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ABSTRACT OF THE DISSERTATION

Dynamics of erythrocytes, vesicles and capsules in

shear flow: The role of membrane bending stiffness

and membrane viscosity

By

ALIREZA ZARIF KHALILI YAZDANI

Dissertation Director:

Professor Prosenjit Bagchi

Three-dimensional numerical simulations using immersed boundary/front-tracking

method are considered to study the dynamics and deformation of microscopic de-

formable cells with elastic and viscoelastic membranes suspended in linear shear flow.

The objective in this thesis is to understand the complex fluid/structure interaction

problem for membrane-bound soft matter in dilute suspensions. The numerical model

includes all essential properties of the cell membrane, namely, the resistance against

shear deformation, area dilatation, and bending, as well as the viscosity difference

between the cell interior and suspending fluids. In addition, the Kelvin–Voigt vis-

coelastic model is incorporated to account for the effect of membrane viscosity. Our
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numerical technique is able to simulate complex dynamics of vesicles, capsules, and

red blood cells in the tank-treading, breathing, trembling, and tumbling modes.

A detailed comparison of the numerical results for vesicles is made with various

theoretical models and experiments. It is found that the applicability of the theoret-

ical models is limited to quasi-spherical vesicles. We show that near the transition

between the tank-treading and tumbling dynamics, both the vacillating-breathing-like

motion characterized by a smooth ellipsoidal shape, and the trembling-like motion

characterized by a highly deformed shape are possible. We also present phase dia-

grams of the single red blood cell dynamics in linear shear flow. We find that the cell

dynamics is often more complex than the well-known tank-treading, tumbling, and

swinging motion and is characterized by an extreme variation of the cell shape. Iden-

tifying such complex shape dynamics termed here as breathing dynamics, is the focus

of this study. Further, we find a very good agreement between our numerical and

the theoretical and experimental results on the tank-treading frequency of red blood

cells, which is often measured in experiments and used to extract the mechanical

properties of the cell. A comprehensive analysis of the influence of the membrane vis-

cosity on buckling, deformation and dynamics is given for initially spherical or oblate

capsules. The major finding here is that the membrane viscosity leads to buckling

in the range of shear rates in which no buckling is observed for capsules with purely

elastic membrane.
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Chapter 1

Introduction

1.1 Introduction

Blood is a multiphase fluid comprising of particulate components like erythrocytes

(red blood cells), leukocytes (white blood cells), and thrombocytes (platelets) sus-

pended in a liquid called plasma. Red blood cells (RBCs) constitute the major par-

ticulate component of blood, which is 40 − 45% by volume in vivo. Interactions

between different cells and between cells and vessel walls can significantly affect the

local hydrodynamics and overall blood rheology in microvessels.

Red blood cells do not contain a nucleus; they are filled with a liquid called

hemoglobin, which facilitates the transportation of oxygen to the tissues. Both plasma

and hemoglobin solution are considered as incompressible Newtonian fluids. Freely

suspended RBCs take the form of a biconcave disk, about 8 µm in diameter and 2 µm

in thickness. Their membrane consists of a lipid bilayer supported from the inside

by the cytoskeleton, which is primarily composed of a two-dimensional network of

spectrin dimers and actin filaments [1,2,4,97] (see Fig. 1.1). Cytoskeleton is essential

to the structural integrity of the RBC, and its resistance against shear deformation.

Another important property of the membrane is that it strongly resists changes in

surface area owing to the presence of lipid bilayer. The lipid molecules in the lipid

bilayer can slide past each other, but strongly resist being pulled apart. Thus, the
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Figure 1.1: Schematic of biconcave resting shape of a red blood cell. The basic
molecular structure of the membrane is also depicted [97].

membrane behaves like a two-dimensional incompressible fluid. The cell membrane

also exhibits a flexural stiffness, i.e., bending resistance due to the lipid bilayer [4,13].

In addition, the membrane is known to be viscoelastic, and shows viscous resistance to

transient in-plain shear deformations [89, 90, 92]. Physically, the viscous effect arises

from the fluid-like behavior of the lipid bilayer, whereas the elastic part arises from

the stretching of the cytoskeleton. This structure gives the cell extreme flexibility,

and ability to easily deform and squeeze through capillaries with diameters less than

8 µm. The cell deformation often plays the primary role in the dynamics and rheology

of blood flow in small vessels [4]. As discussed above, on the molecular level, the red

blood cell structure is very complex. On the continuum level, however, the detailed

molecular structure is neglected and the erythrocyte is modeled as a capsule or vesicle

defined as a viscous drop enclosed by a viscoelastic membrane. Unlike a capsule,

a vesicle lacks shear resistance; rather it exhibits resistance to bending, and area

dilatation.

Blood flow in microvessels at normal volume fraction of red blood cells is rather
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complex due to cell-cell interactions, nonuniform shear fields and wall effects. There-

fore, to bypass these complexities, a large number of experimental and theoretical

studies have been conducted to address dilute suspensions of the cells in an unbounded

simple shear flow. In the following, we present a summary of different dynamics and

motions of a single red blood cell, capsule and vesicle in simple shear flow.

1.2 Dynamics of Erythrocytes in Simple Shear Flow, and the

Theory of Shape-preserving Cells

Studies spanning over several decades have demonstrated that single erythrocytes

freely suspended in a linear shear flow undergo primarily two types of motions [5,

9, 10, 12]: (i) a tank-treading (TT) motion characterized by a continuous rotation

of the membrane and the interior fluid while the cell maintains a nearly constant

angular inclination with the flow direction, and (ii) a tumbling (TU) or flipping

motion resembling a rigid body-like behavior. The tank-treading motion is typically

observed at high shear rates and low internal to external fluid viscosity ratio, and the

tumbling motion is observed otherwise. Similar dynamics has been observed for other

soft-matter particulates, e.g., capsules [14, 41, 42] and vesicles [6, 16, 17, 20, 22, 28, 50],

which are membrane-bound liquid drops, and structurally similar to erythrocytes.

In addition to the TT and TU motions, a swinging motion of the erythrocytes

has been discovered recently [12]. The swinging motion is characterized by an angu-

lar oscillation of the cell major axis about a mean orientation, and a simultaneous

membrane tank-tread.

The TT-TU transition in dilute suspension was theoretically predicted by Keller

& Skalak [7] (hereafter referred to as the KS theory) for non-deformable ellipsoids
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Figure 1.2: Schematic of an ellipsoidal cell in linear shear flow.

of a viscous fluid enclosed by an area-preserving membrane. Figure 1.2 presents the

schematic of an ellipsoidal cell with semi-major and -minor axes lengths L and B,

respectively, suspended in a linear shear flow u = {γ̇y, 0, 0}, where γ̇ is the shear

rate. The fluids interior and exterior to the cell are assumed to be incompressible

Newtonian liquids with viscosities λµo and µo, respectively.

Under equilibrium conditions, the net hydrodynamic moment acting on the cell

must be zero. Hence, the analysis showed that the inclination angle θ is governed by

the following differential equation

dθ

dt
= −

[

1

2
γ̇ +

2LB

L2 +B2
ν

]

+
1

2
γ̇
L2 − B2

L2 +B2
cos 2θ , (1.1)

where ν is the instantaneous membrane tank-treading frequency. Assuming that the

membrane shear viscosity µs is zero, and thus, the work done by the imposed flow is

entirely dissipated inside the cell, the tank-treading frequency was obtained as

ν = − γ̇f3
f2 − λf1

cos 2θ, (1.2)
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TT

TUTT
TU

(a) (b)

Figure 1.3: Results from the Keller & Skalak [7] model for a nondeformable ellipsoidal
cell in simple shear flow are plotted. (a) The critical viscosity ratio λc against the
aspect ratio α, and (b) the inclination angle θ against λ for a tank-treading ellipsoid
with aspect ratio α = 0.7.

where f1, f2 and f3 are dimensionless functions of the three major axes of the ellipsoid.

For a prescribed shape of the ellipsoids (usually defined by the aspect ratio α =

L/B), a steady solution of the system representing a stationary tank-treading motion

(i.e. θ = constant) is obtained when the ratio λ is less than a critical value λc, and

the tumbling motion is predicted for λ > λc as shown in Fig. 1.3(a). Note that λc is

obtained from the intercept of the curve with θ = 0 in Fig. 1.3(b).

As mentioned before, experiments by Abkarian et al. [12] conducted on a red

blood cell revealed swinging dynamics accompanied by membrane tank-treading mo-

tion. They showed that for high to intermediate shear values, the RBC’s inclination

oscillated about a mean angle. In other words no steady-state tank-treading motion

was observed. With further decrease in the shear rate, the RBC begins to tum-

ble. This observation is a departure from the KS theory. The swinging dynamics

and the shear rate-dependent transition were addressed theoretically by [11] within

the framework of the KS theory by introducing an ad hoc model of the membrane
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elasticity.

Despite their apparent success, the above theories neglect the large deformation

of the RBC. It is well known that red blood cells can undergo large deformation and

attain complex shapes under flowing conditions [4, 5]. Despite a wealth of study on

RBC dynamics, the role of the complex shape deformation on the TT-TU transition

remains poorly understood. Furthermore, there are significant uncertainties in the

measurements of the material properties of the RBC membrane. Their values can

significantly change under disease conditions such as sickle cell anemia, diabetes mel-

litus, and malignant malaria as well as cell aging, and ways of cell handling in vitro.

Thus, we find it useful to conduct simulations over a wider range of parameters so

as to present a complete study of RBC dynamics in shear flow, and a comprehensive

phase diagram.

1.3 Dynamics of Vesicles

Vesicles which are viscous liquid drops enclosed by membranes of lipid bi-layers,

are often considered as the model particles for the human red blood cells. The bi-

layer membrane has two unique characteristics: it behaves as a two dimensional

incompressible fluid, and exhibits a bending resistance. Because of the interior fluid,

and the liquid nature of the membrane, vesicles are highly deformable. Vesicles

are also present in other eukaryotic cells where they form by membrane budding and

pinching and act as the intracellular transport vehicles. Synthetic vesicles (liposomes)

can be used as drug carriers for targeted delivery. Because of their biological and

engineering applications, the dynamics of vesicles in flow has received a significant

attention in recent years.
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If deformation is neglected, following the KS theory, the vesicle dynamics is con-

trolled by two parameters: the vesicle shape represented by the excess area ∆ =

A/a2o − 4π, and the viscosity ratio λ, where A is the vesicle surface area, and ao is

the radius of a sphere having the same volume as the vesicle. When deformation is

considered, a third controlling parameter, namely, the capillary number, or the di-

mensionless shear rate, χ = µoγ̇a
3
o/Eb, also arises, where Eb is the membrane bending

modulus.

Vesicle deformation can occur in TU as well as TT motion. The role of de-

formation, however, becomes most important in trembling [6, 28, 50], vacillating-

breathing [21, 22, 48], and swinging [46] motions, which are new types of unsteady

motion that have been observed recently. In such motions, the inclination angle

oscillates about the flow direction while the vesicle may undergo a periodic shape

deformation as shown by the experimental observations of Zabusky et al. [28] in Fig.

1.4. While differences exist between the trembling, vacillating-breathing and swing-

ing modes, particularly because they were observed or predicted by different tools,

experimental, numerical or analytical, one common feature is that they occur in the

vicinity of the transition between the TT and TU modes. Hereafter, we refer to these

new modes as the transition (TR) mode. Phase diagrams in χ–λ plane, which depend

on ∆, can be used to describe the transition from one mode to the other. For small

values of χ, the transition occurs directly from TT to TU with increasing λ. For

χ & 1, the transition occurs as TT to TR to TU with increasing λ. Complex and

highly convoluted shapes of trembling vesicles, in the form of membrane budding and

pinching, have been observed in experiments [6, 16, 17].

Because of the role of deformation, a fully resolved numerical approach is deemed
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Figure 1.4: Snapshots of a vesicle executing trembling dynamics [28]. Dashed line is
the major axis of the elliptical fit to the contour. Note the significant shape variations
as the cell inclination oscillates.

necessary in the analysis of vesicle dynamics. Several numerical methods have been

developed till date: the boundary integral methods of Kraus et al. [43] and Biben,

Farutin & Misbah [24], the phase field approach of Biben, Kassner & Misbah [51],

2D simulations of Ghigliotti, Biben & Misbah [71], simulations using multi-particle

collision dynamics by Noguchi & Gompper [45,46], and Meßlinger et al. [30], spectral

boundary integral simulations of Zhao & Shaqfeh [29], boundary integral method of

Veerapaneni et al. [31, 32], to name a few.

1.4 Dynamics of Capsules and Membrane Buckling

Synthetic capsules are used widely in many applications such as cosmetics, drug

delivery and cell encapsulation. One of the most prominent examples of biological

capsules is the red blood cells, which account for nearly 44-45% of the human blood by

volume. As a result, dynamics and deformation of capsules in a flow has been a subject

of intense research. Early experimental study by Chang & Olbricht [54] observed

the tank-treading dynamics of synthetic capsules in simple shear flow. Walter et al.

[72,73] studied the shear induced deformation of artificial capsules, and extracted their

mechanical properties from rheoscopic measurements. Theoretical studies on capsule

dynamics have been carried out by modeling the membrane as a two-dimensional
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interface. Asymptotic theories in the limit of small deformation were developed for

initially spherical capsules by Barthès-Biesel [53] and Barthès-Biesel & Rallison [18].

More recently, Vlahovska et al. [74] performed an asymptotic analysis of initially

nonspherical capsules with area-incompressible elastic membrane, and studied the

effect of capsule deformability on the tank-treading to tumbling transition.

A great number of numerical analyses has been conducted in recent years to

study large deformation of capsules; for example, the boundary integral simulations

of Pozrikidis [55], Ramanujan & Pozrikidis [40], Pozrikidis [56], Lac et al. [59], Wal-

ter et al. [75] and Foessel et al. [81]; immersed-boundary/front-tracking simulations

of Eggleton & Popel [60], Li & Sarkar [80], Sui et al. [41] and Le [79], accelerated

boundary integral simulation of Pranay et al. [78], spectral boundary integral sim-

ulations by Kessler et al. [42], Zhao et al. [77], and Wang & Dimitrakopoulos [76],

to name a few. Of particular interest is the work by Lac et al. [59] who observed

that the capsule buckled at low shear rates with wrinkles forming near the equator

similar to the experimental observation of Walter et al. [73] as shown in Fig. 1.5.

The membrane instabilities and short-wavelength wrinkles were also predicted in the

asymptotic work by Finken & Seifert [82]. Li & Sarkar [80] and Sui et al. [47] also ob-

served capsule buckling in their front-tracking simulation. Recently, Foessel et al. [81]

studied the influence of the internal to external fluid viscosity ratio on buckling. Ev-

idence of buckling was also reported by Walter et al. [75] for ellipsoidal capsules in

simple shear flow.

Bagchi & Kalluri [14] have addressed the capsules large deformation and dynamics

using three-dimensional front-tracking simulations. Simulations over a broad range

of viscosity contrast λ, dimensionless shear rate or capillary number Ca, and aspect
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Figure 1.5: Buckling of an initially spherical capsule with a polysiloxane membrane
in simple shear flow (Walter et al. [73]).

ratio α have identified three distinct modes of capsule dynamics: (i) swinging or

oscillatory mode at low viscosity contrast (ii) transitional mode from swinging to

tumbling motion at moderate viscosity contrast, where θ periodically becomes positive

and negative, but a full tumbling does not occur. Here the capsule attains spherical

shape momentarily as it enters the compressive quadrant. and (iii) pure tumbling

mode at higher viscosity contrast. Similar modes of dynamics were also observed

by the numerical studies of Kessler et al. [42] and Walter et al. [75]. Note that for

capsules and RBCs, the capillary number is defined as Ca = µoγ̇ao/Es, where Es is

the membrane modulus of elasticity.

1.5 Effect of Membrane Viscosity

The aforementioned theoretical and numerical studies assumed that the capsule mem-

brane is elastic, and hence, did not consider the viscosity of the membrane. Evidence

of the membrane viscosity in red blood cells has been illustrated in numerous exper-

imental studies, e.g., Puig-de-Morales-Marinkovic et al. [92], Tran-Son-Tay et al. [8],
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and Evans & Hochmuth [88]. It was argued that the viscous dissipation in the mem-

brane could be in the same order of magnitude of the dissipation in the internal

fluid [8, 91]. The membrane viscosity effect on artificial capsules was also studied

experimentally by Chang & Olbricht [54] and Walter et al. [72]. Barthès-Biesel &

Sgaier [52] developed the small-deformation theory for capsules with a viscoelastic

membrane that followed the Kelvin–Voigt model, and found that the membrane vis-

cosity set an upper bound for deformation. Further, they predicted an undamped

oscillatory motion of the capsule in the limit of large membrane viscosity. Numerical

analysis of large deformation of capsules with a viscoelastic membrane is relatively

scarce. The only known work is the one by Diaz et al. [58] who used the boundary in-

tegral simulation to study the transient response of a capsule with the Kelvin–Voigt

viscoelastic membrane in an elongational flow. Also notable is the particle-based

method used by Noguchi & Gompper [44, 45] for vesicles, who observed that the

membrane viscosity had a significant effect on the dynamics, shape transition and

orientation of vesicles.

1.6 Scope of the Thesis

Based on the discussion in the previous sections, understanding the dynamics and

shape deformations of erythrocytes in flow is fundamental to understanding the com-

plex dynamics and rheology of blood in vivo and in vitro. The objective of this thesis

is to study the dynamics of red blood cells and vesicles as the membrane-bound soft

matters. Further, a comprehensive analysis on the influence of membrane viscosity

on capsule dynamics in a shear flow is lacking, and is the objective of the present

study. The specific topics that have been addressed during the course of this thesis
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are described below:

1. Numerical methodology (Chapter 2): We have developed an accurate

three-dimensional model for the red blood cell membrane within the framework of im-

mersed boundary front-tracking method. The finite-element numerical methodology

for treating the membrane as well as the inclusion of membrane bending resistance in

the model, which is crucial to address the true physics of vesicle and RBC dynamics,

will be discussed in detail. Furthermore, we present a numerical method for capsules

with a viscoelastic membrane that follows the Kelvin–Voigt model. In addition to

the membrane shear viscosity and elastic modulus, the model includes the membrane

bending resistance, surface area dilatation, and internal to external fluid viscosity

contrast.

2. Analysis of vesicle shape and dynamics in linear shear flow (Chapter

3): Dynamics of a single vesicle in simple shear flow has been studied significantly

both experimentally and theoretically. These studies have posed new and interest-

ing questions to be addressed. Apart from the considerable progress in theoretical

analysis, the limitations in the applicability of the models to non-quasi spherical vesi-

cles make the numerical approaches deem necessary. Therefore, three-dimensional

numerical simulations are carried out for individual vesicles suspended in shear flow

over a wide range of controlling parameters. The focus here is to elucidate the para-

metric dependence and the self-similarity of the vesicle dynamics, quantification of

vesicle deformation, and the analysis of shape dynamics. A detailed comparison of

the numerical results is also made with various theoretical models and experiments.

3. Red blood cell dynamics in linear shear flow and analysis of TT fre-

quency (Chapter 4): While the vacillating-breathing and trembling dynamics of
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the vesicles has been a subject of intense research in recent days, similar dynamics

of the erythrocytes has not been reported. These studies motivate us to investigate

whether similar complex dynamics may exist for the red blood cells despite some

differences in the membrane structure and properties between an RBC and a vesicle.

We present phase diagrams of the single red blood cell dynamics in dilute suspension

using three-dimensional numerical simulations. The computational geometry repli-

cates an in vitro linear shear flow apparatus. By considering a wide range of shear

rates and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics

is often more complex than the well-known tank-treading, tumbling and swinging

motion, and is characterized by an extreme variation of the cell shape. Identifying

such complex shape dynamics termed here as breathing dynamics, is the focus of this

study.

4. Effect of membrane viscosity on capsule dynamics in linear shear flow

(Chapter 5): We address a sequence of problems related to capsule deformation,

dynamics, and buckling. We observe that the membrane viscosity leads to buckling in

the range of shear rates in which no buckling is observed for purely elastic membrane.

In order to obtain stable shapes, it is necessary to introduce the bending stiffness.

