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The goal of this work focuses in the development of reduced-order modeling tools for 

the design and optimization of manufacturing of pharmaceutical oral solid dosage form 

products. This work- as part of a collective effort of the Engineering Research Center for 

Structured Organic Particulate Systems (ERC-SOPS)- aims to combine all the research 

findings of the Center in terms of material properties and process understanding in order 

to design efficient continuous integrated manufacturing processes. Different surrogate-

based methodologies are assessed for reduced-order model building based on expensive 

experimental data or computer simulation data. In addition, the effects of uncertainty of 

the available data, material properties and model parameters on model performance are 

addressed systematically. Finally, unit operation models are combined into a flowsheet 

simulation modeling framework which can be used for process design through the 
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development of a simulation-based optimization strategy for noisy expensive flowsheets 

with complex constraints.   
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Chapter 1 

1. Introduction 
 

1.1. Integrated process design and optimization in pharmaceutical 

manufacturing  

 

 Chemical engineers are often involved in product and process development, 

where they are asked to design experiments and formulate theories to explain 

mechanisms of processing operations. Alternatively, they can be involved in process and 

product design, where they try to identify compositions to provide desired properties, 

create flowsheets and select operating conditions to produce desired products with high 

yield and low costs, and/or design configured industrial consumer products. Design 

problems are usually open ended and may have many solutions that are attractive and 

near optimal, and in fact design has been characterized as the most creative of all 

engineering activities, with many opportunities to invent novel products and processes. 

All of the above tasks have been made possible through the development of algorithmic 

methods which are used to solve, analyze and optimize process simulations.  

 Pharmaceutical products and manufacturing is a sector which recently is 

involving more and more chemical engineers. There are many special considerations that 

are needed for designing pharmaceutical products, which involves a number of stages 

which form the typical Development Cycle (Discovery,  Preclinical Development, 

Clinical Trials and Approval). This work focuses on this final stages of manufacturing, 

specifically the processing of raw powder materials in order for their transformation to 

the final pharmaceutical product (i.e. tablet, capsule). Historically, the pharmaceutical 
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industry has been very innovative and successful in the field of new drug discovery and 

development. However, this has drawn the focus away from the development of efficient 

manufacturing methods and process understanding (Gernaey & Gani, 2010; Hamad, 

Bowman, Smith, Sheng, & Morris, 2010; J. Huang, et al., 2009; Klatt & Marquardt, 

2009).  The lack of knowledge of how critical material attributes and process parameters 

affect end-point product attributes often hinders the implementation process control, 

resulting to pharmaceutical manufacturing processes which generate products with 

relatively high variability (McKenzie, Kiang, Tom, Rubin, & Futran, 2006). One 

additional challenge for the establishment of efficient, controlled, and automated 

manufacturing methods is the considerable variability in new raw material properties.  In 

addition, the majority of pharmaceutical products (~80%) are in a solid based form of 

tablets or capsules, composed from bulk powder materials, which are far more complex 

and challenging to handle than liquid or gas phase materials. Even though significant 

progress has been made recently in particle technology research, there is a gap between 

fundamental science and applied engineering due to the need for integration of multiscale 

knowledge (Ng, 2002).   

All of the above reasons have been the source of consensus and legacy based 

heuristic production strategies, conducted overwhelmingly in batch mode; with product 

quality being traditionally verified offline through acceptance sampling.  This approach 

has lead to additional sources of variability, which are the effects of the analytical 

method, and the human factor, since it is common for operators to regulate the process 

based on their individual knowledge and experience. Moreover, due to the insofar typical 

batch manufacturing procedures, which involve the processing of material one stage at a 
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time, integrated process design, has not been a priority of the industry. Even in cases 

where one specific process stage has been studied in detail and potentially optimized, its 

operation would typically be considered independently of the next and previous operating 

stages. As a result, each process operation would be optimized individually. However, if 

one considers all of the process stages as a whole integrated procedure, the global 

operating conditions may be drastically different due to process interactions and 

conflicting objectives. 

Recently, the industry as well as the Food and Drug Administration (FDA) have 

recognized the need for modernizing pharmaceutical manufacturing and have launched 

an initiative for enhancing process understanding through Quality by Design (QbD) and 

Process Analytical Technology (PAT) tools (Garcia, Cook, & Nosal, 2008; Lionberger, 

Lee, Lee, Raw, & Yu, 2008; Nosal & Schultz, 2008; L. Yu, 2008). The major goals of 

these efforts include the development of scientific mechanistic understanding of a wide 

range of processes; harmonization of processes and equipment; development of 

technologies to perform online measurements of critical material properties during 

processing; performance of real-time control and optimization; minimization of the need 

for empirical experimentation and finally, exploration of process flexibility or design 

space (Lepore & Spavins, 2008). To achieve these goals, the industry needs the modeling 

tools and databases for measuring, controlling and predicting quality and performance.  

1.2. Transition towards continuous pharmaceutical manufacturing 
 

During the last five years, one of the main approaches for modernizing 

pharmaceutical manufacturing, transition of production from batch to continuous mode, 

is becoming increasingly more appealing to the industry and regulatory authorities (Betz, 
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Junker-Bürgin, & Leuenberger, 2003; Gonnissen, Gonçalves, De Geest, Remon, & 

Vervaet, 2008; Leuenberger, 2001; Plumb, 2005). The advantages of this change have 

been proven very beneficial in many aspects when applied in other fields, such as 

petrochemicals and specialty chemicals (Gorsek & Glavic, 1997). Firstly, continuous 

manufacturing could potentially minimize the need for scale-up studies and decrease the 

time-to-market significantly (Leuenberger, 2001). At the present time, processes 

developed in small-scale equipment used for initial clinical studies must be scaled-up and 

subsequently validated experimentally and further optimized, since their operation is 

always potentially different at the larger scale. This leads to another advantage of 

continuous integrated manufacturing, which is the minimization of the plant footprint, 

since the entire continuous process typically fits inside a much smaller space. A well 

controlled continuous process involves the handling of small aliquots of material 

throughout the unit operations, increasing the ability to monitor a significant fraction of 

the process streams, which is impossible in a large-scale batch process. In addition, 

continuous operations can produce higher throughputs under better control, which 

implies the optimal use of the invested capital (space, raw materials and equipment), as 

well as the reduction of waste (Plumb, 2005). Also, in a continuous setting, the human 

factor can be further decreased, compared to a batch setting, through automation of the 

operation of integrated systems and thus labor costs can be reduced. A detailed 

economical analysis and comparison of  batch versus continuous operating mode for the 

production of pharmaceuticals has been performed by Schaber et al. (Schaber, et al., 

2011), demonstrating the possibilities and advantages of the latter. However, continuous 

systems also possess certain disadvantages, such as the need to dedicate specific 
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equipment and facilities to a certain integrated process and the need for advanced Process 

Analytical Technology (PAT) systems which are costly and not yet developed for 

granular systems.  

However, a switch from the already established batch to continuous operation 

involves many challenges, and could lead to failure if not performed after careful design 

and planning. Firstly, pharmaceutical substances are highly sensitive to environmental 

conditions, such as humidity and temperature and a possible larger residence time than 

required can cause significant material degradation. This can cause dangerous product 

contaminations and should be avoided. Subsequently, in a continuous production, the 

process does not reach steady state from the beginning, and this may cause off-

specification product to be produced during a particular time interval. However, because 

regulatory authorities require detailed and time-consuming documentation for the 

establishment of a manufacturing strategy, and because in many cases companies 

currently have unused capacity, it is still debatable by pharmaceutical companies whether 

the modification of an already established batch manufacturing procedure to a continuous 

one is worth the risk and the up-front expense.  

All of the above risks and challenges, however, can be reduced through detailed and 

accurate process knowledge and the exploitation of advanced computer-aided simulation 

tools to ensure effective performance and optimal integrated design of both existing batch 

or future developed continuous processes.  

1.3. Process systems engineering tools and their connection to Quality by 

Design in pharmaceutical Engineering 



6 

 

 

 

As it is stated by Oksanen et al (Oksanen & García Muñoz, 2010), “from a chemical 

engineer's perspective, QbD, Design Space and Process Analytical Technology (PAT) 

can be understood as the application of Process Systems Engineering (PSE) to the 

development and manufacture of pharmaceutical products”. In fact, this is one of the 

primary goals of this research, to serve as an initial building block towards the 

implementation of PSE tools for designing pharmaceutical manufacturing.  

PSE has been introduced as a distinct community during the last 50 years and has 

sprung out from computer-aided engineering practices. Stephanopoulos et al. 

(Stephanopoulos & Reklaitis, 2011), recently published a comprehensive review of the 

history and applications of this community from the 1800’s to today. The authors 

describe the stages that chemical and process engineering have been through during these 

decades and interestingly, the period of the 1920s to 1950s, is categorized as the 

‘‘Waiting  Period’’. The reason for this distinction is due to the fact that during this time 

engineers studied the individual components of a process (unit operations) and not the 

overall integrated process- from raw materials to final product. It was a period during 

which robust models were developed and validated for all the basic unit operations of the 

chemical engineering field, which later allowed researchers to start combining these 

models and develop integrated systems science techniques. Specifically, from the 1960’s 

to 2000 there was a huge leap in the publications and developments on integrated design, 

optimization and control which were all greatly facilitated through the advances in 

computational capabilities. Engineers started relying on computational tools for designing 

their processes, minimizing the need to physically experiment with their processes or rely 

on heuristics and empirical knowledge. Even though the most common objective of 
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design and optimization is profit, more recent developments include additional aspects to 

integrated process design, such as systems to improve environmental impact, 

simultaneous process and product design, process intensification combining multiple 

operations into fewer components and multi-plant integration.  

All the above are mentioned in order to make what is being realized during the past 

few years even more obvious: the pharmaceutical industry can benefit tremendously by 

all the tools developed in the PSE field. The pharmaceutical industry can be considered to 

be coming out of its own “Waiting Period” during the past few years, so it is now the 

time for engineers to start thinking about integrated design and optimization. Certainly, 

implementation of such tools for pharmaceutical processes and products is a very 

challenging task, due to the complexity and variability of powder materials and the 

specifications that a product must meet in terms of physical and biological properties. 

However, if practitioners in this industry become aware of the capabilities of the years of 

research that PSE community has to offer, as well as success stories and applications 

from other industries (i.e. petrochemical, polymers and consumer products), then perhaps 

the effort will be put in order to gather the necessary information for the implementation 

of PSE tools.    

Table 1 is a simple summarized set of connections between goals of the FDA’s QbD 

initiative and PSE tools. Process understanding is equivalent to the development of 

predictive models, preferably first-principle based when available. The developed models 

can then be integrated into a flowsheet simulator in order to build a computer version of 

an actual process and be able to schedule operating procedures and identify integration 

bottlenecks. In addition, the very popular design space in QbD guidances can be 
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correlated with the flexibility of a process. Finally, steady-state and dynamic optimization 

strategies can facilitate process and product design and control respectively, while risk 

analysis can be facilitated by sensitivity analysis tools.  

Table 1.Connection between QbD goals and PSE tools 

Quality by Design initiative Goal Process Systems Engineering Tool 

Process understanding 
Predictive models 

(mechanistic, data-based, hybrid) 

Process integration and simulation Flowsheet modeling 

Design Space Flexibility Analysis 

Process and product design 
Steady-state optimization  

(Flowsheet synthesis) 

Process controllability 
Dynamic optimization 

(model predictive control) 

Risk analysis Sensitivity Analysis 

1.4. Motivation: Integration of process knowledge and experimental or 

simulation data for the design of continuous pharmaceutical 

processes 
 

  The main purpose of this work is the integration of various types of process 

models along with experimental and computational data into a flowsheet simulation 

framework, in order to describe and analyze pharmaceutical manufacturing processes. 

The development of the integrated models enables the next two stages of Design Space 

(DS) characterization and process optimization of integrated pharmaceutical processes. 

However, the computational complexity and stochastic nature of the aforementioned 

models have brought up the need for development of special algorithmic procedures for 

the identification of the DS and optimization, which are also the focus of this work. 

Due to the aforementioned current efforts to enhance process understanding in the 

pharmaceutical manufacturing field, large amounts of data for the characterization of 

processes or materials have been collected. In certain cases, these data have provided 
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insight about the governing underlying mechanisms and have lead to the development of 

first-principle models, while in other cases data have been used to build empirical 

response surface models, or multivariate latent variable models in cases of high 

dimensionality. In fact, even in the well-established liquid-based flowsheet models, 

certain physical phenomena which are insufficiently understood, such as chemical 

reaction kinetics or heat and mass transfer effects are represented through empirical 

correlations which are incorporated into first-principle models to create hybrid or semi-

empirical modules (Kahrs & Marquardt, 2007).  

Moreover, the complex nature of powder based-processes has also lead to the 

development and use of high-fidelity discrete type simulation models that aim to capture 

the complex behavior of interacting particles in order to provide insight into detailed 

critical material attributes such as particle size distributions. This introduces another 

challenge towards the final goal of flowsheet model building, which is the incorporation 

of multiscale computational data, derived from very expensive computer models. In this 

work, it is shown that often, handling of such computational data is very similar to that of 

experimental data.  

This work aims to summarize all of the identified challenges that originate from the 

incorporation of experimental and computational data into a dynamic flowsheet model 

library for pharmaceutical processes, in order to develop a generic model library which 

may be used for a wide range of raw materials and processes, integrated to form complete 

production lines.  

The current work aims to tackle only a small fraction of the aspects of Table 1 and 

act potentially as an initial “success story”, towards the implementation of certain of the 
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aforementioned tools to models and data from actual pharmaceutical processes. It is not 

one of the goals of this work to develop first-principle models for specific unit 

operations, but rather incorporate such models either from the literature or from the ERC-

SOPS databases-when available- in order to develop an integrated flowsheet simulation 

and initiate the work of process design using this integrated model. When these models 

are not available, data-based approaches may be employed. Overall, the models necessary 

for design and optimization strategies must be computationally efficient, thus a strong 

focus on reduced-order modeling techniques is evident throughout this work.  

1.4.  Role of reduced-order models  

In many aspects of this work, it was realized that the use of reduced-order or data-

based models can be of great importance in modeling of complex pharmaceutical 

processes. In the literature, the term “reduced-order model” is used to describe any type 

of model which is of lower dimensionality and/or computational cost from the original 

full-scale model, such as surrogate-based or data-driven models, hybrid or grey-box 

models and models of reduced dimensionality based on multivariate analysis methods 

such as Principal Component Analysis (PCA) and Partial Least Squares (PLS). The first 

category of surrogate models refers to data-based response surface type methods with 

unknown parameters fitted based on a set of experimental or simulated data (Boukouvala, 

Muzzio, & Ierapetritou, 2010; Boukouvala, Muzzio, & Ierapetritou, 2011; Donald R. 

Jones, 2001; J. P. C. Kleijnen & Beers, 2004). Hybrid or grey-box models are typically 

referred to as low-order because they are composed of a combination of first-principle 

but also empirical correlations which are used as fast approximations of certain complex 

and demanding correlations (L. Chen, Hontoir, Huang, Zhang, & Morris, 2004; Kahrs & 

Marquardt, 2007; Psichogios & Ungar, 1992; Romijn, Özkan, Weiland, Ludlage, & 
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Marquardt, 2008). Finally, model reduction based on PCA methodologies is an efficient 

tool used to create inexpensive approximations of large scale distributed systems, such as 

those resulting from discretization of partial differential equation systems (Cizmas, 

Palacios, O'Brien, & Syamlal, 2003; Deane, Kevrekidis, Karniadakis, & Orszag, 1991; 

Frouzakis, Kevrekidis, Lee, Boulouchos, & Alonso, 2000; Lucia, Beran, & Silva, 2004; 

My-Ha, Lim, Khoo, & Willcox, 2007), or identify structures and reduce dimensionality 

of large datasets. Model reduction is becoming very essential for allowing compressed or 

simplified versions of computationally expensive models in dynamic simulation, real-

time control and optimization. However, model reduction techniques come at certain 

costs, such as the limited validity within the range of the available data. A more detailed 

description of the methods, advantages and disadvantages of ROMS is provided in 

chapter 3.  

Even in the optimization literature, where rigorous optimization techniques 

require large number of function evaluations and calculation of accurate derivatives, 

optimization based on surrogate and faster models is becoming more and more popular. 

