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ABSTRACT OF THE DISSERTATION
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By Yao Li

Dissertation Director:

Predrag Spasojević

This dissertation focuses on linear packet combining (coding) strategies for bulk content

data distribution in packet-switching networks and their effects on transmission cost. The

employment of packet level codes aims to reduce the communication overhead needed to

exchange real-time network states to restore packet losses, or to plan for efficient sharing

of communication links. The aim is achievable due to the additional diversity introduced

by coding, which increases the possibility of extracting innovative information by receivers.

Nevertheless, increased computational complexity is entailed and may lower the throughput

of network node processors and hence the communication throughput. This dissertation,

in particular, studies coding strategies generating linear combinations of packets that are

decodable with reduced complexity.

Major efforts to reduce computational complexity include limiting the number of packets

combined in each coded packet and working with simple operations such as xoring. Two

representative classes of codes are LT codes and coding with generations (hyperblocks).

LT codes are the first class of fountain codes, especially suitable for multicast applications.

Coding with generations is also of interest due to other practical reasons, such as source

clustering.

ii



We study these codes in two settings: (1) Content delivery to heterogeneous users ex-

periencing varied channel conditions and having diverse demand volumes; (2) One or more

users collecting packets from a “cloud” of source nodes storing the content. Throughput

performance is characterized analytically and optimized or improved by parameter selection

and code design. In particular, with scenario (2), a probability analysis is conducted using

balls-into-bins models. We show that (1) the achievable throughput and energy performance

with coding and without receiver feedback can beat that achievable with receiver feedback

but without coding; (2) fast encoding and decoding is essential to increasing the through-

put limits; (3) employing coding such as LT codes with optimized degree distribution can

increase the efficiency of a simultaneous service to heterogeneous users; (4) coding with

generations compensates for the lack of coordination between sources or between collectors;

and (5) the proposed random annex codes based on coding with generations effectively

reduces transmission redundancy by introducing overlaps between generations.
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Chapter 1

Introduction

1.1 Motivation

From audio tracks to video news clips and movies, today’s internet is filled with traffic

delivering bulk digital media content to billions of electronic devices, including desktop

computers, laptops, smartphones, and even internet-enabled TV sets. In order for the users

to be able to share the communications medium, large files are usually broken into smaller

packets before injected into the internet for circulation. Due to unreliable physical links and

network congestions, packets could be dropped on the way as a result of uncorrectable bit

errors or buffer overflows. To recover packet losses, traditionally a retransmission mechanism

(TCP, for example) is employed between the sender and the receiver. For single-link point-

to-point duplex communications, such a mechanism is straightforward. However, when there

are more than one senders and (or) more than one receivers involved, or when there is not

timely feedback from the receiver to the sender, the mechanism could become complicated

and less efficient, lowering service rate.

Service availability and latency can be improved through augmenting the accessible

bandwidth and computing resources. This is attainable by deploying additional dedicated

infrastructure, such as in Content Delivery Networks(CDN) (e.g. Akamai [?]; see [4] for a

comprehensive survey), or by allowing peer users to assist each other, such as in peer-to-

peer (P2P) systems (e.g. BitTorrent [5]; see [6] for a comprehensive survey). Nevertheless,

the problem of planning these resources for efficient use is still nontrivial. Especially when

facing heterogeneous and dynamic network environments and user requests, it becomes hard
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to optimally schedule the content packets for delivery to a multitude of users.

Another approach is to encode across the packets instead of sending the original packets

only. In this way, the information contained in a packet is “stitched” into multiple packets,

making it possible to recover a missing packet by decoding the other packets received. In

this work, we explore the use of packet-level coding in content networking in order to (1)

combat packet losses without receiver feedback and (2) reduce the transmission overhead

due to the lack of smart scheduling and coordination between users. Our coding schemes

are developed on top of fountain codes and random linear network coding.

The concept of digital fountains was first proposed in [7], under which receivers are

able to retrieve the content of interest as soon as they have collected a sufficient number

of indistinguishable “drops” of the content, regardless of the specific collection of drops.

The digital fountain is particularly appropriate for scenarios where a sender is unaware of

or has difficulty keeping track of channel erasures. Fountain codes (rateless codes), such

as LT codes [8] and Raptor codes [9] have been proposed for practical realization of digital

fountains.

Meanwhile, the seminal work of Ahlswede et al. [10] reveals that in multicasts it is in

general not optimal to regard the information as a “fluid” that can merely be routed or

replicated. By employing coding at network nodes, an approach referred to as network

coding, bandwidth required to deliver information can be saved. Following this informa-

tion theoretic revelation, random linear network coding was proposed in [11] for “robust,

distributed transmission and compression of information in networks”. Later, the idea of

circulating random linear combinations in the network was applied to peer-to-peer file dis-

tribution in [12]. In [12] it was observed from experimental results that sending random

linear combinations of the packets shortens the downloading time and reduces the impact

of peer churn and selfish peers on the overall throughput. However, analysis is lacking in

characterizing the benefits. Our work proposes practical packet-level coding schemes and

characterizes the achievable throughput with these coding schemes in content delivery and
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content collection.

1.2 Organization

In the following Chapter 2, we introduce the basic packet-level coding strategies studied

throughout this thesis. The letter notation used in this disseration is as defined in Chapter 2

unless otherwise stated.

The remainder of this thesis is presented in two parts. Part I studies coded content

delivery from one server to one or more receivers when receiver feedback is not available for

selective retransmissions. In Chapter 3, the throughput performance of a basic round-robin

transmission scheme with generations (hyperblocks) is characterized theoretically. The ac-

curacy of the analysis is verified against experimental measurements. It is also shown

through experiment results that the achievable throughput and energy performance with

coding and without receiver feedback can beat that achievable with receiver feedback but

without coding, and that fast encoding and decoding is essential to increasing the through-

put limits. Chapter 4 studies coded broadcast to heterogeneous users having varied demand

volumes and experiencing diverse link qualities. In this chapter, LT codes, growth codes,

and coding with generations are adapted for the heterogeneous scenario and the total num-

ber of transmissions required to deliver the demands of all users are evaluated and compared.

Especially, LT codes are adapted by the optimization of the “degree distribution” of coded

packets. It is shown that employing coding such as LT codes with optimized degree distri-

bution can increase the efficiency of a simultaneous service to heterogeneous users. Part II

studies another content networking scenario, where one or more collectors collect(s) content

fragments from a “cloud” of storage nodes. The coding schemes studied in this scenario are

based on coding with generations, and analysis is performed from the balls-into-bins per-

spective. Chapter 5 introduces mathematical preliminaries of some balls-into-bins models

applicable to our studies. In particular, our extended results of the coupon brotherhood
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problem [13, 14] are presented. These results are essential to the analysis of the through-

put performance of random collection with coding with generations. Chapter 6 analyzes

random collection with a single collector. It is shown that the throughput performance im-

proves with increasing generation size. In addition, allowing overlaps between generations

further improves the throughput. Random Annex Codes, a coding scheme with overlapping

generations, are proposed. The throughput performance of the codes is analyzed and signif-

icant improvement is shown over previously proposed schemes with overlapping generations.

Chapter 7 studies collection with multiple collectors, particularly, the union collection of

the collectors.
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Chapter 2

Packet-Level Coding Strategies for Content Networking

Throughout the thesis we consider the circulation of a content file F that is divided into N

blocks (or packets, used interchangeably throughout this work), denoted as ξ1, ξ2, . . . , ξN .

Each packet ξj(j = 1, 2, . . . , N) can be represented as a bit vector of length b, or a vector

of bq = b/ log2 q symbols from Fq, a finite field of size q. With a slight abuse of notation, ξj

is used to denote any of the above representations, where q is determined by context.

Definition 1. The file F is expressed as a set of N packets:

F = {ξ1, ξ2, . . . , ξN}.

In this work, we focus on coding strategies that output coded packets as linear combi-

nations of the original file packets.

One simple coding strategy is to generate and send random linear combinations of the

file blocks by applying N linear combining coefficients c1, c2, . . . , cN that are independently

and equally probably drawn from Fq. The coding coefficients (or a compressed version) are

sent along with the coded block ξ̄ =
∑N

j=1 cjξj. Vector c = (c1, c2, . . . , cN ) is also referred

to as the coding vector of the coded packet. Coded packets are linearly independent if their

corresponding coding vectors are linearly independent. A receiver is said to have collected

k degrees of freedom (dofs) if it has collected k linearly independent coded packets.

When a receiver has collected k dofs, the probability that a newly received coded packet

is a linear combination of the existing coded packets is qk/qN = qk−N , and therefore the

expected number of coded packets required to increase the dofs in the collection by 1,

which is the expected waiting time of the first success of Bernoulli trials with success
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probability 1−qk−N , is 1/(1−qk−N ). Thus, the expected number of coded packets required

to accumulate 1 dof is at most a constant 1/(1− q(N−1)−N ) = q/(q−1). Hence, the receiver

is able to collect N dofs as soon as it has collected around N · q/(q − 1) = O(N) coded

packets. With each coded packet the receiver collects an equation in the form of

N
∑

j=1

cjξj = ξ̄,

where the original packets ξjs are N unknown variables and cjs and ξ̄ are the coding

coefficients and the resulting linear combination known to the receiver. When N dofs have

been collected, ξ1, ξ2, . . . , ξN can be decoded by solving the system of equations formed from

all the coded packets.

A major concern in implementing such a coding scheme lies in the extra computational

complexity involved that may hurt throughput and increase energy consumption. To solve

for the packets by Gaussian elimination, O(N3) Fq-operations are required for matrix in-

version and O(N2bq) for multiplication. Experimental works such as [15] have reported

difficulty in decoding more than 512 blocks together on a hand-held device. There have

been attempts to reduce the complexity of encoding and decoding by sparsifying the coding

vectors, that is, by reducing the number of nonzero entries in the coding vectors. In the

remainder of this chapter, two representative approaches to coding complexity reduction

are described, and these two approaches serve as the basis of the coding schemes proposed

and investigated in our work.

2.1 LT Codes

LT codes were first proposed by Michael Luby in [8] as a class of codes designed to overcome

variations in channel quality via ratelessness. Unlike their rateless predecessors, the ordinary

random linear codes, LT codes can be decoded by simple suboptimal decoders with little

loss in performance.
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2.1.1 Encoding

The LT codes defined in Luby’s original paper [8] are binary codes. An LT encoder outputs a

potentially infinite stream of random linear combinations of the N original content packets,

Each coded packet is generated independently as follows: first, pick a degree d according to

a distribution defined by its moment generating function

P (N)(x) = p1x+ p2x
2 + . . .+ pNxN , (2.1)

where pj , Prob[d = j] and the superscript (N) indicates that the degree distribution is

defined for coding with a total of N packets; then, select with equal probability one of the

(N
d

)

possible combinations of d distinct packets from the N content packets, and form a

coded packet of degree d by linearly combining the chosen packets over F2. The binary

coding vector c = (c1, c2, . . . , cN ) has exactly d non-zero components corresponding to the

chosen packets. The generated coded packet is given by
∑N

j=1 cjξj and is of the same size

b as each original file block. The N -bit coding vector c can be embedded into the coded

packet and transmitted to the user. In wireless communications where data packets are

generally of at most a few kilobytes’ size, if N ∼1K, it is costly to add an extra N bits.

Instead, the source can embed into the packet the degree of the coding vector and the seed

of a pseudo-random number generator that is in shared knowledge of both the source and

all the sink nodes, to allow the sink node to regenerate the coding vector locally.

2.1.2 Decoding

Decoding of LT codes is done by a belief propagation decoder [8, 9]. After receiving a certain

number of coded packets, the receiver decoder attempts to decode, and the decoding process

is described as follows. The decoder maintains a set called the ripple. The initial ripple

is composed of all received coded packets of degree-1. In each decoding step, one coded

packet in the ripple is processed by removing it from the ripple, substituting it into all the

coded packets it participates in, which reduces the degrees of these coded packets. The
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coded packets whose degrees are reduced to 1 are added to the ripple, and the decoder

continue to process another coded packet in the ripple. The decoding process halts when

the ripple becomes empty. If decoding halts before enough file packets have been decoded,

the receiver waits to collect more coded packets and make another attempt to decode when

more degree-1 coded packets have been received. It is provable that the order in which

the degree-1 packets are processed does not affect the decoding result when the decoding

process halts. Hence, for performance analysis purposes, we may as well assume each

decoding attempt starts from forming the initial ripple from the whole set of (non-reduced)

received coded packets.

As shown in [8, 9], the relationship between the number of coded packets collected

and the number of decodable file packets is determined by the degree distribution used to

generate the coded packets. This relationship will be elaborated in Section 4.3.1.

2.1.3 Computational Complexity

It was shown in [8] that, with the robust soliton distribution defined therein, each coded

packet can be generated, independently of all other coded packets, on average byO(b ln(N/δ))

xor operations, and the N original packets can be recovered from any N+O(
√
N ln2(N/δ))

of the coded packets with probability 1− δ by on average O(bN ln(N/δ)) xor operations.

With the robust solition distribution, the fraction of degree-1 coded packets is low,

and the growth of the number of decodable file packets with the growth of the number of

collected coded packets displays a threshold behavior. That is, few packets are decodable

when fewer than N coded packets have been collected, and most of the packets become

decodable only after more than N coded packets have been collected. Such a property

makes it inefficient to use the code if some receivers only demand a subset of the N packets.

In Chapter 4, the degree distribution of LT codes are optimized for efficient delivery of

multiple description coded content to heterogeneous users having diverse demand volumes

and experiencing varied channel qualities.
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2.2 Coding with Generations

Another approach to sparsify coding vectors is to group blocks into “hyperblocks” or “gen-

erations” so that the file packets involved in each coded packet always belong to the same

generation. LT codes are of lower complexity than the random linear combination strategy

introduced at the beginning of this chapter. However, if coded packets are to be further

mixed at network nodes, it is hard to tune the degree distribution and maintain the sparsity

of the coding vectors. Coding with generations, on the other hand, limits the maximum

number of packets involved in each coded packet and keeps the size of the decoding problem

small.

2.2.1 Forming Generations

Generations are non-empty subsets of the content file F , which is a set of N packets, as

defined at the beginning of this chapter.

Suppose that n generations, G1, G2, . . . , Gn, are formed s.t. F = ∪n
j=1Gj . To in-

troduce the basic coding scheme here, we assume the generations to be disjoint, i.e.,

∀i 6= j, Gi ∩ Gj = ∅. The size of each generation Gj is denoted by gj, and its elements

ξ
(j)
1 , ξ

(j)
2 , . . . , ξ

(j)
gj . For convenience, we will occasionally also useGj to denote the matrix with

columns ξ
(j)
1 , ξ

(j)
2 , . . . , ξ

(j)
gj . When all generations have a uniform size, use g = g1 = · · · = gn

to denote the generation size.

In each transmission, the server first selects one of the n generations according to a

certain rule, e.g. round-robin or at random. Once generation Gj is chosen, the source

chooses a coding vector c = (c1, c2, . . . , cgj ), with each of the gj components chosen from

Fq. A coded packet

ξ̄ =

gj
∑

i=1

ciξ
(j)
i

is then formed by linearly combining packets from Gj by c.
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2.2.2 Decoding

For coding with disjoint generations, the decoder attempts decoding of generation Gj when-

ever a coded packet generated from Gj is received. Once there are gj coded packets with

linearly independent coding vectors in the receiver collection, the receiver can successfully

decode Gj by Gaussian elimination. If the coding vectors are generated following some

special rule, a faster decoding algorithm can be used, though a few more coded packets

might be required, such as with LT codes. The decoding of file F is successful when all

generations and hence all N file packets are decoded.

2.2.3 Packet Overhead

Contained in each coded packet are the index of a generation Gj and a linear combining

vector for Gj which together take up ⌈log2 n⌉ + gj⌈log2 q⌉ bits. Meanwhile, the data in

each coded packet comprise bq⌈log2 q⌉ bits. The generation size makes a more significant

contribution to packet overhead than the number of generations, and such contribution is

non-negligible due to the limited size (∼ a few KB) of transmission packets in practical net-

works. This gives another reason to keep generations small, besides reducing computational

complexity.

2.2.4 Computational Complexity

The computational complexity for encoding is O(bq max{gj}) per coded packet for linearly

combining the gj information packets in each generation (recall that bq is the number

of Fq symbols in each information packet, as defined in Section 2.2.1). For decoding,

the largest number of unknowns in the systems of linear equations to be solved is not

more than max{gj}, and therefore the computational complexity is upper bounded by

O((max{gj})2 + bq max{gj}) per original file packet.
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Part I

Coded Content Delivery
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Chapter 3

Round-Robin File Transfer with Generations

3.1 Introduction

We start Part I with a study of three coding-with-generations-based rateless coding schemes

to combat random packet losses in a single-hop, feedback-less scenario. Two of the schemes

are based on random linear coding, and the third is based on structured MDS coding such as

Reed-Solomon (RS). All schemes follow round-robin scheduling. Since there is no feedback

until the entire file has been downloaded, the round-robin protocol may result in many

superfluous transmissions for already decoded generations.

This chapter is organized as follows: In Section 3.2, we introduce our coding and schedul-

ing models, and define our performance measures. In Section 3.3, we present an analysis of

the schemes. In Section 3.4, we describe the experimental setup, and present measurement

results collected on a mobile platform. In Section 3.5, we discuss the results and future

work.