Using the stable shapes, we analyze the influence of the membrane viscosity on defor-

mation, inclination, and tank-treading frequency of initially spherical capsules. We

then consider the influence of membrane viscosity on the unsteady dynamics of an ini-

tially oblate capsule, and show that the dynamics changes from swinging to tumbling

with increasing membrane viscosity.
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Chapter 2

Numerical Methodology

2.1 Problem Description and the Numerical Method

2.1.1 Problem setup

We consider a three-dimensional computational domain bounded by two infinite flat

plates placed parallel to the x -axis in a Cartesian coordinate system. Here, x is the

direction of the flow, y is the direction of velocity gradient and z is the direction of

vorticity of the undisturbed flow. The channel is assumed to be infinitely long in the

x and z directions. We use periodic boundary conditions in these directions to reduce

the size of the computational domain to a cube of side H as shown in Fig. 2.1. This

also allows us to use Fourier transforms to accelerate the computation. Further, the

no-slip boundary condition is imposed on the walls. In the absence of any cells, we

have linear shear flow at zero pressure-gradient driven by the two walls of the channel

as

u∞ = {γ̇y, 0, 0} , (2.1)

where γ̇ is the shear rate.
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Figure 2.1: Schematic of the computational domain.

2.1.2 Fluid-structure interaction

The numerical method considered here is the front-tracking/immersed boundary

method [65–67] to study the deformation of suspended cells enclosing a liquid, which

may have different properties from the suspending liquid. The main idea of the front-

tracking method is to use a single set of equations for both the fluids, inside and

outside a cell. The fluid equations are solved on a fixed Eulerian grid, and the inter-

face is tracked in a Lagrangian manner by a set of marker points. The fluids inside

and outside the cell are considered to be incompressible. Therefore, the fluid motion

is governed by the continuity and Navier-Stokes equations as

∇ · u = 0 , (2.2)

ρ

[

∂u

∂t
+ u · ∇u

]

= −∇p+∇ · µ(∇u+ (∇u)T ) , (2.3)

where u (x, t) is the fluid velocity, ρ is the density, p is the pressure, and µ is the

fluid viscosity. Here, µ (x, t) is a single variable used to denote the viscosity of the
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entire fluid. Therefore, µ = µi inside the cell and µ = µo outside. Mathematically,

we define µ using an indicator function I(x), which is unity inside the cell and zero

outside. Thus, µ is given by a single expression for every point in the fluid as

µ(x) = µo + (µi − µo)I(x) . (2.4)

As the cell moves and deforms, µ needs to be updated. This is done by solving a

Poisson equation for the indicator function I(x, t) as

∇2I = ∇ ·G , (2.5)

G =

∫

S

δ(x− x′)ndx , (2.6)

where δ is the three-dimensional Dirac-Delta function, x′ is a location on the cell

surface, x is a location in the flow, and n is the unit vector that is normal to the cell

surface and directing outward.

The membrane force density f arises due to membrane deformation, and is evalu-

ated using a finite-element method. The finite-element treatment of the cell interface

will be discussed in detail in Section (2.2). Having f evaluated, the membrane and

the fluid are coupled in a two-way manner by adding a source term B to the r.h.s of

(2.3). The source term B is related to f as

B(x, t) =

∫

S

f(x′, t)δ(x− x′)dx′ . (2.7)
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Further, the δ-function is constructed by multiplying three 1D δ-functions as

δ(x− x′) = δ(x− x′)δ(y − y′)δ(z − z′) . (2.8)

For numerical implementation, however, a smooth representation of δ-function is used

as

D(x− x′) =
1

64 h3

3
∏

i=1

(

1 + cos
π

2h
(xi − x′

i)
)

for |xi − x′

i| ≤ 2h , i = 1, 2, 3 ,

D(x− x′) = 0 otherwise , (2.9)

where h is the Eulerian grid size (Unverdi & Tryggvason [66]). As a result, the mem-

brane force varies smoothly over four Eulerian grid points surrounding the interface.

In discrete form, the integral in (2.7) can be written as

B(xj) =
∑

i

D(xj − x′

i)f(x
′

i) , (2.10)

where i and j represent Lagrangian and Eulerian points, respectively.

2.1.3 Flow solver

The domain is discretized using a fixed (Eulerian) rectangular and uniform grid. A

combined second-order finite-difference scheme and Fourier transform is used for the

spatial discretization, and a second-order time-split scheme is used for the temporal

discretization of Navier-Stokes equations. In this method, the momentum equation

is split into an advection–diffusion equation and a Poisson equation for the pressure.
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The body-force term is retained in the advection–diffusion equation. The nonlin-

ear terms are treated explicitly using a second-order Adams-Bashforth scheme, and

the viscous terms are treated semi-implicitly using the second-order Crank-Nicholson

scheme. The resulting linear equations are inverted using an ADI (alternating di-

rection implicit) scheme to yield a predicted velocity field. The Poisson equation is

then solved to obtain pressure at the next time level. Using the new pressure, the

velocity field is corrected so that it satisfies the divergence-free condition. Details of

the method can be found in [61, 62, 70].

2.1.4 Interface tracking

The cell interface is tracked in a Lagrangian manner. After solving Navier-Stokes

equations for the pressure and velocity fields, the no-slip condition on the cell surface

is imposed by extracting the surface velocity from the surrounding fluid at each time

step as

uS(x
′, t) =

∫

S

u(x, t)δ(x− x′)dx . (2.11)

Though the summation is over all the Eulerian grid points, only the local points

contribute to the membrane velocity. The discrete form of the delta function used

here is the same given by (2.9). The Lagrangian points on the membrane are then

advected as

dx′

dt
= uS(x

′, t) . (2.12)

Numerically, the above equation is treated explicitly using the second-order Adams-

Bashforth scheme.
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2.2 Finite-element Treatment of an Elastic Membrane

Membrane deformation is treated using a finite element model developed by Charrier

et al. [68]; Shrivastava & Tang [69], and later implemented by Eggleton & Popel [60]

within the framework of immersed boundary method to consider cells large deforma-

tion. First, the membrane is discretized using flat triangular elements. The main idea

is that a general 3D deformation of the membrane can be reduced to a 2D problem by

assuming that each triangular element on the membrane remains flat even after defor-

mation. Then, the forces acting on the three vertices of that element are obtained by

computing the displacements of the vertices of the deformed element with respect to

the undeformed element. We first describe the model for a purely elastic membrane

followed by a detailed discussion on the modeling of a viscoelastic membrane.

2.2.1 Red blood cell model

The biconcave shape of a red blood cell is prescribed as

x = Rη ; y =
R

2

√
1− r2(C0 + C2r

2 + C4r
4) ; z = Rζ , (2.13)

where η2 + ζ2 = r2, and R is adjusted to control the cell volume [3]. The surface

area and the volume of the red blood cell are taken to be 134.1µm2 and 94.1µm3,

respectively [3]. The initial shape is stress-free. The coefficients C0, C2, and C4 depend

on the osmolarity, and are taken to be 0.207, 2.003, and −1.123, respectively [3].

As discussed before, a complete elastic model for red blood cells must include

all essential properties of the cell membrane, namely, the resistance against shear

deformation, area dilatation, and bending. The first two types of deformation are
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modeled using the strain energy function developed by Skalak et al. [64] for a red

blood cell membrane as

We =
Es

4

[(

1

2
I21 + I1 − I2

)

+
C

2
I22

]

, (2.14)

with I1 and I2 defined as

I1 = ǫ21 + ǫ22 − 2 ; I2 = ǫ21ǫ
2
2 − 1 , (2.15)

where ǫ1 and ǫ2 are the principal stretch ratios, Es is the surface Young’s modulus,

and CEs is the modulus associated with the surface area dilatation. The Skalak law

behaves linearly in the small-deformation domain, with Es = 2Gs(2 + C)/(1 + C),

where Gs is the surface shear modulus [59]. The area dilatation may be restricted

by a large value of C as in case of a red blood cell for which the surface is nearly

area-incompressible. Further, I1 and I2 are the strain invariants of the Green strain

tensor, which is written as

E =
1

2

(

FT · F− I
)

, (2.16)

where F = ∂x/∂X is the deformation gradient of the current configuration x relative

to the original configuration X, and I is the identity tensor. Note that the squared

of principal stretch ratios ǫ21 and ǫ22 are the eigenvalues of the left Cauchy-Green

deformation tensor defined as D = F · FT . Hence, we can write

ǫ2i =
1

2

[

D11 +D22 ±
√

{

(D11 −D22)
2 + 4D2

12

}

]

, i = 1, 2 . (2.17)
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The corresponding in-plane elastic force in each element is obtained by applying

the principle of virtual work as fme = −∂We/∂v, where v is the displacement of a

Lagrangian point on the cell surface (see [69, 70] for details). Then, the force fe at

each vertex is found as the resultant of fme on the triangles surrounding the vertex.

The bending resistance is modeled following Helfrich’s [33] formulation for bending

energy

Wb =
Eb

2

∫

S

(2κ− co)
2 dS + Eg

∫

S

κgdS , (2.18)

where Eb is the bending modulus associated with the mean curvature κ, Eg is the

bending modulus associated with the Gaussian curvature κg, and co is the sponta-

neous curvature. According to the Gauss–Bonnet theorem of differential geometry

the second integral in (2.18) remains invariant for topologically equivalent shapes,

and hence, can be dropped from the equation. It should be mentioned that the re-

sistance against area dilatation also gives rise to a local in-plane tension σ, and an

associated energy
∫

S
σdS. Thus, the total energy of the membrane minus the elastic

energy becomes

Eb

2

∫

S

(2κ− co)
2 dS +

∫

S

σdS . (2.19)

The surface force density can be derived by calculating the first variation of (2.19).

Then, the expression will involve both κ and κg, but not Eg, and becomes

fn = Eb

[

(2κ+ co)
(

2κ2 − 2κg − coκ
)

+ 2∆LB κ
]

n− 2σκn , (2.20)
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ft = ∇sσ , (2.21)

where ∇s = Is · ∇ is the surface gradient operator, ∆LB = ∇s · ∇s is the Laplace–

Beltrami operator, and Is = I − n⊗ n is the surface projection matrix [34]. Here fn

is the normal force, and ft is the in-plane force arising due to the constraint of area

dilatation. It should also be mentioned that based on our conventions a sphere will

have a positive mean curvature. We note that the two different expressions for energy

associated to the area dilatation, i.e.,
∫

S
σdS and the second term in (2.14) CEsI

2
2/8,

are not specifically related to each other. The latter was derived by Skalak et al. for

red blood cell membrane, which behaves as a nearly incompressible surface. In the

present study, the in-plane force ft due to the constraint of area dilatation is evaluated

as a part of the elastic force fe obtained using the strain energy function (2.14). This

is more convenient to be implemented in the context of the front-tracking method as

the Lagrange multiplier σ is not needed. Finally, the body force B acting on the fluid

can be evaluated as

B =

∫

S

(fn + fe) δ(x− x′)dx′ . (2.22)

We now describe the numerical technique to compute the normal force fn. The

cell surface is discretized using small flat triangular elements as shown in Fig. 2.2(a)

for a sample prolate vesicle. Each vertex is surrounded by five or six elements. The

curvatures κ and κg on the triangulated surface is calculated by a quadratic surface

fitting,

z′ = ax′2 + bx′y′ + cy′
2
+ dx′ + ey′ , (2.23)
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where (x′, y′, z′) is a local coordinate system with origin at a Lagrangian point of

interest, and the coordinate z′ is aligned with the estimated normal vector. The

technique of computing the curvatures and their derivatives is described in detail by

Garimella & Swartz [35] and Petitjean [36]. One-ring neighbor points are used to find

the coefficients using a least-square method, and iterations are performed to obtain

an accurate fitting until a satisfactory convergence for the estimated normal vector is

reached. The curvatures, κ and κg, are expressed in terms of the fitted coefficients as

κ = −a + c+ ae2 + cd2 − bde

(1 + d2 + e2)3/2
, (2.24)

and,

κg =
4ac− b2

(1 + d2 + e2)2
. (2.25)

To discretize the Laplace–Beltrami operator, we work in the framework of computa-

tional image reconstruction [37,38]. For a Lagrangian node x′
i, the Laplace–Beltrami

operator is written as

∆LB κi =
1

2A
∑

j∈N1(i)

ñj · (∇sκj +∇sκj+)
∥

∥x′

j − x′

j+

∥

∥ , (2.26)

where N1(i) represents the set of vertices in the first ring neighborhood of i (see Fig.

2.2(b)), ñj is the unit outward normal to the edge [j, j+], and A is the area of all

triangles sharing the node i. Further, the gradient ∇sκi at a node i is approximated
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Figure 2.2: (a) Discretization of the vesicle surface; (b) schematic for the first-ring
neighbors of the vertex i.

by a weighted average of the gradients on the adjacent triangles as

∇sκi =
1

A
∑

j∈N1(i)

Aj∇Tj
κ , (2.27)

where ∇Tj
κ is the surface gradient approximation of the mean curvature on each

adjacent triangle Tj = [i, j, j+], and Aj is the area of Tj . Assuming that κ varies

linearly in each triangle, ∇Tj
κ can be written as

∇Tj
κ =

1

4A2
j

{

κi

[

(x′

i − x′

j) · (x′

j − x′

j+)(x
′

j+ − x′

i) + (x′

i − x′

j+) · (x′

j+ − x′

j)(x
′

j − x′

i)
]

+ similar terms with i and j interchanged

+ similar terms with i and j+ interchanged

}

. (2.28)
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2.2.2 Vesicle model

The vesicle initial shape is taken to be a prolate spheroid with the axis of symmetry

in the shear plane. The vesicle is represented as a liquid drop surrounded by a zero-

thickness membrane. The membrane is assumed to possess the resistance against

bending and area dilatation only. Similar to the model for red blood cell membrane,

the normal force fn is evaluated using (2.20), whereas the in-plane force due to area

dilatation ft is computed from the second term of Skalak strain energy function in

(2.14) by applying the principle of virtual work as

Wa =
CEs

8

(

ǫ21ǫ
2
2 − 1

)2
, (2.29)

ft = −∂Wa

∂v
. (2.30)

The body force B acting on the fluid will then be evaluated as

B =

∫

S

(fn + ft) δ(x− x′)dx′ . (2.31)

Volume preservation

Due to the area constraint, a nearly spherical vesicle may deform by losing its volume.

Such volume loss is observed in our simulations for lower values of excess area ∆ only,

typically < 0.5. In such cases, we find that the tank-treading inclination angle is

rather sensitive to a small change in volume. The volume loss is prevented by adding
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a uniform force to (2.31)

fv = −Kv
∆V

V0
n , (2.32)

where V0 is the initial volume, ∆V = (V − V0) is the change, and Kv is a sufficiently

large positive number [36].

2.3 Finite-strain Viscoelastic Model

The numerical modeling of the membrane shear resistance, area dilatation, and bend-

ing resistance has been described in detail in the previous section. In the following,

we focus on the numerical implementation of membrane viscosity.

In order to model the viscoelastic effect of the membrane we use the Kelvin–

Voigt stress-strain relation in which the membrane stress is the sum of the elastic

and viscous contributions [52, 58]. The elastic contribution is modeled by using the

Skalak strain energy function in (2.14). The principal elastic stresses (or tensions) for

large deformation of an infinitesimal membrane patch can be derived by the following

equations

τ e1 ≡ 1

ǫ2

∂We

∂ǫ1
; τ e2 ≡ 1

ǫ1

∂We

∂ǫ2
. (2.33)

For an isotropic membrane, the principal stresses are along the same direction as the

principal stretches. Hence, the stress tensor can be written in terms of the principal

stresses and directions as

τ
e = τ e1 e1 ⊗ e1 + τ e2 e2 ⊗ e2 , (2.34)
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where e1 and e2 are the unit eigenvectors of the left Cauchy-Green deformation tensor

D = F ·FT . Using (2.15) & (2.33), the stress tensor (2.34) can be equivalently written

as [4]

τ
e =

2

ǫ1ǫ2

∂We

∂I1
F · FT + 2ǫ1ǫ2

∂We

∂I2
(e1 ⊗ e1 + e2 ⊗ e2) . (2.35)

It should be mentioned that the first term in the above equation contributes to the

deviatoric part of the stress tensor, whereas the second term is called the volumetric

stress tensor.

The membrane viscous effects can be modeled by considering a viscous constitutive

equation, which involves the rate of strains and describes the material behavior as a

Newtonian liquid:

τ v1 ≡ 2µs
1

ǫ1

Dǫ1
Dt

; τ v2 ≡ 2µs
1

ǫ2

Dǫ2
Dt

, (2.36)

where µs is the membrane shear viscosity (N.s/m), and D/Dt is the material derivative

w.r.t time. The elastic behavior is modeled by a spring with the stiffness Es, whereas

the viscous effect is modeled by a dashpot with the coefficient µs. Therefore, the

Kelvin–Voigt model assumes that the spring and dashpot are in parallel, and the

total stress is simply the sum of the elastic and viscous stresses. From (2.33) &

(2.36), the total stress along the principal directions can be found as

τi = τ ei + τ vi (i = 1, 2) . (2.37)

Note that in (2.36), the deviatoric part of the strain rate tensor is only contributing
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to the viscous stresses. It means that the viscous dissipation due to the rate of area

dilatation is neglected in our study. This term can be included in our model by

introducing a coefficient of membrane dilatational viscosity. While the importance

of this term is not quite known for capsules, it was shown that its contribution

to the dissipation is essentially negligible for the membranes with vanishing area

dilatation [8]. In addition, the membrane response is likely to be more complicated

than the linear Kelvin–Voigt model. The membrane viscosity is reported to behave as

that of a non-Newtonian fluid (specifically, a power-law fluid as suggested by Puig-de-

Morales-Marinkovic et al. [92]). The Kelvin–Voigt model, however, has the advantage

of being simple and introducing a single constant parameter µs.

Through our numerical analysis, we observed that a direct numerical implemen-

tation of (2.37) leads to numerical instability due to the time-derivatives of strains.

Therefore, to avoid this problem, we incorporate a more conventional approach of

finite element analysis for viscoelastic materials, where a time-convolution integral is

used to relate the viscous stresses to the strain history. Here, we consider another

elastic term with the stiffness E1 in series with the viscous term to form a Maxwell

element. This Maxwell element is then used in parallel with the membrane elas-

tic modulus Es. The mechanical analog of this model is presented in Fig. 2.3. In

small-strain viscoelasticity, the stress is evaluated in terms of the strain history by

introducing a time-dependent shear relaxation modulus G(t), which in turn, can be

expressed in terms of a Prony series as follows:

G(t) = G∞ +
N
∑

i=1

Gi exp(−t/αi) , (2.38)
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Figure 2.3: Schematic of the mechanical system considered in the present numerical
analysis to model the membrane viscoelasticity.

where N is the number of Maxwell elements, G∞ is the long-term relaxation modu-

lus, and αi = µi/Ei are the relaxation time constants corresponding to each Maxwell

element. As a generalization to the finite-strain viscoelasticity, which is the case here,

we can write a Prony series expansion for the mechanical system in Fig. 2.3 by con-

sidering N = 1, G∞ ≡ Es, and G1 ≡ E1. Note that as E1 → ∞, G(t) becomes equal

to Es, and the mechanical system in Fig. 2.3 essentially represents the Kelvin–Voigt

model. Thus, taking a large value for E1 will guarantee the correct implementation

of the Kelvin–Voigt model. More details on the values of E1 will be presented in

the subsequent section. Below is a brief discussion on the integral formulation of the

viscoelastic stress. More information on the derivation and numerical implementation

of finite-strain viscoelasticity can be found in Holzapfel [84] and Abaqus/Standard

Theory Manual [85].

