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ABSTRACT OF THE DISSERTATION

On the Dynamics of Random Network Coding

Analyzing Random Network Coding with Differential Equations

by Dan Zhang

Dissertation Director: Prof. Narayan B. Mandayam

As a network transport scheme, an important quantity for random network coding

(RNC) is the non-redundant information a node or a set of nodes possess over time,

which is called the rank. In general, the rank is a random process that is affected

by a number of factors including the random coding operation, the channel and the

randomness built in the MAC and PHY. Due to its complicated nature, previous ap-

proaches to random network coding chose to focus on the asymptotic behavior of the

rank processes only. For the first time, we develop a dynamical system framework for

analyzing RNC in a wireless network based on differential equations (DE). It turns out

under the fluid approximation, ranks of different nodes and sets are intertwined in the

form of a system of differential equations. The system of DEs allow us to focus on

the transient behavior of RNC, rendering a more complete picture of RNC dynamic-

s. The DE framework can be used to reveal the throughput of RNC, or numerically
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solved to evaluate various performance measures. Many aspects of the network, such

as topology, source and destination configuration, inter-session coding, PHY and MAC

technologies that are employed, are all captured in the system as initial conditions or

parameters of the equations. Consequently, the dynamical system framework proves to

be powerful in modeling RNC with fine details present in the channel, in the MAC/PHY

or in the topology. We will show its versatility by first discussing the theoretical ap-

plication proving the throughput achievability theorem. We will then expand on its

practical application in cross layer design, especially in terms of resource allocation

with a throughput dependent objective.
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Chapter 1

Introduction

Since the pioneering work by Ahlswede et al. [1] that established the benefits of coding in

routers and provided theoretical bounds on the capacity of such networks, the breadth

of areas that have been touched by network coding is vast and includes not only the

traditional disciplines of information theory, coding theory and networking, but also

topics such as routing algorithms [2], distributed storage [3, 4], network monitoring,

content delivery [5,6], and security [7]. Among other variants, random network coding

(RNC) [8,9] has received extensive interest in particular. By allowing routers to perform

random linear operations, RNC is shown to be capacity achieving and fault tolerant. In

spite of the excellent progress previous studies have made in the area of RNC, what is

still missing is a simple framework that can be used to describe the evolution of state in

a wireless network where RNC is employed. In this thesis we present a framework based

on differential equations (DE). The DE framework serves as a powerful numerical and

analytical tool to study RNC. We demonstrate this by presenting theoretical analysis of

information flows with RNC as well as numerical examples. We will give proofs based

on the DE framework to the well known result that RNC achieves the min-cut bound

in the context of a general lossy wireless network. The flexibility of the DE framework

in performance analysis will also be shown via illustrative examples of networks with

multiple multicast sessions, user cooperation and arbitrary topologies.
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Using the DE framework, we present results similar to Ho et al. [10] which for the

first time characterized the achievable throughput of RNC by analyzing the codes alge-

braically; and also to Lun et al. [9] which later studied the same problem with a Jackson

network approach, analyzing the achievable capacity by treating the propagation of in-

novative packets through the network as concatenated queuing systems. While the

coding strategy considered in this thesis is similar to [9], we will take a rather different

approach to the analysis of RNC by treating the internal mechanics of RNC as a dy-

namical system. We show that the multicast capacity achievability of RNC is a direct

consequence of the convergence of the fluid model in this particular case, which does not

hold in general. In [9], the fluid approximation is also used to characterize a fictitious

queueing system whose throughput lower bounds the real process of innovative packet

propagation. In our work, however, the fluid approximation is used directly on the rank

evolution processes in the course of innovative packet propagation. Concentration to

the differential equation solution is shown with the assistance of a lemma (Lemma 5)

that is simple but deep in its nature.

Since we use a system of DEs to directly describe the rank evolution processes, there

is a lot to offer in terms of computability. We can numerically solve these DEs to obtain

the estimated rank, the instantaneous throughput and the expected time before start-

ing decoding. The computability can be exploited in a number of ways for engineering

purposes, such as cross layer design. We can explicitly formulate the interaction be-

tween RNC and the lower MAC/PHY layer using a program with differential equation

constraints. This type of problems fall in the category of optimal dynamical system

control. We present a universal solution that adaptively searches for the best lower

layer parameters using a state feedback. We will discuss in detail its general design
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and present an example to show its application to power control on the PHY layer in

a CDMA type wireless network.

In what follows, Chapter 2 discusses the basic operation of RNC and related works.

Chapter 3 introduces the hypergraph model for a wireless network first proposed in [9],

concepts such as cut sets, the min cut and connectivity for a hypergraph. It is also

the place where we set up the DE framework for RNC using a fluid approximation.

In Chapter 4 we apply the framework to characterize the average throughput of RNC

under the fluid approximation. In Chapter 5 we give an achievability proof of RNC that

makes no assumption on field size using the DE framework described here. Chapter 6

presents a dynamical system approach to the cross layer design problems with RNC.

Chapter 7 discusses extensive numerical examples to illustrate the application of the

DE framework to situations of multiple multicast sessions, complex topology and joint

reception. It also includes a detailed RNC aware power control example to show the

effectiveness of the proposed cross layer design method. We conclude in Chapter 8.
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Chapter 2

Preliminary and Related Works

2.1 Linear Random Network Coding Principles

A formal description of RNC in the language of coding theory can be found in [11]. For

the purpose of this work, a simplified description that avoids coding theory terminology,

yet equally rigorous, seems to serve the purpose even better. The description has also

been adopted in previous works under the name of “coded packets” [9]. We will adopt

this term in what follows.

A coded packet is a (column) vector of fixed length. The exact length is immaterial.

Each component of the vector is an element from GF(q), i.e., a finite field of size q. To

describe the coding operation, assume there is a set of m source packets denote by

s1, s2, . . . , sm.

The coding operations on the network level guarantees that at any time, any packet is

a linear combination of the m source packets. Suppose at time t, a node has n (n is

not necessarily equal to m, the number of source packets) packets

c1, c2, . . . , cn.

Then ∀i ∈ {1, 2, . . . , n},

ci =

[
s1 s2 · · · sm

]
βi, (2.1)
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where βi ∈ GF(q)m is the coding coefficient vector for ci,

βi =



βi,1

βi,2

...

βi,m


. (2.2)

A coded packet generated at this node at time t will be a linear combination of the n

packets. Let the coded packet be c, then

c =

[
c1 c2 · · · cn

]


α1

α2

...

αn


(2.3)

where the scalars α1, α2, . . . , αn ∈ GF(q) are randomly generated. Consequently,

c =

[
s1 s2 · · · sm

]

β1,1 β2,1 · · · βn,1

...
...

. . .
...

β1,m β2,m · · · βn,m





α1

α2

...

αn



=

[
[s1 s2 · · · sm

] [
β1 β2 · · · βm

]


α1

α2

...

αn


. (2.4)
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Note the coding vector

β =

[
β1 β2 · · · βm

]


α1

α2

...

αn


can be iteratively computed through the locally generated coefficients αi’s.

Whenever a node gets to transmit using its MAC protocol, it generates a coded

packet c and sends it along with the code coefficient vector β. By doing so, any

node that receives the coded packet also receives the coefficient vector that enables the

iterative computation of coefficient vectors. When a node has collected n = m coded

packets whose coefficient vectors are linearly independent, the source packets can be

recovered by a linear inverse

[
s1 s2 · · · sm

]
=

[
c1 c2 · · · cm

] [
β1 β2 · · ·βm

]−1

. (2.5)

As (2.5) indicates, the most important quantity to track with RNC is the number of

linearly independent coefficient vectors a node has collected over time. This number

will be called the rank of the node. It is a direct measure of the amount of information

a node has obtained about the source. For any node i, we use Ni(t) to denote the

rank of i. In other words, if we let Si(t) be the vector space spanned by the coefficient

vectors node i has at time t, then dimSi(t) = Ni(t). It will also be necessary to define

the rank for an arbitrary set as well. For a set of nodes K, define its rank NK(t) in the

following way

SK(t) =
∑
i∈K
Si(t), NK(t) = dimGF(q) SK(t). (2.6)
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Please be reminded that the sum of vector spaces is not the same as their union, which

is in general no longer a vector space. Rather, given k vector spaces S1,S2, . . . ,Sk over

the field GF(q), their sum is defined as follows:

k∑
i=1

Si , {α1v1 + α2v2 + · · ·+ αkvk : ∀α1, α2, . . . , αk ∈ GF(q) and vi ∈ Si, i = 1, 2, . . . , k} .

(2.7)

Users can check that (2.7) indeed defines a vector space that contains ∪ki=1Si. Alterna-

tively, the sum can be defined as

k∑
i=1

Si , span

{
k⋃
i=1

Si

}
. (2.8)

Both Ni(t) and NK(t) are random processes as the coding operation, the channel con-

ditions and the probabilistic MAC/PHY all contribute to their randomness. Tracking

Ni(t) or NK(t) thus entails certain prediction on overall effect of all the aforementioned

factors.

It is also clear from the description above that RNC is relatively decoupled from the

underlying MAC and PHY. The coding operation of RNC remains the same regardless

of the types of MAC and PHY. In fact, we assume in this work that all nodes in the

network perform random network coding. Whenever the MAC of the wireless node is

capable of admitting another coded packet, one is generated from the RNC layer and

handed down to the MAC layer. It is entirely up to the MAC and PHY to send out that

coded packet. The timing of transmission and the exact method of transmission are

transparent to the RNC layer. On the receiver side, the MAC pops a new successfully

received coded packet to the RNC layer at random. We should point out that although

the operation of RNC is independent of the MAC and PHY, its performance is affected

by the underlying MAC and PHY as will be seen later in this thesis.
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The coding vector β of the newly arrived (at node i and at time t) coded packet is

examined to see if β ∈ Si(t). If so, the packet is simply dropped because it contains no

innovative information. Otherwise, the packet is called an innovative packet and

Si(t+) = span {Si(t) ∪ {β}} and Ni(t+) = Ni(t) + 1. (2.9)

The main theme of this work is to present a method of tracking Ni(t) and NK(t) at

an arbitrary time t. In Chapter 3 and 5, we will rigorously define in what sense we track

these random processes and how we do it. But we note that for a class of problems

about RNC, tracking Ni(t) and NK(t) for any t is not necessary. Certain bounds on

Ni(t) when t → ∞ is sufficient to claim a number of properties of RNC, as the next

section will show. This is largely the approach all the previous works adopted.

2.2 Related Works on RNC Performance

Deterministic network coding was initially described and its achievability of multicast

capacity was proven in [1]. In the case of linear network coding, the major distinction

in deterministic coding, as opposed to RNC, is that the coefficient vector β for a coded

packet c is the result of a deliberate design. Consequently, its analysis is different

from that of RNC and its application is severely limited in dynamical environment like

wireless.

In [9], Lun et al. introduced the concept of coded packets and the same random

coding operation as described in Section 2.1. Their paper adopted a queueing theoretic

approach to the analysis of RNC performance, assuming a Poisson transmission sched-

ule at each node. To obtain the average behavior of RNC, they first defined a network

of virtual queues consisting of innovative packets at each node. The key idea is that the
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innovative packet propagation can be abstracted as propagation through those queues

with known arrival rates from upstream queues. Channel erasures are included in the

arrival rates. The authors then solved the Skorohod equations [12] for tandem queues

under fluid approximation. The result shows that the bottleneck link in the tandem

queue would determine the throughput. This result, combined with conformal decom-

position from graph theory, shows that the throughput of a multicast is determined by

the min cut of the source destination pair. The authors then extended the results to

a wireless network by mapping it into a wired network. To finalize the achievability

proof, a concentration argument is necessary. To this end, Lun et al. first argued that

the arrival of innovative packets at any node is Poisson, from which they proved the

concentration result with the large deviation theory [13].

In [10], Ho et al. took a different approach to RNC. Starting with a wired network,

they modeled the multicast problem with RNC as a natural extension to the Slepian-

Wolf problem. The decodability is examined as a problem of kernel design in algebraic

coding theory. The kernel and its analysis is not different from the deterministic network

coding. After the kernel is computed, a probabilistic analysis is carried out to show that

the randomly generated kernel is very likely to guarantee decodability. Since we already

know that deterministic network coding’s capacity achievability, the achievability of

RNC thus follows.

2.3 Related Works on Cross Layer Design with RNC

Following their respective works on the performance analysis of RNC, Lun et al. and

Ho et al. also examined the problem of cross layer design with RNC that naturally

arises. The achievability proof showed that given MAC and PHY, RNC always achieves
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the best possible throughput, but it does not tell how to design MAC and PHY to

further optimize RNC throughput. Moreover, as RNC’s universal coding operation

is insensitive to the dynamic environment, a method that allows dynamical cross layer

design is especially attractive to wireless networking. To that end, it would be desirable

to explore the so called multicast advantage [14] inherent to wireless. Previous cross

layer design approaches differ in their ways of exploiting multicast advantage.