3.2 Round-Robin Generation Scheduling

We consider transmission without feedback over a memoryless binary erasure channel be-

tween a sender and a receiver. In a packet network, the erasure rate is evaluated as the

packet loss rate, denoted as ǫ. For the theoretical analysis, we assume that ǫ stays constant,

regardless of time and the transmission protocol.
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3.2.1 Performance Measures

We characterize the delivery packet count, which is defined as the number of packets that

have to be sent until the receiver is able to recover the entire file of N packets. Delivery time

is the time the receiver has to spend in the system until it is able to recover the content. It is

determined by the delivery packet count, the packet size, and the rate of data transmission.

3.2.2 Coding within Generations

We study coding with generation with generations selected in a round-robin fashion: send

one coded packet from each generation sequentially and wrap around.

As for the encoding scheme within the generations, we study three schemes: the random

linear combination approach, the random linear combination approach with a systematic

phase, and using an MDS (maximum distance separable) erasure code. We assume a uniform

generation size of g.

Random Linear Combinations over Fq (RL)

In this scheme, each component cj(j = 1, . . . , g) of each coding vector is chosen indepen-

dently and equiprobably from Fq. The resulting coded packet is
∑g

i=1 cjξj.

Random Linear Combinations Including a Systematic Phase (RLS)

This is a variation of the RL scheme that includes a systematic phase at the beginning:

send the original packets from ξ1 to ξN each once before starting to send random linear

combinations of the original packets.

Maximum Distance Separable Codes (MDS)

Over a finite field of small size, such as the common binary field, random linear combinations

chosen in the way specified in the RL scheme inevitably introduces non-negligible linear

dependency between the coded packets. For short lengths of data, we can use low-rate
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Maximum Distance Separable (MDS) Codes instead. An MDS(K,g) code is a code with

which g packets are encoded into K coded packets, and all the g packets are recoverable as

soon as any g of the K distinct coded packets have been collected. To extend transmission

after the sender has exhausted all theK coded packets, the sender repeats the coded packets

in a round-robin fashion. The parity check code is a binary MDS code where K = g + 1.

Reed-Solomon codes are another important class of MDS codes that operate on GF(2l) with

g < K < 2l. The increased complexity that comes with operations on a finite field of large

size, however, can possibly undo the benefit brought by the MDS property, as we will later

show in our experimental results.

3.3 Statistics of the Delivery Packet Count

In this section, we characterize T , the delivery packet count of coding within disjoint gen-

erations following the round-robin generation scheduling scheme. We assume that in each

round, one coded packet is created from a generation that is selected from the n generations

in a wrap-around fashion. After the tth transmission, mt = ⌊t/n⌋ rounds have been com-

pleted. By that time, mt+1 packets will have been sent from each of the first rt = t−mtn

generations, and mt packets from each of the rest n− rt = (mt + 1)n − t generations.

Since the generations are disjoint, each generation is decoded independently. Let Mg,ǫ

be the number of coded packets needed to be sent over a link of packet erasure rate ǫ from

a generation of size g so that the receiver can decode all file packets in the generation. Let

pm,g,ǫ be the probability that Mg,ǫ ≤ m. Let pt be the probability that T ≤ t. Then, since

each generation is decoded independently, pt is the product of the probabilities that each

generation is decodable after t transmissions. We have

pt = prtmt+1,g,ǫp
n−rt
mt,g,ǫ.

Note that since pm,g,ǫ is the cumulative probability function of Mg,ǫ, pm,g,ǫ is non-decreasing
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in m, and hence pt is bounded as follows:

pnmt,g,ǫ ≤ pt < pnmt+1,g,ǫ. (3.1)

Hence,

E[T ] =
∞
∑

t=0

(1 − pt) (3.2)

=

∞
∑

mt=0

n−1
∑

rt=0

(1− prtmt+1,g,ǫp
n−rt
mt,g,ǫ)

=

∞
∑

m=0

(

n− pm,g,ǫ

pn−1
m+1,g,ǫ − pn−1

m,g,ǫ

pm+1,g,ǫ − pm,g,ǫ

)

. (3.3)

And by (3.1) and (3.2), we have

n

∞
∑

m=1

(1− (pm,g,ǫ)
n) < E[T ] ≤ n

∞
∑

m=0

(1− (pm,g,ǫ)
n). (3.4)

In the following, we characterize pm,g,ǫ for different coding schemes within each genera-

tion.

3.3.1 RL Scheme

In this scheme, each coded packet is statistically the same; it is simply a random linear

combination of the source packets. To decode a generation of size g, a number g of linearly

independent coded packets must be received. When m coded packets have been transmitted

over the channel with erasure rate ǫ, some j ≥ g have to be received, and among them g

have to be linearly independent. Therefore, the probability pRL
m,g,ǫ of successful decoding,

given m ≥ g coded packets have been transmitted is given as follows:

Claim 1.

pRL
m,g,ǫ =

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j
g−1
∏

s=0

(1− qs−j) (3.5)

The product in the equation is the probability that a j × g matrix with random entries

chosen independently and equiprobably from GF(q) is of full column rank g. It is equal to
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the probability of having g linearly independent coded packets among j coded packets. We

can lower bound this product as follows (see [16, Lemma 7]):

g−1
∏

s=0

(1− qs−j) ≥











0.288, if q = 2 and g = j;

1− 1
qj−g(q−1)

, otherwise.

(3.6)

When q is large, we can further approximate pRL
m,g,ǫ as follows:

pRL
m, g,ǫ &

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j − 1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)j(qǫ)m−jqg−m

3.3.2 RLS Scheme

This scheme consists of two phases. In the first (systematic) phase, only uncoded packets

are sent, and the second phase is the same as the RL scheme described above. For each

generation, first each of the original g packets is transmitted once, followed by random linear

combinations of all the packets.

Without loss of generality, we examine the decoding of generation G1. None of the

generations can be fully decoded before the systematic phase is finished. Hence,

pRLS
m,g,ǫ = 0, for m < g.

When m = g, it is clear that the generation can be successfully decoded if and only if none

of the g uncoded transmissions is erased over the channel, and hence

pRLS
g,g,ǫ = (1− ǫ)g.

Now consider m > g. Let AS be the event that in the initial g uncoded transmissions, all

the packets in some set S ⊆ G1 have been received. Let l = |S| be the number of packets in

S. G1 is fully decodable if S = G1. Otherwise, S ⊂ G1. The packets in S can be substituted

into the equations formed from the coded packets received subsequently. The receiver needs

to solve for |G1\S| = g− l unknowns instead of |G1| = g unknowns. Delete from the coding

vectors the entries corresponding to the packets in S, and we refer to the resulting vectors of

length g− l as the residual coding vectors. Then, G1 is decodable if and only if in the next
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m− g transmissions, at least g − l coded packets with linearly independent residual coded

vectors reach the receiver. Since each entry of the residual coding vectors are then still

independently and equally probably chosen from Fq, the probability that G1 is decodable

given AS is exactly pRL
m−g,g−l,ǫ. On the other hand,

Prob[AS ] = (1− ǫ)|S|ǫg−|S|,

where |S| is the number of packets in S. Therefore,

pRLS
m,g,ǫ =Prob[AG1 ] +

∑

S⊂G1

Prob[AS ]p
RL
m−g,g−|S|,ǫ

= (1− ǫ)g +
∑

S⊂G1

(1− ǫ)|S|ǫg−|S|pRL
m−g,g−|S|,ǫ

= (1− ǫ)g +

g−1
∑

l=|S|=0

(

g

l

)

(1− ǫ)lǫg−lpRL
m−g,g−l,ǫ.

We state in the following Claim 2 the above result along with a lower bound for pRLS
m,g,ǫ.

Claim 2. With the RLS scheme, the probability of receiving g linearly independent packets

from m transmissions is

pRLS
m,g,ǫ =(1− ǫ)g +

g−1
∑

l=0

(

g

l

)

(1− ǫ)lǫg−lpRL

m−g,g−l,ǫ (3.7)

&
m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j +
(1− ǫ)g

q − 1
(
1− ǫ

q
+ ǫ)m−g−

− 1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j

Proof. Please refer to Appendix A.

3.3.3 MDS Scheme

Suppose we use an MDS code which encodes g symbols into K symbols such that the g

symbols can be entirely recovered as long as g distinct symbols have been received. We

apply the code to generate K encoded packets from g original packets, and transmit the K

encoded packets in a round-robin fashion.
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Let um = ⌊mK ⌋ and vm = m− umK be the quotient and the remainder of the number of

transmissions m divided by the code block length K. Then, after m transmissions, the first

vm of the K encoded packets have been transmitted um + 1 times and the last K − vm of

the K encoded packets have been transmitted um times. The probability that an encoded

packet has been received is then 1− ǫum+1 for any packet among the first vm, and 1− ǫum

among the last K − vm. The probability pMDS
m,K,g,ǫ of successful decoding of all the g packets,

given m encoded packets have been transmitted, is equal to the probability that at least g

of the K encoded packets have been received, or at most K− g encoded packets have never

been received. Therefore, pMDS
m,K,g,ǫ can be computed by summing up the probability that l

of the first vm packets are absent and j of the remaining K − vm packets are absent in the

receiver collection for all integers l and j satisfying 0 ≤ l + j ≤ K − g.

Claim 3.

pMDS
m,K,g,ǫ =

K−g
∑

l=0

(

vm
l

)

(ǫum+1)l(1− ǫum+1)vm−l (3.8)

·
K−g−l
∑

j=0

(

K − vm
j

)

(ǫum)j(1− ǫum)K−vm−j .

where um = ⌊mK ⌋, vm = m− umK, and
(a
b

)

= 0 for b > a.

When m ≤ K, um = 0, vm = m, (3.8) becomes

pMDS
m,K,g,ǫ =

m−g
∑

l=0

(

m

l

)

ǫl(1− ǫ)m−l =

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j .

When K = g, the code is the repetition code, and the right hand side of (3.8) becomes

(1− ǫum+1)vm(1− ǫum)K−vm because

K−g
∑

l=0

(

vm
l

)

(ǫum+1)l(1− ǫum+1)vm−l
K−g−l
∑

j=0

(

K − vm
j

)

(ǫum)j(1 − ǫum)K−vm−j

=

(

vm
0

)

(ǫum+1)0(1− ǫum+1)vm
(

g − vm
0

)

(ǫum)0(1− ǫum)K−vm

= (1− ǫum+1)vm(1− ǫum)K−vm .
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3.4 Numerical and Experimental Results

To evaluate the performance of the schemes discussed in the previous section, the schemes

were implemented on an experimental platform consisting of a laptop computer and a

smartphone1. The time and the energy consumption required for the receiver to recover the

whole file are measured. In this section, the experimental results are presented along with

the theoretical predictions.

3.4.1 Experimental Setup

The experimental setup consists of an HP Pavilion dv5-1120eg laptop computer as a trans-

mitter and a Nokia N8 smartphone as a receiver. The specifications for the Nokia N8 are

shown in Table 3.1.

Table 3.1: Specifications of the Nokia N8
Operating System Symbianˆ3

CPU ARM11 @ 1 GHz

Memory 256 MB SDRAM

Display 640 x 360 pixels, 3.5 inch

Battery BL-4D (3.7 V, 1200 mAh Li-Ion)

Both the laptop and the smartphone runs the same native C++ application (in sender

and receiver mode, respectively) implemented using the Qt cross-platform application frame-

work. The laptop transmits a file at a nominal application-layer data rate of 1000KB/s via

UDP and using IEEE 802.11b at a physical layer rate of 11 Mbps. A transmitted file con-

sists of 512 random packets having 1400 data bytes each. These data packets are encoded

following the three encoding schemes described in Section 4.2. The receiving cell phone tries

to decode the original file without sending any feedback information to the sender except

for a final completion indicator transmitted only when the file is fully decoded. The sender

stops transmission once it has received this completion signal.

1The experiment results and artworks presented in this section were contributed by Péter Vingelmann
and Morten Videbæk Pedersen.
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During the measurements the following information is recorded:

1. Number of packets sent before receiving the completion signal.

2. Number of packets received before sending the completion signal.

3. Time elapsed from the time when the first packet is received to the completion time.

4. Energy consumption by the receiver during the elapsed time. The test application

uses the Control API of the Nokia Energy Profiler [17] to programmatically monitor

(and record) the energy consumption of the mobile phone. The margin of error for

these energy readings is 3%.

Each test was repeated 100 times for each generation size and encoding scheme pair.

The following section presents the experimental results observed.

3.4.2 Results

Figure 3.1 shows theoretical predictions for the normalized delivery time (i.e. how many

packets are needed to successfully deliver one packet) under typical channel conditions in

our experimental setup. The predictions are calculated from (3.3) where pm,g,ǫ is obtained

from (3.5), (3.7), or (3.8). We observed that the packet loss rate (ǫ) is around 15% on

an idle receiver when the sender is transmitting at a nominal rate of 1000KB/s. The

RL and RLS schemes encode over the binary field, and the MDS schemes are represented

by a Reed-Solomon (RS) code (n = 255,K = g) and a simple Parity Check (PC) code

(n = g + 1,K = g) that has one parity symbol (all original symbols XORed together). We

observe that the overhead per packet drops as the generation size increases, and thus the

probability of transmitting a packet for an already decoded generation decreases. This is not

true for PC(g+1,g) that can only cope with very low packet loss rates. The incorporation of

a systematic phase in the random linear combination approach helps to reduce overhead for

small generation sizes, but the gap quickly closes as the generation size increases. The Reed-

Solomon code curve is near optimal since the code rates we use are much lower (R < 0.51)
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Figure 3.1: Predicted normalized expected delivery packet count (number of transmitted
packets required to recover the entire file) versus generation size (assuming packet loss rate
ǫ = 0.15). RL: Random linear combinations. RLS: Random linear combinations with a
systematic phase. RS(255,g): Reed-Solomon codes. PC(g+1,g): A systematic code with a
single coded packet as the bit-by-bit xor-sum of all file packets.

4/plots_python/numerical_delivery_count_015.eps
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Figure 3.2: Measured delivery packet count versus generation size

than the packet loss rate, and with a high probability the transmission finishes before the

sender runs out of the 255 coded packets for each generation.

Figure 3.2 shows the average number of packets sent per successfully delivered packet

as measured in our experiments. This was calculated using the total number of packets

sent and received divided by the number of packets in the test file (i.e. 512). For small

generation sizes, we observe that increasing the generation size lowers the overhead per

packet. These values are in accordance with the predictions in Figure 3.1. We would expect

this trend to continue, since ideally we would use a single generation for the entire file. This

would eliminate the possibility of transmitting packets that belong to an already decoded

generation. However, this is not the optimal strategy in practice due to the increasing

computational complexity. Figure 3.2 shows that the overhead per sent packet increases

4/plots_python/experiments.eps
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significantly for the RS(255,g) scheme when g > 16, and for the RL scheme when g > 64.

This indicates that the computational load on the receivers was too high, and they were

unable to keep up with the transmission rate of the sender. The offset between the RS(255,g)

and RL scheme may be explained by the larger field size used by the RS(255,g) scheme.

Utilizing large fields (e.g. q = 28) typically requires some form of memory based look-up

table to perform multiplication and division, whereas all operations in the binary field (q =

2) may be implemented using CPU instructions for binary XOR and AND operations. The

RS implementation was based on a non-systematic Vandermonde matrix, other approaches

such as utilizing binary Cauchy matrices [18] should be considered to further increase the

performance of this implementation.

The lower computational requirements associated with the systematic packets in the

RLS scheme clearly benefit the overall system performance. It is however worth noting that

the systematic phase assumes that the receivers did not receive any packets previously. The

systematic phase might lead to an additional overhead if the state of the receivers is initially

unknown. The curve of the RLS scheme only deviates from the predicted values for very

high generation sizes, 256 and 512.

Figure 3.3 shows that when we plug the average (application-layer) packet loss rate

observed from the experiments (the loss rates are higher for larger generation sizes) into

Claims 1-3, the theoretical predictions still match experimental data. This confirms the

validity of our characterization.

The energy consumption of the communication system is especially important on battery-

driven mobile devices. In Figure 3.4, we show the average energy consumption in Joules

per file download. This is compared to the net throughput observed throughout the test.

Due to the dominant impact of the wireless radio on the power consumption, we observe a

significant connection between these two measured quantities. As the power consumption

of the wireless radio remains relatively stable, when not in power-save or sleep mode, the

energy consumption largely depends on the time needed to complete a test, and thus it is
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inversely proportional to the net rate. In order to minimize the energy consumption of the

protocol, we need to maximize the net rate.

When comparing the RS(255,g) to the binary-field RL and RLS codes, we observe that

using a larger field size yields a better code performance at lower generation sizes. On the

other hand, it is unable to sustain the low overhead as the generation size and thereby the

computational complexity increases.

Although these results and the specific optimal values are certainly device- and system-

dependent, we expect that other devices would exhibit similar tendencies, but the actual

values would be shifted depending on the capabilities of the given platform. Faster devices

might be able to support higher generation sizes and higher data rates.

3.5 Conclusion and Future Work

In this chapter, we considered three packet-level coding schemes for streaming over lossy

links: random linear coding (RL), systematic random linear coding (RLS), and maximum

distance separable coding (MDS). We characterized the exact distribution and the expected

value of the delivery packet count of coding within disjoint generations following the round-

robin generation scheduling scheme, taking into account the effect of field size and generation

size. Our characterization matches experimental results.

The three coding schemes were implemented on a laptop computer and a Nokia N8

smartphone using the Qt cross-platform application framework. We presented measurement

results collected during numerous experiments with various settings. Results show that the

computational complexity has a significant impact on the performance of these schemes.