We define the instantaneous shear modulus G0 ≡ G(t = 0) = Es + E1 using

the Prony series introduced in (2.38). The instantaneous viscoelastic response of the

material can be decomposed into the deviatoric and volumetric instantaneous stresses
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such that τ 0(t) = τ
dev
0 (t) + τ

vol
0 (t), with τ

dev
0 (t) defined as

τ
dev
0 (t) =

2

ǫ1ǫ2

∂We

∂I1
F · FT , (2.39)

where the membrane elastic modulus Es in We is replaced by the instantaneous shear

modulus G0. The volumetric stress is assumed to be purely elastic as the viscous

dissipation due to rate of area dilatation is neglected. Therefore, we have

τ
vol
0 (t) ≡ τ

vol(t) = 2ǫ1ǫ2
∂We

∂I2
(e1 ⊗ e1 + e2 ⊗ e2) , (2.40)

where the membrane area dilatation modulus CEs remains unchanged in the en-

ergy function We. The basic integral formulation of the stress for linear isotropic

viscoelasticity is written as [83]

σ(t) = σ0(t) +

∫ t

0

Ġ(s)

G0
σ0(t− s)ds , (2.41)

where σ is the total small-strain viscoelastic stress. Therefore, the total finite-strain

viscoelastic stress τ can be written as a generalization of the above equation as [85]

τ (t) = τ
dev
0 (t) + SYM

[

∫ t

0

Ġ(s)

G0
F−1

t (t− s) · τ dev
0 (t− s) · Ft(t− s) ds

]

+τ
vol(t) , (2.42)

where Ft(t− s) = ∂x(t− s)/∂x(t) is the deformation gradient of the configuration at

time (t− s) relative to the configuration at time t. A transformation is performed on

the stress relating the state at time (t− s) to the state at time t, and SYM[.] ensures

the symmetry of the transformed stress tensor.
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The cell surface is discretized using flat triangular elements. The deformation

gradient tensor F, stretch ratios ǫ1 and ǫ2, and hence, the stress tensor τ are then

evaluated for each triangular element with linear shape functions [69,70]. The stress

is stored at each element and is integrated forward in time. We assume that the stress

is known at time t − ∆t, and we need to evaluate the convolution integral in (2.42)

for the stress at time t, where ∆t is the numerical integration time step. Having the

stress tensor in (2.42) evaluated, we use the principle of virtual work to estimate the

corresponding viscoelastic force in the membrane for each element as

fve =
∑

m

∫

Sm

∂N

∂X
·P dS0 , (2.43)

where fve is the global nodal vector of external force acting on the fluid, N is the vector

of linear shape functions commonly used for a triangular element [83], P is the first

Piola–Kirchhoff stress tensor, and dS0 is the element surface area in the unstressed

original configuration. Note that the integration is performed over the area Sm of the

original configuration X for an arbitrary element m. Hence, the stress tensor τ that

is the Cauchy stress in the deformed configuration needs to be transformed to the

stress P in the original configuration by the following equation

PT = ǫ1ǫ2 F
−1 · τ . (2.44)

2.4 Dimensionless Parameters

There are a number of relevant time scales involved in the dynamics of a viscoelastic

capsule suspended in linear shear flow. The shear flow time scale causing deformation
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is τf ∼ λγ̇−1, the relaxation time scale due to the elastic modulus is τe ∼ λµoao/Es,

and the time scale for the viscoelastic membrane is τv ∼ µs/Es, where λ = µi/µo is the

viscosity contrast between interior and exterior fluids, and ao is the equivalent radius

considered as the length scale. The capsule response is governed by the largest of these

time scales. The ratio τe/τf is the capillary number Ca = γ̇µoao/Es, whereas the ratio

λτv/τe is the dimensionless membrane viscosity defined as η∗ = µs/µoao. In addition,

the time scale associated with the bending modulus is τb ∼ λµoa
3
o/Eb, and the ratio

τe/τb is the dimensionless bending stiffness E∗
b = Eb/a

2
oEs. The dimensionless time

is denoted by t∗, and defined as tγ̇. Our focus is in the range τf ∼ τe ∼ τv. Thus,

the three main dimensionless parameters are Ca, η∗ and λ. Moreover, in the limit

of a large membrane viscosity and a large elastic modulus, τv ≫ τe. Then the ratio

λτv/τf ≡ β can be considered as the relevant parameter [52].

Experimental measurements of the membrane viscosity of capsules are relatively

scarce. Chang & Olbricht [54] estimated µs from their experiments using artificial

capsules, which in dimensionless form yielded η∗ ≈ 6. In case of red blood cells,

there is more information available on the membrane viscosity, although the range of

the reported values is rather wide. For example, Tran-Soy-Tay et al. [8] estimated

µs ≈ 10−7 (N.s/m) from the analysis of cell tank-treading frequencies, whereas Evans

& Hochmuth [88] found µs ≈ 10−6 (N.s/m) based on their micropipette aspiration

and cell relaxation technique. Thus, η∗ in the range ∼ 10 appears to be most relevant.

For the sake of a comprehensive analysis, here we consider a range of η∗ from 0 to

100. The capillary number is varied from 0.05 to 1, and the viscosity ratio λ from 0.2

to 5.
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Similarly, for RBC with purely elastic membrane, the relevant dimensionless pa-

rameters are (i) the capillary number Ca; (ii) the viscosity ratio λ and (iii) the

dimensionless bending rigidity, E∗
b . Further, the nondimensional spontaneous cur-

vature is set to coao = −2.09 [94]. For a normal cell, Es ≈ 2 − 6 × 10−6 N/m,

and Eb ≈ 1 − 5 × 10−19 N-m [2, 3, 13]. The area dilatation parameter C is varied

from 50 to 400 to ensure that the global and local area dilatation is less than 0.5%.

Note that for a real cell the parameter C ∼ 105; however, using such a high value

results in numerical instability. It appears that numerical instability occurs at pro-

gressively lower values of C as Ca decreases. The range of C used here is found

using a series of numerical tests so that the area can be conserved as far as possible

without creating numerical instability. Hence, the RBC surface is nearly, not entirely,

area-incompressible in our model.

In case of vesicles, three relevant dimensionless parameters are the excess area ∆,

the viscosity ratio λ, and the capillary number χ = µoγ̇a
3
o/Eb defined as the ratio

τb/τf . In our simulations, ∆ is varied from 0.12 to 2.17. The corresponding range

of the reduced volume V ∗ = (1 + ∆/4π)−3/2 is 0.99 to 0.79. The viscosity ratio λ

and the capillary number χ are varied from 1 to 14, and 0.2 to 50, respectively. The

nondimensional spontaneous curvature is set to coao = 0.0 for all prolate vesicles. In

addition, a series of tests are performed to set an appropriate value of the prefactor C

in (2.29). It is found that for the values of O(103), the vesicle surface area is conserved

within 0.4% globally and locally.

The non-linear terms in the Navier-Stokes equations are retained in the compu-

tation; however, the Reynolds number Re = ρ a2o γ̇/µo ≈ 10−2, and hence, the effect

of inertia is negligible.
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2.5 Grid Resolution Test and Domain-size Effect

The code we use in this study was initially used to model the dynamics and de-

formation of capsules with elastic membrane. This code has been previously val-

idated against the theories, experiments and several other boundary integral and

front-tracking numerical results. A detailed validation of the methodology and test

of numerical convergence was given in [61, 63] for initially spherical capsules with no

bending rigidity. Here we present several numerical tests for different Eulerian and

Lagrangian grid resolutions, and domain-size effects on the deformation and orienta-

tion of a vesicle in linear shear flow.

The computational domain is a cubic box of length 2πao, and contains one vesicle

of equivalent radius ao. The domain is discretized using a fixed (Eulerian) rectangular

and uniform grid of 1203 points. For this resolution, there are about 38 Eulerian points

across the diameter of the equivalent sphere. Thus the flow field inside the vesicle is

well resolved.

Figure 2.4(a) and (b) present the convergence tests for the Eulerian and La-

grangian resolutions, respectively. Fig. 2.4(a) shows the two-dimensional contours of

the steady-state shape of a tank-treading vesicle in the shear plane for three different

Eulerian grids: 803, 1203, and 1603, while the Lagrangian resolution is kept constant

at 5120 triangles. No significant difference is observed between the three cases, and

thus, 1203 resolution is used in this study. Fig. 2.4(b) shows the result for three

different Lagrangian resolutions: 1280, 5120, and 20480 triangles, while the Eulerian

resolution is fixed at 1203. The result for 1280 elements is slightly different from the

other two, whereas 5120 and 20480 resolutions give almost the same shapes. Tables

2.1 and 2.2 present the Taylor deformation parameter D = (L−B)/(L+B), where L
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Figure 2.4: (a) Convergence test of Eulerian resolution: —– 803, - - - 1203, -·-·- 1603;
The inset shows the magnified view of a part of the contours. (b) Convergence test
of Lagrangian resolution: -·-·- 1280; - - - 5120; —– 20480 triangles.

Table 2.1: Convergence of deformation parameter D, and tank-treading inclination
angle θ/π for different Eulerian resolutions. The Lagrangian grid is fixed at 5120
elements. Here ∆ = 0.63, λ = 5, χ = 50.

No. of points D θ/π
403 0.265 0.094
803 0.298 0.080
1203 0.299 0.077
1603 0.299 0.077

and B are the capsule semi-major and -minor axes in the shear plane, respectively [see

Fig. 1.2], and inclination angle θ for different Eulerian and Lagrangian resolutions,

which confirm that convergence is attained for 1203 mesh.

In order to verify the accuracy of the surface fitting method used to obtain the

curvatures, and their discrete gradients, we compare the numerically obtained values

with the exact (analytical) values for a fixed oblate spheroid with an excess area ∆

= 1.62. The normalized L2 error is defined as L2 =
∥

∥

∥
V − V̂

∥

∥

∥

2
/ ‖V‖2, where V and

V̂ represent the exact and numerical solutions, respectively. Table 2.3 presents the
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Table 2.2: Convergence of deformation parameter D, and tank-treading inclination
angle θ/π for different Lagrangian resolutions. The Eulerian grid is fixed at 1203.
Here ∆ = 0.63, λ = 5, χ = 50.

No. of elements D θ/π
1280 0.298 0.071
5120 0.299 0.077
20480 0.293 0.081

L2 error for κ, κg, and ∆LB κ. The L∞ error which is the maximum relative error

between the numerical and exact values is also given in Table 2.4. Values in Table

2.3 show that the L2 error can be significantly improved by increasing the number

of elements from 1280 to 5120, while only a marginal improvement occurs when the

number of elements is further increased to 20480. The same trend can be noticed for

L∞ error of κ and κg. One exception is the L∞ error in ∆LB κ which first decreases

as the number of elements increases from 1280 to 5120, but increases thereafter. It is

mentioned in [38] that the convergence of the Laplace–Beltrami operator depends on

the mesh structure, and hence, a uniform reduction in L∞ error can be achieved for

some specific triangulations only. It was noted in Fig. 2.4(b) that the vesicle shape

does not show a significant change when the Lagrangian resolution is increased from

5120 to 20480. Hence, the mesh with 5120 elements was used in the simulations

of tank-treading and tumbling vesicles for which the shape is found to be smooth.

For vesicles near the transition boundary, which show highly complex shapes, it was

necessary to use the higher Lagrangian resolution. Our numerical scheme for the

calculation of curvatures and their discrete gradients is robust for any smooth surfaces

regardless of the shape.

Moreover, we have verified that there is no significant effect on the vesicle dynamics

due to confinement by increasing the wall-to-wall distance from 2πa0 to 3πa0 and 4πa0.
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Table 2.3: Normalized L2 error for different Lagrangian resolutions. The shape is an
oblate spheroid with ∆ = 1.62.

No. of elements κ κg ∆LB κ
1280 0.010 0.017 0.303
5120 0.003 0.005 0.108
20480 0.001 0.002 0.059

Table 2.4: Normalized L∞ error for different Lagrangian resolutions. The shape is an
oblate spheroid with ∆ = 1.62.

No. of elements κ κg ∆LB κ
1280 0.019 0.030 0.360
5120 0.008 0.012 0.166
20480 0.005 0.009 0.321

The tank-treading angles decrease by at most 5%, and the deformation parameter D

increases by less than 1% upon increasing the size to 3πa0; no further changes in θ

and D occur upon further increase to 4πa0. We have also verified that the tumbling

and swinging motions, and the transition borders are not affected by increasing the

wall-to-wall distance.

While the volume preservation technique presented in Section 2.2.2 has been ap-

plied for red blood cells in vacuum [39], we find it to be convenient and consistent

within the framework of the immersed-boundary method for fluid-filled vesicles as

well, and it also assures that the no-slip condition on the vesicle surface is auto-

matically satisfied as the surface velocity is obtained by interpolating the local fluid

velocity. It may be noted that volume preservation could be alternatively performed

by using a surface normal velocity. We have performed multiple simulations using

this alternate method and found that both methods gave similar results; e.g., for

χ = 10, λ = 1,∆ = 0.44, the force method gave D = 0.257, θ/π = 0.176, and the

velocity method gave D = 0.256, θ/π = 0.178. Table 2.5 presents the volume change
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and the tank-treading angle θ for a sample case at a high capillary number over a

range of the dimensionless values of Kv. We see that from Kv = 2.5× 104 to 4× 104,

there is no significant improvement in volume and θ. After careful tests, we find

that Kv = 2.5 × 104 is satisfactory for which the volume loss is about 0.12%. It

should be emphasized that the volume loss is observed for the nearly spherical vesi-

cles (∆ < 0.5), and not for higher values of ∆. Note that for higher values of ∆, the

surface area is higher, and hence, the distance between the Lagrangian nodes are also

higher. However, this increased Lagrangian-to-Eulerian mesh size ratio did not cause

any increased volume loss. We also observed that increasing the Lagrangian mesh

from 1280 to 5120 and 20480 never improved the volume loss for a fixed Eulerian

grid spacing of 1203. This suggests that the volume loss in our simulations is not

due to higher Lagrangian-to-Eulerian mesh size ratio. For vesicles near the transition

boundary, which show highly complex shapes (Figs. 3.10 and 3.11), we use 20480 La-

grangian resolution for improved curvature estimation. Also, we do not observe local

coarsening or entanglement of surface mesh over the length of the simulations; thus,

no remeshing is done. Figure 2.2(a) shows the surface mesh on a deformed vesicle;

no mesh skewness is seen here. For all reported runs, we have made similar checks

that the mesh skewness does not appear. It should be mentioned that no significant

volume loss was found in our study on the dynamics of red blood cells, which have

highly oblate resting shape (∆ ∼ 5), and nearly constant surface area using the same

numerical technique.

As discussed earlier in Section 2.3, the viscoelastic model presented in Fig. 2.3

approaches the Kelvin–Voigt model for very large E1. This means that the capsule

dynamics and deformation will be independent of E1 for large values of E1. This
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Table 2.5: Volume loss and cell inclination angle for different dimensionless values of
Kv. Here, ∆ = 0.44, λ = 5, and χ = 50. The tabulated values are taken at t∗ = 20.

Kv θ/π ∆V
V0

(%)

5× 103 0.14 -0.43
2.5× 104 0.148 -0.12
4× 104 0.149 -0.07

can be verified in Fig. 2.5, where the deformation parameter D and the major axis

inclination angle θ are plotted for different values of non-dimensional E∗
1 obtained from

our simulation. Note that E1 is scaled by the elastic modulus Es; hence, E
∗
1 ≡ E1/Es.

As E∗
1 increases, D increases and θ decreases approaching limiting values. Further

increase in E∗
1 does not affect D and θ as there are no significant differences between

the results for E∗
1 = 50 and 100. Note that setting a very high value of E∗

1 is not

numerically feasible as the system becomes stiff and the integration time step should

be reduced significantly. Therefore, E∗
1 = 50 is considered throughout this study.
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Figure 2.5: Effect of elastic modulus E∗
1 on deformation parameter D (left axis, solid

line), and inclination angle θ (right axis, dashed line). The model approaches the
Kelvin–Voigt model upon increasing E∗

1 , and D and θ become independent of E∗
1 .

Here Ca = 0.1, λ = 1, η∗ = 10 and the capsule is initially spherical.
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Chapter 3

Dynamics of a Vesicle in Linear Shear Flow

3.1 Introduction

As discussed in Chapter 1, dynamics and deformation of vesicles have been the subject

of intense research due to their significance in biological and engineering applications.

The role of the controlling parameters on vesicle dynamics, particularly, the capil-

lary number χ, has received a significant attention in the recent years. Numerous

theoretical studies have been carried out, starting with Seifert [19], in the framework

of perturbation analysis of nearly spherical vesicles (∆ ≪ 1) in which the shape is

represented by a series of spherical harmonics, and the vesicle dynamics is expressed

in terms of two coupled ODEs. In the leading-order analysis of Misbah [48] and Vla-

hovska & Gracia [49], the χ-dependent terms drop out from the expansion, and the

parametric space is reduced to two variables, namely, ∆ and λ. Danker et al. [21],

Kaoui et al. [22], and Lebedev et al. [20,50] considered the second-order terms in the

expansion up to the second harmonics, and thus, retained the χ-dependence. Lebedev

et al. [20,50] showed that the parametric space could still be reduced by introducing

two new dimensionless variables S and Λ defined as

S =
7π

3
√
3

χ

∆
, (3.1)
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and

Λ =
23λ+ 32

8
√
30π

√
∆ . (3.2)

Using these two parameters, a self-similar behavior of the vesicle dynamics was ob-

tained; that is, the transition boundaries between different regimes in the S–Λ plane

were found to be independent of ∆. Experimental works by Steinberg’s group [6],

and a recent analysis of their data by Zabusky et al. [28] tend to suggest that the

data can be presented in the two-parameter phase diagram proposed by Lebedev et

al. [20,50], within the margin of uncertainty in the experiments, despite the fact that

the experimental observations did not support some key assumptions in the models.

In addition to the fact that the models are strictly applicable to nearly spherical vesi-

cles, they are also based on the assumptions that the thermal fluctuations (except

Seifert’s [19]), and the odd harmonics in the vesicle shape, are neglected.

The notion of self-similarity in vesicle dynamics, however, remains an issue of

recent debate. In contrast to the model of Lebedev et al. [20, 50], the models of

Danker et al. [21] and Kaoui et al. [22] found that the self-similar solution did not

exist, and the dynamics explicitly depended on the three parameters, χ, λ, and ∆.

Farutin, Biben & Misbah [23] included the fourth-order harmonics in the expansion,

resulting a 14-ODE model, and also found the absence of the self-similarity. Very

recently, Biben, Farutin & Misbah [24] used a 3D boundary integral simulation to

study vesicle dynamics in shear flow, and concluded that the self-similarity did not

exist. Using the self-similarity model, Zabusky et al. [28] showed that all experimental

tank-treading angle θ for different ∆ collapsed to a single line when plotted against

Λ (excluding the data points which are presumed to be affected by thermal noise).
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Further, the boundary integral simulations of Kraus et al. [43] predicted that the

tank-treading angle was independent of χ. In contrast, all higher-order theoretical

models found an explicit dependence of θ on χ.

The above discussion clearly suggests that further analysis is necessary with regard

to the parametric space that controls the vesicle dynamics, without the limitation

imposed by the assumption of the quasi-sphericity, in particular. The first objective

in this chapter is to provide further insight to the parametric dependence and the

self-similar behavior of the vesicle dynamics in the range of ∆ = O(1) using a three-

dimensional direct numerical simulation in which vesicle deformation is fully resolved

but thermal noise is neglected.

In addition, quantitative data on vesicle deformation is relatively scarce. The

vesicle shape changes from its initial shape under the application of the shear, while

the volume and surface area remain constants. In their experiments, de Haas et

al. [25] observed that deformation increased non-linearly with increasing shear rate

and tend to saturate at large values. Seifert’s theoretical work [19], which included

thermal noise, predicted a linear behavior in the limit of vanishingly small shear rate,

and a deformation saturation at large shear rates similar to that observed by de

Haas et al. [25]. Kantsler & Steinberg [15] also observed a similar crossover behavior,

and saturation of deformation at large shear rate. Here, we present a quantitative

comparison of the theoretical and experimental results with our 3D simulation results.

Another objective is to analyze the shape dynamics for vesicles in the transition

regime. As mentioned above, highly convoluted shapes are observed for the trem-

bling vesicles in the experiments. These shapes are drastically different from those
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predicted for the vacillating-breathing vesicles by Danker et al. [21] in which the vesi-

cle shape remains nearly elliptical during its oscillation. In this chapter, we show

that our simulations are able to predict that, in the absence of thermal noise, both

the vacillating-breathing mode characterized by relatively smooth elliptical shapes,

as well as the trembling mode characterized by complex shapes with concave regions

are possible.

We present a comprehensive analysis of the scaling of tank-treading angles, and

the deformation, followed by the analysis of vesicle shapes in the transition zone, and

the phase diagrams.

