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ABSTRACT OF THE DISSERTATION

Inventory and Scheduling Problems in Supply Chain Management

by SELIM BORA

Dissertation Director:

Endre Boros

This dissertation deals with real life inventory and supply chain management problems.

Three chapters are dedicated to different problems, two of them dealing with vessel

scheduling and container management, where as the last one deal with inventory man-

agement of critical supplies at hospitals, during time of surging demand. We propose

heuristics and exact approaches for these problems that are both efficient in terms of

time, and accurate enough to our needs. Even though inventory and supply chain man-

agement field is a popular field of research, these problems have not been addressed yet,

and known results cannot be directly applied to any of them.
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Chapter 1

Introduction

The importance of supply chain management (SCM) cannot be denied. Global mar-

kets are expanding beyond borders and redefining the way demand and supplies are

managed. Therefore, management of a network of all business processes and activi-

ties involving procurement of raw materials, manufacturing and distribution of finished

goods, whether intercontinental or international is getting more and more complex every

day. In addition to this, the cost margins are increasing even further.

The goal of this work is to tackle some problems existing in SCM literature, which are

all relevant to some real-life problems, and develop techniques to give insight for future

decisions.

The research carried out in the first problem addresses the issue of managing critical

medical supply inventories in hospital under surge scenarios. It is based on an approach
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that optimizes inventory control parameters in hospital settings under scenarios such

as the pandemic flu with surging demand for medical supplies. In the decade before

the 2009-10 influenza pandemic caused by the new H1N1 virus (pH1N1), the spread of

the much more lethal H5N1 ”avian” influenza in Asia and parts of Africa raised con-

cerns about the potentially devastating impact of a severe global influenza outbreak

(Salomon and Webster [45] and Chan [8]). In response, most developed countries and

many private corporations made considerable investments over the last decade in the

purchase of antiviral medications (AVMs) to treat those infected with influenza during

a pandemic. To date, most of the literature has addressed either pandemic mitigation or

preservation of healthcare workforce capacity during the peak of an outbreak. However,

to the best of our knowledge, there is no evidence-based research available in the med-

ical literature that can guide healthcare facilities to establish sufficient medical supply

in order to maintain adequate surge capacity for flu patients or other pandemic. In

the inventory management and supply chain literature, most existing models make the

assumption of independence and time-homogeneity of the demand for medical supply.

However, during a pandemic, demand is uncertain and definitely non-stationary due

to surge dynamics. It grows exponentially in the early part of the pandemic and will

decline when there are less people that can be infected by the disease (herd immunity).

The non-stationary demand pattern raises a unique problem for inventory management

since it becomes difficult to decide on when to order and how much to order of each of

the critical medical supplies. This is also a significant research issue in the inventory

management literature. Non-stationarity of the demand gives rise to complexities that

make the problem mathematically and practically intractable.
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The next set of problems are related to container-vessel scheduling. In the existing

literature, it is possible to find many publications on vessel scheduling. Even though,

the basic assumptions are very similar, the problems that have been dealt with are all

different either because there’s an additional assumption, or the solution approach is

different. In this research, we try to come up with a general models which covers many

of these assumptions, and work with special cases, which appear quite common as sub-

problems in the literature. We propose heuristics and exact formulations based on a

Bender’s type decomposition approach.

Issues with container-vessel scheduling are vast. One of the issues is related to empty con-

tainers piling up at the ports. Mallon and Magaddino [37] suggest that empty containers

dwell in container terminals for the longest on average, and indicate that therefore they

are the main source of congestion at and around marine ports. Unfortunately, there

is not much research on reuse or redistribution of empty containers, and we hope to

contribute to this area, more precisely to the problem of distributing empty containers

as they become available at terminals.

The other vessel scheduling problem we deal with originates from the demand-supply co-

ordination problem encountered by a major U.S. corporation in petrochemical industry

such as oil and gasoline. The cost to produce and deliver gasoline products to the market

consists of three major components: the transportation cost of crude oil to refiners, the

operation cost of refinery processing, and the cost of marketing and distribution (Riley

[40]). An oil company typically operates many tens of refineries, with several million
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barrels of crude oil per day and several billion dollars on crude transportation per year.

As the U.S. retail gasoline prices continue to rapidly elevate, effectively coordinating the

demand and supply of gasoline products has therefore become even more crucial to oil

companies (Cheng and Duran [10]). In this particular study, the distribution scheduling

problem encountered in this process is very complicated due to the involvement of het-

erogeneous vessels (e.g., in terms of their loading capacities, discharging and berthing

times, and operating costs) and the fact that each vessel has multi-level of loading capac-

ities such that a load beyond the normal/base capacity will result in an extra overload

cost. In addition, the inventories of the refinery depots must be managed, as well as,

satisfying demand somehow. These inventory management and distribution processes

are often referred to an integrated scheduling problem.

For both of the problems, we start by stating the full version of the problem, which

is hard to tackle, then show that an easier formulation is possible, which allows us

to apply Bender’s type decomposition approach, that has a subproblem similar to a

network flow problem, assuring integrality, and therefore computational efficiency. This

formulation allows us to get the optimal solution, and we show that this approach

performs better than a state of the art solver, such as XpressMP. In addition, we propose

greedy heuristics for the same type of problems, which yield solutions much faster than

both XpressMP and the Bender’s type decomposition approach, with a relatively higher,

but still acceptable relative error from the best optimal solution.
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Chapter 2

Outbreak Detection Using

Hidden Markov Models and

Inventory Management

2.1 Introduction

The studies that have been done related to this problem can be categorized in four

groups. The classical problem of finding optimal inventory levels for base-stock or (s,S)

policies with backlogging has been dealt by Veinott Jr [48], where the model has the fol-

lowing features: There is a general demand process with no stationarity or independence

assumptions, partial or complete backlogging of unfilled demand, a fixed nonnegative

delivery lag (which may be positive only under complete backlogging), a nonstationary

linear ordering cost, a nonstationary holding and shortage cost function, discounting of
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future costs, and nonstationary restrictions like budget and storage limitations. The ob-

jective is to choose an ordering policy that minimizes the expected discounted costs over

an infinite time horizon. They give these conditions to ensure that the base stock or-

dering policy is optimal and that the base stock levels in each period are easy to calculate.

Karlin [29] formulates a dynamic inventory model in which the demand distributions

may change from period to period. He shows that the optimal policy at each stage is

characterized by a single critical number which also could vary in successive periods.

He develops the dependence of the critical numbers as a function of stochastic ordering

amongst distributions is developed under various conditions. Even though most of his

studies are conducted under the assumption of linear purchasing cost, the possibility

of convex purchasing cost is allowed. Also, Karlin and Scarf [30] partially characterize

the structure of optimal policy where the lead time is 1 period, which in summary is

as follows: Optimal ordering quantity is a decreasing function of inventory on hand

at the beginning of a period and zero, outside a specified interval. Moreover, the rate

of decrease (as a function of the inventory on hand) is strictly less than 1. With the

additional assumption that demands are exponentially distributed, they also present a

steady-state analysis of the dynamics of lost-sales systems that use base-stock policies.

Morton [38] has extended this study to lost-sales model with deterministic lead times.

He has shown that optimal ordering policy is a function of entire pipeline with follow-

ing characteristics: 1) There’s a compact region around origin (all components of the

pipeline vector are 0) such that order quantity is strictly greater than 0 if and only if



7

pipeline vector is in this region. 2) Order quantity decreases at a rate strictly between

zero and one with respect to each component of the pipeline vector. 3) The rate of

decrease in the order quantity per component is higher for components in the pipeline

that are scheduled to arrive later in time.

Song and Zipkin [47] deals with a similar problem, where the demand forms Markov-

modulated Poisson process. The lead time however can be deterministic or stochastic.

Next, Graves [24] considers an adaptive base-stock policy for a single-item inventory

system, where the demand process is nonstationary. He then shows how the single-item

model extends to a multi-stage, or supply-chain context.

Some work in the literature incorporate forecast information. In Schoenmeyr and Graves

[46], they use a case study with real data to demonstrate that there are significant bene-

fits from the inclusion of the forecast process when determining the optimal safety stocks.

They also conduct a computational experiment to explore how the placement and size

of the safety stocks depend on the nature of the forecast evolution process. Also, Graves

[24] deal with the inventory management of single item for base-stock policy, where

the demand process is nonstationary and they use an autoregressive integrated mov-

ing average process for it. Buzacott and Shanthikumar [7] study the robustness of the

parameters safety lead time and safety stock, and conclude that safety time is usually

only preferable to safety stock when it is possible to make accurate forecasts of future

required shipments over the lead time, otherwise safety stock is more robust in coping

with changes in customer requirements in the lead time or with fluctuations in forecasts
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of lead time demand for material requirements planning controlled productions systems.

Chang [9] deals with the interchangeability of safety stocks and safety time. Last but

not the least, Levi et al. [34] extend the model from backlogging to lost-sales, and de-

vise approximation algorithm with computational efficiency which admits a worst-case

performance guarantee.

In our research however, we also wish to be able to deal with any disease, whether an

existing one, or a totally new disease. Le Strat and Carrat [32] use a hidden Markov

model for monitoring diseases, and show that they can accurately define the states, the

distribution parameters according to the states, and the transition probabilities in be-

tween states. We try to extend this idea for monitoring, and currently identifying states

of a disease and when an outbreak is going on. The research carried out in this project

addresses the issue of inventory management that basically deals with how much of each

unit to maintain on hand using and approach that optimizes inventory control system

parameters in hospital settings under scenarios such as the pandemic flu with surging

demand for medical supplies. This is a critical issue since too much of medical supply

inventory can cost a lot while short inventories will not satisfy the demand. Finding the

right amount of stock is always a challenge in inventory management due to uncertain-

ties involved in demand. We then extend this study for case of encountering a disease

for the first time.

Inventory control with unknown demand is a field not limited only to hospitals of course.
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Zheng and Federgruen [51] develop an efficient algorithm for reorder point/reorder quan-

tity policies, where they allow backlogging and deal with poisson distribution. However,

the demand distribution has fixed parameters. Geary et al. [22] deal with demand am-

plification(i.e. bullwhip), and present 10 published causes of bullwhip that could be

avoided by reconstructing the supply chain. This study, makes our point about accurate

inventory management of hospital supplies stronger.