The reason for this is that derivative information is not available if the process model is 

very computationally expensive (i.e. each function evaluation requires weeks) or when 

the process knowledge is not yet available in order for any type of mechanistic model to 

be developed. This has given rise to the development of many techniques for what is 

referred to as black-box, or surrogate-based or derivative-free optimization (Auger, 

Hansen, Perez Zerpa, Ros, & Schoenauer, 2009; Barron, Duvall, & Barron, 2004; 

Booker, et al., 1999; Henao & Maravelias, 2011; Queipo, et al., 2005) . Response surface 

optimization has been applied to many fields including automotive engineering and 
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design, structural optimization, geology, and food engineering, to name a few. Although 

surrogate-based optimization can usually guarantee local optimality, global methods have 

also been studied (Donald R. Jones, 2001).  

Throughout this work, reduced modeling aspects are used within flowsheet 

simulations and design spaces- in order to form hybrid models or add correlations for 

which no first-principle model exists- as well as in the developed optimization 

framework.  

1.5. Outline of dissertation  
 

This dissertation is broken up into five main chapters. Chapter 2 describes the 

process of flowsheet model building for a variety of different manufacturing scenarios, 

namely direct compaction, dry granulation and wet granulation. Chapter 3 focuses on the 

challenges of integration of various types of models, as well as the role of reduced order 

data-based models as unit operation models in the developed flowsheets. The integration 

of a reduced-order model for capturing the effects of material properties is also discussed 

in this chapter. Chapter 4 describes the proposed methodology for the mapping and 

analysis of process design space, for both individual unit operations and integrated 

flowsheet models.  The methodologies described in this chapter is parallelized with the 

PSE concepts of process feasibility and flexibility. Next,  chapter 5, focuses on the 

optimization of integrated flowsheets, which are stochastic and of high computational 

cost. Specifically, already existing methodologies for the optimization of such models are 

discussed, and a new approach for the optimization of such models subject to constraints 

is developed, tested and applied to a direct compaction case study. The final chapter, 
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summarizes this work and discusses critical issues that have risen through this work, and 

are proposed to be solved in the future.  
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Chapter 2 

2. Integrated simulation and analysis of continuous pharmaceutical 

manufacturing  
 

2.1. Dynamic flowsheet modeling for particulate processes 
 

Flowsheet modeling is one of the most influential achievements of computer-

aided process systems engineering, which has enabled the design, analysis and 

optimization of robust processes in the chemical industry. A robust and detailed 

flowsheet simulation is an approximate representation of the actual plant operation, 

which also helps in the establishment of successful control strategies that will regulate the 

process when given a desired set-point change or when a problem occurs during the 

operation of the integrated process (R. Ramachandran, Arjunan, Chaudhury, & 

Ierapetritou). Through accurate simulations, one can predict the time interval of the 

transitional stage during which product has not yet reached desired state, and the control 

actions to take when the system deviates from the desired state (feedback control) or 

when perturbations are detected as they enter into the system (feed-forward control). 

Accurate modeling of the residence time distribution of material in the process also 

allows discarding a small percentage of faulty product when necessary, which is more 

profitable than production of failing batches.  

A developed flowsheet simulation can also facilitate the identification of possible 

process integration bottlenecks, conflicting design and control objectives, simulation of 

the effect of recycle streams as well as process start-up and shut-down. For these and 

other reasons, flowsheet synthesis is an extremely important first step in a wide range of 

industries, during which the optimal process configuration is decided upon according to 
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the desired design objectives (Biegler, Grossmann, & Westerberg, 1997). This procedure 

enables the investigation of design alternatives through the formulation of superstructure 

networks and the solution of mixed integer optimization problems which have operating 

conditions and design parameters as decision variables (Biegler & Grossmann, 2004; 

Biegler T L, Grossmann E I, & Westerberg  W.A, 1997; Henao & Maravelias, 2011). In 

the literature and in industrial practice, flowsheet simulations have helped identify global 

optimal operating conditions and design configurations that lead to robust, flexible and 

economically profitable processes.   

Research in flowsheet building for fluid-based processes common to the chemical 

industry (i.e. petrochemicals) has become a mature activity, resulting in a variety of state 

of the art software packages (e.g. ASPEN, gPROMS, CHEMCAD etc.) that contain all 

the needed capabilities. Using the developed software is easy since a user can simply 

‘drag-and-drop’ the necessary unit operations from established model libraries and 

connect them appropriately to simulate a specific integrated process. On the contrary, 

flowsheet models and software for solid based processes are only in a primitive stage for 

a variety of reasons (Gruhn, Werther, & Schmidt, 2004; Ng, 2002; Ng & Fung, 2003; 

Werther, Reimers, & Gruhn, 2008, 2009).  

Firstly, the lack of knowledge of the critical material properties, design, and 

process variables, as well as the lack of unit operation process models have inhibited the 

development of model-based flowsheet simulators. Due to the high complexity of the raw 

materials and the lack of standardized procedures, another obstacle is the inexistence of 

comprehensive material property databases for a wide range of used excipients and APIs. 

In fact, material characterization of pharmaceutical powders is a non standardized 
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procedure which differs amongst the different companies. Universal material property 

libraries are vital to model libraries, if one wants to produce a wide ranging multipurpose 

flowsheet model, independent of specific product applications. Lastly, solid-based 

flowsheet modeling has been held back due to the lack of software with capabilities for 

handling dynamic changes of distributed parameters (i.e. particle size distributions) 

(Werther, Toebermann, Rosenkranz, & Gruhn, 2000). In this work, gPROMS is used as a 

platform for building a flowsheet model for various production schemes for 

pharmaceutical tablets. gPROMS is an equation-based (Oh & Pantelides, 1996; Winkel, 

Zullo, Verheijen, & Pantelides, 1995) and dynamic software, which is widely accepted in 

a variety of fluid based product industries. The aspect of flowsheet model building which 

is mostly addressed through this dissertation is integration of different model types and 

material property databases. 

2.1.1. Model types 

 

The model library built in order to simulate tablet production scenarios: direct 

compaction, dry granulation and wet granulation include: feeders, mixers, hoppers, roller 

compactors, mill, tablet press and feed frame and wet granulator. This is a collaborative 

effort to combine all the know-how of the ERC-SOPS center into this flowsheet 

simulation.  

Feeders 
 

In the majority of powder handling industries (i.e. pharmaceutical, food, ceramics, 

catalysts), feeding of powder materials into a continuous processing line is performed 

through gravimetric feeders. The main purpose of the unit operation of feeding is the 

supply of raw materials to the preceding unit operation at desired and consistent flowrates 
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in order to match the desired mixture composition and total material throughput. 

Pharmaceutical manufacturing also employs LIW feeders for semi-continuous operations 

such as jet milling and roller compaction. The output feedrate of a gravimetric feeder is 

calculated based on the loss in the weight of the material contained in the feeder over 

time. This mode of operation allows the accurate monitoring of the exact amount of 

material provided to the next unit operation, since any accumulation of powder in the 

hopper will be captured by the change in the total weight. Currently available feeders are 

operated in closed-loop. Even though significant work has been performed in the area of 

feeder design development from an equipment vendor perspective, powder feeding has 

not been studied extensively from a modeling viewpoint. In order to capture the dynamics 

of the process, a model is required for the accurate calculation of the output flowrate and 

the description of the feedrate response in the case of possible feedrate set-point changes. 

Thus, an extensive experimental design was performed in order to collect dynamic data 

of the output flowrate after different magnitudes of step changes under different operating 

conditions. Analysis of the collected data suggests that the closed-loop feeder dynamics 

can be described by a first order delay differential equation. The parameters of this model 

consist of the process gain parameter (k), the time constant (τ), and the time delay factor 

(θ) (Equation 1). The optimum parameter values were obtained through minimization of 

the least-squares error of the observed versus predicted flowrate values. Throughout the 

process of feeding, the material is assumed to retain its original particle size distribution 

and bulk density.  

1
)(






s
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sF
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



         (1) 
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Mixers 
 

Several modeling approaches exist in the literature for powder mixing processes. 

The current modeling approaches can be categorized into Monte-Carlo methods 

(Mizonov, Berthiaux, Marikh, Ponomarev, & Barantzeva, 2004), continuum and 

constitutive models (Muzzio, Sudah, Chester, Kowalski, & Beeckman, 2002), data-driven 

statistical models (Boukouvala, et al., 2010; M. G. Ierapetritou, Boukouvala, & Muzzio, 

2010; Muzzio, Portillo, & Ierapetritou, 2009; Wu, Heilweil, Hussain, & Khan, 2007), 

compartment models (M. G. Ierapetritou, Portillo, & Muzzio, 2006; Portillo, Muzzio, & 

Ierapetritou, 2008), RTD modeling approaches (Y. Gao, M. Ierapetritou, & F. Muzzio, 

2011a; M. Ierapetritou, Gao, & Muzzio, 2011; M. Ierapetritou, Gao, Vanarase, & 

Muzzio, 2011), hybrid-models (M. G. Ierapetritou, Portillo, & Muzzio, 2007; Wassgren, 

Freireich, Li, & Litster, 2011) and discrete element method (DEM) based models 

(Bertrand, Leclaire, & Levecque, 2005; Glasser, Remy, Canty, & Khinast, 2010; Glasser, 

Remy, & Khinast, 2009, 2010; Hassanpour, et al., 2011; Muzzio, Dubey, Sarkar, 

Ierapetritou, & Wassgren, 2011; Sarkar & Wassgren, 2009; Wassgren & Sarkar, 2010).  

The broad portfolio of mixing models showcase the potential of using different models 

for a specific use. For instance, statistical/RTD models could be used for online control 

and dynamic optimization whilst constitutive and hybrid models could be used for design 

and simulation. Hybrid models especially have the potential to incorporate multi-scale 

information from the particle level to the unit-operation level. In this work, an alternative 

hybrid methodology based on population balance modeling is employed. A multi-

dimensional population balance model is incorporated into the flowsheet model library, 

based on the work of the research group of Dr. Ramachandran (Fani Boukouvala, et al., 
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2011a; Poon, et al., 2009; Rohit Ramachandran, et al., 2012a; Rohit Ramachandran & 

Barton, 2010; Rohit Ramachandran & Chaudhury, 2012b; Rohit Ramachandran, 

Immanuel, Stepanek, Litster, & Doyle III, 2009). Specifically, a multidimensional 

population balance model has been developed for blending processes that accounts for 2 

solid components, two external coordinates (axial and transverse directions in the 

blender) and one internal coordinate (size distribution due to segregation). The main 

equation of the PBM is shown below:  

1 2 1 2
1 2 1 2 1 2

1 2 1 2

( , , , , )
( , , , , ) ( , , , , ) ( , , , , )

( , , , , ) ( , , , , )formation depletion

F n z z r t dz dz dr
F n z z r t F n z z r t F n z z r t

t z dt z dt r dt

n z z r t n z z r t

        
               

 

                                                                            

           

 (2) 

In Equation 2, 1z is the spatial coordinate in the axial direction, 2z is the spatial coordinate 

in the radial direction, r is the internal coordinate that depicts particle size and 2n   to 

indicate presence of two components (Active Pharmaceutical Ingredient and excipient). 

Hence 1dz

dt
and 2dz

dt  
represent the axial and radial velocity respectively. More details on 

the development of the PBM can be found in Boukouvala et al. (Fani Boukouvala, et al., 

2011b). 

Roller Compaction 
 

Roller compaction is the process of compacting a blended mixture of powders 

into a thin ribbon between two rotating rolls. Compaction of powders into ribbons aims to 

produce compacts which are subsequently milled to give powder mixtures with improved 
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mechanical and uniformity characteristics (am Ende, et al., 2007; Cunningham, 

Winstead, & Zavaliangos, 2010; Hein, Picker-Freyer, & Langridge, 2008; Soh, et al., 

2008). Roller compaction has been studied in literature and several modeling approaches 

have been proposed, ranging from simpler data-based (Turkoglu, Aydin, Murray, & Sakr, 

1999) to more complex FEM and/or DEM simulations (Cunningham, et al., 2010; Dec, 

Zavaliangos, & Cunningham, 2003; Zinchuk, Mullarney, & Hancock, 2004), that link 

input material properties and process variables to properties of the produced ribbon. An 

interesting review of the most significant modeling attempts of roller compaction is found 

in (Dec, et al., 2003). The first significant effort was a contribution of Johanson et al. in 

the 1960’s which can predict the steady-state ribbon density and thickness of a produced 

ribbon given various processing conditions, inlet powder material properties and design 

aspects.  Even though this model is based on a series of simplistic assumptions, it has 

been verified against experimental data and has been used often in the roller compaction 

literature. More recently, Hsu et al. (Hsu, Reklaitis, & Venkatasubramanian, 2010) 

extended the capabilities of this model to capture the dynamics of the process and it is 

used in this flowsheet.  

Milling 
 

A three-dimensional population balance model is implemented to describe the 

dynamics of the milling process. Unlike the mixing process, the milling process is 

assumed to be homogenous with respect to spatial position (i.e., uniform velocities within 

the process geometry) but heterogeneous with respect to its internal coordinates which in 

this case are particle size, bulk density and API composition.  Similar to Verkoeijen et al., 

(Verkoeijen, Pouw, Meesters, & Scarlett, 2002) a volume-based PBM is described in this 
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study and is characterized by the internal coordinates API volume, excipient volume, and 

gas volume.  This PB model is also developed by the same group lead by Dr. 

Ramachandran and it is solved via a finite volume method, previously developed by 

Immanuel and Doyle III (Immanuel & Doyle Iii, 2005) for multi-dimensional systems, in 

combination with a backward differential formula (BDF) implicit integrator (in-built in 

gPROMS).  

Hoppers 
 

Hoppers are unit operations which are a supplementary component of processes 

such as tablet presses and roller compactors and aim to collect powder from an upper 

opening and feed material to the actual process from the bottom orifice. Modeling the 

behavior of coarse (< 500 μm) particulate mixtures in handling systems such as conical 

hoppers has been studied extensively in the literature (S. B. Savage, 1965; Stuart B. 

Savage & Sayed, 1981; Weir, 2004). From the 1920’s it was realized that the outflow of 

powder materials from steep-walled hoppers is independent of the height of the contained 

material, while it is a function of the outlet diameter and the mean particle diameter 

(Nedderman, Tüzün, Savage, & Houlsby, 1982).  This conclusion was derived from the 

analysis of the stress, velocity and density fields of the material that is flowing through 

the system.  

Conical shaped hoppers have been also studied experimentally, where a number 

of problems have been observed depending mainly on the properties of the processed 

material and the geometry design of the process. Typical examples include arching or 

bridging- which prevents material from flowing out of the hopper, and ratholing- which 

limits the capacity of the hopper due to a formation of a stagnant layer of material around 



22 

 

 

 

the walls of the hopper. In order to overcome these problems, modifications to the 

geometry of the hopper may be performed (i.e. change of slope or shape), addition of 

inserts such as inverted cones and finally, addition of flow enhancing material such as 

glidants (i.e. Silicon Dioxide or Magnesium Stearate) can be added to the mixture. Above 

all, the properties of the processed raw materials (i.e. cohesiveness, friction angle, 

flowability) can suggest the optimal design in order to attain the operation of the hopper 

in the ‘mass flow’ regime, where all of the material inside the hopper is moving towards 

the exit, where it is discharged with a relatively constant flowrate. The output flow rate 

from a hopper in tableting or capsule filling is sometimes controlled through the presence 

of a feeding screw (system equivalent to gravimetric feeders), or through the feedframe in 

the tablet press. It is important, however, to make sure that the hopper is carefully 

designed (height, angle and outlet diameter) such that mass flow is achieved and 

stagnation of material in “dead” zones is avoided. 

For the materials processed in this study, experimental studies will be employed 

to determine conditions that achieve ‘mass flow’ independently from the geometry design 

of the conical hopper, due to the concentration of MgSt present in the mixture (Faqih, 

Alexander, Muzzio, & Tomassone, 2007).  A mass balance on the hopper system will be 

of the following form (Equation 3): 

in out

dm
F F

dt
 

                          (3)
 

where m is the mass holdup inside the hopper. Assuming constant bulk density 

throughout the hopper the height of the material inside the hopper can be correlated to the 

mass holdup through (Equation 4): 
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( )m H A H   
                         (4) 

where H is the height, A is the area of the hopper and ρ is the bulk density. The area of 

the conical hopper is not constant and it is assumed to be a linear function of the height. 