3.2 Analysis of Tank-treading Vesicles

First we present the results for the tank-treading vesicles, and address the scaling

issues related to the inclination angle. For the range of ∆ considered here (∆ ≤ 2.17),

only a prolate equilibrium shape is possible [26]. First, we verify that by starting with

an initially oblate or prolate shapes, our numerical technique leads to the same final

shape. This is illustrated in Fig. 3.1(a)-(b) where the shape evolution is shown for

a vesicle of an initially oblate shape at ∆ = 0.88. The final shape after the initial

transience shows that the vesicle has assumed a prolate-like shape. A marker particle

on the surface is tracked over time to show the tank-treading motion. Fig. 3.1(c)

shows the time evolution of the semi-major axis L, semi-minor axis B, the half of the

end-to-end length in the vorticity direction, Z, and the major-axis inclination angle

θ for initially oblate and prolate shapes, but at the same value of ∆. It is clear that

both shapes reach the same final steady-state as L, B, Z, and θ approach the same

values.
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Figure 3.1: Sample results on a tank-treading vesicle and oblate-to-prolate transition.
(a) and (b) shows the time-lapse shapes viewed along the vorticity direction and
velocity gradient direction, respectively, for ∆ = 0.88, χ = 50, λ = 5. A marker point
(black dot) is shown in (a) to illustrate the membrane tank-tread. (c) Time evolution
of semi-major axis L, semi-minor axis B, the half of the end-to-end length Z in the
vorticity direction, and the tank-treading angle θ for initially oblate (—–) and prolate
(- - -) vesicles for ∆ = 0.44, χ = 50, λ = 5. Both initial shapes lead to the same final
results. All lengths are scaled by ao.
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3.2.1 Dependence of θ versus ∆

The dependence of the tank-treading inclination angle θ (angle between the major

axis and the flow direction x) on the excess area ∆ is shown in Fig. 3.2. The simulation

data is presented for a fixed value of the capillary number χ = 10 in the figure, but

different values of the viscosity ratio λ. The present front-tracking simulation results

are compared with the boundary integral simulation results of Kraus et al. [43] (who

considered λ = 1 only), the recent spectral boundary integral simulations by Zhao

& Shaqfeh [29] (λ = 1 and 2.7 from their simulations), and the experimental results

of Steinberg and co-workers. The data points for the experimental results and the

associated error bars are extracted from Fig. 4 in Zabusky et al. [28]. In general,

the present results agree well with the experimental results and the earlier boundary

integral simulations; however, certain subtle points must be mentioned. As noted

in [6, 16, 28], each experimental data point represents an ensemble-averaged value

over some bins of ∆ obtained from more than 500 individual measurements. In the

early measurements of Kantsler & Steinberg [15, 16], the uncertainty of ao, ∆, and λ

was up to 20%. In the newer measurements of Deschamps et al. [6], the uncertainty

of ao and ∆ was 3.5% and 16%, leading to the maximum errors of 25% and 8% in S

and Λ, respectively, though the inclination angle uncertainty was not reported. Given

the error bars of the experimental data, we can conclude that there are very good

agreements between the present results and the experimental data.

The qualitative trend of θ versus ∆ suggests a power-law dependence at smaller

values of ∆, but much slower decay at higher values. According to Zabusky et al.

[28], thermal fluctuations become significant at higher values of ∆ (and, lower θ)

causing the slower decay similar to what was observed in [30] in MPC simulations
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Figure 3.2: Effect of the excess area ∆ on the inclination angle for tank-treading
vesicles at different values of the viscosity ratio λ. Numerical results are shown
by open symbols and lines, and for a fixed capillary number χ = 10. Comparison
is done with the experimental results (filled symbols) from Steinberg and coworkers,
boundary integral simulations by Kraus et al. [43] (+), and spectral boundary integral
simulations by Zhao & Shaqfeh [29]. The experimental data and the error bars are
taken from Fig. 4 of Zabusky et al. [28].
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that implicitly included thermal noise. However, the present results which do not

include thermal noise tend to suggest that the thermal noise is not the only factor

that is responsible for the slower decay of θ. As a matter of fact, it can be said from

Fig. 3.2 that the decay rate observed in our results is slower than that observed in the

experiments, despite an increasingly large scatter in the experimental data at higher

∆.

We now study the effect of capillary number χ on the numerical results. For this,

we consider three values of χ = 1, 10, and 50. The θ versus ∆ curves are plotted in Fig.

3.3 for λ = 1, 2.7, 5, and 8, each for χ = 1, 10, and 50. Two important observations

are made here. First, for λ = 1 and 2.7, the inclination angle is nearly independent

of χ; only a weak dependence on χ is observed for low values of ∆. This result is

in agreement with that of Kraus et al. [43] who observed almost no χ-dependence

for λ = 1. On the contrary, a χ-dependence can be clearly seen for λ = 5 and, in

particular, for λ = 8. Thus, the χ-dependence appears in the numerical results as λ

increases. The same trend can be observed in the work by Zhao & Shaqfeh [29] where

the χ-dependence of inclination angle becomes more significant upon increasing λ.

We have included two data points from their work for comparable parameters: λ = 1,

∆ = 0.44, χ = 1 and 10, which match very well with ours. The second observation is

regarding the saturation of θ at large χ. As evident from the figure, the inclination

angle first decreases as χ increases from 1 to 10; beyond χ ≈ 10, the inclination

angle shows no significant change. Thus, the results for χ = 10 and 50 in the figure

are found to coincide. This saturation of θ at large shear rates is related to vesicle

deformation. As will be shown later, the vesicle elongates more with increasing χ

for up to χ ≈ 10. Hence, the inclination angle increases as a more elongated shape
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Figure 3.3: Simulations results showing the effect of χ on the θ versus ∆ plot. For
each value of λ, from 1 to 8, three values of χ are considered. The numerical results
show a χ-dependence at λ = 5 and 8. The red diamonds are data from Zhao &
Shaqfeh [29] for λ = 1, ∆ = 0.44, and χ = 1 and 10.

seeks to align with the flow direction. We find that the vesicle deformation saturates

beyond χ ≈ 10, and so does the angle.

As mentioned before, all theoretical models except Misbah’s [48] predict an explicit

dependence of the inclination angle on the capillary number χ. Therefore, we now

compare the numerical results with the theoretical models as done in Fig. 3.4(a).

We consider the higher-order models of Danker et al. [21] (hereafter, referred to as

DBPVM), Kaoui, Farutin & Misbah [22] (hereafter, referred to as KFM), Lebedev,

Turitsyn & Vergeles [20, 50] (hereafter, referred to as LTV), and the leading order

model of Misbah [48]. In the DBPVM model, the vesicle dynamics is expressed in

terms of the inclination angle θ and a variable Θ associated with the vesicle shape
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defined as R =
√
∆cosΘ/2 where R is the amplitude of deformation. Then,

τ
∂θ

∂t
=

S

2

[

cos 2θ

cosΘ

(

1 +
√
∆Λ2 sinΘ

)

− Λ

]

, (3.3)

τ
∂Θ

∂t
= −S sinΘ sin 2θ + cos 3Θ +

√
∆Λ1S (cos 4Θ + cos 2Θ) sin 2θ

+
√
∆Λ2S cos 2Θ sin 2θ , (3.4)

where

τ =
7
√
π(23λ+ 32)

72
√
10

χ

γ̇
, (3.5)

Λ1 =

√
10

28
√
π

(

49λ+ 136

23λ+ 32

)

, (3.6)

and

Λ2 =
10
√
10

7
√
π

(

λ− 2

23λ+ 32

)

. (3.7)

The terms involving Λ1 and Λ2 are the higher-order terms. From the DBPVM model,

one can obtain the KFM model by setting Λ2 = 0, the LTV model by setting Λ1 =

Λ2 = 0, and Misbah’s [48] model by setting Λ1 = Λ2 = 0, and omitting the cos 3Θ

term. We solve the above system of ODEs for a tank-treading vesicle for which

the inclination angle and the shape are fixed so that the left hand sides of (3.3)

and (3.4) are zero. A close form solution exists for Misbah’s [48] model as θ =

(1/2) cos−1
[

(23λ+ 32)
√
15∆/120

√
2π

]

. These theoretical results and the linearized

form of Misbah’s [48] model, θ = π/4− (23λ+ 32)
√
15∆/240

√
2π, are shown in Fig.

3.4(a) and compared with the present front-tracking simulations. To avoid cluttering

of the data, we consider χ = 1 and λ = 1 and 5. The figure shows that the difference
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between the DBPVM, LTV and KFM model is not significant but they differ from

Misbah’s model.

When we compare our numerical results with the above theoretical models (Fig.

3.4(a)), we find an agreement at small ∆ but not at higher ∆, as expected, since

these models are applicable to vesicles of nearly spherical initial shapes (∆ << 1).

Interestingly, Misbah’s [48] leading-order model predicts better the numerical results

than the other three models. The differences between the simulation results and the

theoretical results are found to increase quite significantly with increasing λ. Further,

the numerical results predict a much slower decay of θ than the theoretical models,

particularly for λ ≥ 5. Hence, the theoretical models deviate from the numerical

results not only at large values of ∆, but also at large values of λ. Therefore, while

we find that that the inclination angle (weakly) depends on the shear rate as in the

theoretical models, the exact nature of the dependence differs.

Fig. 3.4(b) compares the χ-dependency in theoretical models and simulations. We

consider only the DBPVM model and plot the results from this model for χ = 1, 10,

and 50, and compare with the numerical results. There are some subtle but important

differences between the two results. For λ = 1, the theoretical curves for different χ

nearly collapse at lower ∆ but diverge at higher ∆. In contrast, the numerical results

predict the opposite trend. This discrepancy might be in part due to the fact that

the theoretical models are valid for small ∆. Second, for higher λ, the theoretical

curves for different χ are indistinguishable but the numerical results show a strong

dependence on χ.
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Figure 3.4: (a) Comparison of the present numerical results (θ versus ∆ plots) with
the theoretical models for a constant χ = 1, but two values of λ = 1 and 5. Theoretical
models of Misbah [48], Danker et al. [21] DBPVM, Lebedev et al. [20, 50] LTV, and
Kaoui et al. [22] KFM are considered. (b) Comparison by varying χ as 1, 10, and 50,
for two values of λ = 1 and 8. Here only the DBPVM model is compared to avoid
cluttering of the data.
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3.2.2 Dependence of θ on Λ

Zabusky et al. [28] found that the experimental TT angles θ for different ∆ collapsed

when they were plotted against Λ despite the scatter in the data due to thermal

fluctuations. This finding has motivated us to present our numerical results for TT

angles w.r.t Λ as well. Figure 3.5 shows the present numerical results for two different

values of ∆ = 0.12 and 0.44 (Figs. 3.5(a) and (b), respectively), and the experimental

data points for the closest ∆ values obtained from Fig. 6 of Zabusky et al. [28]. Also,

in the same figure, we show the DBPVM theoretical solution, and the solution given

in [48], namely, θ = (1/2) cos−1 Λ. Note that the numerical results and the theoretical

results by DBPVM both are presented for three values of χ = 1, 10, and 50. It is

clear from the figure that both the numerical and the experimental results agree well

with each other within the error bars of the experiments (despite the lack of thermal

noise; see error bars here and in Fig. 3.2). On the contrary, They both disagree with

the theories not only for large values of ∆ (e.g., for ∆ = 0.44 in Fig. 3.5(b)), but also

for large values of Λ.

Further, the theoretical curves for different values of χ are almost identical for

small Λ and start to branch out as Λ increases, where the difference between χ = 1

and χ = 10 is more prominent. A similar trend can also be identified for the numerical

results. The numerical results for χ = 10 and χ = 50 are almost the same for all

range of Λ, but differ from those at χ = 1. Thus, a collapse of data for all χ values

is found in our numerical results only for small values of Λ. For higher values of Λ, a

collapse may occur for χ & 10 when vesicle deformation saturates.

Now we present θ for all the numerical data points w.r.t Λ for all ∆ and χ in Fig.

3.6. The figure shows that the data collapse very well for approximately Λ < 1, where
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Figure 3.5: Tank-treading inclination angle as a function of Λ. The numerical (open
symbols), and theoretical (lines without symbols) data are plotted for different values
of χ; the experimental (filled symbols) data are taken from Fig. 6 of Zabusky et
al. [28]. (a) ∆ = 0.12; (b) ∆ = 0.44.
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Figure 3.6: Simulation results of tank-treading inclination angles θ vs. Λ plotted for
all values of ∆ and χ considered in the simulation. For each ∆, values of χ chosen
are 1, 10, and 50. A collapse is possible for approximately Λ < 1, but not for higher
values.

they can all be fitted by a straight line. The rest of data for Λ > 1, however, show

a more scattered behavior and strongly vary with ∆. Zabusky et al. noted that the

quality of the experimental data did not allow one to distinguish between different

sets of ∆, and hence, a two-parameter scaling was sufficient within the error bars.

Based on our simulation results, it is very clear that the scaling of the TT angles θ

using a single variable Λ is only valid for small values of Λ. The breakdown of the

scaling at higher Λ occurs even in the absence of thermal noise.

3.2.3 Critical viscosity ratio

If the data in the linear regime (Λ < 1) in Fig. 3.6 is fitted by a straight line, the

intercept of this line with θ = 0 can be taken as the critical Λc for the onset of the
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unsteady dynamics. Λc, thus obtained, is a constant and independent of ∆. It is infor-

mative to compare the value of Λc obtained from our simulations with the theoretical

and experimental values. The linear approximation of the theoretical expression of θ

obtained by Misbah [48] and LTV gives Λc = 1.57 and 1.81, respectively. Using all

∆ values (excluding the ones affected by thermal noise), Zabusky et al. [28] obtained

Λc = 1.74 ± 0.2 for the experimental data. Our simulation results yield Λc = 1.78

which is very close to the value found by Zabusky et al. and by LTV.

If one assumes that Λc is a constant, then the critical viscosity ratio λc varies as

∆−1/2. In reality, however, this scaling is not possible due to the slow (non-linear)

decay of θ as well as the breakdown of the scaling at higher Λ, as the transition

is approached (see Fig. 3.6). Indeed, Kantsler & Steinberg [16] found that λc ∼

∆−0.24±0.02 based on their experiments. We have examined the dependence of λc

on ∆ based on the numerical results and plotted them in Fig. 3.7. In order to

estimate the exponent, without extrapolating the linear fit up to θ = 0, we conducted

simulations to clearly find when the TT angle falls to zero. The critical viscosity

ratio thus obtained are presented in Fig. 3.7 for χ = 1 and 10. We have verified

that the transition threshold for χ = 50 is the same as that of χ = 10; hence, the

χ = 50 results are not shown. For each value of ∆, simulations are performed in small

increments of λ, until the vesicle is observed to align at θ = 0 while undergoing a

steady tank-treading. The corresponding value of λ is considered as the lower bound of

λc. If λ is further increased, the vesicle shows an oscillatory dynamics with periodic

shape deformation. The onset of the oscillatory motion is taken to be the upper

bound. These two bounds are plotted in the figure for χ = 1 and 10. Remarkably, for

approximately ∆ > 0.5, the results for two different χ values coincide with each other.
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Next, we find the curve fits through the data for χ = 1 and 10. The fits obey the

λc ∼ ∆β relationship as found by Kantsler & Steinberg [16]. We find the exponent β

to be −0.3 for χ = 1, and −0.253 for χ = 10. Hence, the exponent obtained for χ = 10

is in excellent agreement with the experimentally derived exponent of −0.24 ± 0.02

by Kantsler & Steinberg [16]. This agreement is remarkable despite the absence of

thermal noise in our simulations. The exponent for χ = 1 data found here is slightly

lower than the experimental value, since the experiments were performed mostly for

χ > 1. It should be mentioned that the method used to find λc is different than those

used in previous studies, e.g., in Zhao & Shaqfeh [29] where λc was calculated through

linear stability analysis of the steady-state solution. In that analysis a steady-state

tank-treading motion with negative inclination angles can be achieved for λ values

close but less than λc, which are not observed here. Further, most theoretical studies,

e.g., Farutin et al. [23], and analysis of Zhao & Shaqfeh [29] show that λc increases

with χ. Since here we find λc by considering actual simulations in finite steps of

increasing λ, it is difficult to conclude from the figure how λc depends on χ.

3.2.4 Deformation

The deformation of the tank-treading vesicles is quantified by the Taylor deformation

parameter D. Figure 3.8(a) shows D versus χ for different values of ∆, but for a

fixed λ = 1. The results show that deformation first increases with increasing χ,

suggesting a nonlinear behavior in the range 1 . χ . 10. Upon further increase

in χ, deformation is found to saturate. This result is qualitatively similar to the

experimental findings of Kantsler & Steinberg [15], and the theoretical prediction of

Seifert [19], that D is independent of χ for large values.
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Figure 3.7: Critical viscosity ratio λc vs. ∆ obtained from the simulations. Open
symbols (lower bound) correspond to the λ values for which steady tank-treading at
θ = 0 is observed. The filled symbols (upper bound) correspond to the λ for which
the major axis starts oscillating. Solid and dashed lines are the curve fits to the data
for χ = 1 and 10, respectively. The fits obey the λc ∼ ∆β relationship, where β is
−0.3 for χ = 1, and −0.253 for χ = 10.

It may be noted that thermal effect is usually dominant at small χ as it is the case

in Seifert’s [19] model and in Kantsler & Steinberg’s [15] experiments. Seifert [19]

predicted that D increases linearly with χ for vanishingly small values of χ, and

shows nonlinear behavior at the cross-over followed by a saturation for sufficiently

large values of χ. Kantsler & Steinberg [15] also observed a non-linear behavior of D

for small values of χ. It is quite remarkable that a nonlinear behavior of D is possible

in the range χ . 10, even in the absence of thermal noise, as found in our simulations.

Quantitative comparison with Seifert’s [19] prediction, Kantsler & Steinberg’s [15],

and Kantsler et al. [27] experimental results is given in Fig. 3.8(b) by plottingD versus

√
∆. In this figure, we show all of our data points over the range of λ considered in

the simulations, and for χ = 1 and 10. For clarity, χ = 50 data are not shown as they
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coincide with those of χ = 10. In the limit of large χ, Seifert predicted

D =
√

15∆/32π . (3.8)

In addition to the nearly-spherical limit, Seifert’s analysis is also limited to ‘weak’

external flow. Despite these limitations, the theoretical line seems to match surpris-

ingly well with the simulation results in the approximate range of ∆ < 1. For ∆ > 1,

the theory overpredicts the simulation results.

The experimental data points shown in Fig. 3.8(b) are taken from two sources:

from Fig. 5 of Kantsler & Steinberg [15] for the highest values of χEb/kBT given

therein, where kB is the Boltzmann constant and T is the room temperature, and

from Fig. 1 of Kantsler et al. [27] by averaging D after it reached a steady state w.r.t.

time. Keeping in mind the uncertainty in the experimental data, a good agreement

with our simulation results is also evident.

Two interesting observations are worth mentioning. First, the saturation of D

occurs at χ ≈ 10 which holds for all values of ∆ and λ. Second, the trend of D with

increasing χ can explain the dependence of θ on χ as noted earlier in Fig. 3.3. For

χ = 1 to 10, D increases, and hence, θ decreases as more elongated objects tend to

align with the flow direction. Beyond χ ≈ 10, deformation saturates, and so does

inclination.
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Figure 3.8: (a) Taylor deformation parameter D versus capillary number χ for λ = 1,
and different values of ∆; (b) D vs.

√
∆ for all λ considered in the simulations, and

for χ = 1 and 10. For clarity, χ = 50 data are not shown as they coincide with
those of χ = 10. Also shown in (b) are the theoretical prediction by Seifert [19],
and experimental data of Kantsler & Steinberg [15] and Kantsler et al. [27]. The
experimental data points are taken from Fig. 5 of Kantsler & Steinberg for large χ
values (the data points for the highest values of χEb/kBT given in that paper), and
from Fig. 1 of Kantsler et al. (averages of D are taken after D reached a steady state
w.r.t. time given therein).
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3.3 Transition and Tumbling Modes

3.3.1 Analysis of vesicle shapes

We now turn attention to the unsteady regimes of vesicle dynamics. In general, two

types of unsteady dynamics are observed. First is the usual tumbling motion resem-

bling a rigid-body flipping. The second dynamics which is more difficult to analyze

is the one that occurs on the verge of transition between the TT and TU motion.

Depending on the details of the dynamics, this mode has been identified by various

names, e.g., the vacillating-breathing (Misbah & co-workers), trembling (Steinberg

& co-workers), and swinging (Noguchi & Gompper). Specifically, the vacillating-

breathing mode predicted in the theoretical work is characterized by smooth elliptical

contours undergoing time-dependent shape oscillation and angular oscillation about

θ = 0. In contrast, the trembling mode observed in the experiments is characterized

by highly convoluted vesicle shapes. In the present work, both modes are grouped as

the ‘transition’ mode. As will be shown below, our simulations predict that both the

vacillating-breathing-like motion, and the trembling-like motion are possible in the

transition zone.

Fig. 3.9 shows two sample results for the vacillating-breathing-like motion. As

evident, the vesicle shape remains nearly elliptical with time while it undergoes an-

gular oscillation about θ ≈ 0. A significant shape oscillation accompanies the angular

oscillation resembling a breathing-like dynamics. For ∆ = 0.44 shown in Fig. 3.9(a),

the shapes look qualitatively similar to the contours given in [21]. Higher-order even

harmonics are particularly evident in Fig. 3.9(b) where ∆ = 1.2 is considered. The
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end-to-end length Z in the vorticity direction (right axis, dash-dotted line) for the
case shown in (a).
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time-dependent inclination angle θ, deformation parameterD, and the half of the end-

to-end length Z in the vorticity direction are plotted in Fig. 3.9(c). Large oscillation

in D is observed. Further, Z versus time shows that shape oscillation in the out-of-

the-flow-plane direction could be significant as noted by Vlahovska & Gracia [49] in

their theoretical work.