The contribution of this research is in providing the proof of a concept to hospital

management that tools such as the one developed in this research will be instrumental

in managing inventories once deployed in full scale. This research aims to provide the

proof of concept for developing an approach to handle inventory management under

surge scenarios, whether new or old, in hospitals. The objective is to help hospitals in

making decisions regarding maintaining stocks of medical supplies. This is achieved by

developing a formal procedure to help effectively control inventories of critical medical

supplies and minimize inventory management costs while maintaining an acceptable

customer service level in pandemic-like scenarios.

2.2 A Known Disease

In essence, using a system of ordinary differential equations, a compartmental SEIR

model (Anderson et al. [1]) is developed describing the transmission dynamics of a pan-

demic in a large population. Individuals in a population are divided into standard

modeling compartments such as susceptible (S), exposed (E), infectious (I), recovered
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(R), and disease-induced dead (D). As shown in Figure 2.1, susceptible individuals may

become infected, incubate the infection, progress to become fully contagious, and finally

either recover and develop immunity from the disease or die.

Figure 2.1: Schematic relationship between the five subgroups in the model

The arrows that connect the boxed subgroups represent movement of individuals. Sus-

ceptible (S) will first become exposed (E). Exposed (E) will become infectious (I) after

an incubation period. Infectious (I) can either recover (R) after a recovery period or die

(D). Following the schematic representation in Figure 2.1, the disease spread and control

dynamics can be described by the following differential equations for a population of size

N (Anderson et al. [1]).

s = −βIS/N (2.1)

E = βIS/N − κE (2.2)

I = κE − (γ + δ)I (2.3)

R = γI (2.4)

D = δI (2.5)

Then, the SEIR model is incorporated into a virtual hospital simulator using ARENA
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simulation tool to identify daily random demand over the course of the pandemic. A

dynamic programming model is introduced to obtain the optimum target inventories of

the three products mentioned earlier in the virtual hospital model. The optimization

will be cost minimization based on inventory holding cost, shortage cost and the cost of

changing the target inventory level. The model is to be incorporated into the simulation

model to manage the inventories of the virtual hospital introduced earlier. Finally a

dynamic programming algorithm is used to optimize the target inventory levels as well

as reorder points for the duration of the pandemic period. Clearly, the values of these

parameters vary over time due varying demand over the pandemic duration.

We have employed a periodic review model where the inventory of each product is mon-

itored daily and a replenishment order is placed every time the inventory is observed

below its target level. The order is place at 13:00 in the afternoon and is assumed to

arrive by the end of the day, presumably before the beginning of the next day. The

inventory management concept used here is presented in Figure 2.2.

Figure 2.2: Inventory control model used in the hospital model

Next, we present the optimization model. We use the disease parameters and related

differential equations (2.1) in Arena, replicating many times the flow of sick people to
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the hospital, and estimate the parameters related with the demand distribution function

of our choice, which in this study has been assumed to be Poisson. Karlin and Scarf [30]

shows that the random variable, y, measuring stock available at the next period, has

the following stationary distribution:

F (y)
.
=

φ(y)[1− φ(x̄− y)]

1− [1− φ(y)][1− φ(x̄− y)]
, (2.6)

where x̄ is the target inventory level and φ(y) is the integral of density function. Ac-

cordingly, the expected quantity of unsatisfied demand is given by:

E(penalty)
.
=

∫ x̄

0
ϕ(ξ)dξ

∫ x̄

0
(ξ − y)f(y)dy +

∫ ∞
x̄

ϕ(ξ)dξ

∫ ∞
x̄

(ξ − y)f(y)dy (2.7)

Also, the amount on hand at the end of a day is given by:

E(handling)
.
=

∫ x̄

0

∫ y

0
(y − ξ)ϕ(ξ)f(y)dξdy, (2.8)

where ϕ(ξ) is the daily demand density function.

Now we have the expected on-hand inventory level and the expected shortage level, we

are ready to evaluate the cost minimizing objective function for feasible levels of target

inventory of the product. The following algorithm will be used to generate the optimal

target inventory level of the medical supply we have under consideration.
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2.2.1 The Algorithm for the Optimal Target Levels

1. Given the disease parameters, run Arena to obtain the demand distribution func-

tion and its parameters for every day

2. Compute x̄t for every day t, minimizing the expected total cost per day, that is

E(penalty) ∗ p+ E(handling) ∗ h

3. Use dynamic programming to determine when the target inventory level must be

changed.

The dynamic programming formulation is done in such a way that the inventory level

is the state, and the days are the stages in the model. So, the possible states (target

inventory values) are x̄1, x̄2, . . . , x̄T . Also, let us define TCt(Īt) to be the total cost up to

day t, where the current inventory level is Īt. Then, the following dynamic programming

recursion can be established:

TCt(Īt)
.
= minx̄tP (x̄t) + TCt+1(Īt+1), (2.9)

where

P (x̄t)
.
= (It −Dt)

+ ∗ h+ (Dt − It)+ ∗ p+ CC(x̄t), (2.10)

and where

CC(x̄t)
.
= M, x̄t 6= ¯It−1 (2.11)

We do not need to consider other values due to the following result: Assuming that

daily demand will equal to precomputed inventory levels, i.e. Dt = x̄t, no other target
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values needs consideration for dynamic programming. We show this result by induction,

skipping the case where T = 1. For T = 2, we are facing the following scenarios, where

x̄1 < x̄3 < x̄2 and costs on individual days are given in Table 2.1:

Scenario Day 1 Day 2

x̄1 0 p(x̄2 − x̄1)

x̄2 h(x̄2 − x̄1) 0

x̄1, x̄2 0 + CC(x̄2) 0

x̄3 h(x̄3 − x̄1) p(x̄2 − x̄3)

Table 2.1: For |T |=2, given that h < p, 2nd and 4th scenario need comparison, and
we see that no intermediate value will yield a better cost

For T = 3, where x̄1 < x̄3 < x̄2. An x̄4 value that is intermediate will be considered

yielding following scenarios given in Table 2.2:

Scenario Day 1 Day 2 Day 3

x̄1 0 p(x̄2 − x̄1) p(x̄3 − x̄1)

x̄2 h(x̄2 − x̄1) 0 h(x̄2 − x̄3)

x̄3 h(x̄3 − x̄1) p(x̄2 − x̄3) 0

x̄1, x̄2 0 + CC(x̄2) 0 h(x̄2 − x̄3)

x̄1, x̄3 0 + CC(x̄3) p(x̄2 − x̄3) 0

x̄2, x̄3 h(x̄2 − x̄1) 0 + CC(x̄3) 0

x̄1, x̄2, x̄3 0 + CC(x̄2) 0 + CC(x̄3) 0

x̄4 > x̄3 h(x̄4 − x̄1) p(x̄2 − x̄4) h(x̄4 − x̄3)

x̄4 < x̄3 h(x̄4 − x̄1) p(x̄2 − x̄4) p(x̄4 − x̄3)

Table 2.2: For |T |=3, given that h < p, This time 2nd and 8th scenarios need
comparison, yielding us the same result

The relationship between consecutive days can either be reduced to case |T | = 2 or

|T | = 3, which proves the result.
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Thus, we are able to obtain optimal target inventory values for the medical supply under

consideration for days 1 through T of the surge period. This algorithm can easily be

programmed in an operational environment and implemented for each product on a daily

basis. Below we provide some scenario analysis.

2.2.2 Scenarios

In this section, we present three case studies of the virtual hospital for a product, to

show the impact of holding cost, shortage cost and target level change cost. In all of

these cases, we assume the following epidemiological parameter settings for our differ-

ential equations:

Incubation Period: 1.9 days

Infectious Period: 4.1 days

Population Size: 100,000

Case 1:

Holding Cost: 8/unit/day

Shortage Cost: 16/unit

Cost of Changing Target Level: 1,000

The daily demand, and the optimized target inventory levels for the product and the

total cost per day are shown in Figure 2.3. In this case, we have kept the values of the

cost parameters at relatively low levels. This ensures frequent changes in target levels
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to adapt the changing environment due to surge.

Figure 2.3: Case 1, Daily demand, total cost per day and the optimized target inven-
tory levels

Case 2:

Holding Cost: 8/unit/day

Shortage Cost: 16/unit

Cost of Changing Target Level: 6,000

In this case, the cost of changing target inventory levels is increased by six fold. The

daily demand, and the optimized target inventory levels for the product and the total

cost per day are shown in Figure 2.4. Observe the impact of large target changing costs

in the form of much lesser changes of target values. Compare the blue line in Figure

2.4 to Figure 2.3. Unit shortage cost is relatively higher than the unit holding cost and

therefore the optimization model tries to keep the target levels close to the demand and

yet changes them much less infrequently as compared to Case 1.

Case 3:

In this case, we will look into the impact of high unit holding costs. The cost parameters
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Figure 2.4: Case 2, Daily demand, total cost per day and the optimized target inven-
tory levels

are given below:

Holding Cost: 16/unit/day

Shortage Cost: 8/unit

Cost of Changing Target Level: 6,000

Figure 2.5: Case 3, Daily demand, total cost per day and the optimized target inven-
tory levels

Observe the impact of large unit holding cost which discourage holding high inventories

and push the target levels to low values as observed in Figure 2.5 for the same product.
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2.3 Joint Disease Identification and Inventory Manage-

ment

We have shown that our algorithm is able to deal with inventory management of any

disease during a surge, as long as, we have some information about the disease. What

if we were dealing with a new disease, where no preexisting data exists? Next, we try

to tackle the question of identifying a disease, different states of it(i.e. regular, surge),

how frequent each occurs, and parameters related to the distributions of these states.

For that, we build on the idea of Le Strat and Carrat [32], we approach the problem by

using two different forecasting tools, and then applying an optimization model to decide

on the inventory control policies.

