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The standard model in particle physics is such a successful model, which agrees well with

almost all experimental tests in the past more than 20 years. However, there is large hope that

new physics beyond the standard model would show up in the Large Hadron Collider (LHC).

Meanwhile, many direct and indirect dark matter searches have shown signs of potential signals.

If confirmed, the properties of the most mysterious but dominant part of matter constitute will

be unveiled soon.

In this thesis, we mainly have three sections. First, we will talk in detail about LHC

phenomenology. This includes several topics, recovering particle masses from missing energy

signatures with displaced tracks, diagnosing the top-quark angular asymmetry using LHC in-

trinsic charge asymmetries, signature searches, including multi-lepton and diphoton searches,

in the early LHC. After collider phenomenology, we will discuss a study for dark matter, which

is focused on the indirect search, i.e. gamma ray spectra from dark matter annihilation and

decay. And in the last section, we will cover several topics about some studies on formal side

of physics, including metastable spontaneous SUSY breaking in a landscape of fuzzy droplets,

entropic force and its fluctuation from gauge/gravity duality.
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Chapter 1

Introduction

1.1 LHC Phenomenology

The standard model in particle physics has passed plenty of experimental tests during the past

more than 20 years. However, many questions in the standard model remained to be answered,

for example the hierarchy problem in Electroweak theory, the unified description of gravity with

other forces, dark matter and dark energy, etc. Without new data at a much higher energy,

people do not have a clear clue on what is the correct direction to pursue.

Now particle physics has entered a new exciting era, the excellent performance of the LHC

at 7 TeV in 2011 brings us to a much higher energy region than previous colliders, people expect

new physics may show itself in the current or maybe a little bit higher energy region. The 8 TeV

and finally 14 Tev of the LHC may provide us the clues for new physics beyond the standard

model.

In the first part of this thesis, I would like to discuss several research projects related to the

study in the LHC.

First we talk about extracting particle masses from missing energy signatures with displaced

tracks using just a few events. This project aims to extract the essential information of new

physics if they leave a signature as displaced vertices or tracks. We analyze the kinematics

of dual cascade decays ending with a stable non- interacting particle which is the sole source

of missing energy. We find that if the next-to-lightest particle in the spectrum is metastable

with a finite decay length, then a measurement of the resulting displaced vertices or tracks can

be used to constrain the problem enough to measure masses with just a few events. If the

event contains two measurable displaced vertices, then mass measurement can be made with

O(1) event. If event contains displaced tracks only, we develop some techniques to make the

mass measurements with O(10) events, in several different scenarios. We find when the number

of unknowns is more than number of constraints in the system, by scanning one kinematic

parameter, one gains an extra effective constraint to help solving the system. Due to the low

request on number of events, these techniques can be applied to the very early stage of discovery.
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Nature can be surprising and it is very plausible that unexpected signals could show up,

providing us hints for new physics. Currently, the most robust anomaly in Tevatron is the

top-antitop forward-backward asymmetry. We will discuss diagnosing the top-quark angular

asymmetry using LHC intrinsic charge asymmetries. Tevatron finds a strong hint for deviation

from SM prediction in the measurement of tt̄ forward-backward asymmetry. This may serve as

a clue to new physics. Flavor-violating interactions involving new heavy particles are among

proposed explanations for the tt̄ forward-backward asymmetry observed at the Tevatron. Many

of these models generate a tt̄-plus-jet signal at the LHC. In this paper we identify several new

charge asymmetric variables in tt̄j events that can contribute to the discovery of such models

at the LHC. We propose a data-driven method for the background, largely eliminating the

need for a Monte Carlo prediction of tt̄-plus-jets, and thus reducing systematic errors. With

a fast detector simulation, we estimate the statistical sensitivity of our variables for one of

these models, finding that with 5 inverse fb the LHC experiments should be able to exclude the

Standard Model across much of the mass and coupling range. Should any signal appear, our

variables will be useful in distinguishing classes of models from one another.

Classifying models by their signature is a very efficient way, and it makes the search more

model and detailed spectrum independent. SUSY models are well motivated, and can serve as

benchmarks for many signatures. At last of the section of the LHC phenomenology, we will

briefly discuss multi-lepton and diphoton searches in the early LHC. Low scale gauge-mediated

supersymmetry breaking naturally gives rise to superpartner spectra with nearly degenerate

right-handed sleptons playing the role of co-next to lightest superpartner (co-NLSP), with a

bino-like neutralino as the next to next to lightest superpartner (NNLSP). For spectra of this

type, cascade decays from heavier superpartners always pass sequentially through the bino,

then to one of the co-NLSP sleptons emitting a lepton, and finally to the un-observed Gold-

stino, emitting another lepton. Therefore, pair-production of heavier superpartners gives rise to

inclusive signatures that include four hard leptons and missing transverse energy. This signature

is best covered by an exclusive hierarchical search for quad-leptons, tri-leptons, and same-sign

dileptons, including missing energy in the latter two cases as necessitated by backgrounds. A

reach or upper limit on multi-lepton signature as a function of the gluino and the chargino

masses provides a unified summary of the sensitivity to this topology for both strong and weak

production of superpartners.
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1.2 Searches of Dark Matter

Dark matter is the most mysterious but dominant constituent of matter. Recently, some DM

experiments show hints of signals, both in direct and indirect detections. The next few years

could be a crucial era for exploring DM.

In this section, we study gamma ray spectra for various scenarios of dark matter anni-

hilation and decay. We focus on the processes which can only generate high energy leptons

and photons but no proton/anti-proton, to be compatible with PAMELA’s data. We gener-

ically divide the processes into two kinds: one is photons generated by final state radiation

from high energy leptons, and the one where photons directly generated from high order (non-

renormalizable) operators which are obtained after one integrates out the heavy modes. We

compare the amplitudes of those two kinds, assuming different properties of dark matter parti-

cles. A rough estimation gives us that if the particle mediates the annihilation/decay process

is heavier than O(1000TeV ), all spectra are dominated by final state radiation. And if lighter

than O(1000TeV ), the spectra of some processes are dominated by photons directly from higher

order operators, which are peaked more likely at high energy regime than the ones from final

state radiation.

1.3 Formal studies of high energy theory

1.3.1 Entropic force and its fluctuation in Euclidian Quantum Gravity

The thermodynamics of black hole has been studied for several decades since the discover

of Hawking radiation. It reveals a deep connection between the structure and dynamics of

space-time and laws of thermodynamics. And more recently, the work by Jacobson shows an

explicit derivation from laws of thermodynamics to Einstein equation. The attempts to explain

gravity as an emergent phenomena is based on the holographic principle. And AdS/CFT

correspondence provides strong support and explicit examples on how thermodynamics of space-

time can be related to thermodynamics of the dual system living on holographic screen.

In this section, we study the idea about gravity as entropic force proposed by Verlinde.

By interpreting Euclidean gravity in the language of thermodynamic quantities on holographic

screen, we find the gravitational force can be calculated from the change of entropy on the screen.

We show normal gravity calculation can be reinterpreted in the language of thermodynamic

variables. We also study the fluctuation of the force and find the fluctuation acting on the

point-like particle can never be larger than the expectation value of the force. For a black
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hole in AdS space, by gauge/gravity duality, the fluctuation may be interpreted as arising from

thermal fluctuation in the boundary description. And for a black hole in flat space, the ratio

between fluctuation and force goes to a constant T
m at infinity.

1.3.2 Metastable Spontaneous SUSY Breaking in a Landscape of Fuzzy

Droplets

Supersymmetric field theory has many fantastic features. A class of N = 1 supersymmetric

theories with gauge group U(Nc) and chiral multiplet matter in the adjoint representation

along with Nf flavors of fundamental plus anti-fundamental is analyzed. With non-vanishing

Fayet-Iliopoulos and matter field mass terms, these theories are shown to have a landscape of

metastable vacua with spontaneously broken supersymmetry. The adjoint field configurations

in the local metastable vacua are non-commutative, and may be interpreted as a fluid consisting

of fuzzy droplets in a confining potential. And the excited states of the meta-stable vacua may

be interpreted as excitations of the fuzzy fluid droplets. The number of metastable vacua is

exponentially large in the product of the gauge group rank and number of flavors. In the limit

of large ratio of Fayet-Iliopoulos to mass terms, the lifetime of the metastable vacua become

exponentially large in the inverse square of this ratio. The theories analyzed here could provide

a simple analog model for a landscape of metastable vacua that may arise in certain classes of

string or M-theory compactifications with blown-up branes dissolved inside branes.
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Chapter 2

Recovering Particle Masses from Missing Energy

Signatures with Displaced Tracks

2.1 Introduction

The Large Hadron Collider (LHC), now in the early stages of discovery level searches, is currently

probing the weak scale for signs of physics beyond the Standard Model (SM). Although a model

independent approach to new physics searches should primarily involve searching for deviations

from SM predictions of any kind, a specific discovery cannot be claimed without more detailed

information about the processes that occur subsequent to the initial particle collisions. Therefore

obtaining precise measurements of theoretical parameters, such as the mass spectrum of new

particle states, is an endeavor of particular importance.

In this paper, we propose techniques for measuring particle masses from several different

signatures containing missing transverse momentum. We assume that some heavy new parti-

cle states are pair produced and then participate in sequential two-body cascade decays that

produce visible SM particles, until some effectively stable and non-interacting new particle is

reached at the bottom of the decay chain. This is the canonical and well-studied “dual cascade

decay chain” signature, well known for being the canonical signature of R-parity conserving

supersymmetry (SUSY) models. None of the kinematic techniques discussed in this paper will

rely on the fact that the cascade decay chains be supersymmetric in nature, thus all of these

techniques may be applied generally to any BSM model that contains this topology as a sig-

nature. However, due to the familiarity with supersymmetric terminology, we will generically

refer to the “Lightest meta-Stable Particle” as the “LSP” and the “Next-to-Lightest meta-Stable

Particle” as the “NLSP”. Our analysis will focus on a subset of these scenarios in which the

last step of the cascade decay involves some long-lived new particle state that travels a finite

distance before decaying in flight This will result in a signature of displaced vertices or displaced

tracks in the detector.

The techniques to be described here are model independent which is fortunate since missing

transverse momentum is a fairly generic feature of models for physics beyond the SM. This
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is because general phenomenological considerations often motivate new discrete symmetries,

resulting in the presence of effectively non-interacting stable particle states. In the case of

SUSY for example, R-parity is often invoked to exclude dangerous operators that can result

in phenomenologically inconsistent effects like proton decay. In the case of extra dimensional

models, it is the conservation of momentum along the extra dimension that will result in the pair

production of Kaluza-Klein (KK) states and subsequently guarantee the stability of the lightest

KK mode. One can even invoke cosmological arguments like the “WIMP Miracle” calculations

to argue that missing energy signatures might be a generic phenomenologically desirable feature

of models for new physics at the weak scale. The presence of metastable new particle states

is also fairly common and can arise in supersymmetric models with low scale SUSY breaking

or scenarios where R-parity conservation is only approximate. In this paper, we address the

question of whether or not it is possible, under any circumstances, to recover all of the kinematic

information lost through missing energy on an event-by-event basis.

If all of the final state particles from a given collision are visible through the detector, then

the measurement of on-shell particle masses can easily be performed through the straightforward

reconstruction of a mass resonance peak. However, if one or more of the final state particles are

effectively stable and non-interacting, then the situation is much more challenging. In particular,

particle masses cannot be calculated directly on a mass peak resonance since crucial kinematic

quantities cannot be measured. In response to this issue, many general techniques have been

developed for performing indirect measurements of particle masses through cleverly constructed

kinematic variables (1; 2; 3; 4; 5; 6). In particular, the author in (9) introduces a very generic

method for constructing such variables via phase space singularity structures. Many studies

have also been performed based on kinematics specific to the canonical cascade decay chain

(10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25). In general, novel kinematic

structures that characterize an event can often be used to reconstruct lost information. For

example, (7; 8) also discuss a long-lived NLSP, and the use of timing information to perform

such reconstructions. For different topologies of the decay chain, (26) provides a comprehensive

review. The drawback to most of these methods is the fact that most of the kinematic variables

that can be constructed to provide an indirect mass measurement, require a very large number

of events for telling features to become practically visible in statistical distributions. These

methods would therefore be difficult to utilize during early discovery level searches.

First, using our assumptions we will show that one can write down an expression for the

3-momenta of each LSP as a function of the direction of the 3-momenta of each NLSP. This

unit vector can then be written in terms of the locations of the secondary vertices. We will
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then follow with a description of some novel methods for reconstructing particle masses using

this information. Examples of explicit mass reconstruction will be performed using Monte

Carlo parton-level data, highlighting the effectiveness of these methods in some of the diverse

topologies that can occur within the cascade. Finally we will conclude with a discussion of how

this relates to current SUSY searches being performed at the LHC. We argue then, that the

optimal strategy for “searching under the lamp post” during these early runs will be to search

for signatures with two displaced vertices (or two displaced tracks in situations where the exact

location of the secondary vertices cannot be measured).

2.2 Counting the Unknowns

Let us denote the stable LSP particles by X1 and Y1, their mother NLSP particles as X2 and Y2

and the final visible SM particles as a1 and b1. Figure [2.1] shows a diagram of a typical event.

Since we assume that the 4-momenta of the two LSP’s are not measurable, each event yields 8

unknown quantities. The transverse missing momentum is given by the vector sum of the LSP

3-momenta projected onto the transverse plane. Since this plane is 2-dimensional, a missing

transverse momentum measurement eliminates 2 degrees of freedom bringing the number of

unknowns down to 6. In order to construct constraint equations with which to solve for these

unknowns, we follow the work of (27; 28; 29) and assume some symmetry between the two

sides of the decay chains. For example, if we assume that mX2 = mY2 then we can use the fact

that (pµ
X1

+ pµ
a1

)2 = (pµ
Y1

+ pµ
b1

)2 as a constraint with which to eliminate one of the unknown

momentum components.

Let k denote the number of such equations we can construct. Since all of the unknown

quantities involve components of the LSP 4-momenta, k can be viewed as the number of masses

starting from the bottom of one decay chain but excluding the LSP, that we assume to be equal

to the masses on the opposite side of the decay chain. Utilizing these constraints, the number of

unknowns can be reduced to 6−k. It is important to keep in mind however, that such an exact

relationship between the masses of these particles only holds in the very narrow width limit. In

general, the true kinematically reconstructed masses will lie on the distribution of some mass

peak resonance and the equality of the masses will only be approximately true. This will affect

both the accuracy of the mass measurement as well as potentially the existence of solutions to

the constraint equations. We will return to a more detailed discussion of this in the body of

the paper.

If we assume that we have access to m events with the same topology then we can use
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SM

SM

a a

b b

1

1

2

2

X

Y

3

3

X

Y

X

Y2 1

2 1

Figure 2.1: The decay topology for the canonical dual cascade decay chain. Two heavy new
particle states (X3 and Y3) are pair produced. They then cascade down to a pair of non-
interacting stable particles (X1 and Y1) shooting off visible SM particles (a1, b1, a2 and b2)
along the way.

the equality of masses across events to further constrain the problem as done in (27; 28; 29).

For the first event we counted 6 − k unknowns. Each additional event contributes another

6− k unknowns but if we enforce the equality of masses across different events then we should

subtract off another factor of k. Thus each additional event contributes 6− 2k. For m events,

the total number of unknowns is 6− k +(m− 1)(6− 2k) = 6m− 2km+ k. The condition which

must be satisfied in order to properly constrain the problem is thus clearly 6m− 2km + k ≤ 0.

Given our assumptions that the NLSP is the only particle in the spectrum with a finite and

measurable decay length, an accurate measurement of the locations of the displaced vertices

can be used to provide additional constraints. Here we assume that all of the decays occur on a

microscopic length scale before the NLSP’s travel a finite macroscopic distance and decay to a

pair of invisible LSP’s and a pair of visible SM particles. This implies that the direction of the

NLSP 3-momentum is equal to the unit vector pointing in the direction of the secondary vertex.

The NLSP unit 3-momentum contains two degrees of freedom, thus an accurate measurement of

two displaced vertices will allow us to subtract off another 4m unknowns. In some situations, it
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will not be possible to measure the locations of the displaced vertices and only the trajectories

of the displaced tracks will be visible. In these situations, the locations of the secondary vertices

can be constrained to lie on the trajectories of the displaced tracks and can be parameterized

by one number thus removing 2m unknown quantities.

2.3 Parameterizing the Unknowns

In this section we propose a parameterization of the unknown quantities that makes the utility

of displaced vertices and displaced tracks maximally transparent. More specifically, we will

show that it will be possible to write down an expression for the 3-momenta of each LSP that

depends only the location of the displaced vertices. Throughout this analysis let us assume that

the 4-momenta of the visible Standard Model particles a1 and b1 can be measured accurately.

Let us restrict our attention to one side of the decay chain and denote the 4-momenta for particle

X1, X2 and a1 as in Eq. [2.3.1]

pX1 =


 EX1

|~pX1 |p̂X1


 ; pX2 =


 EX2

|~pX2 |p̂X2


 ; pa1 =


 Ea1

|~pa1 |p̂a1


 (2.3.1)

To isolate the unknown quantities, it is useful to decompose the 3-momenta of particles a1

and X1 in terms of their components parallel and orthogonal to the momentum of particle X2

as in Figure [2.2]. For notational convenience, let us define the projection symbol as in Eq.

[2.3.2]

Pi
j ≡ ~pi · p̂j (2.3.2)

This denotes the projection of the 3-momentum of particle i along the direction of the 3-

momentum of a different particle j. In this basis and with this notation we can decompose

~pa1 into its components parallel ~p
‖
a1 = Pa1

X2
p̂X2 and orthogonal ~p⊥a1

= ~pa1 − Pa1
X2

p̂X2 to particle

X2. Conservation of momentum then allows us to immediately write down the orthogonal

component of the 3-momentum of particle X1 as ~p⊥X1
= −~p⊥a1

= Pa1
X2

p̂X2 − ~pa1 . The magnitude

of the component of the 3-momentum of particle X1 along the direction of X2 remains unknown.

In this paper we will denote the magnitude of this unknown as c1 ≡ PX1
X2

so the component

of the LSP parallel to the direction of the NLSP can be expressed as ~p
‖
X1

= c1p̂X2 . Since the

other side of the decay chain is subject to identical kinematic considerations, the 3-momentum

of each LSP is given by Eq. [2.3.3]
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Figure 2.2: A decomposition of the final decay products into their components parallel and
orthogonal to particle X2. Note that the component of ~pX1 orthogonal to the direction of the
NLSP, is equal in magnitude and opposite in direction to the component of ~pa1 orthogonal to
the direction of the NLSP.

~pX1 = (Pa1
X2

+ c1)p̂X2 − ~pa1 and ~pY1 = (Pb1
Y2

+ c2)p̂Y2 − ~pb1 (2.3.3)

Let α = 1, 2 be indices parameterizing a basis in the two-dimensional transverse plane. The

experimentally measured missing transverse momentum ~/p
T

α
contains two degrees of freedom and

is restricted to the transverse plane. Since by assumption, the missing transverse momentum

in this scenario is taken from the vector sum of the 3-momenta of the two LSP’s, it can be

calculated as the sum of contributions from each LSP as in Eq. [2.3.4]

~/p
T

α
= ~pX1

α + ~pY1
α = (Pa1

X2
+ c1)p̂X2

α + (Pb1
Y2

+ c2)p̂Y2
α − ~pa1

α − ~pb1
α (2.3.4)

These two equations can then be used to solve for c1 and c2 as in Eq. [2.3.5]

c1 =
(pa1

α pY2
β + pb1

α pY2
β + /pα

pY2
β )εαβ

pX2
α pY2

β εαβ
− Pa1

X2

c2 =
(pa1

α pX2
β + pb1

α pX2
β + /pα

pX2
β )εαβ

pY2
α pX2

β εαβ
− Pb1

Y2
(2.3.5)
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Here εαβ is the totally antisymmetric 2 × 2 tensor. The key result here is that an accurate

measurement of the missing transverse momentum will allow us to write down the 3-momentum

of each LSP as a function of the direction of the NLSP 3-momenta by plugging Eq. [2.3.5] into

Eq. [2.3.3]. The result is summarized by Eq. [2.3.6]

~pX1 → ~pX1(p̂X2 , p̂Y2)

~pY1 → ~pY1(p̂X2 , p̂Y2) (2.3.6)

Let us denote the location of the two secondary vertices by 3-vectors in the Cartesian

coordinates of the lab frame ~rX and ~rY . Here the subscripts X and Y correspond to the

location of the decays of particles X2 and Y2. Note that given our assumptions |~rX | = dX is

simply the distance traveled by particle X2 before decaying while |~rY | = dY is the distance

traveled by particle Y2 before decaying, assuming all other decays are prompt. Now recall our

initial assumption that the decay length of particles X2 and Y2 are the only decay lengths that

are measurably large. Then subsequent to the initial collision, a cascade will occur on some

microscopic length scale before the NLSP’s travel a finite macroscopic distance and decay to

a pair of invisible LSP’s and a pair of visible SM particles. This implies that the direction of

the NLSP 3-momentum is equal to the unit vector pointing in the direction of the secondary

vertex. The exact relationship is p̂X2 = ~rX/|~rX |. Therefore in actuality we have derived an

expression for the LSP 3-momenta that depends only on the location of the secondary vertices

as in Eq. [2.3.7]

~pX1 → ~pX1(~rX , ~rY )

~pY1 → ~pY1(~rX , ~rY ) (2.3.7)

In some situations, the displaced vertices may not be directly measurable and only the

trajectories of the displaced tracks may be extracted. However, it may be inferred that the

displaced vertices must lie somewhere along the path of the displaced tracks. We may thus

parameterize the location of the displaced vertices according to their location along the beam

axis. Let zX and zY denote the location along the z-axis of ~rX and ~rY respectively and let us

set the location of the primary vertex to be z = 0. Indeed if we denote the location of particle

a1’s collision with the tracker by ~r0 = (x0, y0, z0), then an exact functional form for ~rX(zX) is

given by Eq. [2.3.8]
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~rX(zX) =




x0 + (pa2
x̂ /pa1

ẑ )(zX − z0)

y0 + (pa2
ŷ /pa1

ẑ )(zX − z0)

zX


 (2.3.8)

This will allow us to derive an expression for the LSP 3-momenta that depends only on the

location of the secondary vertices along the beam axis as in Eq. [2.3.9]

~pX1 → ~pX1(zX , zY )

~pY1 → ~pY1(zX , zY ) (2.3.9)

From this parameterization we can explicitly see the dependence of the 3-momentum of each

missing particle on the locations of the displaced vertices or the trajectories of the displaced

tracks. Now that it is clear how such measurements can be used to reduce the number of

unknowns and further constrain the kinematics of this decay topology, we move on to some

practical examples.