The vacillating-breathing-like motion described above occurs in our simulations

for low values of χ, and in the vicinity of λc which corresponds to the border between

the tank-treading and transition zone (See Fig. 3.15 later). For higher values of χ

and λ (near the border between the transition zone and tumbling zone), vesicles show

convoluted deformed shapes resembling the trembling-like behavior. One such result

is shown in Fig. 3.10. Remarkably, the vesicle assumes a diamond shape in the x-z

plane (view along the velocity gradient direction) periodically when its long axis drops

below θ = 0 (t∗ = 19 and 39 in the figure). The smooth elliptical shape is recovered

when the vesicle is aligned above θ = 0. We have performed Fourier transform of

the contours of the vesicle in x-y and x-z planes (see later for more details), and

found that the fourth harmonics is comparable to the second for the x-z contour

when the vesicle is in the compressional quadrant of the flow. In contrast, for the

x-y contour, the higher-order harmonics are much weaker compared to the second

harmonics. Clearly, the vesicle exhibits more deformation and more harmonics along

the vorticity direction than on the shear plane. This result underscores the importance

of three-dimensional effects for the vesicles in the transition region.

Another sample result for the trembling-like dynamics is shown in Fig. 3.11 corre-

sponding to ∆ = 1.2, λ = 7.5, and χ = 50. The vesicle becomes highly deformed with

concavities and lobes when it is aligned in the compressional quadrant (t∗ = 21 in the
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figure). The convoluted shape observed here is qualitatively similar to the experimen-

tally observed shapes (Zabusky et al. [28]). The shape is highly three-dimensional

with more deformation occurring along the vorticity direction. Fig. 3.11(b) shows

the contour of the vesicle in the x-z plane to further emphasize the appearance of

concave regions on the vesicle surface. The contour also shows an asymmetry along

the z direction implying the presence of the odd harmonics.

It is worth mentioning that in our simulations the higher modes are observed

mostly when the vesicle is in the compressional quadrant. These instabilities are sup-

pressed when the vesicle aligns in the extensional quadrant, and the smooth elliptical

shape is recovered. The vesicle spends a longer time in the extensional quadrant so

that the bending forces restore the shape. In the next cycle again the higher modes

appear in the compressional quadrant. If the thermal noise were present, these modes

would have sustained in the extensional quadrant as well, as observed in the experi-

ments (Zabusky et al. [28]). Further, no mesh skewing is observed for such complex

shapes, the simulations were done with 20480 Lagrangian elements, and the volume

correction is not needed. The irregular shapes observed here are only for the vesicles

that are near the transition borderline. For the vesicles that are far away from the

transition border, such irregularities are not observed.

Fig. 3.12 shows the Fourier spectra of the vesicle contours shown in Fig. 3.11 for

three time instants when the vesicle is within and near the compressional quadrant.

We consider the radial amplitude of the contour R(φ, t), 0 ≤ φ ≤ 2π, relative to the

centroid of the vesicle [28], which is Fourier decomposed as R(φ, t) =
∑

k R̃k(t)e
ikφ.

Higher order even modes beyond the fourth harmonics are observed for both x-y and

x-z contours. Odd modes appear in the x-z contour at θ/π = −0.18, when the vesicle
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Figure 3.10: Simulation results of a vesicle in the transition region resembling a
trembling-like motion. Here ∆ = 0.44, λ = 8, χ = 50. Top row shows the view in
the shear plane (x-y plane), and the bottom row shows the view along the velocity
gradient (x-z plane). Fourth order harmonics are present in x-z contours when the
vesicle is aligned in the compressional quadrant (t∗ = 19 and 39, above). A Lagrangian
marker point on the vesicle surface suggests that the membrane makes an oscillatory
tank-treading motion.

is near the compressional axis. It should be mentioned that the odd harmonics are

generated here by numerical noise.

The convoluted shapes can also appear during the tumbling motion at higher

values of χ. One such example is shown in Fig. 3.13(a) for ∆ = 0.44, λ = 12, and

χ = 50. Concavity in the vesicle shape is observed here when it is aligned in the

compressional quadrant. Of course, the amount of deformation is much less than

that observed earlier for the trembling-like motion. The concavities disappear and

the smooth elliptical shape is recovered as the vesicle enters the extensional quadrant.

Another example is shown in Fig. 3.13(b) at lower values of χ = 1 to illustrate the

effect of shear rate on vesicle deformation in the tumbling regime. For this low value of

χ the vesicle deformation from its equilibrium is almost negligible, and no membrane

concavity is observed.
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Figure 3.11: (a) Simulation results of a vesicle near the border of transition/tumbling
zone resembling a trembling-like motion with highly deformed shape. Here ∆ =
1.2, λ = 7.5, χ = 50. Top row shows the view in the shear plane (x-y plane), and the
bottom row shows the view along the velocity gradient (x-z plane). A Lagrangian
marker point shows that the membrane makes a net tank-treading motion. (b) Vesicle
contour is shown in the x-z plane at t∗ = 21.
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Figure 3.12: Fourier spectra of vesicle contours for ∆ = 1.2, λ = 7.5, χ = 50 showing
higher modes for three different inclination angles within or near the compressional
quadrant. (a) Spectra for x-y contours, and (b) x-z contours. The modes higher than
fourth-order, and odd modes in the x-z contours are observed.

3.3.2 Transient dynamics

Within the transition region, we find that the dynamics is often transient in nature;

in other words, the vesicle starts with one mode, and then settles to another after

a long time. Typically, we find two types of transient dynamics: In the first case,

which occurs at the border between the tank-treading and the transition zones, the

vesicle starts with a swinging motion and settles to a tank-treading motion; in the

second type, it starts with a tumbling motion and gradually relaxes to a swinging

motion. The first situation is presented in Fig. 5.13(a) for λ = 8 and χ = 10. For

this case the vesicle initially shows oscillatory deformation and swinging motion, but

the amplitudes of oscillation and deformation slowly decrease over time. Eventually

the vesicle aligns with the flow direction after about three oscillations. This form of

transient dynamics toward tank-treading motion is similar to the relaxation dynamics

of a vesicle close to the border between the tank-treading and transition zone observed
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Figure 3.13: Snapshots of tumbling vesicles: (a) ∆ = 0.44, λ = 12, χ = 50 which
shows that concavity can appear in the tumbling motion at higher χ values. Here
both views in the shear plane (x-y) and along the velocity gradient direction (x-z
plane) are shown. (b) ∆ = 0.44, λ = 12, χ = 1 which shows a smooth elliptical shape
at lower χ values. Only the shear plane view is shown here.
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by Biben et al. [24]. Zhao & Shaqfeh [29] have also shown that the decay of the most

unstable mode of the stable tank-treading solution is the source of this behavior. The

second type of the transient dynamics occurs upon increasing λ, and is shown in Fig.

5.13(b) for λ = 10 and χ = 5. Here the vesicle tumbles initially, and then gradually

relaxes to the final swinging dynamics at around t∗ ≈ 80. We also studied the effect

of the shear rate on the transient dynamics by keeping the same viscosity ratio, and

found that higher shear rates will delay the relaxation to the final mode by several

more cycles. Note that higher shear rates will reduce the flow time scale, which in

turn will prolong the relaxation.

3.3.3 Phase diagram

The phase diagrams from our numerical simulations for two values of ∆ = 0.44 and

1.2 in the (χ− λ) plane are presented in Fig. 3.15(a) and (b), respectively. Based on

the dynamics described above, three regions are identified in the phase diagrams: (i)

Tank-treading, (ii) Transition, and (iii) Tumbling. The general nature of the diagrams

is similar to that predicted by the experiments and the theoretical models: For small

values of χ, the transition occurs directly as TT −→ TU with increasing λ, and for

χ & 1, the vacillating-breathing or the trembling modes appear. We find that the

vacillating-breathing mode appears near the lower bound of the transition region,

and the trembling-like dynamics occurs near the upper bound. The lower and the

upper bounds are independent of χ for large values. The qualitative nature of the

phase diagrams is similar for ∆ = 0.44 and 1.2, except that the transition boundaries

shifted downward for the latter.

Certain differences exist in comparison to the experiments and the theoretical
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Figure 3.14: Transient dynamics observed for vesicles in the transition zone. Time
evolution of θ and D are shown. (a) ∆ = 0.44, λ = 8, χ = 10. Here the dynamics
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models. First, the width of the transition zone obtained from our simulations is

higher than that predicted by the theoretical models of KFM, DBPVM, and LTV.

From our phase diagram for ∆ = 0.44, the range of λ for the transition zone appears

to be 7.5 to 10, corresponding to the lower and upper bounds, respectively. On the

contrary, the KFM model predicts 5.92 to 6.7, the DBPVM modes predicts 5.97 to

6.65, and the LTV model predicts 5.87 to 6.33 (see Table 1 in Zabusky et al. [28]),

giving a much narrower transition band even for such a relatively low value of ∆. It

should be noted, as in the figure, the bold lines are for visual guide only, as one would

need more simulations to improve the prediction of the transition borders. Moreover,

in the transition zone marked as (ii) in the figure, there are two types of the transient

dynamics: in one the vesicle relaxes from a swinging to a tank-treading motion, and

in another it relaxes from a tumbling to swinging motion. We identify these two

types of transient motion in the figure. We also include the neutral curve calculated

by Zhao & Shaqfeh [29] for ∆ = 0.44. The swinging-to-tank-treading region falls

below the stability boundary, and hence, there is an overall agreement between the

two works.

Second, the phase diagrams reported in the experiments by Deschamps et al. [6],

and Zabusky et al. [28] are plotted in (S−Λ) plane. The range of the trembling band

from their phase diagram is Λ ∼ 1.5 to 2.25. Note that these two bounds appear to

be independent of ∆ values within the margin of uncertainty in the experimental data

suggesting a self-similar behavior in the two-parameter space. When we try to scale

our data in the two-parameter space, we find that the results are not independent of ∆.

In other words, the lower and upper bounds of Λ are functions of ∆. Specifically, we

find that the lower and upper bounds are Λ ≈ 1.75 and 2.24 for ∆ = 0.44, and 2.4 and
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2.88 for ∆ = 1.2. Thus, the transition band shifts upward with increasing ∆. Hence,

we do not find the self-similar behavior in the two-parameter space, unlike found by

the LTV model and in the experimental analysis of Zabusky et al. [28]. However, the

plot by Zabusky et al. appears to suggest a transition band width of ∼ 0.75 which

is higher than our value. This discrepancy could arise due to the presence of the

thermal noise in the experiments, as well as the experimental uncertainty.

Third, Farutin et al. [23] in their recent analytical work, and Biben et al. [24]

in their recent boundary integral simulations have shown that the inclusion of the

fourth-order harmonics in vesicle shape widens the transition band upon increasing

χ. Their analytical and numerical predictions for the transition band are close to

our results. On the contrary, the transition band found in our simulations does not

show such widening effect for the range of χ up to 50 considered. Further, similar to

the KFM model, we observe that the transition band in the (χ − λ) plane becomes

narrower as ∆ increases.

3.4 Conclusion

In this chapter, the main objectives were to elucidate the parametric dependence

and the self-similarity of the vesicle dynamics, quantification of vesicle deformation,

and the analysis of shape dynamics in the trembling mode. In general we find an

agreement with the notion set forth in Zabusky et al. [28] that the applicability of

the perturbative results is limited despite some general agreement with the direct

numerical simulations, and experiments. Here we find that many of the deviations

between the perturbative results and the simulation results occur even in the absence

of thermal noise.
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Figure 3.15: Phase diagram for the vesicle dynamics in linear shear flow for: (a)
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74

The major findings of this study are as follows:

(i) We do not observe a self-similar behavior of the vesicle dynamics in the two-

parameter phase space proposed by the LTV model, and suggested by Zabusky et

al. [28] in their analysis of the experimental data. Rather, we find that the phase

boundaries depend on the excess area even when plotted in the two-parameter space.

In other words, the dynamics is governed by three controlling parameters, namely,

∆, λ and χ, as in the models of DBPVM, and KFM.

(ii) The linear scaling of the TT angle using Λ is valid only for Λ < 1. The

breakdown of the scaling at higher Λ occurs even in the absence of thermal noise.

(iii) We show that in the transition regime, both the vacillating-breathing-like

motion characterized by a smooth elliptical shape, and the trembling-like motion

characterized by highly deformed shape are possible. For the trembling-like motion,

the shape is highly three-dimensional with concavities and lobes, and the vesicle de-

forms more in the vorticity direction than in the shear plane. This result underscores

the importance of three-dimensionality in vesicle dynamics. A Fourier spectral anal-

ysis of the vesicle shape shows the presence of the odd harmonics and higher-order

modes beyond fourth order.

(iv) Our estimation of the critical viscosity ratio λc is in excellent agreement with

the experimental observation of λc ∼ ∆0.24±0.02 by Kantsler & Steinberg [16]. The

computed tank-treading angles are also in very good agreement with the experimental

measurements within the margin of uncertainty. Similar to the experimental findings,

the numerical TT angles deviate significantly from the theoretical results at large

values of ∆. Despite the absence of thermal noise in the simulations, the slow decay

of the TT angles found here agreed very well with the experimental observation.
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(v) Similar to the DBPVM, KFM and LTV models, we find an explicit dependence

of the tank-treading angle on χ for small values, but saturation at higher values.

However, contrary to the models, χ-dependence is observed to increase with increasing

λ.

(vi) In agreement with Seifert’s prediction [19], and experimental measurements by

Kantsler & Steinberg [15], we find that vesicle deformation saturates with increasing

χ. Quantitatively, we find that Seifert’s prediction of D =
√

15∆/32π for nearly-

spherical vesicles as χ → ∞ agreed very well with the numerical results in the range

∆ < 1.
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Chapter 4

Dynamics of a Red Blood Cell in Linear Shear

Flow

4.1 Introduction

In this chapter, we study the complex fluid/structure interaction problem for a red

blood cell as membrane-bound soft matter. It is observed that over a wide range

of controlling parameters, the red blood cell dynamics is much more complex than

the well-known tank-treading, tumbling and swinging motion, and characterized by

extreme variation of the cell shape. For such convoluted shapes, it is often difficult to

clearly establish whether the cell is swinging or tumbling. The effect of such complex

shape dynamics on the tank-treading-to-tumbling transition is illustrated by phase

diagrams, which appear to be richer than those of vesicles.

We choose the red blood cell as our model system due to its highly non-spherical

resting shape and large surface area-to-volume ratio. There are several differences be-

tween the real physiological blood flow and the flow conditions considered here. First,

the computational geometry considered here replicates a linear shear flow bounded

between two parallel plates which is very different from an in vivo system. Second, we

are considering isolated red blood cells in dilute suspension, while the real blood is a

highly dense suspension. Third, the parametric range considered in the present study
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is much wider than that typically encountered in physiological flows. The computa-

tional geometry and the range of parameters chosen here are consistent with those in

previous in vitro experiments, where individual red blood cell dynamics was studied

in dilute suspension in linear shear flow, and over a similar range of viscosity ratio

that was well below the physiological value [10,12,95]. The viscosity ratio considered

is ≈ 0.21− 0.45 in Abkarian et al. [12], 0.09− 0.78 in Fischer [10], and about 0.05 in

Watanabe et al. [95] (assuming the cell interior viscosity 10 cP at room temperature).

Previous computational studies also considered red blood cell motion in dilute sus-

pension and at viscosity ratio of 1, which is also below the physiological value (e.g.,

Sui et al. [41]).

The capillary number Ca is varied from 0.01 to 1, and the viscosity ratio λ is

varied from 0.01 to 5. Three values of E∗
b = 0.002, 0.01, and 0.05 are considered to

study the effect of bending stiffness. The range of experimental shear rates considered

is often two orders of magnitude. The physiological value of the viscosity ratio is close

to 5; however, it varies over two orders of magnitude in experiments.

The tank-treading frequency ν as it appears in equation (1.2), depends on the

cell shape, shear rate, and viscosity ratio. An accurate measurement of tank-treading

frequency is of paramount importance as it can be used to refine the mathematical

models for the erythrocyte membrane [8,12]. It can also serve as an indicator for many

pathological disorders, such as, sickle cell disease, malignant malaria, and diabetes

mellitus in which the erythrocytes lose their deformability due to altered internal

fluid viscosity and membrane properties. Several experimental studies in the past

have been devoted to measuring the tank-treading frequency. There exists, however,

a significant discrepancy among the experimental data regarding the dependence of
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tank-treading frequency on the shear rate and viscosity ratio. Fischer et al. [9] and

Tran-Son-Tay et al. [8] found a linear dependence of ν on γ̇. In contrast, Fischer [10]

recently found a weak power-law dependence on γ̇ with an exponent ranging between

0.85 and 0.95. With regard to the dependence on λ, Fischer et al. [9] found that ν/γ̇

was independent of the suspending medium viscosity (µo), whereas Tran-Son-Tay

et al. [8] found that ν/γ̇ increased with increasing µo. Fischer [10] found that ν/γ̇

increased with increasing µo, but with a reduced slope that was less than half of that

reported by Tran-Son-Tay et al. [8]. In addition to the dynamics and phase diagrams,

a comprehensive analysis of RBC’s tank-treading frequency will be presented in this

chapter. The effect of membrane viscosity on the tank-treading frequency will also

be discussed briefly.

4.2 Dynamics

Red blood cell dynamics is always characterized by simultaneous shape and angular

oscillations. When the shape oscillation is large, it is often difficult to clearly establish

whether the cell is swinging or tumbling. Hence, first we present the results for which

a large variation in cell shape is not observed over an oscillation period, so that a

clear tank-treading, swinging or tumbling can be identified. Fig. 4.1(a) shows a tank-

treading motion that is observed at a high capillary number. A significant departure

from the biconcave resting shape is observed: The biconcave dimples are completely

absent; rather the cell assumes a biconvex shape. A periodic shape and angular

oscillation is present, although the variation of the cell shape over one oscillation

cycle is not significant. The biconvex shape is observed throughout the oscillation

cycle.
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Figure 4.1: Dynamics of red blood cells with small variation of cell shape over one
oscillation cycle: (a) Tank-treading with biconvex shape (TT/BX) (Ca = 0.8, λ = 0.5,
E∗

b = 0.01), (b) tumbling (TU) at high viscosity ratio (Ca = 0.1, λ = 5, E∗
b = 0.01);

(c) tumbling (TU) at low shear rate (Ca = 0.03, λ = 0.1, E∗
b = 0.01); (d) swinging

(SW/TT) (Ca = 0.3, λ = 0.1, E∗
b = 0.01); (e) swinging (SW/TT) (Ca = 0.1,

λ = 0.1, E∗
b = 0.05). Increasing bending rigidity causes increased angular oscillation

as evident in (d)–(e). Membrane tank-tread is shown by tracking a marker point on
the cell surface. For all figures, the initial location of the marker point is the same.
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A tumbling motion at a high viscosity ratio is shown in Fig. 4.1(b). The marker

point on the cell surface shows no significant relative displacement from its initial

position. Departure from the initial biconcave shape is found to be small, and the

variation of cell shape over one tumbling cycle is also small. A tumbling motion is also

observed if the capillary number is reduced as shown in Fig. 4.1(c). It is noteworthy

that in the simulations of red blood cells and capsules without bending resistance,

the membrane wrinkling that is indicative of buckling has been reported earlier for

low capillary numbers [47, 80]. In the present simulation, the membrane wrinkling is

absent due to the inclusion of bending resistance during the length of the simulations.

The swinging motion is considered in Figs. 4.1(d)–(e) where the effect of the

bending rigidity is also illustrated. The major axis of the cell oscillates about a mean

angle while it is constrained within the extensional quadrant of the flow. For moderate

values of E∗
b (e.g., 0.01), the swinging motion is accompanied with a relatively small

amount of shape variation. In this case, weak biconcave dimples repeatedly emerge

and disappear. The concavity is most prominent when the major axis of the cell is

closest to the extensional axis of the flow, and completely absent when the major

axis is closest to the flow direction. When E∗
b is reduced to 0.002, the amplitude of

angular oscillation decreases further (not shown). In contrast, when E∗
b is increased

to 0.05 (Fig. 4.1(e)), the amplitude of angular oscillation increases significantly, and

the departure from the initial biconcave shape is small. The membrane tank-treading

co-exists with the swinging. We identify such dynamics as swinging/tank-treading

(SW/TT). A qualitative similarity can be noted between the experimental snapshots

of swinging cells as observed by Abkarian et al. [12], and our results in Fig. 4.1(e),

which is for higher bending rigidity.
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Simulations have been conducted over a wide range of viscosity ratio typically

considered in experiments. It appears that over this range, the dynamics of the cell

is much more complex than the well-known tank-treading, tumbling and swinging

motions. In particular, the results presented in Fig. 4.1 show only a small shape

variation over the oscillation period. However, over a wide range of parameters, the

simulations reveal complex shape dynamics of the red blood cells that are described

below.