2.3.1 The EM Algorithm for Disease Identification

We use EM algorithm to estimate the parameters of the unknown disease. We assume

the random variable associated with daily incoming patients is exponential. We assume

our hidden Markov model to have 2 states, one for regular times, and one for during

time of surge. The EM algorithm computes the steady-state and transition probabilities

between the states, and distribution parameters associated with the states, with the

following steps:

1. Let yt, t = 1, ..., n are a realization of the stochastic process Y = (Yt; t = 1, ...n, ).

The idea is to associate each Yt an unobserved random variable St that determines
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the conditional distribution of Yt; if St = j, then the conditional distribution of

Yt has density fj(yt; θj), where fj belongs to a given parameterized family, and

θj are parameters to be estimated. We assume that the unobserved sequence St

follows an m-state homogeneous Markov chain of order 1 with stationary transition

probabilities

αij = P (St = j|St−1 = i), i, j = 1, ...,m.

2. Let ψ = (θ1, ..., θm, α11, ..., αmm) denote the complete parameter vector to be esti-

mated. The estimation of the parameters by the EM algorithm starts by initializing

the parameters

(α
(0)
1 , ..., α

(0)
m ), (θ

(0)
1 , ..., θ

(0)
m ) as well as the transition probability matrix

[α
(0)
jk ]1≤j,k≤m

3. Let vjk(t) = P (St−1 = j, St = k|y1, ..., yn) and uj(t) = P (St = j|y1, ..., yn) be the

conditional expectations given the observations and current parameters estimates.

The values of vjk and uj can be obtained by computing:

aj(t) = f(y1, ..., yt, St = j) and bj(t) = f(yt+1, ..., Yn|St = j) with the recursive

forward-backward formulae.

4. At each iteration ω, ω = 1, ..., I, the E-Step is followed by the M-Step.

5. E-Step: Specifically, for j = 1, ..,m:

aωj (1) = α
(0)
j fj1(y1; θ

(ω)
j )

aωj (t) =
∑m

k=1 α
(ω)
k (t− 1)α

(ω)
kj fjt(yt; θ

(ω)
j ), t = 2, ..., n

bωj (n) = 1

bωj (t) =
∑m

k=1 α
(ω)
jk fkt+1(yt+1; θ

(ω)
k )b

(ω)
k (t+ 1), t = n− 1, ..., 1

The likelihood is calculated by Ln(ψ) =
∑m

j=1 a
(ω)
j b

(ω)
j (t), t = 1, ..., n
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Finally, for t = 1, ..., n,

uωj (t) =
a
(ω)
j (t)b

(ω)
j (t)∑m

l=1 a
(ω)
l (n)

vωjk(t) =
α
(ω)
jk fk(yt;θ

(ω)
k a

(ω)
j (t−1)b

(ω)
k (t)∑m

l=1 a
(ω)
l (n)

6. M-Step: The transition probabilities, stationary probabilities and θj :

α
(ω+1)
jk =

∑n
t=2 v

(ω)
jk (t)∑n

t=2

∑m
l=1 v

(ω)
jl (t)

α
(ω+1)
j =

∑n
t=1 u

(ω)
jk (t)∑m

k=1

∑n
t=1 u

(ω)
k (t)

2.3.2 Influence of Lead Time

Once the parameters are found, the future demand is estimated based on state param-

eters, and distribution parameters. Based on future predictions, inventory target levels

that would minimize the total shortage and holding cost are computed, and then dy-

namic programming is applied to decide when to change the inventory target level to

another quantity, just like in the previous section. However, there is a shortcoming with

this approach, which is displayed below. Basically, the hidden Markov model approach

requires a learning period, and until it has been achieved, the predictions towards future

are not very reliable. The Figures 2.6, 2.7 and 2.8 show how this approach is affected,

based on the lead time we provide the algorithm to learn the disease.

As it can be seen from Figures 2.6, 2.7 and 2.8, the hidden Markov model for disease

identification performs really good, when we allow up to 60 days for learning. However,

in real life, especially during a time of surge, especially when dealing with an unknown
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Figure 2.6: No Lead Time, Daily demand and Target Inventory Level based on hidden
Markov model and EM algorithm

Figure 2.7: 30 Day Lead Time, Daily demand and Target Inventory Level based on
hidden Markov model and EM algorithm

disease, there is no such time to sit idly by, so for quicker response, we also incorporated

a deterministic approach similar to that of Schoenmeyr and Graves [46].
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Figure 2.8: 60 Day Lead Time, Daily demand and Target Inventory Level based on
hidden Markov model and EM algorithm

2.3.3 Deterministic Model for Forecasting

We’ll require the following variables:

V ariable Group Type Explanation

It t ∈ T Z+ inventory on hand at the beginning of day t

Pt t ∈ T Z+ number of supplies ordered on day t

Lt t ∈ T Z+ base stock level for day t

xt t ∈ T {0, 1}
xt = 1 if base stock level is changed to another

value on day t
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Then, we get the following model:

min
∑
t∈T

ht(It −Dt) +
∑
t∈T

pt(Dt − It) +
∑
t∈T

CCtxt (2.12a)

s.t.I0 = D0 (2.12b)

It = It−1 −Dt + Pt ∀ t ∈ T (2.12c)

It ≥ Lt t ∈ T (2.12d)

xt ≤ Lt − Lt−1 t ∈ T (2.12e)

(2.12a) is the objective function, consisting of three parts, holding, shortage, and in-

ventory target level change cost respectively. (2.12b) and (2.12c) are inventory balance

constraints, where as (2.12d) is to make sure that our beginning of the day inventory

is always at least as much as our base stock level, and (2.12e) is to control the binary

variable associated with inventory target level change. We replace Dt for future periods

with the most recent realized value of Dt, as revision takes place.

2.3.4 Comparison of EM Algorithm and the Deterministic Model Based

on Revision Frequency

The Figures 2.6, 2.7 and 2.8 show that deterministic approach requires much less learn-

ing time for predictions to become accurate, however it is possible to see that hidden

Markov model predictions eventually start yielding a better result. Of course, one im-

portant parameter for deterministic approach, as well as the hidden Markov approach, is

the policy revision frequency, as our knowledge extends, and thus our predictions could



24

be better. Next set of Figures 2.9, 2.10, 2.11 and 2.12 display how well both hidden

Markov approach, and deterministic approach does, based on the revision frequency.

Note that, the duration set for predictions to be recomputed also define when a possible

inventory level change decision is made.

Figure 2.9: Daily Renewals, Daily demand and Target Inventory Level based on
Hidden Markov and Deterministic Approach, 60 Day Lead Time

Figure 2.10: Weekly Renewals, Daily demand and Target Inventory Level based on
Hidden Markov and Deterministic Approach, 60 Day Lead Time
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Figure 2.11: Bi-Weekly Renewals, Daily demand and Target Inventory Level based
on Hidden Markov and Deterministic Approach, 60 Day Lead Time

Figure 2.12: Monthly Renewals, Daily demand and Target Inventory Level based on
Hidden Markov and Deterministic Approach, 60 Day Lead Time

As expected, going over the predictions and inventory level change decisions performed

more frequently, yield better results. However, it must be kept in mind that, updating

predictions is a computational task, which still requires considerable amount of time. In
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addition to that, changing the target inventory level in daily life is not such a straight-

forward task and it brings along additional costs. Based on our results, we have decided

that a weekly or bi-weekly are the best options, which is based on the cost of inventory

change level, as well as the holding and shortage costs.

Because of the fact that a deterministic approach initially performs better, and we don’t

have time to learn, especially when facing a new disease, we propose an approach that

brings together two ideas listed above. We initially start with the deterministic approach,

giving our hidden Markov model enough time to learn the disease(i.e. 60 days in this

case), and then switch, so that we can utilize the strengths of both approaches. Figure

2.13 shows the increase in performance.

Figure 2.13: Hidden Markov and Deterministic Combined, Daily demand and Target
Inventory Level based on Hidden Markov and Deterministic Approach
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Chapter 3

A Case of Container-Vessel

Scheduling Problem

3.1 Introduction

Our goal is to minimize the operating costs related to shipping and handling of goods.

The fleet size is not fixed, nor an initial amount is set, so one of the tasks we have

at hand is to determine the number of vessels that will be used within the planning

horizon. Shipping costs can be divided into two categories:1) The fixed cost related to

either purchase or lease of a vessel,2) the overloading cost which is incurred if the vessels

carry above a certain capacity. There are two more costs that we need to watch out

for. Each shipment made to a port may incur a holding or penalty cost based on the

demand. If the demand is not met on time, it cannot be satisfied at a later time period,

and therefore we need to pay penalty for each unit. Also, if the port is forced to hold
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some inventory, then a holding cost is charged. In addition to all these cost factors, we

also need to consider the fact that each vessel is available for a certain amount of time

within a period, and therefore even if a vessel has enough capacity, it may not have

enough time to visit all the ports we desire.

Optimally solving distribution operations scheduling problem is not an easy task. Pre-

vious work related to industrial shipping varies a lot. Here, we focus on the existing

results that are closely related to our work. A large summary of works related to various

types of vessel scheduling and routing problem can be found in the literature survey by

Christiansen et al. [16]. Two more recent surveys can be found more specifically in the

area of combined inventory management and routing (Andersson et al. [2]) and on fleet

composition and routing (Hoff et al. [26]).

Xinlian et al. [50] presents an algorithm which combines the linear programming tech-

nique with that of dynamic programming to improve the solution to linear model for

fleet planning. Even though their approach is similar, the problem they are dealing

with requires demand satisfaction and initial fleet is already given, and the decision is

to whether add new vessels to the existing fleet or not.

Cho and Perakis [13] presented a better formulation to the original fleet deployment

problem proposed by Ronen [43]. In this formulation, just like we do, there is a single

loading port, finite number of customer ports, and a finite planning horizon. However,

they require the demand to be met, and the fleet size is constant. The costs incurred
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are due to routes chosen, shipping cargoes, and unloading time. They show that this

formulation is better for computational efficiency.

Cho and Perakis [12] present a study regarding fleet size and design of optimal liner

routes for a container shipping company. The problem is solved by generating a number

of candidate routes for the different ships first, and then, the problem is formulated

and solved as a linear programming model, where the columns represent the candidate

routes. They extend this model to a mixed integer programming model that also con-

siders investment alternatives to expanding fleet capacity. Bendall and Stent [3] also

present a model for determining the optimal number of ships and fleet deployment plan.