In addition, since it is assumed that all the material entering the hopper flows out at a 

constant flowrate, it is safe to assume that the material is no further mixed and according 

to its mean residence time all properties of the blend will propagate at the output of the 

hopper accordingly. This is a very simple model implementation of the hopper, aiming to 

capture the residence time of the material under mass-flow and no mixing assumptions. 

As pointed out in the conclusions, there are many opportunities to improve this process 

step by incorporating a reduced order DEM model coupled with material property 

correlations, such as flowability and flow index. 

Tablet compaction and feed frames 
 

Finally, the next process of an integrated tablet production line is tablet 

compaction, during which small portions of blended powders are compressed into a tablet 

of desired size and shape between two punches. The most common type of tablet press 

equipment used in the pharmaceutical industry are rotary tablet presses which have been 

studied both experimentally and computationally (Hein, et al., 2008; Jain, 1999; Michaut, 

et al., 2010; Sinka, Cunningham, & Zavaliangos, 2003). Initially, the material, which has 

usually passed through a hopper, enters the “feed frame” which is a small chamber with 

rotating blades that fill the dies of the tablet press. The powder in the dies is then 

compressed. Significant work has been performed in order to model the effect of process 

parameters of the feed frame on powder properties and die filling (Mendez, Muzzio, & 

Velazquez, 2010).  
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The models available in literature can be categorized between two extremes: 

purely empirical (Akande, Rubinstein, & Ford, 1997; Gonnissen, et al., 2008; Haware, 

Tho, & Bauer-Brandl, 2009; Michaut, et al., 2010; Seitz & Flessland, 1965) and high 

fidelity FEM or DEM simulation models. Since the aim of this work is to generate a 

computationally tractable flowsheet model that can be used for optimization purposes and 

aims to capture the dynamics of the process, expensive models in the form of FEM or 

DEM simulations should be avoided or introduced as reduced order models based on the 

actual expensive simulation.  In this work, the tablet press is represented as a simple 

empirical model, based on the popular Heckel equation (Jain, 1999; Seitz & Flessland, 

1965). According to Heckel analysis, the compression force of the powder can be linked 

to the porosity of the produced tablets, which is a very significant product quality 

attribute (Equation 5).  

 

1
ln kP A

                       (5) 

where ε represents the porosity of a tablet, P is the compaction force, while k and A are 

empirical parameters which should be calculated through experimentation for the 

material which is being processed. The porosity of a tablet is highly correlated to the 

dissolution and bioavailability of a tablet. The compression pressure has been 

experimentally observed to follow a first order linear response given a set-point change, 

and this is introduced into the model in order to capture the dynamics of the process. In 

order to account for the residence time of the powder in the feed frame, a response 

surface model is used, which correlates the die disc speed (x1) and the feed frame speed 

(x2) to the average residence time of the powder in the feedframe section (Equation 6). 
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The model parameters are fitted based on the experimental data obtained in (Mendez, et 

al., 2010) for the processed formulation (Equation 6) through minimization of the least-

squares error between measured and predicted values. The investigated ranges of 

variables x1 and x2 are [29-57] and [24-72] rpm respectively, but they are normalized so 

that they belong in the same range ([0-1]). 

 

211222110 timeresidence Average xxbxbxbb       (6) 

It is important to account for the time necessary for powder that is processed 

upstream to propagate to the tablet press and thus affect properties of out coming tablets. 

However, evidence from the same experimental study shows that a fraction of the 

material processed through the feed frame is further mixed according to their residence 

time, which might affect their flow properties and RSD. In this work, however, it is 

assumed that no further mixing of the material is performed prior to die filling. It is 

realized that this is a simple model, which disregards potentially significant information 

such as the effects of particle size distribution and powder bulk density on the properties 

of the produced tablets. However, the online prediction of porosity is a significant result, 

which can be used to evaluate the quality of the produced tablets online. 

Wet granulation 
 

 Granulation is a size enlargement process which aids in obtaining a product of 

more uniform particle size distribution and also helps in optimizing the bioavailability of 

the drug product. The process of granulation is still not very well understood and is 

carried out with large recycle ratios, thus making the operation extremely inefficient. 

Many approaches have been into existence which can be used to model such processes 
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(Salman, Hounslow, & Jonathan, 2007),  but population balance modeling is very 

suitable for describing granulation because of its discrete nature and the ability to depict 

particulate processes. Although agglomeration of fine particles is most prominent, the 

final outcome of granulation is a combined effect of the various sub processes like 

aggregation, breakage, growth and nucleation, acting together. Apart from the particle 

size, binder content and particle porosity are also very important attributes that affect 

granulation, so lumping these parameters would not be advisable. The three-dimensional 

population balance equation for granulation can be written as: 

               (7)

 

where ( , , , )F s l g t  represents the population density function and s,l,g are the internal 

coordinates namely solid, liquid and gas volumes respectively. The partial derivative 

terms with respect to the internal coordinates represent the various growth terms that 

indicate an overall increase or decrease in the particle size but there is no change in the 

number of particles associated with it. The partial derivative with respect to the solid 

volume denotes layering, which shows the growth due to fines getting deposited on the 

bigger particles, the partial derivative with respect to the liquid volume expresses the 

drying or rewetting of particles due to the addition or evaporation of liquid and the partial 

derivative with respect to the gas volume represents consolidation, which is a negative 

growth term and is associated with the compaction of granules while gas escapes out of 

it. The right hand side of equation 7 represent the source terms, comprising of 

aggregation, breakage and nucleation. Aggregation and breakage are accompanied by a 
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change in the number of particles. It is important to represent all of the underlying 

mechanisms in the population balance equation. 

Drying 
 

 The next processing step after wet granulation is drying of the formed granules. 

Drying of granulated particles using fluidized beds is a common and important step in the 

pharmaceutical industry. Compared with other drying methods, fluidized bed drying 

provides more efficient air–solids contact and, hence, faster drying rate because better 

mixing and uniformity can be achieved through the process of fluidization. In this work, a 

simple mathematical model is developed to consider the change of particle size 

distribution (PSD) during drying after granulation.  

         Specifically, the evaporation rates of water in all periods of drying can be 

determined by (Burgschweiger and Tsotsas, 2002): 

     (8)
 

where m
evap

 represents the evaporation rate of liquid of each particle; ρR represents 

density of the hot air used for drying; H
s
denotes the mass transfer coefficient; L is the 

length of the dryer; X
s
 and X

e
 stand for the saturated moisture content of drying 

medium on the particle surface and the equilibrium moisture content of the particle 

respectively. Specifically, H
s
 can be expressed based on the diffusion coefficient 

(Radford, 1997). 

H
s
= 2D / 10-6d

p( )
      (9)

 

 



28 

 

 

 

      (10)

 

where D represents the diffusion coefficient of water; d
p
 and T

p
denote respectively the 

diameter and temperature of the particle. Finally,  X
s
 is dependent on the saturation 

pressure of water in the pre-warming and constant-rate period. The relationship between 

saturation moisture content and saturation pressure is  (Wang et al., 2007): 

      (11)

 

 

      (12)
 

where p
sat

 and p
oper

 are the saturate pressure of water and operating pressure of the 

fluidized bed dryer. Here, it should be noted that it is assumed that the particle size 

distribution of the granules will only change in the pre-warming and constant-rate 

periods. 

         Finally, the parameters used within the current drying model are based on literature 

and empirical knowledge about the operation of drying. Specifically, the temperature of 

the particles is assumed to be 348 K; the temperature for the drying air is set to 393 K and 

therefore its corresponding density is equal to 0.898 kg/s based on ideal gas law. Finally, 

the operating pressure ( p
oper

) and equilibrium moisture content ( X
e
) are set at 1 atm and 

0.05 kg/kg respectively. 
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Dissolution and disintegration 
 

 Tablet dissolution and disintegration is a key quality attribute of the end 

product, which is, in most cases, correlated to bioavailability of the API. Therefore the 

integration of a dissolution component as the final unit  of the dynamic flowsheet 

simulation is valuable since there are several physical tablet and powder properties 

determined upstream, which affect the drug release mechanism. These properties are 

tablet porosity and composition, as well as the particle size distribution of the powder 

after milling.   Through this integration, the factors which affect the final tablet 

dissolution time will be determined in order to be able to identify and propose strategies 

for mitigating upstream disturbances before they reach the final product.  

         In most low-dosage drug formulations, the set of excipients added form the bulk of 

the tablet and control the dissolution mechanism of the entire tablet. On the other hand, 

interactions between the different components as well as the granule arrangement and 

homogeneity of the final tablet structure have been found as critical towards the final 

dissolution time. Dissolution has been studied both experimentally as well as from a 

modeling perspective in literature, leading to a variety of models ranging from empirical 

(Costa and Lobo, 2001) , to even two-dimensional or three-dimensional distributed 

rigorous models  (Borgquist et al., 2006; Kimber et al., 2011; Muschert et al., 2009), 

which allow the investigation of effects such as tablet homogeneity and granule structure 

to the final release profile.   

  The model which is implemented is this work is based on the work of  Kimber et 

al. (2011) and it is a first-principle distributed model in which drug dissolution is 
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captured by Fick's second Law equations (Equations 13-14). 

      (13) 

where 

       (14)
 

where ( s
i
) is the source term which is non equal to zero when the presence the API 

component in location (x) is true. Otherwise, the source term is equal to zero. The term (

C
i
) represents the dissolved concentration of each component i, while (D

i
) is the 

diffusion coefficient of each component which is related to the solid fraction of the 

component as well as its mean particle size based on the following equations: 

                  (15)
 

and  

             (16)

 

 The first equation ensures that the diffusivity is lower when location x is purely 

filled with solid component, and as it is filled with liquid (diffuses) the value of 

diffusivity will reach the bulk diffusivity of the component(D
i0

 ). The bulk diffusivity is 

a function of the temperature (T), viscosity (μ) mean particle size of the granule ( d
50

) and 

k which is Boltzmans' constant. This equation holds due to the fact that diffusion is the 
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result of thermal fluctuations in the suspension and is often referred to as Brownian 

motion  (Crowe, 2006).  

 Once each unit operation model is developed and validated individually, the 

formation of the aforementioned integrated system is achieved through the creation of a 

flowsheet model with the desired configuration. The major challenges involved in the 

integration of unit operation modules of different types and complexity is the 

identification of the necessary interconnecting variables which should be included in the 

process streams which connect process i to process i+1. This information should include 

the necessary properties which characterize the powder stream as well as the required 

input data for each downstream process i+1 which depends upon the output of process i. 

In certain cases, certain properties remain unaffected during one processing step, but 

should be passed on through the process streams since they are considered as inputs to a 

further downstream process. Once again, it should be noted at this point that even though 

this procedure may seem trivial for a fluid/gas based flowsheet, it is a great challenge in 

solids handling where there is still a lot of uncertainty in terms of the properties which 

characterize the powder material and the models which characterize each process are of 

different fidelity and detail. In fact, the authors realize that there are still gaps in the 

integration of specific unit operation steps, due to the non-existence of a critical 

parameter that is a result of process i in process model i+1. These missing links are 

described in the following paragraphs and will be the focus of future work, either though 

the incorporation of empirical correlations or significant model modifications to account 

for additional effects. 
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2.2. Integration of models for Direct Compaction 

 

Tablet production through direct compaction is the simplest method involving the 

least number of processing steps of the raw powders to actual pharmaceutical tablets. The 

system has as many feeders as the number of components in the pharmaceutical blend, 

which feed the material into the mixer where it is blended. Subsequently, the blended 

material is sent to a hopper from which it is fed to the tablet press through the feed frame. 

This type of processing is used when the raw materials are easy to handle and there are 

no problems in terms of segregation, cohesiveness and flowability, which are determined 

through a series of material property characterization tests prior to production.  

Through the development of the model library for the unit operations described in 

the previous section, a dynamic flowsheet model for this case study can be simply built 

by dragging-and-dropping into a flowsheet and setting material property, design and 

model parameter values for a specific case study. Here, the production of Acetaminophen 

tablets is simulated, where the formulation consists of: 3% Acetaminophen (API), 96% 

Avicel (Excipient) and 1% MgSt (lubricant). This formulation is chosen for enabling 

comparison of computational results to experimental data as well as the use of empirical 

correlations from data, which have been collected within the ERC-SOPS for this specific 

formulation. Lubrication is a very important aspect of tablet manufacturing since the 

presence and concentration of lubricants can improve flowability and reduce powder 

adherence to metal walls (Wang, Wen, & Desai, 2010). However, an increased 

concentration of MgSt can lead to tablets with reduced hardness and lower dissolution 

rate. In fact it has been shown that the number of revolutions that a lubricated blend 

undergoes inside the mixer is correlated to the compaction force of a tablet (Kushner & 
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Moore, 2010). Thus, it is critical to know how much MgSt reaches the tablet press and its 

history in terms of the mixer residence time at the point it reaches the tablet press.  

For any desired formulation, the simulation requires information about the total 

flowrate or throughput, and the composition of the blend, as well as the particle size 

distribution and bulk density of each raw powder material. Through this information, the 

flowsheet can calculate the necessary rotation rates of each of the screw feeders in order 

to supply the system with the desired powder blend at steady state. In addition, due to the 

experimentally observed variability of the processed powder flowrates, noise is added to 

the dynamic feeder outlet flowrates by drawing values from a normal distribution with a 

standard deviation of 0.05 every 2 seconds of simulation time. This feature can aid in 

identifying whether this added variability can be handled by the developed models, and 

how much is filtered at the output stream of the process. However, this noise is 

completely filtered out by the mixing model, and has no effect to further downstream 

properties and it is realized that for a detailed analysis of the effects of noise, a stochastic 

approach should be followed. Due to the assumption of mass flow through the hopper, no 

mixing of the material is assumed. Thus, properties of the material such as concentration 

and Relative Standard Deviation are passed through the unit operation with a time delay 

equal to the mean residence time of the material in the hopper. This assumption of a plug-

flow reactor behavior is one of the aspects of this current flowsheet which need further 

investigation in the future, since the effects of dispersion are not taken into account.  . 

The mean residence time can be calculated approximately equal to the hopper volume 

divided by the volumetric powder flowrate.  Similarly, the same assumptions of no 

mixing and average residence time delayed properties are incorporated for the feed frame 
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operation. Finally, the final tablet porosity is controlled solely by the process parameter 

of compaction force, but the average composition of materials in the tablets is 

approximated based on the powder material properties exiting the feed frame. Figure 1 is 

a more detailed representation of the system containing all the variables, parameters and 

design aspects which should be defined in each process and are passed from one process 

to the next.  

The first assessment of the flowsheet simulation is performed through the 

verification of the overall mass balances for each unit operation as well as for the overall 

system, such that all mass that enters from the feeders exits in the form of tablets. A 

further assumption for the uniformity of the average weight of tablets is necessary for this 

calculation. However, this type of dynamic simulation can be very useful in identifying 

how possible perturbations during the operation of a process can affect the output of the 

same process or further processes downstream. For example, a typical perturbation which 

will be inevitably encountered during continuous direct compaction is feeder refilling. In 

fact, strategies and equipment for feeder hopper refilling is a major concern in the powder 

processing industry (Engisch & Muzzio, 2010), since it is important to balance between 

flowrate fluctuation, frequency of refilling and equipment cost. Through the developed 

flowsheet model, however, it is possible to simulate any operating sequence in order to 

study its effects on final and intermediate product properties. Figure 2 represents the 

overshoot in the API flowrate which is caused when the hopper is refilled with material at 

t=1000sec. 
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Figure 1. Detailed representation of flowsheet model for direct compaction 

 

The downstream effects of this fluctuation can be seen in Figure 3. Specifically, in Figure 

3 the API concentration down to the tabletting stage can be predicted. Thus, based on this 
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integrated dynamic model, the imposed perturbation causes the API concentration to 

increase from the desired value of 0.03 to 0.034 within a small time window.  

In addition, due to the knowledge of the residence times of the material in the 

hopper and feed frame, it is possible to approximate which fraction of the produced 

tablets to discard, if the predicted API concentration is not within the acceptable bounds 

(CQA). 