The RLS scheme is the least computationally intensive, thereby it is able to achieve the

highest net data rate and the lowest energy consumption.

In the future, we plan to implement other codes such as LT codes, Raptor codes, and

systematic Reed-Solomon codes on the same testbed in order to compare their performance

to the coding schemes discussed in this paper. The cost of random memory access and finite
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field operations is non-negligible on a terminal with constrained capacity. A model should

be devised that can account for these factors to give predictions on other platforms with

different capabilities and constraints.
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Chapter 4

Coded Broadcast to Heterogeneous Users

4.1 Introduction

4.1.1 Motivation

In the past decade, the development of wireless networks has provided a fertile soil for pop-

ularization of portable digital devices, and the digital distribution of bulk media contents.

This, in return, is stimulating new leaps in wireless communication technology. Today,

devices retrieving digital video content in the air vary from 1080p HDTV sets to smart-

phones with 480×320-pixel screen resolution. Under assorted restraints in hardware, power,

location, and mobility, these devices experience diverse link quality, differ in computing ca-

pability needed to retrieve information from received data streams, and request information

of varied granularity. Consequently, a transmission scheme designed for one type of users

may not be as suitable for another even if they demand the same content.

Today’s technology implements a straightforward solution of separate transmissions to

individual users, that is, multiple unicasts. Nonetheless, the key question is whether it is

possible to deliver all users’ demands with fewer data streams and less traffic. Especially in

transmitting bulk data through wireless channels or over other shared media, reducing the

amount of traffic is vital for reducing collision/interference, which in turn will also positively

affect the quality of the channel in use. An additional concern in the environment conscious

world is, of course, energy.

There is no surprise then that the problem of delivering more efficient service to a

heterogeneous user community has attracted a great deal of both technical and academic
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interest. On the source coding side, layered coding (e.g.[19, 20]) and multiple description

coding [21] have been widely studied as solutions to providing rate scalability. In particular,

with multiple description coding, a user is able to reconstruct a lower-quality version of the

content upon receiving any one of the descriptions, and is able to improve the reconstruction

quality upon receiving any additional description. Thus, the users’ content reconstruction

quality is commensurate with the quality of their connection. On the channel coding side,

rateless codes [8, 9], or fountain codes, can generate a potentially infinite stream of coded

symbols that can be optimized simultaneously for different channel erasure rates as long as

the users have uniform demands.

In this work, we explore an achievable efficiency of serving users having heterogeneous

demands while using a single broadcast stream. Whereas the information theoretical aspect

of the problem is of interest and under investigation (see for example [22] and references

therein), we focus on three practical coding schemes and explore their suitability for the

described communications scenario. Two important features that make codes suitable for

such scenarios are (1) the ability to support partial data recovery and (2) the ability to

efficiently adapt to different channel conditions. Based on these desirable features, we chose

to investigate three candidates: LT [8], growth [23], and chunked [24, 25] codes. In this

chapter, we are particularly interested in the total number of source transmissions needed

to deliver the demands of all users. This quantity determines the amount of required

communication resources, and also translates to the amount of time required for delivery.

In the streaming of temporally-segmented multimedia content that is delay-constrained, it

is important for the source to finish transmitting a segment as soon as possible so as to

proceed to the next one. Some performance measures of interest are addressed in [26].

4.1.2 Main Results

We compare three coding schemes and their variations for broadcasting to heterogeneous

users: users suffer different packet loss rates and demand different amounts of data. The



30

coding schemes discussed include:

1. optimized LT codes, with or without a systematic phase, that is, one round of trans-

mission of the original uncoded packets;

2. growth codes; and

3. chunked codes, equivalent to coding with generations (Section 2.2) with randomly

scheduled disjoint generations of equal size, and using the RL coding scheme (Sec-

tion 3.2.2) within each generation.

We also compare these schemes to a reference scheme for the heterogeneous scenario based

on time-shared broadcast of degraded message sets [27]. We find that including a systematic

phase is significantly beneficial towards delivering lower demands, but that coding is neces-

sary for delivering higher demands. Different user demographics result in the suitability of

very different coding schemes. Growth codes and chunked codes are not as suitable to this

communication scenario as are optimized LT codes.

4.1.3 Organization

The rest of the chapter is organized as follows. Section 4.2 introduces the model of wire-

less broadcasting of multiple description coded content to heterogeneous users. Section 4.3

introduces the coding schemes of interest, and provide theoretical characterization of code

performance. In particular, the LT codes are optimized both with and without a system-

atic phase. In Section 4.4 we provide numerical and simulation results of the achievable

server delivery time, and discuss the suitability of these coded schemes for broadcast to

heterogeneous users. The last section concludes.

4.2 System Model

Consider a wireless single-hop broadcast network consisting of a source (server) node holding

content for distribution, and l sink (user) nodes waiting to retrieve the content from the
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broadcast stream aired by the source, as shown in Figure 4.1. Suppose the content held

N content blocks 

source

User 1 

User 2User 3 

(z3, e3) 

(z2, e2) 

(z1,  e1) 

Figure 4.1: Network model

at the source node is multiple description coded into N descriptions, using, for example,

one of the coding schemes described in [28] or in [29], and each description is packaged

into one packet for transmission. Each packet is represented as a binary vector of length

b, and denoted with ξj for j = 1, 2, . . . , N . A low-quality version of the content can be

reconstructed once a user is able to recover any description. The reconstruction quality

improves progressively by recovering additional descriptions, and depends solely on the

number of descriptions recovered, irrelevant of the particular recovered collection.

The source broadcasts one packet per unit time to all the sink nodes in the system.

However, the sinks are connected to the source by lossy links, and at every sink, a packet

either arrives at the sink intact or is entirely lost. Such an assumption is practical if we

only consider data streams at the network level or higher. Under the multiple description

3/figures/model_new.eps
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coding assumption, a sink node can choose to demand a smaller number of descriptions

rather than wait to collect all N . This may not only shorten its own waiting time but also

reduce the system burden. The demand of a sink node is characterized by the number of

descriptions it needs to reconstruct the content within the desired distortion constraint.

Sink nodes are characterized by parameter pairs (zi, ǫi), i = 1, 2, . . . , l, describing their

demands and link qualities:

• zi ∈ {1/N, 2/N, . . . , 1} is the fraction of content demanded by user i, that is, each

node demands ziN distinct descriptions.

• ǫi is the packet erasure (loss) rate on each link from the source to user i. A packet

transmitted by the source fails to reach user i with probability ǫi. All links are assumed

to be memoryless.

We further assume no feedback from the sinks to the source except for the initial requests

to register the demands and the final confirmation of demand fulfillment. We also assume

that the packet erasure rates ǫis on the links are known to the server. In wireless broadcast,

feedback from multiple nodes increases the chance of collision and compromises the point-

to-point channel quality. Hence, it is desirable to keep the feedback at a minimum.

Definition 2. (General Delivery Time) The delivery time Ti of a sink is a random variable

defined as the number of packets transmitted from the server until the fulfillment of the

demand zi of user i. The server delivery time T = maxli=1 Ti is the number of packets

transmitted from the server required to fulfill the demands of all the users.

Since all users retrieve information from the same broadcast stream through channels

of random erasures, Ti’s and T are dependent random variables. Nevertheless, even their

marginal probability distributions are not easy to characterize. Instead, in this paper,

we normalize the delivery time by the total number of content packets N , and restrict our

attention to either the expectation ti = E[Ti]/N or the asymptotics ti = limN→∞ Ti/N , and

study maxli=1 ti as the (normalized) server delivery time. When ti = E[Ti]/N , maxli=1 ti is
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a lower bound for E[T ]/N , the normalized expected delivery time. For brevity we further

abuse our notation and terminology and specialize the definition of delivery time to these

lower bounds. The specialization of a definition will be stated where appropriate. In the

rest of this paper, we describe and analyze three randomized coding schemes for broadcast

in a heterogeneous setting, optimize if appropriate, compare their performance, and discuss

their suitability to our end.

Note that with multiple unicasts, the total number of packets transmitted would be (in

the mean) at least
∑l

i=1
zi

1−ǫi
. We will show in our results that it is possible to do better

using broadcast.

4.3 Three Coding Schemes for Broadcast to Heterogeneous Users

In this section, we describe three coding schemes and characterize their delivery time perfor-

mance for broadcast to heterogeneous users. All the coding schemes studied in this chapter

are applied at the packet level. Each coded packet is obtained as a random linear combi-

nation of the original packets, but either the number or the range of the packets involved

in each linear combination is restricted.

4.3.1 LT Coded Broadcast

LT codes were first proposed by Michael Luby in [8] as a class of codes designed to overcome

variations in channel quality via ratelessness. Unlike their rateless predecessors, the ordinary

random linear codes, LT codes can be decoded by simple suboptimal decoders with little

loss in performance. In [30], Sujay Sanghavi pointed out the inadequacy of the original

LT codes for partial data recovery, and demonstrated the possibility of redesigning the LT

codes. His focus was on scenarios with users having uniform demands. Here we extend

the code optimization framework of [30] to adapt the code to the heterogeneous scenario in

which both the channel conditions and the demands vary among users.
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Characterization of the Recoverable Fraction of LT codes

Each user i needs to recover ziN content packets from the received coded packets.

Definition 3. (Recoverable Fraction) A fraction z is said to be recoverable by the belief

propagation decoder if the ripple size stays positive (at least) until zN packets get decoded.

Based on Theorem 2 in [31], Corollary 5 gives the expected ripple size as a function of

the recovered fraction of the content packets. We restate the part of Theorem 2 in [31] that

concerns the expected size of the ripple as Theorem 4.

Assume w ·N coded packets have been collected and fed into an LT decoder, for some

positive constant w. Let u · N be the number of decoded content packets, for a constant

u ∈ [0, 1). Let r(N)(u) be the expected size of the ripple, normalized by N .

Theorem 4. (Maatouk and Shokrollahi [31, Thm. 2]) If an LT code of N content packets

has degree distribution specified by the moment generating function P (N)(x) (see (2.1)),

then

r(N)(u) = wu
(

P (N)′(1− u) +
1

w
lnu
)

+O
( 1

N

)

, (4.1)

where P (N)′(x) stands for the first derivative of P (N)(x) with respect to x.

We further extend Theorem 4 to the case where the number of collected coded packets

is random to accommodate random packets losses over the channel. Assume the number of

collected coded packets is now W ·N , where W is a random variable with mean v. Denote

the normalized expected ripple size as N → ∞ as rW (u). Assuming that P (N)(x) converges

to P (x) =
∑

i≥1 pix
i as N → ∞, then the following holds:

Corollary 5.

rW (u) = u
(

vP ′(1− u) + lnu
)

. (4.2)

Proof. Although Theorem 4 (Theorem 2 in [31]) is stated for the case where the number of

coded packets collected by the sink node is more than the total number of content blocks,

i.e., w > 1, its proof suggests that the theorem also holds for any constant w < 1.
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Take N → ∞ on both sides of 4.1, we have

r(u) = lim
N→∞

r(N)(u) = u
(

wP ′(1− u) + lnu
)

. (4.3)

Replace w in (4.3) with W. Due to the linearity of the expected ripple size in W for

given u and P ,

rW (u) = E
[

u
(

WP ′(1− u) + lnu
)]

= u
(

vP ′(1− u) + lnu
)

If we use the expected value as a rough estimate of the ripple size during the decoding

process, we should have rW (u) > 0 for u ∈ (1− z, 1]. Applying (4.2), we have

vP ′(1− u) + lnu > 0, ∀u ∈ (1− z, 1], (4.4)

We next use (4.4) as a constraint to formulate an optimization problem for LT code de-

gree distribution design to minimize the number of transmissions required to meet all sink

demands.

Minimizing Server Delivery Time by Degree Distribution Design

We are concerned with the delivery time of LT coded broadcast in the asymptotic regime

when N → ∞.

Definition 4. (LT Delivery Time) For the LT coded scheme, the (normalized) delivery

time ti is defined as the ratio of the number of transmissions required to fulfill the demand

zi of user i to the the total number N of content packets, as N → ∞. The (normalized)

server delivery time is taken as t0 = maxli=1{ti}.

The normalized number of coded packets user i receives by its delivery time ti over a

channel with the packet erasure rate ǫi is on average ti(1 − ǫi). Let x = 1− u in (4.4) and

ω = ti(1− ǫi); we have

(1− ǫi)tiP
′(x) + ln(1− x) > 0, ∀x ∈ [0, zi), (4.5)
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and consequently,

ti = inf{τ : (1− ǫi)τP
′(x) + ln(1− x) > 0,∀x ∈ [0, zi)}. (4.6)

On the other hand, the recovered fraction by the user on a link of loss rate ǫ as a function

of the number t of transmitted packets (normalized by N) is

z(t, ǫ) = sup{ζ : (1− ǫ)tP ′(x) + ln(1− x) > 0,∀x ∈ [0, ζ)}, (4.7)

i.e., the recoverable fraction is the maximum ζ such that the expected ripple size stays

positive in the whole range of [0, ζ].

We now have all elements to state an optimization problem for minimize the server

delivery time t. Using (4.5), the optimization problem is expressed as follows:

min.P,t1,...,tl t0 = max
i

ti (4.8)

s.t. ti(1− ǫi)P
′(x) + ln(1− x) > 0, 0 ≤ x ≤ zi, for i = 1, 2, . . . , l;

P (1) = 1,

or equivalently,

min.P,t0 t0 (4.9)

s.t. t0(1− ǫi)P
′(x) + ln(1− x) > 0, 0 ≤ x ≤ zi, for i = 1, 2, . . . , l.

P (1) = 1.

To solve the above optimization problems, we first observe that there exist optimal P (x)

which is a polynomial of finite degree, as in the following Claim 6.

Claim 6. There must exist an optimal solution to Problem (4.9) with a polynomial P (x)

of degree no higher than

dmax = ⌈ 1

1−maxi{zi}
⌉ − 1.
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Proof. This claim is provable with an argument similar to Lemma 2 of [30]. Suppose (t∗, P ∗)

is an optimal solution of Problem (4.9). construct P̄ such that

p̄j = p∗j

for j = 1, 2, . . . , dmax − 1, and

p̄dmax =
∑

j≥dmax

p∗j .

Then P̄ (x) still represents a degree distribution, and meanwhile,

P̄ ′(x)− P ∗′(x) =

dmax
∑

j=1

jp̄jx
j−1 −

∑

j≥1

jp∗jx
j−1

=

dmax−1
∑

j=1

jp∗jx
j−1 + dmax

∑

j≥dmax

p∗jx
dmax−1 −

dmax−1
∑

j=1

jp∗jx
j−1 −

∑

j≥dmax

jp∗jx
j−1

=
∑

j≥dmax

[dmaxp
∗
jx

dmax−1 − jp∗jx
j−1]

=
∑

j≥dmax+1

p∗jx
dmax−1[dmax − jxj−dmax ]

≥
∑

j≥dmax+1

p∗jx
dmax−1[dmax − (dmax + 1)x].

As long as

x ≤ dmax

dmax + 1
,

i.e.,

dmax ≥ x

1− x
=

1

1− x
− 1,

we have

P̄ ′(x) ≥ P ∗′(x).

Thus, set

dmax = ⌈ 1

1−maxi zi
⌉ − 1 ≥ ⌈ 1

1− zi
⌉ − 1 ≥ 1

1− zi
− 1,

we have for i = 1, 2, . . . , l,

t∗(1− ǫi)P̄
′(x) + ln(1− x) ≥ t∗(1− ǫi)P

∗′(x) + ln(1− x) > 0, 0 ≤ x ≤ zi,
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and hence (t∗, P̄ ) is also a feasible and optimal solution of Problem (4.9) with optimal value

t∗, and the highest degree of P̄ is no more than

dmax = ⌈ 1

1−maxi{zi}
⌉ − 1.

Thus, Problem (4.9) can readily be converted into a linear programming problem by the

method proposed in [30]. For j = 1, 2, . . . , dmax, let aj = tpj, and Problem (4.9) becomes

min.a1,...,admax

dmax
∑

j=1

aj (4.10)

s.t.

dmax
∑

j=1

jajx
j−1 > − ln(1− x)

1− ǫi
, 0 ≤ x ≤ zi, for i = 1, 2, . . . , l.

aj ≥ 0, j = 1, 2, . . . , dmax.

To solve the linear programming problem (4.10) numerically, the constraints defined

on a continuous interval of parameter x are written out by evaluating x at discrete points

within the interval. Lower bounds for the minimum value of (4.10), and (4.8) can thus be

obtained. (In Section 4.4, we interestingly observe that in a 2-user scenario, the optimal

server delivery time obtained from the optimization described here is close to the delivery

time achievable by using a time-sharing scheme to broadcast degraded message sets. The

time-sharing scheme is described in 4.3.4.)

LT Coding with a Systematic (Uncoded) Phase

We also study a variation of the LT codes that start with a systematic phase, namely,

transmission of all the original uncoded content packets (systematic packets) followed by

parity packets.

The formulation of the degree distribution optimization problem is essentially the same,

except that (4.5) (describing the condition which the number of transmissions and the

degree distribution must satisfy to allow the delivery of the demand of each user i) becomes

constraint (4.11) in the following Claim 7.
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Claim 7. Suppose after the systematic phase, the degree distribution of the parity packets

transmitted subsequently follows the distribution represented by P (x), as N → ∞. Then, to

recover a fraction zi, the normalized number of parity packets transmitted should satisfy

− ln(ǫi) + (1− ǫi)(ti − 1)P ′(x) + ln(1− x) > 0, ∀x ∈ (1− ǫi, zi). (4.11)

Proof. Please refer to Appendix B.

