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CrkII as a novel partner for Cyclophilin A 
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Dissertation Director: 
Professor Charalampos G. Kalodimos 

 

Adaptor proteins are known to play an essential role in assembling protein-

protein complexes which result in cellular signal propagation. Crk belongs to a 

family of adaptor proteins and was originally identified as an oncogene product of 

the CT10 retrovirus (v-Crk). Cellular homologues of v-Crk include CrkI, CrkII and 

CrkL. CrkI and CrkII are different splice variants, whereas CrkL is encoded by a 

distinct gene. Crk proteins contain one Src homology 2 (SH2) and one or two Src 

homology 3 (SH3) domains. Specific domain organization can assemble and 

activate a number of different ligands, including Abl. It remains poorly understood 

why CrkII and CrkL have distinct physiological roles despite showing similar 

domain structures, high sequence identity, and identical binding partners. Unlike 

CrkII, CrkL was found to be a key signaling molecule to interact with Bcr-Abl, 

which is a tyrosine kinase that plays a major role in Chronic Myeloid Leukemia 

(CML) pathogenesis. The interaction of CrkL with Bcr-Abl and its potent tyrosine 

phosphorylation (higher as compared to CrkII) is commonly used as a hallmark of 

Bcr-Abl kinase activity and response to tyrosine kinase inhibitors used in CML 
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treatment. Knowing the differences in 3-dimensional structures between CrkII 

and CrkL would help to understand how these adaptors alter key signaling 

partners. However, the structure of CrkL is not available.  

Using NMR spectroscopy methodologies complemented by many other 

biochemical and biophysical techniques, we show that CrkL and phosphorylated 

CrkL structures are radically different from the corresponding structures of CrkII. 

The phosphorylation of Tyr221 (CrkII) and Tyr207 (CrkL) by Abl induces 

intramolecular binding to the SH2 domain, which in the case of phosphorylated 

CrkII was shown to completely abrogate signal transduction. In phosphorylated 

CrkL, however, the SH3N domain remains accessible and can form complexes. 

The data show that CrkL, unlike CrkII, forms a constitutive complex with Abl 

hence explaining the preference of Bcr-Abl for CrkL over CrkII. The results also 

highlight how the structural organization of the modular domains in adaptor 

proteins can control signaling outcome. 

In the second part we show that the Gly219−Pro220 motif of CrkII binds into the 

active site cleft of CypA. In contrast, CrkL does not contain this GP motif and 

therefore, is not susceptible to CypA regulation. The interaction between CypA 

and CrkII occurs both in vitro and in vivo. CypA is recruited to the CrkII 

phosphorylation site (Tyr221), and delays phosphorylation by Abl. This is a novel 

role for CypA, which appears to act as a selective switch to modulate the level of 

phosphorylation of a signaling protein.  
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Chapter 1. Introduction  

 

1.1 Crk Adaptor Proteins 
 

1.1.1 Crk history 
 
Cellular signals are mediated by many genes and proteins. Adaptor proteins are 

important molecules in many signaling pathways, and play a significant role 

despite the absence of any intrinsic catalytic activity. 

The Crk adaptor protein family exhibits a dominant role in signal transduction 

pathways including cell adhesion, motility, phagocytosis, differentiation, 

proliferation, transformation and apoptosis1 2 3. The Crk gene was first identified 

by Mayer4,5 in 1988 from a chicken tumor sample as an oncogene gag-crk. Gag-

crk is a fusion of the viral gag gene encoding structural proteins of the virion and 

a cellular gene crk encoding two domains. There was increase of tyrosine-

phosphorylated proteins in chicken embryo fibroblast transformed by this gene 

despite the absence of a catalytic domain. This initial observation suggested that 

crk is a cellular tyrosine kinase activator and6,7 was named crk for chicken tumor 

virus no. 10 [CT-10] regulator of kinase. One year later Tsuchie8 identified and 

characterized an independent avian retrovirus called ASV-1 (avian sarcoma virus 

1) isolated from a tumor in an adult chicken and found that both oncogenes differ 

only in a few amino acids. Following the isolation of v-Crk, Reichman et al.,9 have 

cloned and sequenced the cellular cDNA of chicken Crk. They found that cCrk 

and vCrk have similar structural organization, although vCrk possesses an 

additional proline-rich region of roughly 100aa. 
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 Shortly after that Matsuda and colleagues isolated CRK cDNAs, from human 

embryonic lung cells and named them CRK-I and CRK-II10. Finally, Crk-like11 

(CrkL), a product of a different gene and the last member of the Crk family, was 

identified and found to have 60% homology to Crk. 

Discovery of the viral Crk oncoprotein followed by cloning of its cellular homologs 

has significantly changed our understanding of intracellular signal transduction. 

Early experiments showing the interactions of v-Crk with phosphorylated proteins 

and finding of multiple Crk/CrkL binding proteins has provided many functional 

details of this extraordinary signaling machinery. 

 

1.1.2 Crk Family members 
 
The c-Crk gene encodes two splice variants named CrkI and CrkII, while a 

homologous but distinct gene encodes Crk-like (CRKL). All members of the Crk 

adaptor family are composed of Src homology 2 (SH2) and Src homology 3 

(SH3) domains separated by a flexible linker (Fig. 1). 
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Figure 1. Structure of the Crk family of proteins. The domains are boxed: SH2 

(Src homology 2); SH3 (Src homology 3); Gag, viral group specific antigen; Y221 

or Y207, negative regulatory phosphorylation site. The structure of Src is shown 

at the top of the figure to indicate its spatial arrangements compared to Crk. TK, 

tyrosine kinase domain. 

 

Selective formation of multi-protein signaling complexes by the Crk and CrkL 

proteins depends on specific motifs recognized by their SH2 and SH3 domains, 

which can trigger normal as well as oncogenic cell transformation12. On the N-

terminus these proteins have an SH2 domain which is made of ~100 amino acids 

and mediates binding by interacting with a pY-X-X-L13 motif-containing tyrosine 

phosphorylated proteins such as paxillin, p130Cas, Cbl or Gab1. The SH3N 

domain, which is made up of ~60 amino acids, can interact with proline-rich P-X-

L-P-X-P binding motifs of c-Abl, SOS, and CG3. In contrast to CrkI, CrkII and 

CrkL have an additional C-terminus SH3 (SH3C) domain attached to the first two 

domains by a ~50 amino acid proline-rich linker. These can be negatively 
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regulated by their tyrosine phosphorylation via the autoinhibitory mechanism of 

the intramolecular linker binding to the SH2 domain. Phosphorylation of Y221 in 

CrkII or Y207 in CrkL prevent the SH2 and SH3N domains from binding to their 

target proteins. The lack of a SH3C domain makes CrkI unable to be negatively 

regulated, therefore giving it higher transformation activity than CrkII or CrkL14. 

Studies suggest that the main physiological function of the SH3C domain is 

focused on stabilizing CrkII and CrkL into a conformation that regulates their 

biological function. The SH3C domain may regulate accessibility of the Crk 

proteins to their binding partners by intramolecular interaction with the SH3N 

domain and by proper linker folding between the two. SH3N has been well 

characterized and many binding partners have been identified2. The SH3C 

domain in both CrkII and CrkL has not been shown to have interacting partners 

except for one, nuclear exporter Crm115, which has been reported to bind to the 

SH3C domain of CrkII. Mutation of the SH3C domain of CrkII causes increased 

phosphorylation of many cellular proteins16 and also affects the SH3N domain’s 

interaction with its partners17. This suggests that the SH3C domain negatively 

regulates the binding of signaling proteins to the SH3N domain18,19. In CrkL the 

SH3c domain has no interacting proteins that have been identified, questioning 

the importance of its presence. Although CrkII and CrkL have similar domain 

organization and homology CrkL seems to play a more important role in 

hematopoietic cells11 and was shown to be the most prominent substrate for the 

Bcr-Abl oncoprotein20. 
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1.1.3 Crk in signaling 
 
By using their SH2 and SH3 domains, Crk family adaptors control selective 

formation of multi-protein signaling complexes and regulate a vast number of 

biological processes including cell migration, morphogenesis, invasion, 

phagocytosis, survival and regulation of gene expression21. More than 20 years 

of research has significantly increased our knowledge and helped us to 

understand the biological functions, as well as the mechanistic properties, of Crk 

adaptor signal transmission. Since then over 40 cellular proteins have been 

shown to bind with Crk family proteins. Such diversity clearly indicates that we 

cannot assign one specific cellular function to Crk and shows the complexity of 

Crk signaling transduction.  

As mentioned before, the major tools for Crk to control particular binding activity 

are its SH2 and SH3 domains. Crk signaling pathways can be divided into two 

groups: the input pathway and the output pathway. The input pathway involves 

the SH2 domain, which binds to a specific phosphorylated motif, inducing an 

on/off mechanism controlled by phosphorylation and dephosphorylation of the 

Crk tyrosine. The second mechanism involved SH3N domain, where the protein 

complexes occurs constitutively by proline-rich motifs and are not an effect of 

post-translational modifications.  

One of the representative Crk signaling pathways (Fig. 2) is the mechanical 

stretching induced by phosphorylation of p130Cas22 . In response to mechanical 

force, p130Cas is phosphorylated by Src or FAK tyrosine kinase, followed by 

binding of the phosphorylated YXXP motif to the SH2 domain of CrkII23. CrkII 
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binds GEFs for the Rap 1 (C3G) via its SH3N domain. This regulates cell 

adhesion and cytoskeletal organization21. The inter-SH3C linker region of CrkII 

undergoes Abl induced phosphorylation on Y221, resulting in intramolecular 

binding with the SH2 domain as a consequence CrkII dissociates from Cas. This 

pathway has been shown to play a crucial role in breast cancer cell 

tumorigenicity24. 

 
 

Figure 2.  Model for the regulation of the Cas docking protein and the Crk 

adaptor. The central region of Cas, with 15 YXXP motifs, is protected from 

phosphorylation by intramolecular interactions. Stretching forces lead to 

extension of Cas and exposure of the YXXP motifs for phosphorylation by Src 

family tyrosine kinases, and these phosphorylated motifs then recruit the SH2 

domain of the Crk adaptor, and effectors associated with the Crk N-terminal SH3 

domain. Crk binding activity is suppressed by tyrosine phosphorylation at Tyr (Y) 

221, for example by EphB4–Abl signaling, leading to intramolecular interaction 

with the SH2 domain. The dashed box shows the active Cas–Crk complex.  
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Despite detailed information of how the Crk can interact with its substrates, there 

is still lack of information how these complexes can form in real time and space. 

  
 

1.1.3.1 SH2 domain 

 
Post-translational modification by tyrosine phosphorylation is one of the most 

important mechanisms used in cells to convey signals in response to external 

and internal stimuli. It plays a major role in many cellular and developmental 

processes including cell proliferation and differentiation. Protein phosphorylation 

involves several factors. First are protein tyrosine kinases (PTKs), which are 

used to phosphorylate substrates. Next are protein tyrosine phosphatases 

(PTPs), which are used for dephosphorylation. Last are the specific protein 

domains, which can recognize the phosphorylated ligand, and, by doing so, 

initialize signaling events. Among all pTyr binding ligands (proteins/domains) 

which includes: SH2 domains, pTyr binding (PTB) domains and one C2 domain, 

SH2 is the major target. 

Recently Liu and co-workers examined SH2 domain containing proteins from the 

genomes of 28 different eukaryotic organisms including 111 SH2 domains 

containing proteins from the human genome, highlighting the importance of SH2 

domains in biological systems25. SH2 domains can be classified into different 

families according to their functionality26 
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Figure 3. SH2 domain-containing proteins classification based on their 

functionality27. 

 
 
The SH2 domain was originally found in 1986 in the arcane retroviral oncoprotein 

v-Fps with an active tyrosine kinase domain on its C-terminus. It was described 
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as a polypeptide sequence containing approximately 100 residues and named 

SH228 for src homology 2.  Authors have found that the SH2 domain is located N-

terminal to the catalytic domain and is not required for kinase reactivity but is 

used rather as an activity regulator. 

Later the SH2 domain was found to interact with tyrosine phosphorylated 

partners4 and finally, in 1992, John Kuriyan and Gabriel Waksman solved the 

Src-SH2 domain structure bound to phosphopeptide29.  They have shown in 

molecular detail how the SH2 domain recognizes the pTyr motif, and have 

identified the features, which are common for many interaction domains. This 

analysis uncovered several features that are now recognized as common themes 

of many interaction domains. 

The Sh2 domain contains anti-parallel β-sheets surrounded by two α-helices 

(Fig.4)   

 

 

 
 
 
 
 
 
 
 

 
 
Figure 4.  SH2 domain (PDB ID 1SHB) of v-src complexed with tyrosine-

phosphorylated peptides.  
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The SH2 domain binds to proteins containing phosphorylated tyrosine followed 

by specific residues. Crk SH2 domains recognize pTyr-Asp-x-Pro sequence and 

binds to the pocket where it is captured by a conserved Arg residue located in 

the SH2 domain. Arg play very important role by coordinating the phoshate 

oxygens from the phospho-Tyr (the basic residue is recognized by a negatively 

charged pocket). The way the SH2 domain interacts with pTyr proteins can be 

categorized into two major groups: intramolecular regulation, where 

phosphorylated site of the protein binds to its own SH2 domain (CRkII-pTyr221 

or CrkL-pTyr207), and intermolecular, where the phosphorylated protein recruits 

its partner to form a complex. 

SH2 domains have been shown to recognize specific sets of targets, for instance 

Socs2, which recognizes growth hormone receptor, or Socs4, which recognizes 

phosphorylated EGFR30. In contrast SH2 domains of protein families like Crk, 

NCK or GRB2 share a common core set of binding peptides and are highly 

conserved31. 

The discovery of SH2 domains was a major breakthrough in understanding how 

signaling networks are controlled by protein phosphorylation or by domain-

domain interactions. 

 

1.1.3.2 The SH3 domain 

 

Another important protein-protein interaction member in context of cell signaling 

is Src homology 3 (SH3) domain. There are over 300 SH3 domains in the human 
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genome32, making the SH3 domain one of the most prevalent families of protein 

modules found in nature showing a wide range of cellular functions tehes 

proteins arecapable of performing. SH3 domains are involved in many important 

cellular functions including intracellular signaling and cell-environment 

communication, cytoskeletal rearrangements and cell movement, cell growth and 

differentiation, protein trafficking and degradation, and immune responses33,34,35. 

SH3 domains were first characterized as polypeptide regions conserved between 

different signaling proteins such as the Src family tyrosine kinase, Crk, and 

phospholipase C-γ4. All SH3 domains consist of 50-70 residues and feature a 

five-stranded anti-parallel beta-sheet structure36,37. 

 
 
Figure 5. SH3 domain (1SHG) 
 
 
The first report involving an SH3 domain in context of protein-protein interaction 

was described between protein 3BP-1 bound to the SH3 domain of Abl38. A year 

later it was shown that only the short, proline-rich fragment of 3BP-1 is required 
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for Abl SH3 domain binding and was identified to be PxxP39. Soon after 

identification the PxxP motif Chen et al. classified SH3-binding motifs into two 

similar yet distinct groups called classes I and II40. Class I is represented as 

[R/K]xXPxXP and class II as XPxXPx[R/K]41,  where the ‘X’ signifies a non-

glycine, hydrophobic residue while the  ‘x’ denotes any naturally occurring amino 

acid. SH3 domain complex structures with the class I and II peptides revealed 

that these ligands bind in opposite directions. In each case the peptide forms a 

left-handed helix which is called polyproline type II (PPII) with three residues per 

turn.  Some SH3 domains prefer one peptide orientation over the other but others 

make very little distinction between the two. According to the work published by 

Wu42, which tested binding of 686 class I and 686 class II peptides to 12 SH3 

domains, each SH3 domain can bind either class of peptides however class II 

with higher selectivity.  

An Arg or a Lys residue that precedes or follows the PxxP core motif determines 

the orientation of a peptide with respect to the binding site. In either case, the 

basic residue is recognized by a negatively charged pocket (or specificity pocket) 

on the SH3 domain (Fig. 6). Apart from electrostatic interactions with acidic 

residues lining the specificity pocket, the side chain of an Arg or a Lys makes 

favorable charge-aromatic interactions and/or Van der Waals contacts with a Trp 

residue that is conserved at the binding site for all SH3 domains. 

 

 

 



 
 

 

13 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 6.  Structural basis of an SH3 domain binding to a Class I or II peptide. 

An schematic representation of SH3 domain recognition of a peptide in a ‘plus’ 

(C_N) (left) or ‘minus’ (N_C orientation (right) (9). The left-handed PPII helix of 

the peptide is shown as circles (residues) connected by sticks (amide bonds). 

Bold lines represent the XP dipeptide units. Conserved residues found at the 

ligand-binding site of the SH3 domain are shown in rectangles. (A) The beta-PIX 

SH3 domain in complex with a peptide derived from AIP-4 (PDB code: 2P4R) 

(14). The peptide contains the class I motif ([R/K]xXPxXP) and is bound in the 

plus orientation. (B) The p40phox SH3 domain in complex with a p47phox-

derived peptide (PDB code: 1W70). The peptide contains the class II motif 

(XPxXPx[R/K]) and is bound to the SH3 domain in the minus orientation43.  

 
 
In the context of CrK, the first protein shown to bind with the SH3N domain was 

Crk SH3-domain-binding guanine-nucleotide releasing factor (C3G)44.  

Although many proteins have been identified to bind to the SH3N domain, no 

cellular molecules have been shown to interact with the Crk SH3C domain, with 
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the single exception of the nuclear export factor crm115. Authors have shown that 

SH3C domain of Crk contains a binding site (nuclear export sequence - NES) for 

the nuclear export factor Crm1 and that a mutant lacking the NES sequence 

promotes apoptosis. Both CrkII and CrkL contain an atypical C-terminal SH3 

domain, which is unable to bind Polyproline Type II (PPII) motifs19. In both 

proteins, the domain adopts core structural characteristics of SH3 domains, 

comprising of a five-stranded beta barrel. However, unlike the SH3N domain, 

where the aromatic amino acids – F141, W169, Y186 line the canonical PPII 

binding pocket, the SH3C domain contains polar residues instead – Q244, Q274 

and H290. Therefore SH3c cannot bind typical PXXP ligands or binds them with 

reduced affinity.  

