× 10−6 N/m. (a)
The time-course of the aspect ratio. (b) The similarity behavior is observed by shifting
the relaxation curves with respect to time. The relaxation timescale, τ2 = r0µe/Γ0, is
the same for all cases. The thick solid curve is directly obtained by integrating equation
(4.31).

case # E0 (kV/cm) tp (µs) Γ0 (N/m)
a 1 150 2.79× 10−4

b 1 200 3.23× 10−6

1 300* 3.23× 10−6

c 1 250 1.67× 10−4

d 1 300 1.80× 10−6

1 400* 1.80× 10−6

e 2 50 1.80× 10−4

2 80* 1.80× 10−4

f 2 100 3.16× 10−6

2 170* 3.16× 10−6

g 3 50 6.67× 10−6

h 3 100 3.42× 10−7

Table 4.1: List of parameters for figure 4.5. For each case, E0 and tp are specified
according to RD05. Γ0 is a fitting parameter to obtain best comparison between simu-
lation and data. For cases b, d, e, and f, extended pulse lengths (denoted by star) are
also used.



61

that here because all cases share the same values of τ2, the collapse of the curves is

primarily caused by simple shifting. In other words, the aspect ratio also decreases

along a common envelope.

The above results are exemplary and demonstrate the typical system behavior. In

general, the relaxation process (in particular the relaxation time) is more appreciably

affected by the change in Γ0 than the deformation process. A wide range of pulsing

parameters are studied below, in direct comparison with experimental data from RD05

and S11.

4.3.2 Comparison with experimental data

An extensive comparison of our theoretical prediction with the data from RD05 is

presented in figure 4.5. For all eight cases, the initial radius is r0 = 15 µm. The

electrical conductivities are σi = 6× 10−4 S/m and σe = 4.5× 10−4 S/m, respectively,

leading to a conductivity ratio of σr = 0.75. Other parameters are listed in table 4.1.

All parameters are taken directly from RD05, except for the extended pulse lengths for

some cases noted below. For each case, the initial tension, Γ0, is determined to best

fit the experimental data; their values are listed in table 4.1 in the last column. The

experimental data are presented as symbols; the theoretical predictions, solid lines. In

figures 4.5(a) to 4.5(d), the electric field strength is E0 = 1 kV/cm. For these cases,

Vm is predicted to reach Vc at t = 242 µs. In figures 4.5(a) and 4.5(c), good agreements

are observed between the theoretical prediction and the data. In figures 4.5(b) and

4.5(d), the model results underpredict the maximum aspect ratios. This discrepancy is

peculiar: our simulation follows the data accurately during the presence of the pulse,

which duration is provided by RD05. After the pulse ceases, the simulation predicts

immediate relaxation, whereas the vesicles continued to deform in the experiments,

due to some unknown cause. In an attempt to mend this difference, we artificially

increase the pulse lengths in the simulation in b and d from 200 and 300 to 300 and

400 µs, respectively. The values for Γ0 remain unchanged. The results are shown

as dashed curves. The model predicts well the data for both the deformation and

relaxation processes. Note that although the relaxation curves represented by the solid
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Figure 4.5: Comparison with the deformation-relaxation data from RD05. For all cases,
r0 = 15 µm, σi = 6× 10−4 S/m, and σe = 4.5× 10−4 S/m. Parameters specific to each
case are listed in table 4.1. The data is represented by symbols, and the simulation
is represented by solid curves. For cases b, d, e, and f, the dashed lines represent the
simulated results with extended pulses (denoted by stars in table 4.1).
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and dashed lines look somewhat different due to the semi-log scale on the time axis,

they actually follow the same descending envelopes which we have demonstrated in

figure 4.4(b) above.

In figures 4.5(e) and 4.5(f), the field strength is increased to be E0 = 2 kV/cm, and

the pulse lengths used in RD05 were 50 and 100 µs, respectively. For these cases, our

model predicts the occurrence of electroporation around t = 103 µs. A similar situation

is observed as in figures 4.5(b) and 4.5(d). The solid curves underpredict the maximum

aspect ratio. Artificially extending the pulses in e and f to 80 and 170 µs, respectively,

leads to much better agreement between the two.

In figures 4.5(g) and 4.5(h), the field strength is further increased to 3 kV/cm, and

electroporation is predicted to occur at t = 66 µs. The entire deformation-relaxation

process is well-captured in g where tp = 50 µs. In figure 4.5(h), where tp = 100 µs,

although the model accurately predicts the deformation, the simulated relaxation curve

completely deviates from the experimental data. For this case, and for pulses even

longer than 100 µs, RD05 (figure 1c therein) exhibits a regime where complex, multi-

stage relaxation process was observed. In this regime, the membrane structure is likely

severely altered due to electroporation, which process can not be captured by our

present model. Further comparison with these data is not pursued.