2.4 Examples with a Massless LSP

From the counting arguments given in the introduction, we found that for m events and k

constraint equations, the total number of unknown quantities was equal to 6m − 2km + k. In

principle, the problem is simply a matter of solving for enough constraint equations to obtain

a unique solution for all unknown quantities. In practice however, the contraint equations

are highly nonlinear and generically contain multiple solutions. As a result, a confident mass

measurement should really involve the analysis of a number of events greater than the minimum

required to properly constrain the problem. We will now explore a few specific examples.

For concreteness, we will start with an analysis of selected benchmark points for multi-lepton

searches inspired by scenarios with general gauge mediated SUSY breaking (GMSB). In such

scenarios, where the scale of SUSY breaking is sufficiently low, the LSP is an effectively massless

gravitino. With the mass of the LSP set to zero, 2m unknowns are removed from the problem

resulting in a total number given by Eq. [2.4.1]

Number of Unknowns for Massless LSP Scenario = 4m− 2km + k (2.4.1)
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2.4.1 Measurable Displaced Vertices

If a1 and b1 each decay promptly to two or more visible particles, it will be possible to ex-

perimentally trace back the track of each decay product and reconstruct the position of the

secondary vertex. The momenta pa1 and pb1 can then be computed through the sum of 4-

momenta of their respective decay products, assuming none of them contribute to the missing

transverse momentum. The situation is depicted in Figure [2.3]. In this case we can directly

measure the quantities p̂X2 = ~rX/|~rX | and p̂Y2 = ~rY /|~rY | and thus completely solve for the

3-momenta of particles X1 and Y1. Since these particles are massless by assumption, a mea-

surement of the 3-momenta is equivalent to a measurement of the full 4-momenta. Therefore

in situations where the LSP is massless, a simple measurement of the locations of the displaced

vertices already recovers all of the information lost through missing energy. In terms of the

unknowns we see that substituting one event m = 1 into Eq. [2.4.1] gives us 4− k. A measure-

ment of the displaced vertices removes exactly 4 unknowns, which means that the condition for

total kinematic recovery is already met for k = 0. This example is thus trivial and will not be

discussed further.

SM SM

X2 Y2

Y1X1

b a
1 1

Figure 2.3: A dual cascade chain with prompt Standard Model particle decays. If the visible
SM particle decays promptly and if all of its decay products are visible, then the trajectories of
its decay products may be traced back to the displaced vertex.
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2.4.2 Measurable Displaced Tracks

If a1 and b1 are stable and hit the detector, then pa1 and pb1 can be directly measured. In this

scenario, the exact location of the secondary vertices cannot be measured but one can constrain

their location to points along the displaced tracks of particles a1 and b1. Parameterizing the 3-

momentum ~pX1 by zX and ~pY1 by zY removes 2m unknown quantities from Eq. [2.4.1] bringing

the requirement for total kinematic recovery down to 2m − 2km + k ≤ 0. Acheiving this with

m = 1 event requires that k ≥ 2 so we will use the fact that mX3 = mY3 and mX2 = mY2

in order to measure the particle masses. Our canonical example for this scenario, depicted in

Figure [2.4], comes from GMSB. Here we consider the case where two partons collide resulting

in the pair production of two right-handed squarks. Each squark decays to Bino-like neutralinos

X3 and Y3, emitting jets in the process. Each neutralino then decays to right-handed sleptons

X2 and Y2, emitting leptons a2 and b2 in the process. Finally the right-handed sleptons decay

to the LSP gravitinos X1 and Y1, emitting additional leptons a1 and b1 in the process. The

relevant part of the spectrum is summarized in the following table:

SM SM

X3 Y3

Y2X2

X1 Y1

b

b

a

a

2

1

2

1

Figure 2.4: A dual cascade chain with two SM “legs”. This is the scenario where k = 3 so the
decay chain must have at least two SM legs in order for this technique to be effective.
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Particle Symbol Mass

Bino B̃ 199 GeV

Right-handed Slepton l̃R 107 GeV

Gravitino G̃ 0 GeV

Another point to keep in mind is that the further up we go in the decay chain, the higher

the chance for combinatoric confusion among the visible particles, labeled in this example by

a1, a2, b1 and b2. In general it may not always be possible to identify the correct particle with

its correct position within a given decay chain. If this is the case then all possibilities should be

considered which will result in a larger multiplicty of solutions. A slightly larger data sample

may then be required in order to make a definitive mass measurement by finding a common

value for the masses. Since the visible SM particles are leptons, we will treat them as effectively

massless. The relevant formulae are then given in Eq. [2.4.2] with the expressions for c1 and c2

given by Eq. [2.3.5].

m2
X3

= 2(Ea1 + Ea2)
√

c2
1 − (Pa1

X2
)2 + ~p2

a1
− 2(c1 + Pa1

X2
)(Pa1

X2
+ Pa2

X2
) + 2~p2

a1
+ 2Ea1Ea2

m2
Y3

= 2(Eb1 + Eb2)
√

c2
2 − (Pb1

Y2
)2 + ~p2

b1
− 2(c2 + Pb1

Y2
)(Pb1

Y2
+ Pb2

Y2
) + 2~p2

b1 + 2Eb1Eb2

m2
X2

= 2Ea1

√
c2
1 + ~p2

a1
− (Pa1

X2
)2 − 2(Pa1

X2
+ c1)Pa1

X2
+ 2~p2

a1

m2
Y2

= 2Eb1

√
c2
2 + ~p2

b1
− (Pb1

Y2
)2 − 2(Pb1

Y2
+ c2)Pb1

Y2
+ 2~p2

b1 (2.4.2)

In practice, we are using two equations to solve for two unknowns mX3(zX , zY ) = mY3(zX , zY )

and mX2(zX , zY ) = mY2(zX , zY ). The calculation of unknown particle masses mX2 and mX3

in this scenario is presented here in the table with incorrect and correct solutions separated by

columns:

Event correct (Bino, Slepton) wrong (Bino, Slepton)

1 (202, 108) (467, 290)

2 (199, 107) (191, 93)

3 (205, 111) Null

4 (200, 109) (405, 346)

5 (200, 108) (209, 123),(490, 254)

Using O(few) events we see that the correct solutions can be separated from the incorrect

solutions by their sheer multiplicity.
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2.4.3 Can We Do Better?

It may be argued that the equality of masses following from the condition k = 2 is too specific.

Indeed if there was a way to measure the particle mass spectrum without demanding mX3 =

mY3 , these techniques would gain a lot in generality and become useful in a far wider range of

possible new physics scenarios. Thus a natural next step would be to see if it would be possible,

under any circumstances, to measure particle masses under the condition k = 1 as depicted in

Figure [2.5]. As demonstrated in the previous section, in scenarios with a massless LSP where

the trajectories of the displaced tracks are known, the requirement for total kinematic recovery

is 2m−2km+k ≤ 0. Solving for k in terms of m gives the expression k ≥ 2m/(2m−1). Clearly

as m → ∞, k → 1 asymptotically but the condition k = 1 cannot be satisfied for any value of

m. Naively this implies that it would not be possible to measure the particle masses given this

assumption. Here we present a technique that defies this apparent restriction and demonstrate

a particle mass measurement technique using only the condition k = 1.

SM SM

X2 Y2

Y1X1

b a
1 1

Figure 2.5: A dual cascade chain with one Standard Model “leg”. This is the most general
possible scenario with the least amount of specificity. We only require that two equal mass
NLSP’s exist in the decay chain.

For situations in which the number of unknown quantities is larger than the number of

constraint equations available, there exists a novel and unorthodox method of extracting particle

masses using a relatively small number of events. The idea behind this method utilizes the fact
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that even in situations where the number of constraints is not large enough to specify a unique

solution to all of the unknown quantities, it may be large enough to reduce the space of solutions

down to a lower dimensional subspace where the solution may be inferred. Our toy model is

taken again from a GMSB scenario. The process under consideration starts with the direct pair

production of right-handed sleptons labeled here by X2 and Y2. The sleptons then decay to

LSP gravitinos X1 and Y1, emitting a leptons a1 and b1 in the process. The relevant part of

the mass spectrum is summarized in the following table:

Particle Symbol Mass

Right-handed Slepton l̃R 107 GeV

Gravitino G̃ 0 GeV

The central challenge associated with this example is that there are two unknown quantities

zX and zY but only one mass constraint equation mX2(zX , zY ) = mY2(zX , zY ), which means

that a unique solution cannot be obtained. However, this constraint allows us to express zX as

a function of zY , which we may then use to write down an expression for the mass of a particle

in terms of one variable mX2(zX). With this one-to-one map from zX to mX2 , the space of

possible solutions has been reduced to a one-dimensional subspace (i.e. a line) and the true

value of mX2 must exist as an element of this subspace.

Recall that all of the unknown quantities could be parameterized by the direction of the

NLSP’s p̂X2 and p̂Y2 . Recall further that the direction of an NLSP is given by the location of its

secondary vertex p̂X2 = ~rX/|~rX |, which is restricted to lie somewhere along the trajectory of the

associated displaced track. Recall finally, that a secondary vertex can thus be parameterized

by its location along the beam axis ~rX → ~rX(zX). The powerful observation here is the

fact that as the hypothesized location of the displaced vertex along the beam axis approaches

infinity (zX → ∞), the direction of the NLSP will asymptotically approach some fixed unit

vector (p̂X2 → p̂const). This means that as zX → ∞, the corresponding value of mX2(zX) will

asymptotically approach some fixed number. In other words for the function mX2(zX), the

domain zX ∈ (−∞,∞) maps to a closed finite range for mX2 , and the correct value of mX2

will always be contained in this range. If we plot the elements of this range in a histogram over

a small number of events, the histogram will peak around the correct solution since it is an

element of every set and should thus have the highest multiplicity across events.

In principle, the correct values for zX and zY can take on any arbitrary value. Since the

decay distance of particles has the form of an exponentially decaying function, hypotheses

for the location of the displaced vertex that are closer to the primary vertex should carry more
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weight than ones that are farther away. In order to attenuate contributions from unlikely vertex

locations and increase the efficiency of our analysis, we scan the trajectory of the displaced track

and assign a weight to each point accordingly. The weighting function is given by Eq. [2.4.3]

f [l] =
e−l/l0

g(d⊥)
(2.4.3)

Here l is the distance between the point on the displaced track and the primary vertex and l0

is the characteristic decay length of the NLSP. A more detailed discussion of this can be found

in Appendix A. Note that we need as input only the rough order of this decay length which can

be derived by looking at the distribution of displaced tracks as described in the Appendix B.

The result of this weighted histogram is shown in Figure [2.6]. As we can see, this histogram

quickly peaks at the value of the correct slepton mass of 107 GeV.

Figure 2.6: Results of the likelihood fit. The red curve indicates an example with 15 events.
The blue curve indicates an example with 30 events. The green curve indicates and example
with 60 events

2.5 Examples with a Massive LSP

Recall again from the introduction, that for m events and k constraint equations, the general

scenario with a massive LSP resulted in a counting of unknown quantities given by Eq. [2.5.1].

In this section we will study such examples, that typically arise in the supersymmetric context

when SUSY is broken at the Planck scale via gravity-mediation. The techniques described in

this section will all be a straightforward demonstration of matching constraint equations with

unknowns.
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Number of Unknowns for Massive LSP Scenario = 6m− 2km + k (2.5.1)

2.5.1 Measurable Displaced Vertices

Just as it was with the massless LSP, the requirement for measurable displaced vertices is that

the final visible SM particles a1 and b1 must each decay promptly to two or more visible particles

as depicted in Figure [2.3]. The measurement of displaced vertices will again provide us with

a complete measurement of the LSP 3-momenta ~pX2 and ~pY2 . The difference is that now the

mass of the LSP remains an unknown quantity in the LSP 4-momenta.

In terms of our counting exercise, the measurement of displaced vertices subtracts 4m un-

known quantities from Eq. [2.5.1] bringing the total number of unknowns down to 2m−2km+k.

If we are interested in solving for all masses on an event-by-event basis (m = 1), the minimum

number of constraint equations clearly implies k = 2. With the LSP’s now massive we may

take our two constraint equations to be mX2 = mY2 and mX1 = mY1 . Substituting the sec-

ond expresion into the first reduces the problem to solving one equation for one unknown

mX2(mX1) = mY2(mX1). Expressions for the masses are given by Eq. [2.5.2] with solutions for

c1 and c2 given by Eq. [2.3.5].

m2
X2

= m2
X1

+ m2
a1

+ 2Ea1

√
m2

X1
+ c2

1 + ~p2
a1
− (Pa1

X2
)2 − 2(Pa1

X2
+ c1)Pa1

X2
+ 2~p2

a1

m2
Y2

= m2
X1

+ m2
b1 + 2Eb1

√
m2

X1
+ c2

2 + ~p2
b1
− (Pb1

Y2
)2 − 2(Pb1

Y2
+ c2)Pb1

Y2
+ 2~p2

b1 (2.5.2)

Here we assume that particles a1 and b1 are massive, as per our next example where we study

a more general GMSB scenario with massive SM particles and a massive gravitino. The process

under consideration will be one in which two partons collide to pair produce two right-handed

squarks. The squarks then decay to Higgsino-like neutralinos, labeled by X2 and Y2, emitting

jets in the process. The neutralinos then decay to a Z bosons, corresponding to particles a1

and b1, as well as a pair of massive gravitinos X1 and Y1 (30). We select events in which each

Z boson decays promptly to two leptons so that the intersection of the lepton tracks gives the

location of the displaced vertex. Because of the extreme precision with which the detectors can

track leptons, this should be the scenario in which secondary vertices may be located with the

highest degree of precision. The spectrum for our toy model is given by the following table:
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Particle Symbol Mass

Higgsino H̃ 196 GeV

Gravitino G̃ 50 GeV

Although the constraint equation m2
X2

= m2
Y2

is highly non-linear and may have multiple

solutions, it can be solved relatively easily using numerical techniques. Unforunately, the exis-

tence of multiple solutions may necessitate a larger data sample in order to perform a confident

mass measurement. Once the equation has been solved, a numerical value for mX1 can be

extracted and used to solve for the exact value of mX2 . Here we show a table of the solutions

from 5 events with correct and erroneous solutions separated by columns:

Event correct (Gravitino, Higgsino) wrong (Gravitino, Higgsino)

1 (50, 196) Null

2 (50, 196) Null

3 (50, 196) (120, 287)

4 (50, 196) (24145, 24349)

5 (50, 196) Null

Here we see that in this case, gravitino and slepton masses are determined precisely. Though

some events evidently contain multiple solutions, the unphysical solutions are sufficiently dis-

persed about the parameter space so as not to cause confusion in the presence of multiple events

when a unique common value can easily be determined by eye.

2.5.2 Measurable Displaced Tracks

The situation is more challenging if particles a1 and b1 are stable as in Figure [2.4]. If this is the

case, then displaced vertices will not be measurable and only the trajectories of the displaced

tracks may be observed. This will allow us to subtract only 2m from Eq. [2.5.1], reducing the

condition for total kinematic recovery to 4m− 2km + k ≤ 0. Solving for k in terms of m gives

k = 4m/(2m − 1) so as m → ∞ we see that k → 2. Thus the minimum number of constraint

equations we can demand is k = 3, which can be solved using two m = 2 events. The constraints

mX1 = mY1 and mX2 = mY2 were combined in Eq. [2.5.2], so the one additional constraint we

require for k = 3 is the condition mX3 = mY3 . The equations for these masses are given in Eq.

[2.5.3]

m2
X3

= m2
X1

+ m2
a1

+ 2(Ea1 + Ea2)
√

m2
X1

+ c2
1 − (Pa1

X2
)2 + ~p2

a1
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−2(c1 + Pa1
X2

)(Pa1
X2

+ Pa2
X2

) + 2~p2
a1

+ 2Ea1Ea2

m2
Y3

= m2
Y1

+ m2
b1 + 2(Eb1 + Eb2)

√
m2

Y1
+ c2

2 − (Pb1
Y2

)2 + ~p2
b1

−2(c2 + Pb1
Y2

)(Pb1
Y2

+ Pb2
Y2

) + 2~p2
b1 + 2Eb1Eb2 (2.5.3)

These equations are again calculated assuming massive a1 and b1 as per our example, though

the assumption of massless particles a2 and b2 is still taken for simplicity. It should be noted

however, that all equations generalize easily to arbitrary massive SM particles. From the above

equations we see that it is possible to construct expressions for mX2 , mY2 , mX3 and mY3 in

terms of three unknown quantities zX , zY and mX1 . For each event we have two constraint

equations mX1 = mY1 and mX2 = mY2 with which to solve them. First notice that since the

LSP 4-momenta can be calculated in terms of zX , zY and mX1 , we can explicitly express mX2

and mX3 in terms of these variables. This means that we can apply a change of variables and

parameterize the three unknown quantities instead as mX1 , mX2 and mX3 . The fact that there

are two constraint equations means that the solution for each event is a curve in parameter

space, which in this case is just R3 with axes labeled (mX1 ,mX2 ,mX3). Since the trajectories

of the displaced tracks are unique for each event, curves generated by different events will be

unique but will always traverse the correct answer. Thus in principle, the correct value for the

masses will exist at the intersection of the curves, which is clearly equivalent to the condition

of matching particle masses from different events.

Put another way, every hypothesis for the value of mX1 is equivalent to a hypothesis for the

values of zX and zY . It is thus also equivalent to a hypothesis for the values of mX2 and mX3 .

By considering a range of hypotheses for mX1 over a few events, the correct values of mX2 and

mX3 will be the unique intersection of all hypotheses. A demonstration of this scenario has

been performed with the following mass spectrum (the Bino and Slepton masses are the same

as before but the Gravitino mass is now set to 50 GeV):

Particle Symbol Mass

Bino B̃ 199 GeV

Right-handed Slepton l̃R 107 GeV

Gravitino G̃ 50 GeV

As explained, the parameter space for this scenario is R3 with axes labeled (mB̃ ,ml̃,mG̃).

Analyzing three events, we scan values of the gravitino mass from 0 to 100 GeV. As expected,

this scan produces a curve in parameter space for each event with the correct answer lying at

the intersection of the curves as shown in Figure [2.7]. For reasons given earlier, in practice we
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do not expect an exact intersection, but rather a localized region in parameter space where the

density of such lines achieves a maximum. The optimal method of mass extraction should then

involve searching for the slice in the mG̃ plane where the density of solutions for mB̃ and ml̃

achieves a maximum. To this end we compute a probability sum on each slice of equal mG̃ using

the Gaussian distribution in Eq. [2.5.4] as our probability distribution function with σ = 10

GeV.

Figure 2.7: With three unknowns (mB̃ , ml̃, mG̃) and two equations, the solutions are curves
in three dimensional Euclidean space. The intersection of solutions should occur at the correct
value of the masses as can be seen in this plot using 3 events as an example.

F [mB̃,0,ml̃,0] =
1

(2πσ)2
∑

i

exp
(
− (mB̃,i −mB̃,0)

2 + (ml̃,i −ml̃,0)
2

2σ2

)
(2.5.4)

Slices of equal mG̃ give a plane parameterized by mB̃ and ml̃. The function in Eq. [2.5.4]

is defined at each point on this plane (mB̃,0, ml̃,0) and the sum over i takes a contribution

from each data point (mB̃,i, ml̃,i), which is just given by the intersection of each line with the

equal mG̃ slice. Therefore, Eq. [2.5.4] should be maximixed at the point in the plane with the

highest density of solutions. Furthermore, the maximum height in each plane should achieve

its largest absolute magnitude on the slice corresponding to the correct value of mG̃, since it

is on this plane that the highest density of solutions resides. Using a sample of 25 events, the

probability sum on the correct mG̃ slice is depicted in Figure [2.8] and we can observe a clear
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maximum at the correct solution for mB̃ and ml̃. The maximum height for each mG̃ is then

plotted as a function of the mG̃ in Figure [2.9]. As expected, the largest absolute magnitude

for the probability sum is acheived at the correct value of mG̃ = 50 GeV.