On the other hand, Nicholson and Pullen [39] were the first ones to propose dynamic

programming application to ship fleet management. The problem they dealt with was

to determine the sequence in which the currently owned ships should be sold and the

extent to which charter ships should be taken on. They tackle the problem in two stages.

The first stage determines a good priority ordering for selling the ships regardless of the

rate at which charter ships are taken on. The second stage uses dynamic programming

to determine an optimal level of chartering given the priority replacement order. This

first stage priority ordering essentially reduces the dynamic programming calculation

from a problem with as many as states as number of ships in fleet to a 1 state variable

problem which is computationally manageable by dynamic programming methods.
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Several authors use benchmark instances to compare the results of different strategies

and heuristics. Gheysens et al. [23] define 20 test instances with 12100 nodes for the

standard fleet size and mix vehicle routing problem. Wu et al. [49] deals with trucks

that vary in capacity and age are utilized over space and time to meet customer demand.

Operational decisions (including demand allocation and empty truck repositioning) and

tactical decisions (including asset procurements and sales) are explicitly examined in a

linear programming model to determine the optimal fleet size and mix. The method

uses a time-space network, common to fleet-management problems, but also includes

capital cost decisions, wherein assets of different ages carry different costs, as is common

to replacement analysis problems. A two-phase solution approach is developed to solve

large-scale instances of the problem. Phase I allocates customer demand among assets

through Benders decomposition with a demand-shifting algorithm assuring feasibility

in each subproblem. Phase II uses the initial bounds and dual variables from Phase I

and further improves the solution convergence through the use of Lagrangian relaxation.

A network optimization approach has been proposed by Bookbinder and Reece [4],

where they formulate a multi-commodity capacitated distribution-planning problem as

a non-linear mixed integer programming model, and solve it as a generalized assignment

problem within an algorithm for the overall distribution/routing problem based on a

Bender’s type decomposition.

Lei et al. [33] proposes an approach to a bi-directional flow problem where each itera-

tion starts with a given planning horizon, which is then partitioned into three planning
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intervals, where each interval consists of consecutive time periods in the given planning

horizon. Afterwards, some constraint relaxations are applied to the problem in which

all the forward demand and all the backward demand of the time periods in the third

planning interval are consolidated into a single forward demand and a single backward

demand, which is an idea we use in one of our approaches.

Choi et al. [14] focuses on minimizing total tardiness, rather than the operating costs,

and the routes for vessels are observed under three different cases, one of them being

arbitrary, just like in our problem. Later on, they talk about the other problems in the

literature and how their approach is related to them.

3.2 Problem Definition

This paper, brings together some of the ideas that were proposed in the literature be-

fore. We are given a fleet |V | of container vessels, v ∈ V that distributes the goods from

a main distribution center to a number of customer ports over a |T |-period planning

horizon. Each vessel has two loading capacities: the regular loading capacity u0
v, and

the maximum loading capacity umaxv so that carrying a load beyond u0
v will impose an

over loading charge g0
v/unit and carrying a load beyond umaxv violates the feasibility. In

addition to this limitation, for every vessel there is total available time τv which is used

up by the berthing time bv,p at ports which vary depending on vessel type. There are |p|

customer ports on the network, each port p ∈ P has a demand, dp,t ≥ 0 in period t ∈ T.

For every port, unsatisfied demand are penalized at pp,t/unit based on the unsatisfied
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demand and no backlogging is allowed. On the other hand, end of period inventory

incurs a holding cost of hn/unit. Let cfv denote the fixed cost if the vessel is being

dispatched in a period. The problem is finding a feasible vessel dispatching schedule to

minimize the total shortage and overage penalty plus the vessel overloading and fixed

cost.The minimum cost flow network formulation proposed guarantees optimality when

the number of vessels dispatched in every period is known. To define our problem more

formally, we define the following set of variables:

V ariable Group Type Explanation

Sp,t p ∈ P t ∈ T Z+ amount of shortage at port p in period t,

Qv,p,t v ∈ V p ∈ P t ∈ T Z+

amount of supply delivered to port p in period

t via vessel v’s regular capacity

Ov,p,t v ∈ V p ∈ P t ∈ T Z+

amount of supply delivered to port p in period

t via vessel v’s overloading capacity

Ip,t v ∈ V t ∈ T Z+ ending inventory at port p in period t

Yv,p,t v ∈ V p ∈ P t ∈ T {0, 1}
Yv,n,t = 1 if vessel v delivers to port p in period

t

Zv,t v ∈ V t ∈ T {0, 1} Zv,t = 1 if vessel v is dispatched in period t

Based on this, the constraints to the problem will include the following:
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A vessel must not be carrying anything if it’s not dispatched, nor visiting ports:

Qv,p,t +Ov,p,t ≤ umaxv Yv,p,t ∀ v ∈ V, p ∈ P, t ∈ T (3.1a)

Yv,p,t ≤ Zv,t ∀ v ∈ V, p ∈ P, t ∈ T (3.1b)

Vessels dispatched must not be used over their time and regular/maximum capacity:

∑
p∈P

bv,pYv,p,t ≤ τv ∀ v ∈ V, t ∈ T (3.2a)

∑
p∈P

Qv,p,t ≤ u0
v ∀ v ∈ V, t ∈ T (3.2b)

∑
p∈P

(Qv,p,t +Ov,p,t) ≤ umaxv ∀ v ∈ V, t ∈ T (3.2c)

The last group of constraints is to help to formulate our objective, which is a composi-

tions of all expenses (penalties, etc.).

Vessel dispatching costs:

cD =
∑
v∈V

∑
t∈T

cfvZv,t (3.3a)

Early arrival penalties:

cH =
∑
p∈P

∑
t∈T

hpIp,t (3.3b)
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Unsatisfied demands’ penalties:

cU =
∑
p∈P

∑
t∈T

pp,tSp,t (3.3c)

Overloading penalties:

cO =
∑
v∈V

∑
p∈P

∑
t∈T

g0
vOv,p,t (3.3d)

Then our problem is to minimize cD+cH +cU +cO, subject to the constraints (3.1)-(3.3)

and the sign and type restrictions in the definitions of the decision variables.

If the dispatching information is already available, i.e. |V1| vessels for t=1, |V2| for t=2,

. . . , |VT | for t=T, then there becomes no need for the binary variables. In addition,

define new variables, xv,k,n,t and rv,k,n,t, which are the normal and over flows shipped

by vessel v dispatched in period k for port n to satisfy the demand on period t. Based

on this definition, the following can be established:

Qv,p,t =

T∑
k=t

xv,t,p,k ∀ v ∈ V, p ∈ P, t ∈ T (3.4a)

Ov,p,t =
T∑
k=t

rv,t,p,k ∀ v ∈ V, p ∈ P, t ∈ T (3.4b)

Sp,t = dp,t −
∑
k∈T

∑
v∈Vk

(xv,k,p,t + rv,k,p,t) ∀ p ∈ P, t ∈ T (3.4c)

Ip,t =
∑
k∈T

T∑
w=t+1

∑
v∈Vk

(xv,k,p,w + rv,k,p,w) ∀ p ∈ P, t ∈ T (3.4d)
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Based on the above assumptions and definitions, we get the following model:

min
∑
p∈P

∑
t∈T

pp,t(dp,t −
T∑
k=1

∑
v∈Vk

(xv,k,p,t + rv,k,p,t)) +
∑
v∈V

∑
p∈P

∑
t∈T

g0
v

T∑
k=t

rv,t,p,k

+
∑
v∈V

∑
t∈T

cfvZv,t +
∑
p∈P

∑
t∈T

hp

t∑
k=1

T∑
w=t+1

∑
v∈Vk

(xv,k,p,w + rv,k,p,w) (3.5a)

s.t.
∑
p∈P

bv,pYv,p,t ≤ τv ∀ v ∈ V, t ∈ T (3.5b)

T∑
k=t

∑
n∈N

(xv,t,n,k + rv,t,n,k) ≤ umaxv ∀ v ∈ V, t ∈ T (3.5c)

T∑
k=t

xv,t,n,k + rv,t,n,k ≤ umaxv Yv,n,t ∀ v ∈ V, p ∈ P, t ∈ T (3.5d)

∑
n∈N

T∑
k=t

xv,t,n,k ≤ u0
v ∀ v ∈ V, t ∈ T (3.5e)

t∑
k=1

∑
v∈Vk

(xv,k,n,t + rv,k,n,t) ∀ p ∈ P, t ∈ T (3.5f)

Yv,n,t ≤ Zv,t ∀ v ∈ V, p ∈ P, t ∈ T (3.5g)

Objective function is the same except that the last part is now a constant based on

vessel dispatching information, i.e. Zv,t values are known. 3.5b and 3.5c assure that

normal and over capacity are not exceeded, where as 3.5d prevents shipments for a

specific demand to be more than the demand itself, therefore making the first part of

the objective function always nonnegative.

Lemma 3.2.1. The above problem can be reformulated without the berthing time con-

straint and solved as a minimum cost flow problem by assuming the knowledge of the

number of vessels dispatched in each time period.

Proof. First, we construct a dummy source node S, and a dummy sink node F . Associate
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to each vessel v ∈ Vk, 2 nodes (v, k)P and (v, k)O, one for normal and other for over

capacity. These nodes are connected to the source node with 0 and g0
v costs, a lower

bound of 0 and an upper bound u0
v and umaxv − u0

v respectively. Add another set of |P |

nodes (pp) for case of shortage at each port with 0 costs, 0 lower bounds and no upper

bounds. Next, take care of the ports by adding |P | ∗ |T | nodes denoted (p, t) for each

port n at every period t. The arcs between nodes corresponding to vessels and ports

incur a holding cost of hp(t − k), has a lower bound of 0 and no upper bound. Also,

there will be arcs between shortage nodes, (pp), and ports, (p, t), where the shortage

costs pp,t will be charged. Finally, add arcs between ports and the sink, with a lower

and upper bound of dp,t and no cost.This network will have 2|V ||T |+ |P |+ |P ||T | many

nodes, and |V ||P ||T 2|+ |P 2| many arcs, making minimum cost flow approach practical

for problems of reasonable size. An example network is shown in Figure 3.1.

Lemma 3.2.2. The objective function values and constraints for both problems above

are the same, assuming we guessed the right number of vessels.

Proof. First of all, the fixed cost due to vessels for both problems will be the same.