 

1.1.4 Binding partners via Crk/CrkL SH2 and SH3N domains  

 

1.1.4.1 p130Cas family 

 
As previously mentioned, nearly all proteins which were shown to bind to SH2 

domains of Crk used YxxP motifs (where Y undergoes phosphorylation. This 

general rule also applies to a protein called Crk-associated substrate (p130Cas), 

which is controlled by phosphorylation on both tyrosine and serine/threonine 

residues and was first identified as a tyrosine phosphorylated protein in cells 

transformed by v-Crk7 and v-Src45. Due to the presence of many conserved 

sequence motifs and tyrosine and serine/threonine phosphorylation,  p130Cas 

controls formation of multiprotein complexes via  protein–protein interactions and 
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therefore plays an essential role in intracellular signaling events. Cas/Crk is one 

such complex, which activates downstream effectors such as Rac and C3G and 

reorganizes the actin cytoskeleton46.  Overexpression of Cas proteins is involved 

in the development of many human cancers. For instance in human breast 

cancer overexpression of p130Cas and ERBB2 (p130CAS is necessary for 

transformation by several oncogenes like ERBB2) is associated with increased 

proliferation, metastasis and poor prognosis3,47. Mice lacking Cas (Cas−/−) 

exhibited cardiovascular anomalies and died in utero48.  

The large (130 kDa), multi-domain Cas molecule contains an N-terminal SH3 

domain, proline-rich domain, a large substrate-binding domain, a serine-rich 

region, and a C-terminal region (Fig. 7). 

 

Figure 7. The structural characteristics and interacting proteins of p130Cas.  

 
p130Cas tyrosine phosphorylation occurs in the substrate-binding domain, which 

contains 15 repeats of a YxxP sequence. Tyrosine phosphorylation in the YXXP 

motif, which is regulated by many growth factors and hormones46,49, creates 

binding sites for the SH2 domains of downstream target molecules, including 
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Crk. As an example, p130Cas phosphorylation by Src kinase leads to assembly 

of the p130Cas/Crk/DOCK180 protein scaffold at the adhesion sites and was 

shown to play an important role in cell migration50,51. The C-terminal, polyproline 

region of p130Cas seems to have crucial function in terms of its activity. It 

activates Src family kinases by its SH3 domain displacement and anchors Cas to 

Src, allowing more efficient phosphorylation of Cas. It was shown that Cas-Crk 

complexes function to promote cytoskeletal rearrangements through activation of 

Rac1. Molecules that may link Cas-Crk interactions to Rac1 activation include 

C3G44 and DOCK18052. The Cas-Crk pathway has also been shown to be 

important for chemotaxis induced by insulin and epidermal growth factor 

(EGF)53,54. Recently another interesting work by Sawada22 shed a light on the 

Cas protein tyrosine phosphorylation level induced by mechanical extension. 

 

Figure 8.  Model of extension of p130Cas and signaling. (a) Represent a Cas 

molecule with unextended configuration where none of the Y (Tyr in red) is 

phosphorylated. (b) The extension-dependent phosphorylation of the Cas 

substrate domain by SFK and enhancement of its signaling.  
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 Similarly to Cas, another multiple sequence repeat containing proteins like tatin55 

were shown previously to have mechanical functions. By analyzing this 

mechanism authors found that cell stretching has significantly increased Cas 

substrate-domain phosphorylation by Src with no observable change in Src 

activity and could serve as an important signaling switch by controlling kinase or 

phosphatase. In another recent work, mutants containing single or multiple YXXP 

mutations were phosphorylated processively by Src, suggesting that individual 

sites are dispensable56. The results also suggest that there is no defined order to 

the Cas phosphorylation events so the multiple YXXP sites could be used to 

diversify the signaling pathways. All these studies taken together could help shed 

a light on the reason for duplicating PXXP motif in substrate-domain of p130Cas 

15 times. This indicates many molecular complexes (Fig. 8) (like 

p130Cas/Crk/DOCK180, p130Cas/Crk/C3G, p130Cas/Crk/Abl, 

p130Cas/Crk/JNK, and p130Cas/Crk/PI3K) could exist simultaneously, because 

substrate-domain would have many accessible phosphorylated motifs available 

at any given time. 

 Abl kinase was also shown to negatively regulate the migratory function of 

p130Cas. On one hand, by phosphorylating Crk on Tyr221, it dissociates 

p130Cas-Crk complex57. On the other hand, Tyr221 of Crk is dephosphorylated 

by the tyrosine phosphatase PTP-1B58, promoting p130Cas–Crk coupling and 

cell migration. Taken all together this shows p130Cas diversity and it’s potential 

in cell signaling regulation.  
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1.1.4.2 Paxillin 

 
Paxillin is a 68-kDa substrate to various tyrosine kinases. It was initially identified 

as a member of the cytoskeletal proteins where it was shown to be tyrosine 

phosphorylated when co-expressed with v-src59. Soon after that initial finding, 

paxillin was identified as a vinculin binding partner, which is known to be involved 

in focal adhesion and actin binding60. Because of its multidomain structure and 

the absence of enzymatic motifs/patterns paxillin is thought to be an adaptor 

protein61. Paxillin plays a major role in controlling signals from integrins and 

growth factor receptors, which result in efficient cellular migration. 

On its N-terminus are five leonine-rich sections, called paxillin LD motifs 

(LDXLLXXL). They serve as protein recognition domains and were identified as 

binding sites for the proteins vinculin and FAK62. Beside the LD motifs the N-

terminus contains a short proline-rich motif charasteristic of the SH3 domain and 

many tyrosine phosphorylation sites (Fig. 9). FAK, together with Src, 

phosphorylates paxillin at two major sites Y31 and Y11863,64.  

 

Figure 9. Domain structure of the Paxillin. Paxillin contains 5 leucine-rich LD 

motifs (consensus LDXLLXXL), 4 double zinc finger LIM domains, and two major 

phosphorylation sites Y31 and Y118. 

  
Paxillin phosphorylation results in functional binding site generation for SH2 

domains of Crk family members65,63,64,66. It has been demonstrated that by 
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introducing a nonphosphorylatable tyrosine mutant (Y31F/Y118F) on paxillin the 

migration was blocked67. These events are important in the context of integrin-

mediated cell motility that is controlled by assembly and disassembly of signaling 

complexes like Crk/ P130Cas/paxillin67,68. 

Paxillin C-terminus is comprised of four LIM domains, which are double-zinc 

finger motifs69,70,71, and has also been shown to be very important for mediating 

protein-protein interaction69. For example, LIM3 and LIM4 domains would 

facilitate dephosphorylation of p130Cas by direct binding to protein tyrosine 

phosphatase–PEST (PTP–PEST). This may control the aforementioned Crk/ 

P130Cas/paxillin complex72 73 by disassembling it. Paxillin can also bind and be 

phosphorylated by the non-receptor tyrosine kinase Abl74,75, which regulates Crk 

proteins binding activity.   

 

1.1.4.3 C3G 

 
GEFs (guanine-nucleotide-exchange factors) are the regulators of the GDP-GTP 

exchange process that activates small GTPases (20-25kDa). This controls a 

variety of cellular events, including cell differentiation, proliferation or apoptosis76. 

One of the GEFs that had originally been isolated as one of the two major 

binding partner of the Crk adaptor protein is C3G (Crk SH3-binding guanine-

nucleotide-exchange factor)77. 

C3G has two functionally important regions; the central domain and the catalytic 

domain44 (Fig. 10). The central domain, also known as Crk binding region (CBR), 
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contains three proline-rich sequences that bind to the SH3N domain of Crk and 

one sequence that binds to p130Cas78. The catalytic domain (CDC25 homology 

domain), located on the C-terminus, is responsible for Rap1 protein activation.  

 

Figure 10. Structural characteristic of C3G 
 
 
 Depending on the cell type, C3G can be activated by several different signals, 

including integrins79 and reelin stimulation80, and can itself also mediate 

activation of several pathways including JNK81,82 and ERKs (extracellular-signal-

regulated kinases)83.  

Ichiba et al. demonstrated that C3G phosphorylation (on Tyr504) and binding to 

Crk are necessary for C3G activation84. Crk/C3G complex formation, and its 

translocation to the cytoplasmic membrane, cause the GTP exchange on Rap185 

and activate signaling. When the formation of this complex is inhibited, Rap 

activation is blocked86. Rap1 signaling mediates different cellular events like 

adhesion, migration, phagocytosis, inflammation and differentiation87. It has been 

shown that p130Cas/Crk/C3G complex formation mediates Rap1, activates B-

Raf in neurons and activates the mitogen-activated protein kinase (MAPK) 

pathway to control neuroblast differentiation88. 
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In another study, C3G knockout mice died before embryonic day 7.5, which 

shows that C3G activation of Rap1 is required for the early embryogenesis 

mice85.  

In signaling pathways C3G was found to integrate variable signals and mediate 

many cellular functions due to its catalytic activity as well as direct protein 

interaction.  

1.1.4.4 SOS 

 
SOS (Son of Sevenless) protein was discovered over two decades ago as a Ras 

activator controlling the process of central photoreceptor (R7) cell development in 

Drosophila melanogaster eye89. Homologues of SOS were subsequently 

discovered and characterized in other organisms from Caenorhabditis elegans to 

mammalian cells90,91,92,93. There are 2 human homologs of SOS, hSOS1 and 

hSOS294. 

The hSOS1 protein (150 kDa) is composed of several important functional 

domains (Fig. 11). 

 

 
 
Figure 11.  Organization of hSOS 1  
 
 
The C-terminus has a proline-rich (PXXP) domain and was shown to interact with 

SH3 domains of proteins like E3B1 and Grb2 (a Rac1 GEF)95. The central region 
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of hSOS1 has two domains: CDC25 (cell division cycle 25) and REM (Ras 

exchanger motif). CDC25 and REM were shown to bind and stimulate Ras-GTP 

exchange. The structural data indicate that upon CDC25/REM interaction with 

Ras-GDP, the SOS can adopt a fully functional structural state96. The SOS1 N-

terminal contains two domains typical for nucleotide exchange factors, the Dbl 

homology (DH) and the Pleckstrin homology (PH). The catalytic DH domain 

allows Rac activation and the PH domain regulates the DH domain, through an 

unknown mechanism. In general the PH/DH duet functions to exchange GTP for 

GDP on Ras. 

Several studies show that the Crk SH3 domain binds to SOS97,98. However the 

cellular function of the SOS/Crk complex and its implications are not well 

understood. 

 

1.1.4.5 DOCK180 (DOCK1) 

 
DOCK180 (180-kDa protein downstream of CRK) was identified as one of the 

most prominent Crk binding partner in `Far Western' overlay blot99. It was then 

cloned and described as a cell structure regulator upon the activation of tyrosine 

kinases100. DOCK180 is known to function as GEFs for various GTPases. In 

mammalian cells, the Crk–ELMO–DOCK180 complex activates several Rac-

dependent pathways, including the JNK kinase cascade, actin remodeling, cell 

migration and engulfment of apoptotic cells101,102,53,103,52. As with all GEFs104,105, 

DOCK180 promotes the exchange of protein bound GDP for GTP. In all signaling 
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systems GEFs act as upstream regulators of Rho and Ras family GTP binding 

proteins. Unlike other previously described C3G exchange factors DOCK180106 

lacks the typical Dbl homology (DH) domain or pleckstrin-homology (PH) domain, 

which are known as nucleotide exchange promoters in all known mammalian 

Rac GEFs. Instead it uses a novel DHR-2 (DOCK Homology Region-2) domain 

that specifically recognizes nucleotide-free Rac107 and induces the GTP loading 

of Rac both in vitro and in vivo. However, proper activation involves the PH 

domain of ELMO108, which facilitates Dock180-mediated Rac activation by 

helping to stabilize Rac in its nucleotide-free transition state and by binding the 

DOCK-Rac complex in trans. It was shown that by inactivation of the DHR-2 

domain in Dock180, Rac activation was blocked109. This highlights the 

importance of this domain in the biological function of the protein 

Another conserved domain in all members of the DOCK180 related superfamily 

is DHR-1 (DOCK Homology Region-1), located upstream of DHR-2 domain. 

DHR-1 was shown to mediate specific interaction with phosphatidylinositol (3,5)-

bisphosphate and PtdIns(3,4,5)P3 signaling lipids in vitro and in vivo. This results 

in DOCK180 membrane translocation110. 

The importance of the DHR-1 domain in DOCK180-mediated signaling was 

proved by expression of DOCK180 lacking DHR-1 (DOCK180ΔDHR-1) in LR73 

cells (used for cell migration studies).  In cells where DOCK180ΔDHR-1, ELMO1 

and CrkII were coexpressed enhanced motility was not observed. This 

demonstrates that the DHR-1 domain is essential for DOCK180-mediated cell 

movement. Despite not being able to promote cell migration, the 
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DOCK180ΔDHR-1 was unexpectedly shown to be able to promote Rac GTP-

loading to the same extent as wild-type DOCK180 in both the presence and 

absence of ELMO1 and CrkII.  These results highlight the difference between 

Rac activation and signaling, support the notion that GTP-loading of Rac alone is 

not sufficient to promote cell migration, and emphasize the importance of DHR-1. 

Rac was shown to play a key role in not only controlling actin dynamics, integrin-

mediated cell adhesion and cell shape changes, but also in the engulfment of 

dead cell bodies.  

Although DOCK180 was identified as a Crk binding partner its role in DOCK 

mediated Rac activation is not quite clear.  It has been shown that CrkII binds 

PxxPx(K,R) in the C-terminal region of DOCK180 via the SH3N domain111,112 and 

promote translocation of DOCK180 to the plasma membrane52,113. In one study17 

authors show how the assembly and function of the DOCK180/ELMO/Rac can 

be regulated by introducing mutation in CrkII SH3C domain, suggesting that Crk 

can control assembly of the complex. Contrary to these findings other study114 

have shown that a direct interaction of CrkII with DOCK180 was not essential for 

both engulfment of apoptotic cells or for the recruitment of DOCK180. Since the 

expression of a DOCK180 mutant lacking the proline-rich sequence was 

sufficient for Rac1 activation, direct physical association between CrkII and 

Dock180 is not essential for these proteins to function during engulfment. 

Despite the fact that the Crk-DOCK180 interaction involves a specific binding 

motif (PxxPxK) it was shown that DOCK2115, a homolog of DOCK180 where 

PxxPxK is not present, can bind CrkL. This suggests different binding specificity 
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of SH3 domains of these highly homologous proteins and also that the CrkL-

DOCK2 complex may regulate cell motility (through Rac). Thus the role CrkII 

plays in the function of the aforementioned complex is still elusive. 

 

1.1.4.5 Abl Kinase 
 
Abl is a 140kDa non-receptor tyrosine kinase localized at several sites inside the 

cell including the nucleus, cytoplasm, mitochondria, endoplasmic reticulum and 

the cell cortex. Abl was identified as a homolog of the v-Abl oncogene – the 

retroviral oncoprotein from Abelson murine leukemia virus (A-MuLV)116. There 

are two members of the Abl family; c-Abl (Abelson tyrosine kinase- Abl1) and its 

paralogue, Arg (Abl related gene -Abl2)117. C-Abl was found to interact with 

various cellular proteins including kinases, phosphatases, transcription factors, 

cytoskeletal and signaling proteins118. It has also been shown to play an 

important role in many cellular processes, including actin dynamics, cell growth, 

survival and migration. There are two isoforms of c-Abl: types 1a and 1b. The 

difference is a myristoyl group covalently linked to the N-terminus of the 1b type. 

The myristate moiety was found to be a critical for autoinhibition by binding to a 

unique binding pocket in the c-Abl kinase domain119. Abl contains on its N-

terminus SH3, SH2 and tyrosine kinase domains (TK) but also a large (60 kDa) 

C-terminal domain containing cytoskeletal protein and DNA-binding domains, 

which are unique to Abl and Arg (Fig. 12). This long C-terminal extension 

contains multiple interaction sites like proline-rich motifs that are used to 
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communicate with SH3N domains of adaptor proteins such as Crk, Nck and Grb2 

(growth-factor-receptor-bound 2)120 121. 

 
Figure 12.  Abl family domains organization. 

 

The Abl activity is controlled by a mechanism of autoinhibition, which is achieved 

by many complex intramolecular interactions including a catalytic kinase domain 

with activation loop, SH3/SH2 domain interactions, and other segments in the N-

terminal site such as the myristoyl group and the SH3–SH2/SH2–kinase-domain 

linkers122,123  (Fig.13). 

 
 

 

 

 

 

Figure 13. Three-step mechanism of ABL tyrosine kinase activation124. 
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Abl is known to bind numerous partners via its SH2 and SH3 domains. The Abl 

SH2 domain can engage phosphotyrosine, but the phosphorylated tyrosine on 

Abl can then bind to other SH2 domain. Analogously the PXXP motif on Abl can 

bind to partner SH3 domain whereas Abl SH3 domain can engage PXXP motif of 

its partners. Among direct Abl binding partners, the CAS family and the CRK-

family are key regulators of cell attachment and motility125. In a report by 

Shishido et al., it was shown for the first time that interaction of the SH3N domain 

of Crk and the proline-rich motifs (P545xxP and P589xxP)126 of c-Abl are 

essential for the phosphorylation of Crk and activation of c-Abl. They have shown 

that Abl activation is negatively regulated by phosphorylation of the tyrosine 221 

of c-Crk127. This phosphorylation can disrupt Crk-CAS complexes57. Crk 

expression with Abl induces Abl phosphorylation on its two major sites (Tyr 245 

and Tyr 412)128,129 suggesting that Crk enhances enzymatic activity of Abl.  

Another observation is that Crk transactivation is much more efficient when either 

the Y222F or the P225A Crk mutants are used to prevent Crk phosphorylation 

and intramolecular binding to its own SH2 domain130.  

Abl was also identified as a part of a fusion oncoprotein, BCR-ABL131 (which is 

known as the Philadelphia chromosome, a result of Abl deregulation by 

translocation between chromosomes 22 and 9), found in more than 95% of 

human adults with chronic myeloid leukemia132. Although Abl is known to play an 

essential role in CML pathogenesis, the detailed mechanism by which it can 

regulate the disease remains unclear. However, some studies have shown that it 

induces tyrosine phosphorylation of downstream signaling molecules, including 
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CrkL. CrkL was shown to be the major tyrosine-phosphorylated protein detected 

in the peripheral blood cells of patients with CML133,134. 

The specificity of the Bcr-Abl/CrkL complex, has led to the acceptance of Y207 

phosphorylation of CrkL as a CML diagnostic tool135. 

 

1.1.5 Regulation of Crk by SH3C domain  
 
CrkII and CrkL, in addition to the SH3N domain, contain the SH3C domain which 

is unable to bind to Polyproline Type II (PPII) motifs19. More broadly, there are no 

cellular molecules that have been shown to interact with the Crk SH3C domain, 

with the single exception of the nuclear export factor crm1, which binds to 

LALEVGELVKV sequence of the SH3C domain. However, the solution structure 

of Crk SH3C domain shows the LVK motif to be buried in the hydrophobic core of 

the SH3C domain. This could be partially explained in case of the CrkL SH3C 

domain. The SH3C domain monomer-dimer transition caused by its partial 

unfolding can expose the LVK motif, thereby providing a binding site for Crm1136.  