Figure 2.8: The probability sum on the mG̃ = 50 GeV slice. We see that it peaks at the correct
value of mB̃ and ml̃

2.5.3 Can We Do Better?

As we saw in the previous section, as the number of events m → ∞, the minimum number

of constraint equations needed k → 2. Thus naively it would seem impossible to solve for all

particle masses using the condition k = 2, with a topology given in Figure [2.5]. Previously we

saw that it was still possible to measure the masses in situations where the unknown quantities

outnumbered the constraints, using a very small number of events, by employing the trick of

section 4.3. It is thus sensible to ask the question of whether or not it would be possible to

perform an analagous measurement on cascade decays with a massive LSP. The spectrum used

for this example was as follows:

Particle Symbol Mass

Right-handed Slepton l̃R 107 GeV

Gravitino G̃ 50 GeV

As usual, with a massive LSP we have 4 unknowns which we may take to be zX , zY , mX1

and mY1 . Since we are assuming k = 2, the available kinematic equations can only remove
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Figure 2.9: A plot of the absolute height of the probability sum as a function of mG̃. We see
that it peaks at the correct value.

two unknowns. In analogy with the massless LSP scenario, we choose to eliminate the two

LSP masses and can derive an expression for the mass of the NLSP mX2 → mX2(zX , zY ). We

now scan all possible values for mG̃ and play the same trick that was used in the previous

section, but in one higher dimension. The result is depicted in Figure [2.10]. Unfortunately,

this “probability-double-sum” produces a ridge-like structure rather than a peak at the correct

solution. This result implies that these techniques cannot be used to extract a unique solution

for mG̃ when it is non-zero, and can only be used to provide a relation between two mass

parameters.

2.6 Conclusions

In this paper we studied scenarios in which heavy new particle states were pair produced and

cascaded down to some non-interacting stable particle states generating visible SM particles

along the way. Here we assumed the decay length of the last decay was measurable, which

resulted in a signature of displaced vertices or tracks. We finally assumed that the LSP’s

were the only particles that contributed to the transverse missing momentum. Given these

assumptions, we described a number of novel techniques for extracting the spectrum of the

intermediary particles in the cascade decay that were effective even in the low statistics limit.

They would therefore be useful for very early discovery level searches at the LHC.

It should obvious by now that although this procedure is completely model independent, it

was inspired by the phenomenology of supersymmetric models. For any supersymmetric theory

on which these methods may be applied, the following conditions must hold:
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Figure 2.10: The probability double sum for the massive LSP case where unknowns outnumber
constraints. The ridge-like structure suggests that no unique solutions exists for the correct
value of mG̃ using this technique

1. R-parity must be (approximately) preserved guaranteeing the stability of the LSP

2. Decays to the LSP must occur before the cascade reaches the detector

3. The 4-momentum of the NLSP must be traceable back to the primary vertex

4. The LSP’s must be the sole source of missing transverse momentum

5. The decay length of the NLSP must be finite and measurable

The first four assumptions are very generic for SUSY models though the fifth assumption

is rather specific. Despite this fact it can be generically realized in many models, providing

us with additional handles on the kinematics of these events. In our paper, we focus on the

scenario in which the final step of decay happens at a reasonable finite distance but before the

NLSP hits the detector. In scenarios with gauge-mediated SUSY breaking, the decay length

of the NLSP is directly related to NLSP mass and the SUSY breaking scale via the relation

(cτ)NLSP ∼ (
√

F )4/m5
X2

. Since all of the techniques presented in this paper also provide a

direct measurement of the decay length of the NLSP, if SUSY is realized in nature they could

also be used to extract a very early measurement of the SUSY-breaking scale.
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Recently there has been a lot of talk about optimizing search strategies for very early dis-

covery level analyses at the LHC. A central theme in these discussions has been the idea of

“searching under the lamp post”. The principle behind this theme is that at the very early

stages of a new physics search, especially when data is sparse and statistics are low, it may be

a better strategy to search for that which is easiest to see rather than that which you think is

most likely to be true. If new physics manifests itself through the presence of missing energy

and dual displaced tracks, with O(few) events these techniques provide the possibility of

1. Providing convincing evidence for the existence of dual cascade decay topologies

2. Measuring the masses of all new particle states participating in the cascade decay

3. Constructing accurate distributions illuminating the spin-structure of the particles

4. Calculating the SUSY breaking scale if nature is supersymmetric

Clearly the methods described in this paper allow for a very large return from a very small

investment. In particular, they allow one to extract an enormous amount of information from

signatures that would otherwise be left to very late post-discovery analyses to elucidate com-

pletely. As such, they present an extremely bright lamp post under which to search in the

coming months.

2.7 Appendix A

Here we give some details about how to prepare the MC information and how we derive the

weighting factor.

We first took the lhe file from a fixed SUSY spectrum, where the 4-momenta of gravitino,

slepton and lepton are accessible. The information of the beginning and ending points of

displaced tracks are missing. We take the proper decay length of slepton to be half of detector

radius and impose the location of 2nd vertex according to the exponential decay distribution.

With all those information, we can calculate the beginning and ending points of displaced

tracks for each event. Since displaced tracks are assumed to be measurable in experiments, but

4-momenta of gravitino and slepton are not, we would use the track information and forget

the momenta information for the later analysis. Also, the transverse missing energy is assumed

to be only coming from two gravitinos, thus it can be calculated when we prepare the MC

information. One needs to be very careful on what information is accessible and what is not.

We summarize the accessible information as following: the location of primary vertex, the
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beginning and ending points of the two displaced tracks for each event, the 4-momenta of each

displaced track, and transverse missing energy. Except for those, all other information will be

treated as inaccessible.

After we finish the preparation of MC information, we proceed the scanning in possible

location of 2nd vertex along one of the displaced tracks. The scanning we do is taking a

constant step along the track. The calculation of weighting factor for each scanning point is

a little tricky, because part of the information of exponential decay has already been included

in the distribution of displaced tracks. Thus the uniform step of scanning along each tracks

in many events is not giving us a uniform distribution of points in space. To gain the correct

weighting factor, one has to first include a weighting factor of each displaced track. This factor

is described more precisely in the following Appendix, then an exponential decay factor can be

applied. Thus the weighting factor for each point takes the form in Eq. [2.4.3]

2.8 Appendix B

Here we give a detailed discussion on how to extract a rough estimate of the decay length from

the observation of a few displaced tracks. This can be done by looking at the distribution of

perpendicular distances from the primary vertex to the point of closest approach for all displaced

tracks d⊥. Suppose X2 travels a distance l before decaying, as in Figure [2.11]. Let θ be the

angle between PS and CS. Then we have

d⊥ = l sin θ

Let l0 be the characteristic decay length of particle X2.Since the measured decay distance for

an event l must an exponentially decaying distribution, the properly normalized probability

distribution is:

∂P (l, θ, φ)
∂l

|θ,φ =
1
l0

e−l/l0F (θ, φ)

Also, we know that the decay of particle X2 is isotropic in its rest frame. Since the mass of

X2 is O(100GeV ), the boost from lab frame to the rest frame of X2 is not large. We can thus

approximate the anglular distribution in lab frame to be isotropic:

∂2P (l, θ, φ)
∂(cos θ)∂φ

|l =
1
4π

G(l)

Since l, θ and φ are independent variables, we :
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SC

P

d

Figure 2.11: The kinematics of a displaced track. Here d is distance of closest approach between
the primary vertex and the displaced track, C is the point of closest approach, l is the distance
between the primary vertex and the hypothetical point of decay on the displaced track and l0
is the characteristic decay length of the NLSP.

∂3P (l, θ, φ)
∂l∂(cos θ)∂φ

=
1

4πl0
e−l/l0

From the relation between d⊥ and (l, θ), we have

∂d⊥
∂(cos θ)

|l = −l

√
l2

d2
⊥
− 1

Finally, we get

g(d⊥) =
dP

d(d⊥)
=

∫ ∞

d⊥

dl

2l0

d⊥e−l/l0

l
√

l2 − d2
⊥

Though this integral is not easy to solve, one can cut the integral at very large values and get

the distribution numerically. Thus, with just a couple of displaced tracks from a few events,

one can extract the rough value of the decay length of X2.
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Chapter 3

Diagnosing the Top-quark Angular Asymmetry Using

LHC Intrinsic Charge Asymmetries

3.1 Introduction

The most peculiar among the Standard Model fermions, the top quark has challenged the high

energy physics community, both on the experimental and theoretical level, since its discovery

in 1995. From the theoretical viewpoint, its exceptional mass suggests that it might play a

special role in the mechanism of electroweak symmetry breaking. This occurs in a number of

proposed theories, including Little Higgs and Top-color Assisted Technicolor, and even within

many supersymmetric models. On the experimental side, the predictions of the Standard Model

(SM) for the top quark are still not fully tested. At the Tevatron, the high production threshold

limited the number of tt̄ events, and only now at the LHC will it be possible to perform precision

measurements of the top quark’s properties.

While most aspects of the top quark agree so far with SM predictions, both the CDF (1; 3)

and D0 (2; 4) collaborations have reported an anomalous forward-backward asymmetry for tt̄

pairs at intermediate to high invariant mass, much larger than expected from SM calculations

(5; 6; 7; 8; 9; 10). This result, which relies upon “forward” being defined relative to the

Tevatron’s proton beam, cannot be immediately checked at a proton-proton collider such as

the LHC. However, it is well-known that forward-backward asymmetries at a proton-antiproton

machine lead to differential charge asymmetries at a proton-proton machine, and indeed, a

differential charge asymmetry in tt̄ production, as a function of the t quark’s rapidity, should be

observable. This quantity has been discussed by theorists, for instance in (15; 16; 17; 18; 54; 76),

and has been measured at the LHC experiments (12; 13; 14). The statistical errors on this

measurement are still rather large, however, and meanwhile the LHC’s higher energy allows its

experiments to probe for related phenomena in other ways.

No significant problems with the SM calculation or the experimental measurements of the

anomalously large asymmetry have been found. Meanwhile, a variety of models have been

proposed to explain it. Most of these produce the asymmetry through the exchange of a



32

new particle, either an s-channel mediator with axial couplings to both top and light quarks

(19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 34; 33; 35; 36; 37; 38; 39), or a t-channel (or

u-channel) mediator (40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59)

with flavor-violating couplings that convert a light quark or antiquark to a top quark. Both

processes are illustrated in Fig. 3.1. In (60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71), comparisons

between different models are carried out, and study of those models or measurements in the

LHC context can be found in (72; 74; 73; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84).

Charge asymmetries at the LHC are known to be powerful tools for searching for and

studying new physics, and recently this has been put to use in the context of models for the tt̄

asymmetry. In (52) a large overall charge asymmetry was used to argue the Shelton-Zurek model

(48) was most likely excluded; a similar method was then applied for a different model in (85).

Here, we focus on models with t- or u-channel mediators, which, as we will see, often generate

large charge asymmetries in tt̄j (top plus antitop plus a jet) at the LHC. These asymmetries,

a smoking gun of this type of model, will be crucial for a convincing discovery or exclusion of

this class of models. Note these asymmetries are not directly related to the Tevatron forward-

backward asymmetry in tt̄ events, which translate at the LHC into the differential charge

asymmetry in t production mentioned above. The asymmetry in tt̄j that we study here stems

from a completely different source; see below.

Any of the models with a t- or u-channel mediator has a coupling between a light quark

or antiquark, a top quark, and a new particle X, as in Fig. 3.1(b). It follows that the X

can be produced from an off-shell quark or antiquark in association with a t or t̄, as shown

in Fig. 3.2. Consequently, as has been pointed out by many authors (42; 44; 47; 72; 68;

81), it is important at the LHC to look for the process pp → Xt (and the conjugate process

pp → X̄t̄), where X in turn decays to t̄ plus a jet. A straightforward search for a t+jet

resonance can be carried out, though it suffers from the poor resolution for reconstructing the

resonance, large intrinsic backgrounds whose shape may peak near the resonance mass, and

combinatoric backgrounds in the reconstruction. Alternatively, one could attempt a cut-and-

count experiment; with appropriate cuts one can obtain samples in which the X production

contributes a statistically significant excess to the tt̄j rate. But the tt̄j background is not simple

to model or measure, and systematic errors may be problematic.

Fortunately, the process shown in Fig. 3.2 has a large charge asymmetry. The difference

between quark and antiquark pdfs assures that the rate for X production is different from that

of X̄ production. (If X is self-conjugate, same-sign top-quark production results, and is readily

excluded (90; 89); we therefore assume that X̄ 6= X.) Our approach in this work will be to



33

(a) s-channel (b) t-channel

Figure 3.1: Diagrams that can lead to a forward-backward
asymmetry at the Tevatron in tt̄ production. The X is
exchanged either (not both) in the s− or t−/u−channel.
q may be u or d.

Figure 3.2: For a t- or u-
channel mediator X, direct
production of tX (followed
by X → t̄ + q or q̄) is always
possible.

suggest something a bit more sophisticated than a simple resonance search, using the charge

asymmetries of these models to reduce systematic errors at a limited price in statistics. We will

also propose other charge-asymmetric variables that can serve as a cross-check. As a by-product,

should any discovery occur, the asymmetry itself can serve as a diagnostic to distinguish certain

classes of models from one other.

3.2 Benchmark Models

As our benchmark model, we take a typical model with a t-channel mediator, a colorless charged

spin-one particle which we call a W ′. We will assume the W ′ couples a right-handed d quark

to a t quark. While a theory with only these couplings would be inconsistent, we will assume

this coupling generates the largest observable effects. One may say that we choose a “simplified

model”, or “model fragment”, in which this coupling is the only one that plays an experimentally

relevant role. We will see this point is not generally essential.1 The Lagrangian we take for our

simplified model is simply

L = −gRW
′+
µ t̄γµPRd + h.c. (3.2.1)

where PR = (1 + γ5)/2.

We are interested in the process in which the W ′ contributes to a tt̄j final state. One

contribution comes from dg → tW ′− and its conjugate d̄g → t̄W ′+, following which the W ′−

decays to t̄d and the W ′+ decays to td̄. We will refer to this as “s-channel production” (see

Fig. 3.3). The W ′ also contributes to dg → tt̄d, and similar processes, through t-channel

exchange (see Fig. 3.4).

1Attempts to make consistent models with a W ′ include (88). There are also attempts to include the coupling
of a W ′ with a u and b quark (48), but such couplings lead to a large charge asymmetry in single top production
(52), now excluded by LHC data (86; 87).
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(a) W ′− production (b) W ′+ production

Figure 3.3: Dominant production mode for the W ′. The cross-section for W ′− is much larger
than for W ′+.

Figure 3.4: Characteristic examples of diagrams that contribute to tt̄j production involving the
W ′ in t-channel exchange.

The cornerstone of our analysis is the observation that in the s-channel process, the negatively

charged W ′ is produced more abundantly than the positively charged W ′, because the negative

W ′ can be produced from a valence quark, while a positive W ′ requires a sea antiquark in the

initial state. (See Fig. 3.3.)

The processes in Figs. 3.3 and 3.4 can in principle have non-trivial interference with the

Standard Model background — a point which considerably complicates background simulation.

But we have found that interference is not numerically important for certain observables, at

least with current and near-term integrated luminosities. All results in this paper therefore

ignore interference; however, with larger data sets, or when studying other models and/or using

other variables, one must confirm on a case-by-case basis that this approximation is sufficiently

accurate for the analysis at hand.

In (47), the authors studied this model and fitted it to the tt̄ asymmetry and total cross-

section in CDF. (This was done prior to the DZero result that shows a smaller asymmetry

with less energy dependence.) Based on this work, we will take six benchmark points shown

in Table 3.1, with three values of the W ′ mass and two values of gR for each mass, a larger

value that would reproduce the CDF measurement and a value
√

2 smaller that would give a

Tevatron asymmetry (and also an W ′ width and tW ′ production rate) of about half the size.

The cross-sections at these benchmark points (including all the processes shown in Figs. 3.3
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Mass (GeV) gR cross-section (pb)

400 1.5 32.2
400 1.5√

2
12.9

600 2 18.2
600

√
2 6.3

800 2 6.5
800

√
2 2.1

Table 3.1: 7 TeV LHC tree-level cross-sections for the processes shown in Figs. 3.3 and 3.4, for
the various benchmark points. No K-factor is included in these numbers, but we do apply one
later in our analysis; for a discussion of the simulations and the K-factor, we refer the reader to
Sec. 3.4.

and 3.4) are also given in Table 3.1.

The W ′ also contributes to tt̄ production through t-channel exchange, and thus to the

differential charge asymmetry in t rapidity at the LHC (not to be confused with the asymmetries

in tt̄j that are the subject of this paper.) ATLAS and CMS measurements of this quantity (with

respectively 0.7 and 1.1 fb−1 of data) (12; 14) may somewhat disfavor the benchmark points with

the larger values of gR, which (at parton-level, not accounting for t reconstruction efficiencies)

give a differential charge asymmetry in the 8–9% range. But the situation is ambiguous, since

event mis-reconstruction and detector resolution produce a large dilution factor, which may

make this charge asymmetry consistent with the current measurements. Our benchmarks with

larger couplings thus probably represent the outer edge of what might still be allowed by the

data. By considering also an intermediate coupling that still could explain the Tevatron tt̄

asymmetry, we cover most of the interesting territory, and permit the reader to interpolate to

other values of the couplings.

3.3 A mass variable

Among the charge-asymmetric observables discussed in this paper, we will devote most of our

attention to one motivated by the resonance structure of the W ′, which we will refer to as the

mass variable Mj1bW in later content. This variable is applicable universally to a wide range

of W ′ masses and couplings, and to most other models with tX production. We discuss this

mass variable in great detail in this section. In Sec. 3.6, we will discuss the azimuthal angle

between the hardest jet and the lepton (which we refer to as the “angle variable”.) A third

class of potentially useful variables (“PT variables”), including the PT difference between the

hadronic and the leptonic top quarks or W -bosons, is briefly discussed in Appendix 3.10.

We will consider only the semi-leptonic tt̄j events (where one top decays hadronically and
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the other leptonically), resulting in a final state of 5 jets, a lepton and missing energy. All-

hadronic decays are not useful for a charge asymmetry, as t and t̄ cannot be distinguished in

this case, while the fully leptonic decay, though probably useful, has a low branching fraction.

Since it is the s-channel process in Fig. 3.3, where the W ′ appears as a resonance, that is

charge-asymmetric, we will focus our attention there. In our later analysis we will impose an

ST cut2 to improve the signal-to-background ratio. If we put that cut at 700 GeV, the fraction

of negatively charged W ′s for the 400, 600 and 800 GeV W ′ is 0.84, 0.87 and 0.86 respectively.

Such an enormous charge asymmetry in production can be put to good use.

Note, however, that since every event (following the W ′ decay) has a t and a t̄, either

of which may produce the lepton, the total numbers of events with positively and negatively

charged leptons are expected to be roughly equal, up to edge effects produced by cuts and detector

acceptance. But since negative W ′s are produced more abundantly, a negatively charged lepton

is more likely to come from the W ′ decay, while positive leptons tend to originate from the

decay of the spectator top quark or antiquark. Kinematic features, such as the invariant mass

and transverse mass of various final-state objects, differ for events with negatively and positively

charged leptons. For instance, a simple bump hunt aimed at reconstructing the W ′ resonance

would find a much larger bump in negatively charged leptons than in positively charged ones.

Here, we will consider the W ′ reconstructed mass distribution more completely, noting that the

signal remains asymmetric even away from the W ′ mass bump, since the total asymmetry must

integrate to (almost) zero.

Another useful kinematical feature is that the hardest jet in tW ′ → tt̄d production commonly

originates from the d-quark, because of the large energy released in the W ′ decay and the

dissipation of the top quarks’ energies into their three daughters. At leading order and at

parton-level, and with an ST cut of 700 GeV, the fraction of events where the hardest parton

is the d-quark (or antiquark) from the W ′ is 0.71, 0.82 and 0.82 for a W ′ of mass 400, 600

and 800 GeV respectively. (Note neither ISR/FSR, hadronization, nor jet reconstruction are

accounted for in these numbers, which are for illustration only.) We have designed our variables

to maximally exploit these two kinematic features.

One conceptually simple approach to seeking the W ′ would involve fully reconstructing the

t and t̄ in each event, and searching for a resonance in either tj or t̄j. This has been discussed

in (42; 44; 47; 72; 68; 81). The challenge is that the combinatoric background is large and

hard to model, and often peaks in a region not far from the resonance. Charge-asymmetries

2For our definition of ST , see equation (3.4.1) in Sec. 3.4.
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are useful here, because the positive-charge lepton events are dominated by the combinatoric

background, while the negative-charge lepton events have similar combinatorics but a much

larger resonance. Comparison of the two samples would allow for the elimination of a significant

amount of systematic error.

However, full event reconstruction in events with five jets will have low efficiency, and more-

over we are neither confident in our ability to model it nor certain it is the most effective method.

Here we will instead focus on variables that require only partial event reconstruction. Of course

the experimental groups should explore whether full event reconstruction is preferable to the

methods we attempt here.

We will focus on the mass variable Mj1bW : the invariant mass of the hardest jet in the event,

a b-tagged jet (chosen as described below), and a W -candidate reconstructed from the observed

lepton and the missing transverse momentum (MET).3 It involves only a partial reconstruction

of the event to form a candidate for the W ′, assuming it has decayed to a lepton.4 In signal

events where the hardest jet in the event is a d (or d̄) from the W ′ decay, and the t̄ (or t) from

the W ′ produces a lepton `, Mj1bW often reconstructs the W ′ resonance. The events with an `−

typically exhibit a resonance at the W ′ mass, while those with an `+, in which the W ′ is most

often not reconstructed correctly, have a smoother distribution. This effect, and the resulting

charge asymmetry — with a negative asymmetry near the W ′ mass and positive asymmetry

elsewhere — are shown for mW ′ = 600 GeV in Fig. 3.5. Both the asymmetric s-channel and

the almost symmetric t-channel are included in what we call “signal.”

In constructing Mj1bW , we reduce the combinatorial background by rejecting b-jets that

are inconsistent with forming a top quark with the lepton and the MET (Mbl < 155 GeV and

MT
blν < 175 GeV.) When multiple b-jets satisfy these criteria, we select the b-quark for which

the quantity |Mbl− 155 GeV|+ |MT
blν − 175 GeV| is smallest. The combined efficiency of the W

reconstruction and the b selection is about 45%.