First we illustrate the breathing dynamics observed for E∗
b = 0.01 and 0.002 in

Fig. 4.2. The sequence reveals one type of breathing motion in which the RBC nearly

aligns with the flow direction so that the average inclination angle is zero, while it

performs a periodic shape deformation. The shape deformation is characterized by

the membrane folding towards the interior of the cell and forming two concave cusp-

like dimples at the two ends. The foldings repeatedly emerge (e.g., at t∗ = 20 and 40

in Fig. 4.2(a)) and disappear (e.g., at t∗ = 10 and 25 in Fig. 4.2(a)). Note that this

dynamics cannot simply be called a swinging dynamics: As the snapshots suggest, no

significant angular oscillation is observed in these cases. Instead, a large variation in

the cell shape occurs within an oscillation cycle in the form of repeated folding and

recovery. To the best of our knowledge, this type of cell deformation (inward cusps

at two ends) and dynamics has not been reported in the past. Following the vesicle

literature, we call this dynamics as breathing at zero inclination (BR). Evolution of a

marker point attached to the membrane is shown in the figure. It cannot be concluded

if the marker point makes a continuous tank-tread for such dynamics. Most likely,

the marker point oscillates with very little net displacement. The phase angle of a

marker point relative to the major axis inclination angle is often used in the literature
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to identify swinging or tumbling dynamics. However, due to the complex shape of

the cell, the phase angle cannot be accurately evaluated for this dynamics.

A second type of breathing dynamics is illustrated in Fig. 4.3 which co-exists with

a large swinging motion. In this case, the breathing motion is characterized by the

periodic emergence and absence of crater-like biconcave dimples that are significantly

deeper than those of a resting cell, and become most severe when the cell is aligned

with the flow direction. Note that on time-average, the cell remains aligned in the

extensional quadrant, unlike the BR cases in Figs. 4.2 Such a folded shape co-existing

with the swinging motion has not been reported in the past. Here we identify such

dynamics as breathing with swinging (BR/SW). For this dynamics, evolution of the

marker point as shown in the figure suggests a continuous membrane tank-tread.

Fig. 4.4 shows the third type of breathing motion co-existing with a weak tumbling

motion (identified as BR/TU); in this case the RBC undergoes a significant amount

of shape oscillation which, as above, is characterized by the periodic emergence and

absence of large crater-like biconcave dimples. The evolution of the marker point

suggests that membrane tank-treading is absent. However, due to the formation of

the complex cell shape, a clear tumbling motion cannot be established.

Another novel breathing dynamics is observed at reduced bending rigidity (E∗

b =

0.002) and is shown in Fig. 4.5. This is characterized by the repeated emergence

and absence of four crater-like concave dimples. Such a quad-concave shape has not

been reported in the past. At E∗
b = 0.002, the quad-concave shape is observed in all

BR and BR/SW cases simulated, but not during tank-treading (TT/BX, SW/TT)

or tumbling (TU) dynamics.
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Figure 4.2: Breathing dynamics (BR) of RBC at zero inclination. (a) Ca = 0.5,
λ = 3, E∗

b = 0.01. (b) shows the plan view. (c) Ca = 0.2, λ = 2, E∗
b = 0.002. (d)

shows the plan view. RBC undergoes large shape variation over one oscillation cycle
characterized by repeated emergence of inward membrane folding at the two ends (at
t∗ = 20 and 40). Very small amount of swinging is observed, and the cell remains
nearly aligned with the flow direction.
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Figure 4.3: Breathing with swinging (BR/SW): (a) Ca = 0.06, λ = 0.1, E∗
b = 0.002;

(b) Ca = 0.08, λ = 0.2, E∗
b = 0.01. The dynamics is characterized by RBC swing-

ing coupled with complex shape deformation during which deep crater-like dimples
periodically emerge (e.g, at t∗ = 8 and 17 in (a), and at t∗ = 7 and 17 in (b)) and
disappear (e.g., at t∗ = 3 and 13 in (a), and at t∗ = 13 and 22 in (b)).
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Figure 4.4: Breathing with tumbling (BR/TU): (a) Ca = 0.08, λ = 1, E∗
b = 0.002;

(b) Ca = 0.2, λ = 2.5, E∗
b = 0.01. The dynamics is characterized by complex shape

deformation that masks a clear tumbling motion.

Figure 4.5: Breathing motion with quad-concave dimples occurring at reduced bend-
ing rigidity (a) Ca = 0.08, λ = 0.7, E∗

b = 0.002; (b) Ca = 0.1, λ = 0.5, E∗
b = 0.002.
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4.3 Phase Diagram

Fig. 4.6 shows the phase diagram for RBC dynamics in Ca−λ plane for E∗
b = 0.01. A

stationary tank-treading motion is never observed even though a wide range of Ca and

λ is considered. Instead, the cell dynamics is always characterized by simultaneous

shape and angular oscillations. After carefully analyzing each case, we identify six

distinct regimes: (i) breathing at zero inclination (BR), which occurs over a relatively

small region 2 ≤ λ ≤ 3, and 0.3 < Ca < 0.5, and at the border between SW/TT

and BR/TU; (ii) breathing with swinging (BR/SW), which occurs below λ ≈ 2, and

when Ca is in the range 0.06 to 0.3; (iii) breathing with tumbling (BR/TU), which

occurs above λ ≈ 1 and Ca ≈ 0.06; (iv) swinging with tank-treading (SW/TT), which

occurs for 0.3 < Ca < 0.6, and below λ ≈ 2; (v) tank-treading biconvex (TT/BX),

which occurs at high capillary numbers only (above Ca ≈ 0.7), and below λ ≈ 4; (vi)

tumbling (TU), which occurs either at very low shear rates, or at high viscosity ratio.

The phase diagram in Fig. 4.6 shows two pathways to transition from tank-

treading to tumbling, namely, by increasing λ, or by decreasing Ca. Several new

features of transition are found in the phase plots. Most notably, for λ < 1 approxi-

mately, the transition process is completely independent of λ; it depends on Ca only.

This is a remarkable departure from the KS theory for non-deformable cells, which

predicts that the transition is dependent on λ only for any shear rate. In this regime,

the transition occurs progressively as TT/BX −→ SW/TT −→ BR/SW −→ TU with

decreasing Ca. We identify three critical capillary numbers as Ca
TT/BX→SW/TT
c ≈

0.61, Ca
SW/TT→BR/SW
c ≈ 0.26, and Ca

BR/SW→TU
c ≈ 0.055, which are independent of

λ in the range λ < 1. For λ > 1, the transition process depends on both λ and Ca,

and, the critical Ca rapidly increases with increasing λ. Above λ ≈ 4, the TT/BX,
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Figure 4.6: Phase diagram for RBC dynamics at E∗
b = 0.01. (i) Breathing at zero

inclination (BR), •; (ii) breathing with swinging (BR/SW), △; (iii) breathing with
tumbling (BR/TU), �; (iv) swinging with tank-treading (SW/TT), 3; (v) tank-
treading biconvex (TT/BX), ▽; (vi) tumbling (TU), ©.

SW/TT and BR/SW motions are not observed even at high shear rates, and the tran-

sition occurs as BR/TU −→ TU with decreasing Ca. The breathing motion occurs

in the vicinity of the critical capillary number and viscosity ratio.

The effect of the bending rigidity on the phase diagram is considered in Fig. 4.7.

As evident here, at a reduced bending rigidity (E∗
b = 0.002), the breathing motion

at zero inclination (BR) occurs over a wider range of λ and Ca in comparison to

that at E∗
b = 0.01. Also, the BR/SW mode occurs over a wider range of Ca, and

the BR/TU mode can appear at lower values of λ. In contrast, the SW/TT mode

occurs over a much narrower range of Ca. Below λ ≈ 0.2, the transition process is

independent of λ; rather it depends on Ca only, and occurs at a capillary number

less than that obtained for E∗
b = 0.01. The critical capillary numbers for E∗

b = 0.002

are: Ca
TT/BX→SW/TT
c ≈ 0.35, Ca

SW/TT→BR/SW
c ≈ 0.21, and Ca

BR/SW→TU
c ≈ 0.035. At
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Figure 4.7: Phase diagram for RBC dynamics at E∗
b = 0.002 (A), and 0.05 (B). (i)

Breathing at zero inclination (BR), •; (ii) breathing with swinging (BR/SW), △; (iii)
breathing with tumbling (BR/TU), �; (iv) swinging with tank-treading (SW/TT),
3; (v) tank-treading biconvex (TT/BX), ▽; (vi) tumbling (TU), ©.
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higher bending rigidity (E∗

b = 0.05), the BR/SW dynamics is absent, and SW/TT

dynamics occurs over a wider range of Ca. The BR/TU dynamics occurs at higher

values of λ. For λ < 1, the transition is dependent on Ca only, and it occurs as

TT/BX −→ SW/TT −→ TU. Hence, only two critical capillary number are noted

for E∗
b = 0.05: Ca

TT/BX→SW/TT
c ≈ 0.9, and Ca

SW/TT→TU
c ≈ 0.06.

4.4 Shape and Curvature Oscillation

The breathing motion can be identified quantitatively by a sudden increase in RBC

shape oscillation during tank-treading-to-tumbling transition. This is shown in Fig.

4.8 by plotting the amplitudes of longitudinal and transverse shape oscillations ∆L =

(Lmax − Lmin)/2 and ∆Z = (Zmax − Zmin)/2, respectively, as functions of Ca for

different values of λ, where L is the end-to-end RBC length in the shear plane passing

through the cell centroid, and Z is the end-to-end length along the z-axis. Note that

due to the highly deformed and dynamically changing shape of the cells, it is often

difficult to label the major and minor axes specifically in the BR, BR/SW and BR/TU

regions. Hence, only a subset of the data is presented for which ∆L and ∆Z can be

clearly estimated. The scatter in the figure appears also for the same reason. As Fig.

4.8 shows, ∆L and ∆Z are maximum in the TT/BX regime, and they decrease with

decreasing Ca from TT/BX to SW/TT regimes reaching a minimum at the end of the

SW/TT regime. With further decrease in Ca, BR/SW regime starts, and ∆L and ∆Z

reverse their trends and increase with decreasing Ca due to large shape deformation

and repeated emergence and absence of the dimples in the breathing motion. With

further decrease in Ca, TU regime starts, and ∆L and ∆Z again reverse their trends,

and decrease with decreasing Ca due to reduced deformation in the TU mode.
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Figure 4.8: Amplitudes of longitudinal and transverse shape oscillations (a) ∆L and
(b) ∆Z as functions of Ca for various values of λ (0.2, 2; 0.5, ©; 1, 3). On the
horizontal axis, Ca decreases from left to right. The curve through the data points
is drawn for visual assistance (E∗

b = 0.01).
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Due to the periodic emergence and absence of the dimples in the breathing motion,

a further quantification of these modes is done by computing three quantities related

to the cell curvature as follows: (i) a contour curvature κ(t) =
∫

C
[κ(x, t)− κ0(x)] dl/C ,

defined as the time-dependent but spatially-averaged mean curvature κ less the resting

curvature κ0 of the RBC contour C in the shear plane passing through the centroid,

(ii) the curvature amplitude ∆κ = κmax − κmin, and, (iii) a time-averaged curvature

κ =
∫

T
κ(t)dt/T , where T is the period of swinging or tumbling. Fig. 4.9(a) shows

κ(t) obtained for different RBC dynamics. In the TT/BX regime, the mean curvature

κ(x, t) remains mostly positive due to the absence of the dimples; hence, κ(t) > 0.

In the TT/SW regime, κ(t) becomes periodically positive and negative with small

amplitude due to the repeated emergence and absence of weakly biconcave dimples.

In the breathing with swinging motion (BR/SW), κ(t) shows very large oscillations,

and importantly, remains negative due to the emergence of the crater-like concave

dimples. In the TU mode, κ(t) shows much less oscillation. Figs. 4.9(b) and (c) show

the time-averaged curvature κ and amplitude ∆κ, respectively. Clearly, the transi-

tion from TT/BX to SW/TT mode is characterized by κ changing from positive to

negative values, and higher slope of ∆κ. In the breathing mode, both κ and ∆κ

reach their maximums. With further decrease in Ca, the trends reverse, and κ and

∆κ rapidly approach zero as the transition to TU motion occurs.

It is also noteworthy that we do not observe any intermittent motion of the cells

(swinging interrupted by tumbling, and vice versa) over the entire parametric range,

unlike that reported in experiments [12] and predicted by the reduced-order models

[11].
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Figure 4.9: (a) Contour-averaged curvature κ(t) for various RBC dynamics at λ = 0.1;
(b) time-averaged curvature κ; and (c) curvature amplitude ∆κ as functions of Ca
for different values of λ (0.1, •; 0.2, 2; 0.5, ©; 1, 3). Here E∗

b = 0.01.
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4.5 Analysis of Tank-treading Frequency

The effect of the viscosity ratio λ on the tank-treading frequency ν∗ of the red blood

cell is shown in Fig. 4.10. Here, ν∗ is defined as ν∗ = 4π/γ̇Ttt, where Ttt is the tank-

treading period of a membrane point extracted from our simulations. Note that ν∗

is the frequency (γ̇Ttt)
−1 normalized by the frequency of rotation for a rigid sphere

(4π)−1. The frequency is strongly dependent on λ and it decreases with increasing

viscosity ratio. The numerical results are in qualitative agreement with the experi-

mental results of Abkarian et al. [12], Fischer [10] and Tran-Son-Tay et al. [8], who

found a decreasing trend of ν∗ with increasing λ, but not with the experimental re-

sults of Fischer et al. [9] who found no significant λ-dependence. A wide range of Ca

values are considered in Fig. 4.10, and the numerical data nearly collapse for all Ca.

Thus the frequency is strongly dependent on λ, but weakly dependent on Ca.

In Fig. 4.10, the numerical data are compared with the experimental results of

Abkarian et al. [12], Fischer [10] and Tran-Son-Tay et al. [8]. The numerical results

are in the same range as that of Abkarian et al. [12] experimental data, but are signif-

icantly higher than those reported by Fischer [10] and Tran-Son-Tay et al. [8]. Com-

parison of the numerical results with different theoretical models for shape-preserving

capsules is also presented in Fig. 4.10. First, we consider the Keller & Skalak (KS)

model [7] for which the tank-treading frequency (ν∗
ks) is obtained by solving the sys-

tem of equations (1.1-1.2) for an oblate spheroid having the same volume (94.1µm3)

and surface area (134.1µm2) of the red blood cell. As evident from Fig. 4.10, the KS

model shows the similar trend as of the numerical results over the entire range of λ.

Second, we consider the Skotheim & Secomb [11] model, hereafter referred to as the

SS model. The SS model was developed within the framework of the KS model [7]
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Figure 4.10: Tank-treading frequencies of red blood cells as a function of viscosity
ratio. Numerical data are shown for different values of Ca, and compared with the
experimental results [8,10,12], and theoretical models [7,11,12]. The lines representing
the experimental results of [10] and [8] are linear regressions given in [10] (Fig. 5
in [10]). Some selected data from [12] are shown.

with an additional term γ̇Ue[f3/(f2 − λf1)] sin 2φ on the right hand side of equation

(1.2) to model the time-dependency of the membrane elastic energy. Here, Ue is pro-

portional to Ca−1, and φ is the phase angle of a membrane point. The tank-treading

frequency (ν∗
ss) obtained from the SS model as a function of λ for three different

values of Ue is plotted in Fig. 4.10. We note that the tank-treading frequency is an

inverse linear function of λ in both KS and SS models. We observe that the numerical

results agree very well with the theories in the entire range of viscosity ratios. This

agreement is worth noting because unlike the simulations, the theoretical models do

not consider cell deformation. This agreement is due to the reduced area dilatation

considered in the red blood cell simulations.

Next we consider Abkarian et al. [12] model, hereafter referred to as the AB

model. This model retained all elements of the SS model, and included the effect of
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the membrane viscosity by modifying equation (1.2) based on the consideration of

the energy dissipation in the membrane. The results from the AB model are shown

by considering two values of the membrane viscosity, ηm = 0.2 and 1.0 (Pa-s). As

evident from Fig. 4.10, the AB model shows the similar trend as that of the numerical

results, and quantitatively agrees well with the numerical data as well as Abkarian et

al. [12] experimental data for a low value of the membrane viscosity ηm = 0.2 (Pa-s).

However, for the higher membrane viscosity ηm = 1 (Pa-s), the AB model prediction

drops significantly, and lies in the range of Fischer [10] and Tran-Son-Tay et al. [8]

experimental results.

The above analysis suggests that differences in experimental conditions might have

caused a difference in the erythrocyte membrane viscosity in the three experimental

works [8, 10, 12].

It may be noted, as observed in Abkarian et al. [12], that in order to obtain a tank-

treading solution from the AB model, the value of the membrane shear elasticity Es

needs to be one to three orders of magnitude lower than the typical measured values

(e.g., 6× 10−6 (N/m) as used here). Thus the comparison with the AB model should

be taken with caution. Further, Abkarian et al. [12] considered a range γ̇ < 10

s−1, while Fischer [10] considered a wider range of γ̇ < 300 s−1. Additionally, the

experimental results were presented as functions of the suspending medium viscosity

µo. To plot these data as functions of λ as in Fig. 4.10, we assume a constant internal

medium viscosity λµo = 10 (mPa-s).

The effect of the capillary number on the red blood cell tank-treading frequency is

shown in Fig. 4.11. Experiments by Fischer [10] and Tran-Soy-Tay et al. [8] suggested

that the dimensional frequency ν is a linear (or, nearly linear) function of the shear
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Figure 4.11: Tank-treading frequencies of red blood cells as a function of capillary
number. Numerical data are shown for different values of λ from 0.07 to 2.2 using
symbols and solid lines, and compared with the experimental results of [10] (–·–·– for
λ = 0.2), and [8] (– – – for λ = 0.17). (a) Shows the product ν∗Ca, whereas (b)
shows ν∗.
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rate. Hence, in Fig. 4.11(a), we plot the product ν∗Ca as a function of Ca. A linear

dependence is evident here, in agreement with the experimental findings. The range

of ν∗Ca obtained in the simulations also matches well with the experimental data as

shown.

Some interesting behavior is found when the same data is replotted in Fig. 4.11(b)

as ν∗ versus Ca. For any value of λ, ν∗ is almost independent of Ca in the range

Ca > 0.3. This is due to nearly-inextensible surface of the cell considered in the

simulations. Note that in this range, the red blood cell assumes a nearly-convex disk

shape as discussed in the context of Fig. 4.1. When Ca < 0.3 is considered in Fig.

4.11(b), the tank-treading motion is possible only for low values of λ. In this range, ν∗

sharply decreases with decreasing Ca. This anomalous behavior of ν∗ has not been

reported earlier. We have verified that this trend is not a result of any numerical

artifact. This trend is due to the emergence of the breathing dynamics of red blood

cells at low values of λ and Ca as described in Fig. 4.3. A significant compression

of the cell occurs during such breathing motion preventing it from tumbling, and

increasing the time period of swinging.

4.5.1 Effect of membrane viscosity

We present the results regarding the effect of membrane viscosity on the RBC tank-

treading frequency in Fig. 4.12. The numerical method used here is based on the

Kelvin–Voigt viscoelastic membrane model described in Section 2.3. Several inter-

esting observations can be made here. First, the numerical results show that for a

purely elastic membrane the tank-treading frequency varies approximately linearly

with Ca. However, we observe that as the membrane viscosity η∗ increases from 1 to
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10, the power-law dependence of Caν∗ on Ca becomes much more pronounced. This

power-law trend is in agreement with the experimental results by Fischer [10] shown

in Fig. 4.12. Second, we note a significant decrease in tank-treading frequency as η∗

increases due to the presence of membrane dissipation. Further, the results show that

as λ increases, closer agreement with experimental data for different donors can be

achieved at higher η∗. More specifically, for λ = 0.1 in Fig. 4.12(a), η∗ ≈ 2 predicts

the experimental data well, whereas for λ = 0.75 in Fig. 4.12(b), η∗ = 5 ∼ 10 gives a

better prediction.

As mentioned before, there is a wide range of experimentally measured values

of the membrane viscosity. The present numerical results may be used to estimate

the value of the membrane viscosity µs. Using the definition of η∗ = µs/µoao with

ao ∼ 3µm, and µo = 109.3 and 12.9 (mPa-s) [10] for λ ∼ 0.1 and 0.78, respectively,

the value of µs will be in the range 2−6×10−7 (N.s/m). This value is several factors

higher than that estimated by Tran-Soy-Tay et al. [8] for the membrane viscosity, and

agrees well with the values reported by Chien et al. [89] and Hochmuth et al. [90].