  

Figure 2. Feedrate of API during simulation of refilling 
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Figure 3. API concentration throughout the different units during refilling 

 

Another advantage of flowsheet simulation is the simulation of different process 

operation scenarios including recycle dynamics. Thus for this specific case study the 

effect of adding a second mixing tank in the process through which a fraction of the 

mixer outlet will be re- processed and sent to the mixer inlet is assessed and it shows 

promising filtering abilities of feedrate fluctuations. However, this increases the cost of 

the system significantly and can cause the system response to be slow in response to 

online control actions.  

2.3. Integration of models for Dry Granulation 

 
The second case study is a more complex processing line, which pre compresses 

the powder blends into thin ribbons which are then milled and then finally compressed 

into tablets. This production scenario is selected when powder problems such as 

segregation or aggregation due to cohesion are observed, or in cases where the raw 

materials are highly sensitive to water, or also in cases where high API content causes the 

uncompressed powder to be poorly flowable. Due to the particle deformation 

mechanisms, compression of powders into ribbons, which are then milled to form 

particles in the 50-400 micron range, produces powders with better flow abilities and 

more consistent API composition. Following the same approach as in the previous 

section, the necessary processes are linked to build a flowsheet model, using the model 

types described earlier (Figure 4). Through this case study, the aim is not only to show 

the capabilities of the resulting model, but also the problems and gaps of this integration, 

due to the limits of the available models.  
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In this case study, the initial stages of feeding and mixing are identical to direct 

compaction, referring to feeding and mixing. The available model for this process can 

predict ribbon output properties as a function of process and design variables , but does 

not consider the composition of ribbons and effects of RSD. Thus, this information enters 

the process, but cannot be communicated to further downstream processes. A simple 

assumption of the average ribbon composition (API, excipient and lubricant) to be equal 

to the composition of the material entering the rolls is used, however, further 

investigation is necessary for the validity of this assumption. Despite the fact that the 

integration of these two models is missing certain significant correlations, it can still 

capture some interesting effects. For example, the integration can successfully capture the 

effect of perturbations in the mixture composition to the average particle size of the 

milled particles. In fact, during the same schedule for API feeder refilling as in the first 

case study, as more API enters the milling process, a small increase in the average 

particle size is observed (Figure 5). The result of Figure 5, which leads to the conclusion 

that a small fraction of the milled particles has a higher particle size after a feeder refill is 

contradictory to what would be expected in reality, due to the smaller particle size of the 

API particles. However, a possible perturbation in the concentration of the blend, also 

affects the density of the produced ribbons, which is the main explanation of this result. 

This result requires both further experimental validation and verifies the need for a more 

sophisticated roller compaction model, which will be discussed in the future work 

section. It is very important to be able to accurately predict the average particle size of 

milled particles, since this will play a very important role in tablet properties, such as 

hardness and dissolution.  
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Figure 4. Detailed description of flowsheet model for dry granulation 
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Figure 5.  Effect of refilling in average particle size of milling output stream 

 

2.4. Integration of models for Wet Granulation 
 

 The integrated system consists of two feeders (API and excipient) that feed raw 

material into a blender where the components are mixed due to both convective and 

diffusive forces. The mixture of API and excipient is then continuously transported into a 

granulator whereby through the addition of liquid binder, the particles are transformed 

into larger granules. Next, drying of particles is necessary for the decrease of the moisture 

content which may have detrimental effects in compaction and in the final tablet 

properties. The dry granules are then passed through a mill in order to achieve the desired 

particle size distribution and finally, the milled granules enter the hopper which feeds 

material to the feed frame and the tablet press for the production of tablets at a desired 

production rate. At the final stage, a dissolution component is included which provides 
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the characteristic dissolution rate in real time based on the properties of the produced 

tablets. The integrated design is shown in detail in Figure 6. 

 Specifically, particle size distribution (PSD), bulk density and mass flowrate are 

tracked throughout the process across units up to the tablet compaction step. The API 

concentration which is initially defined in the mixer and then is further affected through 

granulation, drying and milling, is also a critical property which affects the average 

concentration of the drug present in the tablets. Moisture content and porosity are 

introduced after granulation and drying and are critical to downstream processes such as 

milling, tablet compaction and dissolution. The outlet stream of the tablet press should be 

expressed in terms of tablets instead of powder, where additional parameters such as 

tablet hardness, porosity, density and production rate are included. Finally, the critical 

inputs to the dissolution are the PSD of the powder which reaches the tablet press, tablet 

porosity and the API concentration, which are all properties defined in upstream 

processes. In terms of the aforementioned missing links, the most significant deficiencies 

of the current flowsheet model are the ignorance of the effect of tablet hardness on the 

disintegration and dissolution mechanism and the effect of moisture content of the 

powder after drying in all downstream processes and dissolution. Even though it has been 

experimentally observed that the above quality attributes affect the quality of the final 

product, the simplified models which are used for the hopper, tablet press and dissolution 

cannot explain or predict the effects caused the additional variability introduced by these 

inputs.  
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Figure 6: Schematic of the integrated process design for continuous wet granulation 

 The simulation requires the input of the desired total throughput and mixture 

composition in order to calculate the required operating conditions of the two feeders 

which will introduce the correct ratio of material to the entire system. In addition, 

material properties of each individual component such as particle size distribution 

parameters and bulk density are necessary input parameters of the simulation. If more 

than two materials are introduced  into the system (i.e. lubricant), then this can be 

achieved by the addition of more feeders into the flowsheet which is possible in the 

current setting. However, the prediction of the behavior of multiple materials through the 

multidimensional population balance models is an aspect that still requires further 

validation, thus, a two component mixture is described in this case study. Specifically, a 
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mixture of 30% Acetaminophen and 70% Avicel at a total throughput of 80 kg/h is 

simulated, producing tablets at a rate of 800000 tablets/h. 

 Initially, it is important to verify the overall performance of the flowsheet 

through validating that the mass balances are satisfied throughout the process and the 

residence times of the powder material inside each process are correctly captured.  

 

Figure 7: (a) API concentration of process streams, (b) bulk density of process streams 

and (c)mass flowrate of material, during dynamic simulation  
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Figure 8: (a)PSD evolution of granules during wet granulation, (b) PSD evolution of 

particles during milling 

 

Figure 9: (a)PSD evolution of granules  during wet granulation, (b) PSD evolution of 

particles during milling, only of sizes 1,4 and 5 



45 

 

 

 

 In Figure 7 the dynamic profiles of the mass flowrate, the API concentration 

and the bulk density of the processed powder stream are shown at different locations 

along the process line. It can be observed that the process reaches steady-state at 

approximately 1100 seconds, where all of the powder streams have obtained constant 

characteristics. The mean residence times of the granulator and the mill are set to 100 

seconds and 200 seconds respectively. In addition, the results verify the assumption of 

zero loss of mass, since all of the incoming material is equal to the material which 

reaches the tablet press. Moreover, the results validate the approach which was used to 

integrate the processes of granulation and milling, since not only the conservation of 

mass, but also that of the desired concentration of API is achieved. Finally, the model can 

capture the expected change in the bulk density of the material as it is transformed from 

dry particles to dried wet granulated agglomerates. Specifically, the bulk density of the 

material has increased from the point of the blender to the granulator, which can be 

explained due to the transformation of the particle size of the material. In fact, 

experimental studies have shown that there are many process parameters, such as wetting 

conditions and mean residence time,  as well as raw material properties, such as particle 

size composition, which affect the final bulk density of the granulated material. Thus, by 

choosing the optimal operating conditions, a material with high bulk density can be 

produced, which is easier to store and transport. In (Gluba, Obraniak, & Gawot-

Mlynarczyk, 2004)  it was shown that droplet diameter, mean particle size of raw 

materials and saturation of the granulated bed were the most critical towards the final 

bulk density of silica flour. In addition, it is certain that the drying process also affects the 

bulk density of the material significantly, since once the liquid binder is removed, the 
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particles may retain their granules or break into smaller particles. One of the limitations 

of this work, however, is the inability to decouple the effects of granulation and drying, 

since they are modeled as one unit operation. Based on the results it can also be observed 

that the process of milling does not affect the bulk density of the material significantly in 

this case, under the specific operating conditions. This fact implies that the configured 

milling process does not significantly change this material attribute, however, this does 

not mean that the particle size distribution of the material has remained unchanged, and 

this will be shown through Figures 8 and 9. 

 Figure 8 is a representation of the evolution of the frequency of different grades 

of particle sizes during wet granulation and milling. The size ranges that are most 

common during granulation are of size 2 and 3, which correspond to the particle sizes 

ranges shown in Table 2. In fact, based on the used parameter values, the population of 

size 3 particles is increasing at a constant rate and does not reach steady-state even after 

3000 seconds. The remaining finer and larger sizes (1,4 and 5) have negligible 

concentrations. On the contrary, after the process of milling, the mean particle size has 

decreased in value, which is reflected by the significant increase in the population of the 

smallest size particles relative to the total amount of particles (size 1 and 2). There exist a 

certain amount of size 3 particles, which can be explained by the continuous birth in the 

previous process step, but their population reaches a steady-state at 2000 seconds, due to 

their simultaneous depletion and the fraction of this grade of material within the entire 

population of particles is smaller. The largest grades of particles (size 4 and 5)are 

depleted at a much faster rate. In Figure 9, only the groups of 1,4 and 5 are included in 

order to distinguish their behavior better, since their frequency ranges are much lower 
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compared to groups 2 and 3. During granulation, smaller size particles are depleted and 

larger size particles are formed. On the contrary, during milling coarse particles are not 

formed and the finest size particles increase initially, but later are depleted. The above 

results are encouraging since the desired particle size should lie in the middle size groups 

after milling, in order to avoid agglomerates but also fines which can cause flowability 

issues in the hoppers. 

Table 2.Grid size bounds for Particle Size Distribution 

 

 In a continuous operation of a wet granulation line, the refilling of the materials in 

the feeder hoppers is inevitable and it has been shown that this procedure introduces 

significant perturbations in the system in the form of a feedrate pulse of the material that 

is being refilled (Engisch et al., 2010). Experimentally, this pulse has been shown to 

propagate downstream and therefore efficient control strategies or design modifications 

(i.e. recycling) are necessary to mitigate this effect. The objective is to correct the 

perturbation in the composition of the powder stream before it reaches the final step of 

compaction and it significantly affects the composition and dissolution of the tablets. 

Thus, it is important to investigate whether the current flowsheet model can capture the 
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propagation of effects caused by a pulse in the feedrate of the API, since this is the first 

step in the identification of the optimal strategies which could be used to filter this 

perturbation further.   

 

Figure 10: (a)pulse of API material during API feeder refilling, (b)effect of feeder 

refilling on API concentration in downstream process units 

         The simulated pulse of the active ingredient material is shown in Figure 10a, and it 

is of a relatively large magnitude in order to better observe the effects of the perturbation 

downstream. However, the magnitude of this pulse is realistic, since experimental studies 

have verified that the size of the overshoot is highly dependent on the fill level of the 
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gravimetric feeder hopper. According to the model results, the perturbation at 2500 

seconds, affects the bulk density of the powder blend exiting the mixer, but this effect is 

mitigated further downstream during granulation and milling. Similarly, even if mixing 

process has not filtered out the API flowrate pulse completely, the effects are further 

filtered out during granulation and milling. In other words, it is not probable to get 

significant effects on macroscopic properties of granulated materials after such a short 

time perturbation. This result is very encouraging for the continuous simulated design, 

however, it needs further experimental validation. Finally, in Figure 10c, the effects of 

the performed perturbation on microscopic properties, such as particle density are shown 

to be clearer and more significant.  Specifically, after the API refilling perturbation, the 

larger size particles (size 3) decrease, while the smaller grade of material (size 2) increase 

in population. This effect suggests a shift in the mean particle size of the milled particles 

towards smaller sizes.  

         The performance of each unit operation is controlled by a set of critical operating 

conditions which will affect the properties of the outlet powder stream and thus affect the 

operation of further downstream processes and the final product properties. Therefore, it 

is important that the developed flowsheet model can capture the effects of modifications 

in certain key operating conditions, based on experimentally observed results. If this is 

validated, then the flowsheet model can be further used for the identification of optimal 

control strategies of the integrated granulation line. As an example, the most important 

in-process parameter  which has been studied here is the liquid binder addition rate 

during granulation.   
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Figure 11: (a)Step change in granulation binder rate addition, (b) effect of binder rate step 

change on granule bulk density, (c) effect of binder rate step change on PSD of granules 

 

         According to (Gluba, et al., 2004) experimental studies have shown that the 

moisture content of particles, which is dependent on the rate at which the liquid binder is 

added in the process is very critical towards the properties of the final granules. In 

another study that was performed using a batch wet granulation process (A.B. Yu, 

Standish, & Lu, 1995) it was observed that the agglomerate density increased with 

moisture content, up to the point where it reached a maximum and then the effect was 

inverted. In Figure 11, it is observed that the simulation results agree with experimental 
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findings in the sense that an increase in the binder addition rate causes an increase in the 

bulk density of the produced material. Since this is a continuous operation, where 

granules are simultaneously removed from the process it is expected that this effect will 

not have a maximum, but rather reach a new steady-state. In terms of the PSD of the 

granules, an increase in the binder rate modifies the slope of the birth of larger size 

agglomerates, such that they are produced at a higher rate. This result shows that the 

developed granulation model accurately captures the expected favoring of agglomerate 

formation, when the amount of liquid binder is larger.  

         The properties of the powder stream reaching the tablet press as well as the 

properties of the produced tablets at each time interval, highly affect the disintegration 

and dissolution of each of the produced tablets. In order to quantify the performance of 

dissolution through a single metric the ratio 
t
10

t
90

 is introduced which corresponds to the 

ratio of the time needed for the dissolution of 10% of the API over the time needed for 

the dissolution of 90% of the API (Figure 12). This metric should lie between strict and 

specific upper and lower bounds based on the specifications of the produced tablet, which 

are the most critical especially in controlled release products. Any tablets which are 

produced which violate these bounds should be discarded, hence it is very valuable for a 

simulator to be able to predict the exact time interval within which a fraction of the 

continuous production should be diverted. In Figure 13, it can be seen that the dissolution 

profile metric of the tablets produced while feeder refilling and after a step change in the 

granulation operating conditions is affected. In the first case, the feeder refilling has 

affected the tablet properties after a significant time interval and is shown to have a wide 

time range effect. In other words the effect of the instantaneous pulse has been delayed 
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and dispersed over time, at the point it has reached the tablets. The slight increase of the 

t
10

t
90

 index signifies that the API has been released faster, which can be explained by the 

slight decrease in the mean particle size of the powder which reaches the tablet press. On 

the other hand, after the step change in the binder amount, and due to the slight increase 

in the mean particle size of the granules, a slight decrease in the dissolution metric is 

observed. Even though the magnitude of the effects is not large, it is a matter of how 

strict the product quality specifications are in order to decide whether the produced 

tablets are Out of Specitications (OOS).  

 

Figure 12: Dissolution profile of API and excipient for steady-state operation  
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Figure 13: 
d

10

d
90

 for normal steady-state operation, during feeder refilling and after step 

change in binder addition rate. 

 

 In conclusion, this chapter is focused on the description of the types of models 

which are available for modeling powder processes and their implementation and 

integration to form continuous tablet manufacturing scenarios. However, due to the lack 

of first-principle knowledge and process understanding, certain unit operations are 

described by very simple models, for which the connectivity with upstream and 

downstream processes is not very realistic. There are certain cases, where a unit 

operation model does not capture all of the effects the process has on the properties of 

the powder stream. In other cases, the inputs of one process model does not even include 
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the entire set of outputs of a previous process, which leads to the incorporation of the 

specific variable as a delayed response, which remains unchanged through a process, 

however, the powder stream which enters the process will exit the process after a 

specific residence time.  
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Chapter 3 

3. Model improvement through the integration of reduced-order 

models 
 

3.1. Response Surface Techniques 

 

Response surface methods refer to a set of different basis functions with a number of 

parameters, which are tuned based on experimental or computational data, in order to 

explain the correlation between a set of inputs to a set of outputs. Response surfaces are 

used in many cases where the a first-principle model is not available, or when a model of 

a process is in the form of a proprietary non-access code, or finally in cases where the 

process model is in fact known but very expensive to evaluate. In the last case, it is 

common to employ response surface techniques, and develop a faster approximation 

model of the expensive one, based on a set of designed samples.  Based on the final goal 

of response surface building, the required data-base might have different forms. If the 

purpose is to accurately represent the underlying process over the entire range of the 

input space, then carefully designed experiments which must sufficiently fill the whole 

experimental region must be performed, based on which the response surface is built. If, 

however, the final goal is the identification of a single optimal value, then local response 

surface modeling techniques have been developed since it is realized that the accuracy of 

the response surface must be good only in regions which are likely to contain an 

optimum. This minimizes sampling to a smaller set of regions of the entire investigated 

space and subsequently minimizes the required sampling overall. In chapter 4, it is shown 

that response surface techniques may be used to approximate the Design Space of a 
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process, so sampling in this case is targeted towards regions where the probability of the 

existence of a boundary is high. However, the challenge in these cases is relocated 

towards defining the search criteria in order to identify regions in which the probability of 

optimality or boundary existence is high. This challenge is even greater when the process 

is stochastic (presence of noise) and there are multiple process constraints which affect 

the overall feasible region.    