Meanwhile, we will give evidence in Sec. 3.5.1 that the SM background to this process shows

no charge asymmetry in this variable, to a sufficiently good approximation. It is crucial for the

use of this variable that this is true.

There are other invariant-mass and transverse-mass variables that have their merits. Some

3We solve for the neutrino four-momentum in the usual way. Complex solutions are discarded for simplicity.
When two real solutions exist, the most central W candidate is selected.

4Were one to fully reconstruct the tt̄j events, one could also study the invariant mass of the hadronically-
decaying top and the hardest jet, which will also differ for positive- and negative-charge lepton events. We
neglect this variable here because the reconstruction of the hadronic top has low efficiency, but we encourage
our experimental colleagues to consider if they can increase their sensitivity by including it.
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(a) Mj1bW (parton-level) for signal only, shown for
positive and negative lepton charge.

(b) Bin-by-bin signal-only charge asymmetry

(c) Mj1bW (parton-level) for signal plus background,
shown for positive and negative lepton charge.

(d) Bin-by-bin signal plus background charge asym-
metry

Figure 3.5: Parton-level charge asymmetry in the Mj1bW variable for a 600 GeV W ′ with gR = 2
and an ST cut at 700 GeV. The leptonic W boson was reconstructed from its decay products,
j1 was taken to be the hardest non-b parton. ISR/FSR and b-quark selection effects were not
accounted for here. The sample corresponds to 1.5 fb−1.

require no event reconstruction, including the invariant mass of the hardest jet and the lepton

(Mj1l) and the invariant mass of the hardest jet, a b-tagged jet and the lepton (Mj1bl). For

quantities that include the MET in the event, one could consider the transverse mass of two or

more objects. (See also the footnote above concerning the hadronically decaying top in fully

reconstructed events.) These variables and their charge asymmetries are strongly correlated,

but one might still obtain additional sensitivity by combining them. But here, for simplicity,

having found that the most sensitive variable on its own is Mj1bW , we will focus on it exclusively

below.

3.4 Event selection and processing

We mentioned earlier that the tt̄j background and the W ′ signal do interfere with each other.

However we have explicitly checked that interference effects do not alter the differential asym-

metry in the Mj1bW mass variable by a significant amount (given currently expected statistical

uncertainties). The effect on the total number of events is also small. Thus it is relatively safe

for us — and for the early searches at the LHC — to neglect interference in the study of the



39

mass variable, at least for the W ′ model. (We have not studied whether this is true for all

similar models with tX production.) At some point, higher-precision study with much larger

data samples (À 10 fb−1) may require the full set of interfering diagrams, and a special-purpose

background-plus-signal simulation. Here we simulate background and signal independently.

On the other hand, t-channel W ′ exchange (Fig. 3.4) makes an important contribution to

the cross-section and should always be included when generating the signal sample. (This is not

uniformly the case in the literature.) For the variables we are studying, the t-channel process

does not contribute much to the asymmetry, and effectively acts as an additional background.

A background sample and the signal samples for our benchmark points were generated

with Madgraph 4.4.32 (91) and showered with PYTHIA 6.4.22 (92). We performed a fast

detector simulation with DELPHES 1.9 (94). (For our parton-level studies the decays of the

top and the antitop were simulated with BRIDGE 2.24 (93)). We used the anti-kT jet-clustering

algorithm (with R = 0.5) to reconstruct jets. The isolation of leptons and jets is described in

Appendix 3.9.1. The b-tagging was modeled after the SV050 tagger of the ATLAS collaboration

(95). We account for the rising PT -dependence of the b-tagging efficiency, which reaches up to

60% in the kinematic regime of interest. The dependence of the b tagging efficiency on the

pseudo-rapidity is assumed to be negligible within the η reach of the tracker (|η| < 2.4), with

the tagging rate taken to be zero outside the tracker. The c-tag efficiency was assumed a factor

of 5 smaller and the mistag rate is taken to be 1%. We do not account for the falloff in efficiency

and the rise in mistag rates at higher PT , since measurements of these effects are not publicly

available; our tagging might therefore be optimistic, though the issue affects both signal and

background efficiency.

We impose the following criteria for our event selection:5

• At least 5 jets with P jet
T > 30 GeV and |η| < 5

• At least one of these jets is b-tagged

• One isolated lepton (e± or µ±) with P `
T > 30 GeV and |η| < 2.5

• MET > 30 GeV.

where η stands for pseudo-rapidity as usual. We also impose a cut on ST , which is defined as

ST =
∑

P jet
T + P `

T + MET (3.4.1)

5Our cuts may be optimistic in the rapidly changing LHC environment. Raising the jet PT cut to 40 GeV
results in a loss of sensitivity of order 10–20%. If one restricts jets to those with |η| < 2.5, signal is reduced by
about 10%, and background by about 15%. An increase in the electron PT cut to 45 GeV reduces signal by
20–25% and background by about 30%.
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where the sum runs over all the jets with P jet
T > 30 GeV. The ST cut will be at a high enough

scale (typically 600-800 GeV) that our events will pass the trigger with high efficiency.

The SM background simulation requires a matched sample for

p + p → t + t̄

p + p → t + t̄ + j

where we use the MLM scheme (96), with QCUT= 30 and xqcut= 20. The renormalization

and factorization scales are set to mT , where m2
T is the the geometric mean of m2

t + p2
T for the

top and antitop.

One might wonder whether it is necessary to include pp → tt̄jj as well. But we are requiring

5 hard jets, and the mass and angle variables we will study are not sensitive to soft radiated jets,

as they involve the hardest jet and a b-tagged jet. It is sufficient, therefore, for us to truncate

our matched sample with one jet, and allow PYTHIA to generate any additional radiation. In

total, we generated 3 million background events before matching. After matching, we find an

inclusive tt̄ LO cross-section of about 90 pb, so we include a K-factor of 1.7 to match with the

NLO+NNLL QCD calculation (97; 98). The number of events we generated for background

corresponds to about 14 fb−1, large enough to provide smooth distributions for the variables

we study.

There are a number of SM processes whose total cross-sections for producing a lepton are

intrinsically charge-asymmetric. These include single-top production and W -plus-jets, for which

an `+ is more likely than an `−. However, these have small rates for 5 jets and a lepton, especially

with a b tag required and with a hard ST cut. Moreover, asymmetries from any such process

would be quite different from the signal, being both structureless and everywhere positive. We

foresee no problem with such backgrounds.

For each value of the W ′ mass and coupling constant, we generated a signal sample with

750,000 events. No matching was used; extra ISR/FSR jets were generated by PYTHIA. These

samples are large enough to suppress statistical fluctuations when we later use them to study

the expected shape and magnitude of the asymmetry. In our studies, we have chosen to scale

all LO signal cross-sections, for all six benchmark points, by a K-factor of 1.7, the same as for

the tt̄ background.6 Note that this K-factor can always be absorbed in gR, as long as the width

of the W ′ is smaller than the resolution.

6We note that the K-factor for the process bg → tW is in this range (11), suggesting our choice is not
unreasonable.
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3.5 Analysis and results

Although the parton-level charge asymmetries described in Sec. 3.3 are large, the experi-

mentally observable asymmetries are significantly diluted by the detector resolution and mis-

reconstructions. Fig. 3.6 shows our estimate of the asymmetry structure that can be obtained

at the detector level; compare this with Fig. 3.5. Note, however, that the basic structure of a

negative asymmetry at the W ′ peak, with a positive asymmetry to either side, remains intact.

(a) Mj1bW for a 400 GeV W ′, gR = 1.5 (b) Bin-by-bin asymmetry for a 400 GeV W ′, gR =
1.5

(c) Mj1bW for a 600 GeV W ′, gR = 2 (d) Bin-by-bin asymmetry for a 600 GeV W ′, gR = 2

(e) Mj1bW for an 800 GeV W ′, gR = 2 (f) Bin-by-bin asymmetry for an 800 GeV W ′, gR =
2

Figure 3.6: As in Fig. 3.5, but after accounting for detector effects, and with an ST cut of
700 GeV, for three different W ′ masses. All plots show signal plus background. The samples
correspond to an integrated luminosity of 5 fb−1.

As always, one needs to obtain a prediction for both the Standard Model-only assumption

(SM) and the Standard Model plus new physics assumption (NP), and assign a degree of belief

to one or the other using a suitable statistical procedure, given the observed data. We will
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argue below that the SM prediction for the asymmetry in Mj1bW is essentially zero, within

the statistical uncertainties of the measurement. However, to predict the asymmetry in the

presence of a signal requires a prediction of its dilution by the background. The background is

also needed in order to predict the size of the fluctuations of the SM asymmetry around zero.

Direct use of Monte Carlo simulation to model the SM background distribution would be a

source of large systematic errors, as NLO corrections are not known, and since we impose a hard

cut on ST . We therefore propose a (partially) data-driven method, minimizing this systematic

error while keeping the statistical errors under control. The result can then be combined with

a signal Monte Carlo to predict the differential asymmetry in Mj1bW . The search for a signal

will then involve fitting this expectation to the data.

Our first task is to discuss how to obtain the prediction (which we will refer to as a “tem-

plate”) for the differential asymmetry in Mj1bW , under both the SM and NP assumptions. We

will begin by arguing that the SM asymmetry template is zero to a sufficiently good approx-

imation. Next we will make a proposal for a partially data-driven method to determine the

template for a given NP assumption, with low systematic uncertainty. Finally, we will esti-

mate the sensitivity of our variables, using a simplified statistical analysis based in part on our

proposed method. Along the way we will find the preferred value of the ST cut.

3.5.1 The SM Template: Essentially Zero

It is crucial for our measurement that the asymmetry in the SM background be known, so that

the presence of a signal can be detected. It would be even better if the SM asymmetry is very

small. Here we give evidence that this is indeed the case.

It is essential to recognize that the SM background to the tt̄j process is very different from

the SM background to the tt̄ process. In tt̄, all asymmetries are zero at LO. The non-vanishing

SM asymmetry in tt̄ therefore arises from an NLO effect, involving both virtual corrections to

tt̄ and real emission, that is, tt̄j. The asymmetry therefore cannot be studied at all with a

leading-order event generator, and in a matched sample (which contains tt̄j but not the virtual

correction to tt̄) it would actually have the wrong sign.

However, for tt̄j itself, differential charge asymmetries at LO are not zero. The correction to

these asymmetries from NLO corrections to tt̄j are subleading in general. Therefore we can ask

the following question of an LO generator: although the generic observable in tt̄j events will

show a charge asymmetry, is this the case for the Mj1bW variable, or is any asymmetry washed

out?
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(a) Mj1bW for SM background with a 700 GeV ST

cut.
(b) Bin-by-bin asymmetry in Mj1bW for SM back-
ground with a 700 GeV ST cut.

Figure 3.7: A parton-level study of the SM background asymmetry for the mass variable with
a 700 GeV ST cut, corrsponding to 12 fb−1 luminosity. Other simulations confirm that the
asymmetry appearing at 1200 – 1400 GeV is a statistical fluctuation.

We find that the asymmetry in the mass variable is consistent with zero, as one can see

in Fig. 3.7. This also turns out to be true for the angle variable which we will discuss later.

We emphasize that this was not guaranteed to be the case. One can find variables that, at

LO and at parton-level, exhibit asymmetries. An example is the asymmetry between the PT

of the t and that of the t̄, which is of order 4% at parton-level. The fact that qg → tt̄j has

rather small asymmetries, and that the symmetric gg initial state contributes significantly to

tt̄j, helps to reduce the size of any observable asymmetries. After reconstruction and detector

effects, nothing measurable remains.

We know of no reason why NLO corrections would change this conclusion. Neither virtual

corrections nor real jet emission have any reason to strongly affect Mj1bW . For this reason we

will treat the SM background as purely symmetric.

No argument of this type is airtight. Fortunately, the experiments do not need to rely

entirely upon it. As we see in Fig. 3.6, the asymmetry in the signal has a characteristic kinematic

structure. Moreover, related asymmetries will show up in several mass variables in a correlated

way, due to the W ′, and one would not expect similar correlations in the background. Finally, a

signal is likely also to appear in the angle variable discussed in Sec. 3.6. The existence of these

multiple cross-checks should allay any concerns that a measurement of a non-zero asymmetry

might be uninterpretable.

3.5.2 Obtaining NP Templates and Accounting for Fluctuations

We now discuss how to obtain the NP template that is needed for each benchmark point. In

addition one needs to be able to estimate the fluctuations that can occur under both the SM
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and NP assumptions. We emphasize the possibility of data-driven approaches.

We will find it useful to introduce some notation (summarized in Table 3.2) in which S±i and

B±
i represent, for a signal-only and background-only Monte Carlo sample, the number of events

in bin i with a positively- or negatively-charged lepton `±. D±
i denotes the similar quantity

in data (and is thus not generally equal to the expected result S±i + B±
i .) At some point we

will need a smoothed version of the data, which we denote via [D±
i ]. The differential charge

asymmetry predicted by the template for a particular benchmark point, or by the SM itself, we

denote by Âi. Meanwhile, we call the observed asymmetry in the data Ai.

Let us first focus on the statistical fluctuations around the template for the SM, which as

we argued above in Sec. 3.5.1 can be taken to be zero. Whenever one needs this template, it is

under the assumption that the data is pure SM. Even without signal, there will be plenty of data

with ≥ 5 fb−1 and an ST cut of order 700 GeV. It therefore appears that rather than obtain

the fluctuations around zero using a Monte Carlo sample Bi, one would have much smaller

systematic errors using the data Di = D+
i + D−

i itself. One could probably do even better

using a fit [Di] to the data, smoothing the bin-by-bin fluctuations in the numbers of events.

We believe that the remaining statistical uncertainties that come with this method of modeling

background will be smaller than the systematic uncertainties on an LO Monte Carlo for Bi.

From this data-driven model, one may determine the expected size of the fluctuations on Âi by

performing a series of pseudo-experiments.

Next let us consider how to determine the template Âi for a particular NP hypothesis We

could of course simply compute it from large Monte Carlo samples, with Monte Carlo integrated

luminosity LMC much larger than the integrated luminosity in data Ldata, for Si and Bi.

Âi ≡ S+
i − S−i

S+
i + S−i + B+

i + B−
i

(3.5.1)

B+
i (B−

i ) Number of positive (negative) lepton events in ith bin, for background-only Monte
Carlo.

S+
i (S−i ) As above, for signal-only Monte Carlo.

D+
i (D−

i ) As above, in observed data.
[D+

i ] ([D−
i )] As above, in a fit to the observed data.

Âi Predicted charge asymmetry the ith bin for a particular hypothesis.
Ai Charge asymmetry in ith bin as observed in data.
cn Amplitude for best fit of an NP template to the nth pseudo-experiment under the SM

hypothesis.
c̃ Amplitude for best fit of an NP template to the asymmetry observed in the data.
σc Standard deviation of the cn.

Table 3.2: Notation used throughout Sec. 3.5.
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(Recall we are ignoring interference for now.7) Here the B±
i cancel in the numerator, since the

asymmetry in the SM background is assumed to be zero. With this approach statistical errors

can be made arbitrarily small, but systematic errors on the SM background prediction could

be very substantial. The process tt̄j has never previously been measured at these energies, and

after the ST cut it is difficult to estimate how large the systematic errors might be. Moreover

we know of no way to extract the tt̄j background reliably, in the presence of signal, without the

potential for signal contamination.

An alternative purely data-driven approach would be to use the suitably-fitted charge-

symmetric data [D+
i + D−

i ] in the denominator of (3.5.1). For the numerator one may take

a large Monte Carlo sample for Si, and scale it to the luminosity of the data sample, giving

Âi ≡
(S+

i − S−i )Ldata

LMC

[D+
i + D−

i ]
(3.5.2)

where again Ldata and LMC are the luminosities of the data and the signal Monte Carlo sample.

This method introduces correlations between the prediction of the template Âi and the mea-

surement Ai which would have to be studied and accounted for. However, the systematic error

introduced by these correlations may in many cases be much smaller than those introduced by

relying on a Monte Carlo simulation for the denominator, as in (3.5.1). In addition, statistical

errors that arise from the finite amount of data, which would be absent with a large Monte

Carlo sample, are negligible, as can be seen as follows. The statistical error on the predicted

asymmetry Âi is dominated by fluctuations of the denominator of (3.5.2), since the statistical

error on the numerator of (3.5.2) can be made arbitrarily small by increasing LMC :

σ(Âi)
Âi

=
1

[D+
i + D−

i ]1/2
. (3.5.3)

However, for the measured asymmetry Ai, defined as Ai ≡ D+
i −D−

i

D+
i +D−i

, the error is always (for

these models) dominated by the numerator:

σ(Ai)
Ai

=
1

(D+
i + D−

i )1/2

√
1

A2
i

− 1. (3.5.4)

More precisely, since the largest observed asymmetries per bin will be of the order of 0.15, the

statistical error on the observed asymmetry is always larger than the statistical error on the

template — σ(Ai) >> σ(Âi). And again we emphasize that this data-driven method reduces

systematic uncertainties from what is often the largest source: the lack of confidence that the

7If interference cannot be neglected, as might happen with very large data sets or perhaps with other models
that we have not explored in detail, then our separation of Si and Bi is naive. What must then appear in
the numerator is the difference of positive and negative lepton events in the combined signal and background.
Systematic errors will then presumably be somewhat larger.
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tt̄j background is correctly modeled. This comes at the relatively low cost of mild correlations

between prediction and data, and some additional minor statistical uncertainty.

Partially data-driven approaches are also possible. Even if one uses [Di], the choice of fitting

function could be determined in part with the use of Monte Carlos for Bi and Si. Interestingly,

the distribution in the variable Mj1bW is quite similar in signal and background, so the presence

of signal, though it affects the overall rate, does not strongly affect the overall shape away from

the W ′ resonance.

Since the pros and cons of these methods are luminosity-dependent, and dependent upon

the details of the analysis, the only way to choose among these options is to do a study at

the time that the measurement is to be made. We therefore do not attempt any optimization

here. Whatever method is used, the last step in the process in obtaining the NP template is to

fit the Âi to a smooth function, which then serves as the template for the asymmetry in this

particular benchmark point. (The size of the fluctuations around this template can again be

obtained from [Di], as we suggested for the SM template.) After repeating this process for a

grid of benchmark points, one may then compare the data to the SM null template or to any

one of the NP templates. In the next subsection we will carry out a simplified version of this

study, to investigate the effectiveness of our methods.

3.5.3 Effectiveness of Our Method: A Rough Test

A full evaluation of our method, carrying out precisely the same analysis that the experimen-

talists will need to pursue, would require more firepower than we have available. Instead we

will carry out a somewhat simplified analysis, asking the following question:

If the NP hypothesis for a certain benchmark point is realized in the data, what is the average

confidence level at which we can reject the SM hypothesis?

The answer to this question will serve two purposes. First, it will give a measure of how sensitive

a complete analysis will be for distinguishing the SM from various NP scenarios. (More precisely,

it will be slightly optimistic, as we will discuss, but not overly so.) Second, it will allow us to

estimate what value of the ST cut is optimal for different benchmark points.

We have not yet said much about the ST cut, so let us remark on it now. Without such a

cut, the signal to background ratio in the tt̄j sample is small, as small as 1:45 for mW ′ = 800

GeV with gR =
√

2. However, the situation can be much improved using the fact that the

signal ST distribution tends (especially for heavy W ′s) to sit at much larger values for signal

than for the SM background. (See Fig. 3.8; note these plots show the ST distributions for our
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(a) MW ′ = 400 GeV, gR = 1.5 (b) MW ′ = 600 GeV, gR = 2 (c) MW ′ = 800 GeV, gR = 2

Figure 3.8: ST distributions of signal and background, for various benchmark points. For
computational reasons we did not simulate events with ST < 450 GeV. The samples correspond
to 8 fb−1.

large-gR benchmark points. From this one can see that a simple counting experiment would

not be trivial.) The optimal value of the ST cut depends on the model, the analysis method

and the luminosity. For most of our purposes an ST cut of the order of 700 GeV is suitable, as

we will see later.

Answering the italicized question posed above is equivalent to evaluating the probability for

fluctuations about the SM assumption to create a differential asymmetry Ai that resembles the

pattern predicted by the NP assumption Âi. For this we need (a) the template Âi for the NP

assumption and (b) an estimate of the size of the fluctuations that can occur under the SM

assumption.

We have discussed above how to obtain these things from the data at the LHC. But since the

actual data Di are not yet available, we obtain our NP template Âi from large Si and Bi Monte

Carlo samples, using formula (3.5.1). Obtaining the fluctuations under the SM assumption is a

bit subtle. Since in this section we are assuming the data itself contains a signal, our background

model must be obtained, according to our data-driven strategy, from our simulation of Si + Bi

(and not from Bi alone!) We take the expected numbers of positive- and negative-charge

lepton events to both be equal to half of Si + Bi. We then study the fluctuations around this

background model by performing 50 000 Poisson-fluctuating pseudo-experiments, for positive-

and negative-lepton events independently, and computing the differential asymmetry for each

one.

Finally, to address our italicized question, we must then ask: what is the probability for fluc-

tuations of the asymmetry around zero, given this background model, to resemble the “data”?

This is done as follows: For each pseudo-experiment, we fit the differential asymmetry to the

NP template Âi of our benchmark point, keeping the shape of the NP template fixed but allow-

ing the amplitude to float. The best-fit amplitude we denote by cn, where the index n labels

the pseudo-experiment. For illustration, some examples for a couple of pseudo-experiments are
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(a) SM pseudo-experiment, with
amplitude 0.39

(b) SM pseudo-experiment, with
amplitude −0.16

(c) NP pseudo-experiment, with
amplitude 0.98

Figure 3.9: Two examples of possible fluctuations of the differential charge asymmetry under
the SM hypothesis, and one example under the NP hypothesis. The red line is the best fit of
the amplitude of the NP template to the pseudo-experiment, with the shape held fixed. The
NP template that was chosen corresponds to the 600 GeV W ′ with gR = 2 and ST > 700 GeV.
The fluctuations are representative for a 5 fb−1 sample.

shown in Figs. 3.9(a) and 3.9(b).