As discussed previously, the SH3C domains in both CrkII and CrkL adopt core 

structural characteristic common to all SH3 domains, composed of a five-

stranded beta barrel. Despite similar structural characteristic, aromatic residues 

on the SH3N domain, which line the canonical PPII binding pocket, are replaced 

by polar residues on the SH3C domain surface (Fig. 14). Subsequently the SH3C 

domain cannot activate multiple transmitting signals. 
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Figure 14. Overlaid structures of the SH3N and SH3C domains of CrkII are 

shown. The polyproline ligand for the SH3N domain is also shown (in blue). The 

aromatic residues that line the ligand-binding pocket in the SH3N domain (in 

green) and the corresponding residues occupying the same position in the SH3C 

domain (in red) are also indicated.19 

 
Another interesting aspect of SH3C domain is its ability to regulate CrkII functions 

by constraining binding to the SH3N domain. Recent studies on chicken CrkII 

have revealed that the binding activity of this protein is regulated by cis-trans 

isomerization at Pro238137,138. Authors show that Crk construct comprising SH3N-

linker-SH3C exists in two conformations in solution. The major conformation 

(90%), where Gly237-Pro238 adopts the cis conformation, and a minor (10%), 

where Gly237-Pro238 adopts the trans conformation. In the dominant cis 

conformation the SH3N and SH3C domains interact in an intramolecular fashion, 

causing an autoinhibitory mechanism by masking the canonical PPII-binding site. 

In the subordinate trans conformation, representing an uninhibited state, the 

SH3N and SH3C domains do not interact. In this case the SH3N domain is not 

occluded by the SH3C and remains accessible for the binding of the PPII ligands. 

The human CrkII sequence around Pro238 is not conserved and it remains 
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unclear whether a cis-trans isomerization mechanism negatively regulates 

human CrkII. However, the solution structure of human CrkII has revealed 

another interesting mode of regulation. The linker between the two SH3 domains 

containing residues 224-237, called the Inter-SH3 core (ISC) was shown to form 

contacts with the SH2 and both SH3 domains to control the assembly of human 

CrkII139. Phosphorylaton of human CrkII on Y221 negatively regulates its 

function. Intramolecular binding of pY221 by the SH2 domain prevents the SH2 

and SH3N domains from binding to their substrates. A recent study shows that 

Y251 located on the SH3C domain, can be phosphorylated by Abl along with 

Y221140. Phosphorylated Y251 binds specifically to the Abl SH2 domain and 

transactivates Abl. In addition to the above the SH3C domain was shown to have 

a unique role in phagoctosis and Rac avctivation. Mutation in the CrkII SH3C 

domain results in the stabilization of a ternary complex of Crk, DOCK180 and 

ELMO17. This indicates that the SH3C domain regulates the assembly or 

disassembly of the Crk complex. Interestingly, the SH3C domain has also been 

proposed to enhance the ability to activate c-Abl. It was also shown that either 

the mutation (W276K) or truncation of the SH3C domain increased c-Abl binding 

to SH3N domain of Crk and increased Y222 phosphorylation in chicken CrkII130. 

These results suggest that the SH3C domain of CrkII could serve as its negative 

regulatory element and as an Abl activator. In any case, it is not fully understood 

how these seemingly diverse functions are accomplished.  

1.1.6. Solution structure of CrkII and its regulation by tyrosine 
phosphorylation  
 



 
 

 

31 

 
The solution structures of CrkI, CrkII and phosphorylated CrkII (pCrkII) solved by 

Inagaki and collegues revealed novel regulatory mechanisms of the Crk adaptor 

protein. CrkI (residues 1-204) was shown to have an extended structure in which 

both SH2 and SH3C domains are accessible for interactions with its substrates. In 

contrast, CrkII (residues 1-304) revealed a compact structure where the binding 

site of SH2 is exposed, but SH3N is covered by SH2 (Fig. 15). 

 
Figure 15. Ribbon representation of CRKII (left) and pCRKII1–228 (right), SH2 

(magenta), SH3N which is presented in the same orientation in both structures 

(green), SH3C (blue); ligand-binding sites in SH2 and SH3 are circled (dotted 

circle in CRKII represents putative binding site of SH3C). In pCRKII, the inter-

SH2-nSH3 linker (121–133) is colored orange and the phosphorylation site (221–

224) is cyan139.  

 
 
In CrkII, there are many interactions between the SH2 and SH3N domains and 

between the SH2 and SH3C domains, however SH3N and SH3C do not interact. 

The CrkII structure is stabilized via the inter-SH3 core (ISC), which contains 
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residues 224-237. The ISC region makes contacts with all three domains (Fig. 

16). Pro224 and Val226 of the ISC forms a hydrophobic core with Val184, 

Lys189, Trp170 and Lys164 of SH3N; the second is formed between Leu230, 

Pro231, Ile236 and Pro237 of the ISC and Ile269, Trp275, Val266, Lys265, 

Tyr239 and Ile263 of SH3C. The mutation in the ISC region (CRKII-m226–237) or 

truncation (CRKII-Δ226–237) is indeed responsible for formation of the 

assembled structure as judged by NMR spectroscopy. In CrkII the binding site in 

the SH3N domain is masked by the SH2 domain, which partially mimics the 

binding of the PXXP peptide.   

 
Figure 16. Ribbon model of hydrophobic core of CRKII, between the ISC (yellow) 

and the SH2 (magenta), SH3N (green) and SH3C (blue)139  

 
The Inagaki study of pCrkII (resudues 1-228) reveals intramolecular interactions 

between the SH2 domain and the pTyr221, which agree with previous findings141 

(Fig. 15). In the phosphorylated state the ligand-binding pocket of the SH3N 
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domain is also masked by the SH2-SH3N linker (Arg122–Glu133) suggesting that 

neither domain is accessible for the peptide.  

These structural analyses reveal how intramolecular interaction of the SH 

domains with the specific ISC region can control the structure assembly, and also 

how phosphorylation can act as a intramolecular switch controling Crk activity. 

Authors have shown that the binding site of CRKII SH2 is exposed, while that on 

the SH3N is partially masked by interaction with SH2. However authors have 

speculated that there could be an equilibrium between these two states (Fig. 17a 

and b). In the case of pCrkII, the phosphorylation of Tyr221, by tyrosine kinases 

induces intramolecular binding to SH2. This detaches CrKII from SH2-mediated 

complexes and completely abrogates the signal transduction controlled by CrkII 

(Fig. 17 c). 

 
 
Figure 17. Schematic representation of the domain structure of CrkII. SH2 is 

green, SH3N is magenta and SH3C is blue. (a) The binding sites of CRKII SH2 

and SH3N is exposed. (b) The binding site of CRKII SH2 is exposed but its SH3N 

is masked by interaction with SH2. Therefore, there may be an equilibrium 

between (a) and (b) based on the fact that CRKII and pCRKII had 6 times and 16 

times lower affinity for PXXP peptide than CRKI. (c) pCrkII, the binding sites are 

not accessible. 
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1.1.7 Crk and CrkL: differences and similarities 
 
Since Crk and CrkL can associate with identical proteins in vivo, they were 

expected to have similar functions. Indeed, some recent studies suggest that 

CrkII and CrkL can compensate to each other in cellular signalling. One of the 

examples comes from the study of the Reelin pathway, where authors 

demonstrate that mutation of either Crk or CrkL did not compromise Reelin 

signaling, indicating their overlapping roles142. Morover, studies using shRNA 

against the Crk family adaptors showed that knockdown of both proteins are 

required for defects in neuronal positioning during embryogenesis143.  

Peterson at al. have shown that CrkL is not absolutely required for T cell 

development or function144. 

However, in contrast to the above observations showing overlapping roles for 

both proteins, other studies suggest that CrkII and CrkL play distinct roles during 

embryonic development. The ‘knockout’ of murine Crk or CrkL genes resulted in 

cardiac and skeletal development and partial lethality145, suggesting that each of 

these two genes is essential and cannot by replaced by the other. In very elegant 

study, Imamoto and colleagues showed that mice homozygous for a null 

mutation of CrkL exhibit defects in multiple cranial and cardiac neural crest 

derivatives146. Finally, from a very recent study by Yanagi et al., it appears that in 

HSC-3 (head and neck squamous cell carcinoma cell line) cells the dominant 

binding partner for C3G was CrkL, nor Crk147.  

How multiple species of Crk family adaptors differ in their activity still remains an 

active area of investigation. 
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1.1.8 Crk and diseases 
 

1.1.8.1. Crk and human cancers  

 
A vast number of studies have shown that Crk is overexpressed in many human 

cancers. A study by Miller at al. has provided evidence that CRKI and CRKII are 

involved in the development and dissemination of lung adenocarcinomas148. 

Genomic and functional analysis presented by Kim et al. defines a role of CRKL 

amplification in NSCLC149. Breast cancer also revealed strong correlation 

between Crk phosphorylation and cancer staging. In a report by Rodrigues et al., 

CrkI and CrkII protein levels were eleveted by 60% when analyzing primary 

breast tumors150. Phosphorylation of CrkII on Tyr221 by Abl was shown to be a 

major factor for induction of apoptosis and suppression of migration of the human 

malignant breast cancer cell line MDA-MB-435c by EphrinB224. Crk was also 

found in glioblastoma and several sarcomas151,152. For example a report by 

Takino et al. found high expression levels of CrkI, but not CrkII, by analyzing 

samples of tissues from human glioblastomas58. Ovarian cancer is another 

aggresive tumor in which Crk has been shown to be overexpressed. Studies by 

Linghu et al., suggest that the Crk is a key component of focal adhesion and is 

involved in cell growth, invasion, and dissemination of an MCAS (mucinous 

cystadenocarcinoma) human ovarian cancer cell line derived from an ovarian 

cancer patient.153 The Crk family adaptors also appear to be highly expressed in 

myeloid cells154. Notably, CrkL was shown to be involved to a greater extent than 



 
 

 

36 

Crk. Indeed, the interaction of CrkL with Bcr-Abl and its high tyrosine 

phosphorylation on Tyr207 is considered a hallmark of Bcr-Abl activity in CML154 

 

1.1.8.2. Crk and bacterial diseases  

 

Over the last decade there were many reports suggesting that Crk may be 

involved in bacterial pathogenesis. The first report, which demonstrated the role 

for Crk in bacterial uptake pathways, came from Bouton and collegues155. Their 

study demonstrates that the formation of CAS/Crk complexes and subsequent 

Rac1 activation are important elements of the process of Yersinia 

pseudotuberculosis uptake into human epithelial cells. In studies by Pendergast 

and collegues, Crk was shown to be implicated in Shigella flexneri infection156. 

This study showed that the activation of Rho during Shigella internalization is 

preceded by the activation of the Abl family kinases, and that Crk 

phosphorylation and Crk Y221F mutation completely blocks Shigella flexneri 

infection. The novel role for Alb and Crk phosphorylation was also found in the  

Pseudomonas aeruginosa internalization pathway157. Another study on CagA 

protein, which is a major virulence factor of Helicobacter pylori, shows that the 

phosphorylated CagA forms a complex with Crk proteins and this interaction play 

a major role in H. pylori infection158.  
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1.2 Nuclear Magnetic Resonance (NMR) spectroscopy 
 

1.2.1 NMR as a powerful tooll in biochemistry 
 
Nuclear magnetic resonance (NMR) is, next to X-ray crystallography, the only 

biophysical method that can be applied to the study of three-dimensional 

molecular structures of biomolecules such as proteins, nucleic acids and their 

complexes at atomic resolution159. NMR has been widely used as a major 

structural biology tool to study biomolecular structure, dynamics and function160 

161. In contrast to other methods, NMR spectroscopy is able to investigate 

chemical properties of molecules by studying individual nuclei. The conditions 

used in NMR are very close to the conditions found in the cell. Moreover, NMR 

can be used to study flexible parts of a protein. In general the flexible linkers 

could interfere with crystallization so cannot by studied by X-ray 

crystallography162. Partially folded proteins which are difficult to crystallize 

(because they can not adopt one unique 3D structure but fluctuate over an 

ensemble of conformations) can be nicely characterized by NMR163. NMR 

spectroscopy since the first structure determination164 has drastically changed.  

Major improvements in NMR hardware (magnetic field strength, cryoprobes) and 

NMR methodology, combined with the availability of molecular biology and 

biochemical methods for preparation and isotope labeling of recombinant 

proteins have dramatically increased the use of NMR for the characterization of 

structure and dynamics of biological molecules in solution. These improvements 
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are on-going and are designed to overcome the two main problems with NMR 

analysis of biomacromolecules, namely signal to-noise ratio and spectral overlap. 

Higher magnetic field strengths and cryoprobes combined with specific isotopic 

labeling schemes have enabled to study larger and more complex biological 

systems165. 

 
  

1.2.2 15N-HSQC: A Protein’s fingerprint 
 
Heteronuclear Single Quantum Coherence (HSQC) is a simple 2D NMR 

Spectrum, and usually the first experiment performed on proteins that generates 

cross peaks correlating 1H and 15N166. Magnetization is transferred from 

hydrogen to the attached 15N nuclei via J-coupling. After the chemical shift 

evolves on nitrogen the magnetization is back transferred to the hydrogen for 

detection. An HSQC spectrum is sometimes called a “fingerprint” of the protein 

because each peak on the spectrum corresponds to the NH of an individual 

residue (Fig. 18). 
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Figure 18. HSQC spectra.  The number of peaks on an HSQC spectrum will 

correspond to the number of residues, excluding pralines, which lack an amide 

proton attached to nitrogen in the peptide bond. The Trp side-chain Nε-Hε groups 

and Asn/Gln side-chain Nδ-Hδ2/Nε-Hε2 groups are also visible. 

 
HSQC is a powerful technique to quickly map the interacting sites of a protein 

and its ligand167. The observed change in the chemical shift in the HSQC of a 

complex compared to the HSQC of an uncomplexed protein will give information 

on the binding interface and the conformational changes of the protein. 
 

1.2.3 Protein assignment 
 

1.2.3.1 Protein backbone assignment 

 

To investigate the structure and dynamics of the protein of intrest, it is necessary 

to perform assignment of the resonance peaks in the spectrum. The most 

common strategy for resonance assignments is the use of triple resonance (3D) 
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experiments (1H, 13C, 15N)168. This requires uniform labeling of the protein under 

investigation with 13C and 15N isotopes by using 13C glucose and 15N ammonium. 

The 3D experiments are based on the ability to transfer magnetization between 

NMR active nuclei through J couplings (Fig. 19) 

 
 
 
Figure 19. Spin system of the peptide backbone and the size of the 1J and 2J 

coupling constants that are used for magnetization transfer in 13C-, 15N-labelled 

proteins. 

 

The assignment protocols that are routinely used are based on the 3D sets of 

HNCA with HN(CO)CA (Fig. 20), HNCACB with CBCA(CO)NH and HNCO with 

HN(CA)CO. Each set of experiments correlates the chemical shifts of the amide 

group (NH) of a spin system with both inter- and intra- residue chemical shifts of 

main chain (CO, Cα, N). For example, in the HNCA experiment (Fig. 20A), the 

magnetization is transferred from 1H to 15N and then via the N-Cα J-coupling to 

the 13Cα (i-1) and then back again to 15N and 1H hydrogen for detection. Similarly 

in HN(CO)CA experiment (Fig. 20B), magnetization is transferred from 1H to 15N 

and then to 13CO. From here it is transferred to 13Cα (i-1) and the chemical shift 
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is evolved. The magnetization is then transferred back via 13CO to 15N and 1H for 

detection 

 

 
 
Figure 20. Magnetization transfer through bond in HNCA (a) and HN(CO)CA (b) 

triple resonance experiments. Red circles indicate the recorded chemical shifts 

and blue circled atoms mediate the transfer of magnetization but their chemical 

shift is not recorded 

 

1.2.3.2  Protein side-chain assignment 

 
Most NMR structure determination techniques use 1H-1H NOE distances as the 

main source of constraints to elucidate the high-resolution structure of a target 

protein. Therefore, an almost complete set of both backbone and side-chain 

resonance assignments are required to assign inter-proton NOE distance 

restraints from NOESY spectra. The assignment of the 1H and 13C side-chain 

resonances can be achieved by a combination of 3D H(CCO)NH, CC(CO)NH, 

15N and 13C NOESY-HSQC experiments169. The H(CCO)NH and CC(CO)NH are 

routinely used to correlate the 1H and 13C side-chain atoms of the residue i-1 with 

the amide of the residue i (Fig. 21) 
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Figure 21. The magnetization transfer pathway in 3D H(CCO)NH (a) and  

CC(CO)NH (b) experiments. Red circles indicate the recorded chemical shifts 

and blue-circled atoms mediate the transfer of magnetization but their chemical 

shift is not recorded 

 
In the H(CCO)NH experiment170, the magentization is transferred from the side-

chain 1H nuclei to the attached 13C nuclei. Then isotropic 13C mixing is used to 

transfer magnetisation between the carbon nuclei. Later, magnetisation is 

transferred to the 13CO, on to the amide nitrogen and finally the amide hydrogen 

for detection. The chemical shift is evolved simultaneously on all side-chain 

hydrogen nuclei, as well as on the amide nitrogen and hydrogen nuclei, resulting 

in a 3D spectrum with two proton dimensions and one nitrogen dimension. The 

CC(CO)NH experiments have similar mechanisms to those of H(CCO)NH, 

except that the observed nuclei are 13C171. 

 
 

1.2.4 Nuclear Overhauser Effect Spectroscopy (NOESY) 
 
The Nuclear Overhauser Effect (NOE) is a common tool within molecular biology 

used for the generation of distance restraints in structure calculations. Despite 

the large amount of work done on other structure restraints development like 
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RDC or PRE, NOE is still the major source of structural information, providing 

distance information between two protons close in space (usually within 5-6 

Å)172. The NOE arises from dipole–dipole relaxation between two spin-½ nuclei. 

The cross-relaxation between two spins is distance-dependent and the rate of 

relaxation that produces the NOE is proportional to r-6, where r is the 

internuclear distance173. There are two commonly used NOE experiments: 15N- 

NOESY-HSQC174 and 13C-NOESY-HSQC175. In both 15N and 13C NOE 

experiments the magnetisation is exchanged between all hydrogens using the 

NOE. The magnetisation is then transferred to neighboring 15N or 13C nuclei and 

back to 1H for detection. In addition, 3D HMQC-NOESY-HMQC experiments can 

be used for distance restraints in the case of heavily overcrowded spectral 

regions176. 

 

1.2.5 Protein deuturation 
 
The application of NMR to study proteins larger than 30 kDa has been an 

ongoing challenge177. Larger molecules give poor-quality spectra because of the 

resonance line’s tendency to broaden. Line broadening is the result of fast 

transverse relaxation (T2) due to the slower tumbling of large molecular weight 

molecules (Fig. 22) 
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Figure 22. Molecular weight dependent tumbling. 