Lun et al. [15] attacked the problem of cross layer design using their queueing

framework. After mapping a wireless network to a wired network, the min cut is

identified by a linear program. The cross layer design problem is therefore formulated

as an optimization program with linear constraints, which serve to identify the min cut,

plus nonlinear constraints that map the optimization variables from the MAC or PHY

layers to link capacities. They exploited the multicast advantage by carefully mapping

the wireless network into a wired network that conserves the multicast advantage. This

is complicated by the fact that, although during a wireless transmission (broadcasting)

any other node has a chance to receive the signal, in reality the reception may be

unsuccessful due to a variety of reasons. Consequently, the set of nodes that receive

the signal successfully varies. However, the basic model of a wired network requires

prior knowledge of nodes capable of successful reception. To cope with this difficulty, a

different set of virtual links has to be assigned to each possible set of reception nodes.

Ho et al. [14] addressed the same problem from a different angle. Because their

analysis of RNC is centered around a wired network not to be extended to wireless

in an obvious way, they have to make compromises in cross layer design for wireless.

Specifically, they trim the wireless (broadcasting) links to identify a subgraph of routes

to be used. Only transmission in the subgraph will be considered. Opportunistic
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reception/transmission outside the subgraph that can help information delivery is thus

ignored, leading to some loss of multicast advantage. With the subgraph approach,

the cross layer design also boils down to a traditional optimization problem with linear

constraints that identify the min cut.

Other works on cross layer design with RNC are mostly derived from either [14]

or [15], with specialized network topology or MAC/PHY technology to simplify the

original formulations.
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Chapter 3

The Differential Equation Framework for RNC

3.1 A Review of the Hypergraph Model and RNC

A generic wireless network is modeled as a hypergraph G = (N , E) consisting of N nodes

N = {1, 2, . . . , N} and hyperarcs E = {(i,K)|i ∈ N ,K ⊂ N}. Each hyperarc captures

the fact that, as any wireless transmission is inherently a broadcast, a packet sent from

node i can be received by some or all the nodes in a set K ⊂ N . This idea is shown in

Fig. 3.1 where the hypergraph of a four-node network is shown. The transmission from

node 1 can be overheard by node 2 and 3, while the transmission from node 3 can only

be overheard by node 4, all with a probability. This relationship between nodes can

be conveniently represented with arrows. One should not, however, confuse the arrow

representation with the digraph of a wired network. Assume some underlying MAC

is operating in its steady state such that each node i is transmitting according to an

independent Poisson process with the intensity of λi packets per second. We say that a

1

2

3

4 1

2

3

4

Figure 3.1: Dots-arrows representation of a hypergraph.
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packet is successfully received by a set K of nodes if the packet is successfully received

by at least one node in K, which happens with a probability Pi,K. Note the definition

of Pi,K is general and does not assume independent receptions among the nodes in K.

This generality allows channel correlation or user cooperation (e.g., joint detection) to

be analyzed in a unified framework. We define the effective transmission rate zi,K for

(i,K) (i.e., from i to K) as

zi,K = λiPi,K. (3.1)

which is the intensity of the Poisson process of packets from node i successfully ar-

riving/being received by K. zi,K also can be regarded as the extended concept of link

capacity from node i to the set K. When K ⊂ T ⊂ N , we must have

zi,K ≤ zi,T (3.2)

because Pi,K ≤ Pi,T . Suppose S,K ⊂ N and S ∩ K = ∅. Define a cut for the pair

(S,K) as a set T satisfying K ⊂ T ⊂ Sc. Let C(S,K) denote the collection of all cuts

for (S,K). The size of T is defined as

c(T ) =
∑
i∈T c

zi,T . (3.3)

A min cut Tmin for (S,K), whose size is denoted as cmin(S,K) is a cut satisfying

c(Tmin) = min
T ′∈C(S,K)

c(T ′). (3.4)

We denote the collection of cuts for (S,K) that satisfy (3.4) as Cmin(S,K). Conven-

tionally, we have

Cmin(∅,K) = {T |K ⊂ T ⊂ N} and cmin(∅,K) = 0. (3.5)

We say G is connected if, for any ∅ 6= T ( N , c(T ) > 0.
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3.2 Rank Evolution Modeled with DE

The DE framework begins with the following lemma that describes the mean of NK(t):

Lemma 3.1.

dE[NK(t)]/dt =
∑
i∈Kc

zi,KE[1− qNK(t)−N{i}∪K(t)] (3.6)

Proof. Let ∆K(t) denote the increment in the number of innovative packets in (t, t+∆t),

then

NK(t+ ∆t) = NK(t) + ∆K(t). (3.7)

Since every node i sends packets according to an independent Poisson process with

intensity λi,

E[∆K(t)] =
∑
i∈Kc

E[∆i,K(t)], (3.8)

where ∆i,K(t) is the number of innovative packets (either 0 or 1) sent from node i ∈ Kc

in [t, t+ ∆t). Using the chain rule, we have

E[∆K(t)] =
∑
i∈Kc

λi∆tE[∆i,K(t)|1 transmission from i] (3.9)

=
∑
i∈Kc

λi∆tPi,KE[∆i,K(t)|1 reception from i]. (3.10)

A packet sent from i ∈ Kc being innovative (i.e., ∆i,K = 1) if and only if it comes from

Si \ (Si ∩ SK). Since

|Si ∩ SK| = qdimSi∩SK = qNi+NK−NK∪{i} , (3.11)

and |Si| = qdimSi = qNi , (3.12)

it follows that the probability of the incoming packet being innovative to K is given by

(|Si| − |Si ∩ SK|)/|Si| = 1− qNK−NK∪{i} . (3.13)
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Averaged over all possible values of (N{i}∪K, NK), we have

E[∆K(t)] =
∑
i∈Kc

λi∆tPi,KE[1− qNK(t)−N{i}∪K(t)]. (3.14)

Therefore we have a precise differential equation for E[NK(t)] as follows:

dE[NK(t)]

dt
=
∑
i∈Kc

zi,KE[1− qNK(t)−N{i}∪K(t)]. (3.15)

Let Vi(t) = E[Ni(t)] and VK(t) = E[NK(t)]. We want to build a system of differential

equations that (approximately) describe Vi(t) and VK(t). Though Lemma 3.1 does not

precisely provide the equations we want (the right-hand sides are not a function of the

unknowns), we can turn them into such via a fluid approximation argument: when

m is large, the stochastic process NK(t) behaves on a macro scale like a deterministic

function which is VK(t). This leads us to make the following approximation

E[1− qNK(t)−N{i}∪K(t)] ≈ 1− qVK(t)−V{i}∪K(t), (3.16)

and consequently we have

V̇K ≈
∑
i 6∈K

ziK(1− qVK−VK∪{i}). (3.17)

The solution of (3.17) gives the expectation of the rank of a set K at any given time

instant t. It actually stands for a system of 2N − 1 equations, each for an nonempty

K ⊂ N . They collectively give a complete description of rank evolution in the system.

Note VK is solely determined by {VK∪{i}}i 6∈K. This dependency can be explored to

arrange (3.17) into a partial order “.” such that VK . VL if and only if K ⊂ L. This

partial order can be pictorially represented as a layered structure, for which an example

is shown in Fig. 3.2 for N = 3. To determine a quantity on any particular layer, one
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Figure 3.2: Layered structure for the rank evolution of a 3-node network

only needs to know the the quantities on the layer immediately above indicated by

arrows. The layered structured will be exploited in Chapter 4 to facilitate the proofs.

Theoretically, with appropriate boundary conditions, (3.17) can be solved. The

instantaneous throughput is then obtained as V̇K or V̇i. For example, assuming node 1

is the unique source with m packets to deliver, the boundary conditions (B.C.) for this

systems of DEs are

VK(0) =


m, 1 ∈ K,

0, o.w.

(3.18)

If only a subset of the nodes, say L ⊂ N , participate in carrying the flow, (3.17) still

holds, except that we should replace K with K ∩ L and the top layer in the layered

structure consists of VL alone.

In practice, q is usually chosen to be an integral power of 2, not only because their

arithmetic is particularly amenable to machines, but also because they are the natural

granularity used in storage and communication, e.g., bits, bytes, words, etc. As VK can

never exceed VK∪{i}, VK − VK∪{i} is nonpositive and in this case we may approximate

1− qVK−VK∪{i} by

1− qVK−VK∪{i} ≈


1, VK < VK∪{i},

0, VK = VK∪{i}.

(3.19)
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Figure 3.3: Approximate 1− qVK−VK∪{i} with VK∪{i} 	 VK when q = 2 and q = 256.

The approximation for different values of q is shown in Fig. 3.3. It is evident that,

when q = 256 the approximation is very close for every nonpositive integer. Even when

q = 2, the approximation is very good when VK − VK∪{i} < −6 or VK − VK∪{i} = 0.

For other nonpositive integer values, the approximation has an error bounded by 1.

When q →∞, (3.19) becomes more accurate. However, as will be shown in numerical

examples, when the total rank is large the approximation rarely fails even for q = 2.

Consequently we may rewrite (3.17) as

V̇K=
∑
i 6∈K

ziK(VK∪{i}	VK), ∀K ⊂ N (3.20)

with the same boundary conditions as in (3.18). The binary operation 	 is defined as

x	 y =


1, x > y,

0, o.w.

(3.21)

Though the simplified DEs shown in (3.20) have discontinuous right-hand sides due
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Figure 3.4: A simplistic wireless P2P network.

to the 	 operation, they are no longer subject to the same precision problem. Nu-

merical solution of (3.20) can be obtained by any DE solvers fairly efficiently. To

demonstrate this, consider the following example illustrating a simplistic wireless net-

work that employs RNC in a P2P-like transmission scheme, shown in Fig. 3.4. As-

sume λi = 1 sec−1. The labels attached to the arrows show reception probabilities,

which are independent to each other. This means, for example, P1,2 = 0.4, but

P1,{2,3} = 1 − (1 − 0.4)(1 − 0.2) = 0.52. We assume that node 1 is the server which

has 400 packets to be downloaded to node 2, 3 and 4 with RNC. Like a typical wired

P2P network, node 2, 3 and 4 broadcast to each other to enhance efficiency. Fig. 3.5

shows the rank evolution at the four nodes, through both simulation and the solution to

the corresponding simplified DEs. It is evident that the DE solution fits the simulated

curves nicely.
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Figure 3.5: Rank evolution of the simplistic wireless P2P network is obtained through
simulation as well as solution to the corresponding DEs.

3.3 Rank Evolution Modeled with DI

While (3.20) can be numerically evaluated with any DE solver, it is not amenable to

analysis due to the discontinuous right-hand sides. Besides, the approximation shown

in (3.19) becomes most inaccurate when V{i}∪K − VK → 0+. In fact, no matter what

q is, if V{i}∪K − VK is sufficiently small, 1− qVK−VK∪{i} can take on any value in [0, 1).

This discrepancy prompts us to modify the right-hand side of (3.20) to incorporate

semicontinuity [16], which allows a range of values for V{i}∪K(t) 	 VK(t) to choose

when VK(t) = V{i}∪K(t). Specifically, we define an upper semicontinuous function

Sgn+ : R→ 2R

Sgn+(x) =



{0}, x < 0

[0, 1], x = 0

{1}, x > 0

(3.22)
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(a) (b)

Figure 3.6: (a) Plot of x 	 y as a function of x − y. (b) Plot of Sgn+ as a set-valued
function of x− y.

to replace the “	” operation:

V̇K∈
∑
i 6∈K

ziKSgn+(VK∪{i}−VK), ∀K ⊂ N . (3.23)

Fig. 3.6 illustrates the conversion, where the Sgn+ function shown in 3.6(b) has

apparently re-acquired certain continuity compared to the jump discontinuity shown

in 3.6(a). The same boundary condition in (3.18) still holds. To be compatible with

(3.20), when K = N , we define the right-hand side of (3.23) to be {0} instead of ∅. In

the mathematical literature, the system of inclusions in (3.23) plus the same boundary

condition in (3.18) is called differential inclusions (DI), first systematically studied by

A. F. Filippov [17]. DI is a generalization of the dynamical system described by DEs,

allowing them, in particular, to have discontinuous right-hand sides, which is exactly the

case in (3.20). Such dynamical systems with derivative discontinuities arise extensively

in mechanics, electronics and biology. For example, an initial value problem on a time

interval [0,∞) for DI takes the following form

ẋ ∈ F (t, x), x(0) = x0. (3.24)

where x(t) ∈ Rd is the state vector, F : [0,∞)×Rd → 2R
d

is a set-valued function and

d is the dimension of the dynamical system. Its solution is defined to be an absolutely

continuous function y(t) such that y(0) = x0 and ẏ(t) ∈ F (t, y(t)) almost everywhere
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Figure 3.7: A three node network with linear topology. Node 1 tries to deliver 100
packets to node 2 and node 3.

in [0,∞). In this article, however, owing to the particular form of the Sgn+ function,

we will be dealing with a special collection of DI’s such that the solutions only need

to be continuous functions satisfying the inclusion at all but finitely many points in

[0,∞).It is clear that any solutions to (3.20) are necessarily solutions to (3.23). It is

possible that the reformulation via DI’s could enlarge the set of solutions. However, as

we will see, for our specific problem, (3.23) turns out to have a unique solution in our

discussion.