 There are many advantages and disadvantages to response surface techniques. 

Response surfaces are not predictive outside the range of the data which was used to 

build the model, or in other words, they are not good extrapolators. This should be taken 

into account whenever a DoE is designed, or whenever such a model is used for a 

prediction. In addition, the model parameters usually have no physical meaning, while 

sometimes they can provide information about the variable, linear, quadratic or 

interaction term which they are multiplied by. However, if there is no knowledge at all 

about the true underlying physics, one may build a very good model by simply adding 

more terms and parameters. This however, would lead to over fitting the data, which 

often captures the noise of the measurements and not the true correlations and trends. In 

most cases, even if a first-principle model is not available, empirical knowledge is 

available for a process, thus the predictions and conclusions for a reduced-order model 

can be compared to such knowledge in order to test its validity.  

 On the other hand, response surface methods are very fast to implement, build and 

use for multiple purposes, such as local prediction, optimization and control. In many 

fields of industry, an engineer cannot wait for the time it is required to develop a first-

principle model, according to the scientific knowledge that is available at the time, thus 
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turning to these models is definitely better than simply empirical approaches.   If the 

samples are collected based on a good design, the experiments are performed 

meticulously, and the appropriate basis function is chosen such that  it does not overfit 

the data, then the developed model can be a very powerful tool.  

 There exist multiple types of response surfaces, such as Response Surface 

Methods (quadratic polynomials), Kriging, Neural Networks, High Dimensional Model 

Representations, Radial Basis Functions and many more, which are used in the literature 

for multiple purposes and applications. Most of these methods are available through 

commercial packages and anyone can simply enter the input- output data and get the 

model parameters, predictive ability and statistics of the model. The performance of 

different techniques has been compared for different datasets in the past by us for both 

steady-state and dynamic data (Boukouvala, et al., 2010; F. Boukouvala, et al., 2011), 

however, the final choice is user-dependent and should be made based on the type of data 

(noisy or deterministic) and the expected performance of the true input-output 

correlation. In this dissertation, only the two most common and useful to us types of 

functions are described in detail, Response Surface Methods and Kriging.  

 In the pharmaceutical industry, based on insofar experience, as soon as QbD 

initiatives started to be implemented, there was a very high interest in just using such 

models to improve processes. This was done to such an extent, that today the meaning of 

response surface has lost its value. It is no where advised to employ response surface 

models, when there is a chance that a first-principle model can be developed. However, 

as a complementary tool to the first-principle models, reduced-order models can enhance 

the understanding, capture more missing correlations and speed-up the design.  This, 
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however, should not hinder the drive for obtaining more knowledge about the true 

mechanisms and physics that govern a specific phenomenon or process. What was also 

found, is that often in powder based processes, the only way to explain the behavior of 

particles is through detailed particle simulation software, which lead to first-principle 

models which are highly computationally expensive. These models are impressive and 

can integrate multiscale information, from the particle level to bulk powder properties. 

However, these models could never be used for any purpose which would require 

multiple function calls, such as optimization and control. It is then when again one can 

turn to response surfaces. 

 When building a direct input-output response surface mapping to data, it is 

commonly assumed that the set of inputs are independent to each other, as well as the set 

of outputs. This is usually the case when the data comes from a designed experiment, 

after the performance of screening studies and analysis of variance, in order to identify 

the most important variables which explain the variability in a process output. However, 

in cases of historical data, or high dimensional data which are not based on a designed 

experiment, there is a high probability that the data is correlated and thus latent variable 

model techniques are more appropriate in order to identify not only input-output 

correlations, but also the structure and true dimensionality of the data. These approaches 

are not classified under the Response Surface techniques, even though they share some 

common characteristics due to their data-based nature- and will be discussed later in the 

chapter.  
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Sampling methods for physical and computational experiments 

 Distinctions and similarities can be found between data which comes from a 

physical experiment and data that comes from a computer simulation. Physical data are 

always subject to experimental error (human error, systematic error, random error), which 

cause the same exact experiment to lead to slightly different results when performed 

multiple times. It is this noise that response surfaces should filter, if they are built with 

the right number of parameters. Replication of experiments is also desired, in order to 

approximate the true level of noise for a specific measurement. Computer simulations 

may also be noisy, due to numerical instabilities and/or rounding-off errors of computer 

calculations, however, in most cases this numerical noise is systematic and the computer 

simulation will give the same output when it is run for the same exact input conditions. In 

this case, replication would be completely unnecessary since it would not add any new 

information to the problem and add computational cost. There are however cases, where 

a simulation can be made stochastic, by allowing several input conditions to take values 

from their known distributions each time a call is made to the simulation. This is an 

approach which is followed for the optimization of flowsheets, since it is desired to take 

the effect of the variability of powder materials. Overall, the amount of 'smoothing-out' 

ability of a response surface should be related to the level of noise present in the data. If it 

is desired to completely interpolate the measurements coming from a computer 

simulation, then the response surface should be interpolating.  

 The designing of the experimental plan based on which the samples from a 

process model or actual process will be collected, is another important step in response 

surface building. Throughout this work, whenever a response surface model is built, it is 
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assumed that screening techniques have been already performed in order to identify the 

important variables for a process output. Once the dimensionality of the problem has 

been identified, the user has multiple options for designing an experiment which should 

have good space-filling properties, uniform spread throughout the investigated space, 

good spanning properties, poisedness, all of which are properties of DoEs used in 

different literatures (statistics, engineering, optimization)(Conn, Scheinberg, & Vicente, 

2009).  In physical experimentation, full- factorial designs are often used which require 

the sampling of every possible combination of every design variable value.  Due to the 

curse of dimensionality, full-factorial designs are not used in cases of very high 

dimensional problems, which lead to the design of fractional factorial designs and many 

more which have different optimality criteria (Forrester, Sobester, & Keane, 2008).  

 Another common option for designing an experiment is Latin Hypercube 

Sampling (LHS) , which aims to span a space as well as possible by maximizing the sum 

of differences between each chosen sample, given a maximum number of samples. These 

designs are used more often in computer simulations and can further reduce the sampling 

cost when compared to a factorial approach. The objective of LHS is to generate points 

whose projections on all of the variable axes are uniform. Compared to factorial designs, 

LHS designs do not usually generate points at vertices of the experimental region. LHS 

are random in nature, meaning that based on the objective used, there are multiple 

combinations of points which satisfy the criterion, thus a different set of points is 

generated every time a LHS algorithm is called.  

 The choice of the design should always be subject to the purpose of the collected 

samples and the type of response surface used to fit to the data. In other words, if a 
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quadratic model is fit to the data, multiple level design points are necessary, increasing 

computational cost. Latin Hypercube samples are usually chosen as initial designs for a 

multidimensional problem due to their good spanning abilities, in order to get a first 

cheap approximation of a true function. However, they are usually followed by further 

sampling in regions of interest since the initial model approximation cannot be trusted.   

Response Surface Methodology 

 Response surface methodology (RSM) was first introduced by Box and Wilson in 

1951 and is a tool that has been widely employed for the optimization of noisy processes.  

There are three basic steps to the RSM algorithm: 1) specification of a sampling set 

within the investigated region, accomplished with design of experiment tools (DoE), 2) 

construction of a model through optimization of the model parameters based on the 

experimental data , 3) model optimization in order to determine the location at which 

process improvement is maximized. The basis function chosen for a response surface 

may be as simple as linear, with or without interaction terms or it may have quadratic and 

even cubic terms, depending on the nature of the output surface. Theoretically, the type 

of basis function may be of any functional form and it is the decision of the user which 

should be based on the available knowledge about the process. This decision greatly 

affects the DoE which should be chosen. If one can afford to run a multiple-level DoE, 

then  out of all the regression coefficients for all the candidate basis functions, only those 

terms that are found to be statistically significant using F-tests for lack-of-fit and 

prediction error sum of squares are retained. A general second-order response surface 

model with interactions has the following form (Equation 17): 

2

0 j j ij i j jj j

j i j j

y x x x x    


                                                                           (17)  
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where xj  are input variables, β0 βj, βij, and βjj are model coefficients, and y represents the 

response, or predicted output behavior.  

 RSM models are used very frequently for pharmaceutical process design and 

product design, when a first-principle model is not available and a DoE data set is 

performed to collect the necessary information. Even in optimization, quadratic models 

have been used often as approximations and for calculation of derivatives in the vicinity 

of a local optimum, due to the fact that the behavior of a model is quadratic within this 

region (Taylor expansion) (E. Davis & Ierapetritou, 2008).  However in many cases it has 

been observed that quadratic response surfaces fail to capture the true response of a 

function, especially in cases where the underlying correlation is non-smooth and non-

convex within the region of interest(Donald R. Jones, Schonlau, & Welch, 1998). In 

addition, since the number of sampling points needed to construct reliable response 

surfaces can increase exponentially as the dimensions of x increase, response surfaces 

have been used mainly for low-dimensional problems.  

Kriging 

 Kriging was first developed as an inverse distance weighting method to describe 

the spatial distribution of mineral deposits- specifically it was designed to interpolate 

random fields and it belongs in the linear least-squares estimation category of methods 

(Cressie, 1993).The introduction of kriging to the optimization literature by Sacks (REF) 

and the use of the model's ability to identify regions which have been poorly sampled 

towards global optimization are the main reasons which have made it so compelling to 

various other literatures and mostly optimization. In addition to this, the interpolating 

abilities of kriging with a low number of parameters, has made kriging very popular to a 
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specific range of problems which depend on deterministic computer data.  The concept of 

kriging is  similar to many other regression techniques, and it is that the value of any new 

unsampled point is a weighted function of the values or nearby samples, where the 

weights are dependent on the relative spatial location between sampled points. Having 

this in mind, the main difference of kriging, to an ordinary least squares regression, is that 

the error between all the already existing samples is modeled explicitly via an assumed 

functional form (i.e. exponential, linear, cubic etc). The assumption in kriging, also 

referred to as Gaussian process modeling, is that an output is given as a distribution with 

a mean equal to the kriging prediction and standard deviation equal to the kriging error 

(Forrester, Sóbester, & Keane, 2008). The kriging variance  provides information about 

regions where subsequent sampling is required, and that is the key component of kriging 

that has been exploited in optimization. The popularity of kriging has made it somehow a 

benchmark in surrogate-based optimization and reduced-order modeling, and this is one 

of the reasons why it has been used in this work in various applications. However, as it 

will be seen in the following sections, the choice of the most appropriate method for 

metamodeling is a user-defined task and it is highly dependent on the application.  

  In order to build a kriging model, a number of sampling points must be collected 

(n) based on the chosen experimental design procedure.  The sample data forms the input 

matrix  T)()()( ,..,, n21
xxxX  , where each )(i

x vector has m elements, equal to the 

number of inputs. The observed responses are denoted as  Tyyy )()()( ,..,, n21
y  . The 

case of one output for building a kriging model will be described, since if there are 

multiple independent outputs, one kriging surface is built for each one. The observed 
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responses can be considered as random variables (Equation 18 ), correlated with each 

other based on Equation 19: 
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The covariance matrix of the n measurements is equal to: 
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where σ
2
 represents the variance of  Y in equation (Equation18).  In kriging, the 

correlation of Y is modeled using the basis function of Equation 19 assuming that the true 

function which is  modeled behaves in a smooth and continuous way. The parameters of 

kriging l  and lp are fit to capture how the distance between two points )()( j

l

i

l xx   

affects the change in )()( )()( ji YY xx  . This form of basis function has the desired 

characteristic that when the distance between two points is almost zero, their correlation 

is close to 1 (Equation 21), since their values should be very similar. On the other hand, 

their correlation is close to zero when their distance increases. Parameter  p captures how 

smooth this change is happening while parameter θ captures how fast this change is 

happening. For example, a value of p=2 produces a smooth change in the basis function 

as the distance increases (resembling a quadratic response), while further reducing p 

leads to a steeper initial decrease in correlation as the distance increases. Parameter θ 

captures the extent of a sample point's influence with distance. A very low value of θ 
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signifies similar values of correlation across all points. Parameters θ and can be different 

for every dimension of x, meaning that if a specific input parameter is not that significant, 

it will have a lower value of θ. For this reason the absolute value of parameter θ, can be 

used as a measure of how important the input variable is.  


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 Modeling of both parameters p and θ, in all dimensions increases the number of 

parameters in the model, and complicates the optimization problem of parameter 

estimation based on the sampled data. In general, it is assumed that p is constant 

throughout the entire space, but θ may vary with dimension.  

 The next question is how do one estimates the parameters of kriging, and this can 

be done via two methods: maximum likelihood estimation, or variogram model fitting(E. 

Davis & Ierapetritou, 2007, 2008, 2009). The former aims to identify θ and p in order to 

maximize the likelihood of y which is the objective function of kriging, while the latter 

uses the variogram plot which is y versus the distance )()( ji xx  , based on which various 

forms of the basis function are fitted through least-squares error minimization. In this 

work, both approaches have been used to estimate kriging parameters and found that 

MLE is more reliable, however it is necessary to ensure the optimization problem is 

solved efficiently. The cost of the computation is due to the matrix algebra which is 

necessary for computing the likelihood, which requires matrix inversions. 

 Assuming the errors between Y (Equation 18) are independently randomly 

distributed and after certain amount of matrix algebra, the optimum ̂ and 2̂  which 

maximize the maximum likelihood function of y given the test samples X are: 
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where Ψ  is a function of parameters θ and p.  

In order to predict a new point using an already existing kriging model, it is now required 

to maximize the likelihood of the sample data and the prediction, assuming the 

correlation parameters are sufficient to describe the behavior of the new point. In order to 

solve this problem, the vector of correlations between all sampled points and the new 

point is formed as:  
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Thus it is required to maximize the likelihood of the augmented matrix 
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which leads to the final prediction of )ˆ(ˆ)(ˆ 1)(  1yΨψx  newy . Matrix Ψ is in 

general positive-definite and symmetric, however, it can become close to singular if 

multiple points are collected which are clustered in a region. In the developed algorithms, 

it is avoided by two ways, firstly not allowing a new sample to be used in the database for 

kriging if it is closer than a tolerance distance to any of the already existing points, and 

secondly- in cases of noisy and/or stochastic data for which replication is performed- by 

allowing kriging to be non-interpolating which requires a modification to the Ψ matrix.  

 Multiple versions of Kriging algorithm have been used throughout the years of 

this research, based on work of Davis et al. (E. Davis & Ierapetritou, 2007) and the 
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DACE toolbox (Lophaven, Nielsen, & Sondergaard, 2008) which are modified to solve 

the parameter estimation optimization problem using the TOMLAB LGO toolbox which 

was found to be very reliable. One final modification made to kriging DACE toolbox is 

its ability to be a regressor instead of a pure interpolator, by the addition of a constant w 

to the diagonal of matrix Ψ. This is also found in the kriging literature as the so called 

nugget effect (Cressie, 1993) which causes the correlation of two points which are very 

close to each other to be 1+w instead of 1. The magnitude of w should reflect the amount 

of noise in the data, since it controls the smoothing ability of kriging. In addition, based 

on recent work of  (Yin, Ng, & Ng, 2011) the nugget effect parameter can also be a 

function of x, in cases where the level of noise present in the data is higher or lower in 

different parts of the input space. One can employ  this concept to search for optima, 

since in areas where the uncertainty is higher, the sampling may be denser to get a more 

reliable prediction of the response.  