Next, assume x∗v,k,n,t and r∗v,k,n,t are the optimal flow vectors corresponding to the min-

imum cost flow problem. Then, using the equalities corresponding the variables of two

problems, the objective function value of the original problem becomes:

∑
p∈P

∑
t∈T pp,t(dp,t −

∑
k∈T

∑
v∈Vk

(xv,k,p,t + rv,k,p,t))+∑
v∈V

∑
p∈P

∑
t∈T g

0
v

∑T
k=t rv,t,p,k +

∑
v∈V

∑
t∈T c

f
vZv,t+∑

p∈P
∑

t∈T hp
∑

k∈T
∑T

w=t+1

∑
v∈Vk

(xv,k,p,w + rv,k,p,w)
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Figure 3.1: An example of the network for |V1| = 2, |V2| = 1, |V3| = 2, |N | = 3, and
|T | = 3

=∑
p∈P

∑
t∈T pp,tS

∗
p,t +

∑
v∈V

∑
p∈P

∑
t∈T g

0
vO
∗
v,k,p,t+∑

v∈V
∑

t∈T c
f
vZ∗v,t +

∑
p∈P

∑
t∈T hpI

∗
p,t

The first 2 lines of this objective function and the objective function of the minimum

cost flow are exactly the same, which only leaves us with the inventory part. The w

index is for shipments that are on a future date than current period t, and the k index

is taking into account all shipments that have been made up to period t. Therefore,

a shipment made on period k for period t will appear in the summation (t − k) many
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times, allowing us to replace index w with t, remove the summation regarding w, and

charge the holding cost as many times as necessary. This shows that both objective

function values are the same.

As far as the constraints are concerned, first realize that in the original problem, 3.2a

is no longer required while berthing times are large enough. Similarly, 3.1a and 3.1b

were associated with the fact that dispatching information was not available, so now,

they could be dropped as well. 3.2b in the original problem is the same constraint as

3.5d in the reduced problem, and they are both concerned with normal capacity of a

vessel. 3.5c and 3.5d of the reduced problem, added together, imply the same restriction

on maximum vessel capacity as 3.2c of the original problem. On the other hand, the

flow balance constraint in the original problem is taken care of by two means: 1) the

new index k for the variables, tells us when shipment was made, so we now whether a

shipment is held at inventory or used immediately, 2) in the reduced problem, shipment

for a specific demand will not be more than the demand itself, therefore shortage never

becomes negative according to the relation between Sn,t and xv,k,n,t, rv,k,n,t.

Based on our minimum cost network flow approach, we propose the following two heuris-

tics for no berthing time case:

3.2.1 Backward Heuristic

1. Divide the planning horizon into two groups, primary and secondary, for each port,

the new demand is equal to sum of the individual demands in each group, holding
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cost is the minimum and penalty cost is the maximum of individual penalties.

2. Start with |P | ∗ |T | vessels in that group in total, solve the minimum cost flow

problem iterating through all vessel dispatching combinations available for a group.

3. Once the optimal number of vessels required for each group are determined, repeat

the procedure of dividing into groups and solving as a minimum cost flow problem

for the individual groups. Demand belonging to ports in the other individual group

is also added to the demand of the ports in the secondary period of the group under

consideration.

4. Once the primary group has only 1 period remaining, optimal number of vessels

have been determined for that group, start over.

3.2.2 Greedy Heuristic

1. Start with no vessels assigned to each period.

2. Add a vessel to any period and solve the problem. Remove the vessel, and add

to another period, and solve again. Once the best vessel addition has been deter-

mined, move on to next vessel addition.

3. Keep determining the best vessel to add until objective function no longer im-

proves.

Going back to the original problem with berthing constraints, we propose modified

greedy heuristics and a decomposition based exact method. We first introduce the

algorithms and then compare them with state of the are integer programming solver,

XpressMP.
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3.2.3 Improved Greedy Heuristic

1. Start with no vessels assigned to each period.

2. For each vessel type, compute maximal subsets of ports such that no further port

can be added to a set due to berthing time constraint.

3. For each vessel type, in every period, sort the subset of ports in decreasing order

based on
∑

n∈Maximalv
dn,tpn,t

4. Next, add any vessel to any period allowing it to only serve the top ranked subset

of ports and solve the problem. Try different vessel types, for different periods in

the same manner. Determine the best vessel to add to which period.

5. Once a vessel assignment has been determined, update remaining demand and sort

subsets of ports accordingly.

6. Keep determining the best vessel to add until objective function no longer im-

proves.

3.2.4 Bender’s Type Decomposition Approach

1. Choose a feasible assignment of ports to a vessel to start with.

2. Solve the master problem to obtain a new objective function value and new port

assignments to other vessels.

3. Keeping port assignments fixed, solve the dual problem.

4. STOP, if master and dual objective values are close enough, otherwise go back to

the master problem.
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3.3 Computational Results

With the minimum cost flow network formulation proposed, one question that arose was

whether it was worth investing more resources into finding a dispatching information,

and maybe go from there. However, as can be seen at 3.1, the minimum cost flow

problem is not submodular. Case 1 and Case 2 are random dispatches, where as Case

Int refers to the scenario where minimum of number of vessels dispatched in each latter

case is used, and Case Union refers to of Case 1 and Case 2 are random dispatches,

where as Case Int refers to the scenario, where minimum of number of vessels dispatched

in each latter case is used, and Case Union refers to the scenario, where maximum of

number of vessels dispatched in each latter case is used.

Case 1 Obj. Func. Case 2 Obj. Func. Case Int Obj. Func. Case Union Obj. Func. Comparison
(3,2,2) 170 (2,1,3) 390 (2,1,2) 540 (3,2,3) 50 Lower
(1,2,1) 840 (2,1,3) 390 (1,1,1) 1140 (2,2,3) 90 Equal
(2,2,1) 580 (2,1,3) 390 (2,1,1) 880 (2,2,3) 90 Equal
(1,2,3) 350 (2,1,3) 390 (1,1,3) 650 (2,2,3) 90 Equal
(1,3,2) 390 (2,1,3) 390 (1,1,2) 800 (2,3,3) 50 Lower

Table 3.1: |N |=3, |T |=4, vessel type same, number of vessels in each period shown,
as well as the optimal objective function value for each case, indicating that even a

much simpler version of the original problem is not submodular

Backward and Greedy Heuristic both performed well, however, as can be seen in Table

3.2, Backward Heuristic always takes shorter, where as Greedy Heuristic performs better

by a slight margin.

However, it must be kept in mind that Table 3.2 reflects results for the version of the

problem with no berthing time constraint. Improved Greedy Heuristic designed to deal

with this issue performs a bit slower than the previously mentioned heuristics, but gives
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Time (sec) Objective Function Gap (%)
Xpress Backward Greedy Xpress Backward Greedy Xpress Backward Greedy
7200 412.50 435.8 7503 7799 7733 1.7384 5.47 4.66
7200 420.40 435.20 8141 8314 8298 2.1557 4.20 4.01
7200 393.30 420.60 8270 8483 8450 0.9988 3.48 3.11
7200 332.30 390.70 7759 7806 7800 0.3519 0.95 0.88
7200 289.90 316.80 7316 7395 7375 0.1414 1.20 0.94
7200 310.30 336.60 8412 8494 8487 3.2309 4.16 4.09
7200 345.2 347.6 8270 8356 8338 3.8278 4.82 4.62
7200 429.50 443.30 7918 8159 8112 1.1641 4.08 3.53
7200 421.8 425.8 7475 7825 7768 1.4574 5.87 5.17
7200 306.70 321.10 7448 7661 7600 2.4489 5.16 4.40

Table 3.2: |N |=10, |T |=10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP, Backward and Greedy as 10, 100, 1 in respect. Runs are

terminated after 2 hours or when 0.1% gap from the best bound is reached

good bounds for the solution of the original problem as can be seen in Table 3.3.

Time (sec) Objective Function Gap (%)
Xpress I. Greedy Xpress I. Greedy Xpress I. Greedy
7200 593.9 7503 7533 1.74 2.13
7200 582.2 8141 8226 2.16 3.17
7200 635.3 8270 8381 1.00 2.31
7200 678.2 7759 7921 0.35 2.39
7200 668.6 7316 7436 0.14 1.75
7200 594.4 8412 8548 3.23 4.77
7200 649.3 8270 8353 3.83 4.78
7200 667.3 7918 8092 1.16 3.29
7200 641.1 7475 7513 1.46 1.96
7200 662.1 7448 7565 2.45 3.96

Table 3.3: |N |=10, |T |=10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are

terminated after 2 hours or when 0.1% gap from the best bound is reached

The formulation proposed for Bender’s type approach is computationally efficient, as

can be on Tables 3.4 and 3.5. The running time is a bit longer, but we’re able to get

exact solutions.

Time (sec) Objective Function Gap (%)
Xpress Decomposition Xpress Decomposition Xpress Decomposition
7200 767.1 7503 7380 1.74 0.10
7200 757.5 8141 7973 2.16 0.10
7200 905.8 8270 8196 1.00 0.10
7200 1291.4 7759 7739 0.35 0.10
7200 1420.4 7316 7313 0.14 0.10
7200 959 8412 8148 3.23 0.10
7200 1183.5 8270 7961 3.83 0.10
7200 907.4 7918 7834 1.16 0.10
7200 1032.8 7475 7373 1.46 0.10
7200 1349.4 7448 7273 2.45 0.10

Table 3.4: |N |=10, |T |=10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are

terminated after 2 hours or when 0.1% percent gap from the best bound is reached
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Time (sec) Objective Function Gap (%)
Xpress Decomposition Xpress Decomposition Xpress Decomposition
7200 805 7764 7619 1.98 0.10
7200 777.9 8652 8448 2.46 0.10
7200 990.5 8326 8245 1.07 0.10
7200 1401.1 8001 7978 0.39 0.10
7200 1544.6 7464 7461 0.15 0.10
7200 1015.4 8789 8496 3.43 0.10
7200 1216.9 9423 9026 4.30 0.10
7200 984.8 8128 8035 1.24 0.10
7200 1114.2 7849 7727 1.66 0.10
7200 1413.5 7652 7455 2.67 0.10

Table 3.5: |N |=15, |T |=10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are

terminated after 2 hours or when 0.1% percent gap from the best bound is reached

3.4 Conclusion

In this study, we studied a difficult real life supply chain scheduling problem encountered

in oil and petrochemical industry, which involves production, inventory, and distribu-

tion operations, and requires an integrated scheduling to minimize the total operation

cost. We showed the hardness of this problem, and showed that some of its special

cases are polynomial time solvable. A minimum cost flow based heuristic, motivated by

the observations from one of the special cases, was proposed and demonstrated to have

a promising performance under the set of test cases considered in this study. Also, a

new formulation of the model was developed, which made Bender’s type decomposition

method computationally efficient. Therefore, we’re now able to get really good(exact)

results for big problems at a much faster fashion then solver XpressMP.