Under the SM assumption (zero asymmetry), the expectation value of the cn is zero. (Simi-

larly, under the correct NP assumption, the expectation would be 1.) The cn follow a Gaussian

distribution, whose width gives the standard deviation σc of the cn around zero. If an amplitude

of size c̃ were observed in the data, the p-value (chance of a fluctuation on the SM hypothesis

to produce a structure with amplitude c̃ or larger) is then:

P [X > c̃] =
1√

2πσc

∫ +∞

c̃

dc e−
1
2 (c/σc)

2
. (3.5.5)

To get a measure of typical significance, we compute P [X > 1], the probability for the SM

to produce an Ai resembling the template Âi with an amplitude c̃ exceeding 1. (Recall that

c̃ = 1 would be the expected value given that nature has chosen this benchmark point.) The

results of this procedure for our benchmark points, after conversion to standard deviations on a

Gaussian, are displayed in Table 3.3, for two integrated luminosities and for the optimal ST -cut

(see below.) In Appendix 3.8, we also present contour plots of the significance as a function of

the integrated luminosity and the ST cut; see Figs. 3.12 and 3.13.

The amount by which the observed significance tends to fluctuate around the expected sig-

nificance depends on the luminosity and the ST cut. By running a different set of pseudo-

experiments based on the NP hypothesis, we can obtain the Gaussian distribution of the am-

plitude of the fit. (An example of such a pseudo-experiment is shown in Fig. 3.9(c).) Values for

the width of this distribution give us the statistical error bar on the expected significance, and

are included in Table 3.3.

Our simplified analysis is imperfect in various ways. One important weakness is that we

assume that nature matches one of our benchmark points, and we do not consider the effect of

using the wrong benchmark point in obtaining the exclusion of the SM. In particular, the mass
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MW ′
(GeV) gR

ST cut
(GeV)

Significance
5 fb−1 8 fb−1

400 1.5 750 6.27± 0.92 7.49± 0.75
400 1.5√

2
750 3.38± 0.95 4.24± 0.95

600 2 700 3.42± 0.92 4.08± 0.95
600

√
2 700 1.79± 0.83 2.15± 0.86

800 2 700 2.37± 0.87 3.12± 0.92
800

√
2 700 1.60± 0.82 2.01± 0.85

Table 3.3: Expected significance and statistical error for SM exclusion at our benchmark points,
given selected luminosities and optimal ST cuts. For the correct interpretation of these numbers,
please refer to the text.

of the W ′ we used to obtain the NP template matches the mass of the W ′ in our “data”. A

finer grid in W ′ mass would address this. (In general, the coupling gR for the template will also

differ from the real coupling, but except for its effect on the W ′ width, often smaller than the

experimental resolution, a change in the coupling affects the amplitude, but not the shape, of

the corresponding template.) Also, our simplified procedure to fit only for the amplitude of the

template and to keep the shape fixed does not always capture all the features of the asymmetry

distribution, as is illustrated in Fig. 3.9(c), where the central dip in the asymmetry is deeper

than our fit function can capture. In a more detailed study one might choose to let multiple

parameters float to obtain a better fit. We further note that we are not accounting for the

look-elsewhere effect. And finally, although the use of asymmetries and a data-driven method

reduces systematic errors, we have not considered the remaining systematic errors here.

On the other hand, there are important features of the signal that we are not using in our

analysis, and including those would enhance the sensitivity. The use of several (correlated) mass

variables, and the angle variable discussed in the next section, would give some improvements.

Moreover, while the charge asymmetry we focus on here has low systematic errors but is sta-

tistically limited, other observables with higher systematics but lower statistical errors, such as

the differential cross-section with respect to ST , are obviously useful as well. In any search for

this type of models multiple approaches should be combined.

3.6 An angle variable

In this section we discuss another charge-asymmetric variable, the azimuthal angle between the

hardest jet without a b-tag (j1) and the lepton `:

∆φj1,` = Min
[
|φj1 − φ`|, 2π − |φj1 − φ`|

]
. (3.6.1)
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With a low ST cut, the angle between the hardest jet and an `− tends to be larger than

the angle between the hardest jet and an `+ [Figs. 3.10(a) and 3.10(b)]. The reason is as

follows: The W ′ is produced near threshold, so the recoiling top quark or antiquark is not

highly boosted. The top from the W ′ decay, on the other hand, will recoil back-to-back against

the d or d̄ (which is usually the source of the hardest jet). Moreover, this top will be somewhat

boosted since mW ′ À mt, so if it decays leptonically, the lepton’s momentum tends also to be

back-to-back to the d or d̄. This results in a large opening angle between the hardest jet and

the lepton. However, if it is the other top quark that decays leptonically, the angle of its lepton

with the hardest jet is more randomly distributed. Since the negatively charged W ′ is produced

more abundantly, this variable will exhibit a charge asymmetry.

For a high ST cut the picture reverses. The W ′ and the top from which it recoils are now

both boosted and typically back-to-back with one other. The decay products from the W ′ tend

to be aligned with each other. In other words, a cluster of four objects (from the W ′) is now

recoiling against a cluster of three objects (the top). The hardest jet is typically still the down

quark from the W ′ decay. If the lepton’s parent is the top from the W ′, ∆φj1` tends to be

small, while the opposite is true if the lepton comes from the recoiling top. (See Figs. 3.10(c)

and 3.10(d).)

This reversing structure in the asymmetry as a function of the ST cut is useful, as it po-

tentially provides a very strong hint of new physics. However, there is an intermediate ST cut

where the asymmetry is essentially zero, so in that range the variable is not useful. For this

reason, we recommend studying this variable as a function of the ST cut.

We explicitly checked that the standard model will not introduce a large asymmetry in this

angle variable, for any ST cut. A particular case is shown in Fig. 3.11. Our reasoning for

trusting a LO Monte Carlo is the same as was described in Sec. 3.5.1 for the mass variable.

An interesting feature of this angle variable in the W ′ model (though whether this is true

in other models has not yet been studied) is that the point where the number of positive and

negative lepton events is roughly equal is insensitive to mW ′ and gR. For all our benchmark

points we find ∆φj1,` ≈ 2 to be a suitable place to break the signal into two bins. The detector-

level asymmetries in both bins are given in Table 3.4. To estimate the significance, we follow

a strategy similar to the one mentioned for the mass variable. However instead of fitting for

the amplitude of a previously obtained template, we compute the difference of the asymmetry

of the two superbins and establish the Gaussian probability distribution for this variable using

pseudo-experiments on the SM hypothesis. Plots of the resulting significance of this observable

as a function of ST cut and luminosity can be found in Figs. 3.14 and 3.15 in Appendix 3.8.
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(a) The angle variable in signal only for MW ′ = 800
GeV and gR = 2.

(b) Asymmetry of the angle variable in signal only for
MW ′ = 800 GeV and gR = 2.

(c) The angle variable in signal only for MW ′ = 400
GeV and gR = 1.5.

(d) Asymmetry of the angle variable in signal only for
MW ′ = 400 GeV and gR = 1.5.

Figure 3.10: Angle difference between the lepton and the hardest jet at parton-level signal-only,
for W ′s of mass 800 and 400 GeV with an ST cut at 700 GeV. The samples correspond to 5
fb−1.

The greatest merit of the angle variable is its simplicity. Both the hardest jet and the lepton

are well-measured, and in contrast to the mass variables no (partial) event reconstruction is

needed. Unfortunately the angle variable is more sensitive than Mj1bW to interference effects

between signal and background. Whether the contribution from interference is positive or

negative depends on the mass of new particle, the ST cut and the model we study. The effect,

however, appears to be only moderate. We find that, for a W ′ mass of 800 GeV and an ST cut

of 700 GeV, the asymmetry for the two bins after interference is included is reduced by about

15%. A more detailed study including interference is advisable to give a precise estimate of its

effects, especially for other models where interference might be more important.

3.7 Final Remarks

At the LHC, models that attempt to explain the Tevatron tt̄ forward-backward asymmetry

with the exchange of a particle X in the t- or u-channel generate a charge-asymmetric signal

in tX production. This leads to observable charge asymmetries in certain variables within tt̄j
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(a) The angle variable for SM background with a
700 GeV ST cut.

(b) Bin-by-bin asymmetry in the angle variable for SM
background with a 700 GeV ST cut.

Figure 3.11: A parton-level study on SM background asymmetry for the angle variable with a
700 GeV ST cut, corresponding to 12 fb−1 luminosity.

MW ′
(GeV) gR

ST cut
(GeV)

Asymmetry (%)
1st bin 2th bin

400 1.5 800 -13.7 10.2
400 1.5√

2
800 -9.3 7.0

600 2 1200 -9.6 12
600

√
2 1200 -6.8 8.7

800 2 700 3.8 -2.4
800

√
2 700 2.4 -1.7

Table 3.4: Expected asymmetry at detector-level in the angle variable for each superbin, for
our benchmark points using the optimal ST cut.

samples. Among interesting observables are mass variables involving various final state objects

including the hardest jet and/or the lepton (Secs. 3.3 and 3.5), the azimuthal angle between

the lepton and the hardest jet (Sec. 3.6) and the PT difference between the tops and W bosons

(Appendix 3.10). Of these variables, the invariant mass of the hardest jet, the leptonic W

and a b-tagged jet appears to be the most powerful and the most universal, since it tends to

reconstruct the W ′ mass resonance. The charge asymmetry of this variable exhibits a negative

asymmetry in the region of the W ′ mass, and a positive asymmetry elsewhere. We have proposed

a data-driven method to extract a statistical significance from this asymmetry structure.

One could of course go further by fully reconstructing the events, and directly observe that

W ′− production is larger than W ′+ production. However demanding full reconstruction would

lead to a considerable loss of efficiency. Since we cannot realistically estimate this efficiency

loss, we cannot evaluate the pros and cons of this approach, but clearly the experiments should

do so.

We have described this asymmetry measurement on its own, without discussing the fact that
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simultaneously the experiments will be measuring charge-symmetric variables, such as the cross-

section for tt̄j as a function of ST . Of course these variables are complementary, and we do not

in any way mean to suggest that one should do one instead of the other. Charge-symmetric vari-

ables may often have lower statistical uncertainties, but in most cases background-subtraction

is necessary, so there will be large systematic errors. The combination of the two types of mea-

surements will help clarify the situation far better than either one could in isolation. Additional

information will come from the differential charge asymmetry in tt̄ events at the LHC, which

is a direct test of the Tevatron measurement of the tt̄ forward-backward asymmetry, and is

sensitive to any growth of the effect with energy.

A very important aspect of our approach is that the asymmetry is a diagnostic for models. An

s-channel mediator will not generate a peak for either lepton charge, and so even if an asymmetry

in tt̄j were generated, it would be largely washed out in the variable Mj1bW . Among models

with t- or u-channel mediators X, some will produce a negative asymmetry at Mj1bW = mX ,

while others will produce a positive asymmetry. For example, models that replace the W ′ by a

color triplet or color sextet scalar X (67; 68; 69; 70) that couples to uR and tR (and has charge

4/3) will have the opposite sign, because the process ug → t̄X+ will be larger than ūg → tX−.

The approach we use will still apply, but the asymmetry will be positive in the neighborhood

of the X mass peak, rather than negative as it is for the W ′. For this reason, even if it turns

out that the asymmetry measurement is not needed for a discovery of the X particle, it will still

be an essential ingredient in determining its quantum numbers and couplings.

What seems clear from our results is that the data already available (or soon to be available)

at the 7 TeV LHC should be sufficient to allow for an informative measurement of charge-

asymmetric observables in tt̄j to be carried out. We look forward to seeing studies of tt̄j from

ATLAS and CMS, and we hope that measurements of charge asymmetries will be among them.
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3.8 Appendix A: Additional Results

3.8.1 Contour plots for the mass variable

As can be seen in Figs. 3.12 and 3.13, we find that the optimal ST -cut for the mass variable

does not vary greatly with luminosity, or even with the W ′ mass: it lies around 700 GeV for

the 600 GeV and 800 GeV W ′ and is slightly higher for the 400 GeV W ′. At lower ST cuts,

reduced signal-to-background ratio worsens the significance. The reason a large ST cut works

well even for low W ′ mass is that the distribution for the charge-symmetric component of the

signal (mainly t-channel W ′ exchange) peaks at low ST for a lighter W ′. Meanwhile, for an

overly high ST cut the remaining signal is too small. But we should mention that our binning

procedure makes our results too pessimistic here.

When producing these contour plots, we choose a fixed binsize of 50 GeV everywhere except

in the upper and lower tails of the distribution, where we use a superbin. The superbins are

sized so that that no bin ever contains fewer than 50 events. For higher ST , there are very few

bins between the two superbins, and this makes the peak-valley-peak structure weak, ruining

the significance of the measurement. Within the white region in the upper left of the plots,

the number of events is so small that no bin with more than 50 events exists, and our binning

strategy gives a null result. However, for a high ST cut one could choose a more sophisticated

binning strategy. We have verified in a few particular cases that larger bins for higher ST cuts

can restore some of the significance of the measurement. All of this is to say that sophisticated

treatment of the data may lead to a somewhat better result than our simple-minded binning

strategy would suggest.
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(a) MW ′ = 400 GeV, gR = 1.5 (b) MW ′ = 400 GeV, gR = 1.5√
2

Figure 3.12: Expected significance of the Mj1bW variable for a 400 GeV W ′, as a function of
luminosity and ST cut.

(a) MW ′ = 600 GeV, gR = 2 (b) MW ′ = 600 GeV, gR =
√

2

(c) MW ′ = 800 GeV, gR = 2 (d) MW ′ = 800 GeV, gR =
√

2

Figure 3.13: Expected significance of the Mj1bW variable for a 600 GeV and an 800 GeV W ′,
as a function of luminosity and ST cut.
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3.8.2 Contour plots for the angle variable

The plots below show the significance for exclusion of the SM hypothesis using the angle variable,

along the lines of our method used for the mass variable. Note the band of low significance for

the W ′ with mass of 600 GeV, caused by the shifting structure that we emphasized in Sec. 3.6;

for an ST cut of around 700 GeV, the asymmetry shifts from one sign to the other. A study

exploiting this dependence of the asymmetry on the ST cut would have larger significance, but

we have not explored this option here.

(a) MW ′ = 400 GeV, gR = 1.5 (b) MW ′ = 400 GeV, gR = 1.5√
2

(c) MW ′ = 600 GeV, gR = 2 (d) MW ′ = 600 GeV, gR =
√

2

Figure 3.14: Expected significance of ∆φj1,` for a 400 GeV and a 600 GeV W ′, as a function of
luminosity and ST cut. For the 600 GeV W ′ the dark band corresponds to the range of ST cuts
where the asymmetry is changing sign, which results in a much reduced sensitivity. Interference
between signal and background is not accounted for.
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(a) MW ′ = 800 GeV, gR = 2 (b) MW ′ = 800 GeV, gR =
√

2

Figure 3.15: Expected significance of ∆φj1,` for an 800 GeV W ′, as a function of luminosity
and ST cut. Interference between signal and background is not accounted for.

3.9 Appendix B: Strategy Details

3.9.1 Isolation Procedure

The detector simulation DELPHES produces particle candidates and requires the user to impose

the isolation criteria of his or her choice. Hence for each lepton candidate in the DELPHES

output there will be a corresponding jet candidate, and it is up to the user to decide which

one to include in the analysis. To facilitate this choice, DELPHES provides the user with the

following variables for each lepton:

• ΣPT : The sum of the PT of all the tracks with PT > 0.9 GeV in a cone of ∆R = 0.3

around the leading track, excluding that track.

• ρl: The sum of the energy deposited in a 3×3 calorimeter grid around the leading track,

divided by the PT of that track.

Here we lay out the isolation criteria we imposed on the various particle candidates. An isolated

electron is defined as an electron candidate for which ΣPT < 10 GeV, ΣPT < 0.15 P e
T and

ρe < 1.15. For isolated muons we require ΣPT < 10 GeV, ΣPT < 0.15 Pµ
T and ρµ < 0.15.

Finally jet candidates are retained if no isolated leptons are found in a cone of radius 0.3.

When a previously isolated lepton is found in a 0.3 cone, the jet candidate is identified with the

lepton and therefore removed from the event. We hereby impose two consistency conditions:

• No more than 1 isolated lepton is found in a 0.3 cone

• When one isolated lepton is found, the PT of the jet candidate can differ by no more than

10% from the PT of the isolated electron.
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When one of these criteria is not met, we are unable to carry out a consistent isolation procedure

and the entire event is thrown out. The efficiency of our isolation procedure is 97%, both for

signal and background samples.

3.10 Appendix C: The PT -difference variables

Among other variables that show charge-asymmetries, ones of possible further interest include

the difference in PT between the t and the t̄, or between the positive and negative W bosons.

Since one top quark is recoiling against the W ′, while the other top quark is a decay product

of the W ′, one would expect their kinematics to differ. The PT difference between the t and t̄

is a variable in which this feature of the signal will manifest itself. The same is true for the W

bosons from the t and t̄ decays. For each event, we can calculate

∆PT,W =
PT,W+ − PT,W−

PT,W+ + PT,W−
and ∆PT,t =

PT,t − PT,t̄

PT,t + PT,t̄
. (3.10.1)

The charge asymmetry at parton-level for these variables can be seen (for pure signal) in

Figs. 3.16(a) and 3.16(b).

(a) Top PT difference in signal. (b) W boson PT difference in signal.

Figure 3.16: Top quark and W boson PT difference at parton-level in signal with a 400 GeV
W ′ with ST cut at 700 GeV. The sample is corresponding to a luminosity of 5 fb−1.

Although spectacular at parton-level, we find that the PT difference between the top quarks

gets washed out a lot at detector-level by resolution effects and mis-reconstructions. Neverthe-

less we encourage experimental colleagues to take this variable in consideration, since state-of-

the-art top reconstruction methods might alleviate this problem. The PT difference between

the W bosons is less pronounced at parton-level, but does survive our detector simulation and

the reconstruction of the hadronic W . We find it is particularly useful for a low mass W ′. Like

the angle variable, it changes sign as a function of the ST cut.

We have not studied the effect of interference on these PT variables. Whether the asymmetry

from the SM tt̄j background is important also requires further study.
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Chapter 4

Multi-Lepton GMSB Scenarios for Early LHC Running

4.1 Introduction

In this note, we will outline several simple MSSM scenarios where a slepton is the next-to-

lightest superpartner (NLSP) (1; 2; 3) within the context of General Gauge Mediation (GGM)

(4; 5) including the special case of Gauge Mediation with Split Messengers. The slepton NLSP

decays to its partner leptons plus a gravitino

˜̀→ ` + G̃ (4.1.1)

These scenarios can be used to explore the discovery potential of searches for multiple leptons

in early LHC running.

In General Gauge Mediation, the MSSM soft parameters are essentially free at the messenger

scale, subject to the following requirements: flavor universality, two sum rules for the sfermion

masses, zero A terms, and gravitino LSP. In particular, there is not necessarily a hierarchy

between colored states (squarks, gluinos) and uncolored states (wino, bino, higgsinos, sleptons).

Thus there is no theoretical constraint on how light the colored states can be. So within GGM,

relatively large production cross sections from compressed spectra provide the possibility of

discovery even with very early LHC data. This should be contrasted with the more restrictive

framework of Minimal Gauge Mediation (MGM) where colored states are always much heavier

than the uncolored states, and therefore largely out of reach in early LHC running.

A simple framework in which light colored states and compressed spectra can arise is Gauge

Mediation with Split Messengers (GMSM). In this straightforward generalization of MGM, the

superpartner spectra are generally grouped in mass roughly into strongly and weakly interacting

sets of superpartners. Over much of the parameter space the masses of both these groups can be

comparable, yielding relatively compressed spectra with colored states not much heavier than

weakly interacting states.

Given that final states with multiple high-pT leptons are generally clean discovery modes
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for new physics, it is of special interest to investigate the possibilities for producing such signa-

tures within the context of GGM and GMSM. Multi-lepton final states arise most naturally in

the subset of GGM and GMSM parameter spaces where the right-handed sleptons are flavor-

degenerate and at the bottom of the MSSM spectrum. These ‘slepton co-NLSPs decay 100% of

the time to massless gravitino plus lepton, and so all events with MSSM production contain at

least two high-pT leptons. Depending on the details of the heavier states in the spectrum, these

leptons can be same sign or opposite sign, and there can be additional energetic leptons in the

event (2; 3). In the case that a Bino-like neutralino is the next heavier superpatner above the

slepton co-NLSP’s at least 4 leptons arise in each event (2; 3).

For the slepton co-NLSP scenario there is an huge multi-dimensional parameter space char-

acterizing the remainder of the superpartner spectrum. Defining useable benchmarks within

tractable parameter spaces therefore requires additional simplifying assumptions. The main

motivation and focus here for early LHC searches is on compressed spectra with significant

production cross section from strongly interacting superpartners. In the following sections,

we will describe various interesting benchmark scenarios of this type. Scripts to generate the

benchmarks defined here (as well as a wider class of generalizations) are described in section

4.3.

4.2 Benchmark Parameter Spaces

4.2.1 GMSM Inspired Benchmark

For early LHC searches it is useful to utilize simple parameter spaces that reproduce the im-

portant features of superpartner spectra that arise from simple underlying models. Here we

formulate a benchmark of this type inspired by GMSM.