 

 Response surface techniques are used in many parts of this dissertation, each time 

for a different purpose. Firstly, in many cases one is provided with experimental data 

from designed experiments for the characterization of unit operations such as continuous 

mixing and feeding. A comparison of the performance of each method for the prediction 

an output for which no existing first-principle correlation exists is performed in 

(Boukouvala, et al., 2010). 

 As an example, a set of experimental data is used to correlate the impeller rotation 

rate and total powder throughput of a continuous mixer to the Relative Standard 

Deviation (RSD) of the outlet mixture API concentration using an interpolating kriging 
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model and a Response Surface model (Figure 14 a and b). It is obvious that the 

performance of the RSM model for the specific experimental data set is better, since the 

interpolating nature of kriging which requires the model to pass through the exact 

experimental noisy data reveals a behavior that cannot be explained in reality. The 

performance of the blender is observed to be best at mid range rotation rates, due to the 

balance of the effects of radial mixing and axial mixing within the blender. Thus RSM is 

due to its smoothing ability captures the true behavior of the process.  

.  

 

 

 

(a) 

(b) 
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Figure 14. (a) RSM prediction, (b) Kriging prediction of RSD in the blender output as a 

function of Impeller Rotation Rate and Flow Rate. 

 

Response surface modeling and specifically Kriging is also used in this work for 

developing an optimization strategy for computationally expensive simulations, of 

multiple dimensions and unknown complexity (Chapter 5).  

 3.2. Latent Variable Models 
 

 As mentioned in the introduction, a different set of modeling techniques, those 

who correlate latent variable spaces are extremely important when the set of inputs and 

outputs to be correlated are high dimensional and possibly not independent. Specifically, 

Principal Component Analysis (PCA) and Partial Least Squares (PLS) modeling are also 

employed in various parts of this work(S. Wold, Martens, & Wold, 1983; Svante Wold, 

Sjöström, & Eriksson, 2001, 2002). In the case where a large set of input variables is 

present, PCA is used to decompose the data into a new coordinate set (scores) and 

loadings, which correspond to the weights of each of the original variables to the new 

defined reduced space. PCA has been used in various disciplines for model reduction 

including random variables, image processing, signal analysis, structural analysis, data 

compression, process identification and control (Aquino, 2007; Christofides, 2001; 

Cizmas, et al., 2003; Gay & Ray, 1995; Liang, et al., 2002; My-Ha, et al., 2007; Tabib & 

Joshi, 2008; A. Varshney & Armaou, 2008; Amit Varshney, Pitchaiah, & Armaou, 2009). 

In cases of dynamic data, PCA has also been named Proper Orthogonal Decomposition 

(POD), however, the theory behind these two methods is identical.  In the case where  

output data is also present and is required to be correlated to input data, PLS is used to 
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correlate  a reduced latent space of X, to a reduced latent space of Y and build a 

correlation between the two. In other words such methods are used to identify 

correlations and structures of the original data.  

There are two main cases where it was found that the use of LMV methods extremely 

useful, namely in the integration of high dimensional Discrete Element Method data 

within flowsheet simulations and in the incorporation of material property databases in 

within flowsheet simulations. These two concepts are described in the next sections.  

3.2.1. Reduced-order DEM data 

 

In this section the application of a model reduction scheme for expensive distributed 

variable data from DEM simulations using a PCA methodology is described. The 

application of reduced-order models (ROMs) for the flow of fluids in complex 

geometries has been studied extensively in literature, where ROMs have been used to 

identify hidden underlying flow patterns and to capture the dynamics of expensive 

distributed simulations for control purposes (Anttonen, King, & Beran, 2003; Berkooz, 

Holmes, & Lumley, 1993). Specifically, in dynamic ROMs the weights of the 

decomposition vectors have a temporal component and dynamic adaptive sampling 

techniques are developed in order to collect samples from spatial locations which 

contribute to the model  as the process evolves (Briesen & Marquardt, 2000; Galbally, 

Fidkowski, Willcox, & Ghattas, 2010; Amit Varshney, et al., 2009). Another interesting 

approach for model reduction of dynamic multiscale systems is based on the 

decomposition of different time-scale dynamics, in order to identify variables which are 

involved in slow processes and can be transformed into simpler algebraic pseudo steady-
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state equations (Baldea & Daoutidis, 2006; Contou-Carrere & Daoutidis, 2008; 

Sotiropoulos, Contou-Carrere, Daoutidis, & Kaznessis, 2008).  

The integration of POD methods with surrogate response surface building has been 

discussed in (Romijn, et al., 2008), where the computational cost can be further reduced 

through the use of fast metamodels in replacement of complex non-linear equation 

systems. In addition, this coupling- which is also employed in the current work- allows 

the decomposition of mappings between input-output and input-state space, which is a 

desirable aspect in optimization and flowsheet simulation. When a different correlation 

between input to output streams is produced, it is possible to develop a ROM which has 

the necessary inputs and outputs which will allow it’s integration with upstream and 

downstream units in a flowsheet simulation. In addition, process optimization can be 

performed based on objective function which involves only the output as a function of the 

input parameters, which reduces the complexity of the optimization problem. Based on 

the identified optimum input conditions, the optimal distributed state-space can be 

reconstructed. Recent studies tested the applicability of such a model as part of an 

ASPEN flowsheet simulation, which was shown to be as accurate as the full CFD 

simulation at steady-state (Y. Lang, Zitney, & Biegler, 2011). The data snapshot PCA 

approach involves three spaces, according to the methodology developed in (Y.-d. Lang, 

et al., 2009): (i) input variable space U, (ii) output variable space Y and (iii) the state 

variable space X. The interconnection of these three spaces is shown in Figure 16.  

 



72 

 

 

 

 

 

As it is shown in Figure 15, the process has n inputs and m outputs, while s state variables 

are monitored within the process in a total of p discretized elements. In order to develop 

the PCA decomposition model it is necessary to build mappings between the input and 

output space, as well as between the input and distributed state space. For this purpose 

initially a set of m simulations are performed in order to collect the necessary data based 

on a design of computer experiments. Subsequently, the input-output mapping may be 

performed based on any chosen surrogate-based modeling method (linear or non-linear) 

directly. Since the state variable space is multidimensional, PCA decomposition is 

performed to decompose the X matrices and identify the necessary PCs, loadings and 

scores. Finally a lower dimensional input to scores mapping is sufficient for the 

prediction of the distribution of the state variables inside the process at any new given 

input conditions. This data-based decomposition methodology is very convenient since it 

is independent of the process geometry, it is inexpensive and the associated 

computational cost does not increase with variable space dimensionality.  

Process geometry 

Input Space 
nN U  Output Space 

mNY   

State Space sjX Np

j ,..,1   
 

element q  q=1,..,p 

Figure 15 . Snapshot PCA variable spaces of distributed process 
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Discrete Element Methods (DEM) are becoming increasingly popular for modeling 

micro- and macroscopic properties of particulate/granular materials processes (Zhu, 

Zhou, Yang, & Yu, 2007). In order to understand the macroscopic properties and 

dynamics of processed granular materials, the key lies in understanding the particle-

particle interactions as well as the particle-surrounding walls interactions at the 

microscopic level. This is achieved by DEM simulations which allow the tracking of 

individual particle motion and deformation due to elastic, plastic and frictional forces 

between particles and walls. Newton’s laws of motion form the basic underlying system 

of equations and each particle has two types of motion: translational and rotational. 

During a simulation each particle may interact with other particles or surrounding walls 

and obstacles (i.e. blades) and exchange momentum and energy. Each particle movement 

is governed mainly by the forces and torques originating not only by the particles or walls 

with which there is immediate contact, but also by particles and walls that are in a 

neighboring region through non-contact effects such as Van der Waals and electrostatic 

forces. Due to the high complexity of this system, it is clear that an analytical solution 

approach is impossible. The numerical approach followed in DEM simulation software is 

to compute the distance of particles at every time step and identify all possible 

interactions and forces acting on each particle in order to calculate its movement and 

rotation. For this to accurately capture the dynamics of particulate systems, however, the 

time step must be very small, in the order of 10
-6

sec. In addition, a DEM simulation must 

include a large number of particles to resemble reality. For all the aforementioned 

reasons, the computational cost of a single DEM run is very high, ranging from weeks to 

even months according to the computational capabilities and thus it becomes clear that 
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reduced order models can play a very beneficial role in the field of particulate process 

modeling.   

The discrete nature of DEM simulations is the key aspect which differentiates 

them from continuum type simulation schemes, such as Computational Fluid Dynamic 

(CFD) or Finite Element Method (FEM) simulations, used to model fluid or gas 

processes. In addition, a discrete element approach is by nature more random since a 

contact detection engine step must be implemented prior to the Newtonian physics 

solution step which detects the number of nearby particles or walls for each discrete 

entity. Several attempts have been made to transition from this discrete nature to 

continuum through averaging techniques in the literature (A. B. Yu, Zhu, Zhou, & Yang, 

2008; Zhu & Yu, 2004; Zhu, Yu, & Wu, 2006), in order to correlate macroscopic 

properties to DEM simulation results. Another interesting approach was developed in 

(Glosmann, 2010), where the authors develop a reduced hybrid-DEM model using 

Karhunen-Loeve transformation and clustering of particles for discrete systems driven 

solely by potential forces, disregarding contact forces.  However, these techniques often 

require certain assumptions, i.e. the ignorance of the rotational motion of particles, which 

lead to inaccurate results and failure to capture the true dynamics of the system.  

Due to the data-driven nature of the methodology introduced in this work, it 

becomes apparent that the quality of the data extracted from the DEM simulation is very 

critical to the model accuracy. This observation leads to the notion that the discretization 

of the process geometry for data extraction is a critical step towards ROM robustness. 

Due to the discrete nature of DEM simulation one has to face the problem of sufficient 

sampling size in order to decide upon the correct discretization density. The optimal 
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discretization scheme should be dense enough to capture the spatial distribution of the 

variables inside the process, but coarse enough to ensure that the average number of 

particles inside each element is large enough to provide reliable average information. 

Consequently, the right discretization must be chosen based on the actual total number of 

elements inside the process geometry, the relative size of the element compared to the 

size of the process and finally based on the total variance of the specific variable. For 

example, if the velocity profile is constant throughout the process, then most particles 

will move with this velocity, subsequently less samples would be sufficient to provide a 

reliable measurement. In order to handle all of the aforementioned challenges, the 

Discrete Element- Reduced-Order Modeling approach is proposed and described in the 

following section in order to maximize ROM accuracy using the minimum number of 

required simulations.  

The application of a PCA based ROM follows the steps outlined in Figure 16. 

Initially a computer design of experiments must be identified in order to collect the 

necessary data for the ROM construction. This DoE can be a factorial design, fractional 

factorial, Latin Hypercube or a different design based on the number of inputs, number of 

desired levels of investigation and the nature of the process.  



76 

 

 

 

 

Figure 16. DE-ROM proposed steps 

 

According to the desired use of the reduced order model, the three sets of 

variables must be specified: input space (inlet variables, design parameters, initial 

conditions), state space (distributed variables of interest within the process geometry) and 

output space (outlet variables). Subsequently, based on the chosen design of experiments, 

a number of simulations are performed in order to collect the output space values as well 

as snapshots of the state space values at different combinations of inputs. At this point, 

the data needs to be analyzed and a suitable discretization scheme must be chosen in 

order to ensure that a sufficient number of samples (particles) are located in the majority 

of the bins to be analyzed. However, it is realized that even if a satisfactory discretization 

is chosen, the presence of elements (or bins) which will contain very few number of 

particles is inevitable. Thus, prior to the implementation of the PCA decomposition, the 

extracted data is processed such that bins are categorized into three groups according to 
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the number of elements they contain. Group 1 is the subset of bins which contain a very 

small number of particles [0, UBg1] for which all measurements are discarded and all 

values of the state variables are set equal to zero. A general rule for the calculation of the 

maximum number of particles for this category (UBg1) is the one tenth of the average 

number of particles inside each bin which is equal to the total number of particles divided 

by the total number of bins ( p
Parttot

). This group represents the subset of bins assumed 

to be empty of particles, which is a common observation in solids handling processes 

based on the fill-level of the process. The bins which contain a mid-range number of 

particles [UBg1+1, UBg2] belong in Group 2 in which it is assumed that the total number 

of solid particles is not sufficient for extracting average information and the value 

considered to be missing. The range of the number of particles which are classified in this 

category is decided based on the total average variance of the state variable, the 

variability of measurements (standard deviation) as well as the average number of 

particles in each element. Descriptive statistics of the data such as histograms are very 

helpful in identifying the optimal cut-off value (UBg2), below which the sample does not 

follow a normal distribution and thus the size of the sample is insufficient. As a general 

guideline, in this work UBg2~[20-30] particles, but this value may decrease or increase 

according to the variability in the extracted data. Subsequently, the value of the average 

state variable for this set of bins is imputed using the performance of the PCA 

decomposition with missing data. Finally, bins which contain a sufficient number of 

particles (>UBg2 ) are classified in Group 3 and do not need any type of preprocessing. In 

the case where a fast first-principle relation is available for correlation of certain inputs to 

outputs, this is used; otherwise a direct input-output mapping is performed based on a 
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chosen surrogate method (i.e. Response Surface Method, Kriging, Neural Networks). 

Finally, PCA decomposition is performed to compress the high dimensional snapshot 

data and the identified scores are correlated to the inputs based, again, on a surrogate 

method.  

Application to a continuous powder blender case study 

The goal of this case study is to understand the significance of different operating and 

design variables on the continuous mixing performance using DEM simulations. 

Specifically, the purpose of the developed Reduced Order Model, may be direct use 

within a flowsheet simulation or incorporation to the already existing Population Balance 

Model in order to enhance its predictive range and develop a multiscale model which 

incorporates design aspects, is fast to simulate and predicts output bulk powder 

properties. Specifically, it is realized that the parameters of the PBM model, are the 

velocity fluxes within each discretization element of the model, which govern the 

movement of particles within the blender and affect mixing variability and output stream 

composition.  These parameters, however, are extracted from a DEM simulation for a 

specific rotation rate and design and are used as constant in the current flowsheet 

simulation. An integration with a ROM model, which can predict the velocity flux 

distribution as a function of operating conditions and design parameters on the fly, may 

improve the performance of the PBM model. Thus the goal is to implement the described 

methodology, choose the set of inputs of interest, collect the samples from DEM, build 

the ROM and integrate it within the flowsheet simulation.  

For this case study DEM data from a periodic section of a blender is used, based on 

previous work of our group (Y. Gao, M. G. Ierapetritou, & F. J. Muzzio, 2011b)  which 



79 

 

 

 

has proven that the operation of a continuous mixer can be represented as a sequence of 

multiple batch-like periodic sections. The periodic section approach is used to minimize 

the computations of the DEM simulations, and this allows us to investigate the effect of 

more input variables.  

The influence of six predictive variables (fill level, blade speed, width, and angle, 

shaft angle, and weir height) is characterized by simulating a set of periodic section-

mixing samples based on a Latin hypercube sampling design (Table 3). In this case study, 

the total flowrate is not considered as a controlled variable since this would have an 

effect on the fill-level, making it impossible to distinguish the effects of each input. As 

opposed to modifying the total flowrate of particles, the fill-level is controlled based on 

the total number of simulated particles. Exploiting the advantages of DEM simulations, 

the effects of design aspects such as blade angle and width, weir design and shaft angle 

can be investigated. Specifically shaft angle  has been investigated in a previous study 

experimentally (Portillo, Ierapetritou, & Muzzio, 2008) and was found to be critical for 

the mixing performance.  

 

Table 3. Operation and geometry design variables- Input variable space 

Design parameters Low bound High bound 

Blade speed (RPM) (x1) 40 250 

Blade angle (deg) (x2) 10 40 

Blade width (mm) (x3) 10 40 

Weir height ratio w/d (-) 

(x4) 

0% 75% 

Fill level (-) (x5) 25% 75% 

Shaft angle (deg) (x6) -30 (upward shaft) 30 (downward shaft) 

. 
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Figure 17. Periodic section geometry and planes in z dimension for which the state 

variables are plotted. 

 

Up to now the input space (Table 3) and the state space (velocity fluxes in the x, y 

and z dimension) have been described, however, the output space has not been defined 

yet.  Due to the use of the periodic section model, it is harder to select a set of outputs 

which will be correlated to the inputs which will be of any use to a flowsheet simulation. 