4.6 Conclusion

In this chapter, we presented three-dimensional numerical simulations of the red blood

cell dynamics in shear flow. Numerically stable solutions are obtained over a wide

range of parameters for which the cell attains an extremely deformed shape in the

form of membrane convolution. It is shown that over a wide range of parameters, the

shape dynamics is more complex than the well-known swinging or tumbling dynamics.

We term such dynamics as the breathing dynamics due to the extreme variation of

the cell shape over one oscillation cycle.
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Figure 4.12: Effect of membrane viscosity on the tank-treading frequencies of red
blood cells for two values of viscosity ratios: (a) λ = 0.1, and (b) λ = 0.75. Numerical
data are shown for different values of η∗ from 0 to 10 using symbols and solid lines,
and compared with the experimental results of [10] for Donor No. 1 (– – –); Donor
No. 2 (· · · ·); and Donor No. 3 (− · ·−).

We identify three types of the breathing motion which were not reported previ-

ously. In the first type, the RBC completely aligns with the flow direction with almost

no swinging motion, but undergoing large shape variation that is characterized by in-

ward membrane folding and cusp-like biconcave dimples periodically emerging and

disappearing at the two ends of the cell. The second type is found to co-exist with a

large swinging motion in which deep crater-like biconcave dimples periodically emerge

and disappear, and may resemble a wave-like motion traveling along the cell surface.

The third type is found to co-exist with a possible tumbling motion and is also char-

acterized by emergence and absence of deep crater-like dimples. In this case, the

shape oscillation is so dominant that a clear tumbling motion is not observed. At

reduced bending rigidity, a quad-concave shape is found. The breathing dynamics
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occurs near the threshold of transition between tank-treading and tumbling, and de-

lays the transition to higher viscosity ratio and lower shear rates. Quantitatively, it

is identified by four quantities: the amplitudes of longitudinal and transverse shape

oscillation, the time-averaged curvature, and the amplitude of curvature oscillation;

all of which show a significant increase during the breathing motion.

We observe both shear rate-induced and viscosity-induced transitions and illus-

trate them using phase diagrams, which appear to be more complex than those of

vesicles. We find that there exists a critical λ, the value of which depends on the

bending rigidity, and below which the tank-treading-to-tumbling transition is inde-

pendent of λ; rather the transition depends on Ca only, and occurs as TT/BX −→

SW/TT −→ BR/SW −→ TU with decreasing Ca. This is a remarkable departure

from the classical theory of Keller & Skalak [7], which predicts transition depends on

λ only irrespective of shear rate. Above the critical λ, the transition process depends

on both λ and Ca. In this range, no swinging motion is found even at high shear

rates, and the transition occurs as BR/TU −→ TU with decreasing Ca. At reduced

bending rigidity, the breathing motion occurs over a wider range of λ and Ca, and

the transition occurs at lower values of Ca. No intermittent motion is observed for

the entire range of parameters.

The complex shape dynamics of the red blood cells observed here has not been

reported in previous experiments due to, perhaps, lack of sufficient resolution. The

phase diagram and the cell dynamics found here are for isolated cells in dilute sus-

pension in linear shear flow in vitro, and not in vivo. It appears from our results that

for the physiological value of the viscosity ratio, a large-amplitude swinging motion
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and breathing motion do not occur; rather, the cells perform either a tumbling mo-

tion or a tumbling combined with breathing. For the latter, the shape deformation

is significant as observed here.

An analysis of the red blood cell tank-treading frequency was also given in the

present chapter. This study is motivated in part by the discrepancy that exists in

the literature with regard to the dependence of the tank-treading frequency on shear

rate and suspending medium viscosity. For the red blood cells with purely elastic

membrane, ν∗ exhibits an inverse linear dependence on the viscosity ratio, which

agrees well with different theoretical models for shape-preserving cells.

Moreover, the tank-treading frequency ν∗ exhibits a non-monotonic trend with

respect to the capillary number Ca, and hence, the shear rate. With decreasing Ca,

ν∗ first increases reaching a maximum, and then decreases sharply before the tank-

treading motion ceases. This anomalous behavior of ν∗ with respect to Ca has not

been reported earlier, and as shown here, is a result of a breathing-like dynamics

of the cell, which is characterized by the appearance of a folded shape and deep,

crater-like dimples.

Once the membrane viscosity is introduced to the model, we observe a significant

decrease in the tank-treading frequency due to the presence of membrane dissipation.

Further, the tank-treading frequency tends to have a power-law behavior with respect

to Ca under the influence of membrane viscosity similar to what observed by the

experiments of Fischer [10].
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Chapter 5

Influence of Membrane Viscosity on Capsule

Dynamics in Shear Flow

5.1 Introduction

As mentioned in Section 1.5, several theoretical and numerical studies of capsules with

purely elastic membrane suggested the presence of membrane buckling [59,75,80,82].

They observed that the capsule buckled at low shear rates with wrinkles forming near

the equator similar to the experimental observation of Walter et al. [73].

These studies assumed that the capsule membrane is elastic, and hence, did not

consider the viscosity of the membrane. Clearly, a comprehensive analysis on the

influence of the membrane viscosity on the capsule dynamics in a shear flow is lacking,

and is the objective of the present study. Of particular interest is the effect of the

membrane viscosity on the buckling of initially spherical capsules. Further, it is well

established by now that an initially nonspherical capsule may exhibit an unsteady

dynamics that is characterized by a swinging motion or a tumbling motion (see e.g.,

[11,12,14,42,75]). It is also of interest to understand how the dynamics changes from

swinging to tumbling under the influence of the membrane viscosity. Towards that

end, we presented a numerical method for capsules with a viscoelastic membrane

that follows the Kelvin–Voigt model in Section 2.3. In addition to the membrane

shear viscosity and elastic modulus, the model also includes the membrane bending
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resistance, surface area dilatation, and internal to external fluid viscosity contrast.

Using the numerical tool, we embark to address a sequence of problems related to

the capsule deformation, dynamics, and buckling. First, we present an analysis of the

membrane buckling for the initially spherical capsules with the viscoelastic membrane.

Then we consider the membrane viscosity effect on the deformation, dynamics and

tank-treading frequency. This is followed by an analysis of the membrane viscosity

effect on the unsteady dynamics of an initially oblate capsule.

5.2 Spherical Capsules

5.2.1 Membrane stability and buckling

Capsules without bending stiffness and λ = 1

The membrane viscosity introduces several interesting features in the dynamics and

deformation of the capsule, one of them is the onset of buckling. We first present our

results for capsules with no bending rigidity, that is, E∗
b = 0. As mentioned before,

for purely elastic capsules without the bending rigidity and represented by Skalak et

al. constitutive law with C = 1, large compressive stress appears for Ca . 0.13 near

the capsule equator suggesting the possibility of buckling [59,80]. For Ca & 0.8, large

compressive stress also occurs, but near the tips, leading to unbounded deformation.

In the range 0.13 . Ca . 0.8, Lac et al. observed that the stress remained tensile

everywhere, suggesting no buckling of the purely elastic capsule in this range. It is

of interest to see how the membrane viscosity affects the stability in this range. Note

that Es = 3Gs for C = 1; hence, Ca defined in Lac et al. [59], which is based on

Gs, is 3 times bigger than the one defined in the present work. Figure 5.1(a)-(d)
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Figure 5.1: Effect of membrane viscosity on the buckling of an initially spherical
capsule without bending stiffness. (a) to (d) Ca = 0.3, and η∗ varies as 0, 5, 10, and
20, respectively. (e) Ca = 0.05, and η∗ = 0 and 20. (f) Ca = 1.0, and η∗ = 0 and 20.
Here λ = 1 for all.
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presents sample results for Ca = 0.3 and λ = 1. Here η∗ is varied as 0, 5, 10, and

20 in (a) to (d), respectively. For the purely elastic case, (Fig. 5.1(a), η∗ = 0), there

is no sign of wrinkles on the interface, and the shape remains stable. For η∗ = 5

(Fig. 5.1(b)), wrinkles are not visible either, and the capsule shape remains stable,

though it will be shown later that compressive stress appears at this value of η∗.

When η∗ is increased to 10 in Fig. 5.1(c), wrinkles are observed near the capsule

equator. We find that these wrinkles exhibit a symmetrical pattern, which is due to

the symmetry of the external shear flow. Animations from the simulations show that

wrinkles first form near the equatorial rim, and then propagates toward the shear

plane in a wave-like motion. Figure 5.1(d) shows that when η∗ increases further to

20, wrinkles are more prominent as the number and the depth of the folds increase.

We observe that the folds appear near the equator of the capsule surface are similar to

the buckling patterns observed in the experiments of Walter et al. [73]. However, the

folds in our simulations commonly have longer amplitudes and wavelengths than the

short-wavelength wrinkles observed in the experimental work by Walter et al. [73] and

analytical theory by Finken & Seifert [82]. These results show that in the absence of

bending rigidity, the membrane viscosity causes buckling in the range of Ca in which

capsules with a purely elastic membrane would not show any buckling.

Consider now the range Ca . 0.13 and Ca & 0.8. Figures 5.1(e) and (f) show

the buckling pattern for Ca = 0.05 and 1.0, respectively. Here λ is held constant at

1. For each case, we consider two values of η∗ = 0 and 20. As evident, at Ca =

0.05, buckling is observed for the pure elastic membrane as well as the viscoelastic

membrane with the similar patterns of wrinkles occurring in both cases. At Ca = 1.0,

the purely elastic case does not show any buckling and the shape remains stable in our
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simulations, though pointed tips are formed at the two ends of the capsule. When

membrane viscosity is introduced, deep wrinkles develop soon after the simulation

starts which eventually lead to a catastrophic shape distortion. These results suggest

that at low values of Ca, the buckling occurs primarily due to the elastic instability,

and the membrane viscosity has relatively less impact. On the contrary, at higher

values of Ca, buckling can occur due to the membrane viscosity.

Membrane buckling has its origin in the evolution of compressive stresses as il-

lustrated by Lac et al. [59] and Li & Sarkar [80]. It is of interest to understand

how membrane viscosity affects the distribution and magnitude of the compressive

stresses. We plot in Fig. 5.2 the contours of the principal viscoelastic stress τ2 eval-

uated from the stress tensor in equation (2.42), keeping in mind that the principal

stresses τ1 and τ2 are scaled by Es. We have verified that the principal stress τ1 is

always positive and tensile, whereas τ2 can become negative and hence compressive.

First, we will consider E∗
b = 0 and λ = 1. Figs. 5.2(a)-(b) show the stress contours at

Ca = 0.05, for η∗ = 0 and 20, respectively. For both η∗ = 0 and 20, τ2 is observed to

be negative over the equatorial region where wrinkles appear. Further, the negative

maximums of τ2 for the two cases are found to be close to each other. Hence, the

membrane viscosity has relatively less impact at lower range of Ca where buckling is

primarily due to the elastic instability. Figs. 5.2(c) and (d) show the stress contours

at Ca = 0.6 for η∗ = 0 and 5, respectively. For the pure elastic case, τ2 is positive

almost everywhere on the capsule surface except at the tips where it is negative. No

buckling, however, occurs despite this compressive stress. When η∗ is increased to

5, the region with negative τ2 is no longer observed at the tips; rather it has moved

toward the equatorial rim. Also, the negative maximum of τ2 has increased as η∗ is
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increased from 0 to 5. However, no buckling is observed in this case as well. Figs.

5.2(e) and (f) show the time evolution of τ2 contours for Ca = 0.6 and η∗ = 10. First,

a continuous band of high compressive stress is observed to span from the equatorial

rim towards the tips. The negative maximum of τ2 has further increased by nearly a

factor of three compared to that of the elastic membrane. Over time, the maximum

compressive stress moves from the equatorial rim to about 20 degrees away from the

tips, where the wrinkles are first formed and then spread toward the equatorial region.

Interestingly, for the viscoelastic membrane the stress at the tips remain positive un-

like the elastic membrane. Similar τ2 distribution is observed at higher values of Ca,

e.g., Ca = 1.0. This analysis suggests that at high values of Ca, introduction of a

small amount of membrane viscosity first redistributes the compressive stress from

the tips to the equatorial rim. Upon further increase in the membrane viscosity, the

compressive stress spreads back from the rim towards the tips. At the tips, however,

τ2 remains positive, and the maximum negative stress develops at some angle away

from the tips.

The above results on the onset of wrinkles at E∗
b = 0 and λ = 1 are provided in a

parametric phase space in terms of Ca and η∗ in Fig. 5.3. As evident, for η∗ . 1, the

onset of buckling is determined by the capillary number, and it happens between 0.1

and 0.2, as in case of a capsule with pure elastic membrane. For η∗ & 10, buckling

is observed for the entire range of Ca considered here. Interestingly, the value of

η∗ ∼ 10 is roughly in the same range of experimentally measured values for artificial

capsules and red blood cells. It should be mentioned that the phase plot is obtained

based on visible appearance of wrinkles on the capsule surface.



108

Figure 5.2: Effect of membrane viscosity on the contours of τ2 for an initially spherical
capsule with E∗

b = 0 and λ = 1. In (a) and (b), Ca = 0.05 while η∗ is varied as 0
and 20. In (c) and (d), Ca = 0.6, while η∗ is 0 and 5, respectively. In (e) and (f),
the time evolution of τ2 is shown for Ca = 0.6 and η∗ = 10 by considering two time
instants t∗ = 8 and 15, respectively.
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Figure 5.3: Phase space plot showing the onset of wrinkles for capsules with E∗
b = 0

and λ = 1. The filled symbols represent cases where no wrinkles formed, and the
open symbols represent those where wrinkles formed.
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Figure 5.4: Ca vs. η∗ phase plot for membrane buckling of the spherical capsules with
no membrane bending rigidity (E∗

b = 0). The lines separate regions with or without
buckling for λ = 0.2 (−− −); λ = 1 (——); λ = 3 (− · −); and λ = 5 (− · ·−). Top
left side of each curve is the region without wrinkles, and the bottom right side is the
region with wrinkles.

Effect of λ

We now consider the effect of the internal to external fluid viscosity ratio λ. Fig. 5.4

presents the phase diagram in terms of Ca and η∗ showing the regions of buckling for

four different values of λ = 0.2, 1, 3, and 5. Here we do not provide the symbols to

avoid cluttering of the data. Top left side of each curve is the region without wrinkles,

and the bottom right side is the region with visible wrinkles. The overall nature of the

curves remains the same for all λ. However, with increasing λ, the region of buckling

is observed to decrease. For instance, for Ca = 1.0, the wrinkles appear between

η∗ = 1 and 5 for λ = 0.2, but between 20 and 50 for λ = 5.0.

The stabilizing effect of the viscosity contrast is further illustrated in Fig. 5.5 where

we show sample results on capsule shape and τ2 distribution by varying λ as 0.2, 1.0,

and 5.0 while keeping Ca and η∗ fixed at 0.6 and 10, respectively. For λ = 0.2, high
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Figure 5.5: Effect of viscosity contrast λ on buckling in the presence of membrane
viscosity. Top row shows capsule shapes, and bottom row shows contours of τ2. Here
Ca = 0.6 and η∗ = 10 are kept fixed while λ is varied as 0.2, 1.0, and 5.0 in (a), (b)
and (c), respectively.

compressive stress is observed at some angle away from the tips spreading towards

the rim, which leads to capsule buckling, similar to the case at λ = 1. The negative

maximum of τ2 for λ = 0.2 is slightly higher than that for λ = 1. When λ is

increased to 5, the wrinkles on the capsule surface are no longer visible, although the

compressive stress of reduced magnitude exists over a large region.

Effect of bending stiffness

Until now we have considered capsules without the bending stiffness of the membrane.

Since one of our objectives is to quantify the effect of membrane viscosity on capsule

deformation, it is necessary to obtain stable shapes. We consider the membrane

bending stiffness to prevent buckling, and thus, obtain stable shapes. Fig. 5.6 shows

sample runs to illustrate the effect of bending rigidity on suppressing the buckling
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Figure 5.6: Effect of bending stiffness on suppressing buckling. Here Ca = 0.6, λ =
1, η∗ = 10, while E∗

b is varied as (a) 0; (b) 0.0005; (c) 0.001; and (d) 0.002.

instability. Here Ca, λ and η∗ are kept constant at 0.6, 1, and 10, respectively, while

four different runs are considered by varying E∗
b as 0, 0.0005, 0.001, and 0.002. We

find that the number of the wrinkles and their amplitudes decrease as E∗
b increases.

Eventually, at E∗

b = 0.002 no wrinkle is visible. Also interesting to note that while the

introduction of the bending stiffness has prevented buckling, the overall deformation

and inclination are not significantly changed. For the runs provided in Fig. 5.6, which

are at relatively high capillary number, the deformation parameter D, and the major

axis inclination angle θ decrease by about 1% and 3.8%, respectively, upon increasing

E∗
b from 0 to 0.002.

It appears that the value of E∗
b at which the wrinkles disappear strongly depends

on η∗, λ and Ca. In order to have a better understanding of the order of magnitudes

of E∗
b needed to maintain a stable capsule shape, we provide a phase space in terms

of E∗
b and η∗ in Fig. 5.7 for different values of Ca while λ is kept constant at 1.

Figure 5.7(a) shows the regions of buckling for Ca = 0.3 only, whereas Fig. 5.7(b) is

presented for different values of Ca from 0.05 to 1.0. The simulated data points are

shown in Fig. 5.7(a), but not in Fig. 5.7(b) to avoid cluttering. Here we observe two

different behaviors of the curves separating buckling and stable regimes depending on

the capillary number. At low values of Ca (e.g., below 0.1), buckling occurs in the
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absence of bending resistance for all values of η∗ as noted in the previous sections.

Hence, in this range, bending stiffness is needed for all values of η∗ to prevent buckling,

and the curves tend to be horizontal for low values of Ca and η∗. In contrast, at higher

values of Ca (e.g., above 0.3), buckling usually occurs for η∗ & 10. Thus, the lines

are vertical in this range of higher values of Ca and low values of η∗. We find that

in order to prevent buckling at higher values of Ca, E∗
b should be significantly higher

than the one considered at lower values of Ca. Similar phase spaces in terms of E∗
b

and η∗ are also obtained for other values of λ which are not shown. We find that the

size of the region showing buckling in the phase space decreases with increasing λ.

We note in Fig. 5.7 that the values of E∗
b needed to prevent buckling are in the

range 10−4 – 10−2. This range is considerably higher than E∗

b ≈ O(10−5) predicted

by Walter et al. [75] for artificial capsules. For red blood cells, the range of bending

rigidity is 1–9×10−19 J [2, 13, 87], which suggests that E∗
b could be as high as ∼ 0.01

if we take Es ≈ 2–6 µN/m [86], and ao ∼ 3 µm. While the high value of E∗
b needed in

our simulations could be purely due to numerical reasons, it also suggests that further

experiments are necessary for accurate measurements of the membrane viscosity and

the bending stiffness for artificial capsules. In our subsequent simulations we take a

relatively high value of E∗
b = 0.01 which is observed to stabilize the capsule shape

over a broad range of Ca and η∗ considered here.

5.2.2 Deformation, inclination and tank-treading frequency

The effect of membrane viscosity on the time-dependent deformation parameter D(t)

and inclination angle θ(t) is shown in Fig. 5.8(a) and (b), respectively. Here we

consider Ca = 0.6 and λ = 1, and vary η∗ from 0 to 100. We observe that increasing
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Figure 5.7: E∗
b vs. η

∗ phase space plot for membrane buckling of the spherical capsules.
Here λ = 1. (a) Ca = 0.3; filled symbols represent no buckling, and open symbols
represent buckling. (b) The lines are separating regions with or without buckling for
Ca = 0.05 (−−−); Ca = 0.1 (——); Ca = 0.6 (− · −); and Ca = 1.0 (− · ·−).

the membrane viscosity leads to a damped oscillatory behavior of D and θ. Such

oscillatory motion is also combined with the tank-treading motion. For lower values

of η∗, the oscillation decays rapidly, but it sustains for a longer time as η∗ increases.

Also noteworthy is the large amplitude of oscillation of θ, particularly for η∗ = 100 in

the figure. The oscillation at higher η∗ sustains for a long time because the capsule

response time µs/Es becomes increasingly longer than the flow time scale γ̇−1 with

increasing η∗. We further observe that the oscillation also increases with increasing

Ca and λ if η∗ is kept constant at non-zero values (data not shown). Interestingly, the

asymptotic analysis of Barthès-Biesel & Sgaier [52] with viscoelastic membrane found

an initial transient response in the range β = O(1), and a non-decaying time-periodic

oscillation in the viscous limit β → ∞.