The new optimization problem is still readily transformable into a linear programming

problem.

In addition, we have

ti =











zi
1−ǫi

, zi ≤ 1− ǫi;

inf{τ : − ln(ǫi) + (1 − ǫi)(τi − 1)P ′(x) + ln(1− x) > 0,∀x ∈ [0, zi)}, zi > 1− ǫi.

(4.12)

The systematic phase delivers the demand of a user with zi ≤ 1− ǫi, which helps reduce

the server delivery time. It is similarly possible to formulate optimization problems to allow

transmitting less or more than one round of systematic symbols, and find out the tradeoff

between the fraction of systematic symbols and non-systematic symbols. However, this is

beyond the scope of this chapter.

4.3.2 Growth Codes

Growth codes were proposed by Kamra et al. in [23] to improve data persistence in sensor

networks in face of sensor node failure. Growth codes were not designed for our hetero-

geneous scenario described in Section 4.2. However, their feature of progressive partial

recovery suggests that they may be a good candidate scheme. Extensions and applications

of growth codes to video streaming has been studied in, e.g., [32, 33]. Particularly, in [32],

a systematic version of growth codes with unequal protection for layer coded video content

was proposed.
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Growth coded packets are, as LT coded packets, binary random linear combinations

of the original source packets, and can be decoded by a belief propagation decoder that

is essentially identical to that of the LT codes, as described in Section ??. But, unlike

an LT coded stream which produces statistically identical packets, a growth coded stream

starts with degree-1 coded packets and gradually move on to send coded packets of higher

degrees. The encoding scheme described in [23] operates as follows. Let Rj = jN−1
j+1 for

j = 0, 1, 2, . . . , N − 1. Let

Aj =

⌊Rj⌋
∑

s=⌊Rj−1⌋+1

(N
j

)

(s
j

)

(N − s)

for j = 1, 2, . . . , N − 1. Then, on a perfect erasure free channel, the source node sends A1

degree-1 coded packets followed by A2 degree-2 coded packets, A3 degree-3 packets, and so

on. Demand of size between Rj−1 and Rj is expected to be fulfilled during the phase when

degree-j coded packets are sent.

Growth codes are based on the design philosophy to greedily ensure the highest proba-

bility of recovering a new content packet upon receiving each additional coded packet. On

a link with loss probability ǫ, it is reasonable to scale each duration Aj in which degree-j

coded packets are transmitted by 1/(1 − ǫ) so as to keep the degree distribution of the

packets reaching the sink approximately the same as if the code runs on a perfect channel.

There is no straightforward way to extend such design philosophy and scaling approach

to broadcasting over channels of different erasure rates, but we can still scale Ajs for one

of the users and see the resulting delivery time for other users and the server, and search

for the scaling factor with which the server delivery time is minimized. We use the belief

propagation LT decoder to decode growth codes, and use (4.6) to predict the delivery time

(as defined in Definition 4) and recoverable fraction of the scaled version of growth codes

as N → ∞. We compare growth codes with the optimized LT codes in our heterogenous

scenarios in Section 4.4.
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4.3.3 Chunked Codes

Chunked codes was first proposed and studied in [24]. Chunked codes are coding with gen-

erations with uniformly random generation scheduling. It is also investigated in Chapter 6

via a coupon collection analysis. The N content packets are grouped into n disjoint gen-

erations of g packets(assuming N is a multiple of g), and these generations are also called

“chunks”. Packets are represented as vectors of symbols from Fq. In each transmission, we

first uniformly, randomly select a generation, and then sample from F
g
q a coding vector uni-

formly at random and form a linear combination of the content packets within the selected

chunk. As soon as a sink node has collected g coded packets with linearly independent

coding vectors generated from the same chunk, all the packets of this chunk can be decoded

by performing Gaussian elimination on Fq. As opposed to full network coding, with which

coding vectors are chosen from F
N
q , this scheme has lower computational complexity and

also to some extent allows partial recovery.

From Chapter 6, we know that, for a sufficiently large field size q, the expected number

of transmissions needed to decode any k of the n chunks on a unicast link subject to packet

loss rate of ǫ is given as

E[T (n, k, ǫ)] =
n

1− ǫ

∫ ∞

0







k−1
∑

j=0

(

n

i

)

Sn−j
h (x) [ex − Sg(x)]

j







e−nxdx, (4.13)

where

Sm(x) =1 +
x

1!
+

x2

2!
+ · · ·+ xm−1

(m− 1)!
(m ≥ 1)

S∞(x) = exp(x) and S0(x) = 0.

The above result is based on the generalized birthday problem in [34].

Based on the above, we specialize our definition for delivery time when coding with

chunked codes.

Definition 5. (Chunked Codes Delivery Time) With the chunked-coding scheme, the nor-

malized delivery time of user i is defined as ti = E[T (n, ⌈zin⌉, ǫi)]/N . The normalized
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server delivery time is defined as t0 = maxli=1 ti.

4.3.4 Lower Bound and Reference Schemes

A Lower Bound

An obvious lower bound for the minimum server delivery time is

t =
l

max
i=1

{ zi
1− ǫi

}.

Multiple Unicasts

If instead of broadcast, the server transmits separate streams to each user, the total nor-

malized number of transmissions required will be at least

t =

l
∑

i=1

zi
1− ǫi

.

Braodcast Degraded Message Sets by Timesharing

Here we describe a reference coding scheme. Without loss of generality, assume z0 = 0 <

z1 ≤ z2 ≤ · · · ≤ zl. Then, segment N descriptions/packets into l layers, with Layer

i(i = 1, 2, . . . , l) containing Li = (zi−zi−1)N packets. Protect Layer i by an erasure code of

rate Ri = 1−max{ǫi, ǫi+1, . . . , ǫl}, and transmit the protected layers sequentially. When N

goes to infinity, there exist erasure codes that allow the server to deliver Layers 1 through

i, that is ziN packets, to user i for all i = 1, 2, . . . , l in
∑l

i=1
Li

Ri
time. Later we will find

in Section 4.4.2 that in a 2-user scenario the server delivery time of this scheme is close to

that of the optimized LT codes without a systematic phase.

4.4 Performance Comparison

In this section we evaluate the schemes described in Section 4.3 by numerical calculation

and simulation for a 2-user scenario.
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4.4.1 Partial Recovery Curves

We demonstrate in Figure 4.2 the evolution of the fraction of recoverable content packets

at sink nodes with the growth of the number of transmissions from the source in the 2-

user broadcast scenario. The erasure rates are ǫ1 = 0.1 and ǫ2 = 0.5. User 2 has a worse

channel. Shown are the performance curves of optimized LT codes (with and without a

systematic phase), growth codes, and chunked codes at both users. The details in obtaining

the numerical results are listed below.

• LT codes (systematic and non-systematic)

– The degree distributions are obtained by solving the optimization problems in

4.3.1 and 4.3.1 by setting (z1, ǫ1) = (15/16, 0.1) and (z2, ǫ2) = (9/16, 0.5). For

the non-systematic version, the optimal

P (x) = 0.0195x + 0.7814x2 + 0.1991x3;

for the systematic version, the optimal

P (x) = 0.7061x2 + 0.2939x3.

– The delivery time is computed for given z1 and z2 based on (4.6) in the nonsys-

tematic case and on (4.12) in the systematic case. The optimal server delivery

time is 1.5178 for the nonsystematic version, and 1.2488 in the systematic version.

• Growth codes

– N = 1024. The time spent transmitting coded packets of each degree i, Ai, is

scaled by a factor of 1/(1 − ǫ1), that is, the code is adapted to the channel

conditions of user 1.

– The recoverable fraction is computed by evaluating (4.7) on the empirical degree

distribution of received packets. Note that (4.7) assumes N → ∞.
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• Chunked Codes

– We set the number of packets to N = 1024, the number of chunks to n = 16,

and thus the chunk size becomes h = N/n = 64.

– We compute E[T (n, ⌈zn⌉, ǫi)]/N with E[T (n, k, ǫ)] given by (4.13).

Simulation results show the average time required for the user to recover a given fraction

z of all the packets. The average is taken over 100 runs, and the number of source packets

N is set to be 1024 in all runs. For chunked codes, the finite field size q is set to be 256. It

is shown that the simulation results are close to the theoretical performance prediction for

the coding schemes studied, except for the difference in the latter stage of growth codes,

which comes from the slight difference in the coding scheme numerically evaluated and

the one simulated. In our simulations, after finishing sending Am degree-m coded packets

where m = ⌈ 1
maxi=1,2{1−zi}

⌉, instead of proceeding to sending packets of higher degrees, as

defined in the original scheme, we allow the server to send coded packets according to a

degree distribution pj =
Aj∑m
j=1 Aj

for j = 1, 2, . . . ,m, the cumulative degree distribution

up to stage Am. This provides the user on the worse channel with the low-degree packets

that are needed but have been lost due to a higher packet loss rate, and allows the user to

proceed in packet recovery. All the coding schemes exhibit partial recovery property to a

corresponding degree, namely, the recoverable fraction gradually increases with time. With

both optimized LT (without the systematic phase) and the chunked codes, there is an initial

stage where no packets are recoverable.

4.4.2 Delivery Time

We continue with a study of the server delivery time performance of the coding schemes in

the 2-user scenario. We keep ǫ1 = 0.1 and ǫ2 = 0.5, set z1 = 15/16, let z2 vary from 0 to

15/16, and plot the server delivery time versus z2. With LT codes, for each set of (z1, z2)

values, we solve for the optimal degree distribution. With growth codes, for each z2, we
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search all scaling factors between [ 1
1−ǫ1

, 1
1−ǫ2

] for the one that minimizes the server delivery

time. With chunked codes, we examine all power-of-2 chunk sizes between h = 20 = 1

and h = 210 = N, and find the chunk size that minimizes the server delivery time. The

numerical evaluation of the minimized server delivery time is plotted versus the demand z2

of user 2 in Figure 4.3. Note that the optimal degree distribution changes as the demands

vary.

The server delivery time of the reference scheme via time-shared broadcast of degraded

message sets, as described in 4.3.4, is also plotted. In the two-user case discussed here,

z1 ≥ z2 and ǫ1 > ǫ2. Therefore, two layers are formed, the first consisting of L1 = z2N

blocks and the second another L2 = (z1 − z2)N blocks, and respectively protected with

erasure codes of rates 1 − ǫ1 and 1 − ǫ2. It is particularly interesting to find that in the

setting demonstrated here, the reference scheme performance almost coincides with the

non-systematic optimized LT coded scheme with optimized degree distribution. The reason

of such a phenomenon, however, awaits further investigation and is beyond the scope of this

work.

In addition, in Figure 4.3, we plot two other reference lines:

t = max{ z1
1− ǫ1

,
z2

1− ǫ2
}

and

t =
z1

1− ǫ1
+

z2
1− ǫ2

.

The former represents an apparent lower bound for server delivery time, and the latter

represents a lower bound for the total number of packet transmissions if the demands are

delivered by unicasts to each individual user.

Comparing the server delivery time of systematic and nonsystematic LT codes optimized

with the knowledge of channel state and user demands, we find that the systematic phase

significantly shortens the server delivery time when the demand of the user on the worse

channel is low. As the demand of user 2 rises, however, including a systematic phase
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becomes suboptimal, until the demand rises further closer to 1, when the delivery time

seems to converge to the delivery time with the nonsystematic scheme.

Growth codes and chunked codes do not have a competitive server delivery time perfor-

mance compared with other schemes. When the demand of the user on the worse channel

is low, using these schemes requires more transmissions to deliver the demands than using

multiple unicasts. One advantage of chunked codes, however, is that all the content pack-

ets in the same chunk are decoded simultaneously, allowing these packets to be dependent

on each other for the reconstruction purpose, which may reduce redundancy in the source

coding stage.

It is also of interest to study performance measures other than the delivery time of

the server. For example, one could wish to maximize the minimum of users’ throughputs

mini{zi/ti}, the ratio of the demand and the time needed to complete the demand, or to

maximize the minimum channel utilization mini{zi/((1−ǫi)ti)}, the ratio of the information

pushed through the channel to the channel bandwidth. These criteria are of interest for

acieving, e.g., fairness in the network, and optimization for these criteria can yield very

different code design parameters (degree distributions). The optimization of the degree

distributions for LT coded broadcast for these different criteria has been studied in our

work [26] and interested readers are kindly referred to this paper for detailed problem

formulation and results. An additional type of heterogeneity can also be treated in the

framework provided in Section 4.3.1, namely, when some of the sink nodes cannot decode

but can only recover content from degree-1 coded packets. Readers are also referred to [26]

for results regarding the coexistence of nodes able and unable to decode in the system.

4.5 Conclusion and Future Work

We investigated the usage of three coded schemes for broadcasting multiple description

coded content in a single-hop wireless network with heterogeneous user nodes of nonuni-

form demand over links of diverse packet loss rates. The three coded schemes include
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the LT codes with specially optimized degree distribution (with or without a systematic

phase), growth codes, and chunked codes. Particularly, with the LT codes, we are able to

formulate the degree distribution design problem in the heterogeneous scenario into linear

optimization problems. For the schemes compared, we characterize numerically the number

of transmissions needed to deliver the demand of all users. The numerical evaluations agree

with simulation results.

A systematic phase delivers the demands efficiently when the fraction of content re-

quested by the users does not exceed the link capacity. On the other hand, for higher

demands, coding significantly improves the delivery time. Different user demographics re-

sult in very different coding schemes being suitable for efficient delivery of demands. Growth

codes and chunked codes, are not found to be as suitable to the communication scenario

as the optimized LT codes. Interestingly, time-shared broadcast of degraded message sets

is found to give a comparable delivery time performance as that of the non-systematic

optimized LT codes.

As for future work, we are interested in incorporating the source coding stage into code

design, since there is clearly an interplay between the compression efficiency in source coding

and the efficiency of channel coding. We are also interested in the exploration and analysis

of more competitive schemes for broadcasting to heterogeneous users.
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Figure 4.2: Evolution of recoverable fraction with time at each user in a 2-user scenario.
ǫ1 = 0.1, ǫ2 = 0.5. N = 1024. Schemes: (1) LT optimized with z1 = 15/16 and z2 = 9/16.
(2)optimal systematic LT (3) growth codes with a scaling factor of 1

1−ǫ1
(4) chunked codes

with n = 16 chunks of 64 packets. LT(-sys): Optimized LT codes (with a systematic phase);
GC1: Growth codes scaled by 1

1−ǫ1
; CC64: Chunked codes with 64 packets per chunk.
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Part II

Content Collection in a

Balls-into-Bins Perspective
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Chapter 5

Collecting Content Blocks as Allocating Balls into Bins

In this part, we consider a content collection scenario. Suppose a data collector (sink,

receiver) in the network wishes to collect a file of N packets from a number of servers in the

network. Each server may have a complete or incomplete collection of the N packets, and

sends a packet to the receiver in each transmission. The collection process can be viewed

as the shooting (allocation) of balls from the server into N bins kept by the receiver. The

receiver collects Packet ξj if a ball lands in Bin j, and when each bin is filled with at least

1 ball the receiver has collected the whole file. We are interested in the number of shots

(packet transmissions) required for the receiver to collect the whole file, and refer to this

number as the collection time.

The servers are considered collectively as a “super server”, and packets are transmitted

as if from the super server to the receiver(s). In Chapter 6, a single receiver is considered

and the communication is deemed to be on a unicast link. In Chapter 7, multiple receivers

are considered and multiple unicast links.

If the servers send packets regardless of which packets have already been received by

the receiver, which packets are sent by other servers, and which packets have been sent

previously, we can approximately deem the super server as to be selecting (scheduling) each

transmission packet independently and equally likely from the N possible choices. That

is, each shot independently lands in one of the N bins with equal probability. This is

the classical coupon collector’s problem, and the expected collection time is well known as

N
∑N

i=1
1
i = O(N logN) [35]. The overhead in this scenario increases superlinearly as the

file size grows.
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Instead of sending randomly selected packets, the servers can send encoded packets that

are linear combinations of the file packets over Fq, a finite field of size q, as discussed in

Chapter 2. For practical reasons, such as computational complexity, coding with generations

(Chapter 2) is introduced. The concept of generation in network coding was first proposed

by Chou et al. in [36] to handle the issue of network synchronization. Coding with randomly

scheduled generations was first theoretically analyzed by Maymounkov et al. in [24]. Coding

with generations scheduled round-robin was studied in Chapter 3 of this dissertation.

If there are n generations, each generation is viewed as a bin, and each coded packet is

a ball. Shooting (allocating) a ball into Bin j is analogous to transmitting a coded packet

formed from generation Gj . To successfully decode, the receiver needs to collect a certain

number of coded packets for each generation Gj(j = 1, 2, . . . n), and the number is O(gj),

gj being the generation size. We are interested in the collection time, the total number of

coded packets transmitted when enough has been collected from each generation. In the

balls-and-bins language, we are interested in the total number of balls allocated when each

bin has been filled with the required number of balls.

In the remainder of this chapter, we present the mathematical theory of random al-

location (of balls into bins) that is used for the analysis of coded content collection with

generations in Chapters 6 and 7. Balls are allocated into n bins. There are two basic types

of random allocation: random allocation with replacement and without replacement. With

the former, balls are allocated into bins one-by-one and independently, not barring the pos-

sibility of allocating a ball into a bin in which some previous ball has landed, whereas with

the latter, each ball is ensured to be allocated into a different bin.