This is not a problem however, since the main purpose is to integrated it to the already 

existing PBM which is integrated within the flowsheet. The selected output is a set of 

indices developed by Gao et al. (Gao, et al., 2011b), which aim to connect the 

performance of a periodic section to a full blender: (1) the variance decay rate of the 

batch-like mixing in the cross-sectional directions (kb), and (2) the mean particle velocity 

in the axial direction (vx), which characterize mixing performance and are considered as 

outputs in this case study. The ratio of these two indices is called variance decay ratio 

based on which the exponential decay of the RSD along the axis of the mixer predicted. 

More details about this can be found in (Boukouvala, Muzzio, & Ierapetritou, 2012)  

however, the input-output mapping will not be discussed here further, since the main 
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attention is given to the improvement of the PBM model, which is only dependent on the 

input-state space mapping.  

 A total of 64 simulations are designed and performed based on a Latin Hypercube 

design, following the rule of approximately 10n samples for an n-dimensional space. The 

four additional samples are simulated in order to create a validation set of points of the 

produced ROM model. The periodic section is discretized into 4 x 8 x 8 number of bins  

in order to have a reasonable average number (~ 40) of particles inside each bin. Any 

element with particles fewer than 5 is categorized in Group 1 and its data is set to zero. 

Bins with a number of particles between 5 and 20 are considered as missing information 

(Group 2) and the rest of the data belong in Group 3 and is used without any 

modification. The monitored distributed parameter spaces are the velocity of the particles 

in the x,y,z dimension and for each of the state variables, a data matrix is formed (

256 64x

iX R
  where i=1,..,3), where each column represents one simulation and each row 

corresponds to one location (element) of the periodic section. Subsequently, PCA is 

performed in order to identify the optimal loadings and scores which represent the full 

data matrix in the reduced space. In table 4, the necessary number of principal 

components is given- which is decided upon based on the cross-validation error. Figure 

18 represents the comparison of the predicted DE-ROM profiles with the actual DEM 

profiles for the sample with specifications: 

1 2 3 4 5 6( , , , , , ) (177.16, 60.18, 10.47, 30.82, 39.45, -18.25)x x x x x x x
  

which is left out from the data-base.  The average error reported in Table 4, is the average 

leave-one-out cross-validation error out of the 64 different combinations of samples.  

 



82 

 

 

 

 

 

 

Table 4. Model prediction characteristics 

Variable 
Total # of 

PC’s 

Variance 

explained(%) 

Variance explained in 

raw data (%) 

Average error (out 

out 256 bins) (%) 

Ux (m/s) 12 81 70 24 

Uy (m/s) 7 89 86 13 

Uz (m/s) 8 83 77 16 
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Figure 18. Comparison of predicted (green) to actual (red) velocity fluxes for the periodic 

section blender and their Root Mean Squared Error (blue). 

 
 The final step to the methodology is the integration of the model within the 

gPROMS flowsheet model. For this purpose, the PCA parameters of each of the three 

velocity fields need to be stored into a database in the flowsheet library, from which the 

necessary calculations of any new velocity flux distribution may be reconstructed. 

However, the kriging model which is built in order to correlate the set of inputs to the 

scores of each of the fields is implemented in MATLAB. Thus, the go:MATLAB 

    predicted velocity 

    DEM actual velocity 
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interface of gPROMS and MATLAB is necessary in order for the model, given any new 

design or set of operating conditions, to be able to call MATLAB, obtain the predicted 

scores for each of the velocity fluxes, and then using the PCA block within gPROMS 

reconstruct the velocity fields within the 256 bins and send them to the PBM model in 

order to use them as the new parameters of the model (Figure 19).  

 

 
Figure 19. Integration of the DEM-ROM model within a gPROMS direct compaction 

process simulation 

 

3.2.2.  Material property integration 

 

As a second example to the application of multivariate latent space models within a 

flowsheet simulation, the work which is described deals with the incorporation of a 

material property database into the flowsheet simulation. Surprisingly, this exercise is 

very similar to the work performed for the integration of reduced order DEM models. 
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This work has been performed in collaboration with the Powder Characterization project 

of the ERC-SOPS, where the aim is to identify the significant material property attributes  

which characterizes a set of powders. During the past years, the project team has worked 

on assessing already existing powder characterization techniques, but also developing 

new techniques which are now being used in industry. All of this knowledge, however, 

has not been put into any use within the current flowsheet simulation, due to the fact that 

the first-principles which correlate all of these properties to powder behavior and process 

operation are not known. In other words, there is no clear way of how to incorporate the 

effects of the variability of powder processes within operation. As it can be observed 

from chapter 2, solely particle size information and bulk density are used within the 

developed population balance models.  

In addition, it is realized that powder blends are usually simulated within a given 

flowsheet, and mixture rules for powders are also not yet developed. However, a recent 

study which aims to develop a methodology for the acceleration of product development 

can be employed to solve both challenges. The proposed Weighted Scores PLS 

methodology (García-Muñoz & Polizzi, 2012; Polizzi & García-Muñoz, 2011) can solve 

the three following problems towards the final goal. Based on a set of data of material 

properties for a set of raw powder materials and a set of collected data for specific blends 

of these materials, the method can: (a) predict properties of untested blends of materials 

within the database, (b) predict properties of blends of materials which are not 

incorporated within the initial database, if they have similar properties to the already 

existing materials, (c) predict in-process properties of blends, as long as they have been 

measured for the designed blends as well.  
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Even though this project has yet to be completed, the main concepts will be 

described here. In addition, the main algorithmic components for the integration of the 

WSPLS method within the flowsheet simulation has been completed and tested on a 

database provided by Dr. Salvador Garcia-Munoz, thus they are ready to be used when 

the designed experiments for the database of materials and blends has been completed. 

The main steps of the WS-PLS method will be described next, along with results 

obtained so far for the specific case study.  

Initially, a set of data must be collected for a number of m material properties and 

selected n raw materials (APIs, Excipients). This forms the X matrix of the problem. The 

method allows for a collection of different set of properties for APIs and Excipients, if 

this is necessary, however, in the current case a common set of properties for the 

characterization of all of the available materials is selected. The properties  and materials 

are included in Table 5.  
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Table 5.Materials included in test database and material properties measured 

Lactose Monohydrate Conditioned Bulk Density 

Compap L APAP Compressibility at 0.5kPa 

Vivapur MCC 102 Compressibility at 15kPa 

Avicel 200 Pressure drop at 1kPa 

Magnesiun Stearate 6kPa UYS 

  6kPa MPS 

  6kPa FFC 

  6kPa Cohesion 

  9kPa UYS 

  9kPa MPS 

  9kPa FFC 

  9kPa Cohesion 

  Flow Index 

  d10 

  d50 

  d90 

  Specific Energy 

  Basic Flowability Energy 

 

Next, PCA is applied on the obtained data, in order to identify the true 

dimensionality of the data set and obtain the scores, which are a reduced set of 

coordinates for the original data set, which are also orthogonal. The next step of the 

method requires the collection of the same set of properties for a selected number of 

designed blends for the raw materials. In order to minimize the required number of 

mixture experiments, but however, obtain valuable information about the blend properties 

of the materials used in this work, a subset of important materials may be chosen, which 

span the scores space well. This subset of materials, explains most of the variability in the 

data, thus would be optimal to use for blend experiments. This subset of materials can be 

chosen based on a mathematical mixed integer optimization problem, provided to us by 

Dr. Salvador Garcia-Munoz. Results for the PCA decomposition of the data set showed 
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that most of the variability can be explained by four PCs (Table 6), and based on this 

reduced model, the selected materials to perform mixture experiments on is shown in 

Table 7. The mixture DOE was designed based on a constrained D-optimal mixture 

design using the MODDE software. The constraints on the design were the following: 

01.00  MgStC and 3.00  APAPC  .  

Table 6.Percentage of variance explained by 4 PC model 

# Principal 

Component 

% Explained 

Variance 

1 53.59 

2 18.33 

3 9.63 

4 5.45 

 

Table 7. Total number of experiments performed for raw materials and blends 

Experiment Lactose 

Monohydrate 

Compap 

L APAP 

Vivapur 

MCC 102 

Avicel 200 Magnesiun 

Stearate 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

6 0 0.3 0.7 0 0 

7 0 0 0.99 0 0.01 

8 0 0 0 0.99 0.01 

9 0 0.3 0 0.69 0.01 

10 0.282 0.15 0.282 0.282 0.005 

 

These constraints were imposed simply because there is no possibility of using 

higher than this amounts of the specific material in any blend. The matrix R is the matrix 
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of formulations which has r rows (number of blend experiments) and n columns (number 

of materials). As soon as the same set of m properties present in the X matrix are 

collected for the blends (Y matrix), then a PLS model is constructed between the 

weighted scores (RT) matrix and Y. At this point, it should be mentioned that there is no 

restriction to only including the same set of properties of X in the Y data set. Once all of 

this information has been collected,  the WS-PLS model is ready to be tested for the 

prediction of new blend properties of the materials present in the dataset. In the current 

setting, the properties in Y are the same as the properties in X, however, in future work a 

careful analysis of prospective downstream properties for which no available process 

model exists and which can be added as new columns to the Y dataset will be 

investigated.   

 The final step of this work, involves the integration of such a model into the 

flowsheet simulation. All of the above analysis (PCA, PLS) is performed in advance 

using available software such as ProMv (Prosensus) or phi (provided by Dr. Salvador 

Garcia Munoz), and the parameters of the PLS model are inputted as text documents 

within the gPROMS model library. This can be thought of as a physical property 

database, from which new blend properties are predicted. There are multiple possible 

uses of such a unit operation, such as the availability of the properties of the raw 

powders, which perhaps will affect the operation of the feeding units. However, after the 

blending stage, where the output stream is a blend with a predicted dynamic composition, 

the WS-PLS model can be used to provide any of the Y properties dynamically as a 

function of time and outlet concentration.  
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 For the incorporation of the WS-PLS model within a flowsheet simulation, two 

additional input-output connection types are created, where the inlet stream reads mixture 

composition (Ri vector) and the outlet stream provides predicted Y properties (Yi vector) 

(Figure 20). This unit operation may be connected to any other process stage to provide 

valuable information (since several of the Y properties may be inputs to specific unit 

operation models) . This implementation is tested on the materials database published in 

(Polizzi & García-Muñoz, 2011)where as it can be seen in Figure 21, the model can 

predict the varying property Yi as a function of time at the outlet of the blender. The 

periodic fluctuations are due to upstream feeder refilling effects, which cause 

perturbations to the concentration of the outlet composition, which in turn affect the 

properties of the blend.  

  

Figure 20. Integration of WS-PLS model within Direct Compaction flowsheet simulation 
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Figure 21. Dynamic prediction of property Y9 at the outlet of the blender after a series of 

feeder refills 
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Chapter 4 

4. Integrated process Design Space 
 

4.1. Design Space of pharmaceutical processes 

 The concept of Design Space (DS) is a key aspect of the pharmaceutical Quality 

by Design (QbD)  initiative and was formally introduced in the International Conference 

on Harmonization (ICH) Q8 guideline for pharmaceutical development ("Q8 

Pharmaceutical Development," 2006). According to the formal definition it is “the 

multidimensional combination and interaction of input variables (e.g., material attributes) 

and process parameters that have been demonstrated to provide assurance of quality. 

Working within the design space is not considered as a change. Movement out of the 

design space is considered to be a change and would normally initiate a regulatory post 

approval change process”. The importance of the Design Space definition lies firstly in 

the “assurance of quality”, which is the key goal of QbD and secondly in the broadening 

from an acceptable operating set point to a collection of tolerable operating regions which 

make up the Design Space. Thus if a process DS is accurately identified, one can have the 

freedom to operate within this entire region without additional necessary regulatory 

approval and simultaneously, have higher confidence about the final product quality. For 

the same reasons, the DS is a critical component of the recent effort of introducing QbD 

in pharmaceutical development, and has attracted a lot of attention in literature.  

 In ICH Q8 two critical aspects of the DS are defined, namely the selection of 

variables and the final presentation of the DS. The first step to identifying a DS is the 

recognition of the critical variables that should be included. The presentation of a DS 

should provide the ranges of these critical variables that result to a product meeting a 
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desired quality, but should not be confused with a simple combination of proven 

acceptable ranges. As a result to this introductory report, two more elaborate guidance 

papers (Garcia, et al., 2008; Lepore & Spavins, 2008) were published from specialized 

teams which aim to provide a more detailed description of the Design Space. 

Specifically, the Design Space Task Team of the International Society for Pharmaceutical 

Engineering (ISPE) outlines the components and steps of a Design Space through the 

Product Quality Lifecycle Implementation initiative (PQLI).  

 In (Lepore & Spavins, 2008)  it is emphasized that the sources for accurately 

defining the Design Space of a process may include the available literature, experience 

and knowledge of the process, first principles, experimental data, empirical models or- 

most often- some combination of all these methods. However, the choice of the tools 

used to characterize the Design Space depends on the availability of these resources. For 

example, when the process is well characterized and the underlying principles are known, 

the Design Space should be obtained by predictive first-principle models. The main 

advantage of the existence of a first- principle model is the ability to simulate the process 

under any given conditions for predicting the outputs of interest. Recently researchers 

aim to develop such models for pharmaceutical processes, and the advantages of 

computer-aided process design and simulation has become an essential tool for 

pharmaceutical process development and optimization of manufacturing (L. Yu, 

2008).On the other hand, if a process is new and its scientific principles are not well 

understood, it can be treated as a black-box process. In the later case, the Design Space 

dynamically evolves, since as additional knowledge and information about a process is 

obtained or as new raw materials, evolving specifications, and new technology become 
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available, the design space of the process is better characterized. In addition, the DS 

should be insensitive to the scale of a process even if this requires the performance of 

additional scale-up experiments.  

 Even though recent discussion has focused on general guidelines (Lepore & 

Spavins, 2008) and the types of variables that a DS should include (L. Yu, 2008), 

relatively little has been put forth in terms of defining methods to construct a Design 

Space of a process. Clearly, there is no unique approach in defining a design space, but 

once the methodology and tools to determine the Design Space are chosen, the Design 

Space has to be presented efficiently, in a way that can be easily interpreted. Figure 22 is 

a very common representation of the Design Space, used to explain graphically its 

relationship to the Knowledge Space and the Normal Operating Ranges. The larger 

Knowledge Space contains all the information about all regions of the process that have 

been investigated. Subsequently, the difference between the Knowledge and Design 

Space can be defined as the region of the Knowledge space that generates unacceptable 

product. If the process can be controlled by a set of manipulated variables, the DS may be 

enlarged when compared to an open-loop DS, where there are no controls in place.  
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Figure 22. Link between Knowledge Space, Design Space and Normal Operating Ranges 

The Design Space is interconnected with the two remaining PQLI key topics: 

criticality and control strategy (B. Davis, Lundsberg, & Cook, 2008; Garcia, et al., 2008; 

Nosal & Schultz, 2008). Criticality refers to the determination of which quality attributes 

and operating conditions of a process are necessary in order to predict a desired output so 

that they will only be included in the Design Space. A risk assessment procedure is 

defined that filters the variables through a series of questions in order to identify their 

effects on safety, quality and efficacy of a process output. As a result of this procedure, 

the variables are classified according to their level of criticality. The necessary set of 

controls for assurance of acceptable process performance and product quality is the final 

PQLI key topic, that is the required Control Strategy. Clearly, the three topics are highly 

connected since it is necessary to first identify the critical variables (Criticality) which 
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define a Design Space and then these critical variables should be manipulated based on 

an efficient Control Strategy in order for a process to remain within the Design Space at 

all times.  

A framework for the development of the Design and Control Space was presented 

in (MacGregor & Bruwer, 2008) where the importance of simultaneously identifying the 

material property, process operating parameter and control space is discussed. The 

significance of raw material properties in the DS characterization is important since these 

are properties which cannot be easily manipulated or controlled- as opposed to operating 

conditions. In addition, the need to take account of control strategies in the DS can be 

illustrated by identifying the- possibly significant- changes in a Design Space if the 

applied control strategy is modified (García-Muñoz, Dolph, & Ward Ii; MacGregor & 

Bruwer, 2008). However, even by implementing a very efficient control strategy, specific 

raw materials cannot meet the acceptable final product specifications. Recently, the work 

of Peterson et al.(Peterson, 2008; Peterson & Lief, 2010) has focused on showing the 

limitations of a simplistic overlapping means approach for mapping a DS which fails to 

answer the question about how much assurance of quality such an approach can provide. 