 
The line width of the spectrum is proportional to T2 (Δν = 1/πT2)178. The major 

source of relaxation in proteins comes from the high density of protons present, 

which results in   

proton-proton dipolar relaxation. By exchanging the protons to the deuterons, the 

T2 relaxation is reduced; hence the sensitivity and the resolution are significantly 

improved179. However, deuteration results in complete elimination of protons, 

which are the source of NOE. Therefore, it is often necessary to use site-directed 

protonation of uniformly deuterated proteins at specific positions, either by 

introducing the specific amino acids (e.g., Phr, Tyr, Lys)180 or selectively 

protonating CH3 groups of Val, Leu, Ile and Ala181,182.   
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1.2.6 Paramagnetic Relaxation Enhancement (PRE) 
 
The NOE is the main source of the geometric information used to further 

calculate structures. However, the structures of large molecular weight  proteins 

remain a challenge due to the fact that proteins must be deuterated, leaving most 

of the side-chain protons for NOE analysis is inaccessible183. To supplement the 

NOE data, distances derived from paramagnetic relaxation enhancement (PRE) 

were employed184. The PRE effect is based on the magnetic dipolar interaction 

between the nucleus (e.g., 1H) and the unpaired electrons of the paramagnetic 

center. For an electron-nucleus distance r, the magnitude of the paramagnetic 

effect is proportional to r-6. Because of the large magnetic moment of the 

electron, the observed PRE effects are also large, providing long-range distance 

restraints up to ~35Å185. MTSL, which can be covalentely attached to the Cys 

side-chain, has been used successfully as a source of PRE (Fig. 23).  Research 

on eIF4E (25 kDa translation initiation protein) showed that the distance-

dependent line broadening was consistent with the three-dimensional structure of 

this protein for all spin label substitutions184.  

 

Figure 23. Chemical structure of the spin label reagent MTSL (left) and 

covalently bound to Cys (right) 
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The PRE quantification can be done by comparing two 15N-HSQC experiments, 

one in the paramagnetic state and one in the diamagnetic state. The relaxation 

rates can be calculated from the HSCQ experiment using the cross peak 

intensity ratio from both states using following formula: 

 

 

where t is the total INEPT evolution time of HSQC, R2 and R2sp are the intrinsic 

and spin contribution relaxation rates, respectively. The distances between the 

nuclei of interest and a paramagnetic center can be calculated as follows: 

 

where r is the distance between the electron and nuclear spins, τc is the 

correlation time for the electron-nuclear interaction, ωh is the Larmor frequency of 

the nuclear spin (proton), and K186 is the 1.23 x10-32 cm6 s-2
.  

The PRE method has been successfully applied to study of unfolded and partially 

unfolded states187, analysis of protein-protein188 , mambrane proteins189 and also 

to ivestigate the nature of, low population transient intermediates190. 

1.2.7 Residual Dipolar Coupling (RDC) 
 
The mid 1990s brought the first reports to demonstrate the use of residual dipolar 

couplings (RDC) in the analysis of biomolecular structures 191. Since the 



 
 

 

47 

recognition of the possible advantages of RDCs in protein structure detrmination, 

applications have been extended to nucleic acid structure192, protein-ligand 

interactions193, and studies of protein motions194.  

 
The relative orientations of interacting biomolecules, or separate domains of a 

large biomolecule, can be derived by measuring residual dipolar couplings 

(RDCs) between NMR active nuclei in partially oriented media161. Dipolar 

coupling is an interaction through space, which provides information about on 

how each dipole is related to the molecular coordinate frame and how the dipoles 

are related to each other. In solution, the dipolar couplings average to zero due 

to Brownian motion effects. As a result, they can be only observed under 

anisotropic conditions. For a pair of dipole-coupled nuclei, A and B, the 

observable dipolar coupling in solution, DAB, can be expressed as: 

 

 
 
and`  
 

 
 
 
where Aa

AB and R are the axial and rhombic components, respectively, of the 

molecular alignment tensor; θ is the angle between the internuclear bond vector 

and the z-axis of the alignment tensor; φ is the angle between the projection of 

the internuclear bond vector onto the x-y plane and the x-axis; µ0 is the 
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permeability in vacuum, h is Planck’s constant (6.626*10-34 J*s); S is the 

generalized order parameter; γA, γB are the gyromagnetic ratios of two nuclei; r is 

the time-averaged internuclear distance; and Aa is the aforementioned axial 

component of the molecular alignment tensor. 

To obtain RDCs in solution, the alignment solution is required to induce the 

partial alignment of protein molecules. Commonly used alignment media include, 

micelles195, Pf1 filamentous phage196 or polyethylene glycol (PEG)197. The dipolar 

couplings can be extracted from many available experiments. For example, N-

HN dipolar couplings can be measured in a simple IPAP 15N-HSQC where 

spectra are recorded both in-phase and antiphase. Therefore Dipolar couplings 

are obtained from differences in the splittings measured between in the approach 

oriented and isotropic phases198.  

In order to use the RDC data for structure refinement, good estimates for Aa and 

R must be available. In the method demonstrated by Clore at al.199, the 

measured RDCs are plotted on a histogram (Fig. 24). 

 
Figure 24. A histogram of RDC200. 
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 Values from the three exrema (Azz, Ayy, and Axx) can be used with the 

following equations to calculate Aa and R 

 
 

1.2.8 Protein dynamics by NMR 
 
Proteins have been shown to have very dynamic personalities201. Protein 

dynamics play an essential role in catalysis, ligand binding, molecular recognition 

and allostery202. NMR spectroscopy is an excellent tool to investigate the protein 

dynamics over a wide range of motional time scales (Fig. 25)  
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Figure 25. NMR time scales and dynamics in biology178. 

 
 
NMR can describe a great number of biological processes, from rapid bond 

fluctuations in the pico- to nanosecond range (pn-ns) to slower collective 

motions in the micro- to millisecond (µs-ms) range. 

1.2.8.1 Fast protein dynamics (ps-ns)  

There are great numbers of examples proving NMR as an excellent method to 

characterize molecular motions202. The longitudinal relaxation rate (R1), the 

transverse relaxation rate (R2), and the heteronuclear 15N-Nuclear Overhouse 

Effect (HetNOE) are the most commonly measured NMR parameters for 

decribing the dynamics on fast timescales (ps-ns). Using these three different 

relaxation components one can calculate the order parameter, S2 , which is used 

to measure the magnitude of the angular fluctuation of a chemical bond vector 
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(such as that of the NH bond) in a protein 203. The value of S2 ranges from zero 

to one, where zero represents a bond vector rapidly sampling multiple 

orientations and one represents a bond without internal motions. R2 is also 

sensitive to motions on µs-ms times scale, however only the ps-ns motions are 

related to S2. 

1.2.8.2 Slow protein dynamics (µs-ms) 

Many biological processes occur also on the µs–ms timescale, including protein 

folding, substrate binding, and catalysis. This necessitates the need to study 

slower timescale motion204. This can be monitored by measuring R2 as a 

function of the effective radiofrequency field strength using using spin-lock (R1ρ) 

or Carr-Purcell-Meiboom-Gill (CPMG) methods203. 

 

1.2.9 Förster resonance energy transfer (FRET) 
 

Energy transfer is essential for biological reactions. The general scheme of 

these processes is as follows (15): 

D* + A  D + A*      (15) 

Förster resonance energy transfer (FRET) is a spectroscopic process by which 

energy is passed nonradiatively between molecules. When the donor 

chromophore (D) is excited by incident light and its emission spectrum overlaps 

with the absorption wavelength of an acceptor (A), the excited state energy from 

the donor may transfer to the acceptor through dipole-dipole coupling over 

distances 10-100 Å (Fig. 26)205.  
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Figure 26. (a) Absorbance end emission spectrum of donor, acceptor and D-A 

spectral overlap region in FRET206 (b) Fluorescence resonance energy transfer 

Jablonski diagram.207 

 

As a consequence of this process the donor fluorescence intensity and 

excited state lifetime decrease, and the acceptor becomes electronically excited. 

If the acceptor is fluorescent it may then emit a photon of light.  

FRET can also provide a new perspective on the conformations, dynamics and 

interactions of proteins, since allow measuring the distance between the dyes 

attached to molecules.205 

The rate of the energy transfer is determined by the distance between the donor 

and acceptor, and the extent of spectral overlap208. 

      
R0 is the Förster radius, ranges from 20 to 80Å for most of dye pairs and is the 

distance at which half of the energy is transferred (Fig 27). It depends on the 

orientation factor of the dye κ2, the donor quantum yield ΦD, the D-A spectral 

overlap J and refractive index n of the medium209. 

 

Ro [Å] = (8.79 x 1023 κ2 ΦD Jn-4)1/6    

kT (r) =  
1  
τ0 

(R0/r)6 

Donor Acceptor 

Donor  
Energy  
Transfer 

S0 S0 

S1 S1 

a b 
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Figure 27. Dependence of dynamic range of FRET on the Förser radius R0. The 

dotted lines delineate the regime of maximum sensivity for each pair with 

differenf R0.210 

 

 
The efficiency of energy transfer (E) depends on the donor-acceptor separation 

distance, r, with an inverse 6th-power law: 

     
   
where τ0 and τ is the donor lifetime in the absence or in the presence of acceptor, 

respectively (τ0=1/(kr+knr); τ=1/(kr+knr+kT)) and kr and knr are the rate coefficients 

for radiative and non-radiative deexcitation. 

The FRET efficiency value, E, is usually calculated for individual molecules from 

a lifetime or intensity measurement of the donor (ID) and the acceptor (IA) as 

follow: 

       
 where, γ is a correction parameter for different detection efficiencies of the two 

channels (ŋ) and quantum yields of the dyes (Φ)211. 

 

E =    
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1.2.10 Isothermal titration calorimetry (ITC) 
 
Isothermal titration calorimetry (ITC) is a technique used to measure the 

thermodynamics and the kinetics of binding interactions. The ITC is able to 

measure heat effects as small as 0.1 µcal and corresponding binding constants, 

K’s, as large as 108–109M-1. Currently ITC is capable of detecting heat rates as 

small as 0.1 µcal/sec and precisely determining reaction rates in the range of 10-

12 mol/sec.  

An ITC instrument contains two identical cells made from a highly efficient 

thermal conducting material (usually gold) placed in an adiabatic jacket. The cell 

is controlled to have a constant temperature by applying constant cooling. The 

heating power from both the chemical reaction and the control heater are kept at 

a constant level to compensate for each other. The raw ITC signal is simply the 

power (µcal/sec) applied to the control heater to keep the calorimetric cell 

temperature constant. A typical ITC is shown in Fig. 28. 

 

 

γ =    ŋAΦA
 

ŋDΦD
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Figure 28. (a) Representative diagram of typical power compensation ITC. (b 

upper) Heat trace over time, each peak corresponds to an individual injection.(b 

lower)  plot of the integration of the peak area versus the molar ratio of ligand 

and protein  

 
To perform an ITC experiment, first a protein solution of known concentration is 

placed in the sample cell. The reference cell contains buffer or water without 

protein. Before the ligand titration starts, a constant power is applied to the 

reference cell, which activates the heater located on the sample cell. Upon the 

injection of the titrant ligand into the sample cell, heat is taken up or evolved 

depending on whether the binding process is endothermic or exothermic.  

ITC enables the direct determination of the enthalpy change (ΔH), the 

association constant (Ka) and stoichiometry (N) during one experiment. Since 

temperature (T) is held constant throughout the entire experiment the free energy 

(ΔG°) of the binding reaction, which determines the stability of any given 

biological complex, can be calculated by:  

ΔG0  = -RTln Ka    where Kd = 1/Ka and R is the gas constant.  
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ITC directly measures ΔH°, so the change in entropy (ΔS°) can be determined 

by:  

ΔS0 = (ΔH0 –ΔG0)/T 

Quantification of these thermodynamic parameters reveals the energetics of the 

physical processes involved in the binding reaction. 
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Chapter 2. Research Outline 
 
 
CrkII and CrkL are prototypical members of a family of SH2 and SH3 domain 

containing adaptor proteins that participate in the co-ordinate assembly of 

protein-protein complexes in signal transduction. They share high sequence 

homology within their modular domains and have been shown to have 

overlapping binding partners. However, they seem to have distinct non-

overlapping physiological roles as highlighted by the fact they are both required 

for embryonic development. Also, CrkL has been shown to be a preferred 

substrate for BCR-ABL, the oncogenic fusion protein that drives Chronic 

Myelogenous Leukemia (CML). The present study sheds light on the specific 

domain organization differences between the two adaptor proteins. The goal of 

the current research is as follows: 

 

1) Structually delineate the organization of the modular SH2 and SH3 

domains in CrkL. 

 

Lack of structural information on CrkL has been a hurdle in understanding 

specific differences in signaling properties between CrkII and CrkL. We have 

obtained the structure of CrkL by NMR, which reveals unique features of CrkL in 

terms of the organization of its modular domains. Strikingly, the binding pocket of 

the SH2 domain of CrkL is partially occluded by the SH3N whereas the PPII site 

on the SH3N is freely accessible. Further, unlike CrkII, the SH3C does not 

participate in autoinhibition of the SH3N.   
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2) Obtain structural insights into changes in domain organization upon 

phosphorylation and autoinhibition of CrkL. 

 

Similar to CrkII, upon phosphorylation at the negative regulatory Tyr207, the SH2 

domain of CrkL binds intramolecularly to phospho-Tyr207. However, there is little 

effect of this re-organization on the SH3N and SH3C domains of CrkL. The SH3N 

domain remains freely accessible to PPII ligands such as DOCK180 or Abl upon 

phosphorylation at Tyr207, which is strikingly different from what has been shown 

for CrkII. Importantly, this could provide an explanation for why CrkL is a 

preferred substrate for BCR-ABL. 

 

3) Analysis of the dynamic features of CrkL/pCrkL. 

 

The relaxation analysis demonstrates that the SH2 and SH3N domains of CrkL 

tumble as a unit, whereas the SH3C domain tumbles much faster and in an 

independent fashion. This shows that the SH2 and SH3N domains interact with 

each other, while the SH3C domain does not interact with any of the other 

domains. The present results indicate that SH3C has no role in regulating the 

activity of the SH2 and SH3N domains in CrkL, in sharp contrast to CrkII proteins, 

wherein SH3C was shown to act as a regulatory structural element by stabilizing 

the autoinhibitory conformation. 
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4) Discern the role of CypA as a regulator of CrkII activity. 

 

CypA was shown to affect the kinetics of cis-trans isomerization of chicken CrkII, 

whereby the SH3C domain negatively regulates binding of ligands to the SH3N 

by physical capping of the SH3N domain. However, cis-trans isomerization has 

not been shown to regulate human CrkII in a similar manner. The present study 

unravels a novel mode of regulation of human CrkII actvity by CypA wherein 

CypA delays phosphorylation of CrkII at Y221 by binding to Gly219-Pro220. This 

partially negates autoinhibition of human CrkII thereby possibly maintaining SH2 

and SH3N mediated protein complexes in cells. 
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Chapter 3. Structure and Dynamic NMR Studies of CrkL 

3.1 Introduction  
 
The members of the Crk family of adaptor proteins are important signaling 

molecules that function downstream of a wide number of receptors and regulate 

key cellular processes, including cell adhesion, motility, phagocytosis, 

differentiation, proliferation, transformation and apoptosis1,2,3. Crk proteins are 

implicated in many human cancers, including lung adenocarcinoma and 

glioblastoma212, and prostate213, ovarian214, gastric215 and breast cancers24. The 

Crk family consists of two alternatively spliced protein forms, CrkI and CrkII, that 

are expressed by a single gene (CRK)216, and the Crk-like (CrkL) protein, which 

is expressed by a distinct gene (CRKL)217. The CrkII (304 residues) and CrkL 

(303 residues) proteins each consist of a single Src homology 2 (SH2) domain, 

an N-terminal Src homology 3 (SH3N) domain and a C-terminal SH3 domain 

(SH3C) (Fig. 29). The SH3N and SH3C domains are tethered by an approximately 

50-residue-long linker, which contains a tyrosine residue (Tyr221 in CrkII and 

Tyr207 in CrkL) that is phosphorylated by the Abl kinase120,218. 

 

Figure 29. Sequence and domain organization of CrkL and CrkII. (a) Sequence 

alignment of human CrkL and human CrkII. Domain organization of CrkL and 
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CrkII, each consisting of one SH2 and two SH3 (SH3N and SH3C) modular 

domains. Tyr207 in CrkL and Tyr221 in CrkII are phosphorylated by the Abl 

kinase. 

 

Crk proteins link activated receptors to specific downstream signaling cascades 

using their SH2 and SH3N domains, which selectively bind phosphorylated 

tyrosine (pTyr)-Xaa-Xaa-Pro and Pro-Xaa-Leu-Pro-Xaa-Lys motifs (where Xaa is 

any amino acid), respectively219,220. A large variety of proteins have been 

identified as binding partners of Crk proteins1,221. In contrast, the SH3C domain 

lacks the binding determinants of typical polyproline II (PPII)-binding SH3 

domains19 and was shown to function as an autoregulatory element in 

CrkII137,138,139 or even to promote certain signaling pathways222. 

CrkL has received particular attention primarily because it is a preferred 

substrate of Bcr-Abl223,224, an oncogenic kinase that causes chronic myelogenous 

leukemia (CML)225. CrkL is indispensable for mediating the aberrant activity of 

Bcr-Abl226,227 and is constitutively phosphorylated in human CML cells228,229. In 

fact, the level of CrkL phosphorylation is being used as a predictor of clinical 

outcome in patients treated for CML230. In addition to the relevance of CrkL to 

cancer, deletion of the CRKL gene causes cardiovascular and craniofacial 

defects resulting in embryonic lethality231. Notably, CrkL seems to be a rather 

unique adaptor protein, as it has been reported to function in the cytoplasm, the 

nucleus and the extracellular milieu213. 

Although CrkL and CrkII have been shown to compensate for each other's 

absence in certain cases1, numerous studies have demonstrated that the two Crk 
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proteins have distinct, nonoverlapping functions1,232,233. Because of the high 

sequence identity between CrkL and CrkII (56%, up to 72% in the modular 

domains; (Figure. 30), it is hypothesized that the two proteins adopt very similar 

structures. 

 

Figure 30.  Sequence identity comparison between CrkL and CrkII. 

 
 Taking also into account the identical binding preferences of their SH2 and SH3N 

domains, it has been difficult to account for the different functional roles and 

signaling output of the CrkL and CrkII proteins. 