5.1 Coupon Collector’s Problem and Collector’s Brotherhood Problem

The coupon collector’s problem [13, 14] is based on the simplest random allocation model

with replacement. The coupon collector’s brotherhood problem studies quantities related

to the completion of m sets of n distinct coupons by sampling a set of n distinct coupons
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uniformly at random with replacement. Here a coupon is a bin, and sampling a coupon is

allocating a ball into a bin. In analogy, coded packets belonging to generation Gj can be

viewed as copies of coupon Gj(with a slight abuse of terminology), and hence the process

of collecting coded packets when generations are scheduled uniformly at random can be

modeled as collecting multiple copies of distinct coupons. To be more general, we assume

that the probability of sampling a coupon Gj is ρj , for j = 1, 2, . . . , n.

Because of possible linear dependence among coded packets between generations, the

numbers of coded packets needed for each of the n generations to ensure successful decoding,

however, are n random variables. Therefore, we must generalize the coupon collector’s

brotherhood model from collecting a uniform number of copies for all coupons to collecting

different numbers of copies for different coupons, before it can be applied to the analysis of

the collection time of a file coded with generations. In this section, the original collector’s

brotherhood model is generalized in two ways. And later in this paper, the analysis of

the collection time of coding with disjoint generations in Section 6.2 rests on the first

generalization, whereas that of coding with overlapping generations in Section 6.3 rests on

the second generalization.

5.1.1 Generating Functions, Expected Values and Variances

For any m ∈ N, we define Sm(x) as follows:

Sm(x) =1 +
x

1!
+

x2

2!
+ · · ·+ xm−1

(m− 1)!
(m ≥ 1) (5.1)

Sm(x) =0 (m ≤ 0) and S∞(x) = ex. (5.2)

Let the total number of samplings needed to ensure that at least mj(≥ 0) copies of

coupon Gj are collected for all j = 1, 2, . . . , n be T (ρ,m), where m = (m1,m2, . . . ,mn).

The following Theorem 8 gives ϕT (ρ,m)(z), the generating function of the tail probabilities of

T (ρ,m). This result is generalized from [13] and [14], and its proof uses the Newman-Shepp

symbolic method in [13]. Boneh et al. [37] gave the same generalization, but we restate it
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here for use in our analysis of coding with disjoint generations (Section ??). If for each

j = 1, 2, . . . , n, the number of coded packets needed from generation Gj for its decoding is

known to be mj (which can be strictly larger than the generation size gj), T (ρ,m) then

gives the total number of coded packets needed to ensure successful decoding of the entire

content when the generations are scheduled according to the probability vector ρ.

Theorem 8. (Non-Uniform Sampling) Let

ϕT (ρ,m)(z) =
∑

i≥0

Prob[T (ρ,m) > i]zi. (5.3)

Then,

ϕT (ρ,m)(z) =

∫ ∞

0

{

e−x(1−z) −
n
∏

i=1

[

e−ρix(1−z) − Smi
(ρixz)e

−ρix
]

}

dx. (5.4)

Proof. Please refer to Appendix C.2, where we give a full proof of the theorem to demon-

strate the Newman-Shepp symbolic method [13], which is also used in the proof of our other

generalization in Theorem 10.

The expected value and the variance of T (ρ,m) follow from the tail probability gener-

ating function derived in Theorem 8.

Corollary 9.

E[T (ρ,m)] = ϕT (ρ,m)(1)

=

∫ ∞

0

{

1−
n
∏

i=1

[

1− Smi
(ρix)e

−ρix
]

}

dx,

V ar[T (ρ,m)] = 2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1)− ϕ2

T (ρ,m)(1).

Proof. Please refer to Appendix C.2.

Note that in Theorem 8 and Corollary 9, mi-s are allowed to be 0, thus including the

case where only a specific subset of the coupons is of interest. Theorem 8 and Corollary 9

are also useful for the analysis of coding over generations when there is a difference in

priority among the generations. For instance, in layered coded multimedia content, the
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generations containing the packets of the basic layer could be given a higher priority than

those containing enhancement layers because of a hierarchical reconstruction at the receiver.

In the following, we present another generalization of the collector’s brotherhood model.

Sometimes we are simply interested in collecting a coupon subset of a certain size, regardless

of the specific content of the subset. This can be further extended to the following more

complicated case: for each i = 1, 2, . . . , A(A ≥ 1), ensure that there exists a subset of

{G1, G2, . . . , Gn} such that each of its ki elements has at least mi copies in the collected

samples. Such a generalization is intended for treatment of coding over equally important

generations, for example, when each generation is a substream of multiple-description coded

data. In this generalization, the generation scheduling (coupon sampling) probabilities are

assumed to be uniform, i.e., ρ1 = ρ2 = · · · = ρn = 1/n.

Suppose that for some positive integer A ≤ n, integers k1, . . . , kA and m1, . . . ,mA satisfy

1 ≤ k1 < · · · < kA ≤ n and ∞ = m0 > m1 > · · · > mA > mA+1 = 0. We are interested

in the total number U(m,k) of coupons that needs to be collected, to ensure that the

number of distinct coupons for which at least mi copies have been collected is at least ki,

for all i = 1, 2, . . . , A, where m = (m1,m2, . . . ,mA) and k = (k1, k2, . . . , kA). The following

Theorem 10 gives the generating function ϕU(m,k)(z) of U(m,k).

Theorem 10. (Uniform Sampling)

ϕU(m,k)(z) (5.5)

= n

∫ ∞

0
e−nx

{

enxz −
∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

ij∈[kj,ij+1]

j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(xz)− Smj+1(xz)

]ij+1−ij}

dx.

Proof. Please refer to Appendix C.2.

Same as for Corollary 9, we can find E[U(m,k)] = ϕU(m,k)(1). A computationally

wieldy representation of E[U(m,k)] is offered in the following Corollary 11 in a recursive

form.
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Corollary 11. For k = k1, k1 + 1, . . . , n, let

φ0,k(x) = [(Sm0(x)− Sm1(x))e
−x]k;

For j = 1, 2, . . . , A, let

φj,k(x) =
k
∑

w=kj

(

k

w

)

[

(Smj
(x)− Smj+1(x))e

−x
]k−w

φj−1,w(x),

for k = kj+1, kj+1 + 1, . . . , n.

Then,

E[U(m,k)] = n

∫ ∞

0
(1− φA,n(x)) dx. (5.6)

It is not hard to find an algorithm that calculates 1 − φA,n(x) in (c1m1 + c2(n − 1) +

c3
∑A

j=1

∑n
k=kj+1

(k − kj)) basic arithmetic operations, where c1, c2 and c3 are positive

constants. As long as m1 = O(An2), we can estimate the amount of work for a single

evaluation of 1 − φA,n(x) to be O(An2). The integral (5.6) can be computed through

the use of an efficient quadrature method, for example, Gauss-Laguerre quadrature. For

reference, some numerical integration issues for the special case where A = 1 have been

addressed in Part 7 of [34] and in [37].

In Section 6.3, we will apply Corollary 11 to find out the expected throughput of the

random annex code, an overlapping coding scheme in which generations share randomly

chosen file packets. The effect of the overlap size on the throughput can be investigated

henceforth.

5.1.2 Limiting Mean Value and Distribution

In the previous subsection, we considered collecting a finite number of copies of a coupon

set of a finite size. In this part, we present some results from existing literature on the

limiting behavior of T (ρ,m) as n → ∞ or m1 = m2 = · · · = mn = m → ∞, assuming

ρ1 = ρ2 = · · · = ρn = 1
n . By slight abuse in notation, we denote T (ρ,m) here as Tn(m).
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By Corollary 9,

E[Tn(m)] = n

∫ ∞

0

[

1− (1− Sm(x)e−x)n
]

dx. (5.7)

The asymptotics of E[Tn(m)] for large n has been discussed in literature [13], [38] and

[39], and is summarized in the following Theorem 12, (5.9), and Theorem 13.

Theorem 12. ([38]) When n → ∞,

E[Tn(m)] = n log n+ (m− 1)n log log n+ Cmn+O(n), (5.8)

where Cm = γ − log(m− 1)!, γ is Euler’s constant, and m ∈ N.

For m ≫ 1, on the other hand, we have [13]

E[Tn(m)] → nm. (5.9)

What is worth mentioning is that, as the number of coupons n → ∞, for the first com-

plete set of coupons, the number of samplings needed is O(n log n), whereas the additional

number of samplings needed for each additional set is only O(n log log n).

In addition to the expected value of Tn(m), the concentration of Tn(m) around its mean

is also of great interest to us. This concentration leads to an estimate of the probability

of successful decoding for a given number of collected coded packets. We can specialize

Corollary 9 to derive the variance of Tn(m), as a measure of probability concentration.

Further, since the tail probability generating functions derived in the last subsection

are power series of non-negative coefficients and are convergent at 1, they are absolutely

convergent on and inside the circle |z| = 1 in the complex z-plane. Thus, it is possible to

compute the tail probabilities using Cauchy’s contour integration formula. However, extra

care is required for numerical stability in such computation.

Here we instead look at the asymptotic case where the number of coupons n → ∞. Erdös

and Rényi have proven in [40] the limit law of Tn(m) as n → ∞. Here we restate Lemma

B from [38] by Flatto, which in addition expresses the rate of convergence to the limit law.
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We will later use this result to derive a lower bound for the probability of decoding failure

in Theorem 16 in Section 6.2.2.

Theorem 13. ([38]) Let

Yn(m) =
1

n
(Tn(m)− n log n− (m− 1)n log log n) .

Then,

Pr[Yn(m) ≤ y] = exp

(

− e−y

(m− 1)!

)

+O
(

log log n

log n

)

.

Remark 1. (Remarks 2&3, [38]) The estimation in Theorem 13 is understood to hold

uniformly on any finite interval −a ≤ y ≤ a. i.e., for any a > 0,

∣

∣

∣

∣

Prob [Yn(m) ≤ y]− exp

(

− exp(−y)

(m− 1)!

)
∣

∣

∣

∣

≤ C(m,a)
log log n

log n
,

n ≥ 2 and −a ≤ y ≤ a. C(m,a) is a positive constant depending on m and a, but inde-

pendent of n. For m = 1, the convergence rate to limit law is much faster: the O
(

log logn
logn

)

term becomes O
(

logn
n

)

.

5.2 Random Allocation with Complexes

A more advanced type of random allocation combines the two basic types and is referred

to as allocation by m-complexes [41]. This means allocating balls in groups of m(m < n).

Each group of m balls are allocated without replacement, but the allocation of one group

is independent of that of any other group.

Use µ0(l, n,m) to denote the number of empty bins after l throws of m-complexes. Then,

as given in [41],

Pr[µ0(l, n,m) = 0] =

(

n

m

)−l n
∑

k=0

(

n

k

)

(−1)k
(

n− k

m

)l

, (5.10)

and

E[µ0(l, n,m)] = n(1− m

n
)l. (5.11)

In Chapter 7, random allocation with m-complexes is used to model some generation

scheduling strategies that are “cleverer” than random scheduling.
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Chapter 6

Effects of Generation Size and Overlaps on the Throughput

of Coding with Generations

In this chapter we analyze the effects of generation size and overlaps on the collection time

(as defined in Chapter 5) of a receiver trying to retrieve a content file from the “cloud”.

“Random annex codes”, which introduces overlaps between generations, are proposed, and

analytical and simulation results show that with a proper choice of overlap size and struc-

ture, the collection time can be reduced using these codes.

The coding scheme studied is based on the coding with generations scheme first intro-

duced in Chapter 2. Coded packets come from the n generations at random as opposed

to the round-robin scheduling in Chapter 3, since we assume no coordination between the

content holding servers in the “cloud”, and these servers blindly transmit to the collector.

We just think of the “cloud” as a super server which in each transmission “selects” one of

the n generations at random. The probability of choosing generation Gi is ρj,
∑n

j=1 ρj = 1.

Let ρ = (ρ1, ρ2, . . . , ρn). Once Gj is chosen, a coded packet is formed as a random linear

combination of the packets belonging to Gj over Fq, as with the RL scheme defined in

Chapter 3.

6.1 Collecting Coded Packets and Decoding

A generation Gi is not decodable until the number of linearly independent equations col-

lected for Gi reaches the number of its file packets not yet resolved by decoding other

generations. The connection between the number of coded packets collected and the linear
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independence among these coded packets has to be established before we can predict the

collection time of codes with generations using the collector’s brotherhood model (Section

5.1).

Let M(g, x) be the number of coded packets from a generation of size g adequate for

collecting x linearly independent equations. Then M(g, x) has expected value [42]

E[M(g, x)] =

x−1
∑

j=0

1

1− qj−g
. (6.1)

Approximating summation by integration, from (6.1) we get

E[M(g, x)] /
∫ x−1

0

1

1− qy−g
dy +

1

1− qx−1−g

=x+
qx−1−g

1− qx−1−g
+ logq

1− q−g

1− qx−1−g
. (6.2)

Let

ηg(x) = x+
qx−1−g

1− qx−1−g
+ logq

1− q−g

1− qx−1−g
. (6.3)

We can use ηg(x) to estimate the number of coded packets needed from a certain generation

to gather x linearly independent equations.

In addition, we have the following Claim 14 which upper bounds the tail probability

of M(g, g), the number of coded packets needed for a certain generation to gather enough

linearly independent equations for decoding.

Claim 14. There exist positive constants αq,g and α2,∞ such that, for s ≥ g,

Prob[M(g, g) > s] = 1−
g−1
∏

k=0

(1− qk−s)

< 1− exp(−αq,gq
−(s−g)) < 1− exp(−α2,∞q−(s−g)).

Also, since 1− exp(−x) < x for x > 0,

Prob[M(g, g) > s] < αq,gq
−(s−g). (6.4)

Proof. Please refer to Appendix C.1.
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We will use Claim 14 and Theorem 15 in Section 6.2 to derive an upper bound to the

expected overhead of coding over disjoint generations.

6.2 Coding Over Disjoint Generations

In this section, we study the performance of coding over disjoint generations. We derive

both an upper bound and a lower bound for the expected collection time (as defined in

Chapter 5. We also derive the variance of the collection time.

6.2.1 Expected Collection Time and Its Variance

Let Mi (i = 1, 2, . . . , n) be the number of collected coded packets from generation Gi

when Gi first becomes decodable. Then Mi is at least gi, has the same distribution as

M(gi, gi), the number of coded packets needed for a certain generation to gather enough

linearly independent equations for decoding, as defined and studied in Section 6.1. Mi’s are

independent random variables. Let the collection time over a perfect channel be W (ρ,g),

where g = (g1, g2, . . . , gn). Use Wǫ(ρ,g) to denote the collection time on a BEC(ǫ).

Let Xk (k = 1, 2, . . . ) be i.i.d. geometric random variables with success rate 1 − ǫ.

Therefore, E[Xk] =
1

1−ǫ and E[X2
k ] =

1+ǫ
(1−ǫ)2

. Then

Wǫ(ρ,g) =

W (ρ,g)
∑

i=1

Xi,

and therefore,

E[Wǫ(ρ,g)] =
1

1− ǫ
E[W (ρ,g)], (6.5)

V ar[Wǫ(ρ,g)] =
1

(1− ǫ)2
(

V ar[W (ρ,g)] + ǫE[W 2(ρ,g)]
)

. (6.6)

By definition, E[W (ρ,g)] is lower bounded by E[T (ρ,g)], the expected number of

coded packets necessary for collecting at least gi coded packets for each generation Gi,

and E[T (ρ,g)] is as given in Corollary 9.
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The following Theorem 15 gives the exact expression for the first and second moments

of W (ρ,g), along with an upper bound for E[W (ρ,g)] considering the effect of finite finite

field size q. Then, the expected value and the variance of Wǫ(ρ,g) can be derived from

(6.5) and (6.6).

Theorem 15. The expected number of coded packets needed for successful decoding of all

N file packets

E[W (ρ,g)] =

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx (6.7)

<

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρix
(

Sgi(ρix) + αq,giq
gieρix/q − αq,giq

giSgi(ρix/q)
)

)

)

dx,

(6.8)

E[W 2(ρ,g)] (6.9)

=2

∫ ∞

0
x

(

1−
n
∑

i=1

ρi
1− EMi

[SMi−1(ρix)]e
−ρix

1− EMi
[SMi

(ρix)] e−ρix

n
∏

j=1

(

1− EMj

[

SMj
(ρjx)

]

e−ρjx
)

)

dx

+

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx

where αq,gi = −∑gi−1
k=0 ln

(

1− qk−gi
)

, i = 1, 2, . . . , n.

Proof. Please refer to Appendix C.3.

In the case where generations are of equal size and scheduled uniformly at random, we

can estimate the asymptotic lower bound for E[W (ρ,g)] by the asymptotics of Tn(m) given

in (5.8) and (5.9).

Figure 6.1(a) shows several estimates of E[W (ρ,g)], and Figure 6.1(b) shows the stan-

dard deviation of W (ρ,g) calculated from Theorem 15 and simulation results, when ρi =
1
n

and gi = g for i = 1, 2, . . . , n. The estimates are plotted versus the uniform generation size

g for fixed N = ng = 1000.
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(a) (b)

(c)

Figure 6.1: (a) Estimates of E[W (ρ,g)], the expected number of coded packets required
for successful decoding when the total number of file packets is N = 1000, and both g
and ρ are uniform. Estimates shown: lower bound E[T (ρ,g)]; upper bound (6.8); mean of
W (ρ,g) in simulation; n → ∞ asymptotic (5.8); m ≫ 1 asymptotics (5.9); (b) Estimates of
the standard deviation of W (ρ,g); (c) Estimates of probability of decoding failure versus
the number of coded packets collected: Theorem 16 along with simulation results.