There are several interesting extensions of the work presented here. These include inte-

grating the inland production with single or multiple refineries at different locations on

the network, and multiple products needed by the same customer port. This integration

would cause the supply chain to become bigger, and therefore more complex, however

closer to reality, as inland production and demand satisfaction are activities that need
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synchronization. Furthermore, the involvement of multiple refineries and multiple prod-

ucts introduces the new optimization issues due to assigning refineries to customer ports

and allocating vessel capacity for different products. This will make the modeling and

the design of search procedures more interesting and challenging.

Also, for the simplicity of modeling, in this study, we assumed a linear penalty func-

tion for vessel overloading. However, this penalty cost is in reality very complex and is

affected by many factors such as the level of overloading and navigation conditions. A

nonlinear cost function would be more meaningful in this case.
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Chapter 4

Container Vessel Scheduling with

Time Windows

4.1 Introduction

The problem we are interested in is related to the movement of full and empty containers

in between ports. In this study we take the viewpoint of a single shipping company who

delivers full containers from a single source port to a number of ports.

We assume that these ports can naturally be visited in a given cyclic order, though not

all ships have to stop at each of the ports in this cycle. We also assume that at each of

the ports there is a known demand or surplus of empty containers, and the ships can

use their spare capacity to load these empty containers and deliver them to the other
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ports on their route.

We consider a single planning horizon with certain length in which we would like to

optimize the schedule and loading plans for the vessels. In this planning cycle, vessels

are dispatched from the source port, carrying full and empty containers, within their

capacity, to the other customer ports to satisfy their needs. Travel time between ports

are deterministic, and the deliveries of the full containers must be made within given

fixed time windows, defined uniquely for every port. If the vessels arrive prior to delivery

time window, they must wait till the window opens, and incurring a waiting cost, where

as if the delivery is made after the time window, a late fee is charged. Once a vessel is at

a port and able to deliver, it remains there for the duration of berthing time associated

with the particular port, and then the vessels can move to their next destination. Any

unsatisfied handling of full containers or empty containers at a customer port incurs a

penalty as well. There is no limitation on how many vessels could visit a single customer

port. In addition to the capacity restrictions of vessels, vessels only have a fixed amount

of time to visit ports and get back to the source port eventually. Also, the fleet size is

not fixed, and we must decide how many vessels should be dispatched in the considered

planning horizon.
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4.2 Literature

As there are a number of existing ship routing and related scheduling studies, most of

them are covered by the following three major review papers: Ronen [42], Ronen [44]

and Christiansen et al. [16]. A vast and recent literature review on container scheduling

has been made by Choi et al. [14], covering different types of problems, their complexi-

ties, common approaches and algorithms. However, there is not too much emphasis on

empty container problems.

Gavish [21] developed a decision support system for vehicle fleet management. Its adap-

tation to the container fleet problem is straightforward. In his study, prior to making

a decision on empty container relocation, owned and leased containers are assigned to

the demand points based on the marginal cost criterion. Florez [20] presents a profit

optimization model for the problem of empty container repositioning and leasing for

ocean-going ships. He discusses the sensitivity of the model to the length of the plan-

ning horizon, and finds that the solution of the case study is affected little by the changes

in the length of planning horizon. However, there are no full containers, nor time win-

dows considered with this model as well. Crainic et al. [17] propose models for empty

container allocation and distribution between a land transportation system and inter-

national maritime shipping network. Our problem does not consider any inland traffic,

and with the current computational advancements, problems of much bigger scale can

be dealt with. Cheung and Chen [11] compare a two-stage stochastic model with a

two-stage deterministic model for the dynamic empty container allocation problem. In
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their model, once a container is used to meet the demand at a port, it leaves the net-

work and will re-enter the network as a random supply in the future.They perform some

experiments with rolling horizons and conclude that a longer planning horizon is not

necessarily better than a shorter one.

Imai and Rivera IV [27] deal with fleet size planning for refrigerated containers where

they determine the necessary number of containers required to meet predicted future

transportation demand. More recently, Choong et al. [15] developed an integer program-

ming formulation for empty container relocation with use of both long and short-term

leased containers. The studies of Imai and Rivera IV [27] and Choong et al. [15] deal

with empty container distribution in a relatively broad geographical area. In contrast,

two recent papers focus on empty container repositioning in the hinterland of a specific

port, in spite of the many similarities that exist in theory and in practice with reposi-

tioning in a board area. Li et al. [35] study the empty container allocation in a port

with the aim to reduce redundant empty containers. They consider the problem as a

non-standard inventory problem with simultaneous positive and negative demand under

a general holding cost function. Jula et al. [28] consider empty container repositioning,

which they refer to as empty container reuse, from a different perspective from that

of the above studies. Their aim is the reduction of the traffic congestion in the Los

Angeles and Long Beach port area caused heavily by empty maritime container traffic.

A network flow formulation is constructed, in order to optimize empty container move-

ments from consignees to shippers directly and/or via inland depots. The problem is

solved in two phases: the first phase deals with the model transformation to a bipartite
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transportation network (i.e. a classical Transportation Problem) and the second phase

in solving the Transportation Problem by Linear Programming. Thus, it can be at-

tested that no container ship routing studies and empty container management studies

deal with an integrated and simultaneous approach to determine the optimal fleet com-

position with corresponding routing characteristics and empty container repositioning,

where time windows are also considered. Li et al. [36] considers a problem where allo-

cation of empty containers from supply ports to demand ports is taken care of. In this

paper, optimal pairs of critical policies, (U,D) for one port, which are importing empty

containers up to U when the number of empty containers in the port is less than U , or

exporting empty containers down to D when the number of empty containers is larger

than D, doing nothing otherwise, are adapted to multi-port case so that decision-makers

can make decisions about allocating the right amounts of empty containers to the right

ports at the right time.

Highly related to the empty container reposition problem is the empty vehicle redistribu-

tion problem, in which much more literature exists. Du and Hall [18] used a single-value

threshold control policy to redistribute empties in a hub-and-spoke network with random

demands and deterministic travel times. Hall and Zhong [25] extended the above model

to more general networks, where a pull-type decentralized control policy is adopted.

Köchel et al. [31] presented Genetic Algorithms based simulation model to seek optimal

fleet size and repositioning policy by maximizing the gain in the steady state. Their

empty redistribution policies were based on the traditional inventory control policies

(s, Q) and (s, S). However, the majority research on empty vehicle redistribution does
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not consider the vehicle leasing decision and often assumed that unsatisfied demands

are lost. However, in container shipping business, it is rare for a shipping line to reject

a demand because of the unavailability of the owned containers. The main reason is

that it is always possible for a shipping line to lease containers from vendors. Another

important difference is that container reposition route is often fixed and should follow

the vessel schedule, whereas empty vehicle redistribution is not.

There is also quite bit of work on personnel scheduling, and Brucker et al. [6] have an

extensive literature review with different models used, and their complexities. They

also discuss NP-hard special cases. According to their categorization, ”A problem with

Flexible Demand”, where tasks must be performed by employees within a time window

is the type of problem that is most similar to our discussion. Some equivalence rela-

tions may be captured as in employee vs. vessel, or task vs. demand, but vessel fixed

costs, holding or late fees, penalties for unsatisfied demand or empty containers cannot

be incorporated. Robinson et al. [41] formulated the intraday scheduling problem as a

maximum flow problem, which is similar to our formulation introduced below, however

they require that the shifts are given. Later on Brucker and Qu [5] extended this work

where all employees cannot perform all tasks. On the other hand, Ernst et al. [19] has

an older staff scheduling and rostering literature review. It is more extensive than that

of Brucker et al. [6], but is older.
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4.3 Problem Definition

Let us denote by V = {1, 2, ..., V } the set of available vessels, by P = {0, 1, ..., P} the

set of ports, 0 being the source, and 1, 2, ..., P being their natural order to get visited.

Let us denote by T = {1, 2, ..., T} the set of time period, where time is measured in

some natural unit, say in days. In other words, our planning horizon is T days, and all

time windows are assumed to be specified as subintervals of consecutive days within T.

In the sequel we shall refer to vessels by v, w, ..., to ports by p, q, ... and to time units by t.

We assume that each vessel v ∈ V has a capacity Uv, and a fixed cost Cv incurred if

the vessel is dispatched. Travel times between ports p, q ∈ P, p < q are deterministic,

denoted by Tp,q. Each customer port p ∈ P have a known demand for full containers,

denoted by Fp, as well as demand for empty containers, denoted by Ep. We assume that

Fp ≥ 0 for all ports p ∈ P, while Ep may take both negative and positive values, where

Ep < 0 indicates the presence of a surplus of empty containers to be taken away. All

deliveries made to a customer port p ∈ P expected to be within a fixed time window,

[Ap, Bp] ⊂ T. However vessels may arrive early or late with respect to the target time

window. We assume that vessels berth only when they load/unload. To simplify our

notations, we consider a particular day the ”arrival” day for a vessel at a port if by

that day it unloads/loads its cargo. We assume that the travel time Tp,q includes the

berthing time at port q. Accordingly, if a vessel arrives early to a port p ∈ P, a holding

cost of CHp /day/container is charged for the unloaded cargo, and similarly if a delivery

is too late, a penalty cost of CLp /day/container is charged. Customer ports may be

visited by more than one vessel, but in case full container demand, or loading/unloading
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of empty containers are not totally fulfilled, then costs CFp /container and CEp /container

are charged, respectively. Finally, a revenue of Rp is received for satisfied full container

demand at port p ∈ P.