Here we report the structure of CrkL in its unliganded and unphosphorylated 

state as well as in the phosphorylated (pTyr207) form (pCrkL). The data show 

that the SH2 and SH3 modular domains in CrkL are organized in a considerably 

different architecture than in CrkII139,138. (i) the pTyr-binding site of SH2 is 

partially masked in CrkL, whereas it is accessible in CrkII; (ii) the PPII-binding 

site of SH3N is accessible in CrkL but is completely occluded in CrkII; and (iii) the 

SH3C domain is mobile and does not interact with any of the other domains in 

CrkL, whereas it interacts extensively with the SH2 and SH3N domains in CrkII, 

thereby stabilizing its overall structure. We also show that, upon Tyr207 
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phosphorylation, the linker region interacts in an intramolecular fashion with the 

CrkL SH2 domain, thereby inhibiting the binding of pTyr ligands. Remarkably, 

this intramolecular association has little effect on the overall structure of CrkL, in 

sharp contrast to CrkII, wherein phosphorylation of Tyr211 results in SH3N 

autoinhibition. Notably, the present data demonstrate that CrkL forms a 

constitutive complex with Abl. Thus, despite the very high sequence identity of 

CrkL and CrkII, the structural organization of the two adaptors is substantially 

different and may account for their different functional roles as well as for the 

preference of Bcr-Abl to interact with CrkL rather than CrkII. 

 

3.2 Results 
 

3.2.1 Structure determination of CrkL and pCrkL 
 

Human CrkL (~34 kDa) consists of 303 residues. Gel filtration and multi angle 

laser light scattering (MALLS) data show that the protein exists as a monomer in 

solution (Fig. 31).   
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Figure 31. Molecular mass determination of CrkL and pCrkL. (a) Multi-angle 

laser light scattering (MALLS) of CrkL showing that CrkL is a monomer in 

solution. CrkL remains monomeric even at concentrations as high as ~1 mM. A 

Superdex 75 HR 10/30 column was used. (b) Sizeexclusion chromatography 

(Superdex 200) of CrkL and pCrkL showing that both proteins elute as 

monomers. Because of the intramolecular folding, pCrkL is a little more compact 

than CrkL and elutes slower than CrkL. (c) MALDI-TOF mass spectrum of CrkL. 

(d) MALDI-TOF mass spectrum of pCrkL. Only one site (Tyr207) is 

phosphorylated. 
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Despite the relatively large size of CrkL, the NMR spectra are of outstanding 

sensitivity and resolution (Fig. 33). Assignment of CrkL was facilitated by 

preparing and assigning the isolated SH2 and SH3 modular domains (Fig. 32). 

 

Figure 32. (a) 1H-15N HSQC NMR spectra of the three modular domains of CrkL 

overlaid with the spectrum of the full-length CrkL (black). The cross-peaks of the 

domains are colored using the color code in the schematic. Chemical shift 

analysis demonstrates that the SH2 and SH3N domains interact with each other, 
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whereas the linker-SH3C region does not interact with any of the other domains 

in CrkL. (b) Chemical shift difference (Δδ), plotted as a function of the residue 

number, between the isolated domains and full-length CrkL. (c) Overlaid 1H-15N 

HSQC spectra of select residues whose chemical shift is different in the full-

length CrkL (black) and the isolated SH2 (green) and SH3N (magenta) domains. 

Chemical shift analysis shows that the D94K substitution (red cross-peaks) 

disrupts the SH2-SH3N interface in CrkL resulting in unrestricted binding of the 

pTyr-peptide to the SH2 domain of CrkL, as measured by ITC (Kd ~7 µM). 

 
 Notably, overlay of the NMR spectra of the isolated domains with that of full-

length CrkL revealed substantial chemical shift differences only for a relatively 

small number of residues, located at the SH2 and SH3N domains, whereas no 

differences were observed for the SH3C domain (Fig. 32b,c). The pCrkL sample 

for NMR and structural characterization was prepared by adding catalytic 

amounts of the Abl kinase. Similarly to CrkL spectra, pCrkL's spectra are also of 

high quality, allowing for complete backbone and side chain assignment (Fig. 

33). 
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Figure 33.  1H-15N HSQC NMR spectra of (a) CrkL and (b) phosphorylated CrkL 

(pCrkL). Spectra were recorded at 32 °C. 

 
 
 The structures of both CrkL and pCrkL were determined by combining NOE, 

paramagnetic relaxation enhancement (PRE) and residual dipolar coupling 

(RDC) restraints.  

Nitroxide spin labels (MTSL) were introduced via cysteine-specific modification of 

engineered CrkL derivatives containing single-solvent-accessible cysteine 

residues. The wild-type Cys44 and Cys249 residues were mutated to Ser to 

provide the protein scaffold for introducing the cysteine-specific modifications at 

the following sites: Ser20, Ile90 (Fig. 34d). 15N-HSQC experiments were acquired 

at 32 °C at either 600 or 700 MHz (Fig. 34a,b,c). All experiments were repeated 

after the spin label was reduced with 2-3-fold excess ascorbic acid, adding <5 µL 

from a concentrated stock (dilution ~0.5%). Samples were placed in the magnet 
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at 32 °C and kept for 1 h to ensure complete reduction of the spin label. CrkL 

double mutant (C44S_C249S) was used as a negative controll to ensure that 

MTSL is not experiencing non-specific binding (Fig. 34c)  

Distance-dependent line broadening consistent with the three-dimensional 

structure of SH2 domain (PDB 2EO3) of CrkL was observed for all spin-label 

substitution we have used. 

 

Figure 34. PRE experiments. 15N-HSQC spectra of CrkL_C44S_C249S_S20C 

(a), CrkL_C44S_C249S_I90C (b), CrkL_C44S_C249S. In (a),(b) and (c) 

diamagnetic-black, paramagnetic-orange. (d) shows MTSL positions. 

 

3.2.2 Structural architecture of CrkL 
 
The lowest-energy structure of CrkL is shown in Figure 37a, and the 

conformational ensemble is shown in Figure 35a. The structures of the CrkL 
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individual SH2 and SH3 domains are very similar to those of the corresponding 

domains of the CrkII protein (Fig. 35). 

 

Figure 35. Overlay of the 20 lowest-energy conformers of (a) CrkL and (b) 

pCrkL. The linker-SH3C region (188-303 in CrkL and 214-303 in pCrkL) is 

displayed only in one conformer as the mobility of this region results in very poor 

overlap. The pTyr207 region in CrkL is colored in orange. (c) Superposition of the 

CrkL (colored as in a) and pCrkL (colored grey) structures. Only the SH2-SH3N 

region and the phosphorylated Tyr region are shown. 
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 As expected on the basis of sequence conservation (Fig. 29a), the binding 

pockets of SH2 and SH3N are almost identical in CrkL and CrkII (Fig. 36), thus 

accounting for the similar recognition preferences of CrkL and CrkII. The CrkII 

SH2 domain has a 17-residue-long insertion between β-strands D and E that 

forms a flexible loop (DE loop; Fig. 36a). 

 

Figure 36. (a) Overlay of the structures of CrkL SH2 (this work) and CrkII 

SH2(ref1) domains. The DE loop, which was shown to bind to the SH3 domain of 

Abl, is present only in CrkII. (b) Overlay of the structures of CrkL SH3N (this work) 

and CrkII SH3N domains. Overall the structures are very similar other than some 

structural heterogeneity in the loops. 

 
 
 The DE loop is enriched in proline residues and has been shown to bind the 

SH3 domain of the Abl kinase234. This loop is absent in CrkL SH2 (Figs. 37a and 

6a), and thus the binding mode of CrkL and CrkII to Abl is expected to be 
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different. In agreement with previous studies136, the structural data show that the 

CrkL SH3C domain cannot bind PPII-type sequences because of the lack of 

aromatic residues at its canonical binding site. 

The structural organization of CrkL is rather unique within the family of adaptor 

proteins: the SH2 domain and the first SH3 domain (SH3N) interact directly with 

each other, whereas the second SH3 domain (SH3C) does not interact with any 

of the modular domains (Fig. 37a). In agreement with the chemical shift analysis, 

the SH2-SH3N interaction is mediated by burying ~600 Å2 of surface. The binding 

surfaces on both SH2 and SH3N domains consist primarily of polar and charged 

residues, and thus the interaction is mediated almost exclusively by polar 

contacts (Fig. 38b). Substitution of residues located at the SH2-SH3N interface 

disrupts the interaction between the two domains in CrkL (Fig. 32c). 

 

Figure 37. Structural and dynamic properties of CrkL. (a) Structure of CrkL. The 

SH2, SH3N and SH3C domains are colored green, magenta and blue, 

respectively. The linker regions are colored gray. The SH3C domain does not 

interact with the other domains. (b) Close-up view of the SH2-SH3N interface in 

CrkL. Only polar or charged residues mediate the interaction between the two 

domains.  
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Figure 38. (a) Plot of the R2/R1 ratio. 15N relaxation rates of the CrkL backbone 

as a function of residue number. The R2/R1 ratio provides information about the 

tumbling of the molecule, with higher values indicating slower tumbling. (b) 

Correlation times (τc) for the tumbling of CrkL. The SH2-SH3N module tumbles as 

a rigid unit, whereas the SH3C domain tumbles much faster and independently of 

the other domains. (c) Residues undergoing substantial µs–ms motions, as 

denoted by enhanced contribution to R2 (Rex) values, are mapped on the 

structure of CrkL in red. Almost all residues located at the interface between the 

SH2 and SH3N domains show relatively high Rex values, indicating that the 

binding interface is dynamic. 

 

3.2.3 Dynamic properties of CrkL 
 
To determine the motional properties of CrkL, we used NMR relaxation 

methodologies235. We measured the 1H-15N NOE, the longitudinal relaxation rate 

R1 and the transverse relaxation rate R2 (Fig. 38c and Fig. 39a). R1 and R2 are 

sensitive to and thus report on changes of the diffusion properties of the 

protein202. If only residues located at rigid parts of the molecule are considered, 

the ratio R2/R1 provides a good estimate of the correlation time (τc)236. The 

a b 

c 
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relaxation analysis demonstrates that the SH2 and SH3N domains tumble as a 

unit, with a τc of ∼11.0 ns, whereas the SH3C domain tumbles much faster and in 

an independent fashion with a τc of ∼7.8 ns (Fig. 38d). Therefore, the relaxation 

data are in agreement with the structural data (Fig. 37a), showing that the SH2 

and SH3N domains interact with each other, whereas the SH3C domain does not 

interact with any of the other domains. The present results indicate that SH3C 

has no role in regulating the activity of the SH2 and SH3N domains in CrkL, in 

sharp contrast to CrkII proteins, wherein SH3C was shown to act as a regulatory 

structural element by stabilizing the autoinhibitory conformation139,138. Further 

analysis of the relaxation data demonstrates that most of the residues located at 

the SH2-SH3N interface show enhanced motions on the µs–ms timescale (Fig. 

38e). This observation suggests that the two domains move relatively to each 

other, giving rise to a dynamic binding interface. 
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Figure 39. {1H}-15N-NOE values for (a) CrkL (b) pCrkL 

 

 

3.2.4 The binding site of the SH2 domain in CrkL is occluded 
 
Structural analysis of the SH2-SH3N interface reveals that although the pTyr-

binding site of the SH2 domain is largely accessible, the SH3N domain masks the 

binding sites for the residues immediately downstream of the pTyr (Fig. 41). 

Thus, the structural data raise the possibility that the SH2-SH3N intramolecular 

arrangement in CrkL may inhibit the binding activity of SH2 for pTyr ligands. To 

test this hypothesis, we used isothermal titration calorimetry (ITC) to directly 

measure the binding energetics of a phosphorylated peptide containing a 
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consensus sequence for CrkL SH2 (CrkL-pTyr207-peptide) to isolated SH2 and 

full-length CrkL (Fig. 40).  

 

 

Figure 40.  ITC traces and binding isotherms of the calorimetric titration of the 

CrkL-pTyr207-peptide to isolated SH2 domain and full-length CrkL 

 
 

The CrkL-pTyr207-peptide binds isolated SH2 with moderate affinity (Kd ∼7 µM), 

whereas the affinity for SH2 in the context of full-length CrkL is weaker by a 

factor of more than 3 (Kd ∼23 µM) (Fig. 42).  Thus, the intramolecular 

arrangement in CrkL gives rise to an autoinhibitory mechanism that partially 

occludes the SH2 domain, thereby modulating its activity for pTyr ligands. 

 



 
 

 

76 

 

Figure 41. Binding of pTyr- and PPII-peptide ligands to CrkL and CrkII. (a,b) 

Structure of the SH2-SH3N module in CrkL (a) and CrkII (b). The pTyr-peptide 

and PPII-peptide are shown as they have been previously determined to bind the 

isolated SH2 (PDB code 1JU5) and SH3N domains (PDB code 1CKA), 

respectively. The pTyr-peptide binding site in CrkL is partially masked but is 

completely accessible in CrkII. Conversely, the PPII-peptide binding site in CrkL 

is completely accessible but is entirely masked in CrkII. 

 

 

Figure 42. Dissociation constants (Kd) of pTyr-peptide and PPII-peptide 

complexes with CrkL (Fig. 44) and CrkII. Standard error was determined from 

three independent experiments. The Kd values of PPII-peptide binding to CrkII 

were obtained from ref.139. 
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 In contrast to the case with CrkL, CrkII's SH2 domain seems not to be inhibited 

(Fig. 42b)139. Indeed, our ITC experiments show that a phosphorylated peptide 

containing a consensus sequence for CrkII SH2 (CrkII-pTyr221-peptide) binds 

with the same affinity to both the isolated SH2 and full-length CrkII (Fig. 42). It 

was previously proposed that the SH2 domain of CrkII and CrkL have different 

sequence specificity, with CrkL reported to bind a phosphorylated peptide 

derived from the fibroblast growth factor receptor (FGFR-pTyr-peptide) with a 

~30-fold higher affinity than CrkII . However, ITC data show that the intrinsic 

affinity of the isolated SH2 domains of CrkII and CrkL for pTyr ligands (Fig. 42), 

even for the FGFR-pTyr-peptide (Fig. 43a), is very similar and that the two 

domains have identical specificity properties, as expected on the basis of the 

structures of the SH2–pTyr-peptide complexes (Fig. 43b). Taken together, the 

present data show that any pTyr ligand will preferably bind full-length CrkII over 

full-length CrkL by a factor of ∼3–4 (Fig. 42). 
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Figure 43. CrkL and CrkII SH2 domains have identical binding preferences. (a) 

Binding isotherms showing that the FGFR-pTyr-peptide, previously reported to 

bind with a 30-fold higher affinity to CrkL SH2 than to CrkII SH2237, in fact binds 

to both proteins with very similar affinity. (b) Structure of the CrkII SH2 domain in 

complex with the pY221 peptide2. All of the residues lining the binding pocket are 

absolutely conserved in CrkL SH2 (Fig. 37a). Only a handful of residues are 

different in CrkL and CrkII SH2 and these are located remotely to the binding 

pocket. 

 

3.2.5 The binding site of the SH3N domain in CrkL is accessible 
 
 
Structural analyses of CrkII proteins have shown that the canonical PPII-binding 

site of the SH3N domain is almost completely occluded (Fig. 41b) 139,138. As a 

result, the binding of full-length CrkII by PPII ligands, such as the Abl kinase, is 

weaker than that of the isolated SH3N by a factor of ∼10 (Fig. 41c) 137, 138,237. The 

present structural data show that the PPII-binding site of SH3N in CrkL, in sharp 

contrast to that of CrkII, is completely accessible (Fig. 41a). Indeed, ITC data 

(Fig. 44) show that a PPII-peptide containing the consensus sequence for SH3N 

binds isolated SH3N and full-length CrkL with the same affinity (Fig. 41c). 
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Figure 44.  ITC traces and binding isotherms of the calorimetric titration of the 

PPII peptide to isolated SH3N domain and full-length CrkL and pCrkL. 

 

 

 NMR analysis of the titration of the PPII-peptide to CrkL shows that no steric 

clashes occur between the SH3N-bound peptide and the rest of the protein, 

indicating that PPII-peptide binding to CrkL is unrestricted. In contrast, PPII-

peptide titration to CrkII results in drastic conformational rearrangement and relief 

of the autoinhibitory conformation137. Taken together, our results show  

that a PPII-peptide containing the consensus sequence for SH3N binds isolated 

SH3N and full-length CrkL with the same affinity (Fig. 41c). 

 

3.2.6 CrkL Tyr207 phosphorylation results in SH2 inhibition 
 
 
Tyr207 in CrkL is phosphorylated by the Abl kinase218,238. The pTyr207-Xaa-Xaa-

Pro210 region in the CrkL linker is a target sequence for CrkL SH2219. NMR 
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analysis of pCrkL (Fig. 33) shows that the CrkL SH2 domain interacts with 

pTyr207. MALLS and gel filtration data show that pCrkL remains a monomer in 

solution (Fig. 31a,b). The data collectively show that, upon phosphorylation of 

CrkL at Tyr207, the SH2 domain interacts in an intramolecular fashion with 

pTyr207, similarly to CrkII139, 141. 

We used NMR to determine the solution structure of pCrkL. In agreement with 

the NMR chemical shift analysis, the structural data show that the 

phosphorylated linker is bound to the canonical pTyr-binding cleft of the SH2 

domain (Fig. 45). The interactions between the linker and the SH2 domain are 

virtually identical to those reported previously for the structure of CrkII SH2 and a 

phosphopeptide (Fig. 43b)234. Notably, the structural rearrangement elicited in 

CrkL by the phosphorylation of Tyr207 and the ensuing intramolecular binding to 

SH2 is minimal. The SH2-SH3N interface adjusts slightly to accommodate the 

binding of the pTyr linker region to SH2 (Fig. 45b and Fig. 35c), whereas the 

SH3C domain tumbles independently (Fig. 46) as in the unphosphorylated form.   
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Figure 45. Structural and dynamic properties of pCrkL. (a) Structure of pCrkL. 

pTyr207 is shown as orange sticks. (b) Close-up view of the pTyr207-binding 

site. The SH2-SH3N interface adjusts slightly to accommodate the binding of the 

linker to SH2.  

 

 
Figure 46. Plot of the R2/R1 ratio of pCrkL as a function of residue number. The 

scheme at right shows that the SH2-SH3N module in pCrkL tumbles as a unit, as 

in CrkL, whereas the SH3C domain tumbles much faster and independently of the 

other domains. 
 

 
Figure 47. (a) Kd values of PPII-peptide complexes with CrkL (Fig. 40) and 

CrkII139 variants. Standard error was determined from three independent 

experiments. (b) Pulldown of CrkL and pCrkL with DOCK1, an SH3N-binding 

physiological partner of CrkL (Fig. 55). IB (immunoblot). 
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The intramolecular binding of the phosphorylated linker (pTyr207) to the SH2 

domain is expected to prevent SH2 from interacting with other phosphorylated 

ligands. To test this hypothesis, we monitored by NMR the effect of 

phosphorylating CrkL that is already bound to a phosphorylated peptide 

encompassing the linker sequence (pTyr-linker; Fig. 48a). Indeed, the NMR data 

show that, following the addition of catalytic amounts of Abl kinase domain 

(AblKD), the phosphorylated linker binds intramolecularly to SH2, and, as a result, 

the pTyr-linker is displaced (Fig. 48b). Pulldown of CrkL and pCrkL with pTyr-

paxillin, a focal adhesion protein that interacts specifically with CrkL SH23, shows 

that paxillin forms a complex only with the unphosphorylated CrkL (Fig. 48c). 