The GMSM inspired scenario described here is defined to be right handed slepton co-NLSP,

a gluino and (nearly) degenerate squarks, the Bino, Wino, and left handed sleptons. The Wino

and gluino masses given by M2 and M3 respectively may be taken to be independent masses

for a two parameter parameterization of this benchmark. The squark soft masses are taken to

be degenerate with value mq̃ related to the gluino mass by

mq̃ = 0.8 M3

The left-handed slepton masses, Bino, and right-handed slepton co-NLSP masses are related to

the Wino mass by

m˜̀
L

= 0.8 M2
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M1 = 0.5 M2

m˜̀
R

= 0.3 M2

All these ratios are close to those of GMSM with N = 5 messenger generations. The squark and

slepton mixings are defined to vanish. This approximates the small mixing that is obtained in

most theories of low scale gauge mediation. All other soft parameters may be set to some large

value such as 1.5 TeV. With both squarks and gluinos in the spectrum, the dominant strong

production modes at the LHC are pp → q̃q̃, q̃g̃ with a smaller fraction of g̃g̃.

The inclusion of all these states with the relations given above gives a two-parameter space

benchmark that interpolates between weak and strong production - this feature allows a com-

parison between existing Tevatron bounds (which are based on weak production) and early

reach at the LHC from strong production. Starting from either weak or strong production, all

cascade decays pass through the Bino and then the slepton co-NLSPs

B̃ → `±`∓R → `±`∓ + G̃ (4.2.1)

So all supersymmetric events contain at least four leptons and missing energy

pp → `±`∓`
′±`

′∓ + X + MET (4.2.2)

Starting from strong production X always includes jets. Some decay modes that pass through

the Wino and left-handed sleptons include additional leptons. Promising search channels include

tri-leptons +MET and four or more multi-leptons.

4.2.2 Minimal Benchmark

For inclusive early LHC searches, it is also useful to formulate the minimal parameter space

necessary for producing the signature of interest. For slepton co-NLSPs, this minimal parameter

space consists of the slepton co-NLSP and the gluino, with all other superpartners decoupled.For

convenience, we do not decouple the bino, but rather leave it intermediate between the sleptons

and the gluino. Otherwise, the gluino decays are 4-body. We emphasize that this minimal

parameter space also arises in physical models, since the entire GGM parameter space was

covered by a perturbative messenger model in (5).

In more detail, we have:

• g̃: the gluino. Gluino pair production provides the production mode, with rate set by

the gluino mass. More generally, we could consider any configuration of colored sparticles,

with an effective colored cross section. Any proposed search should be inclusive enough

so as to be insensitive to the precise nature of these colored states.
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• B̃: the bino. The bino mass determines the amount of hadronic energy in the event,

because, as discussed below, the gluino decays to the bino plus jets. We emphasize that

a light bino is not necessary, but has the effect of drastically simplifying the branching

fractions, while preserving most of the interesting physics.

• ẽR, µ̃R, τ̃1: the slepton co-NLSPs. These are the lightest states in the MSSM spectrum.

They decay 100% of the time to their SM lepton superpartner plus massless gravitino.

With this simplified spectrum, the relevant parameters are the three masses: Mg̃, MB̃ , and

M˜̀
R
. The branching fractions are not free parameters; we have

g̃ → B̃ + jets (4.2.3)

and

B̃ → (ẽ±R, e∓), (µ̃±R, µ∓), (τ̃±1 , τ∓) (4.2.4)

with equal branching ratios (so 1/6 per final state). Finally, the slepton co-NLSPs always decay

as:

˜̀±
R → `± + G̃ (4.2.5)

So with gluino pair production, the final states contain jets, two OSSF dilepton pairs (so,

4 leptons total, net charge zero), and missing energy from the gravitinos. Promising search

channels should include same-sign dileptons+jets+MET and three or four leptons+jets+MET .

We show the limit from the Tevatron (6) and the estimated reach at the early LHC within this

minimal space.

4.3 Monte Carlo Simulations

Monte Carlo event simulation can be performed using PYTHIA in conjunction with a SUSY

Les Houches Accord file containing a mass spectrum and decay table. Before generating events,

the user needs to specify that PYTHIA should read information in from a SUSY Les Houches

Accord file by setting the switch IMSS(1)=11 and by pointing IMSS(21-22) to the relevant

file. Additionally, for the GMSB scenario it is absolutely crucial that the user turns on gauge

mediation and specifies the gravitino mass using the following PYTHIA switches:

IMSS(11)=1

RMSS(21)=mG̃
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where mG̃ is the gravitino mass in units of eV. For a prompt decay of the NLSP to the gravitino

and its partner particle a canonical value of the supersymmetry breaking scale is 30 TeV which

is equivalent to a gravitino mass of 0.2 eV. Setting IMSS(11)=1 instructs PYTHIA that the

lightest neutralino χ̃0
1 should be taken to be the NSLP and that the gravitino G̃ should be

taken to be the LSP.

To generate a mass spectrum and decay table in SUSY Les Houches Accord format for the

benchmark scenarios described above, we have included a package containing scripts that run

a modified ISAJET kernel to calculate branching fractions. The package can be downloaded

from the following location

http : //www.physics.rutgers.edu/∼q1park/ISAGMSB.tar.gz

Once the package has been downloaded, the user should unzip the package by typing the fol-

lowing into the command line:

tar -zxvf ISAGMSB.tar.gz

The user should then enter the folder /ISAGMSB/ and type make into the command line. This

will produce all of the machinery necessary to generate the SUSY Les Houches Accord files.

Included in the package is a script called GMSBneut which interactively takes user inputs,

runs the ISAJET kernel, then saves the information in SUSY Les Houches Accord format. To

run the script, the user should simply enter the /ISAGMSB/ directory and type:

./GMSBneut

The user will first be prompted to enter a file name for the SUSY Les Houches Accord file.

Five more input lines will then prompt the user to enter the Bino, Wino, and Gluino masses;

the Higgsino mass µ-parameter and tanβ; the first and second generation slepton and squark

masses; the third generation slepton and squark masses; and finally the gravitino mass. General

neutralino and chargino mixing is calculated based on the input parameters. All masses should

be entered in units of GeV, and multiple entries after an input prompt should be separated by

a single space. All right and left handed sleptons and squark soft parameters are set equal to

the input slepton and squark masses respectively internally in the script. Left-Right mixing

for third generation sleptons and squarks is fixed internally to vanish. This feature allows a

smooth decoupling of the Higgsino mass µ-parameter while leaving squark and slepton spectra

unaffected. With these assumptions all right handed sleptons are degenerate as are all left
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handed sleptons, and all squarks are effectively degenerated except for the top squarks which

have a mass squared given by m2
t̃

= m2
q̃ + m2

t . From these inputs and the assumptions detailed

above, an slha output file is then created in /ISAGMSB/ for use with PYTHIA.

The following is an example of the command line prompts and how the commands should

be formatted:

./GMSBneut

Input the name of the slha file to be generated, followed by [ENTER]:

testfile

Input M1, M2, M3 (Bino, Wino and Gluino masses) separated by single space, followed

by [ENTER]:

120 240 500

Input Mu (Higgsino mass) and TANBETA, separated by single space, followed by [ENTER]:

1000 2

Input MeR, MeL, and MQ (Right and Left Handed Slepton and Squark Masses) separated

by single space, followed by [ENTER]:

156 1000 650

Input MtauR, MtauL, MBR, MTR, MQ3 (Right and Left Handed Stau, Right handed Sbottom

and Stop, and Sbottom-Stop doublet masses) separated by single spaces, followed

by [ENTER]:

156 1000 650 650 650

Input MGRAV (Gravitino Mass in units of GeV in 1E-9 notation) separated by single

spaces, followed by [ENTER]:

1E-9

This will produce a file called testfile.slha according to all of the above inputs.
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Chapter 5

Entropic Force And its Fluctuation in Euclidian Quantum

Gravity

5.1 Introduction

The thermodynamics of black hole has been studied for several decades since the discover

of Hawking radiation (2). It reveals a deep connection between the structure and dynamics

of space-time and laws of thermodynamics(3; 4; 5; 6; 7). And more recently, the work by

Jacobson shows an explicit derivation from laws of thermodynamics to Einstein equation(8).

The attempts to explain gravity as an emergent phenomena is based on the holographic principle

(9; 10) . And AdS/CFT correspondence provides strong support and explicit examples on how

thermodynamics of space-time can be related to thermodynamics of the dual system living on

holographic screen(11; 12; 13; 14).

Recently, Verlinde (1) proposed a conjecture that the origin of gravity can be interpreted as

entropy changing on the holographic screen, which can be explicitly expressed as

F∆x = T∆S (5.1.1)

There are several assumptions required to realize his idea. Firstly, one imposes how entropy

on elements of holographic screen changes when one moves the particle ∆x

∆S = 2πkB
mc

~
∆x (5.1.2)

where the distance between particle and screen element should be smaller than the Compton

wavelength of the particle. And this will imply the Unruh-like relation between temperature

and acceleration

kBT =
1
2π

~a
c

(5.1.3)

Then to relate energy and temperature of the system, one imposes the equipartition of energy,

see also (15)

E =
1
2
NkBT (5.1.4)
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where N is the number of degree of freedom on the holographic screen as

N =
Ac3

G~
(5.1.5)

With identifying the total energy E of the system living on holographic screen with the bulk

energy inside the screen, one can derive the Newton gravitational force and Einstein equation.

There has been many papers following this conjecture(18; 19; 20; 21; 22; 23; 24; 25; 26; 27;

28; 29), and some other papers apply this idea into cosmology(30; 31; 32; 33), especially, (34)

studies possible fluctuation seeds induced by thermal fluctuation on holographic screen during

inflation.

(5.1.1) is the equation showing the most important point of the whole idea, one interprets

the origin of gravitational force as the change of entropy on the holographic screen. However,

to derive the correct expression for gravitational force or equation, one needs to impose several

other conditions. How far can those imposed conditions go? In what circumstance do those

conditions fail to work? Is the interpretation of gravity always correct or just a coincidence in

some particular cases?

In section 2, we apply some basic concepts and relations obtained from AdS/CFT to study

the entropic interpretation of gravity, leaving those potentially unsafe conditions along, one

finds that only by imposing (5.1.1), one can obtain the correct expression of gravitational force

for generic static spherically symmetric metric background. The derivation in this section is an

analog to the calculation in polymer molecule system, which is used to motive entropic force in

Verlinde’s paper.

In section 3, we consider our method to derive entropic force in more details, and we find it

has a good interpretation from gravitational side alone, without correspondence between gravity

and field theory. The point of this section is following: if one interprets the derivation from

gravity side along, the whole calculation is just generalized Euler-Lagrange equation. However,

if one gives thermodynamic interpretation ( as quantities on holographic screen ) to each step

during derivation as we did in section 2, one will automatically draw the conclusion that gravity

as entropic force. Together the analysis in section 2, it provides a solid base for entropic force

interpretation. Moreover, since our derivation can be done in a quite generic metric background,

it could be a clue to find more explicit connections and understanding on thermodynamics of

two systems.

In section 4, since the force can be interpreted as a quantity in thermodynamics, we go

further step to study its thermal fluctuation. We find the thermal fluctuation F 2 − F
2

is always

positive. And for a point-like particle, the fluctuation is never larger than the real force. The
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metrics of black hole in asymptotic flat and AdS space are taken as examples in this section.

5.2 Entropic Force in gauge/gravity duality

One of the main ideas in Verlinde’s paper is to interpret the origin of gravity as the change of

the entropy in the dual theory on holographic plane. Gauge/gravity correspondence provides us

a natural and very-well understood place to test this idea. The change of entropy in field theory

on the holographic screen of the bulk space should give the correct expression for gravitational

force experienced by particles in bulk space.

In gauge/gravity duality, one has the identification between Euclidian action of the field

theory and the Euclidian action from gravity. And this will be our starting point to see how

change of entropy causes gravity.

Firstly, we consider the simplest case, one point-like particle moving in a fixed geometric

background with black hole. And we need to assume that the gravity set-up has a dual theory

on field theory side. The temperature of black hole in gravity side should be identified as the

temperature of the field theory.

Suppose there is an external force acting on the point particle holding it fixed. From the

boundary point of view, the black hole plays the role of heat bath, the point particle should be

interpreted as a perturbation away from equilibrium in the bath. If there is no external force

acting on the particle, the particle will fall into black hole, which is analog to the process that

the perturbation is erased and gets equilibrium with heat bath. When there is force holding

particle fixed outside horizon, this corresponds to an effective force keeping perturbation away

from thermal equilibrium with the bath.

Now let us applying the similar analysis used in section 2 in Verlinde’s paper (1) for polymer

molecule system. We choose to use micro-canonical ensemble. Thus, the entropy of the whole

system can be written as S(E+Fextr0, r0), where E is the total energy of black hole and particle

(heat bath and molecule chain). Since in micro-canonical ensemble one has

d

dr0
S(E + Fextr0, r0) = 0 (5.2.1)

which implies

Fext

T
− ∂S

∂r0
= 0 (5.2.2)

The next thing to do is to find the expression for entropy from our gravitational set-up.

To achieve that, one recalls that in gauge/gravity duality, the Euclidean action calculated from
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gravity is identified as entropy of the dual field theory if one treats the system as micro-canonical

ensemble. That provides a solid way to calculate entropy in (5.2.1). The Euclidean action of

our gravitational set-up can be written as

I = IGrav + Ipart + Iint (5.2.3)

where IGrav is the Euclidean Einstein-Hilbert action of background metric. Ipart is the con-

tribution from the static particle outside black hole. And Iint is from the interaction which

keeps particle fixed. One can easily see that, in micro-canonical ensemble, Iint will contribute

the first term in (5.2.2), and (IGrav + Ipart) contribute to the second term. So to calculate the

expression for external force, one needs to do derivative on (IBG + Ipart) respect to r0.

The action of a point particle in general geometric background is proportional to the proper

mass times the integral of its proper time

Ipart = im

∫
dλ (5.2.4)

We want to consider the particle fixed at some point. So one can write the coordinates of the

particle as Xµ = {t, r0, θ0, φ0}.
Since we need the Euclidian action, so we take λ → iτ . And one has to give the correct

range where Euclidian proper time τ runs.

To find the range of τ , one firstly recalls how temperature relates to the metric. Suppose

one has a static spherically symmetric metric

ds2 = −gtt(r)dt2 + grr(r)dr2 + ... (5.2.5)

Here gtt and grr are only functions of r, and ... just the normal angular parts of the metric.

After taking t → it, one finds t has to have period as

β =
1
T

=
4π√

g′tt(r)(
1

grr(r) )
′|r=rh

where we set kB to 1, T is identified as temperature of the system, and rh is the position of

horizon.

This is the period of coordinate time t, and it differs with particle’s proper time τ by a

factor of
√

gtt. Thus one has

Ipart = −m

√
gtt

T
(5.2.6)

Here we neglect the back reaction from the particle to background metric. This is corre-

sponding to treat the heat bath, where the perturbation sits, infinitely large, and the small
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variation of the perturbation is infinitesimal respect to whole system. Then IGrav actually has

no dependence on the position of particle. Now one can study how entropy changes respect to

r0

∆S =
∂Ipart

∂r0
∆r0 = −m

2
∂r0gtt√

gttT
∆r0 (5.2.7)

Now applying Verlinde’s conjecture, taking the origin of gravitational force as the change of

entropy in dual theory, one has, in a covariant form,

Fa = T∇aS (5.2.8)

Before going into calculation, several points needs to be clear. The definitions of work and

force need to be clarified. There are two sets of coordinates describing the system, so one needs

to choose the coordinates very carefully.

To motivate our choices of coordinates, let us briefly review the definition of work and force

in special relativity. In special relativity, one also has two sets of coordinates, the proper (τ,~l)

and observer (t, ~x) coordinates. One defines work as

W =
∫ x1

x0

~F · d~x (5.2.9)

and force is defined as

F i =
dpi

dt
=
√

gtt
d

dτ
(m0

dxi

dτ
) (5.2.10)

Notice according to definition, force showed up here is not a 4-vector, and the upper subscript

i on F is coming from xi. Now one can write the generalized definition for work in a general

background metric.

With background metric, one also has two sets of coordinates, one set is used to describe

the field theory side (τ,~l) which should be interpreted as proper coordinates, another set is used

in gravity theory side (t, ~x), which is analog to observer coordinates in special relativity. Thus

one can write down the definition of work in general background metric as

W =
∫ x1

x0

Fidxi =
∫ x1

x0

gijF
idxj (5.2.11)

And in our case, we only care the radial component, thus we have

∆W = Fr∆r = grrF
r∆r = grr

√
gtt

d

dτ
(m0

dr

dτ
)∆r (5.2.12)

Now we can plug (5.2.7) and (5.2.12) into (5.2.8) and find the expression of the force as

m0
d2r

dτ2
= −m0

2
1

gttgrr
∂r0gtt (5.2.13)
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Since the particle is static, the external force should be balanced by gravitational force. And

from (5.2.2), this force emerges from the changing of entropy of the dual system on holographic

screen. If the entropic force interpretation is correct, one should get the same answer as one

gets from geodesic equation. From the r component of geodesic equations, one has

d2r

dτ2
+

1
2
Γr

µν

dXµ

dτ

dXν

dτ
= Fext (5.2.14)

Fext, again, is the external force keeping the particle fixed at r0. Since the particle is not moving

on radial direction, and the external force is balanced by gravitational force, one gets

FGrav = m
d2r

dτ2
= −Fext = −m

2
1

gttgrr
∂r0gtt (5.2.15)

which is exactly the same expression as the gravitational force calculated from entropic force

interpretation using the thermodynamic language on holographic screen.

In the derivation, starting from micro-canonical ensemble, Fa = T∇aS is the only formula

we use, it does not depend on other assumptions, such as equipartition of energy. So this is a

very safe check on the idea about the entropic origin of gravity. And one can claim that gravity

always points to the direction to increase the system entropy, which leads the phenomena that

gravity is always attractive.

5.3 Understanding Entropic Force From Gravity Side Alone

In previous section we have seen how entropic force interpretation in dual field theory gives

the correct expression for gravity in bulk. In this section, we will consider our derivation again

but interpret only from gravity side alone, without any knowledge about dual description on

holographic screen.

The way we work in last section is firstly to write down the total action, then identify it

with the entropy in field theory side. Taking the expression for black hole temperature, and

applying (5.1.1), one can derive the expression for gravity.

Now let us firstly forget about the field theory interpretation, and only consider the point-

like particle in background metric. Instead of writing the Polyakov point particle action, we

write it in Nambu-Goto form as

Ipart = im

∫
dλ

√
ẊµẊµ (5.3.1)

For a particle fixed at some point, after gauge fixing λ as particle’s proper time, the action just

reduces to Polyakov point particle action.
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Again, since the particle is in the heat bath by black hole, the Euclidian time direction, after

taking λ → iτ , should be periodical.

Following the standard procedure in classical mechanics, consider a system whose action

integration range is coordinate dependent

S =
∫ f(q)

0

dτ(Lpart[q, q̇] + Lint[q]) (5.3.2)

here q is the canonical coordinate and q̇ = dq/dτ , Lint is the interaction term acting on the

particle to keep it fixed, and it will give the term of Fext in equation of motion. E.O.M. is given

by functional derivative of q and q̇. Thus one gets

δS = f(q)
∂L

∂q
− f(q)

d

dτ

∂L

∂q̇
+

∂f(q)
∂q

L[q, q̇] = 0 (5.3.3)

In our case,

Lpart = m

√
ẊµẊµ (5.3.4)

and q is taken as r. Thus,
d

dτ

∂L

∂ṙ
= grr

d2r

dτ2
(5.3.5)

Taking (5.3.5) into (5.3.3), and notice in our case f(q) =
√

gtt

T , one can again generate

(5.2.15), which is what we expect.

We can see that, the same calculation procedure, from gravity side point of view without

knowledge anything about dual description, is just solving the generalized Euler-Lagrange equa-

tion. The point here is that the normal gravity calculation can be reinterpreted in the language

of thermodynamic variables on the holographic screen, where gravity can be treated as change

of entropy from dual theory point of view. The concept of gravity as entropic force just comes

out naturally if the correspondence between gravity and field theory is set up and interpreted

correctly.

5.4 Thermal Fluctuation

In the previous sections, we checked the entropic interpretation of gravitational force in the

language of thermodynamics variables on holographic screen. And since we interpret the force

as a thermodynamic quantity, we can push this idea one more step to study the fluctuation of

gravitational force. In our set-up, FGrav and r0 are analog to pressure and volume in dual field

theory side. And since the particle is held by external force and the system is in equilrium, one

is allowed to use normal thermodynamics analysis to do calculation. Since we are interested

in the fluctuation of the force acting on the particle, i.e. the fluctuation of the gravitational
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force, we can treat (IGrav + Ipart) as the partition function of the system. One can consistently

find that the first derivative of partition function respect to r0 does give the correct expression

for external force, which is the standard way to calculate pressure in normal thermodynamic

analogy.

Let us first do some analysis on fluctuation in usual statistical system. Partition function

of the system can be written as

Z =
∑

s

e−βEs (5.4.1)

External force Y , by definition, is

Y =
∂Es

∂y
(5.4.2)

y is the extensive quantity corresponding to Y , so

Y =

∑
s

∂Es

∂y e−β(Es)

Z
(5.4.3)

Then the fluctuation of Y can be derived as

Y 2 − Y
2

=
1
β2

∂2

∂y2
LnZ +

1
β

∂Y

∂y
(5.4.4)

If the system is adiabatic and in equilibrium, one has

∂2E

∂y2
=

∂Y

∂y
=

∂Y

∂y
(5.4.5)

Now, come back to our analysis, we identify Y with F in (5.2.8), y with r0 and LnZ with

Euclidian action I. Then we have

F 2 − F
2

=
1
β2

∂2

∂r2
0

I +
1
β

∂F

∂r0
(5.4.6)

The set-up of our system is a point particle fixed at a point in some generic metric background,

so it is an adiabatic system in equilibrium. Thus we can apply (5.4.5).