The similarity behavior in the relaxation process is demonstrated in figure 4.6. The

experimental data from figures 4.5(a) to 4.5(g) are shifted horizontally and rescaled

with τ2. For each case, τ2 is obtained using Γ0 listed in table 4.1. The thick solid curve

is again the similarity solution from equation (4.31), and the results are shown on both

semi-log and linear scales in τ . The coefficient of determination is R2 = 0.96. The

experimental data from a wide range of parameters demonstrate a universal behavior

governed by a single timescale, τ2 = r0µe/Γ0. This result is a main contribution of the

present work.

We remark that a similar behavior should be observed for droplets, where the initial

membrane tension, Γ0, is replaced by γ, the coefficient of surface tension in τ2 (cf. the

definition of τ2 in Chapter 3). However, there is a subtle difference between droplet

and vesicle relaxation while the coefficient of surface tension is usually a constant, the
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Figure 4.6: The similarity behavior of vesicle relaxation. The experimental data from
cases a-g in figure 4.5 are shifted in time, then rescaled by τ2 = r0µe/Γ0. They are
represented by symbols. The solid curves are calculated with equation (4.31). The
same data are shown on both a semi-log (a) and a linear (b) scale. The coefficient of
determination is R2 = 0.96.

membrane tension, Γh, is not. Nonetheless, as long as Γh depends linearly on Γ0, which

is a good approximation for small-to-moderate deformations. The universal behavior

in figure 4.6 is expected.

Finally, the model prediction is compared with data from S11. In this work, the

deformation is examined at a fixed pulse length of tp = 500 µs, and for five intra-to-

extra vesicular conductivity ratios. Only the case of E0 = 0.9 kV/cm is examined,

where no or weak electroporation is expected. We do not compare the cases of E0 = 2

and 3 kV/cm in S11, where the vesicles were in the strongly-electroporated regime,

and our model no longer applies. The governing parameters are r0 = 11.3 µm and

σe = 3 × 10−4 S/m. The initial membrane tension is chosen to be the same for all

vesicles, namely, Γ0 = 1 × 10−8 N/m. Figure 4.7(a) shows the deformation process as

a function of time for five conductivity ratios. As σr decreases the rate of deformation

increases. Except for the case of σr = 0.5, the aspect ratio reaches a plateau before the

pulse ends. The time at which the aspect ratio increases saturates with an increasing

σr. For σr = 0.5, an equilibrium could be reached if the pulse length is extended and

sufficiently long (not shown here). In figure 4.7(b), the aspect ratio at t = tp is shown as

a function of 1/σr. We choose this representation to facilitate comparison with the data
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Figure 4.7: Comparison with data from S11. (a) Simulated time-course of the aspect
ratio for various conductivity ratios. For all cases r0 = 11.3 µm and Γ0 = 1×10−8 N/m.
(b) The aspect ratio at t = 500 µs as a function of 1/σr.

from S11 (symbols), where the definition of the conductivity ratio is σi/σe. A reasonable

agreement is found between the two. The behavior of the simulation and the data is

explained by the dependence of the electrical stress on σr in S11 (see equation (21)

and §4 therein). We do not repeat it here for brevity. The current model represents a

significant improvement from that in S11, where the hydrodynamic problem is treated

empirically.

Some remarks are appropriate before concluding the section. First, for most cases

studied here, the TMP is near the threshold, and the vesicles are expected to expe-

rience no or weak electroporation. For this regime, our model is shown to provide a

good predictive capability, which demonstrates that the membrane-mechanical model

(4.16), although derived assuming no electroporation, can be extended to the weakly-

electroporated regime, presumably due to the absence of major structural alterations.

Our model is not applicable to the strongly-electroporated regime. Second, the uni-

versal scaling law in relaxation observed in figures 4.3, 4.4, and 4.6 is expected to

hold regardless of the means of deformation, e.g. via AC/DC electric fields, or via

mechanical stretching. Equation (4.31) is applicable to a wide range of relaxation phe-

nomena beyond electrodeformation. Third, the current work suggests that an extensive

parametric study on vesicle electrodeformation-relaxation experimentally, in particular
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in the sub-critical regime where electroporation is avoided, can provide the benefit

to further validate our model understanding. A systematic approach can be possibly

developed based on this work to map membrane properties.

4.4 Conclusions

In this work, we developed a transient analysis for vesicle electrodeformation. The

theory is derived by extending our droplet model in Chapter 3, with the additional

consideration of a lipid membrane separating two fluids of arbitrary properties. For

the latter, both a membrane-charging and a membrane-mechanical model are supplied.