The generalization from (3.20) to (3.23) not only paves the way for easy analysis

of RNC, but also furnishes a better interpretation to the solution of (3.20), which

is illustrated by the example shown in Fig. 3.7. Suppose we wish to use RNC in a

network consisting of three nodes 1, 2 and 3 to deliver m = 100 packets from node 1

to node 2 and 3. The network has a linear topology shown in Fig. 3.7. Based on the

underlying MAC, node 1 transmits at 0.5 packets/second to node 2 which transmits

at 1 packets/second to node 3, i.e. z12 = z1,{23} = 0.5 sec−1, z23 = 1 sec−1. We wish

to know at what rates V2(t) and V3(t) increase by solving the corresponding system of

DEs as given in (3.20):

V̇2 = z12(m	 V2), (3.25)

V̇3 = z23(V{23} 	 V3), (3.26)

V̇{23} = z1,{23}(m	 V{23}), (3.27)

B.C. V2 = V3 = V{23} = 0, (3.28)
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Figure 3.8: Bottle neck phenomenon: rank at node 3 follows rank at node 2. Numerical
solver exhibits fluctuation of V3 around V2.

for which the solutions obtained by a numerical DE solver are shown in Fig. 3.8. We

are not particularly interested in V{23} per se but by comparing (3.25) and (3.27) we

observe that they have the same solutions, i.e., V2(t) = V{23}(t), ∀t. In fact, Fig. 3.8

shows V2(t) = V{23}(t) = V3(t), ∀t ≥ 0 and V̇2(t) = V̇{23}(t) = V̇3(t) = 0.5, ∀t ∈ [0, 200).

However, if we plug the solution back into (3.26), we get V̇3(t) = 0, ∀t ∈ [0, 200). This

discrepancy arises due to the discontinuous right-hand sides of the system of DEs in

(3.25)–(3.27). This can be explained if we recast (3.25)–(3.27) into differential inclusions

as follows.
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V̇2 ∈ z12Sgn+(m− V2) = 0.5Sgn+(100− V2),

V̇3 ∈ z23Sgn+(V{23} − V3) = Sgn+(V{23} − V3),

V̇{23} ∈ z1,{23}Sgn+(m− V{23}) = 0.5Sgn+(100− V{23}),

B.C. V2 = V3 = V{23} = 0.

By doing so, it is trivial to see that V2(t) = V{23}(t) = V3(t) = 0.5t is a solution for the

system of differential inclusions for t ∈ [0, 200).
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Chapter 4

Analyzing Information Flows with Differential Equations

– The Average Case

In this section, using a fluid approximation and the DE framework, we first show that

the average throughput of RNC is determined by the min-cut bound. The concentration

behavior is presented in the next section.

For the average case, we begin by explicitly solving the deterministic DE (3.23).

We will directly deal with multiple multicast sessions and the general topology. Then

we will specialize the results to show that the average throughput of a single multicast

session is determined by the min-cut bound. In general, suppose we have a wireless

network G = (N , E) and J independent multicast sessions and session j originates from

a set of source nodes

Sj = {sj,1, sj,2, . . . , sj,nj}, j = 1, 2, . . . , J, (4.1)

where each node in Sj contains the same set of mj packets to be delivered to the rest

of the network or part of it. Though it is not usual to have multiple source nodes

in a multicast session in the traditional store-and-forward fashion due to coordination

difficulties, using multiple source nodes when RNC is employed adds no coordination

cost to the network because the coding operation at every source node, as well as other

nodes in the network, remains independent and fully distributed. In addition, using

multiple source nodes improves the throughput performance by providing diversity
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from the source side. As will be clear shortly, the throughput is determined by the

min cut between the source nodes and destination nodes. Using multiple source nodes

essentially enlarges the min cut. The definition in (4.1) also allows that a source node

serves more than one multicast session and it contains as many sets of packets. To

identify the source for any nonempty K ⊂ N , define

Src(K) = {j|Sj ∩ K = ∅, j = 1, 2, . . . , J}. (4.2)

For the coding scheme, we let each node generate a coded packet by randomly linearly

mixing all the packets it holds, regardless which multicast sessions these packets belong

to. Suppose all the multicast sessions start synchronously from time 0 as an integral

information flow. This scenario is captured by the following system of DI’s:

V̇K ∈
∑
i 6∈K

zi,KSgn+(V{i}∪K − VK),

B.C. VK(0) =
∑

1≤j≤J
j 6∈Src(K)

mj .

(4.3)

Recall that c(K) is defined as the cut size of K (cf. (3.3)), we now state the following

theorem which provides an explicit solution to (4.3):

Theorem 4.1. The solution to (4.3) is given recursively as

VK(t) = min{VK(0) + c(K)t,min
`6∈K
{V{`}∪K(t)}}, (4.4)

= min{VK(0) + c(K)t, min
K′⊃K

{VK′(t)}}, (4.5)

= min
K′⊃K

{V ′K(0) + c(K′)t} (4.6)

and

VN (t) =
J∑
j=1

mj . (4.7)
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Besides, for each K, there is a sequence

0 = t0 < t1 < · · · < tnK−1 < tnK =∞ (4.8)

such that over [tp, tp+1), p = 0, 1, . . . , nK − 1, VK is affine:

VK(t) = VK′(0) + c(K′)t, t ∈ [tp, tp+1), (4.9)

where K′ satisfies

K′ ∈ Cmin(∪j∈Src(K′)Sj ,K). (4.10)

We need a few preliminaries for the proof of Theorem 4.1. We begin with Lemma

4.2 which gives a solution to (4.3) on an interval.

Lemma 4.2. Suppose VK(t1) is known, (4.3) has a solution on [t1, t2) given as

VK(t) = VK(t1) + z(t− t1) (4.11)

if there is a set of nodes P such that P ∩ K = ∅ and z ≥ 0 satisfying

1. V{i}∪K(t) = VK(t1) + z(t− t1), ∀t ∈ [t1, t2), ∀i ∈ P;

2. V{j}∪K ≥ VK(t1) + z(t− t1), ∀t ∈ [t1, t2), ∀j 6∈ K ∪ P;

3.
∑

j 6∈K∪P zj,K ≤ z ≤
∑

i 6∈K zi,K.

Proof. Suppose this is not true such that there is t′′ ∈ [t1, t2) satisfying

VK(t′′) 6= VK(t1) + z(t− t1).

Let

t′ = sup
t1≤t≤t′′

{VK(t) = VK(t1) + z(t− t1)}, (4.12)
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then t′ exists, t1 ≤ t′ < t′′ < t2 and VK(t) 6= VK(t1) + z(t− t1) ∀t ∈ (t′, t′′] by definition.

Because VK(t) is continuous, either

VK(t) > VK(t1) + z(t− t1), ∀t ∈ (t′, t′′], (4.13)

or

VK(t) < VK(t1) + z(t− t1), ∀t ∈ (t′, t′′]. (4.14)

If (4.13) holds, by assumption 1, V{i}∪K(t) < VK(t), ∀t ∈ (t′, t′′], ∀i ∈ P. So, with

assumption 2,

V̇K(t) =
∑
i 6∈K

zi,KSgn+(V{i}∪K − VK) ≤
∑

j 6∈K∪P
zj,K, (4.15)

thus

VK(t′′) = VK(t′) +

∫ t′′

t′
V̇K(t)dt

= VK(t1) + z(t′ − t1) +

∫ t′′

t′
V̇K(t)dt

≤ VK(t1) + (t′ − t1) +
∑

j 6∈K∪P
zj,K(t′′ − t′)

≤ VK(t1) + z(t′ − t1) + z(t′′ − t′) (assumption 3)

= VK(t1) + z(t′′ − t1), (4.16)

which is a contradiction to (4.13). If (4.14) holds, by assumption 1 and 2,

V̇K =
∑
i 6∈K

zi,KSgn+(V{i}∪K − VK) =
∑
i 6∈K

zi,K. (4.17)
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Then by assumption 3,

VK(t′′) = VK(t1) + z(t′ − t1) +

∫ t′′

t′
V̇K(t)dt

= VK(t1) + z(t′ − t1) +
∑
i 6∈K

zi,K(t′′ − t′)

≥ VK(t1) + z(t′ − t1) + z(t′′ − t′) (assumption 3)

= VK(t1) + z(t′′ − t1), (4.18)

which is a contradiction to (4.14).

Proof to Theorem 4.1. Since (4.6) is the expansion of (4.4) and (4.5), they are equiv-

alent, hence it suffices to prove (4.6). We prove this via induction on |Kc|. When

|Kc| = 0, K = N , VN (0) =
∑J

j=1mj , ∀t ≥ 0. Eq. (4.4)–(4.6) are trivially true. Assume

it is true when |Kc| ≤ k − 1, we prove it is also true for |Kc| = k. Let

UK(t) = min
K′⊃K

{VK′(0) + c(K′)t}, (4.19)

then UK(t) is piecewise linear (since it is the minimum of a finitely many affine functions)

and there is a sequence

0 = t0 < t1 < · · · < tnK−1 < tnK =∞ (4.20)

such that for each p = 0, 1, . . . , nK − 1,

UK(t) = VK′(0) + c(K′)t, t ∈ [tp, tp+1), (4.21)

for someK′. We claimK′ ∈ Cmin(∪j∈Src(K′)Sj ,K). Otherwise, letK′′ ∈ Cmin(∪j∈Src(K′)Sj ,K)

but K′′ 6= K. By definition of min cut for the hypergraph model, we have

c(K′′) < c(K′). (4.22)
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Since (∪j∈Src(K′)Sj) ∩ K′′ = ∅, Src(K′) ⊂ Src(K′′), so

VK′′(0) ≤ VK′(0). (4.23)

Therefore ∀t ∈ (tp, tp+1),

VK′′(0) + c(K′′)t < VK′(0) + c(K′)t, (4.24)

which is a contradiction to (4.19).

We want to show that VK(t) = UK(t), ∀t ∈ [tp, tp+1), using Lemma 4.2, which

amounts to checking three conditions. Let P = K′ \ K, z =
∑

i 6∈K′ zi,K′ = c(K′). First

note

V{i}∪K(t) = UK(t), ∀i ∈ P, ∀t ∈ [tp, tp+1). (4.25)

This is because, on one hand, V{i}∪K(t) ≥ UK(t) by (4.19), while on the other hand, by

induction assumption (|N \ ({i} ∪ K)| = k − 1)

V{i}∪K(t) = min
({i}∪K)⊂K′′

{VK′′(0) + c(K′′)t}

≤ VK′(0) + c(K′)t (since {i} ∪ K ⊂ K′)

= UK(t). (4.26)

Meanwhile, by (4.19) we have

V{j}∪K(t) ≥ UK(t), ∀t ∈ [tp, tp+1),∀j 6∈ K ∪ P. (4.27)

Because K′ = Cmin(∪j∈Src(K′)Sj ,K), z ≤
∑

i 6∈K zi,K. Because K ⊂ K′,

∑
i 6∈K′

zi,K ≤
∑
i 6∈K′

zi,K′ = z. (4.28)
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Thus assumption 3 of Lemma 4.2 is checked for all t. We then check assumptions 1 and

2 piecewise. When p = 0,

UK(t0) = UK(0) = min
K′⊃K

{VK′(0)} = VK(0) (4.29)

Let I(·) be the indicator function that takes 1 when the predicate inside is true or 0

otherwise, then we have, for any K′ ⊃ K,

VK′(0) =

J∑
j=1

I(Sj ∩ K′ 6= ∅)mj

≥
J∑
j=1

I(Sj ∩ K 6= ∅)mj = VK(0). (4.30)

From (4.25) and (4.30),

V{i}∪K(t) = VK′(0) + c(K′)t = VK(0) + c(K′)t, ∀t ∈ [t0, t1),∀i ∈ P, (4.31)

Hence assumption 1 is checked for [t0, t1). From (4.27) and (4.30),

V{j}∪K(t) ≥ VK′(0) + c(K′)t = VK(0) + c(K′)t, ∀t ∈ [t0, t1), ∀j 6∈ K ∪ P. (4.32)

Hence assumption 2 is checked for [t0, t1). Therefore VK(t) = UK(t), ∀t ∈ [t0, t1).

But this in turn implies that VK(t1) = UK(t1) by continuity (cf. 3.3), which implies

that assumption 1 and 2 are also checked for [t1, t2) (same argument as for [t0, t1)).

Therefore VK(t) = UK(t), ∀t ∈ [t1, t2). Repeat this argument nK times, we conclude

that VK(t) = UK(t), ∀t ≥ 0. This shows the validity of (4.6) for |Kc| = k.

Essentially, Theorem 4.1 (cf. Eq. (4.6)) states that VK(t) is the min-envelope of

2|K
c| affine functions corresponding to the subsets of nodes that contain K. The partial

order “.” illustrated by the layered structure also implies the usual linear order “≤”,
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i.e.,

K . K′ ⇒ VK(t) ≤ V ′K(t), ∀t ≥ 0. (4.33)

Therefore it is always true

VK ≤ VN =
J∑
j=1

mj . (4.34)

A stronger statement than (4.34) can be made when G is connected, i.e.,

Corollary 4.3. If G = (N , E) is connected, then ∀K 6= ∅

VK(t) =

J∑
j=1

mj , t ∈ [tnK−1,∞). (4.35)

Proof. Because G is connected, ∀K ⊂ K′ ( N , c(K′) > 0. Therefore when t is suffi-

ciently large,

V ′K(0) + c(K′)t >
J∑
j=1

mj = VN (t).