After some derivations, one gets a simple formula

F 2 − F
2

= Tm
(∂r0

√
gtt)2√

gtt
=

T

m
√

gtt
F

2
(5.4.7)

One can see that (5.4.7) is always positive. We will study (5.4.7) in some more details in

following sections.

5.4.1 Asymptotic AdS space with black hole

Since the duality between AdS space with Schwarzschild black hole and the CFT with finite

temperature is one of the most understood examples in AdS/CFT, we take the explicit metric



80

of that case into calculation. And also we take the near horizon limit of the metric. Thus we

have, for example in AdS4

gtt = (
r2

l2
− 2GM

r
) (5.4.8)

which gives
F 2 − F

2

F
2 =

T

m
√

r2

l2 − 2GM
r

(5.4.9)

Notice that the force we discuss here is not the conventional gravitational force experienced by

particle in AdS space, i.e. FG = m d2r
dτ2 , they are proportional to each other by a coefficient as

function of background metric at r0.

The particle should be outside of black hole, so r >
3
√

2Gl2M , so ratio is always finite outside

the black hole, it will blow up at black hole horizon and goes to zero when r goes to infinity.

Then one needs to find the point where the ratio becomes one, which implies the fluctuation is

larger than the average value of gravitational force.

If the point where ratio becomes to one is close to black hole horizon, then there is nothing

to worry about, since the particle will experience the heat radiation from black hole which

naturally cause large fluctuation. The only dangerous case is that point is far away from black

hole horizon, which is counter-intuitive and may potentially contradict with experiments. Let

us talk about this possibility carefully.

Since we only care about the point where ratio equals to one is far away from horizon, we

can take r3 À 2Gl2M = r3
BH , then (5.4.9) approximately becomes

F 2 − F
2

F
2 =

T l

mr
(5.4.10)

Using the expression for black hole temperature T ∼ (GM2)1/3

l4/3 and the radius of black hole

RBH ∼ (GMl2)1/3, one finds

lm0 ∼ l

λ
∼ (

rBH

rO(1)
) (5.4.11)

where rO(1) is the radial position where the ratio becomes order one, and λ is the Compton

wavelength of the particle with mass m0.

From (5.4.11), if the equal ratio point is far away from black hole horizon, which means

rO(1) À rBH , then it requires λ À l. But we know that the particle with Compton wavelength

larger then AdS radius cannot be well approximately described by a point-like particle. This is

against our analysis using Polyakov point particle action. Thus, within a self-consistent analysis,

one finds the fluctuation experienced by a point like particle can never dominate the real force,

and this can be treated as a consistency check of our analysis.
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Also here is another point needs to be clear. One requires the Compton wavelength of

particle to be smaller than AdS radius to use point particle as approximation. This is not

inconsistent with the treatment as neglecting the back-reaction from particle to background

metric. To get a stable black hole in AdS space, one needs to take MBH À 1
l . As long as the

mass of particle is much smaller compared to black hole mass, our approximation is safe.

5.4.2 Asymptotic flat space with black hole

The result from (5.4.9) is very interesting in the case of flat space with black hole, the ratio

between fluctuation and the value of gravitational force goes to a constant!

F 2 − F
2

F
2 =

T

m
(5.4.12)

m again shows up in the dominator. However, just like the previous case, the ratio only becomes

bigger than one for a particle whose Compton wavelength larger than RBH . And it is against

our initial set-up.

We recover the units of quantities, we have

F 2 − F
2

F
2 =

kBT

mc2
(5.4.13)

We see that even when ratio goes to one in (5.4.12), the fluctuation comparing with the real

value of force is still extremely small. However this small number sheds light on an experimental

verification on the idea of entropic force.

5.5 Discussion

In this paper, we study Verlinde’s conjecture, gravitational force is induced by the change

of entropy of dual field theory on holographic screen. Instead of applying other potentially

dangerous assumptions, we take the idea from gauge/gravity duality, identifying the Euclidian

action of gravity and field theory. We calculate the action of a point-like particle held fixed in a

static metric background with black hole. Taking black hole’s temperature as the temperature

of the dual system, we get the expression of the force induced by entropy change when we

move the particle along radial direction. The entropic force derived this way agrees with the

gravitational force in such background metric. Thus, this is a very safe check on the idea about

gravity as emergent phenomena.

The key formula (5.1.1) is motivated from thermodynamics of the dual field theory. To

give a more clear picture on how thermodynamics of gravity is related to that of the dual field
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theory, we study the gravity interpretation of (5.1.1). We did a similar calculation as entropic

force in previous section, however we kept our interpretation in language of gravity side. We

find Fa = T∇aS is just corresponding to a generalized Euler-Lagrange equation in gravity side.

This gives an intuitive answer on why (5.1.1) gives the correct formula for gravitational force,

and provide a solid base for entropic force interpretation. From this section, if one sticks on the

language of thermodynamics on holographic screen to describe the system, one can naturally

claim gravity is induced by the entropy change on the dual field theory.

After checking and giving a more explicit explanation on the entropic force, we take a further

step to study the fluctuation of gravitational force in our formalism. we find the fluctuation in

that metric is always positive. We take two widely used metrics, as examples. We find that,

for a point-like particle, the fluctuation will never dominate the real value of gravitational force

outside black hole. And for asymptotic flat metric with black hole, the ratio between fluctuation

and force goes to a constant at infinity. This phenomena might provide a clue to experimentally

test the concept of entropic force, or even holographic principle.
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Chapter 6

Metastable Spontaneous SUSY Breaking in a Landscape

of Fuzzy Droplets

6.1 Introduction

N = 1 SUSY QCD has very rich structures in moduli space. It has been studied by (1; 2; 3; 4;

5; 6; 7; 8; 9; 10; 11; 12). Further, a chiral superfield φ in adjoint representation has been added,

named as N = 1 adjoint SQCD, where more interesting features present(13; 14; 15; 16; 17; 18).

In this chapter, a class of N = 1 supersymmetric theories with gauge group U(Nc) and

chiral multiplet matter in the adjoint representation along with Nf flavors of fundamental

plus anti-fundamental is analyzed. With non-vanishing Fayet-Iliopoulos and matter field mass

terms, these theories are shown to have a landscape of metastable vacua with spontaneously

broken supersymmetry. The adjoint field configurations in the local metastable vacua are non-

commutative, and may be interpreted as a fluid consisting of fuzzy droplets in a confining

potential. The analogy between noncommutative gauge theory and noncommutative description

of fluids using the Lagrange particle coordinates has been proposed and studied by(19; 20; 21;

22; 23; 24; 25) . The excited states of the meta-stable vacua may be interpreted as excitations of

the fuzzy fluid droplets. The number of metastable vacua is exponentially large in the product

of the gauge group rank and number of flavors. In the limit of large ratio of Fayet-Iliopoulos to

mass terms, the lifetime of the metastable vacua become exponentially large in the inverse square

of this ratio. The theories analyzed here could provide a simple analog model for a landscape

of metastable vacua that may arise in certain classes of string or M-theory compactifications

with blown-up branes dissolved inside branes.

6.2 The model

The model consists of an N = 1 supersymmetric U(Nc) gauge theory. In addition, we have the

matter fields φ, which transforms in the adjoint representation, the quarks Qi and the antiquarks

Q̃i, in the fundamental representation with flavor i = 1, ..., Nf . Thus the Lagrangian can be
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written as

L =
∫

d4θTr[φ†eV φe−V +
Nf∑

i=1

(Q†ie
V Qi + Q̃†ie

−V Q̃i)] + 2ζ

∫
d4θTr(V ) + Lm + Lint (6.2.1)

where

Lm =
1
2
mφTrφ2 + m2

Qi
TrQiQ̃i

Lint =
√

2hTrQ̃φQ

2ζ
∫

d4θTr(V ) is the F-I term which is used to break SUSY spontaneously if mass term is

turned on, and it will spontaneously break the U(Nc) gauge symmetry when mass terms are

vanishing or small.

We divide the discussion into two parts, without and with mass term, and we will not get

into the discussion for Lint turned on.

6.3 Model without mass terms

6.3.1 Solutions for supersymmetric vacua

The D-term potential is written as

VD = Tr([φ†, φ] + Q†iQi − Q̃i
†
Q̃i + ζ)2 (6.3.1)

Here φ,Qi and Q̃i denote the scalar part of the corresponding fields. In matrix representa-

tion, ζ is written as ζ1Nc×Nc
.

The model is known to have a supersymmetric minimum (? ) at

φ =
√

ζ




0
√

1 + q

0
√

2 + q

. . . . . .

0
√

Nc − 1 + q

0




Q1 =
√

ζ
( √

q · · · 0
)

Q̃1 =
√

ζ
(

0 · · · 0
√

Nc + q
)

where we take Nf = 1. We can define noncommunicative coordinates as X = φ+φ†√
2

and

Y = φ−φ†

i
√

2
. Taking q = 0, the solution above is corresponding to a 2D disk with radius

√
2Nc + 1. In condense matter language, this describes the condensation of electrons forming

a 2D noncommunicative droplet. And in D-brane’s language, this solution is corresponding to
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Nc D0-branes diffusing on a D2-brane, which will contribute magnetic flux to D2-brane. For

q 6= 0, it describes a ring whose inner and outer radii are
√

q and
√

2Nc + q + 1.

For the case of Nf > 1, e.g. N1 = 2, N2 = 3, one gets:

φ =
√

ζ




0
√

1

0 0

0
√

1 0

0 0
√

2

0 0 0




Q1 =
√

ζ
(

0 0 0 0 0
)

Q̃1 =
√

ζ
(

0
√

2 0 0 0
)

Q2 =
√

ζ
(

0 0 0 0 0
)

Q̃2 =
√

ζ
(

0 0 0 0
√

3
)

This describes 2 droplets, of size
√

5 and
√

7, laying on each other. The diagonal blocks

describe the motion in each disk, and the off-diagonal blocks describe the interaction between

the two disks.

There are also other classes of solutions. For the model without mass terms, the infinitesimal

transformation, φ′ = φ+εφ†n (n ∈ [0, Nc−1]), also describes one of supersymmetric vacua. From

the definition of coordinates (also from the viewpoint of operator parameterizing moduli space

which will be discussed later), those solutions describe the ripples on the disk. For example,

n = 0 is for parallel transformation, and n = 1 is corresponding to the ellipse.

6.3.2 Moduli space

The U(Nc) gauge group is completely broken. The moduli space with Nf ≥ 1 has complex

dimension

dimC(NNf
) = 2NfNc

In this paper, we only discuss the operators describing moduli space for Nf = 1 case. Moduli

space can be parameterized by following chiral operators (? ):

Tr(φk) (6.3.2)

Q̃φk−1Q (6.3.3)

where k = 1, ..., Nc
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There is a correspondence between those operators and directions in moduli space which

vanish D-term potential. We will discuss it in detail when we turn on the mass term in La-

grangian.

6.3.3 The spectrum

The U(Nc) gauge symmetry is spontaneously broken by φ, Q and Q̃ background, so the 2(Nc×
Nc + 2Nc) real scalar d.o.f play the role of Higgs. N2

c real degrees of freedom are eaten by the

gauge bosons (each Lorentz component of vector field is an Nc × Nc Hermitian matrix which

has N2
c d.o.f). Another N2

c d.o.f are lifted to be massive modes, and they have the same mass

spectrum as gauge bosons in F-I mechanism if the mass Lagrangian is turned off. The left 4Nc

d.o.f are massless which are corresponding to moduli space.

Let us talk about the massive modes first. An easy way to calculate the massive modes is

to calculate the spectrum of gauge bosons, because they share the same masses with massive

scalars. The Lagrangian which gives masses to gauge bosons is proportional to

Tr[φ†AAφ + φ†φAA− 2φ†AφA] + Q†AAQ + Q̃AAQ̃† (6.3.4)

Here A ≡ Aµ. The spectrum of gauge bosons shows several structures:

1. There are Nc singlet states and Nc(Nc − 1) doublet states in the spectrum. So in total,

we have N2
c d.o.f.

2. The eigenvectors for singlet states are the excitations of elements on diagonal line. And

eigenvectors for doublet states are the excitations along the line parallel to the diagonal line. (It

is easy to understand. Because A is Hermitian, the elements on diagonal line can only be real,

so they will give singlets. And the complex elements on off-diagonal lines will give doublets.)

3. We can group the eigenvalues by the line their eigenvectors belonging to. And for the nth

eigenvalue on the line m units away from the diagonal line, one can find that the eigenvalues are

approximately equal to J [m,n]/(2N + 1), where J[m,n] is the nth zero solution for mth order

BesselJ function. Thus

m2 = J [m,n]2/(2N + 1)

This is the harmonic oscillation on the 2D round surface with Direchlet boundary condition.

And from formula for eigenvalues that the radius of the disk is
√

2N + 1. Singlet states are

corresponding to m = 0, doublet states are m 6= 0. The derivation between eigenvalues and the

numbers from Bessel function increases with m and n, but decrease with Nc.

Here we show a table where we can compare the eigenvalues from the mass matrix and

Helmholtz equation with Dirichlet boundary condition.
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n m = 0 Matrix m = 0 Helmholtz m = 1 Matrix m = 1 Helmholtz m = 2 Matrix m = 2 Helmholtz
1 0.0288 0.0288 0.0734 0.0730 0.1325 0.1312
2 0.1516 0.1516 0.2461 0.2449 0.3561 0.3525
3 0.3726 0.3726 0.5176 0.5149 0.6787 0.6717
4 0.6919 0.6917 0.8879 0.8832 1.1006 1.0892
5 1.1096 1.1091 1.3572 1.3497 1.6220 1.6048
6 1.6258 1.6247 1.9255 1.9143 2.2430 2.2185

Table 6.1: Comparison between eigenvalues from mass matrix and Helmholtz equation with
Dirichlet boundary condition, for Nc = 100.

We can explain it by claiming that the disk describing by equally separated lattice, which is

not continuous. And we will show that explicitly later. So in the large Nc limit, one can expect

that those two sets of numbers match exactly.

6.3.4 The explanation to the spectrum

The eigenvalues are obtained from the mass matrix of gauge bosons. So we expect to read off

the Laplacian equation from observation of the matrix, and the matrix does show such kind of

structure if we arrange the matrix carefully.

For the matrix representation of gauge boson, instead of naming matrix elements by row

and column number, we name them by lines parallel to the diagonal line. The reason we use

this way is from the third point mentioned at the end of last section, i.e. we can group the

eigenvalues by the line their eigenvectors belonging to.




A1,1 A2,1

A∗2,1 A1,2 A2,2

A∗2,2

. . . . . .

. . . A1,Nc−1 A2,Nc−1

A∗2,Nc−1 A1,Nc




The benefit for this way to label the elements is that the mass matrix of gauge boson will be

automatically separated into blocks along diagonal line, so we just need to analyze each block

individually. To find the relation between Helmholtz equation and the mass matrix, we need

to identify Am,j as R
(m)
j , where R

(m)
j is the discretized radial part of the wavefunction, i.e.

ψ = R(m)(r)e±imφ, and r =
√

2j + 1. (There is a subtle point of this identification. The radius

of the disk is
√

2N + 1 for all values of m, but label j runs from 1 to (Nc −m), so for large m,

this identification does not work even approximately.)

Firstly, let us write down the discrete form of ψ¤2ψ on the lattice, this is the term in

Lagrangian to describe the wave on the disk. One point needed to be mentioned is that the



91

coordinates in this Lagrangian is the coordinates in φ and φ† plane, not the coordinates used

in Eq. (1). And we can solve the equation of motion as ¤2ψ = 0. Assuming that the disk is

isotropic, so we can take ψ = R(m)(r)e±imθeiωt, then ¤2ψ = 0 goes to

1
r

d

dr
(r

dR(m)(r)
dr

)− m2

r2
R(m)(r) + ω2R(m)(r) = 0

which is actually a problem to solve the eigenvalues of operator: 1
r

d
dr (r d

dr )− m2

r2

Now assume the lattice is equally spaced 2D lattice, and we write R(m)(r) as R
(m)
n , where n

is the nth site away from the center of the disk. In the discussion, we treat n as a large number

and do expansion by power of 1
n , this limit treatment means we do not discuss the center of the

disk where the continuum approximation broken down. Because the lattice is equally spaced,

and according to the previous discussion of R2 matrix, we set radial distance as r =
√

2n− 1. (

From now on we will drop index m for convenience. ) Firstly, 1
r

d
dr (r dR

dr )− m2R
r2 can be written

as
Rn+1−Rn√

2n+1−√2n−1
− Rn−Rn−1√

2n−1−√2n−3√
2n− 1−√2n− 3

+
1√

2n− 1
Rn −Rn−1√

2n− 1−√2n− 3
− m2

2n− 1
Rn (6.3.5)

Do the expansion by power of 1
n , we get

2n(Rn+1− 2Rn +Rn−1)+ (4Rn− 3Rn−1−Rn+1)+
2Rn + Rn−1 − 3Rn+1 − 4m2Rn

8
1
n

+O(
1
n2

)

(6.3.6)

On the other hand, the mass matrix introduce the interaction between two nearby sites

along radial direction, and they introduce the following terms in the Lagrangian:

Rn[
√

(2n)2(n + m)Rn+1 − 2(2n− 1 + m)Rn +
√

2(n− 1)2(n− 1 + m)Rn−1] (6.3.7)

Similarly, we do the same 1
n expansion to the mass matrix expression, and we get

2n(Rn+1+Rn−1−2Rn)+(2Rn−2Rn−1+m(Rn+1+Rn−1−2Rn))−m2

4n
(Rn+1+Rn−1) (6.3.8)

Subtract those two expansions, we can find the difference between them as

−(m+1)(Rn+1+Rn−1−2Rn)+
1
8n

[−2(Rn+1−Rn−1)+(2m2−1)(Rn+1+Rn−1−2Rn)] (6.3.9)

Let us analyze the difference order by order. On the zeroth order of 1
n , the difference is

−(m + 1)(Rn+1 + Rn−1 − 2Rn). We can write (Rn+1 + Rn−1 − 2Rn) in terms of differential

operators as a2 d2R
dr2 , where a is the space between two sites. Obviously, this term will vanish in

continuum limit where we take Nc to infinity. For 1
n order term, it is separated into two parts.

The part proportional to (Rn+1 +Rn−1− 2Rn), just like before, will vanish in continuum limit.
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The other term proportional to Rn+1−Rn−1. This term can be written as adR
dr , so it will vanish

as well in continuum limit.

Thus, those two expressions match to each other in the continuum limit, this explains why

the spectrum from mass matrix matches with the one from Helmholtz equation.

The boundary condition is left to be checked. To see how mass matrix shows Direchlet

boundary condition, let us firstly discuss one dimensional lattice case. There the interaction

among sites can be written as

Rn[(Rn−1 −Rn)− (Rn −Rn+1)]

which is just the discretized form of R d2R
dr2 . Suppose we have N + 1 sites along the lattice, and

we take Direchlet boundary condition , i.e. set RN+1 = 0, then the interaction of the last three

sites is

RN (RN−1 − 2RN )

the matrix stops at Nth element, and takes the form as



−2 1

1 −2 1

1
. . . . . .
. . . −2 1

1 −2




And for Neumann boundary condition, the last two sites always take the same value so that

the derivative of the wavefunction vanishes at boundary. Thus, we can write the interaction

among the last three points as

RN (RN−1 −RN )

And the matrix can be written as



−2 1

1 −2 1

1
. . . . . .
. . . −2 1

1 −1




Now come back to the mass matrix in our model, if we take radius of the disk very large,

then the radial part of the Laplacian operator on the disk come to one dimensional lattice form,

where the element on the diagonal line is twice as big as elements one step up or left, with a
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minus sign. This asymptotic behavior of the mass matrix tells us that the boundary condition

should be Direchlet.

There is another rough way to show why the mass spectrum obeys the solution of harmonic

oscillation on the disk. According to (26), there is invertible maps, Weyl-Wigner formalism,

between operators and functions on a given manifold, a disk in our case. Then one has

∂zf =
1
θ

< z|[f̂ , â†]|z >

∂z̄f =
1
θ

< z|[â, f̂ ]|z >

where

f̂ =
∞∑

m,n

fmn|ψm >< ψn|

in density matrix notation, and

f(z̄, z) = e|z|
2/θ

∞∑
m,n

fmn
z̄mzn√

m!n!θm+n

So

∇2f(z̄, z) ∼< z|[â, [f̂ , â†]]|z >

Recall that φ and φ† in our model just play the role of vanishing and generating operators.

And the gauge boson field A is corresponding to the function f on the fuzzy disk. One can

check that the interaction Lagrangian between φ and gauge boson A can be written as

Lint ∼ Tr(Â[φ̂, [Â, φ̂†]]) (6.3.10)

Thus, this formulation provides a clue to build up the relation between Laplacian operator and

gauge boson mass matrix on 2D fuzzy disk.

6.4 Model with mass terms

In this section, we will study the case where the mass terms are turned on

W =
1
2
m2

φTrφ2 + m2
QTrQiQ̃i

Thus SUSY is spontaneously broken by F-I mechanism. For the case of mφ,mQ À ζ, there is

only one kind of vacuum which has V = 1
2ζ2. It is not an interesting case because the characters

of F-I term are all covered up by big mass terms. So we will be focus on the case of mφ,mQ ¿ ζ,

where the solution for mφ = mQ = 0 case is still an approximate solution.