Collectively, the data show that Tyr207 phosphorylation of CrkL by Abl results in 

intramolecular binding of the linker with the SH2 domain, thereby giving rise to 

CrkL SH2 inhibition. 
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Figure 48. Effect of Tyr207 phosphorylation on CrkL folding and its association 

with Abl kinase. (a) 1H-15N HSQC NMR spectra of the linker region of CrkL 

containing the phosphorylated Tyr207 (pTyr-linker) in the presence of CrkL 

(orange) and after the addition of catalytic amounts of AblKD and ATP-Mg2+ 

(blue). The pTyr-linker is 15N-labeled, whereas CrkL and AblKD are unlabeled. 

Asterisk denotes isotopic labeling. (b) Analysis of the NMR experiments in a 

shows that the pTyr-linker binds the SH2 domain of CrkL. Phosphorylation of 

Tyr207 in CrkL induces the intramolecular association of pTyr207 and SH2. As a 

result, the pTyr-linker is displaced. (c) Pulldown of CrkL and pCrkL with paxillin, 

an SH2-binding physiological partner of CrkL (Fig. 55). (d) 1H-15N HSQC NMR 

spectra of free CrkL (blue), in complex with AblPxxP (orange) and after adding 

ATP+Mg2+ (magenta). AblPxxP is a construct that encompasses the kinase 

domain and the first PxxP motif that binds CrkL. (e) Analysis of the NMR 
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experiments in d shows that CrkL forms a 1:1 complex with AblPxxP using its 

SH3N domain. Phosphorylation of Tyr207 elicits the intramolecular association of 

pTyr207 and SH2, but the intramolecular folding in CrkL has no effect on the 

CrkL–AblPxxP complex, which remains tightly associated. (f) Pulldown of CrkL and 

pCrkL with full-length Abl (form 1b) (Fig. 55). IB, immunoblot. 

 

3.2.7 pCrkL interacts with signaling partners via SH3N 

 
Upon tyrosine phosphorylation, the SH2 domains in both CrkL (Fig. 48a–c) and 

CrkII 120,141 are inhibited for pTyr-ligand binding. CrkII has been shown to 

undergo a major conformational change upon phosphorylation that results in 

PPII-ligand binding inhibition to SH3N 139. However, the structural rearrangement 

elicited by phosphorylation and the ensuing intramolecular binding in CrkL is 

minimal (Fig. 45a and b, Fig. 35c, Fig. 49). As a result, the PPII-binding site of 

the SH3N domain in phosphorylated CrkL is completely accessible (Fig. 45b). In 

agreement with the structural data, ITC experiments (Fig. 44) show that a PPII-

peptide binds unphosphorylated CrkL (or the isolated SH3N) and pCrkL with very 

similar affinities (Fig. 47a). Pulldown of CrkL and pCrkL with DOCK1, a guanine 

exchange factor (GEF) that activates Rac1 and specifically binds the SH3N 

domain, shows that DOCK1 associates strongly with both CrkL and pCrkL (Fig. 

47b). 

 

Abl binds the SH3N domain of CrkL and CrkII using a consensus Pro-Xaa-Xaa-

Pro (PxxP) motif located C-terminally to its kinase domain239. An important 

implication of SH3N inhibition in CrkII is that Abl binding to and phosphorylation of 

CrkII results in pCrkII–Abl complex dissociation240. To test the emerging 
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hypothesis that pCrkL will remain tightly bound to Abl, we titrated AblPxxP, an Abl 

construct encompassing the kinase domain and the first PxxP Crk-binding motif, 

to labeled CrkL (Fig. 48d). NMR analysis indicates that AblPxxP binds the SH3N 

domain of CrkL (Fig. 48e). Addition of ATP-Mg2+ results in Abl-mediated 

phosphorylation of Tyr207. NMR analysis (Fig. 4d) shows that pCrkL adopts the 

intramolecularly folded conformation but forms a tight complex with AblPxxP (Fig. 

48e and Fig44). In agreement with these results, pulldown of CrkL and pCrkL 

with full-length Abl kinase shows that Abl forms complexes with CrkL that are not 

dependent on the CrkL phosphorylation state (Fig. 48f and Fig. 49). 

 
 
Figure 49. CrkL phosphorylation. 1H-15N HSQC NMR spectra of CrkL (black), 

pCrkL (orange) and pCrkL bound to C3G preptide (green). Phosphorylation of 

CrkL was carried out as described in methods using KD of Abl and ATP. Squares 

represent expanded domains regions: residue 77(SH2), 177(SH3N), 

242/280(SH3C) and 191(SH3N-SH3C linker) in three states: apo (black), 

phosphorylated (orange) and phosphorylated with C3G peptide bound (green). 

This simple experiment shows that SH3N domain is exposed even in the 

phosphorylated state.  
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3.3 Discussion 
 
CrkL is an adaptor protein that regulates important cellular processes ranging 

from cell adhesion and motility to phagocytosis and apoptosis. CRKL has been 

recently identified as an essential gene in cancer cell proliferation227 and has 

been shown to be indispensable for mediating the leukemogenic activity of Bcr-

Abl220,227. CrkL is constitutively phosphorylated in human CML cells228,229, and 

the level of CrkL phosphorylation is being used as a predictor of clinical outcome 

in patients treated for CML230. Despite the important role of CrkL, the lack of 

information about its structure has impeded a proper understanding of its 

function. 

Because CrkL shares high sequence identity with CrkII, it has been thought that 

the structures of the two proteins are very similar. The structural data reported 

here demonstrate that the structural organization of the two proteins is 

considerably different. The CrkII structure139 is stabilized by a hydrophobic 

segment in the linker region, part of which is quite different in CrkL (Fig. 50). 

Moreover, several contacts exist between the SH2 DE loop and SH3C in CrkII. In 

contrast, the DE loop is not present in CrkL SH2. The autoinhibited structure of 

pCrkII is stabilized by a linker region that is totally different in CrkL (Fig. 50b). 
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Figure 50. (a) Sequence alignment of human and chicken CrkII and human 

CrkL. (b) Regions where extensive sequence differences between human CrkII 

and human CrkL exist and may be responsible for the distinct structure adopted 

by the two proteins. (c) Structure organization of human CrkL (this work) and 

human139 and chicken CrkII138. The blue and orange shaded regions in SH2 and 

SH3N denote the pY- and PPII-binding sites, respectively. The different structural 

organization between human CrkL and human CrkII may be explained by specific 

differences in their sequences. Specifically, residues 224−234 stabilize the 

structure in CrkII, but the sequence of this region is very different in CrkL. 

Moreover, the DE-loop in CrkII was seen to interact extensively with the SH3C 

domain in CrkII; the DE-loop is not present in CrkL. The structure of pCrkII is 

stabilized by a region spanning residues 121−131. The sequence of this region is 

very different in CrkL. 

 
 Thus, despite their high sequence identity (up to 72% in the structured regions), 

a few key sequence differences between CrkL and CrkII seem to modulate the 
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overall structural organization of the two proteins (Fig. 50). Overall, in the 

unliganded state, binding of PPII ligands to the SH3N domain in CrkII proteins is 

inhibited, whereas it is unrestricted in CrkL. In contrast, pTyr ligand-binding to 

CrkL SH2 is inhibited, whereas it is unrestricted in CrkII. The distinct structural 

architectures of CrkL and CrkII determine their signaling input and output, giving 

rise to distinct physiological functions for the two proteins. These results further 

highlight the notion that adaptors regulate signaling in a dynamic way and do not 

simply serve to wire signaling components in a passive manner13. 

In the resting state, the pTyr-binding site of the SH2 in CrkL is inhibited, whereas 

the one in CrkII is not, and, as a result, the binding of phosphorylated ligands to 

CrkII will be favored over binding to CrkL (Fig. 41). The differential SH2 binding 

activity modulation in CrkL versus CrkII can have important implications, for 

example, in the binding of the p130 Crk-associated substrate (p130CAS), a 

scaffold protein that mediates integrin-signaling (Fig. 51)3. Although p130CAS 

has multiple phosphorylation sites, it is conceivable that the number of such sites 

may be limited because of either the action of phosphatases or cell conditions22. 

In this case, competition favors CrkII over CrkL binding to p130CAS (Fig. 51). 
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Figure 51. CrkL versus CrkII in integrin signaling. (i) Integrin activation elicits 

p130CAS phosphorylation by tyrosine kinases (TK), and, as a result, CrkL and 

CrkII are recruited. (ii) GEFs (for example, DOCK1 and C3G) associate with CrkL 

and CrkII via their SH3N domain, giving rise to efficient localized activation (iii) of 

small GTPases (for example, Rac, Rap and RRas) at the membrane. (iv) Abl-

induced phosphorylation of CrkL and CrkII forces their dissociation from 

p130CAS and thus results in signaling suppression. The distinct structural 

organization of CrkL and CrkII modulates the interactions with their physiological 

partners to a different extent. The blue and brown shaded regions in SH2 and 

SH3N denote the pTyr- and PPII-binding sites, respectively. 

 

 

The eventual association of CrkL or CrkII with p130CAS has minimal effect on 

the overall structure of either CrkL (Figs. 37a and 45a) or CrkII139. Therefore, the 

PPII-binding site of SH3N in CrkII is inhibited in the p130CAS-bound CrkII240, 

whereas the corresponding site in CrkL is accessible. As a result, GEFs, such as 

DOCK1 and C3G, bind CrkL with a much higher affinity than CrkII (Figs. 42c and 
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51 (ii)). In this case, the CrkL-mediated complex is expected to more efficiently 

activate downstream GTPases, giving rise to a stronger signaling outcome than 

the CrkII-mediated complex (iii in Fig. 51). Enhanced association between CrkL 

and DOCK1 increases cell migration and invasion3 and may explain previous 

observations that CrkL has a much higher oncogenic potential than CrkII in 

fibroblasts140. 

In both CrkL and CrkII complexes, phosphorylation of Tyr207 (Fig. 45) and 

Tyr221120,139,141 respectively, by Abl causes intramolecular folding and 

displacement of the pCrk proteins from p130CAS (Fig. 48a–c), resulting in 

negative regulation of cell migration (iv in Fig. 51) 139. Notably, pCrkL may form a 

constitutive complex with DOCK1, in contrast to pCrkII, as in pCrkL the SH3N 

domain is not inhibited (Fig. 47b). Thus, when phosphatases act to 

dephosphorylate CrkL and CrkII, the p130CAS−CrkL−DOCK1 complex 

assembles more readily than the corresponding CrkII complex. 

A particularly remarkable result in the present work is that the phosphorylated 

form of CrkL remains active and may interact via its uninhibited SH3N domain 

with various ligands, including the Abl kinase (Fig. 48d–f). The interaction of CrkL 

with Bcr-Abl substantially stimulates the leukemogenic activity of the 

oncoprotein140,241. The present data demonstrate that CrkL binds and remains 

tightly bound to Abl even after the kinase has phosphorylated CrkL (Fig. 48e,f), 

explaining why CrkL is a preferred substrate for Bcr-Abl. This behavior is in sharp 

contrast to that of pCrkII, which has been shown to be an entirely inactive protein 

120. Therefore, although the intrinsic affinity of the SH3N domains of CrkL and 
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CrkII for the PxxP motif of Abl is almost identical (Fig. 42), the overall structural 

organization of the proteins confers an advantage to CrkL as the binding of CrkII 

to Abl is suppressed. Although the SH3C domain has been shown to function as 

an autoregulatory element in CrkII137,139,140,237, in CrkL, SH3C does not interact 

with any of the other domains, and thus its role remains elusive. Functional data, 

however, indicate that CrkL SH3C is indispensable for fibroblast transformation 

and hematopoietic cell adhesion238. It is likely that SH3C mediates its function by 

interacting with an as yet unidentified partner or by being tyrosine 

phosphorylated, as shown recently for CrkII140. 

SH2 and SH3 domains have long been thought to mediate sequence-specific 

interactions involving PxxP and pTyr motifs, respectively.  

However, there is now a growing list of examples indicating that these signaling 

domains can interact with sequences that do not conform to these general 

rules242. Remarkably, our data demonstrate that the two domains can engage 

each other in a completely unconventional manner. SH2-SH3 interactions have 

been previously observed in Itk kinase243 and in the SAP–Fyn complex244. 

Comparison of the binding mode in these systems and in CrkL demonstrates the 

great versatility of the SH2 and SH3 domains in mediating interactions in cell 

signaling (Fig. 52). 
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Figure 52. Structural comparison of non-conventional interactions between SH2 

and SH3 domains. The SAP SH2−Fyn SH3244, Itk SH2−SH3243 and CrkL 

SH2−SH3 (this work) structures are shown. In (a) the SH2 domains of all three 

complexes are overlaid (for clarity only the CrkL SH2 domain is visible). The SH3 

domains of Itk and CrkL interact with roughly the same region on SH2 whereas 

the binding site for Fyn SH3 is distinct. In (b) the SH3 domains of all three 

complexes are overlaid (for clarity only the CrkL SH3 domain is visible). 

Interestingly, the SH3 domain appears to make use of distinct regions to interact 

with each one of the SH2 domains. 

 

3.4 Materials and Methods 

3.4.1 Protein constructs 

The following human CrkL constructs were prepared (Fig. 53): SH2 (residues 1–

105), SH3N (residues 120–188) linker-SH3C (residues 184–303), SH2-SH3N 

(residues 1–188), pTyr-linker (residues 188–230) and full-length CrkL (residues 

1–303). The constructs were cloned into the pet42a vector using the NcoI and 

Xho1 restriction sites. A Tev protease cleavage site was introduced between the 

histidine tag and the protein.  
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Figure 53.CrkL constructs used in this study. 

The following human Abl constructs were prepared: AblKD (residues 229-534), 

AblPXXP (residues 229-556) The constructs were cloned into a modified pet16b 

vector using the Nde1 and Xho1 restriction sites. A Tev protease cleavage site 

was introduced between the histidine tag and the protein.  

3.4.2 Protein labeling 
 
Isotopically labeled samples for NMR studies were prepared by growing the cells 

in M9 minimal media supplemented with 1 g l-1 of 15NH4Cl and 2 g l-1 of 13C6-

glucose. For isotope labeling, minimal media containing 15NH4Cl and [2H,12C] or 

[2H,13C]-glucose in 99.9% 2H2O were used.  

For the production of U-[2H],Ile-δ1-[13CH3] and Val,Leu-[13CH3,12CD3] samples, 50 

mg l−1 of alpha-ketobutyric acid (methyl-13CH3) and 100 mg l−1 of alpha-
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ketoisovaleric acid (dimethyl-13CH3,12CD3) were added to the culture 1 hr prior to 

addition of IPTG.  

 

3.4.3 Protein preparation and purification 
 
All Abl constructs were transformed in E.coli BL21(DE3) that had been already 

transformed with a vector containing the YopH phosphatase and pREP4-groESL 

followed by plating on LB plate. A single colony was picked from the plate and 

transferred into 5 ml of autoclaved LB media. After ~ 8hour of growing, the cells 

were transferred to 50ml LB. Before transferring, the cells was centrifuged and 

washed with fresh LB media and kept overnight for growing at 37 °C. Then the 

cells were transferred to 1L culture of LB or M9 minimal media (see 3.4.2).  

Cultures for all CrkL constructs were grown at 37 °C, and protein synthesis was 

induced by addition of 0.5 mM IPTG at OD600 ~0.4. Cells were harvested after 

24 hrs. For Abl constructs at OD600 ~0.4 the temperature was then lowered to 

16° C and protein synthesis was also induced with 0.5mM IPTG. Cells were 

harvested after 24 hrs. Cells were lysed and the cytosolic fraction was separated 

from the membrane fraction by centrifugation at 70,000 × g. The lysate was 

loaded on Ni-NTA agarose resin (GE) preequilibrated with Tris buffer and 1 M 

NaCl. For the final purification step, the sample was concentrated and applied to 

a Superdex 200 size-exclusion column (GE). For NMR studies, the samples were 

dialyzed in NMR buffer (50 mM KPi (pH 6.8), 140 mM NaCl and 1 mM DTT) and 

concentrated using Amicon cell units (Millipore). All fragments are monomeric in 

solution at concentrations used for the NMR studies (typically 0.6-1.0 mM), as 



 
 

 

95 

indicated by gel filtration and light scattering. Phosphorylated CrkL and pYlinker 

were prepared by the addition of catalytic amounts of AblKD in buffer (50mM KPi 

(pH 6.8), 150mM NaCl, 1mM β-mercaptoethanol) supplemented with 5 mM ATP 

and 10 mM MgCl2. The reaction was carried out at room temperature. 

Phosphorylation efficiency is over 99% as judged by mass spectrometry and 

NMR.  

3.4.4 Peptides 

The sequences of the CrkL-pTyr207-, CrkII-pTyr221-, PPII- and FGFR-pTyr-

peptides used are EPAHApYAQPTT, PEPGPpYAQPSV, YLQAPELPTKTRTS 

and AGVSEpYELPEDPR, respectively. The MS-determined molecular masses of 

the peptides were 1,393.1 Da, 1,221.2 Da, 1,605.3 Da and 1,541.4 Da, 

respectively. All peptides were >99% pure.  

 

3.4.5 NMR spectroscopy.  

NMR experiments were performed on Varian 800- and 600-MHz and Bruker 700- 

and 600-MHz spectrometers. Complete backbone and side chain assignment for 

the CrkL proteins studied was achieved using standard triple-resonance pulse 

sequences, including HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, 

HCCONH and CCONH. NOEs were measured using two- and three-dimensional 

13C and 15N edited NOESY experiments using mixing times of 80 and 100 ms, 

respectively. All experiments were performed at 32 °C. 
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3.4.6 PRE measurements. 

Nitroxide spin labels (MTSL; Toronto Research Chemicals Inc.) were introduced 

via cysteine-specific modification of engineered CrkL derivatives containing 

single-solvent-accessible cysteine residues. The wild-type Cys44 and Cys249 

residues were mutated to Ser to provide the protein scaffold for introducing the 

cysteine-specific modifications at the following sites: Ser20, Ile90. These mutants 

and their MTSL derivatives were determined not to perturb the CrkL structure, as 

assessed by 1H-15N HSQC spectra, and were used for measuring PRE rates. 

After purification, proteins were exchanged into phosphate buffer (50 mM KPi 

(pH 6.8), 150 mM NaCl, and 1 mM β-mercaptoethanol). β-mercaptoethanol was 

removed by Zeba spin desalting column (Thermo Scientific) according to the 

manufacturer's protocol. MTSL was added from a concentrated stock in 

acetonitrile at a 10-fold excess, and the reaction was allowed to proceed at 4 °C 

for ~12h. The completion of the reaction was confirmed by mass spectrometry. 