Hence we have the conclusion from (4.6) of Theorem 4.1.

Corollary 4.3 implies that with the RNC scheme for multiple flows as described

here, a node may have to wait until its rank reaches
∑J

j=1mj to start decoding. This

time is denoted as T total
K . Though there could be fairly large decoding delay for nodes

only interested in one or few sessions, the intersession coding is optimal in the sense of

min cut bound. Applying (4.9) in Theorem 4.1 to [tnK−1, tnK), it is clear that T total
K is

determined by one of the min cut bounds that K has to take into consideration. The

min cut that determines the finish time can be regarded as the worst bottleneck for K.

More precisely, we have

Corollary 4.4. If G = (N , E) is connected, then

T total
K = max

S⊂Src(K)
{
∑
j∈S

mj/cmin(∪i∈SSi,K))}. (4.36)
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Proof. Clearly T total
K = tnK−1. By Theorem 4.1, there is K′ ⊃ K such that ∀t ∈

[tnK−2, tnK−1),

VK(t) = VK′(0) + c(K′)t

=
∑

j 6∈Src(K′)

mj + cmin(∪i∈Src(K′)Si,K)t, (4.37)

and by setting VK(tnK−1) =
∑J

j=1mj , we get

T total
K = tnK−1

=

 J∑
j=1

mj −
∑

1≤j′≤J
j′ 6∈Src(K′)

mj′


/
cmin(∪i∈Src(K′)Si,K)

=
∑

j∈Src(K′)

mj/cmin(∪i∈Src(K′)Si,K)

≤ max
S⊂Src(K)

{
∑
j∈S

mj/cmin(∪i∈SSi,K))}, (4.38)

where the last inequality holds because K′ ⊃ K, hence Src(K′) ⊂ Src(K). However, if

there is S′ ⊂ Src(K), such that

∑
j∈S′

mj/cmin(∪i∈S′Si,K) > T total
K , (4.39)

let K′′ = Cmin(∪i∈S′Si,K), then we have

VK′′(0) ≤
∑

1≤j′′≤J
j′′ 6∈S′

mj′′ (4.40)

because S′ ⊂ Src(K′′), and

VK′′(0) + c(K′′)T total
K = VK′′(0) + cmin(∪i∈S′Si,K)T total

K

<
∑

1≤j′′≤J
j′′ 6∈S′

mj′′ +
∑
j∈S′

mj =

J∑
j=1

mj = VK(T total
K ), (4.41)
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which contradicts (4.33). So

T total
K ≥ max

S⊂Src(K)
{
∑
j∈S

mj/cmin(∪i∈SSi,K))}. (4.42)

Combine (4.38) with (4.42), we get (4.36).

From Theorem 4.1 and Corollary 4.3 we can readily show that the average through-

put under the fluid approximation is given by the min-cut bound, i.e., we have

Theorem 4.5. If G = (N , E) is connected and node 1 is the single source of a multicast

session, the solution to (3.23) with B.C. (3.18) that describes this scenario is given as

1. ∀K ⊂ N and 1 ∈ K,

VK(t) = m, ∀t ∈ [0,∞); (4.43)

2. ∀K ⊂ N and 1 6∈ K,

VK(t)=


cmin(1,K)t, ∀t∈ [0,m/cmin(1,K)),

m, ∀t∈ [m/cmin(1,K),∞).

(4.44)

Proof. By Theorem 4.1, the solution to (3.23) for each K is piecewise linear. If 1 ∈ K,

for any K′ that satisfy (4.9) and (4.10), we must have VK′(0) = m and c(K′) = 0. This

implies VK(t) is a constant. By Corollary 4.3, we have (4.43). If 1 6∈ K, there are two

possibilities:

1. K′ ∈ (1,K) and c(K′) = cmin(1,K);

2. K′ ∈ (∅,K) and c(K′) = 0.

By Corollary 4.3, the second case applies to t ∈ [t1,∞), hence the first case applies to

t ∈ [t0, t1) as we know VK(0) = 0. We therefore have (4.44).
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Theorem 4.5 states that the rank of K increases until it reaches m at the rate allowed

by the min cut that separates K from the source.

Corollary 4.6. For 1 6∈ K, V̇K = cmin(1,K),when VK < m.

Specializing Corollary 4.6 to an arbitrary destination node i, we obtain the same

result shown in [9]:

Corollary 4.7. For i 6= 1, V̇i = cmin(1, i),when Vi < m.

Corollary 4.7 shows that if a unicast at average rate R exists for each destination i

separately, i.e., cmin(1, i) ≥ R, then the proposed coding scheme is capable to implement

a multicast at average rate R.
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Chapter 5

Concentration Behavior of Differential Equation Solution

– The Asymptotic Case

Chapter 4 presented an average analysis of RNC throughput based on the fluid approx-

imation. In this section we show that this throughput can be achieved asymptotically

with increasing number of source packets m. This asymptotic result was previously

proven in [9] using a queueing approach and graph decomposition. In this thesis, we

begin with (3.6) and solely work with differential equations to show the same result.

This perspective on RNC is new.

To motivate the achievability problem, we first prove a weak1 version of min-cut

max-flow theorem for RNC.

Theorem 5.1. Assume node 1 is the only source in the network and the transmission

begins at t = 0. Let NK(t) be the incremental process of innovative packets at K ⊂

N \ {1}, then

E[NK(t)] ≤ cmin(1,K)t. (5.1)

1A stronger version would say dE[NK(t)]/dt ≤ cmin(1,K).
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Proof. Suppose T ∈ Cmin(1,K). We have, from Lemma 3.1,

dE[NT (t)]

dt
=
∑
i∈T c

zi,T E[1− qNT (t)−N{i}∪T (t)] (5.2)

≤
∑
i∈T c

zi,T = cmin(1,K). (5.3)

Since NK(0) = 0, we have

E[NK(t)] ≤ E[NT (t)] ≤ cmin(1,K) t. (5.4)

Though Theorem 5.1 indicates that the time average throughput of RNC is governed

by the min-cut bound, we will show that the min-cut bound can be asymptotically

achieved. In this section, we assume the hypergraph is connected and we give the

asymptotic achievability proof of RNC within the DE framework. For any K ⊂ N , we

let DK(m1,m2) denote the time taken for NK to increase from m1 to m2. We will prove

∀1 > ε > 0

lim
m→∞

P (m/DK(0,m) > εcmin(1,K)) = 1. (5.5)

In order to prove this, we will follow the strategy outlined as below: We begin with

Lemma 5.2 that is fundamental for the argument. Lemma 5.3 builds a system of DEs

for var[NK(t)], from which we will prove Theorem 5.4 with the help of Lemma 5.2 that

says the standard deviation of NK(t) is upper bounded by a sublinear function. Then

we scale NK(t) to produce a new process MK(t) and show in Theorem 5.6 that MK(t)

converges in probability to cmin(1,K)t. While the following Corollary 5.7 implies that

the throughput is given by cmin(1,K) for the entire course of transmission except the

last few packets, Proposition 5.8 and Corollary 5.9 show that the last few packets take
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bounded time to get transmitted. Theorem 5.10 combines Corollary 5.7 and Corollary

5.9 to complete the achievability proof.

Lemma 5.2. Let X be an r.v. and let f : R→ R be a decreasing function, then

E[Xf(X)] ≤ E[X]E[f(X)]. (5.6)

In other words,

cov[X, f(X)] ≤ 0. (5.7)

Proof. Let X ′ be an independent copy of X. Since f is decreasing, we have

(X −X ′)(f(X)− f(X ′)) ≤ 0 a.s., (5.8)

so

E[(X −X ′)(f(X)− f(X ′)] ≤ 0. (5.9)

Expanding (5.9) we have (5.6).

It should be pointed out that a more general statement of Lemma 5.2 can be found

in [18].

Lemma 5.3. For any set K of nodes, we have

dvar[NK(t)]

dt
=

dE[NK(t)]

dt
+ 2

∑
i∈Kc

zi,Kcov[NK(t), 1− qNK(t)−N{i}∪K(t)]. (5.10)

Proof. The proof is manifest in the following computation.

NK(t+ ∆t) = NK(t) + ∆K(t), (5.11)

so

N2
K(t) = N2

K(t) + ∆2
K(t) + 2NK(t)∆K(t). (5.12)
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We have

E[∆2
K(t)] =

∑
i∈K2

λi∆tPi,KE[1− qNK(t)−N{i}∪K(t)] + o(∆t), (5.13)

and

E[NK(t)∆K(t)] (5.14)

=
∑
i∈Kc

λi∆tPi,KE[NK(t)(1− qNK(t)−N{i}∪K(t))] + o(∆t).

Therefore

dE[N2
K(t)]

dt
(5.15)

=
∑
i∈K2

λiPi,KE[1− qNK(t)−N{i}∪K(t)]

+
∑
i∈Kc

λiPi,KE[NK(t)(1− qNK(t)−N{i}∪K(t))]

=
dE[NK(t)]

dt
+
∑
i∈Kc

zi,KE[NK(t)(1− qNK(t)−N{i}∪K(t))],

where the last equality follows from Lemma 3.1. We also have

dE2[NK(t)]

dt

=2E[NK(t)]
dE[NK(t)]

dt

=2
∑
i∈Kc

zi,KE[NK(t)]E[1− qNK(t)−N{i}∪K(t)], (5.16)

so

dvar[NK(t)]

dt
(5.17)

=
dE[N2

K(t)]

dt
− dE2[NK(t)]

dt

=
dE[NK(t)]

dt
+ 2

∑
i∈Kc

zi,Kcov[NK(t), 1− qNK(t)−N{i}∪K(t)].
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Theorem 5.4 bounds
√

var[NK(t)] with a sublinear function dKt
1−δK/2 in time. Since

we know E[NK(t)] ≈ cmin(1,K)t from Chapter 4, it later enables us to use Chebyshev

inequality to show concentration of NK(t).

Theorem 5.4. There exists constants dK > 0 and 1 ≥ δK > 0 for each K independent

of q, m, such that

lim sup
t→∞

var[NK(t)]

t2−δK
≤ dK. (5.18)

Proof. We first make a trivial observation that, if we let

aK =
∑
i∈Kc

zi,K, (5.19)

then

dE[NK(t)]

dt
≤ aK (5.20)

by Lemma 3.1. The rest of the proof is by induction using the partial order. When

K = {1}c, we have

dvar[NK(t)]

dt
=

dE[NK(t)]

dt
+ 2

∑
i∈Kc

zi,Kcov[NK(t), 1− qNK(t)−m]. (5.21)

Since 1− qNK(t)−m is decreasing and concave in NK(t), by Lemma 5.2, we know

dvar[NK(t)]

dt
≤ dE[NK(t)]

dt
, (5.22)

so

var[NK(t)] ≤ E[NK(t)] ≤ aKt (5.23)

by (5.20), as var[NK(0)] = E[NK(0)] = 0. Therefore we can assign dK = aK and δK = 1.

Now suppose the statement is true ∀K′ ⊃ K, K′ 6= K, we prove it is also true for K.
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First note

cov[NK(t), 1− qNK(t)−N{i}∪K(t)]

=cov[NK(t)−N{i}∪K(t), 1− qNK(t)−N{i}∪K(t)]

+ cov[N{i}∪K(t), 1− qNK(t)−N{i}∪K(t)]. (5.24)

The first term on the right-hand side of (5.24) is non-positive by Lemma 5.2. By

Cauchy-Schwarz inequality, the second term can be upper bounded as

cov[N{i}∪K(t), 1− qNK(t)−N{i}∪K(t)]

≤
√

var[N{i}∪K(t)]

√
var[1− qNK(t)−N{i}∪K(t)]

≤
√

var[N{i}∪K(t)]

≤
√
d{i}∪K t

1−δ{i}∪K/2, (5.25)

so

dvar[NK(t)]

dt
≤ dE[NK(t)]

dt
+ 2

∑
i∈Kc

zi,K

√
d{i}∪K t

1−δK/2. (5.26)

By induction, we have

var[NK(t)] ≤ aKt+ 2
∑
i∈Kc

zi,K
√
d{i}∪K

2− δ{i}∪K/2
t2−δ{i}∪K/2, (5.27)

as var[NK(0)] = E[NK(t)] = 0. Therefore we can pick

dK = aK + 2
∑
i∈Kc

zi,K
√
d{i}∪K

2− δ{i}∪K/2
(5.28)

and

δK = min{1,min
i∈Kc
{δ{i}∪K/2}}. (5.29)
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The next result is more conveniently discussed in terms of the scaled process defined

as

M
(m)
K (t) ,

1

m
NK(mt). (5.30)

The scaled process M
(m)
K (t) contains essentially the same information as NK(t) except

its graph is scaled down with a fixed aspect ratio. We list some obvious properties of

M
(m)
K (t).

Proposition 5.5. M
(m)
K (t) has the following properties:

1. E[M
(m)
K (t)] is increasing from 0 to 1 for 1 6∈ K.

2. M
(m)
K (t) = 1 for 1 ∈ K. For 1 6∈ K, M

(m)
K (t) satisfies

dE[M
(m)
K (t)]

dt
=
∑
i∈Kc

zi,KE

[
1− (qm)

M
(m)
K (t)−M(m)

{i}∪K(t)
]
. (5.31)

3.

