TY - JOUR TI - Selection-based dictionary learning for sparse representation in visual tracking DO - https://doi.org/doi:10.7282/T3BZ64S3 PY - 2012 AB - This dissertation describes a novel selection-based dictionary learning method with a sparse representation to tackle the object tracking problem in computer vision. The sparse representa- tion has been widely used in many applications including visual tracking, compressive sensing, image de-noising and image classification, and learning a good dictionary for the sparse rep- resentation is critical for obtaining high performance. The most popular existing dictionary learning algorithms are generalized from K-means, which compute the dictionary columns to minimize the overall target reconstruction error iteratively. For better discriminative capability to differentiate target-object (positive) from background (negative) data, a class of dictionary algorithms has been developed to learn the dictionary from both the positive and the negative data. However, these methods do not work well for visual tracking in a dynamic environment in which the background can change considerably between frames in a non-linear way. The background cannot be modeled statically with the usual linear models. In this tdissertation, I report on the development of a selection-based dictionary learning algorithm (K-Selection) that constructs the dictionary by choosing its columns from the training data. Each column is the most representative basis for the whole dataset, which also has a clear physical meaning. With locality-constraints, the subspace represented by the learned dictionary is not restricted to the training data alone, and is also less sensitive to outliers. The sparse representation based on this dictionary learning method supports a more robust tracker trained on the target-object data alone. This is because the learned dictionary has more discriminative power and can better distinguish the object from the background clutter. By extending the dictionary with encoded spatial information, I present a new tracking algorithm which is robust to dynamic appearance changes and occlusions. The performance of the proposed algorithms have been validated for several challenging visual tracking applications through a series of comparative experiments. KW - Computer Science KW - Computer vision LA - eng ER -