Excess MTSL was removed by extensive dialysis using an Amicon stirred cell, 

and the pH was corrected to 6.8. PRE-derived distances were determined from 

1H-15N HSQC spectra of CrkL by measuring peak intensities before 

(paramagnetic) and after (diamagnetic) reduction of the nitroxide spin label with 

ascorbic acid. PRE values then were converted to distances by using a modified 

Solomon-Bloembergen equation for transverse relaxation, as described 

previously184. Ensemble simulated annealing refinement was used as 

described245. Two sets of restraints were incorporated into subsequent structure 

calculations. Amide resonances strongly affected by the presence of the spin 



 
 

 

97 

label in the peptide (Ipara/Idia < 0.15) and whose resonances broaden beyond 

detection in the paramagnetic spectrum were restrained with only an upper-

bound distance estimated from the noise of the spectrum plus 4 Å. Amides 

whose resonances appear in the paramagnetic spectra (Ipara/Idia < 0.85) were 

restrained as the calculated distance with (+/-) 4-Å upper/lower bounds. 

 

3.4.7 RDC Measurements. 

 Alignment of the proteins for RDC measurements was achieved using 

poly(ethylene glycol)/alcohol mixtures246. A 5% C12E5/hexanol (molar ratio=0.96) 

mixture was prepared. C12E5 was used to a final concentration of 5% (w/w) in 

90% H2O:10% D2O solution. The pH was adjusted using sodium hydroxide. The 

amount of hexanol was added dropwise, while vigorously shaking, to a final 

molar ratio C12E5:hexanol of 0.96. Air bubbles were removed by centrifugation 

at 5,000 × g for few minutes. The HDO quadrupolar deuterium splitting was 

checked to confirm the presence of the crystalline phase (a splitting of ~20 Hz 

was observed). For the measurement of RDCs in the protein, 250 µl of the 

C12E5: hexanol stock solution was added into 50 µl of protein in buffer. 15N-

HSQC (IPAP) (Fig.54) and HNCO based experiments were used to measure 

one-bond N-H and CαC’ RDCs247. 
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Figure 54.  Measurement of 15N-1H residual dipolar couplings for a protein in a 

5% C12E5/hexanol (molar ratio=0.96) mixture. (a) overlay of both 15N-1H HSQC 

residual dipolar couplings, isotropic (black/red) and partly oriented (green/blue). 

(b)  HSQC without decoupling in 15N dimension, isotropic solution 15N-1H splitting 

observed, equal to 15N-1H one-bond scalar coupling (~92-95 Hz). (c) HSQC 

without decoupling in 15N dimension -partly oriented 15N-1H splitting observed, 

equal to 15N-1H one-bond scalar coupling plus RDC 

 

3.4.8 Structure calculation and refinement. 

Structure calculations were performed with Xplor-NIH. The 13Cα, 13Cβ, 13C′, Hα, 

15N and NH chemical shifts served as input for the TALOS+ program73 to extract 

dihedral (φ and ψ) angles. The initial structure was calculated using NOEs, 

PREs, dihedral angles and hydrogen bonds. RDC restraints were included in the 

final stages of the calculation. Ramachandran statistics are as follows: most 

favored regions, 90%; allowed regions, 8%; disallowed regions, 2%. 
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3.4.9 Relaxation measurement and analysis. 

Three relaxation parameters were measured for all backbone amides of CrkL: 

the {1H}-15N NOE, the longitudinal relaxation rate R1 and the transverse 

relaxation rate R2. 15N R1 values were measured from 2D spectra recorded with 

relaxation delays 10, 60, 100, 200, 300, 450, 600, 750, 900, 1200 and 1400 ms; 

15N R2 values were measured from 2D spectra recorded with relaxation delays 

6.4, 19.2, 32.0, 44.8, 57.6, 70.4, 83.2, 96.0 ms. Data sets were acquired as 152 x 

1,024 complex points in the t1 x t2 time-domain dimensions. Data points were 

fitted as a function of the length of the parametric relaxation delay to two-

parameter decay curves of the form I(t)=I0 e-Rt, where I is the intensity of the 

magnetization. {1H}-15N NOE data were obtained by recording, in an interleaved 

manner, one spectrum with a 3-s recycle delay followed by a 3-s saturation and 

another spectrum with no saturation and a 6-s recycle delay. Correlation times 

and Rex values were determined by using the model free approach248. 

3.4.10 Calorimetry. 

All calorimetric titrations were performed on a iTC200 microcalorimeter (GE). 

Protein samples were extensively dialyzed against the ITC buffer containing 50 

mM KPi (pH 6.8), 150 mM NaCl, and 1 mM TCEP. All solutions were filtered 

using membrane filters (pore size, 0.45 mm) and thoroughly degassed for 20 min 

by gentle stirring under vacuum. The sample cell was usually filled with a 40 µM 

and the injection syringe with 400 µM solutions respectively. Ligand solutions 

were prepared by dissolving the peptide ligand in the flow through of the last 

buffer exchange. Each titration typically consisted of a preliminary injection 
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followed by ~16 subsequent injections. Data for the preliminary injection, which 

are affected by diffusion of the solution from and into the injection syringe during 

the initial equilibration period, were discarded. The data were fitted with Origin 

7.0. 

 

3.4.11 Mass spectrometry.  

CrkL and pCrkL samples (50-100 µM in NMR buffer) were diluted to 0.1 X in 

molecular biology grade water. Each sample was then mixed in a 1:1 ratio with 

sinapinic acid and spotted in 0.5 µl volumes on a stainless steel MALDI-TOF 

sample plate and allowed to air dry. All samples were then analyzed in a Voyager 

DE MALDI-TOF instrument from Applied Biosystems in linear positive mode 

using the following settings: 25,000 V accelerating voltage, 93% grid voltage, 

0.3% guide wire voltage, and 750 nsec extraction delay time. All spectra were 

analyzed using Data Explorer software v 5.10.2 from Applied Biosystems. 

3.4.12 Pull-down assays. 

Phosphorylated GST or GST-CrkL was obtained by incubating purified GST or 

GST-CrkL (∼1 µM) with purified AblKD (∼0.1 µM) overnight at 25 °C in a buffer 

containing 50 mM Tris (pH 7.5), 150 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol 

and 5 mM ATP. Purified GST-CrkL was incubated in the same buffer without 

AblKD and ATP overnight for the unphosphorylated sample. Lactose-free 

glutathione agarose beads (Sigma) were then washed once with PBS containing 

0.1% (v/v) Triton-X-100 and incubated with the aforementioned samples for 60 
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min at 4 °C. Beads were then spun down and washed twice with PBS containing 

0.1% (v/v) Triton-X-100. Beads with bound phosphorylated GST or 

phosphorylated or unphosphorylated GST-CrkL were each incubated with lysates 

of 293T cells untransfected or transfected with Flag-paxillin or human Abl1b for 2 

h at 4 °C. Beads were then spun down and washed twice with PBS containing 

0.1% (v/v) Triton-X-100. Samples were then boiled in SDS sample buffer and 

analyzed by western blotting with antibody to Flag (anti-Flag; Sigma F1804, 

1:1,000 dilution), anti-DOCK180 (Santa Cruz SC6043, 1:1,000 dilution), anti-Abl 

(Sigma SAB4501043, 1:2,000 dilution), anti-CrkL (Cell Signaling 3181, 1:1,000 

dilution) and anti-pCrkL (Tyr207; Cell Signaling 3182, 1:1,000 dilution) (Figure 

55). 
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Figure 55. Pull-down of CrkL and pCrkL with DOCK1, paxillin, and full-length Abl 

(form 1b). Lane 1: Pull down with GST-CrkL from lysates of cells transfected with 

Flag-Paxillin; lane 2: Pull down with phosphorylated GST-CrkL from lysates of 

cells transfected with Flag-Paxillin; lane 3: Pull down with GST-CrkL from lysates 

of untransfected cells: lane 4: Pull down with phosphorylated GST-CrkL from 

lysates of untransfected cells; lane 5: Pull down with GSTCrkL from lysates of 

cells transfected with human Abl 1b; lane 6: Pull down with phosphorylated GST-

CrkL from lysates of cells transfected with human Abl 1b. The membranes were 

cut in between 37 and 50 kD and in between 75 and 100 kD. This portion which 

includes proteins in between 50 and 75 kD was used to probe for Flag-Paxillin 

and GST-CrkL. The portion of the membrane that included proteins in between 

100 and 250 kD was used to probe for DOCK180 and Abl. Both parts of the 

membranes (50 - 75kD and 100 to 150 kD) were lined up and exposed to film 

simultaneously which is why we can visualize DOCK180 and Paxillin on the 

same blot and similarly, Abl and phoshorylated CrkL. 
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Chapter 4. CrkII as a novel biological substrate for CypA 
 
 

4.1 Introduction 
 
Cyclophilin A (CypA) is a polyprolylisomerase that is ubiquitously expressed in all 

human cells. It is known to catalyze the cis-trans isomerization of X-P motifs. 

Recent studies have shown that CypA is overexpressed in many human 

cancers249. The role of CypA in this area is not well understood. We have 

identified a novel binding site for CypA on CrkII. Although several proteins have 

been identified to date to interact with CypA, the underlying mechanism of CypA 

action and the physiological implications of these interactions have remained 

unknown in most cases. Despite the fact that CypA exhibits 

peptidyl−prolylcis−trans isomerase (PPIase) activity, it is unclear whether CypA 

acts as an enzyme or a binding partner in mediating the biological processes in 

which it is involved. Here we show that CypA binds specifically to, and modulates 

phosphorylation of, CrkII by Abl kinase. We show that the conserved proline 

residue in CrkII next to the negative-regulatory tyrosine-phosphorylation site 

undergoes cis−trans isomerization. CypA is recruited to the site and delays 

phosphorylation by Abl. The interaction between CypA and CrkII occurs 

specifically both in vitro and in vivo. This is a novel role for CypA, which appears 

to act as a selective switch to modulate the level of phosphorylation of a signaling 

protein. 
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4.2 PPIase family 
 
In proteins, proline residues can exist in two unique cis and trans peptide bond 

conformations250. The mechanism of proline cis-trans isomerization is widely 

used to control a number of important biological processes including gene 

regulation251, cell signaling137,252, enzyme function253 and virus infection254. 

However, this is an intrinsically slow conversion, but can be catalyzed by the 

enzymes called peptidylprolylcis-transisomerases (PPIases). The PPIases 

contain four distinct enzyme families: cyclophilins (Cyps)255, FK506-binding 

proteins (FKBPs)256, parvulins257 and Ser/Thr phosphatase 2A (PP2A) activator 

PTPA258.Among all PPIases, Cypsand  FKBPs have received the most of the 

attention due to the fact that they are cellular targets for immunosuppresive drugs 

Cyclosprin A (CsA) and FK506.  

4.2.1 Cyclophilins 
 
Cyclophilins (Cyps) are found in all cells of all studied organisms. In humans 

there are at least 16 cyclophilin proteins259, including CypA, CypB, CypC, CypD, 

CypE, Cyp40, and CypNK. CypA was the first to be identified as a drug target 

(for the immunosuppressive drug CsA260 ) and makes up ~0.1-0.6% of the total 

cytosolic protein261. Cyps play an important function in stabilizing the cis-trans 

transition state by accelerating the isomerization262. This process has been 

shown to be important in protein folding and multi-domain protein assembly263. 
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4.2.2 Cyps in human diseases 
 
Cyclophilins are found in various pathological conditions including HIV264, 

hepatitis B and C265 , and cardiovascular diseases including atherosclerosis266. 

Cyps were shown to be overexpressed in certain forms of human cancers. In 

particular, CypA shows an unusually high expression level in several cancer 

types including lung cancer267, liver cancer268, pancreatic cancer269, 

glioblastoma270 and hematologic malignancies271. In these cases it promotes 

cancer cell proliferation, cell migration/invasion and drug resistance. The 

mechanism by which CypA contributes to cancer progression is not fully 

understood. However CypA appears to be involved in multiple pathways 

including binding to the membrane receptor CD147272, a plasma membrane 

protein shown to interact with CypA on the membrane of the immune cells273.   

 
4.2.3 Structure and mechanism of action 
 
CypA is the most studied member of the Cyp family of PPIase. CypA folds as a 

β-barrel with eight β-strands and three α-helices flanking the β-barell, connected 

by flexible loops (Fig. 56b). The active site of CypA consists of four β-sheets and 

four loops which together form a narrow cleft274 where substrates binds (Fig. 

56a). It was shown that during the isomerization process there is very little 

structural change on the CypA active site275. Residues of CypA involved in the 

interactions with the substrate include Arg55, Ile57, Phe60, Met61, Gln63, 

Ala101, Asn102, Gln111, Phe113,Trp121, Leu122, and His126. Among them, 
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Arg55 was shown to be crucial for catalytic activity, and Arg55 to Ala mutant 

retain less than 1% of the wild-type catalytic efficiency276.  

 
 
Figure 56. Structure of CypA-peptide complex (PDB code 1AWQ)277. (a) 

residues that are involved in the interactions with the substrate are highlighted in 

green (R55 in red), substrate (HAGPIA) in yellow. (b) cartoon representation of 

uncomplexed CypA structure (R55 in red). 

 

 
The crystal structures analysis of CypA, complexed with HIV-1 protein in both cis 

and trans conformations, provided mechanistic insight to the CypA catalytic 

mechanism. The HIV-1 CA (capsid) protein is composed of two helices 

connected by a loop. The loop contains a G89-P90 peptide bond which is a CypA 

target. Relative to the P90, the C-terminal segment of HIV-1 CA (P90-P93) 

adopts the same conformation in all X-Ray structures regardless of cis or trans 

conformation. The N-terminal region to HIV-1CA P90 is markedly different, but 

only for residues 88 and 89 next to the substrate proline. The proposed model 

shows that the proline remains fixed relative to the enzyme as Arg55 of CypA 

anchors the P90 oxygen and activates the proline amide of the isomeric peptide 

bond. Howard et. al, explain that the steric clash of the sidechain in the residue 
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preceding P90 prevents optimal binding of the substrate in the trans 

conformation. By the mutation G89A in HIV-1 CA, they have shown that Ala 

would place the Cβ methyl group unacceptably close to the Arg55.  

 

4.3 Results 
 

4.3.1 Human-CrkII, a new substrate for CypA 
 

4.3.1.1 Conserved GP motif in Ckr protein family 

 
Despite the high sequence homology between CrkII and CrkL (Fig. 53) and the 

identical binding preferences of their SH2 and SH3 domains, these two proteins 

contain slight sequential differences (Fig. 57) and have been shown to play non-

overlapping roles in the cells1. 

 

Figure 57.  Comparison of sequence identity between human-CrkII and CrkL. 

 
 
Both proteins contain a ~50 residue linker that connects the two SH3 domains 

which is crucial for regulation137,139. However the Crk protein possesses high 

degree of similarity across species. From the primary amino acid sequence 
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analysis of human and chicken CrkII, two identical motifs can be identified, 

namely G219-P220/G236-P237 in human and G220-P221/G237-P238 in chicken 

(Fig. 58). The G237-P238 motif in chicken CrkII regulates autoinhibition of the 

SH3N domain via a cis-trans isomerization mechanism251.However, study of full-

length human-CrkII did not reveal any cis-trans isomerization in the analogous 

region137. 

 

 

Figure 58. Figure 2b.CrkII domain organization of human and chicken protein. 

Regions comprising “GP”motifs are expanded. 

 

A possible reason for this is that cis-trans isomerization could be very subtle or 

absent in the case of the full length protein used in this study (buffer and 

temperature specific)137.  Also, in the human-CrkII protein, the isomerization of 

G219-P220 and G236-P237 could have little impact on the overall structure 

because its autoinhibitory mechanism is not controlled by cis-trans isomerization. 
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NMR titration of human-CrkII revealed that CypA interacts exclusively with the 

G219-P220 motif, revealing another possible mode of human-CrkII regulation. 

On the other hand, CrkL does not contain a GP motif and is therefore not 

susceptible to CypA regulation. 

 

It has been shown previously that CypA preferentially binds Gly-Pro consensus 

sequences278 and catalyzes the cis-trans isomerization of peptide bonds 

preceding the proline residue. Sequence alignment revealed that the residue 

preceding Tyr207 in CrkL is Ala, as opposed to Pro in human-CrkII (Fig. 59),. 

 
 
Figure 59. Sequence alignment of CrkL and CrkII proteins from different 

spiecies. The CrkL is lacking conserved GP motif presented in all CrkII proteins. 

 
 

4.3.1.2 Evidence of cis-trans isomerization at G220-P221 in CrkII 

 
 
NMR experiments show that CrkII undergoes cis-trans isomerization at G220-

P221. 2D 15N HSQC specra analyses of linker-SH3C (residues 190-297) reveal, 
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that both G220-P221 and G237-P238 prolyl bonds exist in the cis and trans 

conformations (Fig. 60c,d).   

 

 
 

Figure 60. GP motif in chicken CrkII controls its cis-trans isomerization. (a) 1H-
15N HSQC NMR spectra of chicken-CrkII_P238A mutant, (b) magnified region of 

(a), (c) overlay of Chicken-CrkII (blue) and chicken-CrkII_P238A mutant (red), (d) 

magnified region of (c). (a),(b),(c) and (d) clearly demonstrate that the mutaation 

in the G237-P238 region disrupt the cis-trans isomerization, whereas cis-trans in 

the G220-P221 region remains unaffected.  
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NMR spectra of linker-SH3C_P238A mutant of chicken-CrkII (Fig. 60a) show that 

cis-trans isomerization is not present at G237-P238, thus the mutant adopt one 

specific conformation. However, G220-P221 remains unaffected, and two sets of 

peaks in slow exchange can be observed (Fig. 60b). This indicates that these 

two isomerization sites are completely independent. 

By using the ZZ exchange experiment we can characterize slow conformational 

exchange processes in proteins279. These experiments work by monitoring the 

exchange of longitudinal magnetization between the major and minor peaks as a 

function of time. Here, in the case where CypA is absent, no exchange peak is 

observed (Fig. 61, black). However, in the presence of a catalytic amount of 

CypA, exchange peaks appear on the spectrum (Fig. 61, orange and blue), 

providing direct evidence that CypA catalyzes the Gly219−Pro220cis−trans 

isomerization process. 
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Figure 61. 2D 1H-15N ZZ NMR exchange experiment.CrkII fragment without the 

cyclophilin (black), with CypA and the mixing time of 20ms (orange) and with 

CypA and the mixing time of 50ms (blue). CypA was used in catalytic amount 

(~5%).  

 
 
Using a corresponding human-CrkII construct, we observe that Pro220 (P221 in 

chicken) also shows the cis-trans effect (Fig. 62a,b), and could be a potential 

binding site for CypA. However, the Pro238 isomerization was not observed, and 

appears to be specific to chicken.  
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Figure 62. Human-CrkII undergoes cis-trans isomerization. (a) 1H-15N HSQC 

NMR spectra of human-CrkII_(188-303), (b) strips from CCO-NH spectra 

showing 13C chemical shift of Pro220 for both cis and trans of the G220-P221 

bond. 