E[M
(m)
K (t)] =

1

m
E[NK(mt)] (5.32)

≤ cmin(1,K)t, ∀t ∈ [0,m/cmin(1,K)),∀K 63 1.

4. {E[M
(m)
K (t)]}m are uniformly Lipschitz continuous.

5. ∃dK > 0 and δK > 0 independent of m, such that

lim sup
m→∞

var[M
(m)
K (t)]

m−δK
≤ dKt2−δK (5.33)

for fixed t.

Proof. Property 1) is obvious. Property 2) follows from Lemma 3.1. Property 3) follows

from Theorem 5.1. Property 4) follows from

dE[NK(t)]

dt
≤
∑
i∈Kc

zi,K (5.34)
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and

dE[M
(m)
K (t)]

dt
=
E[NK(τ)]

dτ

∣∣∣∣
τ=mt

. (5.35)

Property 5) follows from Lemma 5.3:

lim sup
m→∞

var[M
(m)
K (t)]

m−δK

= lim sup
m→∞

var
[

1
mNK(mt)

]
m−δK

≤ dKt2−δK . (5.36)

Note that property 3) of Proposition 5.5 provides an upper bound on E[M
(m)
K (t)],

we will show that in fact M
(m)
K (t) asymptotically concentrates to this upper bound, i.e.,

Theorem 5.6. Given K, M
(m)
K (t)

p−→ cmin(1,K)t, ∀t ∈ (0, 1/cmin(1,K)] as m→∞.

Proof. Due to property 4) of Proposition 5.5, {E[M
(m)
K (t)]}m are Lipschitz continuous

hence equicontinuous. They are also uniformly bounded by constant 1. By the Arzelà-

Ascoli Theorem, ∀K ⊂ N , a subsequence {E[M
(m`)
K (t)]}∞`=1 converges uniformly to some

continuous function MK(t) over [0, 1/cmin(1,K)]. In fact, we can pick a single sequence

{E[M
(m`)
K (t)]} that converges uniformly to MK(t) for all K because there are only a

finite number of K ⊂ N . So we make this assumption and in what follows we prove

MK(t) = cmin(1,K) t by contradiction and via induction on the partial order of K.

When K = {1}c. Suppose at t2 ∈ (0, 1/cmin(1,K)], cmin(1,K)t2 −MK(t2) = h > 0.

Because MK(0) = 0, by continuity, ∃0 < t1 < t2, such that cmin(1,K)t1−MK(t1) = h/2

and

cmin(1,K)t−MK(t) ≥ h/2, ∀t ∈ [t1, t2]. (5.37)
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Let

λ`K = m
δK/4
` , then lim

`→∞

1

(λ`K)2
= 0, . (5.38)

From property 5) of Proposition 5.5 we know

lim
`→∞

λ`K

√
var[M

(m`)
K (t)] = 0, uniformly ∀t ∈ [t1, t2]. (5.39)

Because E[M
(m`)
K (t)]

u→MK(t) on [0, 1/cmin(1,K)], ∃L1 such that ∀` > L1

|E[M
(m`)
K (t)]−MK(t)| < h/8, ∀t ∈ [t1, t2], (5.40)

so

E[M
(m`)
K (t)] < MK(t) + h/8, ∀t ∈ [t1, t2], ∀` > L1, (5.41)

and in particular ∀` > L1,

E[M
(m`)
K (t1)] > cmin(1,K)t1 − 5h/8, (5.42)

E[M
(m`)
K (t2)] < cmin(1,K)t2 − 7h/8. (5.43)

Let p(γ) be the distribution function of M
(m`)
K (t) and let A be the interval

A ,

[
0, E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

]
, (5.44)
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then we may calculate

dE[M
(m`)
K (t)]

dt
(5.45)

= z1,KE[1− (qm`)M
(m`)

K (t)−1]

≥
∫
A
p(γ)z1,K(1− (qm`)γ−1)dγ

≥
∫
A
p(γ)z1,K(1− (qm`)E[M

(m`)

K (t)]+λ`K

√
var[M

(m`)

K (t)]−1)dγ

>

∫
A
p(γ)z1,K(1− (qm`)MK(t)+h/8+λ`K

√
var[M

(m`)

K (t)]−1)dγ

= z1,K(1− (qm`)MK(t)+h/8+λ`K

√
var[M

(m`)

K (t)]−1)

· P
(
M

(m`)
K (t) < E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

)

But,

P

(
M

(m`)
K (t) < E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

)
≥ 1− 1

(λ`K)2
→ 1, (`→∞) (5.46)

by Chebyshev inequality, which is true ∀t ∈ [t1, t2] uniformly. Using (5.37),(5.39) and

noticing that t ≤ t2 ≤ 1/cmin(1,K), we have

lim sup
`→∞

MK(t) + h/8 + λ`K

√
var[M

(m`)
K (t)]− 1

≤ cmin(1,K)t− 3h/8− 1 ≤ −3h/8, (5.47)

so,

lim
`→∞

1− (qm`)MK(t)+h/8+λ`K

√
var[M

(m`)

K (t)]−1 = 1, (5.48)

which is also true ∀t ∈ [t1, t2] uniformly. Therefore, given

ε ∈
(

0,
h/4

cmin(1,K)(t2 − t1)

)
, (5.49)
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∃L2 > L1 > 0, such that ∀` > L2,

dE[M
(m`)
K (t)]

dt
> (1− ε)z1,K = (1− ε)cmin(1,K), ∀t ∈ [t1, t2]. (5.50)

Therefore

E[M
(m`)
K (t2)]

≥E[M
(m`)
K (t1)] +

∫ t2

t1

(1− ε)cmin(1,K)d

>cmin(1,K)t1 − 5h/8 + (1− ε)cmin(1,K)(t2 − t1)

=cmin(1,K)t2 − 5h/8− εcmin(1,K)(t2 − t1)

>cmin(1,K)t2 − 7h/8, (5.51)

which is a contradiction to (5.43). This showsMK(t) = cmin(1,K) t for t ∈ [0, 1/cmin(1,K)]

when K = {1}c. Suppose this statement is true ∀K′ ⊃ K, K′ 6= K. We claim that we

still have MK(t) = cmin(1,K)t. Otherwise, suppose at t2 ∈ (0, 1/cmin(1,K)] we have

h = cmin(1,K)t2 −MK(t2) > 0, (5.52)

then similarly, we can find t1 ∈ (0, t2) such that

cmin(1,K)t1 −MK(t1) = h/2 (5.53)

and

cmin(1,K)t−MK(t) ≥ h/2, ∀t ∈ [t1, t2]. (5.54)

Reuse the definition of λ`K such that (5.38) and (5.39) still apply. Define λ`{i}∪K in the

similar way with respect to δ{i}∪K and M
(m`)
{i}∪K(t). Because E[M

(m`)
K (t)]

u→ MK(t) and

E[M
(m`)
{i}∪K(t)]

u→M{i}∪K(t) on [0, 1/cmin(1,K)], ∃L1 such that ∀` > L1 and ∀t ∈ [t1, t2],

|E[M
(m`)
K (t)]−MK(t)| < h/8,

|E[M
(m`)
{i}∪K(t)]−M{i}∪K(t)| < h/8.

(5.55)
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Let p(γK, γ{i}∪K) be the joint distribution function of M
(m`)
K (t) and M

(m`)
{i}∪K(t). Let

A ,

[
0, E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

]
×

[
E[M

(m`)
{i}∪K(t)]− λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)], 1

]
. (5.56)

Then we may calculate as follows

E[1− (qm`)
M

(m`)

K (t)−M(m`)

{i}∪K(t)
]

≥
∫
A
p(γK, γ{i}∪K)(1− (qm`)γK−γ{i}∪K). (5.57)

But when (γK, γ{i}∪K) ∈ A, we have

γK − γ{i}∪K ≤ E[M
(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

− E[M
(m`)
{i}∪K(t)] + λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]. (5.58)

Using (5.54), (5.55) and the induction assumption M
(m`)
{i}∪K(t) = cmin(1, {i} ∪ K)t, we

have

γK − γ{i}∪K < MK(t) + h/8 + λ`K

√
var[M

(m`)
K (t)]

−M{i}∪K(t) + h/8 + λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

≤ cmin(1,K)t− h/2 + h/8 + λ`K

√
var[M

(m`)
K (t)]

− cmin(1, {i} ∪ K)t+ h/8 + λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

≤ −h/4 + λ`K

√
var[M

(m`)
K (t)] + λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

→ −h/4, (`→∞), uniformly ∀t ∈ [t1, t2]. (5.59)

By Inclusion-Exclusion Principle, we have for any two events A and B

P (A ∧B) ≥ P (A) + P (B)− 1. (5.60)
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So

P

(
M

(m`)
K (t) < E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]∧

M
(m`)
{i}∪K(t) > E[M

(m`)
{i}∪K(t)]− λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

)

≥ P
(
M

(m`)
K (t) < E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]

)
+ P

(
M

(m`)
{i}∪K(t) > E[M

(m`)
{i}∪K(t)]− λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

)
− 1

>

(
1− 1

(λ`K)2

)
+

(
1− 1

(λ`{i}∪K)2

)
− 1

→ 1, (`→∞), uniformly ∀t ∈ [t1, t2], (5.61)

by Chebyshev Inequality and (5.38).

Consequently,

E[1− (qm`)
M

(m`)

K (t)−M(m`)

{i}∪K(t)
]

> P

(
M

(m`)
K (t) < E[M

(m`)
K (t)] + λ`K

√
var[M

(m`)
K (t)]∧

M
(m`)
{i}∪K(t) > E[M

(m`)
{i}∪K(t)]− λ`{i}∪K

√
var[M

(m`)
{i}∪K(t)]

)

· (1− (qm`)
−h/4+λ`K

√
var[M

(m`)

K (t)]+λ`{i}∪K

√
var[M

(m`)

{i}∪K(t)]

→ 1, (`→∞), uniformly ∀t ∈ [t1, t2].

Therefore, given ε as defined in (5.49), ∃L2 > L1, such that ∀` > L2,

dE[M
(m`)
K (t)]

dt
=
∑
i∈Kc

zi,KE

[
1− (qm`)

M
(m`)

K (t)−M(m`)

{i}∪K(t)
]

≥ (1− ε)
∑
i∈Kc

zi,K

≥ (1− ε)cmin(1,K), (5.62)
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from which we reach the same contradiction as in (5.51). This shows that E[M
(m`)
K (t)]

u−→

cmin(1,K)t over [0, 1/cmin(1,K)]. Now we claim that, in fact, E[M
(m)
K (t)]→ cmin(1,K)t

over [0, 1/cmin(1,K)]. For otherwise ∃t ∈ [0, 1/cmin(1,K)], ∃ε > 0 and ∃{m`}` which

is a subsequence of m = 1, 2, . . ., such that cmin(1,K)t − E[M
(m`)
K (t)] > ε. Apply the

previous set of induction arguments to {E[M
(m`)
K (t)]}`, we know that a subsequence

of {E[M
(m`)
K (t)]}` converges to cmin(1,K)t uniformly on [0, 1/cmin(1,K)], which is a

contradiction.

Because ∀t ∈ (0, 1/cmin(1,K)], E[M
(m)
K (t)] → cmin(1,K)t and, from Property 5) of

Proposition 5.5, var[M
(m)
K (t)] → 0, the conclusion follows from Chebyshev Inequality.

Since MK(t)→ cmin(1,K)t, we know that except for the last few packets, the trans-

mission happens at the rate arbitrarily close to cmin(1,K), i.e., we have

Corollary 5.7. Given α ∈ (0, 1), we have

lim
m→∞

P

(
D(0, α2m) ≤ αm

cmin(1,K)

)
= 1. (5.63)

Proof.

lim
m→∞

P

(
DK(0, α2m) ≤ αm

cmin(1,K)

)
= lim
m→∞

P

(
NK

(
αm

cmin(1,K)

)
≥ α2m

)
= lim
m→∞

P

(
1

m
NK

(
αm

cmin(1,K)

)
≥ α2

)
= lim
m→∞

P

(
M

(m)
K

(
α

cmin(1,K)

)
≥ αcmin(1,K) · α

cmin(1,K)

)
→ 1 (5.64)

according to Theorem 5.6 with

t =
α

cmin(1,K)
. (5.65)
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However, the last few packets do not really affect the ensemble transmission rate

because we can put a bound on the time it takes to transmit them. This bound is

proportional to the amount of “slow” packets at the end of transmission and can be

made negligible compared to the bulk of the transmission. Specifically, we have

Proposition 5.8. Given q and 1 > α > 0, there exists bi for each node i, such that

lim
m→∞

P (Di(αm,m) ≤ bi(1− α)m) = 1. (5.66)

Proof. First consider the special case when z1,i > 0 and we ignore packets received at

i from nodes other than 1. When Ni(t) < m, any incoming packet is innovative with

probability of 1− qNi(t)−m ≥ 1− q−1. So let

bi =
3

z1,i(1− q−1)
(5.67)

and apply Chebyshev inequality we have

P (Di(αm,m) ≤ bi(1− α)m)→ 1. (5.68)

If there is a path, say (WLOG), 1, 2, . . . , i− 1, such that zj,j+1 > 0 (j = 1, 2, . . . , i− 1)

(This must be true since we assume G is connected), we focus on the transmission along

this path and ignore other transmissions. We use D′j(m1,m2) to denote the time Nj(t)

takes to increase from m1 to m2, assuming during that time Nj−1(t) = m. Let

bi =

i−1∑
j=1

3

zj,j+1(1− q−1)
, (5.69)
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then

P (Di(αm,m) ≤ bi(1− α)m)

≥P

 i−1∑
j=1

D′j+1(αm,m) ≤ bi(1− α)m


≥P

i−1∧
j=1

D′j+1(αm,m) ≤ 3(1− α)m

zj,j+1(1− q−1)


→1, (5.70)

where the first inequality follows from the fact that for j = 2, 3, . . . , i, Nj−1(t) reaches

m before Nj(t) reaches m; and the limit follows from the inclusion-exclusion principle

and (5.68).