2/figures/li_2a_expected1000.eps
2/figures/li_2b_std1000.eps
2/figures/li_2c_pe1000.eps
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For coding over disjoint generations and a fixed total number of file packets, both the

expected value and the standard deviation of the collection time drop significantly as the

generation size g grows to a relatively small value from the case where no coding is used

(g = 1). Hence, throughput is improved by a moderate increase in the computational cost

that scales quadratically with the generation size (see Section 2.2.4). On the other hand, we

also observe that past a moderate generation size (∼ 50−100 coded packets for N = 1000),

the decrease in collection time becomes slower by further increasing the encoding/decoding

complexity. We therefore argue for a “sweet spot” generation size which characterizes the

tradeoff between throughput and complexity.

6.2.2 Probability of Decoding Failure

In this subsection we assume uniform generation size and scheduling probability, i.e., ρi =
1
n ,

gi = g for i = 1, 2, . . . , n. For short, we denote W (ρ,g) as Wn(g). From Theorem 13, we

obtain the following lower bound to the probability of decoding failure as n → ∞:

Theorem 16. When n → ∞, the probability of decoding failure when t coded packets have

been collected is greater than

1− exp

[

− 1

(g − 1)!
n(log n)g−1 exp

(

− t

n

)]

+O
(

log log n

log n

)

.

Proof. The probability of decoding failure after acquiring t coded packets equals Prob[Wn(g) >

t]. Since Wn(g) ≥ Tn(g),

Prob[Wn(g) > t] ≥ Prob[Tn(g) > t]

= 1−Prob

[

Yn(g) ≤
t

n
− log n− (g − 1) log log n

]

.

The result in Theorem 16 follows directly from Theorem 13.

Corollary 17. When g is fixed and n → ∞, in order to make the probability of decoding

failure smaller than δ, the number of coded packets collected has to be at least E[Tn(g)] −
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n log log 1
1−δ . If δ = 1

Nc for some constant c, then the number of coded packets necessary

for successful decoding has to be at least E[Tn(g)] + cn log(ng).

Theorem 4.2 in [24] also gives the number of coded packets needed to have the probability

of decoding failure below δ = 1
Nc , but under the assumption that ln(N/δ) = O(N/n) =

O(g). In comparison, Corollary 17 treats the case where g is constant.

Figure 6.1(c) shows the estimate of the probability of decoding failure versus T , the

number of coded packets collected. As pointed out in Remark 1, for m ≥ 2, the deviation

of the CDF of Tn(m) from the limit law for n → ∞ depends on m and is on the order of

O( log lognlogn ) for m ≥ 2, which is quite slow, partly explaining the deviation of the limit law

curves from the simulation curves for m = 5 and m = 10 in Figure 6.1(c).

6.3 Coding Over Overlapping Generations

Even when generations are scheduled uniformly at random, there will be more coded packets

accumulated in some of the generations than in others. The “slowest” generation is the

bottleneck for file decoding. It is then advisable to design a mechanism that allows “faster”

generations to help those lagging behind. In this section, we propose the random annex

code, a new coding scheme in which generations share randomly chosen packets, as opposed

to previously proposed “head-to-toe” overlapping scheme of [43].

We provide a heuristic analysis of the code throughput based on our results for the

coupon collection model and an examination of the overlapping structure. Previous work

on coding over overlapping generations, [44] and [43], lacks accurate performance analysis

for information blocks of moderate finite lengths. On the other hand, the computational

effort needed to carry out our analysis scales well with the length of information, and the

performance predictions coincide with simulation data. In addition, we find that our random

annex code outperforms the “head-to-toe” overlapping scheme of [43] over a unicast link.

In this section we conveniently assume that the coded packets are sent over a perfect

channel. The scheme studied in this section is rateless. Each coded packet is statistically
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the same as any other packet, and therefore the collection time over a link with packet

loss rate ǫ is simply the collection time on a perfect channel scaled up by a factor of 1
1−ǫ .

Please be reminded that the “unicast” model comes from an abstraction of the scenario of

collecting coded packets from a “cloud” of servers.

6.3.1 Forming Overlapping Generations

We form n overlapping generations out of a file with N file packets in two steps as follows:

1. Partition the file set F of N packets into subsets B1, B2, . . . , Bn, each containing h

consecutive packets. These n = N/h subsets are referred to as base generations. Thus,

Bi = {ξ(i−1)h+1, ξ(i−1)h+2, . . . , ξih} for i = 1, 2, . . . , n. N is assumed to be a multiple

of h for convenience. In practice, if N is not a multiple of h, set n = ⌈N/h⌉ and assign

the last [N − (n − 1)h] packets to the last (smaller) base generation.

2. To each base generation Bi, add a random annex Ri, consisting of l packets chosen

uniformly at random (without replacement) from the N − h = (n − 1)h packets in

F\Bi. The base generation together with its annex constitutes the extended generation

Gi = Bi ∪Ri, the size of which is g = h+ l. Throughout this paper, unless otherwise

stated, the term “generation” will refer to “extended generation” whenever used alone

for overlapping generations.

6.3.2 Generation Scheduling and Encoding within the Generation

The generation scheduling probabilities are chosen to be uniform, ρ1 = ρ2 = · · · = ρn = 1/n.

Encoding follows the RL scheme defined in Chapter 3.

6.3.3 Decoding

As with the decoding process of coding with disjoint generations, decoding starts with any

generation Gj for which the receiver has collected gj coded packets with linearly indepen-

dent coding vectors. The file packets making up this generation are decoded by solving a
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system of gj linear equations in Fq formed by the coded packets on one side and the linear

combinations of the file packets by the coding vectors on the other. Since generations are

allowed to overlap, a decoded file packet may also participate in other generations, from the

equations of which the file packet is then removed as an unknown variable. Consequently,

in all the generations overlapping with the decoded generations, the number of unknown

packets is reduced. As a result, some generations may become decodable even if no new

coded packets are received from the source. Again, the newly decoded generations resolve

some unknowns of the generations they overlap with, which in turn may become decodable

and so on. We declare successful decoding when all N file packets have been decoded.

Note that whereas such a decoding scheme is optimal with disjoint generations, it is

sub-optimal with overlapping generations.

6.3.4 Analyzing the Overlapping Structure

The following Claims 18 through 21 present combinatorial derivations of quantities concern-

ing the frequency at which an arbitrary file packet is represented in different generations.

Claim 18. For any packet in a base generation Bk, the probability that it belongs to annex

Rr for some r ∈ {1, 2, . . . , n}\{k} is

π =

(

N − h− 1

l − 1

)

/

(

N − h

l

)

=
l

N − h
=

l

(n− 1)h
,

whereas the probability that it does not belong to Rr is π̄ = 1− π.

Claim 19. Let X be the random variable representing the number of generations an file

packet participates in. Then, X = 1 + Y, where Y is Binom(n− 1, π).

E[X] = 1 + (n − 1)π = 1 +
l

h
,

and

V ar[X] = (n− 1)ππ̄.
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Claim 20. In each generation of size g = h + l, the expected number of file packets not

participating in any other generation is hπ̄(n−1) ≈ he−l/h for n ≫ 1; the expected number

of file packets participating in at least two generations is

l + h[1− π̄(n−1)] ≈ l + h
[

1− e−l/h
]

< min{g, 2l}

for n ≫ 1 and l > 0.

Claim 21. The probability that two generations overlap is 1 −
( N−2h
l,l,N−2h−2l

)

/
(N−h

l

)2
. The

number of generations overlapping with any one generation Gi is then

Binom

(

n− 1,

[

1−
(

N − 2h

l, l,N − 2h− 2l

)

/

(

N − h

l

)2
])

.

The following Theorem 22 quantifies the expected amount of help a generation may

receive from previously decoded generations in terms of common file packets. In the next

subsection, we use Corollary 11 and Theorem 22 for a heuristic analysis of the expected

throughput performance of the random annex code.

Theorem 22. For any I ⊂ {1, 2, . . . , n} with |I| = s, and any j ∈ {1, 2, . . . , n}\I,

Ω(s) = E[| (∪i∈IGi) ∩Gj |] = g · [1− π̄s] + sh · ππ̄s (6.10)

where |B| denotes the cardinality of set B. When n → ∞, if l
h → α and s

n → β, and let

ω(β) = Ω(s), then ω(β) → h
[

(1 + α)
(

1− e−αβ
)

+ αβe−αβ
]

.

Proof. Please refer to Appendix C.4.

6.3.5 Expected Throughput Analysis: The Algorithm

Given the overlapping structure, we next describe an analysis of the expected number of

coded packets a receiver needs to collect in order to decode all N file packets of F when

they are encoded by the random annex code. We base our analysis on Theorem 22 above,

Corollary 11 in Section 5.1, and also (6.3) in Section 6.1, and use the mean value for every

quantity involved.
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By the time when s (s = 0, 1, . . . , n − 1) generations have been decoded, for any one of

the remaining (n− s) generations, on the average Ω(s) of its participating file packets have

been decoded, or equivalently, (g − Ω(s)) of them are not yet resolved. If for any one of

these remaining generations the receiver has collected enough coded packets to decode its

unresolved packets, that generation becomes the (s + 1)th decoded; otherwise, if no such

generation exists, decoding fails.

The quantity ηg(x) defined in (6.3) in Section 6.1 estimates the number of coded packets

from a generation of size g adequate for collecting x linearly independent equations. By

extending the domain of ηg(x) from integers to real numbers, we can estimate that the

number of coded packets needed for the (s + 1)th decoded generation should exceed m′
s =

⌈ηg(g − Ω(s))⌉. Since in the random annex code, all generations are randomly scheduled

with equal probability, for successful decoding, we would like to have at least m′
0 coded

packets belonging to one of the generations, at least m′
1 belonging to another, and so on.

Then Corollary 11 in Section 5.1 can be applied to estimate the total number of coded

packets needed to achieve these minimum requirements for the numbers of coded packets.

The algorithm for our heuristic analysis is listed as follows:

1. Compute Ω(s− 1) for s = 1, . . . , n using Theorem 22;

2. Compute m′
s = ⌈ηg(g − Ω(s− 1))⌉ for s = 1, 2, . . . , n using (6.3);

3. Map m′
s (s = 1, 2, . . . , n) into A values mj (j = 1, 2, . . . , A) so that mj = m′

kj−1+1 =

m′
kj−1+2 = · · · = m′

kj
, for j = 1, 2, . . . , A, k0 = 0 and kA = n;

4. Evaluate (5.6) in Corollary 11 with the A, kjs, and mjs obtained in Step 3), as an

estimate for the expected number of coded packets needed for successful decoding.

Remark 2. The above Step 3) is viable because Ω(s) is nondecreasing in s, ηg(x) is non-

decreasing in x for fixed g, and thus m′
s is non-increasing in s.

Although our analysis is heuristic, we will see in the next section that the estimate closely

follows the simulated average performance curve of the random annex coding scheme.
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6.3.6 Numerical Evaluation and Simulation Results

Throughput vs. Complexity in Fixed Number of Generations Schemes

Our goal here is to find out how the annex size l affects the collection time of the scheme

with fixed base generation size h and the total number of file packets N (and consequently,

the number of generations n). Note that the generation size g = h+ l affects the computa-

tional complexity of the scheme, and hence we are actually looking at the tradeoff between

throughput and complexity.

Figure 6.2 and Figure 6.3 show both the analytical and simulation results when the

total number N of file packets is 1000 and the base generation size h is 25. Figure 6.2

shows h + l − Ω(s) for s = 0, 1, . . . , n with different annex sizes. Recall that Ω(s) is the

expected size of the overlap of the union of s generations with any one of the leftover n− s

generations. After the decoding of s generations, for any generation not yet decoded, the

expected number of file packets that still need to be resolved is then h + l − Ω(s). We

observe that the h + l − Ω(s) curves start from h + l for s = 0 and gradually descends,

ending somewhere above h− l, for s = n− 1.

Recall that we measure throughput by the collection time (Chapter 5). Figure 6.3(a)

shows the expected performance of the random annex code, along with the performance

of the head-to-toe overlapping code and the non-overlapping code (l = 0). Figure 6.3(b)

shows the probability of decoding failure of these codes versus the number of coded packets

collected.

• Our analysis for the expected collection time closely matches the simulation results.

• Figure 6.3(a) shows that by fixing the file size N and the base generation size h, the

expected collection time decreases roughly linearly with increasing annex size l, up

to l = 12 for the random annex scheme and up to l = 8 for the head-to-toe scheme.

Meanwhile, the decoding cost per file packet is quadratic in g = h + l. Beyond the

optimal annex size, throughput cannot be further increased by raising computational
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Figure 6.2: N = 1000, h = 25, q = 256: Difference between the generation size and the
expected size of overlap with previously decoded generations (h+ l − Ω(s)).

cost.

• The random annex code outperforms head-to-toe overlapping at their respective op-

timal points. Both codes outperform the non-overlapping scheme.

• As more coded packets are collected, the probability of decoding failure of the random

annex code converges to 0 faster than that of the head-to-toe and that of the non-

overlapping scheme.

Overlaps provide a tradeoff between computational complexity and collection time.

Enhancing Throughput in Fixed-Generation-Size Schemes

Our goal here is to see if we can choose the annex size to optimize the throughput with

negligible sacrifice in complexity. To this end, we fix the extended generation size g = h+ l

and vary only the annex size l. Consequently, the computational complexity for coding does

not increase when l increases. Actually, since some of the file packets in a generation of

2/figures/li_3a_fixh_dist.eps
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size g could already be solved while decoding other generations, the remaining file packets

in this generation can be solved in a system of linear equations of fewer than g unknowns,

and as a result increasing l might decrease the decoding complexity.

Figure 6.4 shows both the analytical and simulation results for the code performance

when the total number N of file packets is fixed at 1000 and size g of extended generation

fixed at 25.

• Again our analytical results agree with simulation results very well;

• It is interesting to observe that, without raising computational complexity, increasing

annex size properly can still give non-negligible improvement to throughput;

• Figure 6.4(a) shows a roughly linear improvement of throughput with increasing l, up

to l = 10 for the random annex scheme and up to l = 6 for the head-to-toe scheme.

Increasing l beyond affects throughput adversely;

• The random annex code again outperforms head-to-toe overlapping at their optimal

points. Both codes outperform the non-overlapping scheme;

• We again observe that the probability of decoding failure of the random annex code

converges faster than those of the head-to-toe and the non-overlapping schemes.

When the overlap size increases, we either have larger generations with unchanged num-

ber of generations, or a larger number of generations with unchanged generation size. In

both cases the collection time would increase if we neglected the effect of overlaps during

the decoding process. If we make use of the overlap in decoding, on the other hand, the

larger the overlap size, the more help the generations can lend to each other in decoding

and, hence, reducing the collection time. Two canceling effects result in a non-monotonic

relationship between throughput and overlap size.

The effect of generation size on the throughput of random annex codes is further illus-

trated in Figure 6.5. Figure 6.5 plots the optimal expected collection time achievable by
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random annex codes and the corresponding optimal annex size versus the generation size

for N = 1000 and q = 16. The plotted values are calculated using the algorithm listed in

Section 6.3.5. We can see from Figure 6.5 that with the random annex code and a generation

size of 20, the expected throughput is better than what can be achieved with coding over

disjoint generations and a generation size of 50. The reduction in computational complexity

is considerable. Capturing the optimal overlap size in terms of other parameters of the code

is our object of interest in the future.
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(a)

(b)

Figure 6.3: N = 1000, h = 25, q = 256: (a) Expected number of coded packets needed for
successful decoding versus annex size l; (b) Probability of decoding failure

2/figures/li_3b_fixh_exp.eps
2/figures/li_3c_fixh_pe.eps
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(a)

(b)

Figure 6.4: N = 1000, g = h + l = 25, q = 256: (a) Expected number of coded packets
needed for successful decoding versus annex size l; (b) Probability of decoding failure

2/figures/li_4a_fixg_exp.eps
2/figures/li_4b_fixg_pe.eps
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Figure 6.5: Optimal expected collection time and the optimal overlap size with random
annex codes. N = 1000, q = 16

2/figures/li_5_bestlat3.eps
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Chapter 7

Multiple Collectors: Union Power

7.1 Introduction

In BitTorrent-like [5] peer-to-peer(P2P) systems, content distribution involves dividing the

content into smaller blocks at its source, and using swarming techniques to disseminate

these blocks among peers. However, it has been observed from a number of experimental

studies (e.g. [45]) that peer-churn(peers joining and leaving the system) and the availability

of seeds(peers with the complete content) in the system can cause the “last-piece problem”

and hamper downloading efficiency.