Let us note that since the total demand for full containers is given input for the consid-

ered problem, we get a mathematically equivalent formulation by simply assuming that

Rp = 0 for all ports p ∈ P. To be able to formulate our model, we need to introduce the
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following decision variables:

V ariable Group Type Explanation

xv,p v ∈ V p ∈ P {0, 1} xv,p = 1 if vessel v visits port p

yv v ∈ V {0, 1} yv = 1 if vessel v is dispatched

av,p v ∈ V p ∈ P Z+

number of full containers unloaded from vessel

v at port p

bv,p v ∈ V p ∈ P Z+

number of empty containers unloaded from

vessel v at port p

cv,p v ∈ V p ∈ P Z+

number of empty containers loaded by vessel

v at port p

fv,p v ∈ V p ∈ P Z+

number of full containers on vessel v when

leaving port p

ev,p v ∈ V p ∈ P Z+

number of empty containers on vessel v when

leaving port p

hv,p v ∈ V p ∈ P Z+

number of holding days of vessel v at port p

due to early arrival

`v,p v ∈ V p ∈ P Z+ number of late days of vessel v at port p

tv,p v ∈ V p ∈ P Z+ arrival day (within T) of vessel v at port p

zFp p ∈ P Z+ unsatisfied full conatiner demand at port p

zEp p ∈ P Z+

unsatisfied empty container demand/pickup

at port p

Let us note that the variables describing vessel content, fv,p and ev,p are defined for all
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vessels and ports, even if vessel v is not dispatched, or even if it does not visit port p.

We shall make sure that these variables take value 0 for un-dispatched vessels, and we

can view them, for dispatched vessel and unvisited ports, as the content of a passing by

ship.

We can now start describing our model in terms of these decision variables and param-

eters. Let us start with a few necessary relations, stemming form the logical relations

these quantities must satisfy.

Un-dispatched vessels cannot visit ports, and no loading or unloading at unvisited ports:

xv,p ≤ yv ∀ v ∈ V, p ∈ P (4.1a)

av,p ≤ xv,p ∀ v ∈ V, p ∈ P (4.1b)

bv,p ≤ xv,p ∀ v ∈ V, p ∈ P (4.1c)

cv,p ≤ xv,p ∀ v ∈ V, p ∈ P (4.1d)

Number of containers on board must obey the law of conservation, and cannot exceed

the ship’s capacity:

fv,p = fv,p−1 − av,p ∀ v ∈ V, p ∈ P \ {0} (4.1e)

ev,p = ev,p−1 − bv,p + cv,p ∀ v ∈ V, p ∈ P \ {0} (4.1f)

ev,p + fv,p ≤ Uv ∀ v ∈ V, p ∈ P (4.1g)

Let us note that we defined all decision variables to be nonnegative. Thus, the above

relations imply also that we cannot unload more than what we have on a ship, and we
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cannot load more than the ship’s free capacity.

The next group of constraints make sure that we load/unload empty containers only

where there is a demand/surplus:

bv,p = 0 ∀ p ∈ P with Ep ≤ 0, and ∀ v ∈ V (4.1h)

cv,p = 0 ∀ p ∈ P with Ep ≥ 0, and ∀ v ∈ V (4.1i)

Finally, we prescribe that container demands are met:

Fp = zFp +
∑
v∈V

av,p ∀ p ∈ P (4.1j)

Ep =


zEp +

∑
v∈V

bv,p if Ep ≥ 0

−zEp −
∑
v∈V

cv,p if Ep ≤ 0

∀ p ∈ P (4.1k)

Note that we defined Ep to take both positive (demand) and negative (surplus) values,

and hence we had to formulate the above constraints accordingly.

The next group of constraints will help to get the right values assigned to the time

related decision variables.

If the same vessel visits two ports, then the arrival times must differ by at least the

travel time between these ports:

tv,p ≥ tv,q + Tq,p + T (xv,p + xv,q − 2) ∀ v ∈ V, p, q ∈ P, q < p (4.2a)
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Note that since T is a maximum time difference in our problem, the last term makes

the above inequality irrelevant, unless vessel v visits both ports p and q.

Ap ≤ hv,p + tv,p + T (1− xv,p) ∀ v ∈ V, p ∈ P (4.2b)

Bp ≥ tv,p − `v,p − T (1− xv,p) ∀ v ∈ V, p ∈ P (4.2c)

Note that the last term makes the above constraints trivial, unless vessel v visits port

p. Note also that both hv,p and `v,p are limited form below by these constraints. This,

together with the fact that they will have nonnegative coefficients in our minimization

objective, assures that our objective computes penalties for the true earliness/lateness.

The last group of constraints is to help to formulate our objective, which is a composi-

tions of all expenses (penalties, etc.).

Vessel dispatching costs:

cD =
∑
v∈V

Cvyv (4.3a)

Early and late arrival penalties:

cH =
∑
p∈P

CHp
∑
v∈V

hv,p(av,p + bv,p) (4.3b)

cL =
∑
p∈P

CLp
∑
v∈V

`v,p(av,p + cv,p) (4.3c)
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Unsatisfied demands’ penalties:

cU =
∑
p∈P

CFp z
F
p + CEp z

E
p (4.3d)

Then our problem is to minimize cD + cH + cL + cU , subject to the constraints 4.1-4.3

and the sign and type restrictions in the definitions of the decision variables.

Note that constraints 4.3b and 4.3c are quadratic in terms of our decision variables. All

other constraints are linear.

Note also, that if variables x and y are binary, then the integrality of the other decision

variables follow from the structure of the constraints and the integrality of the input

parameters.

4.4 Minimum Cost Flow Network Formulation

We propose the following setup to make the handling of the problem easier. Initially, we

only take into consideration full containers. We create a source port node and a penalty

node for every day in our planning horizon, starting from day 1, resulting in overall

2T nodes. The next set of nodes are associated with every port and every day of the

planning horizon, so a total of P ∗ T are required. The arcs emanating from the source

nodes are connected to the port nodes, based on T0,p, i.e. if T0,1 = 3, then there would

be arcs between every source node, (0, t), and nodes associated with port 1, (1, t + 3).

These arcs have 0 lower bound, no upper bound, and Cv/Uv cost, where v is such that

Cv/Uv is maximum ∀v ∈ V. The outgoing arcs from penalty nodes are connected to
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the nodes associated with day Bp for p ∈ P, have 0 lower bound, no upper bound, and

a unit cost of CFp . The (p, t) nodes, if t < Ap, have outgoing arcs to (p, t + 1), with 0

lower bound, no upper bound and a cost of CHp . The (p, t) nodes, if Ap ≤ t < Bp, have

2 different categories of outgoing arcs. One group consists of the flow within the same

port, from node (p, t) to (p, t + 1), with 0 lower bound, no upper bound, and no cost.

The other group of arcs represent the flows to other ports and again, arcs exist between

two nodes associated with ports p and q based on Tp,q. (p, t), where t = Bp have one

additional outgoing arc with respect to the set of nodes that we just discussed, and these

nodes are connected to the sink node, with a lower bound and upper bound of Fp, and

0 cost. This ensures that either via the flow through the source port or through penalty

nodes, demand constrained will be satisfied. Finally, for set of (p, t) nodes, where t > Bp,

there is only one outgoing arc to (p, t− 1), with 0 lower bound, no upper bound, and a

unit cost of CLp . Finally, we need to somehow consider vessel times, and in order to do

that we make sure that Bp for p ∈ P, is such that Bp + Tp,0 ≤ T . Figure 4.1 shows an

example of the network for |T | = 7, |P | = 2, Tp,q = 1 ∀p, q ∈ P, and Ap, Bp ∀p ∈ P are

indicated by brackets around (p, t) nodes.

4.5 Minimum Cost Flow Heuristic

With the above formulation, we propose to solve the above problem in 3 stages. In

the first stage, we only worry about taking care of full container demand. The second

stage is handled with the same minimum cost flow formulation, where flows on arcs are

converted to vessels. Finally, on the third stage, based on the paths vessels have been

assigned to at the end of second stage, another minimum cost flow problem is solved,
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Figure 4.1: An example of the network for |T | = 7, |P | = 2, Tp,q = 1 ∀p, q ∈ P, and
time windows for delivery are indicated by brackets around the nodes

where we try to satisfy the empty container demand to our best with the remaining

capacities on the vessels.

4.5.1 Stage 1

The solution to this minimum cost flow problem yields flow of full containers, that are

carried from source to ports, and in between ports. Once these flow values are obtained,

we move to the second stage.

4.5.2 Stage 2

Keeping the same network structure, all arc costs are removed. We divide the flow on

the arcs by Uv and round it up, and set this quantity as the lower and upper bound on

the capacity of the arcs. Once we solve this problem, we are able to tell exactly how
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many vessels were dispatched, moreover, greedily, we can determine unique paths for

each of the vessels, based on the flow on the arcs. Once the path of each vessel is known,

we move to the third stage.

4.5.3 Stage 3

A new network is formed, where arcs between ports only exist based on the information

coming from the second stage. The arc capacities are equal to the remaining capac-

ities of the vessels based on their full container load at the time of departure from a

port. If the ports have surplus of empty containers, then we have additional nodes that

carry this surplus to the nodes, and if the ports are in demand of empty containers, then

the outgoing arcs from such ports have a lower bound that is equal to the port’s demand.

Once this problem is solved, the empty containers are taken care off as well, and the

heuristic terminates. The results obtained with this approach will be displayed after the

next section, as well as the discussion on its performance.