4.3.1.3 CrkII binds to the catalytic site of CypA  

 

We decided to investigate the possible interaction between CrkII and CypA with 

CrkL serving as a control. NMR titration of CypA was performed for both CrkL 

and human-CrkII. The changes in NMR spectra were observed only when 

human-CrkII was titrated with CypA (Fig. 63a), whereas no changes were 

observed for CrkL (Fig. 63b). This supports our initial assessment from 

inspection of sequence analysis data. Moreover, chemical shift analysis shows 

that the human-CrkII G219-P220 motif is directly involved in the binding. ( 

human-CrkII assignment, courtesy of Dr F. Inagaki) 
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Figure 63. Figure 7.Binding of CypA to hCrkII and CrkL. 1H-15N HSQC NMR 

spectra of (a) free hCrkII (black), in complex with CypA (orange) and (b) free 

CrkL (black), in complex with CypA (orange). The hCrkII and CrkL are 15N-

labeled, whereas CypA is unlabeled.  

 
 

 
 
Figure 64.  1H-15N HSQC NMR spectra of (a) CypA (green), in complex with 

hCrkII_P220A and (b) hCrkII (red), hCrkII in presence of CsA. In (a) CypA is 

15N-labeled and hCrkII_P220A mutant is unlabeled, in (b) hCrkII is 15N-labeled 

in free hCrkII and in bound to Csa form. 

 
The mutational studies also agree with the above findings. Mutation P220A in 

CrkII completely abrogates the interaction between the CypA and CrkII (Fig. 

64a). Also, the CrkII titration with CypA in the presence of Cyclosphorin A (CsA - 
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an inhibitor of CypA with nanomolar affinity)276 displaces CypA from CrkII (Fig. 

64b).  

 
Reverse titration experiments were performed where 15N- labeled CypA was 

titrated to unlabeled human-CrkII (Fig. 65). Chemical shift analysis showed that 

CrkII binds to the catalytic site of CypA.  

 
Figure 65. NMR titration of CypA with human-CrkII. 1H-15N HSQC NMR titration 

spectra between CypA (15N-labeled) and human-CrkII (unlabeled) 

 
A titration experiment was also carried out to measure the binding affinity of 

CypA for the Gly219-Pro220 site. The chemical shift changes at each titration 

point were measured and the dissociation constant extracted (Fig. 66). The 

affinity was calculated to be ~18uM.  
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Figure 66. 15N-labeled CypA was titrated with human-CrkII. The black arrow 

below demonstrate signal migration of CypA (W121)  HE1 proton upon human-

CrII binding. 

 

4.3.1.4 Structural basis for the recognition ohuman-CrkII by CypA 

 

To gain further insight into the structural basis of this interaction, we decided to 

solve the structure of CypA in complex with human-CrkII. Analysis of chemical 

shift in both human-CrkII and synthetic peptide  (PEFGPYAQP - the region 

interacting with CypA) from human-CrkII shows that the effects induced either by 

the peptide or by full-length CrkII on the CypA site are essentially identical. 

Therefore, to simplify the NMR experiments, the synthetic peptide was used. 

C13-HSCQ NMR spectra of CypA with and without the peptide (Fig. 67) were 

used as a reference for the NOE assignment. 
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Figure 67. 13C-HSQC spectra of CypA  (black) and in complex with CrkII 

peptide (orange). (a) Full spectral window, (b) methyl region of the spoectra, (c) 

Cα region, labeled residues belong to CypA catalytic site. 

 
 
The NOE pattern observed revealed that the mode of interaction between CypA 

and CrkII is comparable to the interactions previously observed in CypA-ligand 

structures. Structures show that the Gly219−Pro220 motif of human-CrkII binds 

deep into the active site cleft of CypA (Fig. 68a and 68b). 
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Figure 68. Structure of CypA bound to human-CrkII peptide. (a) top view, (b) 

side view. The Gly219−Pro220 region of CrkII binds deep into the active site cleft 

of CypA 

 

Our observations confirm a previous study, where the GP motif of the HIV-capsid 

binds to CypA in the same fashion280. Pro218 is also buried into the CypA cleft, 

fitting snugly into a pocket formed primarily by CypA residues Thr73, Lys82, 

Ala101, Ala103, Thr107, and Gln111 (Fig. 68a). The backbone carbonyl of 

Tyr221, the residue that becomes phosphorylated by theAbl kinase, forms a 

hydrogen bond with Trp121. In contrast, the side chain of Tyr221 is mostly 

exposed to the solvent (Fig. 68b) and appears to form no contacts with CypA. 

The last C-terminal residue of the Crk peptide that interacts with CypA is Ala222, 

whose methyl group forms van der Waals contacts with CypA residues Ile57 and 

Phe60. Thus, CypA uses its catalytic site to interact specifically with the human-

CrkII linker region that encompasses the tyrosine-phosphorylation site. When 
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CypA binds to human-CrkII its Y221 is not accesible, therefore it can not be 

phosphorylated by Abl. 

In order to further investigate the effect of CypA on human-CrkII activity, Western 

Blot (WB) experiments were performed (Fig. 69).  Experiments show that the 

presence of CypA significantly decreases the level of human-CrkII Tyr221 

phosphorylation by up to factor of ~12 (Fig. 69a). These findings are in 

agreement with structural data, where we show that Tyr221 sits in the CypA cleft 

and therefore cannot be sufficiently phosphorylated. Similar experiment with 

CrkL and CypA showed no inhibition of CrkL Tyr207. (Fig. 69b) 

 

a                                                                     b 

 

Figure 69. Immunoblotting analysis of kinase assay using human-CrkII and CkrL 

as a substrate for Abl in the presence and absence of CypA. (a) Tyr221 

phosphorylation monitoring at different incubation times and normalized intensity 

graph to quantify the CypA effect on human-CrkII. (b) Tyr207 phosphorylation 

monitoring at different incubation times and normalized intensity graph to quantify 

the CypA effect on CrkL 
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To further test the notion of CypA mediation inhibition of CrkII Tyr221, we 

compared the effect of cyclosporine in EGF treated MDA-MB-468 human breast 

cancer cells. We observe a 3-fold increase in Tyr221 phosphorylation upon CsA 

treatment (Fig 70).  

 
 
Figure 70.Effect of CsA on Tyr221 phosphorylation in MDA-MB-468 cells.  

 

4.3.1.5 CypA and human-CrkII colocalization in living cells 

 
Another important challenge is to confirm that CypA and  human-CrkII can 

colocalize in living cells. FRET experiments were designed and performed. Using 

a pair of fluorescent proteins as donors or acceptors of FRET attached to the 

protein of interest we can directly monitor protein-protein interaction in living 

cells. By using CypA-CFP and human-CrkII-YFP constructs, we were able to see 

that CypA forms a constitutive complex with human-CrkII. The co-localized 

proteins show FRET effect with 50% efficiency (Fig. 71a). Conversely, when CsA 

is used, the complex dissociates and FRET effect is not perceived (Fig. 71b). 

This is in agreement with our previous findings. 
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Figure 71. Fluorescence resonance energy transfer images of HeLa 

cellstransfected with (a) CypA-CFP and hCrKII-YFP, (b) CypA-CFP and hCrkII-

YFP + CsA 

 
 

4.4 Discussion 
 
Here we investigated the effect of CypA on human-CrkII activity. By using a 

multi-technique approach, we have shown that human-CrkII recruits CypA not 

only as an enzyme but as a stoichiometric binding partner. The binding of CypA 

to the G219-P220 motif clearly decrease the phosphorylation efficiency  of CrkII 

by Abl. This additional level of human-CrkII regulation, by capturing and delaying 

Tyr221 phosphorylation, could work as a switch between the autoinhibited and 

active conformations of CrkII. The dissociation constant for the CypA-CrkII 

complex is ~18uM. Although this binding affinity is moderate, increase in cellular 

concentration of either or both proteins will lead to an increased tendency for this 

complex to form. An important factor to remember here is that CrkII can be 

phosphorylated in multiple regions, including Try221. Recently published results 

from Sriram et. al show that Tyr251 can be phosphorylated in CrkII and that 
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region can activate Abl kinase140. It is unclear whether CrkII can participate in two 

separate pathways depending on its phosphorylation level. In the case of Tyr221 

inhibition of phosphorylation by CypA would mean that a greater fraction of the 

cytosolic pool of CrkII can participate in signaling pathways that require Tyr221 in 

the unphosphorylated form.  

Interestingly, Abl-mediated CrkL phosphorylation is not affected by CypA, even 

though CrkL and CrkII are homologs, with ~60% identity between the two 

proteins. How this might relate to specific Crk function will require further 

investigation. Since many signalling processes require phosphorylated human-

CrkII, our results show that CypA may play an important role in regulation of the 

signaling pathway carried out by CrkII. 

 
 

4.5 Materials and methods 

4.5.1 Protein preparation, labeling and purification 
 

4.5.1.1 Preparation and purification of CypA 

The plasmid contained His6-tagged CypA was transformed into BL21(DE3) cells 

and plated on LB plate. A single colony was picked from the plate and was 

transferred into 5 ml of autoclaved LB media. After ~ 8 hour growing, the cells 

were transferred in 100 mL of LB media. Before transferring, the cells was 

centrifuged and washed with fresh LB media and kept overnight for growing at 37 

°C. Then the cells were transferred into 1L of LB media. The cells were grown at 

37 °C in the presence of ampicilin. Protein synthesis was induced by the addition 
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of 0.5 mM of IPTG at A600 ~ 0.4 and cells were harvested at A600 ~ 1.0. The 

cells were re-suspended into Tris, 400mMNaCl, 30mM immidazole, 10mM BME, 

pH8.0. Cell were sonicated and centrifuged at 50,000×g using a JA-25.50 rotor 

(Beckman). The supernatant was loaded on a Ni-column pre-equilibrated with 

buffer containing 50mM Tris, 400mMNaCl, 30mM immidazole, 10mM BME with a 

flow rate of 0.7/ml/min, followed by two- column volume wash with 50mM Tris, 

1MNaCl, 30mM immidazole, 10mM BME, pH8.0 (high-salt buffer). In next step 

column was washed with two column volume of low salt buffer, i.e. 50mM Tris, 

400mMNaCl, 30mM immidazole, 10mM BME, pH8.0. Finally the protein was 

eluted with buffer containing 50mM Tris, 140mM NaCl, 400mM immidazole, 

10mM BME with a pH8.0. The eluted protein was then exchange into buffer 

containig 140mM NaCl, 50mM KPi, pH 6.5, 1mM BME, 5% glycerol using an 

amicon stirred cell. Later on, the sample was concentrated and applied to the 

Superdex-75 size exclusion column, previously equilibrated with the same buffer. 

Finally the protein was exchanged into desired salt buffer. Protein purity was 

checked by SDS-PAGE and  concentration was determined 

spectrophotometrically at 280 nm using an extinction coefficient of 8470 M-1 cm-1. 

 

4.5.1.2 Preparation and purification of human-CrkII 

The preparation of the various constructs used in this study were made using 

standard cloning protocols from a cDNA of human CrkII (courtesy of  Dr. Birge, 

UMDNJ). The coding region of the full-length protein and the fragments were 

inserted into pet42a vector (EMDChemicals) using the Nco1 and Xho1 restriction 
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sites. The pet42a vector allows expression of proteins of interest with a GST 

fusion tag at the N-terminal along with a His6-tag. This allowed us to use a more 

efficient purification protocol using fast flow Ni-Sepharose 6 Fast Flow resin (GE 

healthcare) instead of the GSH Sepharose resin. The SH2(1-120), SH3N(130-

190), SH3C(238-304), linker-SH3C(188-304) SH3N-linker-SH3C(130-304) and the 

full length (1-304) of CrkII were successfully cloned and expressed. We also 

included a TEV protease cleavage site to separate the tag from the protein of 

interest. All constructs were sequenced and expression in BL 21(DE3) confirmed 

for expression of protein of expected size and solubility. For LB, N15 and C13 

samples a common protocol was used where a single colony was used to 

inoculate a starter culture of 5 ml LB and after ~6h at 37°C cells are centrifuge at 

4000rpm and resuspended in 50 ml M9 minimal medium containing 2g/L 13C6-

glucose and 1g/L 15NH4Cl. After overnight at 37°C the culture is centrifuge at 

low speed and transferred to freshly prepared 1L minimal medium and grown at 

37°C. After OD 600 of 0.4 is reached protein synthesis is induced with 0.5mM 

IPTG. Cells are harvested 3 to 4 hours after induction and resuspended in lysis 

buffer (50mMTris-HCL, 1M NaCL, 30mM imidazole, 5mM beta-mercaptoethanol) 

The protein prepared in such a way is uniformly 15N,13C labeled. The cells are 

lysed and the cytosolic fraction is separated from the membrane fraction by 

centrifugation at 20,000 x g. Protein is purified on Ni-NTA resin and after 

cleavage with TEV protease to separate the GST-His6 tag from the protein, the 

protein was passed over Ni-NTA again to remove the tag and protease. The 

protein is found in the flow-through. The protein was further purified on a 
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Superdex-75 gel-filtration column. Fractions are checked by SDS-Page and 

dialyzed against NMR buffer (50mM Phosphate, 150mM NaCl, 0.5mM EDTA, 

3mM β-mercaptoethanol) using Amicon cell (Millipore).  

 

4.5.1.3 Preparation and purification of CrkL1-303 

As described in Chapter 3 (see 3.4.3). 

 

4.5.1.4 Preparation and purification of Abl 

As described in Chapter 3 (see 3.4.3). 

 

4.5.2 NMR Spectroscopy  

 

All NMR experiments were performed on Varian 800- and 600-MHz and Bruker 

700- and 600-MHz spectrometer. Sequential assignment of the 1H, 13C, and 

15N protein backbone chemical shifts was achieved by means of through-bond 

heteronuclear scalar correlations using the following 3D pulse sequences: 3D 

HNCO, 3D HN(CA)CO, 3D HNCA, 3D HN(CO)CA, 3D HNCACB, and 3D 

HN(CO)CACB. Side-chain assignment was performed using 3D C(CO)NH and 

3D H(CCO)NH spectra. NOEs were assigned and collected on the basis of 3D 

15N-NOESY-HSQC and 13C-NOESYHSQC spectra using mixing time of 100 

and 80ms respectively. All NMR samples were prepared in 50 mM KPi (pH 6.5), 
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140 mM potassium phosphate, 1mM BME and 1g L-1 NaN3. Concentration of all 

protein NMR sample was 0.6-0.8mM. Spectra were recorded at 25 °C. 2D 1H-

15N HSQC spectra were recorded for all constructs in different concentrations, 

pH, and temperatures too. All spectra were processed using the NMRPipe 

software package and analyzed with NMRView. For all the experiment using 

CypA and c-Abl we use similar buffer condition with pH 6.5 and temperature 

25°C. 

4.5.3 FRET Study 

4.5.3.1 Generation of Constructs 

The vectors containing YFP and CFP were obtained from Addgene. Full-length 

CrkII and CypA were closed into the vectors. For CrkII we subcloned the region 

encoding the CrkII sequence into pcDNA3-YFP vector from Addgene using the 

Not1 and BamH1 sites for CRKII-YFP. CypA was subcloned into pcDNA3-CFP 

vector using the Not1 and EcoRI sites for CypA-CFP. Both constructs were 

inserted at the N-terminal of the fluorescent tag. Clones were confirmed by 

sequencing. 

4.5.3.2 Cell Culture 

HELA cells were cultured in DMEM supplemented with 10% Fetal Bovine Serum, 

1% Penicillin/Streptomycin and 1% Glutamax in a humidified incubator at 37C 

5% CO2.The cells were grown to 70% confluency and then transfected with the 

appropriate plasmids at 0.4ug using X-treme GENE Transfection Reagent 

(Roche) as per their instructions. Cells were washed with PBS 4-6 hours after 
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delivery. Images were acquired 24hrs after transfection. The cells were imaged 

live as this gave the most consistent results. A Nikon Ti Eclipse Inverted 

Microscope was used to capture images. 

4.5.3.3 FRET measurements 

Observations were made using 433 nm excitation and emission window collected 

between 507-547nm using a Nikon Ti Eclipse Inverted Microscope.  The 

Sensitized emission method was used to image the FRET effect. The built-in 

Nikon software (NIS-Element) was used to measure FRET efficiency.  

 

4.5.4 Western Blot  
 

We performed western blot by using purified protein. For detection of 

phophorylated Tyr222 or Tyr207 we use primary antibody, phospho-CrkII 

(Tyr222) or phospho-CrkL (Tyr207) antibody from Cell Signaling. We make ~6-7 

reaction mixture depending on our need. All reactions are carried out at room 

temperature and all proteins are exchanged into the same buffer condition 

(50mM KPi, 140mM NaCl, 1mM BME, pH6.5). First we aliquot human-CrkII and 

CrkL into the eppendorfs and then in excess (~6-7 times) add CypA for complete 

saturation of both proteins. In another eppendorf we make c-Abl reaction mixture. 

First we add c-Abl and then to it we add 1mM MgCl2, 0.6mM ATP and 

immediately add it to the samples, followed by collection of each sample at 

different interval of time and stopping the reaction by using SDS-loading buffer. 

All the samples were run on a 10% SDS gel. In the next step we transfer proteins 
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from SDS-gel to nitro-cellulose membrane using gel-electrophoresis [transfer 

buffer: 700ml H2O, 100ml 10X transfer buffer (30.4g Tris, 144.1g glycine),200ml 

MeOH]. Then we place the nitrocellulose membrane into blocking solution (5% 

non-fat dry milk in 1X TBST buffer and 0.2% tween). 1X TBST buffer is made 

from 10X TBST buffer i.e. tris-base 24.2g/L, NACl 80g/L and pH7.5. Then we 

wash for 2-3 times with 1X TBST buffer. Then we incubate the membrane in 

primar antibody solution (substrate to antibody ratio; 1:1000) for overnight. Next 

morning we wash out exces of primary antibody by using 1X TBST buffer for 3-4 

times. We then incubate it with secondary antibody in blocking solution for further 

one more hour. Secondary antibody was use for detection purpose. In our case 

we use secondary antibody from goat with horseradish peroxidase label. We use 

Pierce ECL Western Blotting Substrate for the detection of horseradish 

peroxidase (HRP) on immunoblots. Finally, the blots were exposed to X-ray film 

to obtain the results. Blots were analyzed using Image J software. 

 

4.5.5 MDA-MB-468 cells Western-Botting 
 
MDA-MB-468 human breast cancer cells (EGFR overexpressing) were serum-

starved overnight and then pre-treated with DMSO or CsA (15 uM) for 30 

minutes. Cells were then stimulated with EGF (100 ng/ml) for 1, 30 or 60 

seconds and lysates were analyzed by western-blotting (see 4.5.4) with anti-

pY221 Crk, anti-Crk or anti-Actin antibodies. 
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