The following corollary trivially extends the conclusion to an arbitrary set K.

Corollary 5.9. For any nonempty set K ⊂ N , ∃bK > 0 such that

lim
m→∞

P (DK(αm,m) ≤ bK(1− α)m) = 1. (5.71)

Proof. Assume node i ∈ K and apply Proposition 5.8.

Now we are in a position to finish the achievability proof by combining Corollary

5.7 and Corollary 5.9.

Theorem 5.10. ∀K ⊂ N and ∀0 < ε < 1,

lim
m→∞

P

(
m

DK(0,m)
> εcmin(1,K)

)
= 1. (5.72)
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Proof. We note ∀α ∈ (0, 1),

P

(
m

DK(0,m)
> εcmin(1,K)

)
(5.73)

=P

(
DK(0,m) <

m

εcmin(1,K)

)
≥P

(
D(0, α2m) ≤ αm

cmin(1,K)

∧D(α2m,m) ≤ m

εcmin(1,K)
− αm

cmin(1,K)

)
≥P

(
D(0, α2m) ≤ αm

cmin(1,K)

)
+ P

(
D(α2m,m) ≤ m

εcmin(1,K)
− αm

cmin(1,K)

)
− 1.

Pick α ∈ (0, 1) such that

α > 1− 1/ε− 1

2bKcmin(1,K)
, (5.74)

then we have

1

εcmin(1,K)
>

1

cmin(1,K)
+ bK(2− 2α)

>
α

cmin(1,K)
+ bK(2− 2α)

≥ α

cmin(1,K)
+ bK(1− α2). (5.75)

By Corollary 5.9, we know

lim
m→∞

P

(
D(α2m,m) ≤ m

εcmin(1,K)
− αm

cmin(1,K)

)
= 1. (5.76)

By Corollary 5.7

lim
m→∞

P

(
D(0, α2m) ≤ αm

cmin(1,K)

)
= 1. (5.77)

Pluging (5.76) and (5.77) back in (5.73) and taking the limit m→∞, we get (5.72).
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Theorem 5.10 is a little more general than the statements made in [9] and [19] since

it reveals that, not only the rank at a single node, but also the rank at any subset

K ⊂ N increases at the rate determined by the min-cut bound cmin(1,K). It should

also be pointed out that in the proof to Theorem 5.10, typical difficulties with cycles

in the network topology do not arise due to the layered structure of the DI’s that has

encoded all topological information.
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Chapter 6

Cross Layer Design with RNC

6.1 Dynamical System View of Random Network Coding

In this chapter we consider the problem of cross layer design with RNC. The wire-

less network is still modeled as a hypergraph [20] G = (N , E) where N is the set of

transceiver nodes and E are a collection of hyperarcs in the form of (i,K) pairs where

i ∈ N and K ⊂ N . We assume every node in the network performs RNC on the finite

field GF(q). Whenever a node gets to transmit, it transmits a coded packet that is a

random linear combination of all the packets available to it, including the packets it

originates and the coded packets it has received. Because RNC takes packets as the

atomic object to process, it represents a transport strategy that is decoupled from the

underlying MAC or PHY technologies, whose operations are considered independent

of RNC. Take an arbitrary node i for example, typically the MAC layer of node i de-

termines the transmission (broadcast) rate measured in packets per second. The PHY

layer of node i determines the error probability that a transmitted packet can be cor-

rectly decoded at any receiver node j. In fact, according to [20], the respective effect

of MAC and PHY in a wireless network can be shown through two variables:

• λi: the transmission rate at node i;

• Pi,K: the probability that a packet sent from node i can be correctly decoded by
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at least one node in K.

It is possible to summarize the overall effect of MAC and PHY by defining zi,K = λiPi,K,

which can be conceived as the capacity of the hyperarc (i,K). Given i ∈ Kc, we further

define the min cut capacity for (i,K) as

cmin(i,K) = min
K⊂T ,i 6∈T

∑
j∈T c

zj,T . (6.1)

As decodability of RNC entirely depends on the rank, and as there is no explicit

routing, it is important to keep track of the rank at any node. Again, we use Vi to

denote the average rank at any node i and VK the average rank of K. As we discussed

in Chapter 3, Vi and VK may be modeled as a system of differential equations. When

MAC and PHY are fixed such that zi,K are known parameters, these equations are

explicitly written down as

V̇K =
∑
i∈Kc

zi,K(1− qVK−V{i}∪K), ∀K 6= ∅,K ⊂ N . (6.2)

If we stack VK into a column vector V and stack all zi,K in z, we may write (6.2) in a

more compact form

V̇ = f(V, z) (6.3)

where f is the stacking of the right-hand sides of (6.2). Note the instantaneous through-

put of set K is given by V̇K. Suppose node 1 is the only source node. When m → ∞,

we have shown in Chapter 5 that

V̇K(t) = cmin(1,K), when VK(t) < m, (6.4)

i.e., the instantaneous throughput is almost a constant if m is sufficiently large. The

fact that when z is fixed and m is large, V̇ is constant can be written in a more compact
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form

JVf(V, z) = 0, (for large m) (6.5)

where JVf(V, z) is the Jacobian of f(V, z). Another useful observation from (6.2) is

that V̇K only linearly depends on zi,K. Mathematically, this implies

(Jzf)(V, z) = (Jzf)(V). (6.6)

While (6.6) is precise, (6.5) is a good approximation with large m. Equations (6.5) and

(6.6) constitute the basis for the resource allocation strategy to be discussed.

6.2 Resource Allocation with the Dynamical System Model

Since RNC is decoupled from MAC and PHY layers, it is particularly easy to discuss

resource allocation and its effect on RNC at an abstract level. When there is a single

resource to be allocated to N nodes, the allocation scheme is represented by a N -

dimensional column vector r, whose i-th component represents the allocation to node

i. Consequently, the effect of resource allocation is captured in the mapping

λi = λi(r) and Pi,K = Pi,K(r), (6.7)

or more concisely, zi,K = zi,K(r). In vector form, we may write z = z(r).

An allocation scheme is invariably a deliberate design to achieve a certain objective.

In this article, we assume the objective is a function of throughputs, which can be solved

with the system of differential equations in (6.2). Specifically, we assume the objective

to be maximized can be written as T (V̇) where T can be any continuous function in

the first quadrant with partial derivatives defined almost everywhere. As a result, we
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wish to solve

maximize T (V̇) (6.8)

subject to V̇ = f(V, z) (6.9)

z = z(r) (6.10)

Equation (6.8) takes a distinct form from previous resource allocation problems for

RNC. Rather than treating RNC as a static transport strategy, (6.8) looks at it from

the dynamical system point of view, which means the allocation may also be dynamic

and changes over time. Moreover, it can take the form of state feedback

ṙ = g(V̇) (6.11)

where g is some function of V. The second distinction is that (6.8) is the first for-

mulation that takes full multicast advantage of a wireless network, while previous for-

mulations inevitably break down the wireless transmission into independent links to

approximately convert the wireless network to a wired network. Doing so, they lose a

portion of the multicast advantage.

6.3 Gradient Based Resource Allocation

While a problem of the form of (6.8) falls in the traditional category of optimal con-

trol and is usually solved using calculus of variations, there are a few reasons that this

approach may not be appropriate. First, calculus of variations is as computationally

intensive as expensive, which can be practically prohibitive in wireless networks. Sec-

ond, the wireless communication environment can be dynamic (e.g., due to fading or

mobility), and may require certain adaptivity in the devices. Fortunately, when we
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restrict our objective T to be a function of throughputs, the special problem structure

of RNC can be utilized to derive a simple gradient based control which is adaptive.

Consider the objective function T (V̇) which can be any function that has a gradient

almost anywhere in the first quadrant. Our choice of feedback (see (6.11)) is g =

∇rT (V̇). Note without (6.13), it is not clear how to compute ∇rT (V̇) because V̇ is

apparently affected by a number of factors including topology, transmission rates and

the coding operation. By applying (6.2), the effect of the resource vector r is abstracted

in (6.10), the topology information encoded in the partially ordered index K ⊂ N and

the dynamism represented as the differential operator. The system of equations in (6.2)

thus allow us to find an expression for the feedback as1

ṙ = aJ>r zJ>z f∇V̇T (6.12)

where ∇V̇T is the gradient of T (V̇), Jzf the Jacobian of f(V, z) with respect to z,

Jr(z) the Jacobian of z(r). Note we have introduced a > 0 as a feedback gain parame-

ter. Combining (6.9) and (6.12) we have a closed-loop system that describes the rank

evolution with a dynamic resource allocation strategy

V̇ = f(V, z),

ṙ = aJ>r zJ>z f∇V̇T.

(6.13)

Strictly speaking, the feedback in (6.12) is not a gradient of the objective function T .

It is nevertheless capable of continuously computing the instantaneous resource vector

r in the direction that T improves.

1The superscript > stands for matrix transpose. Detailed discussion of the chosen feedback is
presented in Section 6.4.
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6.4 Analysis of Resource Allocation

In this section we will show that choosing the particular feedback in the form of (6.12)

most effectively improves the objective function T . As we will see, the system of

differential equations in (6.2) not only facilitates design, but also analysis. The main

theorem is the following

Theorem 6.1. By introducing the feedback (6.12) in (6.13), Ṫ ≥ 0. Among all possible

feedback ṙ = g such that ‖g‖ = ‖aJ>r zJ>z f∇V̇T‖, Ṫ is maximized by (6.12).

Proof. Ṫ ≥ 0 can be seen from the following computation

Ṫ = (∇V̇T )>V̈ = (∇V̇T )>ḟ(V; z)

= (∇V̇T )>
(
JVfV̇ + Jzf ż

)
= (∇V̇T )>JzfJrzṙ (due to (6.5))

= (∇V̇T )>aJzfJrzJ
>
r zJ>z f∇V̇T

= a(∇V̇T )>JzfJrzJ
>
r zJ>z f∇V̇T

= a‖(∇V̇T )>JzfJrz‖2 ≥ 0.

(6.14)

Given any g such that ‖g‖ = ‖aJ>r zJ>z f∇V̇T‖, repeating the computation as shown

in (6.14), we get

Ṫ = a(∇V̇T )>JzfJrzg, (6.15)

so

|Ṫ | ≤ ‖a(∇V̇T )>JzfJrz‖‖g‖

= a‖(∇V̇T )>JzfJrz‖2. (6.16)

Note (6.16) achieves equality when the feedback is chosen as shown in (6.12).
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Note Theorem 6.1 is true regardless whether T is concave or whether T is monotonic.

It is also true regardless whether z = z(r) is concave or monotonic. Therefore it can

be applied to a wide range of problems. Theorem 6.1 is also true when T is non-

differentiable on a null set since what really matters is
∫
Ṫdt. As a result, when we

have multiple interested destinations d1, d2, . . . ∈ D, an objective of the form

T (V̇) = min
d∈D

Vd (6.17)

can still be maximized with the chosen feedback. With Theorem 6.1, we immediately

have

Corollary 6.2. If r is contained in a bounded set (i.e., finite resource allocation), z(r)

is continuous and T is continuous, with the feedback in (6.12), T converges.

Proof. We have

V̇K =
∑
i∈Kc

zi,K(1− qVK−VK∪{i}) ≤
∑
i∈Kc

zi,K. (6.18)

Because r is bounded, it is contained in a compact set. Therefore z is contained in a

compact set and from (6.18) V̇ is contained in a compact set. Since T is continuous on

this compact set, T is also bounded. This implies that, if T is monotonically increasing,

it must converge.

From (6.14) we see that Ṫ (the rate of convergence) can be calculated if an expression

is known for Jr(z). In the absence of the exact knowledge of Jr(z), we also see the

feedback gain a can be used to speed up convergence. However, the tradeoff is, with a

too large we are at the risk of changing z too fast thus invalidating (6.5). It remains

to be answered how different the solution and optimality will be if we vary a without

invalidating (6.5). The next theorem shows that the solutions for V and r are basically
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the same except for a proper scaling and the optimality is insensitive for a range of a.

This is generally not true when dealing with other dynamical systems where different

feedback gains lead to very different trajectories. Before we proceed to the theorem,

it would be convenient to define fa to be the same as f , except that the field size q is

replaced by qa.

Theorem 6.3. Let Va, ra, za satisfy (6.13) with an arbitrary a > 0. Let V(t) =

aVa(t/a), r(t) = ra(t/a) and z(t) = za(t/a). Then V, r and z satisfy

V̇(t) = f1/a(V, r),

ṙ(t) = J>r zJ>z fa∇V̇T (V̇).