To improve downloading efficiency, Gkantsidis and Rodriguez proposed and experi-

mented in [12] to incorporate the concept of network coding into P2P content distribution

and to circulate random linear combinations of the content blocks. To help appreciate the

benefit of using network coding in P2P systems, consider a simple network where a number

of peers download simultaneously from a seeding node with a complete file of N blocks. Let

us make a brief comparison of an uncoded system and a network coded system in terms

of the growth rate of the union collection of the downloading peers with the growth of t,

the number of file blocks or coded blocks downloaded by each peer from the source, and

with the growth of l, the number of peers included in the union. In an uncoded system,

the size of the union collection is defined as the number of distinct file blocks possessed

by the set of peers in consideration, and in a network coded system, it is defined as the

number of linearly independent coded blocks. If each peer collects uncoded file blocks from

the seed uniformly at random, the expected size of the union collection of l peers will be
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N(1−(1−1/N)lt) ≈ N(1−e−lt/N ) for large N . If each peer requests only the file blocks they

do not have(sampling without replacement), the expected size of the union collection will

be N(1− (1− t/N)l) ≈ N(1− e−lt/N ) for large N , which is not much better than collecting

uniformly at random, if the total number of file blocks is large. However, if coding is used,

with high probability all coded blocks are linearly independent, even across peers, and so

the union collection size grows almost linearly both in t and in l. Without coordination

between peers, only with coding can the downloading power be doubled when the number

of peers doubles(given uploading bandwidth limit not yet achieved).

In this chapter, we want to study the effects of using coding with generations in P2P file

distribution systems. We approach the problem by studying a simpler scenario: multiple

collectors collecting packets from a super server, and study the union collection of the col-

lectors. The generation scheduling (selection) strategies are not limited to being uniformly

random.

Examining the union collection will help to answer the following questions:

1. How many coded blocks must be injected into the peer community so that the peers

can jointly decode the file?

2. How many peers need a newly joining peer contact to acquire a complete copy of the

file?

3. What fraction of the content remains in the system upon peer departures?

This work is our first attempt to study the peer union collection in P2P content distribution

on the theoretical basis that could disclose the effect of coding and scheduling strategies on

interesting quantities of the system.

We are particularly interested in the effects of the generation size and the generation se-

lection strategies that take advantage of the information on individual collections. We com-

pare three generation selection strategies: random selection, individual-min, and individual-

max. The first strategy requires minimum accounting and serves as a reference point, the



79

second is a coded equivalent of the simplest uncoded strategy that each peer downloads

its own missing blocks regardless of the collection of other peers, and the last is a greedy

strategy that ensures linear growth of decodable content in each individual collection. We

find that individual-min performs the best in terms of the rate of growth in union collection.

With both random selection and individual-min, larger generation size delays initial decod-

ing, but shortens the time to download the complete file. With individual-max, coding does

not help with the growth of the number of decodable file blocks in the union collection,

although the individual decodable collection can grow linearly since the beginning.

The rest of the chapter is organized as follows. In Section 7.2, we introduce our system

model. In Section 7.3, we study the union collection of peer collectors when they use

different generation selection strategies when requesting coded file blocks from other nodes.

These strategies include random selection, individual-minimum and individual-maximum,

and we use the balls-into-bins model for our analysis. We shall show numerical results and

discuss the effects of the generation size and generation selection strategies on the growth

of the union collection of peers. The last section concludes.

7.2 System Model

We consider l peer collectors collecting file F from the super server. Each collector com-

municates with the server via a perfect unicast link. The N file packets are divided into n

disjoint generations of equal size g. For the sake of simplicity, N is assumed to be a multiple

of g. Initially, none of the collectors has any content blocks.

Each peer collector contacts the super server and informs the server of the generation

the collector is interested in. The server responds by sending a coded packet formed from

the requested generation following the RL scheme (Section 3.2.2). The number of coded

packets with linearly independent coefficients in the collection of the peer(s) is referred

to as the degrees of freedom(dofs) collected by the peer(s). This terminology also applies

to individual generations. The size of the finite field is assumed to be large enough such
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that (with high probability) the dofs collected for a generation equals the number of coded

packets collected from that generation, or the generation size g, whichever is smaller. Such

an assumption is reasonable (see for example Section 6.1). Each node accumulates coded

blocks from all generations and a generation becomes decodable when the dofs collected

for that generation reaches the generation size g. Note that g = 1 means that there is no

coding, and g = N means coding over the entire content.

We are interested in the effects of generation size g and generation selection strategy on

the union collection of peers. No coordination between the peers is assumed when requests

to the super server are issued.

We assume that the communications in the network is synchronized. Let us suppose

that all peers start at the same time(like an incoming “flash crowd”). Time is measured in

discrete slots, and requests for coded packets are made at the beginning of a time slot, and

responded by the end of the same slot. Each peer makes one request to the server in every

time slot. All packets reach the intended receivers.

7.3 The Union Collection

In this section we investigate the union of the collection held at the peers in the system

model described in Section 7.2. Use lT (k) to denote the time elapsed when the number of

decodable generations in the union collection of l ≥ 1 peers reaches k, that is, when there

are h dofs for each one of some arbitrary set of k generations. lT (n) is the time needed to

get a complete decodable copy of the file in the union collection of l peers. Use W (k) to

denote the total number of coded blocks needed to collect k decodable generations. We will

use a subscript to refer to the corresponding generation selection schedule, e.g., W
(k)
rand refers

to the random selection strategy. In a balls-into-bins perspective, a decodable generation

corresponds to a bin with at least g balls in it.
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7.3.1 Random Selection

With the random selection strategy, a receiver node requests a generation selected uniformly

at random among all n generations. Note that this implies that a peer may select an already

decodable generation. Nevertheless, this simple strategy offers a reference point and is easier

to analyze. Random selection can be modeled as random allocation of balls into n bins with

replacement. The problem of collecting k decodable generations is then readily modeled by

the collector’s brotherhood problem [13, 14].

The expected total number of coded blocks (balls) needed to collect k decodable genera-

tions (bins having g or more balls), E[W
(k)
rand], can be inferred from Corollary 11 in Chapter

5, which treats an extension of the collector’s brotherhood problem:

E[W
(k)
rand] = n

∫ ∞

0

{

k−1
∑

i=0

(

n

i

)

Sn−i
g (x) [ex − Sg(x)]

i

}

e−nxdx, (7.1)

where

Sg(x) =1 +
x

1!
+

x2

2!
+ · · · + xg−1

(g − 1)!
(g ≥ 1)

S∞(x) = exp(x) and S0(x) = 0.

Since the time required to have k decodable generations in the union collection of l ≥ 1

peers is lT
(k)
rand = ⌈W (k)

rand/l⌉, we have its expectation sandwiched as

1

l
E[W

(k)
rand] ≤ E[lT

(k)
rand] < 1 +

1

l
E[W

(k)
rand], (7.2)

Plotted in Figure 7.1 is the expected time needed for l peers to acquire in their union

collection certain decodable fractions of the file, for a few exemplary generation sizes. With

smaller generation sizes, the decodable fraction in the union collection grows fast at the

beginning, but it takes longer to collect the whole file, while with larger generation sizes,

the decodable fraction in the union collection grows at a more steady rate and a complete

file copy could be downloaded in a shorter time. We also note that, when downloading a

file of 50 20-packet generation, for as few as l = 2 peers, the expected time to acquire the
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Figure 7.1: Expected time needed to collect decodable fraction of the file in the union
collection of l peers. Generation selection strategy: uniformly at random. File Size N =
1000.

whole file in the union collection is much shorter than the expected time to collect enough

dofs to decode the first generation for a single peer. This implies that our results hold well

even if a peer does exclude decodable generations when requesting coded blocks from the

seed.

The readers are also referred to Chapter 6 for the effects of generation size on the

expected time needed to obtain a complete decodable copy of the file, when generations

are selected uniformly at random. Interesting asymptotic results for large n, the number of

generations have also been presented there.

2/figures/union_random_ET.eps
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7.3.2 Individual-Min

Here each peer requests the generation with the smallest dofs in their respective individual

collections. A uniformly random draw is used to break the tie among multiple generations

with minimum dofs. For g = 1, the uncoded case, this simply means randomly requesting

one of the missing blocks.

Given our assumption that all peers start collection at the same time and proceed

at the same pace, each peer collects the same number of coded packets after a certain

time. Meanwhile, under the individual-min strategy, at each collector, the numbers of dofs

collected for different generations, that is, the numbers of balls in different bins, differ by

at most 1, since the bins are filled “level-by-level”. With each collector, by the end of

time slot t (t < N = ng), a(t) = t − n⌊t/n⌋ of the n bins will each have ⌊t/n⌋ + 1 balls,

and the remaining n − a(t) bins will each have ⌊t/n⌋ balls. The a(t) bins with extra balls

are distributed among the n bins as if they were chosen uniformly at random from the n

generations without replacement. After the bins are merged among the l peers by the bin

(generation) indices, there are at least l⌊t/n⌋ balls in each bin. Thus, in the union collection

of any l peers, there will be (with high probability) at least a total of min{l⌊t/n⌋, g} dofs

collected for each generation. Hence, we have

lT (n) ≤ n⌈g
l
⌉. (7.3)

On the other hand,

lT (n) ≥ n⌊g
l
⌋, (7.4)

because otherwise, the total number of dofs collected by all l peers is

l ·l T (n) < l · n · ⌊g
l
⌋ ≤ l · n · g/l = N,

making it impossible to get a decodable copy of all N file packets in the union collection.

Let y = g − l⌊g/l⌋. We have 0 ≤ y ≤ l − 1.

Claim 23. If g is a multiple of l, lT
(n)
indv min = ng/l = N/l.
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If y ≥ 1, ⌊g/l⌋ = ⌈g/l⌉ − 1. We further have

lT (n) > n⌊g
l
⌋, (7.5)

since otherwise, the total number of coded packets collected by all l peers is

l · lT (n) ≤ l · n · ⌊g
l
⌋ < l · n · g/l = N,

impossible to get a fully decoded copy. By (7.3) and (7.5), we have lT (n) ∈ {n⌊g/l⌋ +

1, n⌊g/l⌋+ 2, . . . , n⌈g/l⌉}. ⌈lT (n)/n⌉ = ⌈g/l⌉ = ⌊g/l⌋+ 1. At time lT (n), if we remove ⌊g/l⌋

balls from each bin at each peer, there will be b(lT (n)) =l T (n) − n⌊g/l⌋ bins with one ball

in each of them, and the remaining n − b(lT (n)) bins will be empty. Then merge the bins

among the l peers by the bin(generation) indices. Given that by time lT (n) there should

be a fully decodable copy in the union collection, the distribution of the l · b(lT (n)) balls

after merging should ensure that there are at least y balls in each bin. Hence, lT (n) is the

smallest t required to accumulate at least y balls in each of the n bins after allocating balls

in l b(t)-complexes (see Section 5.2 for the definition of allocation in complexes).

Claim 24. If l divides g − 1,

E[lT
(n)
indv min] = n

g − 1

l
+

n
∑

m=1

(

n

m

)

(−1)m−1
n−m
∑

β=1

(

n

β

)−l(n−m

β

)l

+ 1.

Proof. For simplicity, in this proof we use T to represent lT (n).

If l divides g− 1, y = g− l⌊g/l⌋ = 1, the problem becomes filling all n bins by throwing

b(T )-complexes of balls l times. The possible values of T are limited to {n g−1
l + 1, n g−1

l +

2, . . . , n g−1
l + n}. b(T ) = T − n(g − 1)/l, and takes values in {1, 2, . . . , n}.

The number of empty bins after l throws of β-complexes (β ∈ {1, 2, . . . , n}) is µ0(l, n, β),
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as defined in Section 5.2. Then, Pr[b(T ) > β] = Pr[µ0(l, n, β) > 0], and thus by (5.10),

E[b(T )] =

n
∑

β=0

Pr[b(T ) > β]

= 1 +

n−1
∑

β=1

(

1−
(

n

β

)−l n
∑

m=0

(

n

m

)

(−1)m
(

n−m

β

)l
)

= 1 +

n−1
∑

β=1

(

n

β

)−l n
∑

m=1

(

n

m

)

(−1)m−1

(

n−m

β

)l

= 1 +

n
∑

m=1

(

n

m

)

(−1)m−1
n−m
∑

β=1

(

n

β

)−l(n−m

β

)l

(7.6)

Then,

E[T ] = n
g − 1

l
+ E[b(T )], (7.7)

where l has to be a divisor of g − 1.

Some example values of E[Tindv min] are shown in Table 7.1, whenN = 1000. The growth

of the union collection with the number of peers l is almost halved when the generation

size g = 25. Also, increasing g from 25 to 40 slightly reduces E[Tindv min]. It seems that

for N = 1000, g = 25 is good enough to effectively increase downloading power by adding

peers, and this increase does not require exchange of information of respective collections

among peers.

Table 7.1: E[Tindv min] and E[Trand] for N = 1000, two generation sizes g = 25 and g = 40,
with given numbers of peers l (∗upperbounds)

l 1 2 3 6 12 13

E[Tindv min] g = 25, n = 40 1000 515.4 350.4 180.7 92.5 80∗

E[Trand] g = 25, n = 40 1483.2 741.6 494.4 247.2 123.6 114.1

E[Tindv min] g = 40, n = 25 1000 500 343.2 175∗ 94.5∗ 81.9

E[Trand] g = 40, n = 25 1336.2 668.1 445.4 222.7 111.3 102.8

The expected number of decodable file packets in the union collection of l peers, on the

other hand, is given in the following Claim 25.

Claim 25. If l divides g− 1, at time t, the expected number of decodable file packets in the
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union collection of l peers is

N

(

1−
(

1−
(

t

n
− g − 1

l

))l
)

for t > n(g − 1)/l, and is 0 when t ≤ n(g − 1)/l.

Proof. The number of decodable generations equals n−µ0(l, n, b(t)). By (5.11), the expected

number of decodable file packets in the union collection is

g(n− E[µ0(l, n, b(t))]) = N

(

1−
(

1− b(t)

n

)l
)

= N

(

1−
(

1−
(

t

n
− g − 1

l

))l
)

, (7.8)

In Figure 7.2 we compare the growth of decodable fraction in the union collection for

N = 1000, g = 1, 10, 100 and l = 3, 9. Note that when g = 1 (the uncoded case), all l ∈ N

divides g−1 = 0, and hence both Claim 24 and Claim 25 apply. In particular, the expected

number of decodable file packets at time t ≤ N is

N − E[µ0(l,N, t)] = N [1− (1− t/N)l]. (7.9)

Here we observe a phenomenon similar to what we have seen in the random selection

scheme: with larger generations, it takes longer to get the initial decodable fraction, but

it is easier to collect the last fraction of the file. Also, using the individual-min selection

strategy, the time needed to download the file is greatly reduced compared to the random

selection strategy.

For y ≥ 1, We also give an upper bound of the expected time T to get a full file copy.

Claim 26. If y = g − l⌊g/l⌋ ≥ 1,

E[lT
(n)
indv min] < n

g − y

l
+min{n, n

l

∫ ∞

0
{1− [1− Sy(x)e

−x]n}dx+ 1}. (7.10)
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Figure 7.2: Expected decodable fractions of the file in the union collection of l peers versus
downloading time. Generation selection strategy: individual-min. File Size N = 1000.

Proof. Again in this proof, we abbreviate lT (n) to T. First of all, by time n(g − y)/l +

n = n⌈g/l⌉, each peer collects ⌈g/l⌉ dofs for each generation, and therefore in the union

collection, l⌈g/l⌉ > g dofs are collected for each generation, and a fully decodable copy

exists. Hence, T ≤ n(g−y)/l+n. Since here we assume that g is not a multiple of l, smaller

values of T is possible. Therefore, E[T ] < n(g − y)/l + n.

On the other hand, at each peer, consider instead allocating the last b(T ) = T−n(g−y)/l

balls with replacement (see Chapter 5), and then throw away the extra balls in the bins

with more than one ball (counting the last b(T ) balls only). Merge the collectors’ bins by

the indices. Then, the number of balls in each bin will not exceed what is achieved with

2/figures/union_indvmin_EU.eps
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allocation without replacement. We need to get at least y balls in each bin. By (7.1) and

(7.2), we have

E[b(T )] <
n

l

∫ ∞

0
{1− [1− Sy(x)e

−x]n}dx+ 1.

We see that

Finally, for the special case of g = 1 (the uncoded case), we derive the expected value

of the number of peers needed for the union collection to include one complete copy of the

file.

Claim 27. In the uncoded case (g = 1), the expected value of the number of peers L needed

for the union collection to include one complete copy of the file when each collector has been

collecting for a duration of t is

E[L] =

N
∑

m=1

(

N

m

)

(−1)m−1 1

1−
(N−m

t

)

/
(N
t

) . (7.11)

Proof.

E[L] =
∑

l≥0

Pr[L > l] =
∑

l≥0

Pr[µ0(l,N, t) > 0]

=
∑

l≥0

(

N

t

)−l N
∑

m=1

(

N

m

)

(−1)m−1

(

N −m

t

)l

=

N
∑

m=1

(

N

m

)

(−1)m−1
∑

l≥0

(

N

t

)−l(N −m

t

)l

=

N
∑

m=1

(

N

m

)

(−1)m−1 1

1−
(N−m

t

)

/
(N
t

) . (7.12)

It can be estimated from (7.9) that E[L] decreases with t approximately asO(−1/ log(1−

t/N)).

Imagine a new collector joins after time t, and unfortunately the super server has dis-

connected from the system. Then it would need to contact about E[L] peers to be able to

obtain the complete file.
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7.3.3 Individual-Max

Here, in each time slot a peer requests a coded packet from any one of the non-decodable

generations with the largest dofs collected. This is a greedy strategy in which each peer

ensures linear growth of decodable content in its own personal collection. With this strategy,

at each peer, the first g balls land into one of the n bins, the next g balls land into one

of remaining n − 1 empty bins, and so on. After time t, each peer will have a random set

of ⌊t/g⌋ decodable generations, one generation with (t − g⌊t/g⌋) dofs, and the rest of the

generations with no dofs collected yet. When t is a multiple of g, each bin is either empty

or filled with g balls. The number of decodable generations in the union collection of l peers

is the same as the number of bins with at least one ball, when balls are shot into the bins

as (t/g)-complexes, independently and l times. In the light of this interpretation, by time

t, the average number of decodable generations in the union collection of l peers is given by

n−E[µ0(l, n, t/g)] = n{1− [1− t/(ng)]l}.