The time-averaged deformation parameterD as a function of η∗ is presented in Fig.

5.9. Two important observations are made here. First, D decreases with increasing

η∗. Hence, the membrane viscosity η∗ restricts the capsule deformation in a similar
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Figure 5.8: Transient response of (a) deformation parameter D, and (b) inclination
angle θ at Ca = 0.6, λ = 1 for increasing values of η∗ as η∗ = 0 (· · · ·); 10 (−−−); 20
(− · −); 50 (——); and 100 (− · ·−).

way that the internal to external fluid viscosity ratio λ does. Second, in the limit of

very high η∗, the deformation parameter at different values of Ca tends to merge and

eventually approaches zero. This numerical trend is in agreement with the analytical

finding of Barthès-Biesel & Sgaier [52] that D ∼ 1/η∗ as β → ∞. We have also

obtained similar trend of D versus η∗ for different values of λ (data not shown), and

observed that D for different values of λ tends to merge and eventually approaches

zero as η∗ becomes large. Thus, in the limit of high membrane viscosity, deformation

is nearly independent of Ca and λ, and eventually becomes severely restricted.

The average inclination angle θ is presented in Fig. 5.10 as a function of η∗ for

different values of Ca. We note that the behavior of θ with respect to η∗ is rather

complex as θ varies nonmonotonically: it first decreases with increasing η∗ reaching

a minimum, but increases again upon further increase in η∗. The minimum of θ is

reached near η∗ ≈ 20 for Ca = 0.6 and 1.0 when the oscillation in time-dependent
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Figure 5.9: Time-averaged deformation parameter D as a function of η∗ for different
values of Ca. Here λ = 1.

θ becomes strong. This nonmonotonic trend will be explained later. The second

interesting feature of θ observable in Fig. 5.10 is its variation with respect to Ca

when different values of η∗ are considered. At small values of η∗ (. 10), θ decreases

with increasing Ca, but the trend is reversed at high values of η∗ (e.g., at 100). Thus,

unlike D which is nearly independent of Ca as η∗ → ∞, θ appears to be strongly

dependent on Ca even in this limit.

The effect of membrane viscosity on tank-treading frequency is shown in Fig.

5.11 where we plot the dimensionless frequency ν∗ = 4π/γ̇Ttt where Ttt is the tank-

treading period. A nonmonotonic behavior of ν∗ is observed with an initial decrease to

a minimum followed by an increase approaching the rigid sphere limit with increasing

η∗. The initial decrease in ν∗, which is more pronounced at large Ca, is due to an

increase in dissipation. For larger values of η∗, the subsequent increase in ν∗ is due

to a decrease in the dissipation as the internal velocity gradient gradually diminishes



116

η∗

θ/
π

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2
Ca = 0.05
Ca = 0.1
Ca = 0.3
Ca = 0.6
Ca = 1.0

_

Figure 5.10: Average inclination angle θ as a function of η∗ for different values of Ca.
Here λ = 1.

as the rigid particle limit is approached.

Based on the result obtained for ν∗, we can now explain the nonmonotonic trend of

θ w.r.t. η∗ observed earlier in Fig. 5.10. Following Keller & Skalak [7], the equilibrium

of moments on the capsule requires that

Ms +Mf +Mt = 0, (5.1)

where Ms is the moment due to the external shear acting on a rigid ellipsoid inclined

at an angle θ, Mf is the moment due to the unsteady oscillatory motion of the capsule,

and Mt is the moment due to the stationary tank-treading motion. For a globally
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Figure 5.11: Normalized tank-treading frequency ν∗ = 4π/γ̇Ttt of spherical capsules
as a function of η∗ for different values of Ca. Here λ = 1.

nondeformable capsule of ellipsoidal shape,

Ms ∼ µoγ̇
[

L2 sin2 θ +B2 cos2 θ
]

(5.2)

Mf ∼ µo

(

L2 +B2
)

dθ/dt, and (5.3)

Mt ∼ ν [µsF1 + µoF2] , (5.4)

where F1 and F2 depend on capsule geometry, and ν is the dimensional tank-treading

frequency. For small values of η∗, the oscillations in θ are small, and hence, Mf is

negligible. In this range, Ms is balanced by Mt. Further, Fig. 5.11 shows a sharp

decrease of ν∗ upon increasing η∗ at high Ca, which in turn, will cause Mt to decrease.

Hence, θ must decrease so as to balance the decreasing Mt as η
∗ increases. For large

values of η∗, however, the angular oscillation is large, and hence, Mf is not negligible.

In addition, ν∗ also increases in this range, which in turn, causes an increase in Mt.
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In order to balance the increasing Mf +Mt, θ must increase so as to increase Ms.

5.3 Nonspherical Capsules: Dynamics and Phase Diagrams

As mentioned before, an initially nonspherical capsule may undergo swinging motion

combined with the membrane tank-treading at high values of Ca or low values of λ,

and the tumbling motion at low values of Ca or high values of λ (see e.g., [11, 12,

41, 42, 75]). Here we study the influence of the membrane viscosity on such motions.

We restrict our study to an oblate initial shape with the minor to major axis ratio

α = 0.7.

We present the snapshots of capsules with different dynamics as well as their time-

dependent inclination angle θ and deformation parameter D in Fig. 5.12, where Ca

and λ are fixed as η∗ is varied. Figs. 5.12(a)-(c) present the time-dependent capsule

shape, and (d) and(e) present time-dependent deformation parameter and inclination

angle, respectively. For η∗ = 10 in Fig. 5.12(a), we observe a swinging (SW) motion

in which the capsule undergoes periodic angular oscillation. The swinging motion is

superimposed with the tank-treading motion of the membrane as shown by a marker

point. The swinging motion is also accompanied by a periodic shape oscillation as

evident from Fig. 5.12(d). We note that during this motion, the major axis remains

bounded within the extensional quadrant of the flow (0 < θ < π/4). When η∗ is

increased to 50 as in Fig. 5.12(b), large oscillation in θ and D is noted. Here the

capsule enters the compressional quadrant of the flow (i.e., θ becomes negative), but

fails to make a complete tumbling. In this case, the capsule shape instantaneously

becomes nearly spherical; thus, a major axis cannot be well defined during that instant

and the inclination angle computed should be taken with caution. The minimum value
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ofD occurs when capsule is in the compressional quadrant. Since the tumbling motion

is masked by a large shape oscillation, we identify such motion as the transitional (TR)

dynamics. For very high η∗ values e.g., η∗ = 100 in Fig. 5.12(c), a clear tumbling

(TU) motion occurs, and θ oscillates between +π/2 and −π/2. The capsule can also

experience some amount of shape oscillation during the tumbling motion as evident

from Fig. 5.12(d).

The dynamics presented above is observed to be periodic, and it occurs for small

to moderate values of Ca. For higher values of Ca, a transient behavior is observed

in which the capsule starts with one mode of dynamics, and then switches to another

mode. The time-dependent deformation parameter and inclination angle are shown

in Fig. 5.13 to illustrate such transient motions. In Fig. 5.13(a), which is for Ca = 0.3

and η∗ = 50, a TR dynamics is observed at the beginning followed by a SW dynamics,

which continues for the rest of the simulation. It can be noted thatD drops drastically

to approximately zero, and θ becomes negative in the first cycle indicating the TR

motion. When η∗ is increased to 75 while Ca is held constant at 0.3 as in Fig. 5.13(b),

a TU mode is observed at the beginning, which is then followed by a TR mode that

continues for the rest of the simulation. Similar transient motion was observed by

Kessler et al. [42] and Bagchi & Kalluri [14] for capsules with an elastic membrane.

We have performed a number of simulations to observe the swinging to tumbling

transition by varying η∗ and Ca. Fig. 5.14 presents the phase diagram showing

different dynamical regimes. The swinging motion primarily occurs at small values of

η∗ and large Ca, whereas the tumbling motion is observed for large η∗ and small Ca.

For small values of Ca, the transition occurs as SW to TR to TU with increasing η∗.

It is noteworthy that at small values of η∗, SW to TR to TU transition can also be
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Figure 5.12: The effect of membrane viscosity on transition from swinging to tumbling
motion. Here α = 0.7, Ca = 0.1, λ = 1. Time-dependent shapes are shown in (a)
swinging (SW), η∗ = 10; (b) transition (TR), η∗ = 50; and (c) tumbling (TU),
η∗ = 100. Also, (d) time-dependent deformation parameter D, and (e) inclination
angle θ are given for the above three cases in (a), (b) and (c) using dashed, dash-dotted
and solid lines, respectively.
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Figure 5.13: Transient motion of nonspherical capsules (α = 0.7) at high shear Ca =
0.3. (a) η∗ = 50; here a TR dynamics at the beginning is followed by a SW dynamics.
(b) η∗ = 75; here a TU dynamics at the beginning is followed by a TR dynamics.
Time-dependent inclination angle θ (left axis, —–), and deformation parameter D
(right axis, −−−) are shown.

achieved by reducing Ca as well. For large Ca, the transient region occurs between

the SW and TU regions. In this region, capsules undergo an initial transience and

then switch to their final stable dynamics. We identify these regions as TR→ SW and

TU → TR dynamics. Nevertheless, the final dynamics observed for these transient

regimes is either SW or TR. Therefore, in Fig. 5.14, we separate the three major

(SW, TR and TU) zones by solid lines, and the transient zones by dashed lines. We

observe that increasing the viscosity contrast λ to 5 in Fig. 5.14(b) will inhibit the SW

dynamics significantly when the membrane viscosity is taken into account. Further,

as λ increases, the transition from SW to TU occurs earlier upon increasing η∗. The

above results suggest that the membrane viscosity has a similar effect on SW to TU

transition as the viscosity ratio λ or 1/Ca does.
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123

5.4 Conclusion

In this chapter, we presented a numerical analysis on the influence of membrane vis-

cosity on the dynamics of capsules in linear shear flow. We presented a comprehensive

study on the buckling, deformation, and dynamics of capsules over a broad range of

capillary number Ca, internal to external fluid viscosity ratio λ, and the dimensionless

membrane viscosity η∗.

One of the most important findings of this study is that the membrane viscosity

causes buckling in the range of capillary numbers for which no buckling is observed

for capsules with purely elastic membrane. Analysis of membrane stress shows that

at small capillary numbers, the membrane viscosity has a relatively less impact, and

the onset of buckling is determined by the capillary number. At moderate to large

capillary numbers, the wrinkles appear at η∗ ∼ 10 which is nearly in the same range as

the experimentally measured values of the membrane viscosity reported for artificial

capsules and red blood cells. At this range of Ca, introduction of a small membrane

viscosity first redistributes the compressive stress from the tips of the capsule to the

equatorial rim. Upon further increase in the membrane viscosity, the compressive

stress spreads back from the rim towards the tips. Further, increasing the viscosity

ratio λ shows a stabilizing effect. In order to suppress buckling, we introduce the

membrane bending stiffness. It is observed that the range of the bending stiffness

required at high capillary number is considerably higher than that estimated for

artificial capsules, but in the same range as that reported for red blood cells.

After removing the wrinkles by introducing the bending stiffness, we studied the

influence of membrane viscosity on capsule deformation, inclination, tank-treading

frequency, and swinging to tumbling transition. The membrane viscosity is observed
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to reduce time-averaged capsule deformation, and introduce damped oscillation in

time-dependent deformation and inclination. The time-averaged inclination angle

shows a nonmonotonic trend with an initial decrease reaching a minimum and a

subsequent increase with increasing η∗. A similar nonmonotonic trend is observed in

the tank-treading frequency.

We then considered the influence of membrane viscosity on the unsteady dynam-

ics of an initially nonspherical capsule. The dynamics is observed to change from

swinging to tumbling with increasing membrane viscosity, when Ca and λ are held

constant. Further, in some range of Ca and η∗, transient dynamics is observed in

which the capsule starts with a transitional or tumbling dynamics, then settles at a

swinging or transitional dynamics. In that respect, membrane viscosity has a similar

effect on capsule dynamics as λ or 1/Ca does.
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Chapter 6

Conclusion and Directions for Future Work

6.1 Conclusion

In this thesis, we presented three-dimensional numerical simulations of dynamics and

deformation of microscopic deformable cells with elastic and viscoelastic membranes

suspended in simple shear flow using immersed boundary/front-tracking method.

The objective was to understand the complex fluid/structure interaction problem

for membrane-bound soft matter in dilute suspensions. Our numerical technique

is able to simulate the complex dynamics of the cells, i.e., vesicles, capsules, and

red blood cells, in the tank-treading, breathing, trembling, and tumbling modes.

The front-tracking method presented here is an alternative to the boundary integral

method, which has been often used in other numerical studies. The choice of the

front-tracking method over the boundary-integral method is due to the straightfor-

ward implementation and versatility. The current method can be readily extended to

include membrane shear resistance (e.g., [35]), membrane viscosity, and most impor-

tantly finite Reynolds number effect, which could be the case for giant vesicles and

capsules. Further, the present method is very stable over a large range of the control

parameters, such as shear rate, viscosity contrast, bending stiffness etc., and hence,

long simulations can be performed without losing numerical stability. In addition, in
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case of a structured grid of the cell surface, there is the possibility of mesh entangle-

ment in the poles, which is not the case here. We do not observe local coarsening or

entanglement of surface mesh over the length of the simulations; thus, no remeshing

is done.

The main results of this thesis can be summarized as follows:

1. Vesicle dynamics: A detailed comparison of the numerical results is made

with various theoretical models and experiments. It is found that the applicability of

the theoretical models is limited despite some general agreement with the simulations

and experiments. The deviations between the perturbative results and the simulation

results occur even in the absence of thermal noise. Specifically, we find that the vesi-

cle dynamics does not follow a self-similar behavior in a two-parameter phase space.

Rather, the dynamics is governed by three controlling parameters, namely, the excess

area, viscosity ratio, and the dimensionless shear rate. Additionally, we find that a

linear scaling of the tank-treading angle is possible only for quasi-spherical vesicles.

The breakdown of the scaling occurs at higher values of the excess area even in the ab-

sence of thermal noise. We find that the vesicle deformation saturates at large shear

rates, and the asymptotic deformation matches well with a theoretical prediction

for quasi-spherical vesicles. The dependence of the critical viscosity ratio associated

with the onset of unsteady dynamics on the vesicle excess area is in excellent agree-

ment with the experimental observation. We show that near the transition between

the tank-treading and tumbling dynamics, both the vacillating-breathing-like motion

characterized by a smooth ellipsoidal shape, and the trembling-like motion charac-

terized by a highly deformed shape are possible. For the trembling-like motion, the

shape is highly three-dimensional with concavities and lobes, and the vesicle deforms
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more in the vorticity direction than in the shear plane. A Fourier spectral analysis

of the vesicle shape shows the presence of the odd harmonics and higher-order modes

beyond fourth order.

2. Red blood cell dynamics: We present phase diagrams of the single red

blood cell dynamics in dilute suspension. The computational geometry replicates an

in vitro linear shear flow apparatus. We find that during the breathing motion at

moderate bending rigidity, the cell either completely aligns with the flow direction and

the membrane folds inward forming two cusps, or, it undergoes large swinging motion

while deep, crater-like dimples periodically emerge and disappear. At lower bending

rigidity, the breathing motion occurs over a wider range of shear rates, and is often

characterized by the emergence of a quad-concave shape. The effect of the breathing

dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase

diagrams, which appear to be more complex and richer than those of vesicles. In

a remarkable departure from the vesicle dynamics, and from the classical theory of

non-deformable cells, we find that there exists a critical viscosity ratio below which

the transition is independent of the viscosity ratio, and dependent on shear rate only.

Further, unlike the reduced-order models, the present simulations do not predict

any intermittent dynamics of the red blood cells. The red blood cell tank-treading

frequency was shown to be an inverse linear function of the viscosity ratio, which

is in agreement with the theoretical models for shape-preserving cells. For a purely

elastic RBC, the tank-treading frequency behaves almost linearly with respect to

the capillary number, whereas a power-law behavior is observed when the membrane

viscosity is taken into account.

3. Influence of the membrane viscosity: Most previous numerical studies on
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capsule dynamics in shear flow have ignored the role of membrane viscosity. Therefore,

we presented a numerical method for large deformation of capsules using a Kelvin–

Voigt viscoelastic model for the membrane. We also gave a comprehensive analysis

of the influence of the membrane viscosity on buckling, deformation and dynamics.

We observe that the membrane viscosity leads to buckling in the range of shear rates

in which no buckling is observed for capsules with purely elastic membrane. For

moderate to large shear rates, the wrinkles on the capsule surface appear in the same

range of the membrane viscosity that was reported earlier for artificial capsules and

red blood cells based on experimental measurements. In order to obtain stable shapes,

it is necessary to introduce the bending stiffness. It is observed that the range of the

bending stiffness required is also in the same range as that reported for the red blood

cells, but considerably higher than that estimated for artificial capsules. Using the

stable shapes obtained in the presence of bending stiffness, we analyzed the influence

of membrane viscosity on deformation, inclination, and tank-treading frequency of

initially spherical capsules. Membrane viscosity is observed to reduce the capsule

deformation, and introduce a damped oscillation in time-dependent deformation and

inclination. The time-averaged inclination angle shows a nonmonotonic trend with

an initial decrease reaching a minimum and a subsequent increase with increasing

membrane viscosity. A similar nonmonotonic trend is also observed in the tank-

treading frequency. We then considered the influence of the membrane viscosity on

the unsteady dynamics of an initially oblate capsule. The dynamics is observed to

change from a swinging motion to a tumbling motion with increasing membrane

viscosity. Further, a transient dynamics is also observed in which a capsule starts

with one type of dynamics, but settles with a different dynamics over a long time.
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6.2 Future Work

As discussed in Chapter 5, most of the previous numerical studies on cell dynamics

in shear flow considered purely elastic membrane. This study shows how the shear

viscosity coupled with other membrane properties can produce a rich yet profound

effect on capsule dynamics. The viscoelastic model presented here can be easily

extended to consider the biconcave resting shape of red blood cells. In Chapter 4 we

presented complex shape oscillation of red blood cells with purely elastic membrane.

It is of future interest to study the influence of membrane viscosity on such dynamics,

and to conduct a detailed study on the tank-treading frequency of red blood cells,

which is often measured in experiments and used to extract the mechanical properties

of the cell.

In our study of a single RBC in the shear flow we showed the membrane folding

and the emergence of quad-concave shapes of the cell for lower values of bending

rigidities. This can be further attributed to the cell membrane buckling, which has

been observed in the experiments of Fischer et al. [93]. The influence of the membrane

viscosity and bending stiffness on the buckling can be addressed in more detail.

Moreover, in the present study, we consider a normal biconcave RBC shape, which

is initially stress free. Assuming different values of surface area-to-volume ratio (also

known as the ’swelling ratio’) to change the RBC initial shape, along with the inclu-

sion of pre-stresses in the membrane will vary the dynamics of the cells and the phase

diagrams. This will definitely enrich the study of the single cell dynamics in shear

flow.

One of the very important and challenging problems remained open in this field to

address is the dynamics and rheology of red blood cells in a dense suspension. First,
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one can explore the orientation and deformation dynamics of the RBCs for different

values of volume fractions, and illustrate the inter-particle interactions leading to

what is known as ’shear induced diffusion’. Different values of viscosity ratios and

capillary numbers in addition to the physiological values should be considered to make

the study complete. Next, the role of volume fraction on the rheology of suspensions

should be addressed. One should investigate the cell shear stress and normal stress

difference in detail, and explain their trends for different capillary numbers, viscosity

ratios and volume fractions.

Last but not least, the role of thermal noise on generating a convoluted vesicle

shape and on the transition dynamics has been observed in the experiments (e.g.,

Kantsler & Steinberg [16]). A Fourier spectral analysis of the vesicle shapes in the

shear plane has also showed the presence of higher modes of harmonics (Zabusky et

al. [28]), which are attributed to the membrane wrinkles. We showed that even in

the absence of thermal noise, we are able to observe highly-deformed shapes of the

vesicles in the transition zone. We believe that the presence of thermal fluctuations in

the numerical simulations can enhance the asymmetries and wrinkles in the shapes.

There has been a growing interest in the study of vesicle shape relaxation time in

a time-dependent shear flow (Kantsler et al. [27]), and a stretched vesicle relaxation

time under no flow conditions (Zhou et al. [96]), for which cases thermal noise effects

are significant. Thus, the inclusion of thermal noise in the numerical simulations will

enrich the studies of vesicle dynamics and the relaxation times.
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