(6.19)

Proof. For rank evolution, we have

V̇(t) = aV̇a(t/a)/a = f(Va(t/a), za(t/a))

= f

(
1

a
V(t), z(t)

)
= f1/a(V(t), z(t)). (6.20)

The last step follows from the fact

1− q
1
a
VK− 1

a
VK∪{i} = 1−

(
q1/a

)VK−VK∪{i}
. (6.21)

To verify the feedback equation in (6.19), we assume z, r, V are an arbitrary component

of z, r, V, respectively. Likewise, assume za, ra, V a are an arbitrary component of za,

ra, Va, respectively. Then we have

∂z

∂r
(t) =

ż

ṙ
(t) =

ża

ṙa
(t/a) =

∂za

∂ra
(t/a), (6.22)

∂f

∂z
(V, z) =

∂f

∂z
(aVa(t/a)) =

∂fa

∂za
(t/a), (by (6.6)) (6.23)

∂T (V̇)

∂V̇
= lim

∆t→0

T (V̇a(t/a+ ∆t/a))− T (V̇a(t/a))

V̇ a(t/a+ ∆t/a)− V̇ a(t/a)

=
∂T

∂V̇ a

(
t

a

)
. (6.24)
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From (6.22) – (6.24) and

ṙa(t) = aJ>raz
aJ>zaf∇V̇aT (Va), (6.25)

we know

ṙ(t) =
1

a
ṙa
(
t

a

)
= J>raz

a

(
t

a

)
J>zaf

(
t

a

)
∇V̇aT (V̇a)

(
t

a

)
= J>r z(t)J>z fa(t)∇V̇T (V̇)(t). (6.26)

In [20], a concentration result has been obtained regardless of q as long as q is

sufficiently large. In practice, the effect of finite q on the concentration speed is minimal

if q ≥ 2, because in this case q−x → 0 quickly as x > 0 increases. Rank evolution

is therefore insensitive to a wide range of q, with which it concentrates to the same

solution. As a result, as long as qa � 1 and q1/a � 1, different a’s in (6.13) yield the

same system trajectory given by

V̇ = f(V, r),

ṙ = J>r zJ>z f∇V̇T (V̇),

(6.27)

after proper scaling as described in Theorem 6.3. Hence we have

Corollary 6.4. If a is chosen such that f ≈ fa ≈ f1/a, T converges to the same value.

Proof. This is true because after scaling V, z, r satisfy (6.27). But V̇(t) = V̇a(t/a), so

lim
t→∞

T (V̇a(t)) = lim
t→∞

T (V̇a(t/a)) = lim
t→∞

T (V̇(t)). (6.28)

When choosing a, we want it to be large for fast convergence, but not so large that

q1/a ≈ 1 in (6.20). On the other hand, we want to avoid making a so small that qa ≈ 1
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in (6.23). Both extremes would undermine the concentration assumption. In general,

concentration is essential for RNC to achieve the throughput, and it is also the key

assumption for what we have discussed so far to remain valid. To do this, given the

real field size q used, we may set a threshold qth < q below which the concern for

concentration will arise. Then pick a such that

qa, q1/a ≥ qth, (6.29)

i.e., from the interval [log qth/ log q, log q/ log qth].

If we wish to know how badly the algorithm would perform with a so large that (6.5)

becomes invalid (but the concentration assumption still holds), Theorem 6.5 indicates

that (6.13) may still work.

Theorem 6.5. Assume a is so large that (6.5) is not valid. If T is continuously

differentiable in the first quadrant and r is constrained in a bounded set, Ṫ ≥ 0 until

‖J>r zJ>z fa∇V̇T (V̇)‖ < c/a for some constant c independent of a.

Proof. Since we do not have (6.5) any more, we must write

Ṫ = (∇V̇T )>V̈

= (∇V̇T )>
(
JVfV̇ + Jzf ż

)
= (∇V̇T )>JVfV̇ + a‖(∇V̇T )>JzfJrz‖2.

(6.30)

From (6.18) we already know V̇ is contained in a compact set. ∇V̇T is thus bounded

as T is continuously differentiable. Moreover, we can bound ‖JVf‖. To see this, note

for arbitrary row K of JVf , all entries are zero except for column K and column K∪{i}



63

(i ∈ Kc), whose entries are

∂V̇K
∂VK

= − log q
∑
i∈Kc

zi,Kq
VK−VK∪{i} ≥ − log q

∑
i∈Kc

zi,K; (6.31)

∂V̇K
∂VK∪{i}

= log qzi,Kq
VK−VK∪{i} ≤ log qzi,K. (6.32)

Therefore, JVf is also bounded. Hence there exists a constant c independent of a, such

that

‖(∇V̇T )>JVf V̇ ‖ ≤ c. (6.33)

It is clear that, as long as a‖(∇V̇T )>JzfJrz‖2 ≥ c, Ṫ ≥ 0.

Note when Ṫ < 0, it must be true that a‖(∇V̇T )>JzfJrz‖2 < c, which can be

regarded as the first order stopping criteria. Although Theorem 6.5 makes the choice of

a even more liberal, it is nevertheless advisable to choose a reasonably small, otherwise

additional nonlinearities may start to enter the picture. This is especially true when we

move from the continuous system (6.13) to a discretized system that adjusts resource

allocation only at time instants it is triggered.
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Chapter 7

Numerical Results of the DE Framework

In this section we present extensive numerical examples of the DE framework for RNC.

We would use q = 2 for all the RNC examples to show that, even for the small field

size, the DE framework provides desirable accuracy. We give the simulation results

based on different network topologies, shown as dots and arrows (cf. Chapter 3.1 and

Fig. 3.1). We remind the readers that the dots represent the nodes whose transmissions

are according to independent Poisson processes; the arrows represent the reachability.

The intensity is set uniformly to λi = 1 packet/second for the Poisson transmission

process at every node i. If multiple arrows emanate from the same node, it means

when this node transmits, all the nodes on the other end of the arrows have a chance

to receive this packet. In our simulation, unless specifically indicated, the receptions

are independent. Their independent reception probabilities are shown as the numbers

attached to the arrows. We will demonstrate the ability of the DE framework to handle

multiple sessions, complex network topology and correlated receptions by comparing

the rank processes at different nodes obtained from simulation with the DE solution.

We assume all transmissions begin from t = 0.

Because the convergence of the fluid approximation to E[NK(t)] is extremely fast,

we choose to show sample paths rather than the ensemble average to demonstrate the

accuracy and versatility of the DE framework.
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7.1 Two Multicast Sessions

Consider a three node wireless network shown in Fig. 7.1. Assume the information flow

is comprised of two multicast sessions originating from node 1 and node 3, respectively.

Node 1 has 200 packets to deliver to node 2 and 3, while node 3 has 300 packets to

deliver to node 1 and 2. We may write out the DI’s that describe this scenario:

V̇1 = z2,1Sgn+(V{12} − V1),

V̇2 = z1,2Sgn+(V{12} − V2) + z3,2Sgn+(V{23} − V2),

V̇3 = z2,3Sgn+(V{23} − V3),

V̇{12} = z2,3Sgn+(V{123} − V{12}),

V̇{23} = z1,2Sgn+(V{123} − V{23}),

V̇{123} = 0,

(7.1)

with the B.C.

VK(0) =



300, 1 ∈ K, 3 6∈ K,

200, 3 ∈ K, 1 6∈ K,

500, {1, 3} ⊂ K,

0, o.w..

(7.2)

Fig. 7.2 shows the analytical solution to (7.1) as well as the simulation results.

The analysis matches the simulations closely. Clearly the rank increase at node 1

should be subject to its min cut bound cmin(3, 1) = 0.5 sec−1 and node 3 subject

to cmin(1, 3) = 0.7 sec−1. Consequently, T total
1 = 300/0.5 = 600 (sec) and T total

3 =

200/.7 = 285.7 (sec). For node 2, the flow from node 1 cannot exceed cmin(1, 2); the

flow from node 3 cannot exceed cmin(3, 2); and the flow from the ensemble of node 1, 3
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cannot exceed cmin({1, 3}, 2). Therefore,

T total
2 = max{m1/cmin(1, 2),m2/cmin(3, 2), (m1 +m2)/cmin({1, 3}, 2)} = 500 (sec).

These calculations are readily verified in Fig. 7.2.

0 70 8 0.70.8

1 2 3
0.5 0.6

Figure 7.1: A three node wireless network.

Figure 7.2: Two multicast sessions with two sources using RNC.

7.2 A Complex Topology

This example is intended to illustrate that the DE framework is capable of handling

complex networks. The wireless network in Fig. 7.3 has 10 nodes and a fairly intricate
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connectivity. While the unidirectional arrows have the same meaning as in an arrow-

dot representation of the hypergraph, the bidirectional arrows simply represent two

unidirectional arrows whose reception probabilities are equal and as labeled. In this

example we again assume independent reception at each node and the transmission rate

λi = 1 sec−1, i = 1, 2, . . . , 10. Node 1 is the only source node that has 100 packets to

deliver. Fig. 7.4 shows the rank evolution at node 2, 4, 7 and 10. For node 7, the min

cut is shown to be 0.1 + 0.1 = 0.2 (sec−1). For node 10, it is shown to be 0.2 + 0.3 =

0.5 (sec−1). For the other nodes, the min cut is 1− (1− 0.9)× (1− 0.8) = 0.98 (sec−1).

These facts are reflected as the slope of the rank evolution curves on Fig. 7.4 where the

simulated curves well match the analytical solutions.

1

2 3

4 5 6

7 8 9 10

.9

.7

.8

.8.7

.1

.9

.7 .6 .4.5 .3

.1 .3

.6

.2

.9 .9

)7 ,1(minC )10 ,1(minC

.9 ,8 ,6 ,5 ,4 ,3 ,2      ), ,1(min =iiC

Figure 7.3: A 10-node wireless network with node 1 being the unique source.

7.3 Correlated Reception

The DE framework allows the analysis of rank evolution when receptions are not in-

dependent. The lack of independence could be due to correlated channels or joint
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Figure 7.4: Rank evolution for the network shown in Fig. 7.3.

reception by design and they are not uncommon in wireless communications. Being ca-

pable of modeling correlated reception is an advantage of the DE framework. Consider

the four-node network shown in Fig. 7.5 where as usual the point-to-point reception

probabilities are shown as labeled. Node 1 is the only source node that has 400 packets

to deliver. However, assume node 2 and node 3 are in cooperation or the channels from

node 1 are highly correlated such that the receptions are not independent:

P1,2 = 0.49, P1,3 = 0.49, P1,{2,3} = 0.5, (7.3)

the rank evolution can still be accurately predicted by the DE framework as shown in

Fig. 7.6. In this case, V2 and V3 increase at the same rate of cmin(1, 2) = cmin(1, 3) =

0.49 (sec−1) while V4 increases at

cmin(1, 4) = z1,{2,3} = λ1P1,{2,3} = 0.5 (sec−1).

As a contrast, the results for independent receptions are shown in Fig. 7.7, where V2 and

V3 increase at the same rate of cmin(1, 2) = cmin(1, 3) = 0.49 (sec−1) while V4 increases
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at

cmin(1, 4) = z1,{2,3} = λ1P1,{2,3} = λ1(1− (1− P1,2)(1− P1,3)) = 0.74 (sec−1).

Figure 7.5: Modeling correlated reception with DE in a four node wireless network.
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Figure 7.6: Rank evolution if node 2 and 3 have correlated reception.

7.4 Power Control with RNC

In this section, we use the network coding aware power control as an example to demon-

strate the performance of the gradient based algorithm as shown in (6.13). Consider

the 6-node network shown in Fig. 7.8 where nodes perform RNC on GF(2). Node

1 attempts to multicast to nodes in D = {2, 3, 4, 5, 6} and we wish to maximize the

worst-case throughput in the network, i.e., maximize the minimum throughput given

in (6.17). We assume the MAC has been fixed so that node i (i = 1, . . . , 6) transmits

at λi = 1 packet per millisecond. However, the transmit power of each node can be

flexibly adjusted from 0 to 15dBm. The initial transmit powers are set uniformly to

13dBm. Let PTx
i denote the transmit powers at node i, hij denote the link gains from

node i to node j, σ2 = −101dBm denote the thermal noise power at every receiver. We

also associate with each node i a processing gain gi = 8. Consequently, we can model

the signal-to-interference-noise ratio (SINR) at node j when j attempts to decode the
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Figure 7.7: Rank evolution if node 2 and 3 have independent reception.

transmission from i as

SINRij =
PTx
i hij∑

k 6=i,j P
Tx
k hkj/gj + σ2

. (7.4)

For the link gains, we use the ITU indoor attenuation model [21] based on distance.

The path loss PL over distance d is given by

PL = 20 log fc + 10n log d+ Pf (n)− 28 (7.5)

where fc is the center frequency, n the path loss exponent and Pf (n) the floor pene-

tration factor. Consequently the link gain is given by h = 10PL/10. In the simulation,

we choose fc = 2.4GHz, n = 3, Pf (n) = 11. We use uncoded BPSK modulation with

a codeword/packet length of L = 160 bits. Assuming a Gaussian distribution for the

interference, the bit error rate for j decoding i is given by

P bit
ij = Q

(√
SINRij

)
. (7.6)
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The packet error rate is given by

Pij = 1− (1− P bit
ij )L. (7.7)

Assuming independent reception, we thus have

Pi,K = 1−
∏
j∈K

Pij and zi,K = λiPi,K. (7.8)

Clearly in this example the resource to be allocated is the transmit power, i.e.,

r =

[
PTx

1 PTx
2 PTx

3 PTx
4 PTx

5 PTx
6

]>
.