4.6 Decomposition Approach

The proposed heuristic maybe misleading in terms of the number of vessels used, as

during Stage 1, vessel fixed cost is incorporated as cost per unit carried, and also during

Stage 2, the rounding up for the number of vessels used contributes to this. Therefore,
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a better way of fleet management is necessary, and we propose the following formula-

tion in correspondence with the network structure described above for the full container

problem. The proposed approach will replace the first two stages of our heuristic. The

main difference of the formulation below is that the source port nodes are replaced by

vessel nodes, based on the dispatch info. To be able to formulate our model, we need to

introduce the following decision variables:

V ariable Group Type Explanation

xv,t,p,t′ v ∈ V t ∈ T p ∈ P t′ ∈ T Z+

number of full containers car-

ried by vessel v, which was dis-

patched at period t, to unload

at port p arriving at t′

yv,t v ∈ V t ∈ T {0, 1}
yv,t = 1 if vessel v is dispatched

at period t

xp,t,q,t′ p ∈ P t ∈ T q ∈ P t′ ∈ T Z+

number of full containers car-

ried shipped from port p at

time t arriving to port q at

time t′

zp,t p ∈ P t ∈ T Z+

number of full container de-

mand not satisfied at port p

due at time t

We can now start describing our model in terms of these decision variables and param-

eters.
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Vessel dispatching costs:

cD =
∑
v∈V

∑
t∈T

Cvyv,t (4.4a)

Early and late arrival penalties:

cH =
∑
p∈P

∑
t<Ap

CHp xp,t,p,t+1 (4.4b)

cL =
∑
p∈P

∑
t>Bp

CLp xp,t,p,t−1 (4.4c)

Unsatisfied demands’ penalties:

cU =
∑
p∈P

∑
t∈T

CFp zp,t (4.4d)

Constraint related to dispatching of vessels will be:

xv,t,p,t′ ≤ yv,tUv ∀ v ∈ V, t ∈ T, p ∈ P, t′ > t (4.5)
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Next set of constraints are flow-balance constraints.

∑
v∈V

xv,t′,p,t +
∑
q<p

xq,t′′,p,t + xp,t−1,p,t = xp,t,p,t+1 (4.6a)

∀ p ∈ P, t < Ap, t
′ = t− T0,p, t

′′ = t− Tq,p∑
v∈V

xv,t′,p,t +
∑
q<p

xq,t′′,p,t + xp,t−1,p,t = xp,t,p,t+1 +
∑
r>p

xp,t,r,t′′′ (4.6b)

∀ p ∈ P, Ap ≤ t < Bp, t
′ = t− T0,p, t

′′ = t− Tq,p, t′′′ = t+ Tp,r∑
v∈V

xv,t′,p,t +
∑
q<p

xq,t′′,p,t + xp,t−1,p,t + zp,t =
∑
r>p

xp,t,r,t′′′ + xp,t,0,t′′′′ (4.6c)

∀ p ∈ P, t = Bp, t
′ = t− T0,p, t

′′ = t− Tq,p, t′′′ = t+ Tp,r, t
′′′′ = t+ Tp,0∑

v∈V
xv,t′,p,t +

∑
q<p

xq,t′′,p,t + xp,t+1,p,t = xp,t,p,t−1 (4.6d)

∀ p ∈ P, t > Bp, t
′ = t− T0,p, t

′′ = t− Tq,p

Finally, to ensure that the demand is satisfied via vessels used or penalty nodes:

xp,t,0,t′ = Fp ∀ p ∈ P, t = Bp, t
′ = t+ Tp,0 (4.7)

This formulation makes decomposition rather easy to implement as the binary variable,

yv,t appears only in one constraint, 4.5, and in one part of the objective function, 4.4a.

Also, realize that, all equations except 4.5 and 4.7 have 0 right hand side.
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Time (sec) Objective Function Gap (%)
Xpress Heuristic Decomp Xpress Heuristic Decomp Xpress Heuristic Decomp
7200 161.56 1634.85 16259 16397 15954 1.97 2.80 0.10
7200 127.06 1294.33 9523 9578 9298 2.46 3.02 0.10
7200 150.61 1025.03 8823 8827 8737 1.07 1.11 0.10
7200 164.87 1191.42 15112 15425 15067 0.39 2.41 0.10
7200 160.14 1708.97 16431 16506 16423 0.15 0.60 0.10
7200 107.42 984.12 14187 14389 13714 3.43 4.78 0.10
7200 135.95 1324.92 14672 14724 14054 4.30 4.64 0.10
7200 95.68 1680.62 9364 9472 9257 1.24 2.37 0.10
7200 149.17 1256.40 11307 11543 11130 1.66 3.67 0.10
7200 109.10 933.26 10285 10387 10020 2.67 3.63 0.10

Table 4.1: |N | = 20, |V | = 40, |T | = 30, 0.1% gap termination condition or 2 hrs for
both XpressMP and Decomposition

Time (sec) Objective Function Gap (%)
Xpress Heuristic Decomp Xpress Heuristic Decomp Xpress Heuristic Decomp
7200 168.33 1904.57 23817 24494 23426 1.74 4.45 0.10
7200 316.45 1788.67 16179 16570 15846 2.16 4.47 0.10
7200 315.44 1450.06 20663 21120 20477 1.00 3.14 0.10
7200 202.37 1782.84 15909 16400 15869 0.35 3.34 0.10
7200 242.31 2126.91 17306 17809 17299 0.14 2.96 0.10
7200 193.69 1152.38 21797 22199 21114 3.23 4.98 0.10
7200 302.12 1649.85 20302 20594 19544 3.83 5.19 0.10
7200 169.61 2161.24 15361 15779 15197 1.16 3.78 0.10
7200 171.10 1912.81 17840 17899 17598 1.46 1.78 0.10
7200 203.57 1299.79 14137 14544 13805 2.45 5.18 0.10

Table 4.2: |N | = 40, |V | = 80, |T | = 30, 0.1% gap termination condition or 2 hours
for both XpressMP and Decomposition

4.7 Results

Both 4.1 and 4.2 suggest that decomposition approach performs in general better than

XpressMP for the full container problem. The accuracy of heuristic on the other hand

varies, however it takes significantly shorter for it to run in both cases. The weakness of

the heuristic is mainly due to the setup on Stage 1. Unfortunately, vessel fixed costs are

incorporated as unit carriage costs to simplify formulation, and therefore the heuristic

is not able to realize that an additional vessel may be used, where only a small portion

of its capacity is utilized. As far as the number of vessels used are concerned, the

network heuristic usually requires 1 or 2 more vessels than the number of vessels used

with XpressMP.
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Chapter 5

Conclusion

This dissertation addressed different problems, first one being related to the issue of

managing inventories of medical supplies and especially the critical ones in hospitals un-

der surge (pandemic) scenarios. Inventory management basically deals with how much

of each unit to maintain on hand by deciding on when to order and how many to order

for each item under consideration. This is a critical issue since too much of medical

supply inventory can cost a lot and perhaps perish, while short inventories will not sat-

isfy the demand. Finding the right amount of stock is always a challenge in inventory

management due to uncertainties involved in demand. We have developed a sound and

practical approach that combines epidemiologic modeling techniques with simulation

and optimization modeling to provide the best strategy for managing inventories. It

involves a high-fidelity Disease Progress Module Influenza Pandemic like scenarios using

already validated data from the historical epidemiological literature. For the proposed

simulation framework, a Virtual Hospital Module was developed to capture resource
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consumption in healthcare settings during an Influenza Pandemic. A dynamic pro-

gramming optimization model was constructed to optimally manage the inventory of

critical medical supplies (that is the decisions regarding when to order and how much to

order) in hospital settings. A number of numerical scenarios were analyzed results are

obtained. The approach is quite practical and readily implementable in hospital settings.

In addition, demand forecasting tools using a hidden Markov model and a deterministic

model have been developed, enabling us to deal with unknown pandemic as well. The

strengths and weaknesses of these forecasting methods are displayed, and discussion on

how these weaknesses can be overcome is made. As mentioned earlier, this work aims to

provide guidelines to implement a formal procedure to help decision makers managing

inventories in the health care industry. Due to that fact that shortcomings in medical

supplies may end up in dire consequences, inventories are typically held at higher levels

as compared to other industries. Clearly, this has consequences that appear as signif-

icant contributions to health care costs. A serious effort to reduce health care related

costs is to implement effective inventory management policies so that supply stocks are

kept at reasonable levels during times when there is no mass demand. During emergency

scenarios such as pandemic situations the system should be effective enough to respond

quickly to build right amount of inventories.

This research can be extended to the cases where the demand is following another dis-

tribution, or where products perish, or by adding another layer of the supply chain to
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the problem, as well as investing more in the demand forecasting.

Next study was involved with the study of a difficult real life supply chain scheduling

problem encountered in oil and petrochemical industry, which involves production, in-

ventory, and distribution operations, and requires an integrated scheduling to minimize

the total operation cost. We showed the hardness of this problem, and showed that

some of its special cases are polynomial time solvable. A minimum cost flow based

heuristic, motivated by the observations from one of the special cases, was proposed and

demonstrated to have a promising performance under the set of test cases considered

in this study. Also, a new formulation of the model was developed, which made Ben-

der’s type decomposition method computationally efficient. Therefore, we’re now able

to get really good results for big problems at a much faster fashion then solver XpressMP.

There are several interesting extensions of the work presented here. These include inte-

grating the inland production with single or multiple refineries at different locations on

the network, and multiple products needed by the same customer port. For the simplic-

ity of modeling in this study, we assumed a linear penalty function for vessel overloading.

However, this penalty cost is in reality very complex and is affected by many factors such

as the level of overloading and navigation conditions. A nonlinear cost function would

be more meaningful in this case. Furthermore, the involvement of multiple refineries

and multiple products introduces the new optimization issues due to assigning refineries

to customer ports and allocating vessel capacity for different products. This will make
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the modeling and the design of search procedures more interesting and challenging.

Last of all, we have dealt with a very general model for container vessel scheduling

with time windows constraints. We have managed to devise a fast heuristic, as well

as, an efficient formulation, making Bender’s type approach suitable. Bender’s type

approach performs much better than solver XpressMP, both in terms of time, and error

bound. Overall, for problems of smaller size, the heuristic we proposed yields fast

solutions with an acceptable gap from the optimal, where as, as the problem gets bigger,

decomposition approach becomes the better option. The contribution of this work is the

formulation making Bender’s type approach applicable in a useful way. Further study

can be developed, where inland shipment of containers, thus becoming empty is included

as well. However, there is a shortcoming of the proposed Bender’s type approach. The

empty containers are not dealt with until the full containers are taken care of. Therefore,

we are not able to guarantee optimality within the big picture, which is not surprising

in the end, as with full and empty containers, the problem becomes a variant of multi-

commodity flow problems, which are hard in general. Empty and full containers, because

of the way they are handled, on the other hand, may allow an easier formulation.
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