The number of decodable packets is then N [1− (1− t/N)l], exactly the same as that of the

uncoded case (7.9). This means coding does not provide much benefit to the system, if any.

The individual maximum a strategy ensures that individuals can decode coded blocks

as soon as possible, but it is adverse to the growth of the union collection of a number of

peers, compromising the power of sharing among peers.

7.4 Conclusions and Future Work

We analyzed the growth of union collection in a peer-to-peer system that employs network

coding with generations using different versions of the classical balls-into-bins model. We

study the effects of the generation size and the generation selection strategies that take ad-

vantage of the information on individual collections. Three generation selection strategies

are compared: random selection, individual-min, and individual-max. The individual-min

strategy is found to perform the best in terms of the rate of growth in the union collection.
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With both random selection and individual-min, larger generation size delays initial decod-

ing, but shortens the time to download the complete file. With individual-max, however,

coding does not help with the growth of the number of decodable file blocks in the union

collection, although the individual decodable collection can grow linearly since the begin-

ning. When properly employed, coding reduces the need to optimize system performance

by co-ordination between peers.

The study of the union collection is helpful to the investigation of both the throughput

and the peer-dynamics of a peer-to-peer system. We believe our work has already shed some

light on the effects of using network coding with generations in peer-to-peer file distribu-

tion. The results should also be transplantable to distributed caching systems. In the near

future, we expect to extend our analysis to more complicated topologies and generation

scheduling with balancing schemes such as local rarest first. We would also like to compare

the analytical results to experimental results on large-scale systems.
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Appendix A

Proof of Claim 2 in Chapter 3

g−1
∑

l=0

(

g

l

)

(1 − ǫ)lǫg−lpRL
m−g,g−l,ǫ

=

g−1
∑

l=0

(

g

l

)

(1− ǫ)lǫg−l
m−g
∑

j=g−l

(

m− g

j

)

(1− ǫ)jǫm−g−j
g−l−1
∏

s=0

(1− qs−j)

=

g−1
∑

l=0

(

g

l

) m−g
∑

j=g−l

(

m− g

j

)

(1− ǫ)j+lǫm−l−j
g−l−1
∏

s=0

(1− qs−j)

=

g−1
∑

l=0

(

g

l

)m−g+l
∑

j=g

(

m− g

j − l

)

(1− ǫ)jǫm−j
g−l−1
∏

s=0

(1− qs−j+l)

=

m−1
∑

j=g

g−1
∑

l=0

(

g

l

)(

m− g

j − l

)

(1− ǫ)jǫm−j
g−l−1
∏

s=0

(1− qs−j+l)

&
m−1
∑

j=g

g−1
∑

l=0

(

g

l

)(

m− g

j − l

)

(1− ǫ)jǫm−j(1− 1

q − 1
qg−j) (*)

(*) follows from (3.6). Applying Vandermonde’s identity
∑g

l=0

(g
l

)(m−g
j−l

)

=
(m
j

)

to (*), we
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have

(*) =

m
∑

j=g

(

(

m

j

)

−
(

m− g

j − g

)

)
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∑
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=
m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j − 1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j − (1− ǫ)g

+
(1− ǫ)g

q − 1
(
1− ǫ

q
+ ǫ)m−g.
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Appendix B

Proof of Claim 5 in Chapter 4

We give two independent arguments to validate the claim.

After the systematic phase, each content packet successfully reaches user i independently

at probability 1 − ǫi, and an average of (1 − ǫi)N packets reaches the user. If zi ≤ 1 − ǫi,

the demand of user i is considered fulfilled. We consider the case where zi > 1− ǫi.

In the first argument, we find out the non-systematic equivalent degree distribution

P̄ (x). To do that we only need to find out the (normalized) number of degree-1 pack-

ets(containing content packets selected uniformly at random with replacement) required to

be transmitted in order for user i to recover the (1− ǫi)N distinct content packets received

in the systematic phase. This number, − ln ǫi
1−ǫi

, can be obtained by setting P (x) = 1 · x

(all-one degree distribution) in (4.6). A coupon collector’s argument brings to the same

conclusion [46, Ch. 2] (see also [42]): the expected number of samplings required to collect

zN distinct coupons is

N
( 1

N
+

1

N − 1
+ · · · + 1

N − zN + 1

)

' N ln
N

N − zN + 1
= −N ln

(

1− zN − 1

N

)

. (B.1)

Divide (B.1) by N(1− ǫi), take N → ∞ and let z = 1− ǫi, we find the same result as found

from (4.6).

Hence,

p̄1 = − ln ǫi
1− ǫi

+ p1

and

P̄ (x) = − ln ǫi
1− ǫi

x+ P (x).
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In (4.5), replace P (x) by P̄ (x) and ti by (ti−1) to subtract the time spent in the systematic

phase, and we get (4.11).

Alternatively, one can consider the packets received in the systematic phase as side

information to the decoder, such as in [47, 48]. These packets are removed from the sub-

sequent coded packets, and we need to decode another (zi − (1 − ǫi))N packets from the

remaining ǫiN packets. Let d and d̂ be the random variables representing the degree of a

randomly generated coded packet and the degree of the coded packet after the removal of

the packets received in the systematic phase. Thus, d̂ =
∑d

j=1Xj where Xj(j = 1, 2, . . . ,D)

are i.i.d Bernoulli(ǫi) random variables indicating if the jth content packet participating in

the coded packet has not been received in the systematic phase and remains in the coded

packet. Thus, the moment generating function D̂ is

P̂ (x) = P (Q(x)) = P (1− ǫi + ǫix),

where

Q(x) = 1− ǫi + ǫix

is the moment generating function of the i.i.d. Xjs. In (4.5), replace P (x) by P̂ (x), zi by

ẑi =
(zi − (1− ǫi))N

ǫiN
=

zi − (1− ǫi)

ǫi
,

and ti by

t̂i =
(ti − 1)N

ǫiN
=

ti − 1

ǫi
,

we have

(1− ǫi)
ti − 1

ǫi
P ′(Q(x))Q′(x) + ln(1− x) > 0, ∀x ∈

[

0,
zi − (1− ǫi)

ǫi

)

. (B.2)

Let y = Q(x) = 1− ǫi + ǫix, we get

(1− ǫi)ǫi
ti − 1

ǫi
P ′(y) + ln

(

1− y − 1 + ǫi
ǫi

)

> 0, ∀y ∈
[

1− ǫi, 1− ǫi + ǫi
zi − (1− ǫi)

ǫi

)

,

(B.3)

which is exactly (4.11).
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Appendix C

Chapter 6 Proofs

C.1 Proof of Claim 14

For i = 1, 2, . . . , n and any s ≥ g, we have

lnProb
{

M(g, g) ≤ s
}

= ln

h−1
∏

k=0

(1− qk−s) =

g−1
∑

k=0

ln(1− qk−s)

=−
g−1
∑

k=0

∞
∑

j=1

1

j
q(k−s)j = −

∞
∑

j=1

1

j

g−1
∑

k=0

qj(k−s)

=−
∞
∑

j=1

1

j
q−js q

jg − 1

qj − 1

=− q−(s−g)
∞
∑

j=1

1

j
q−(j−1)(s−g) 1− q−jg

qj − 1

>q−(s−g)
∞
∑

j=1

1

j

1− q−jg

1− qj

=q−(s−g) ln Prob
{

M(g, g) ≤ g
}

>q−(s−g) lim
h→∞,q=2

ln Prob
{

M(g, g) ≤ g
}

The claim is obtained by setting

αq,g = − ln Prob
{

M(g, g) ≤ g
}

,

and

α2,∞ = − lim
g→∞,q=2

ln Prob
{

M(g, g) ≤ g
}

.
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C.2 Proofs of Generalized Results of Collector’s Brotherhood Problem

Proof of Theorem 8

Our proof generalizes the symbolic method of [13].

Let ξ be the event that the number of copies of coupon Gi is at least mi for every

i = 1, 2, . . . , n. For integer t ≥ 0, let ξ(t) be the event that ξ has occurred after a to-

tal of t samplings, and let ξ̄(t) be the complementary event. Then, the tail probability

Prob[T (ρ,m) > t] = Prob[ξ̄(t)] = νt.

To derive νt, we introduce an operator f acting on an n-variable polynomial g. f removes

all monomials xw1
1 xw2

2 . . . xwn
n in g satisfying w1 ≥ m1, . . . , wn ≥ mn. Note that f is a linear

operator, i.e., if g1 and g2 are two polynomials in the same n variables, and a and b two

scalars, we have af(g1) + bf(g2) = f(ag1 + bg2).

Each monomial in (x1 + · · · + xn)
t corresponds to one of the nt possible outcomes of

t samplings, with the exponent of xi being the number of copies of coupon Gi. Since the

samplings are independent, the probability of an outcome xw1
1 xw2

2 . . . xwn
n is ρw1

1 ρw2
2 . . . ρwn

n .

Hence, the probability of ξ̄(t) is f((x1 + · · · + xn)
t), when evaluated at xi = ρi for i =

1, 2, . . . n, i.e.,

νt = f((x1 + · · ·+ xn)
t)|xi=ρi,i=1,...,n. (C.1)

Hence, (C.1) and (5.3) lead to

ϕT (ρ,m)(z) =
∑

t≥0

f
(

(x1 + · · · + xn)
t
)

zt|xi=ρi,i=1,...,n.

The identity
∫ ∞

0

1

t!
yte−ydy = 1
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and the linearity of the operator f imply that

ϕT (ρ,m)(z) =

∫ ∞

0

∑

t≥0

f
(

(x1 + · · · + xn)
t
)

t!
ztyte−ydy

=

∫ ∞

0
f
(

∑

t≥0

(x1zy + · · ·+ xnzy)
t

t!

)

e−ydy

=

∫ ∞

0
f (exp(x1zy + · · ·+ xnzy)) e

−ydy (C.2)

evaluated at xi = ρi, i = 1, . . . , n.

We next find the sum of the monomials in the polynomial expansion of exp(x1+ · · ·+xn)

that should be removed under f . Clearly, this sum should be
∏n

i=1 (e
xi − Smi

(xi)), where

S is defined in (5.1) and (5.2)). Therefore,

f (exp(x1zy + · · ·+ xnzy)) |xi=ρi,i=1,...,n

= ezy −
n
∏

i=1

(eρizy − Smi
(ρizy)) .

ϕT (ρ,m)(z) =

∫ ∞

0

[

ezy −
n
∏

i=1

(eρizy − Smi
(ρizy))

]

e−ydy (C.3)

Proof of Corollary 9

Note that

ϕT (ρ,m)(z) =

∞
∑

t=0

Prob[T (ρ,m) > t]zt

=
∞
∑

t=0

∞
∑

j=t+1

Prob[T (ρ,m) = j]zt

=
∞
∑

j=1

Prob[T (ρ,m) = j]

j−1
∑

t=0

zt

E[T (ρ,m)] =

∞
∑

j=1

jProb[T (ρ,m) = j] = ϕT (ρ,m)(1).
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Similarly,

ϕ′
T (ρ,m)(z) =

∞
∑

t=0

tProb[T (ρ,m) > t]zt−1

=
∞
∑

j=1

Prob[T (ρ,m) = j]

j−1
∑

t=0

tzt−1

ϕ′
T (ρ,m)(1) =

∞
∑

j=1

1

2
j(j − 1)Prob[T (ρ,m) = j].

Hence,

E[T (ρ,m)2] =

∞
∑

j=1

j2Prob[T (ρ,m) = j]

=2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1),

and consequently,

Var[T (ρ,m)] = 2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1) − ϕ2

T (ρ,m)(1).

We have

ϕ′
T (ρ,m)(z) =

∫ ∞

0
x

(

e−x(1−z) −
n
∑

i=1

ρi
e−ρix(1−z) − Smi−1(ρixz)e

−ρix

e−ρix(1−z) − Smi
(ρixz)e−ρix

·

·
n
∏

j=1

(

e−ρjx(1−z) − Smj
(ρjxz)e

−ρjx
)

)

dx,

and from there, we can get ϕ′
T (ρ,m)(1) and Var[T (ρ,m)].

Proof of Theorem 10

We again apply the Newman-Shepp symbolic method. Similar to the proof of Theorem 8, we

introduce an operator f acting on an n-variable polynomial g. For a monomial xw1
1 . . . xwn

n ,

let ij be the number of exponents wu among w1, . . . , wn satisfying wu ≥ kj , for j = 1, . . . , A.

f removes all monomials xw1
1 . . . xwn

n in g satisfying i1 ≥ k1, . . . , iA ≥ kA and i1 ≤ · · · ≤ iA.

f is again a linear operator. One can see that

ϕU(m,k)(z) =

∫ ∞

0
f (exp(x1zy + · · ·+ xnzy)) e

−ydy|x1=x2=···=xn=
1
n
.
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We choose integers 0 = i0 ≤ i1 ≤ · · · ≤ iA ≤ iA+1 = n, such that ij ≥ kj for j =

1, . . . , A, and then partition indices {1, . . . , n} into (A + 1) subsets I1, . . . ,IA+1, where

Ij(j = 1, . . . , A+ 1) has ij − ij−1 elements. Then

A+1
∏

j=1

∏

i∈Ij

(Smj−1(xi)− Smj
(xi)) (C.4)

equals the sum of all monomials in exp(x1 + · · · + xn) with (ij − ij−1) of the n exponents

smaller thanmj−1 but greater than or equal tomj, for j = 1, . . . , A+1. (Here S is as defined

by (5.1)-(5.2).) The number of such partitions of {1, . . . , n} is equal to
( n
n−iA,...,i2−i1,i1

)

=

∏A
j=0

(ij+1

ij

)

. Finally, we need to sum the terms of the form (C.4) over all partitions of all

choices of i1, . . . , iA satisfying kj ≤ ij ≤ ij+1 for j = 1, . . . , A:

f (exp(x1zy + · · ·+ xnzy)) |x1=···=xn=
1
n

(C.5)

= exp(zy)−
∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

ij∈[kj,ij+1]

j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(
zy

n
)− Smj+1(

zy

n
)
]ij+1−ij

. (C.6)

Bringing (C.5) into (C.2) gives our result in Theorem 10.

C.3 Proof of Theorem 15

E[W (ρ,g)] =
∑

m

(

n
∏

i=1

Pr[Mi = mi]

)

E[T (ρ,m)]

=

∫ ∞

0

[

1−
n
∏

i=1

∑

mi

Pr[Mi = mi](1− Smi
(ρix)e

−ρix)

]

dx (C.7)

=

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx.

(C.7) comes from the distributivity.

Since

EMi
[SMi

(ρix)] =
∞
∑

j=0

(ρix)
j

j!
Pr[Mi > j],
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by Claim 14,

EMi
[SMi

(ρix)] < Sgi(ρix) +

∞
∑

j=gi

(ρix)
j

j!
αq,gq

−(j−g)

= Sgi(ρix) + αq,giq
gieρix/q − αq,giq

giSgi(ρix/q),

where

αq,gi = − ln Pr
{

M(gi, gi) ≤ gi
}

= −
gi−1
∑

k=0

ln
(

1− qk−gi
)

for i = 1, 2, . . . , n.

Hence, we have (6.8).

Expression (6.9) for E[W 2(ρ,g)] can be derived in the same manner, and then the

expression for Var[W (ρ,g)] immediately follows.

C.4 Proof of Theorem 22

Without loss of generality, let I = {1, 2, . . . , s} and j = s+1, and define Rs = ∪s
i=1Ri, Bs =

∪s
i=1Bi, and Gs = ∪s

i=1Gi for s = 0, 1, . . . , n−1. Then, E [| (∪i∈IGi) ∩Gj |] = E [|Gs ∩Gs+1|].

For any two sets X and Y , we use X + Y to denote X ∪ Y when X ∩ Y = ∅.

Gs ∩Gs+1 =(Bs +Rs\Bs) ∩ (Bs+1 +Rs+1)

=Bs ∩Rs+1 +Rs ∩Bs+1 + (Rs\Bs) ∩Rs+1,

and therefore

E[|Gs ∩Gs+1|] =E[|Bs ∩Rs+1|]+ (C.8)

E[|Rs ∩Bs+1|] + E[|(Rs\Bs) ∩Rs+1|].

Using Claim 18, we have

E[|Bs ∩Rs+1|] = shπ, (C.9)

E[|Rs ∩Bs+1|] = h[1− (1− π)s], (C.10)

E[|(Rs\Bs) ∩Rs+1|] = (n− s− 1)hπ[1 − (1− π)s], (C.11)
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where π is as defined in Claim 18. Bringing (C.9)-(C.11) into (C.8), we obtain (6.10).

Furthermore, when n → ∞, if l/h → α and s/n → β, then

E[|Gs ∩Gs+1|] =g · [1− π̄s] + sh · ππ̄s

→h(1 + α)
[

1−
(

1− α

n− 1

)nβ]

+ hαβ
(

1− α

n− 1

)nβ

→h
[

(1 + α)(1 − e−αβ) + αβe−αβ
]

=h
[

1 + α− (1 + α− αβ)e−αβ
]
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