Since we turn on the mass terms, the moduli directions are lifted, and the corresponding

modes will not be massless any more, but having a small mass instead, in the limit of mφ,mQ ¿
ζ.
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6.4.1 One flavor case

Let us start from one flavor case. Up to quadratic order in the masses, there is a homogenous

shift in all the fields as

X = [(1− m2
Q

2ζ
)1− m2

φ

2ζ
((Nc − 1)1− 1

2ζ
φ†0φ0))]X0 (6.4.1)

And potential will be

V =
(Nc − 1)Nc

2
m2

φζ + Ncm
2
Qζ +O(m4) (6.4.2)

We can calculate the mass spectrum for scalar fields φ, Q and Q̃. There are N2
c heavy modes, of

order
√

ζ. Those are just the modes which are the same as the spectrum of gauge bosons. There

are some light modes left in the spectrum of scalars. Those can be divided into two groups, φ

modes and Q modes which will be explained later:

φ-modes ripples

m2 = km2
φ +O(m4/ζ) (6.4.3)

Q-modes

m2 = (k − 1)m2
φ + 2m2

Q +O(m4/ζ) (6.4.4)

where k runs from 1 to Nc. Studying the eigenvectors of those modes can be helpful for

understanding them.

The fluctuation of φ-modes can be written as, after being normalized to one,

a(φ)i,j =
√

ζ

√
(j+k−2
j−1 )

√∑Nf−k+1
j=1 (j+k−2

j−1 )
δi−k,j (6.4.5)

where i and j are the labels for row and column. And there are no components in Q and Q̃

turned on. For example, we take Nc = 6 and k = 3, we can write the fluctuation for this mode

as

δφ =
√

ζ




0 0 0 0 0 0

0 0 0 0 0 0

1√
20

0 0 0 0 0

0
√

3√
20

0 0 0 0

0 0
√

6√
20

0 0 0

0 0 0
√

10√
20

0 0




We would interpret this kinds of fluctuation as ripples around the disk because operator

Tr(φk) breaks the U(1) global symmetry to the discrete group Zk.
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We can also check this point by looking at R2 matrix. Taking φ′ = φ0 + εδφk, where φ0 is

the droplet background, ε is the small parameter which is kept only to first order, and δφk is

the fluctuation corresponding to Tr(φk). Then the R2 matrix can be written as

R2
i,j = ζ(

√
2i− 1δi,j+ε

[
√

j + k − 1
√

(j+k−2
j−1 ) +

√
j
√

(j+k−1
j )]δi−k,j + [

√
i + k − 1

√
(i+k−2
i−1 ) +

√
i
√

(i+k−1
i )]δi,j−k√∑Nf−k+1

j=1 (j+k−2
j−1 )

)

(6.4.6)

For example, we take Nc = 6 and k = 3, then the R2 matrix will be

R2 = ζ




1 0 0 ε 2
√

3√
20

0 0

0 3 0 0 ε 4
√

3√
20

0

0 0 5 0 0 ε 2
√

30√
20

ε 2
√

3√
20

0 0 7 0 0

0 ε 4
√

3√
20

0 0 9 0

0 0 ε 2
√

30√
20

0 0 11




We see that for the mode of Tr(φk), only the elements on lines k units away from the

diagonal line get fluctuations, which is consistent with our interpretation of ripples on the disk.

One interesting case is k = Nc, there is no fluctuation on the R2 matrix, which turns out to

be the same as R2 matrix of the disk. This can be understood as Umklapp oscillation on the

lattice where one cannot distinguish the frequency exceeding the first Brillouin zone against its

counterpart in the first Brillouin zone by just looking at the motion of the points on lattice. And

we see that if we take large Nc limit, then the droplet can have higher and higher frequency,

which means our matrix description are approaching continuum limit.

For the φ-modes, we can find exact soliton solutions for some of the operators, not just first

order approximation. Here we just write down the VEV in φ part because the VEV got by Q

and Q̃ are the same as droplet solution for all the cases:

Q1 =
√

ζ
(

0 · · · 0
)

Q̃1 =
√

ζ
(

0 · · · 0
√

Nc

)

It is clear to see that those modes do not turn on operators in Q-modes. Here is a list for

several different φ-modes, and their corresponding R2 matrix.
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Tr(φ):

φ =
√

ζ




q
√

1

q
√

2
. . . . . .

q
√

Nc − 1

q




This is corresponding to the displacement of the disk. And we can write the R2 matrix as

R2 = ζ




1 + 2q2 2
√

1q 0 0 0

2
√

1q 3 + 2q2 2
√

2q 0 0

0 2
√

2q 5 + 2q2 . . . 0

0 0
. . . . . . 2

√
Nc − 1q

0 0 0 2
√

Nc − 1q 2Nc + 2q2 − 1




Tr(φ2):

φ =
√

ζ




0 (A+B)
2

√
1

(A−B)
2

√
1 0 (A+B)

2

√
2

(A−B)
2

√
2

. . . . . .

. . . 0 (A+B)
2

√
Nc − 1

(A−B)
2

√
Nc − 1 0




A and B has to satisfy A ∗B = 1. This solution is corresponding to ellipse because we can get

this solution by stretching X matrix by a factor of A and compressing Y matrix by a factor of

B, A ∗ B = 1comes from the requirement of preserving the area of the droplet. And we can

write the R2 matrix as

R2 = ζ




(A2+B2)
2 0

√
1∗2(A2−B2)

2

0 3(A2+B2)
2 0

√
2∗3(A2−B2)

2
√

1∗2(A2−B2)
2 0 5(A2+B2)

2

. . . . . .
√

2∗3(A2−B2)
2

. . . . . . 0
√

(Nc−2)∗(Nc−1)(A2−B2)

2

. . . 0 (2Nc−3)(A2+B2)
2 0√

(Nc−2)∗(Nc−1)(A2−B2)

2 0 (2Nc−1)(A2+B2)
2
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Tr(φNc−1):

φ =
√

ζ




0
√

Nc−1+q√
N−1

0 0 0 0 0

.

.

. 0

√
2(Nc−1)+Ncq√

N−1
0 0

.

.

.
.
.
.

0
..
. 0

√
3(Nc−1)+Ncq√

N−1
0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0

√
(Nc−2)(Nc−1)+Ncq√

N−1
0

√
q√

Nc−1
0 · · · 0 0 0

√
(Nc−1)2+(Nc−1)q√

N−1

0
√

q 0 · · · 0 0 0




And we can write the R2 matrix as

R2 = ζ




1 + 2q
Nc−1 0 0 0 0 2

√
q
√

Nc−1+q√
Nc−1

0 3 + 2Ncq
Nc−1 0 0 0

...

0 0 5 + 2Ncq
Nc−1 0 0 0

0 0 0
. . . 0 0

0 0 0 0 2Nc − 3 + 2Ncq
Nc−1 0

2
√

q
√

Nc−1+q√
Nc−1

0 · · · 0 0 2Nc − 1 + 2q
Nc−1




Tr(φNc):

φ =
√

ζ




0
√

1 + q

0
√

2 + q

. . . . . .

0
√

Nc − 1 + q

√
q 0




And we can write the R2 matrix as

R2 = ζ




1

3

5
. . .

2Nc − 1




For this case, we get the same R2 matrix as the disk, but describing different physics state.

Also, we can find the fluctuations for Q-modes as well, and they can be written as

Q = δNc,(i+k−1) (6.4.7)
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Other elements are all zero. Those modes are corresponding to direction in moduli space

described by Q̃φk−1Q. And for the Q-mode case, the fluctuation does not change R2 at the

leading order.

Again, we find exact solutions for the operators describing Q-modes:

For Q̃φk−1Q, we can have the solution as

aφ
i,j =




√
iδi,j−1 for1 ≤ i ≤ Nc − k + 1

√
i + qδi,j−1 forNc − k + 2 ≤ i ≤ Nc




aQ
i =

√
qδi,Nc−k+1

aQ̃
i =

√
Nc + qδi,Nc

And the R2 matrix can be written as

R2
i,j =


 (2i− 1)δi,j for1 ≤ i ≤ Nc − k

(2i− 1 + 2q)δi,j forNc − k + 1 ≤ i ≤ Nc




From the R2 matrix we can find that Q-modes are corresponding to cutting droplet into one

smaller disk and one annulus, then push the annulus far away from the smaller disk.

For example, Q̃Q:

φ =
√

ζ




0
√

1

0
√

2
. . . . . .

0
√

Nc − 1

0




Q =
√

ζ
(

0 · · · 0
√

q
)

Q̃ =
√

ζ
(

0 · · · 0
√

Nc + q
)

And the corresponding R2 matrix is

R2 = ζ




1

3

5
. . .

2Nc − 3

2Nc − 1 + 2q




This corresponding to pushing the most outer ring away from the inner disk.
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Q̃φQ:

φ =
√

ζ




0
√

1

0
√

2
. . . . . .

0
√

Nc − 1
. . .

√
Nc − 1 + q

0




Q =
√

ζ
(

0 · · · 0
√

q 0
)

Q̃ =
√

ζ
(

0 · · · 0
√

Nc + q
)

And the corresponding R2 matrix is

R2 = ζ




1

3

5
. . .

2Nc − 5

2Nc − 3 + 2q

2Nc − 1 + 2q




This corresponding to pushing the most 2 outer rings far away.

Q̃φNc−1Q:

φ =
√

ζ




0
√

1 + q

0
√

2 + q

. . . . . .

0
√

Nc − 1 + q

0




Q =
√

ζ
( √

q · · · 0
)

Q̃ =
√

ζ
(

0 · · · 0
√

Nc + q
)

And the corresponding R2 matrix is

R2 = ζ




1 + q

3 + q

5 + q

. . .

2Nc − 1 + q
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From the R2 matrix, we can see that this solution corresponding to pushing the whole disk to

an annulus.

6.4.2 Multiple flavor case

We now increase the flavor number. The solution is just copies of single droplet case, which

describes multiple droplets.

φ0,Ni =
√

ζ




0
√

1

0
√

2
. . . . . .

0
√

Ni − 1

0




(6.4.8)

φ0 = Diag(φ0,N1 , ..., φ0,Ni
, ...φ0,NN′

f

) (6.4.9)

Qi,0 =
√

ζ(0, ..., 0︸ ︷︷ ︸
N1

, ..., 0, ..., 0︸ ︷︷ ︸
Ni

, ..., 0, ..., 0︸ ︷︷ ︸
NN′

f

) (6.4.10)

Q̃i,0 =
√

ζ(0, ..., 0︸ ︷︷ ︸
N1

, ..., 0, ...,
√

Ni︸ ︷︷ ︸
Ni

, ..., 0, ..., 0︸ ︷︷ ︸
NN′

f

) (6.4.11)

X = [1− M2
Q

2ζ
− m2

φ

2ζ
(N − 1− 1

2ζ
φ†0φ0))]X0 (6.4.12)

where

N ≡ diag(N1, ..., N1︸ ︷︷ ︸
N1

, ..., Ni, ..., Ni,︸ ︷︷ ︸
Ni

..., N ′
f , ..., N ′

f︸ ︷︷ ︸
NN′

f

) (6.4.13)

M2
Q ≡ diag(m2

Q1
, ..., m2

Q1︸ ︷︷ ︸
N1

, ..., m2
Qi

, ..., m2
Qi

,︸ ︷︷ ︸
Ni

...,m2
QN′

f

, ..., m2
QN′

f︸ ︷︷ ︸
NN′

f

) (6.4.14)

V =
N ′

f∑

i=1

[
(Ni − 1)Ni

2
m2

φζ + Nim
2
Qi

ζ] +O(m4) (6.4.15)

The spectrum of light modes can be written as

m2
i = kim

2
φ +O(m4/ζ) (6.4.16)

m2
ij = (ki + Nj −Ni)m2

φ −m2
Qi

+ m2
Qj

+O(m4/ζ) (6.4.17)

m2
i = (ki − 1)m2

φ + 2m2
Qi

+O(m4/ζ) (6.4.18)

m2
ij = (k(i,j) − 1)m2

φ + m2
Qi

+ m2
Qj

+O(m4/ζ) (6.4.19)

where ki runs from 1 to Ni.
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For the first group of modes, we find the eigenvectors for them are the same as single droplet

case, appearing in each block respectively.

The second group is interesting. We assume mQi
< mφ, then if |Ni −Nj | > 1, we will get

tachyonic states anyway. If |Ni−Nj | = 1, the smaller Q mass has to belong to bigger droplet so

that we do not get tachyonic state. For Ni = Nj , all states are stable. It is a strong constraint

which will be used when we count the number of possible vacua.

We take two droplets case as an example, because more droplets cases are just simple copies

of two droplets case in corresponding blocks. When k < (Nf2 −Nf1 + 1) (which may include

tachyonic, massless or the lightest massive state, depending on the choice of parameters), we

can find that the eigenvectors as (we set the first diagonal block corresponding to Nf1, the

smaller disk)

a(φ)i,j =

√
(j+k−2
j−1 )

√∑Nf1+1
j=1 (j+k−2

j−1 )
δNf1+i−k,j

a(Q̃1)i = ±

√
(Nf1+k−1
Nf1

)
√∑Nf1+1

j=1 (j+k−2
j−1 )

δ2Nf1+k,i

For example, we take Nf1 = 2, Nf2 = 5 and k = 3, the eigenvector for this state should be

φ =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1√
10

0 0 0 0 0 0

0
√

3√
10

0 0 0 0 0

0 0 0 0 0 0 0




Q̃1 =
(
0 0 0 0 0 0 ±

√
6√
10

)

Here we can see that in those states, Q̃ is turned on and Q is still zero. Recall that in the

vacuum, φ and Q̃ have non-zero elements, and Q are always zero. Thus we cannot form any

gauge invariant operator by φ, Q and Q̃ which is turned on for such kind of fluctuation. So we

believe that those states are not corresponding to any directions on moduli space.

And when k ≥ (Nf2 − Nf1 + 1), the states will become massive states, and there will be

only φ field turned on. Then we can write the eigenvector as

a(φ)i,j =

√
(j+k−2
j−1 )

√∑Nf2−k+1
j=1 (j+k−2

j−1 )
δNf1+i−k,j
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And we should notice that the range of j is 1, ..., Nf2 − k + 1, different from the previous

case where j is 1, ..., Nf1.

For example, we take again Nf1 = 2, Nf2 = 5 but k = 4 for this time,

φ =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1√
5

0 0 0 0 0 0

0
√

4√
5

0 0 0 0 0




The eigenvectors for the third and forth groups are not complicated to write. For the third

group,

Q1,i = δN1,(i+k1−1) (6.4.20)

Q2,i = δN1+N2,(i+k2−1) (6.4.21)

For the forth group,

Q1,i = δN1+N2,(i+k2−1) (6.4.22)

Q2,i = δN1,(i+k1−1) (6.4.23)

6.5 Counting the number of vacua

With studying this simple model in details, we are finally ready to pursue our original goal,

counting the number of (meta)-stable vacua.

6.5.1 How to get a stable vacuum state

We are only interested in the case when φ field is turned on, so there are two kinds of cases to

discuss: Only φ is turned on, or both φ, Q̃ and Q are turned on. For the first case, we know that

vacuum can only appear when φ is at origin, which means it does not get vacuum expectation

value. This case is stable, so it contributes to the vacuum number by one, not a big deal. The

second case is more interesting, we find that there are two rules which have to be satisfied so

that we can get a (meta)-stable vacuum. Firstly, the F-I term, which is proportional to identity

matrix, has to be totally canceled by φ’s and Q’s. Moreover, if there are several sizes of φ fields,

the difference between each block has to be smaller or equal to one, which means we can only

have n×n matrix and (n+1)× (n+1) matrices. So there are three ways to cancel the identity



103

matrix from F-I term, smaller droplet with one flavor to form an n× n identity matrix, bigger

droplet with one flavor to form an (n + 1) × (n + 1) identity matrix, and only one flavor to

cancel one element in F-I term.

6.5.2 How many vacua there are when we fix Nc and Nf

The case only with φ contributes one, so it will not be important, and we will focus on the

second case, which both φ’s and Q’s appear. Firstly, we have Nf flavors, and treat them

distinguishable with each other. And we take out Nf1 out of them to obtain non-zero vacuum

expectation values, so there are Nf −Nf1 of them stay in the origin of phase space. Nf1 can be

divided into three kinds, Q’s for smaller droplets, Q’s for bigger droplets and Q’s for individual

1’s. Assume there are Nf2 Q’s for canceling individual 1’s in F-I term, without φ fields. So there

are Nc −Nf2 spaces left to be filled by droplets. Because of gauge symmetry which appears as

permutation of blocks in the whole Nc ×Nc matrix, we can put all of individual 1’s together,

and the left space form an (Nc −Nf2)× (Nc −Nf2) block to be filled by Nf1 −Nf2 droplets.

One can find that if we do not care about the sequence of the droplets (because changing the

sequence of droplets does not generate new vacuum), there is only a unique way to fill up the

blocks by droplets when the number of droplets is fixed.

Now we need to find out the range of Nf1 and Nf2. Firstly, Nf1 has to be smaller than

Min(Nf , Nc − 1). We are discussing the case having at least one droplet, and the smallest

possible size of the droplet is 2 by 2 matrix, so there are at most (Nc − 1) flavors getting VEV.

Then after we fix Nf1, there will be Nf1 − Nf2 droplets and Nc − Nf2 spaces for droplets.

For the reason that the smallest size of droplets is 2 by 2 matrix, we get the constrain as

Nf1 −Nf2 ≤ [Nc−Nf2
2 ], where [...] means taking the integer part of the number. Thus we can

get lower bound of Nf2 as Max(0, 2Nf1 −Nc). Also from the definition of Nf2, we can get its

upper bound as Min(Nc − 2, Nf1 − 1).

Now we can write the expression for the total number of vacuums,

Min(Nf ,Nc−1)∑

Nf1=1

Min(Nc−2,Nf1−1)∑

Nf2=Max(0,2Nf1−Nc)

Nf !
(Nf −Nf1)!Nf2!a!b!

(6.5.1)

where a and b are numbers of smaller and larger droplets. Another way to understand this

formula is that we can consider the total number of Nf is divided into four parts, Q’s without

non-zero VEV, Q’s for vanishing individual 1’s in F-I term, Q’s for smaller droplets and Q’s for

larger droplets.

It is not easy to go further without any approximation because general expressions for a and
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b are complicated. But if we assume Nf is a large number and only care about the dominant

part of the expression, then we can deal with it in a simple way. Firstly we see that the sum

of the four terms in dominator is Nf which is fixed, so we know that the minimal value of the

dominator is obtained when we set

Nf1 =
3
4
Nf

Nf2 = a = b =
1
4
Nf

And after applying Sterling formula, we can get the dominant part of the expression as 4Nf . A

very rough approximation of correction around dominant part gives a factor O(N2
f , NfNc, N

2
c )

in the number of vacua, so the total number of vacua will be approximately equal to

eNf Ln4+O(LnF (Nf ,Nc))

where F (Nf , Nc) is some function of order N2
f , NfNc or N2

c . So the total number of (meta)-

stable vacua is a very large number if we choose Nf and Nc are large.

6.5.3 Life time of the meta-stable vacua

Now, we need to calculate the life time of the meta-stable vacuum. From the argument of

instanton, we know the decay rate of a meta-stable vacuum is

Γ ∼ e−(SE(φ(r))−SE(φ+)) ≡ e−B

where φ+ is the vacuum before decay, and SE is the action written in Euclidian form which can

be generally expressed as

SE = 2π2

∫ ∞

0

r3dr[
1
2
φ̇2 + V (φ)]

For convenience, we can set V (φ+) = 0, so SE(φ+) in Γ vanishes. The evolution of φ follows

the equation derived from the action

φ̈ +
3
r
φ̇ = V ′(φ)

This is actually an equation for describing the motion under potential V with a time dependent

damping term. And to simplify the equation, we take z = Ln(r), and then the equation changes

to
d2

dz2
φ + 2

d

dz
φ = V ′(φ)e2z

To get rid of the e2z term in the equation, we take φ = −λ
8 χe2z where λ has same order as V ′.

Then we can get the equation as

1
8
χ̈ +

3
4
χ̇ + χ = −V ′

λ
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On left hand side, coefficients before χ, χ̇ and χ̈ are all O(1). On the right hand side, V ′
λ is

also O(1). So we should expect the solution of the equation, χ, is a function of O(1).

Another ingredient needed to estimate the order of decay rate is the typical time of the

evolution. Although the integration is from 0 to ∞ for Euclidian time r, there is a typical time

R, after that time, the kinetic term in SE(φ) is almost zero, and the potential part are almost

canceled by SE(φ+). So we can neglect the contribution to B after that typical time.

Let us assume the potential has the a general form in our case as

V (φ) = m2ξf(
φ√
ξ
)

where f( φ√
ξ
) is an O(1) function. So we get

V ′(φ) = m2
√

ξf ′(φ/
√

ξ)

Here f ′(φ/
√

ξ) is actually df(φ/
√

ξ)

d( φ√
ξ
)

which is again an O(1) number.

Firstly, we need to estimate the order of 1
2 φ̇2 term in B. We know φ = −λ

8 ξe2z, so we can

get

φ̇2 ∼ λ2r2

According to the definition, we know λ ∼ m2
√

ξ. So

2π2

∫ R

0

drr3 1
2
φ̇2 ∼ π2

6
m4ξR6

And the second term in B will be

2π2

∫ ∞

0

r3drV (φ) ∼ π2

2
m2ξR4

The last step is to estimate the typical time R. The velocity of evolution, dφ
dr , is m2

√
ξr times

an O(1) function. And the change of φ during the evolution is of order
√

ξ. So

R ∼ 1
m

Finally, we get

B ∼ ξ

m2

which in our case is a large number. So the decay rate of meta-stable vacuum is very small,

thus their life time is long.
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