Similar to the droplet model, the main result is also an ODE governing the evolution

of the vesicle aspect ratio. The effects of initial membrane tension and pulse length are

examined. The initial membrane tension affects the relaxation process much more sig-

nificantly than the deformation process, in particular when its value is small. The model

prediction is extensively compared with experimental data from Riske and Dimova [62]

and Sadik et al. [64], and is shown to accurately capture the system behavior in the

regime of no or weak electroporation. More importantly, the comparison reveals that

vesicle relaxation obeys a universal behavior, and is governed by a single timescale that

is a function of the vesicle initial radius, the fluid viscosity, and the initial membrane

tension. This behavior is regardless of the means of deformation, either via AC/DC

electric field, or via mechanical stretching. This universal scaling law is a main con-

tribution of the current work, and can be used to calculate membrane properties from

experimental data.
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Chapter 5

Conclusions

In this work, we have developed theoretical models to study the dynamics of fluid

motion under electric fields. The Taylor-Melcher leaky dielectric model is employed

to investigate the problems of EHD instability, droplet electrodeformation, and vesicle

electrodeformation.

In the first, EHD instability, we have systematically analyzed the stability of elec-

trified and stratified fluids. Analytical dispersion relations for two- and three-layer

problems have been obtained by applying simultaneously the electrical and the hy-

drodynamic transfer relations. Both new results and those from previous work are

derived as special cases of the general solutions presented. This work provides a unified

approach to tackle a wide class of EHD instability phenomena.

In the second, droplet electrodeformation, we have developed a transient analysis for

droplet deformations under DC electric fields. The finite charge relaxation is considered

in order to generalize the analysis. The results are well applicable to explain exper-

imental measurements. In this framework, instantaneous charge relaxation is treated

as a special limiting case. The main result is an ODE governing the evolution of the

droplet aspect ratio. Based on this model, the effects of parameters and stresses on the

deformation characteristics are systematically investigated. The analysis reveals the

general behavior of droplet electrodeformation.

In the third, vesicle electrodeformation, we have constructed a transient theory to

quantify the vesicle deformation and relaxation under DC electric fields. The analysis

extends from our droplet deformation model by including the effects of membrane

charging and membrane tension. Similar to the droplet model, the main result is

also an ODE governing the evolution of the vesicle aspect ratio. Predictions from
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both vesicle deformation and relaxation are extensively compared with experimental

data. The model accurately captures the system behavior in the regime of no or weak

electroporation. More importantly, the results indicate that vesicle relaxation obeys a

universal behavior, and is governed by a single timescale that is a function of the vesicle

initial radius, the fluid viscosity, and the initial membrane tension. Our theory provides

an important means to study vesicle electrodeformation and membrane properties and

responses.

In summary, the tasks accomplished in this work are important steps toward the

understanding of complex electric-field-driven flows. The analytical tools provide quan-

titative prediction capabilities, and can be further used to study the problems with

in-depth understanding.
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Appendix A

The derivation of the transfer relations

The transfer relations are derived by considering a generic fluid layer with density ρ,

viscosity µ, and a thickness 4, governed by the linearized normal mode equations for

both the electric potential and the stream function (see (2.7), (2.8) in the proper text):

(
D2
y − k2

)
φ̂ = 0, (A.1)

(
D2
y − δ2

) (
D2
y − k2

)
ψ̂ = 0, δ ≡

[
k2 +

sρ

µ

] 1
2

. (A.2)

These equations are subject to the boundary conditions:

φ̂(y = 0) = φ̂β, φ̂(y = 4) = φ̂α, (A.3)

Dyψ̂(y = 0) = ûβ, Dyψ̂(y = 4) = ûα, (A.4)

−ikψ̂(y = 0) = v̂β, −ikψ̂(y = 4) = v̂α. (A.5)

Note that these boundary conditions are non-specific, in contrast to the specific con-

ditions given in (2.9-2.12) in the proper text. The electrical transfer relation (2.13)

is obtained by solving (A.1) with (A.3). The hydrodynamic transfer relation (2.14) is

obtained by solving (A.2) with (A.4) and (A.5). For further details, we refer the readers

to Melcher (1981, §2.16, §7.19).
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Appendix B

Three layers in the limit of a, σr →∞

The dispersion relations for three layers in the limit of a, σr → ∞ are derived from

(2.33), (2.34). Here we rearrange them to facilitate comparison with the results from

[49]:

[2ik(µa − µb)(k − δa) + isρa(1 + tanh(kh))]

× [2ik(µa − µb)(k tanh(kh)− δb tanh(δbh))− isρb(1 + tanh(kh))]