The objective T is given by

T = min{V̇2, V̇3, V̇4, V̇5, V̇6}.

Using the model specified by (7.4) – (7.8), we can execute (6.13) to demonstrate our

power control algorithm. However, in practice, we probably never truly evaluate (6.12)

in the matrix form because J>z f is often sparse1. In what follows, we break down the

computations of the feedback for the readers. In general, it is an iterative application

of the chain rule. First, we identify the label of the node receiving the minimum

throughput

d∗ = argmind∈{2,3,4,5,6}V̇d, (7.9)

then

T = V̇d∗ . (7.10)

We compute ∇rT componentwise. Using chain rule,

∂T

∂PTx
i

=
∂V̇d∗

∂PTx
i

=
∑
j 6=d∗

∂V̇d∗

∂zj,d∗

∂zj,d∗

∂PTx
i

. (7.11)

1∀i,K, T , ∂V̇K/∂zi,T = 0 if i ∈ K or T 6= K.
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Using the DE framework

V̇d∗ =
∑
j 6=d∗

zj,d∗(1− qVd∗−V{j,d∗}), (7.12)

we have

∂V̇d∗

∂zj,d∗
= 1− qVd∗−V{j,d∗} . (7.13)

For ∂zj,d∗/∂P
Tx
i , we apply the chain rule

∂zj,d∗

∂PTx
i

= λj
∂Pj,d∗

∂PTx
i

= λj
∂Pj,d∗

∂P bit
j,d∗

∂P bit
j,d∗

∂PTx
i

. (7.14)

From (7.7) we get

∂Pj,d∗

∂P bit
j,d∗

= L(1− Pj,d∗)L−1. (7.15)

For ∂P bit
j,d∗/∂P

Tx
i we apply the chain rule

∂P bit
j,d∗

∂PTx
i

=
∂P bit

j,d∗

∂SINRj,d∗

∂SINRj,d∗

∂PTx
i

. (7.16)

From (7.6) we get

∂P bit
j,d∗

∂SINRj,d∗
=

1

2
√
πSINRj,d∗

e−SINRj,d∗/2. (7.17)

For ∂SINRj,d∗/∂P
Tx
i we have

∂SINRj,d∗

∂PTx
i

=



hj,d∗∑
k 6=j,d∗ P

Tx
k hk,d∗/gd∗+σ2 , i = j,

−SINRj,d∗
hi,d∗/gd∗∑

k 6=j,d∗ P
Tx
k hk,d∗/gd∗+σ2 , i 6= j, d∗,

0, i = d∗.

(7.18)

At this point, we have all the formulas necessary to compute the feedback.

Fig. 7.9 – 7.10 show the throughputs as functions of time with a = 10, and a = 0.1,

respectively, in addition to throughputs achieved without power control. With a = 10,
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Figure 7.8: A 6-node wireless network.

the minimum throughput T (the lower envelop of all the curves) increases quickly. But

as z changes too fast, (6.5) becomes invalid and leads to oscillation of the trajectory

of T . Lowering a results in a smoother trajectory with slower convergence. However,

in both settings, T eventually achieves the the same value of 1 packet per millisecond.

Considering the transmit rate of node 1 (the source) is also 1 packet per millisecond,

the gradient based resource allocation has achieved the maximum possible objective

without giving up any multicast advantage and also showed significant improvement

over no power control.
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Figure 7.9: Throughput evolution with power control, a = 10.

Figure 7.10: Throughput evolution with power control, a = 0.1.
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Chapter 8

Concluding Remarks

We presented a new framework, based on differential equations, for analyzing the rank

dynamics of RNC in a wireless network. We showed that by adopting the fluid ap-

proximation, we can derive a system of deterministic DEs, the solution of which shows

that the average throughput is given by the min-cut bound. We next showed that

the min-cut bound can be asymptotically achieved, by analyzing the exact system of

DEs that characterizes the mean and the variance of the rank evolution process. We

demonstrated the versatility of the DE framework by presenting a systematic approach

to the cross layer design problems that involve RNC. We numerically evaluated dif-

ferent RNC use scenarios including multiple multicast sessions, complex topology and

correlated reception to show the versatility of our framework. We also discussed a cross

layer design example on power control in an interference limited wireless network with

RNC.



77

References

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE
Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.

[2] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path metric
for multi-hop wireless routing,” in ACM MobiCom, San Diego, CA, Sep. 2003.

[3] A. Jiang, “Network coding for joint storage and transmission with minimum cost,”
in IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006, pp. 1359–1363.

[4] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,” in Infocom, Anchorage, AK, May 2007,
pp. 2000–2008.

[5] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content distribu-
tion,” in IEEE Conf. Computer Communications (INFOCOM), Miami, FL, Mar.
2005.

[6] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a live network
coding P2P system,” in 6th ACM SIGCOMM on Internet Measurement. NY,
USA: ACM Press, 2006, pp. 177–188.

[7] N. Cai and R. W. Yeung, “Secure network coding,” in Proc. IEEE Int. Symp.
Information Theory, Lausanne, Switzerland, Jun./Jul. 2002, p. 323.

[8] T. Ho, R. Koetter, M. Médard, D. Karger, and M. Effros, “The benefits of coding
over routing in a randomized setting,” in IEEE Int. Symp. Information Theory,
Yokohama, Japan, Jun./Jul. 2003, p. 442.

[9] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable com-
munication over packet networks,” Physical Communication, vol. 1, no. 1, pp. 3 –
20, March 2008.

[10] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, “A ran-
dom linear network coding approach to multicast,” IEEE Trans. Inform. Theory,
vol. 52, no. 10, pp. 4413 – 4430, October 2006.

[11] T. Ho and D. Lun, Network Coding, An Introduction. Cambridge University
Press, 2008.

[12] H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Performance,
Asymptotics, and Optimization, ser. Applications of Mathematics. New York,
NY: Springer, 2001, vol. 46.

[13] D. S. Lun, M. Medard, R. Koetter, and M. Effros, “On coding for reliable commu-
nication over packet networks,” in 42nd Annual Allerton Conference on Commu-
nication, Control, and Computing, Sept. 2004.



78

[14] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with intra-session
network coding,” IEEE Trans. Inform. Theory, vol. 55, no. 2, pp. 797–815, Feb.
2009.

[15] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho, E. Ahmed,
and F. Zhao, “Minimum-cost multicast over coded packet networks,” IEEE Trans.
Inform. Theory, vol. 52, no. 6, pp. 2608–2623, Jun. 2006.

[16] J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability
Theory. Springer-Verlag New York, Inc, 1984.

[17] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, 1st ed.,
ser. Control Systems (Mathematics and its Applications), F. M. Arscott, Ed.
Springer, 1988, vol. 18.

[18] H. Thorisson, Coupling, stationarity, and regeneration, 1st ed., ser. Probability
and Its Application. New York: Springer, January 2000.

[19] D. S. Lun, M. Medard, R. Koetter, and M. Effros, “Further results on coding
for reliable communication over packet networks,” in International Symposium on
Information Theory (ISIT). IEEE, September 2005, pp. 1848–1852.

[20] D. Zhang and N. Mandayam, “Analyzing random network coding with differential
equations and differential inclusions,” IEEE Trans. Inform. Theory, vol. 57, no. 12,
pp. 7932–7949, December 2011.

[21] “Propagation data and prediction methods for the planning of indoor radio commu-
nication systems and the radio local area networks in the frequency range 900MHz
to 100GHz,” ITU-R Recommendations, 2001.



79

Vita

Dan Zhang

Education

2012 Ph.D in Electrical and Computer Engineering, Rutgers University, NJ, USA.

2011 M.S in Mathematics, Rutgers University, NJ, USA.

2004 M.S in Electrical Engineering, Shanghai Jiaotong University, Shanghai, China.

2000 B.S in Electrical Engineering, Shanghai Jiaotong University, China.

Employment

2011-2012 Intern, InterDigital, King of Prussia, USA.

2009 Intern, Bell Labs, Murray Hill, NJ, USA.

2007-2012 Graduate Assistant, WINLAB, Rutgers University, NJ, USA.

2005-2007 Teaching Assistant, Department of Electrical and Computer Engineering,
Rutgers University, NJ, USA.

2005 System Engineer, Micronas, Shanghai, China.

2000-2002 Digital Design Engineer, LDIC, Shanghai, China.

Publications

D. Zhang and H. Liu ”DHT or Flooding: A Comparative Study of Name Resolution
Approaches in Information Centric Networks, submitted to INFOCOM 2013.

H. Liu, X. De Foy and D. Zhang, ”A Multi-Level DHT Routing Framework with Aggre-
gation,” Information-Centric Networking (ICN), ACM Sigcomm Workshops, Helsinki,
Finland, 2012.

D. Zhang, K. Su and N. Mandayam, ”Network Coding Aware Resource Allocation to
Improve Throughput,” IEEE International Symposium on Information Theory (ISIT),
Boston, MA, Jul. 2012.

K. Su, D. Zhang and N. Mandayam, ”Network Coding Aware Power Control,” 46th
Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2012.



80

H. Liu and D. Zhang, ”A TLV-Structured Data Naming Scheme for Content-Oriented
Networking,” 5th International Workshop on the Network of the Future with IEEE ICC
(FutureNet V), Ottawa, Canada, June 2012.

D. Zhang and N. Mandayam, ”Bandwidth Exchang for Fair Secondary Coexistence
in TV White Space,” International ICST Conference on Game Theory for Networks
(GameNets), Shanghai, April 2011.

L. Dong, D. Zhang, Y. Zhang and D. Raychaudhuri, ”Perforamance Evaluation of Con-
tent Based Routing with In-Networks Caching,” Wireless & Optical Communications
Conference (WOCC), Newark, NJ, Jun. 2011.

D. Zhang and N. Mandayam, ”Resource Allocation for Multicast in an OFDMA Net-
work with Random Network Coding,” IEEE International Conference on Computer
Communications (INFOCOM), Shanghai, Jun. 2011.

D. Zhang and N. Mandayam, ”Analyzing Random Network Coding with Differential
Equations and Differential Inclusions,” IEEE Trans. Inform. Theory, vol. 57, no. 12,
pp. 7932-7949, December 2011

D. Zhang and N. Mandayam, ”Analyzing Multiple Flows in a Wireless Network with D-
ifferential Equations and Differential Inclusions,” IEEE Wireless Network Coding Work-
shop (WiNC) 2010, Boston, MA, Jun. 2010.

D. Zhang, L. Dong and N. Mandayam, ”Sensing Wireless Microphone with ESPRIT
from Noise and Adjacent Channel Interference,” IEEE Global Communications Con-
ference ( GLOBECOM) 2010, Miami, FL, Dec. 2010.

D. Zhang and N. Mandayam, ”DEDI: A Framework for Analyzing Rank Evolution of
Random Network Coding in a Wireless Network,” IEEE International Symposium on
Information Theory (ISIT), Austin, TX, Jun. 2010.

D. Zhang, R. Shinkuma and N. Mandayam, ”Bandwidth Exchange: An Energy Con-
serving Incentive Mechanism for Cooperation,” IEEE Trans. Wireless Commun, vol.
9, no. 6, pp. 2055-2065, 2010.

L. Dong, D. Zhang, and Y. Zhang and D. Raychaudhuri, ”Optimized Content Caching
and Request Capture in CNF Networks,” The 5th Annual ICST Wireless Internet
Conference (WICON) 2010, pp. 1-9, Singapore, Mar. 2010.

D. Zhang, R. Shinkuma and N. Mandayam, ”Bandwidth Exchange for Enabling For-
warding in Wireless Access Networks,” IEEE 20th International Symposium on Person-
al, Indoor and Mobile Radio Communications (PIMRC) 2009, pp. 2628 - 2632, Tokyo,
Japan, Sept. 2009.

D. Zhang, O. Ileri and N. Mandayam, ”Bandwidth Exchange as an Incentive for Relay-
ing,” 42nd Annual Conference on Information Sciences and Systems (CISS) 2008, pp.
749 - 754, Princeton, NJ, Mar. 2008.


	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Preliminary and Related Works
	Linear Random Network Coding Principles
	Related Works on RNC Performance
	Related Works on Cross Layer Design with RNC

	The Differential Equation Framework for RNC
	A Review of the Hypergraph Model and RNC
	Rank Evolution Modeled with DE
	Rank Evolution Modeled with DI

	Analyzing Information Flows with Differential Equations – The Average Case
	Concentration Behavior of Differential Equation Solution – The Asymptotic Case
	Cross Layer Design with RNC
	Dynamical System View of Random Network Coding
	Resource Allocation with the Dynamical System Model
	Gradient Based Resource Allocation
	Analysis of Resource Allocation

	Numerical Results of the DE Framework
	Two Multicast Sessions
	A Complex Topology
	Correlated Reception
	Power Control with RNC

	Concluding Remarks
	References
	Vita