ρa(δb tanh(δbh)− k tanh(kh)) + ρb(δa − k)

+2sk(µa − µb)(1− tanh(kh)) + s2k−1(ρa + ρb tanh(kh))− kεbE2
app tanh(kh) + γk2 = 0,

(B.1a)

[2ik(µa − µb)(k − δa) + isρa(1 + coth(kh))]

× [2ik(µa − µb)(k coth(kh)− δb coth(δbh))− isρb(1 + coth(kh))]

ρa(δb coth(δbh)− k coth(kh)) + ρb(δa − k)

+2sk(µa − µb)(1− coth(kh)) + s2k−1(ρa + ρb coth(kh))− kεbE2
app coth(kh) + γk2 = 0,

(B.1b)

where

h = b/2, Eapp = φo/b. (B.1c)

Here (B.1a) is for the kink mode, and (B.1b) is for the sausage mode. Note that because

the outer layers are infinitely more conductive, all of the potential drop is in the inner

layer (Eapp = φo/b). Equations (B.1a), (B.1b) recover (5.23) in [49].
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Appendix C

Expressions of f11(ξ0)− f15(ξ0), f21(ξ0)− f24(ξ0), and F

The functions f11(ξ0)−f15(ξ0) in equation (3.34) are given in the following expressions:

f11(ξ0) =

∫
G3(η)η

(ξ2
0 − η2)

dη, (C.1)

f12(ξ0) =
1

ξ2
0 − 1

{∫
G3(η)η

(ξ2
0 − η2)

(
(1− 3η2)

(ξ2
0 − η2)

− 3

)
dη

}
, (C.2)

f13(ξ0) =
G

′′
3(ξ0)G

′
5(ξ0)−G′

3(ξ0)G
′′
5(ξ0)

2N
· f11(ξ0), (C.3)

f14(ξ0) = −ξ0H
′
3(ξ0)

∫
G3(η)η

(ξ2
0 − η2)2

dη +
1

2
H

′′
3 (ξ0)f11(ξ0), (C.4)

f15(ξ0) = −
H

′
3(ξ0)

[
G3(ξ0)G

′′
5(ξ0)−G′′

3(ξ0)G5(ξ0)
]

2N
f11(ξ0)

+ξ0H
′
3(ξ0)

∫
G3(η)η

(ξ2
0 − η2)2

dη. (C.5)

The functions f21(ξ0)− f24(ξ0) and F in equation (3.35a) are given in the following

expressions:

f21(ξ0) =
1

2
ξ2

0

∫
(η2 − 1)(3η2 − 1)

(ξ2
0 − η2)

dη, (C.6)

f22(ξ0) = ξ0f11(ξ0)

[
−H ′

3(ξ0)

∫
(1− 3η2)(ξ2

0 − 3ξ2
0η

2 + 2η4)

(ξ2
0 − η2)2

dη

+3ξ0H3(ξ0)

∫
1− 3η2

(ξ2
0 − η2)

dη

]
, (C.7)
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f23(ξ0) = ξ0f11(ξ0)

[
−49(1− 3ξ2

0)G3(ξ0)H
′
3(ξ0)

30N

+H
′
3(ξ0)

∫
(1− 3η2)(ξ2

0 − 3ξ2
0η

2 + 2η4)

(ξ2
0 − η2)2

dη

]
, (C.8)

f24(ξ0) = ξ3
0(1− ξ−2

0 )
5
6

∫
3η2 − 1

(ξ2
0 − η2)

3
2

dη + ξ0(1− ξ−2
0 )−

1
6

∫
3η2 − 1√
ξ2

0 − η2
dη, (C.9)

F = −2

3
(f25(ξ0) + f26(ξ0)/µr) , (C.10)

where

f25(ξ0) = − f22(ξ0)

ξ0f11(ξ0)

(µr − 1)f12(ξ0) + f13(ξ0)

µrf14(ξ0) + f15(ξ0)
− 3ξ0

∫
3η2 − 1

(ξ2
0 − η2)

dη

− ξ0

ξ2
0 − 1

∫
(2ξ2

0 − η2 − 1)(1− 3η2)2

(ξ2
0 − η2)2

dη, (C.11)

f26(ξ0) = − f23(ξ0)

ξ0f11(ξ0)

(µr − 1)f12(ξ0) + f13(ξ0)

µrf14(ξ0) + f15(ξ0)
− 49(1− 3ξ2

0)G
′
3(ξ0)

30N

+
ξ0

ξ2
0 − 1

∫
(2ξ2

0 − η2 − 1)(1− 3η2)2

(ξ2
0 − η2)2

dη. (C.12)
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