Specifically a Bayesian approach for the identification of the ICH Q8 Design Space is 

adopted in order to calculate the probability of meeting specifications.  

Several examples of specific experimental applications to define the Design Space 

of pharmaceutical processes can be found in the literature. For example in (Lipsanen, 

Antikainen, Räikkönen, Airaksinen, & Yliruusi, 2007), the operating window for the 

process of a fluidized bed granulation has been identified by assessing the impact of 

critical parameters, such as inlet air humidity, on fluidization behavior and granule size. 
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A similar procedure was followed in (Lebrun, et al., 2008) in order to define the 

confidence zone of chromatographic analytical methods. In (Boukouvala, Muzzio, & 

Ierapetritou) , three different data-based methodologies are used to generate the graphical 

representation of the region in which acceptable performance of unit black-box processes 

can be ensured. The efficiency of these approaches is compared through two 

pharmaceutical case studies: predicting the design space of a continuous powder mixer 

and a loss-in-weight feeder of a continuous tablet manufacturing process. Integration of 

feed- forward control in the design space of a high shear wet granulation process was 

studied by Garcia- Munoz et al. (García-Muñoz, Dolph, & Ward, 2010)where it is shown 

that a DS can be significantly enlarged if a correct control strategy is employed. This 

work signifies the advantage of a successful control sequence, which increases the 

flexibility of a process towards uncertainty and inevitable variations.   

This work aims to propose concepts and algorithms which aim to map a feasible 

region of any process, given the input variables of interest and the output performance 

criteria that must be met in order to result to feasible operation. Specifically, a black-box 

Design Space mapping method is developed, which aims to locate boundaries of feasible 

operation of processes for which a first-principle model is either lacking, or for processes  

which rely on very computationally expensive models.  The effects of uncertainty and 

control to a process DS are also discussed in this work. 

4.2. PSE concepts useful for the concept of Design Space: feasibility, and 

flexibility 
 

From a PSE perspective, the construction of the Design Space can be considered 

as the problem of determining the boundaries of a process where feasible, profitable and 
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acceptable performance is guaranteed.  This problem, however, has been considered as a 

major concern in many process industries and a substantial amount of work has been 

performed in order to define concepts such as “operability”, “feasibility” and “flexibility” 

of processes that contain uncertain parameters. Uncertainty can occur for a variety of 

reasons, most commonly among them is the variability of certain process parameters 

during plant operation. In traditional chemical engineering industries, the design space 

may be defined by objectives related mostly to cost and product quality, however, the 

pharmaceutical design space should also be guided by safety and efficacy of the produced 

product. The purpose of this work, however, is to discuss the tools which will aid one to 

map the process design space, while having the flexibility of defining any desired 

objective.  

Optimal process design under uncertainty was defined as a rigorous formulation 

in the 1980’s  (Halemane & Grossmann, 1987), where the effects of parameters that 

contain considerable uncertainty on the optimality and feasibility of a chemical plant 

were studied. The objective of solving such problems was to ensure optimality and 

feasibility of operation for a given range of uncertain parameter values, by identifying a 

measure of the size of the feasible region of operation. According to the methodology 

introduced in this work, the problem was represented as a max-min-max formulation, 

where, for a given design and fixed values of the uncertain parameters, the feasible region 

was calculated.  In (Swaney & Grossmann, 1985), the flexibility of such  processes was 

defined and quantified by the flexibility index (FI), which represented the maximum 

allowed deviation of uncertain parameters from their nominal values, such that feasible 

operation could be guaranteed by changing the control variables.  A series of papers 
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dealing with flexibility analysis and the formulation and optimization of processes under 

uncertainty were published in the following years for cases where the process model is 

known in closed form (Floudas & Gumus, 2001; Grossman & Floudas, 1987; Vishal & 

Marianthi, 2002, 2003) as well as for cases where the process is treated as a black- box 

(Banerjee & Ierapetritou, 2002, 2003; Banerjee, Pal, & Maiti; Boukouvala, et al.).  

 A general optimization problem has the following form:  
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where d corresponds to the design variables, z and x represent the control and state 

variables respectively, θ correspond to the uncertain parameters of the process, h are 

process equations describing the system, g correspond to inequality constraints which are 

either bounds on variables, design specifications or logical constraints, f is the objective 

function to be minimized, and               . Eliminating the equality 

constraints h by expressing all state variables in terms of d, z and θ, the objective function  

of problem 25 becomes: 
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Solving  problem 26 determines whether for a given design d and values of uncertain 

parameters θ the control variables z can be adjusted to satisfy all the necessary constraints 

and attain feasibility. This can be accomplished if for a given value of θ, all constraints 
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0jy  are satisfied. By defining the feasibility function  ψ(d,θ)= min max ( , , )  j
z j J

y d z 


, 

where J is the set of inequality constraints, the controls are selected such that the 

maximum jy  is minimized. This optimization problem can be further transformed into 

the following form by introducing the scalar parameter u such that:  

u,z
ψ(d,θ) min

. . ( , , ) ,    j

u

s t y d z u j J



 
        (27) 

In order to determine whether feasible operation can be attained in the parameter 

uncertainty range T, it is clear that Τθ allfor   0θ)ψ(d,  . In its most compact form, the 

flexibility test problem can be represented as a max-min-max formulation, since it is 

sufficient to ensure whether the maximum value of the feasibility function is less or equal 

to zero in order to maintain feasible operation within the uncertain experimental range.  

),,(maxminmax)( 


zdgd j
Jjz 

        (28) 

where     corresponds to the flexibility function of design   over the range   of 

uncertain parameters  . The above formulations of the feasibility problem aim to identify 

the feasible space of a process over a range of uncertain parameters θ. In this work, it is 

assumed that the uncertain parameters θ are the critical input variables which are varied 

during a process operation, or may be varied to optimize a process, in order to investigate 

which are the feasible regions of operation over the entire investigated space. For this 

reason, whenever uncertain parameters are referred to in the current DS work, these are 

parameters which cause the predictions of a model to be stochastic, or to the uncertainty 

associated with any experimental measurement used to identify the DS.  
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 Undoubtedly, effects of noise and control highly affect a Design Space. Noise 

may come from errors in the experimental measurements used to identify the DS, or 

model parameter uncertainties which will affect the model prediction. On the other hand, 

the effect of control in the DS is usually beneficial since it enlarges the range of feasible 

operation. This is due to the fact that controllers aim to intervene in order to keep the 

process within its design space. The effect of control variables is already within the 

formulation of Problems 26-28, thus it is straightforward to use the same ideas  presented 

in this chapter to map the feasible region of an open-loop process and a closed-loop 

process. Methods for taking into account the effect of noise have also been developed in 

the PSE literature through the formulation of the Stochastic Feasibility/ Flexibility 

concepts, where the probability of operating within the DS is evaluated. These will play 

an important role especially in the uncertain world of pharmaceutical manufacturing, and 

this has been pointed out by recent publications. Specifically, the work of Peterson et 

al.(John Peterson, Ronald Snee, Paul McAllister, Timothi Schofield, & Carelia, 2009) 

points out the incessant increase in the role of statistics for the identification of design 

spaces. Through a Bayesian framework the quantification of the amount of reliability that 

a DS provides can be achieved through a clearly defined figure of merit (Equation 17) 

(Gregory W Stockdale & Cheng, 2009; John Peterson, Guillermo Miro- Quesada, & 

Castillo, 2009; Peterson, 2008; Peterson & Lief, 2010).  

Rdata  ), |A   YPr( x                                                                                           (29) 

where for a given acceptance region A, the probability of a response Y to belong in A, 

given the input vector x and a set of data should be greater or equal to a predefined 

reliability level R. For this calculation a posterior predictive distribution for Y must be 
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assumed and all the uncertainty of the process model parameters should be taken into 

account. Several applications of  Bayesian design spaces of different pharmaceutical and 

biopharmaceutical processes are presented in (Gregory W Stockdale & Cheng, 2009; 

Peterson & Lief, 2010).  

The Bayesian framework for DS identification is similar with a concept that has 

been introduced in the process systems design community, namely Stochastic Flexibility 

(SF) (Pistikopoulos & Mazzuchi, 1990; Sahinidis, 2004; Straub & Grossmann, 1993). 

Stochastic flexibility is a probabilistic measure that was established in the 1990’s to 

measure the system’s ability to tolerate continuous uncertainty (Acevedo & 

Pistikopoulos, 1998; Bansal, Perkins, & Pistikopoulos, 1998; Samsatli, Papageorgiou, & 

Shah, 1998; Straub & Grossmann, 1993). In other words, it can be defined as the 

probability of a given process design to operate feasibly. In this problem,  the uncertain 

parameters are assumed to follow a distribution function, thus the determination of the SF 

involves the calculation of a multiple integral of the joint probability of all the uncertain 

parameters over the parametric space.  

During the past few decades, the issue of explicitly handling uncertainty in 

process design and optimization has attracted a lot of attention leading to a large number 

of methods that quantify feasibility. The methods developed for solving process design 

under uncertainty problems can be categorized into three groups: (a) deterministic, (b) 

stochastic and (c) black-box programming techniques (Banerjee & Ierapetritou, 2002; 

Sahinidis, 2004). In deterministic parametric programming approaches a complete profile 

of optimal solutions as a function of uncertain parameters is given, while stochastic 

approaches provide optimal solutions based on expected performance criteria for known 
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probability distributions of the uncertain parameters. All proposed methodologies 

however rely heavily on the nature and existence of the explicit form of the model 

equations. In addition, they are restricted by assumptions of convexity of the feasible 

regions of the process. In other words, years of research has focused on formulating 

rigorous optimization programming techniques to identify the feasible region around a 

nominal point, without turning to the solution of the calculation of feasibility over a 

dense set of points, or else complete enumeration. If a feasible region is compact and 

linear around the nominal point, these methods are very effective. However, when a 

region is non-linear, non-convex and even disjoint, these methods either underestimate or 

overestimate the feasible region. Previous work of our group introduced a methodology 

that treats the process as a black-box and the feasibility problem is solved through the use 

of input-output mappings (Banerjee & Ierapetritou, 2002, 2003; Banerjee, et al.). This 

work is the first attempt to touch upon the problem of design under uncertainty from a 

completely different perspective, where the effect of parameter uncertainty is predicted 

using only a set of input uncertainties irrespective of the nature or complexity of the 

underlying process model. High Dimensional Model Representation (HDMR) is used as a 

method of input-output mapping of black-box processes and this method is used to model 

the effect of parameter uncertainty on process design, and consequently identify the 

feasible operation of the process. In (Banerjee & Ierapetritou, 2003), the authors extend 

their work to handle more complex cases where the variability of the optimal solution of 

Mixed Integer Nonlinear Programming (MINLP) models with parameter uncertainty is 

captured through the use of HDMR.  
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Based on the promising results of the work of Banerjee et al. (Banerjee & 

Ierapetritou, 2002, 2005; Banerjee, Pal, & Maiti, 2010) and based on the advantages of 

Kriging as a modeling technique identified in the current work, a new approach for 

performing black-box feasibility has been proposed, which follows an adaptive sampling 

strategy and minimizes the necessary sampling (Boukouvala & Ierapetritou, 2012). The 

basis of the current method has the same goal as rigorous feasibility analysis problems, 

namely avoidance of complete enumeration, which is a brute force solution and would 

lead to high computational cost. However, it is no longer aimed to identify maximum 

deviations around a nominal point, however, it is attempted to use an approximation 

model to predict feasibility,  which is guaranteed to be accurate, if the samples used to 

build it are located at critical points within the region. These will be points which provide 

information about the true feasibility boundaries.  

The steps of the proposed methodology and results on a variety of different design 

spaces are described in the next sections of this chapter. This parallelization of Design 

Space- as it is defined in the QbD guidance- and feasibility, aims to point out once again 

that well-established process system engineering tools can be very useful in developing 

tools to facilitate QbD goals.  

4.3. Black-box feasibility analysis 

 
 Even though black-box feasibility as a concept can be used for any problem, there 

are two cases, where black-box feasibility is required and greatly beneficial, (a) when the 

first-principle model is not available and one needs to rely on time consuming and 

expensive experimental data to characterize the feasible region, or (b) when the process 

model is so computationally expensive, so it is desired to minimize the number of 
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function calls to the process model, while obtaining the required information to identify 

the boundaries of the feasible region. In both cases, a surrogate or data-based response 

surface model is built to approximate the underlying process model and aid the sampling 

strategy. As pointed out in chapter 2, when using a surrogate response surface to 

approximate a real process, the accuracy of the predicted output is highly dependent on 

the quality and quantity of the sampling set. Even though quantitatively increasing the 

data set will guarantee a more accurate predicted surface, this will also increase the 

sampling cost which is undesirable. Hence, there is a need of developing strategies which 

use information obtained from the model itself to identify sampling locations that provide 

maximum information about the process in order to avoid any redundant sampling.   

 In literature, the problem of minimization of sampling cost and time for the 

optimization of expensive or black-box models has attracted a lot of attention. In (Donald 

R. Jones, et al., 1998) a figure of merit that directs the search for a global minimum is 

introduced,  as the Expected Improvement (EI) function. Based on this criterion, the next 

sampling point that is chosen, is the one that has the highest Expected Improvement. To 

obtain the EI, the expected value of the following expression is calculated:  

                               (30) 

where      is the current optimal (minimum) value based on the model at the current 

iteration, and Y is the predicted value by the Kriging model. In simple terms, this 

equation identifies either a region that has the largest possible expected difference to the 

current optimum, or a region that has a high uncertainty of prediction. This adaptive 

sampling concept has been proven to be very successful in identifying promising 

locations for sampling, but also sampling globally within the entire investigated space. It 
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has been a breakthrough in the optimization literature for expensive models, and has been 

widely used in many applications. The EI maximization concept, makes use of the 

advantage of Kriging to provide an error mapping of the predicted response surface 

which is a function of the density of sampled points within the investigated space-

described in Chapter 2- in order to calculate a statistical EI criterion in closed form and 

enable its global optimization. Throughout this chapter, it is advised for the reader to 

keep in mind that the prediction of Kriging is assumed to be a distribution (normal) with 

a mean Y and standard deviation s
2
. Further details of the method can be found in the 

original paper by Jones et al. (Donald R. Jones, et al., 1998).  

 In feasibility analysis, however, it is important to identify boundaries of feasible 

operation within the entire range of input variables, and not a single minimum point. 

Employing the concept of feasibility, however, the problem DS is quantified to a 

collection of points which are either negative, positive or zero.  Boundaries can be 

regarded as the points for which the value of the feasibility function is equal to zero, 

whereas all feasible regions are characterized by negative feasibility function values and 

non-feasible regions should be described by positive feasibility function.  In a first 

attempt to develop an adaptive sampling methodology (Boukouvala & Ierapetritou, 2012) 

proposed identifying next promising samples by comparing all pairs of the existing 

samples and identifying directions between points which have a negative product, since 

this signifies the change in feasibility from negative to positive between these two points. 

The next sample would be located in the midpoint between the distance of the two points 

with a negative product. Further details of this method and results can be found in 

(Boukouvala & Ierapetritou, 2012). However, the disadvantage of this approach is that it 
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does not provide information regarding the actual spatial location of the change in sign 

which signifies the location of a boundary. This may lead to increased sampling 

requirements, which should be minimized further in order to avoid performing 

unnecessary expensive simulations or costly experiments. In addition, this approach does 

not take into account the uncertainty of prediction.  

 For this reason, and following the concept of formulating an expected 

improvement criterion, a modified Expected Improvement function is designed 

(Equation 31), which aims to balance the sampling between regions which have not been 

sampled enough (high uncertainty) and regions which the probability of the predicted 

response to be equal to zero is maximized.  
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where Y is the predicted kriging response and s is the kriging predicted error. Φ 

represents the distribution function and φ the standard normal density. The first term of 

Equation 31 represents the probability of Y to be less than zero, while the second term 

represents the probability of Y to be equal to zero. In other words, when EfeasI is 

maximized due to a large value of the first term, this will have identified a point with 

predicted negative feasibility value (inside the feasible region), while if it is maximized 

due to a higher second term, this will mean that a point with a value close to zero (on a 

boundary) or a high s value has been located. By using this criterion to locate next 

sampling points, it is found that the search is directed mostly to the center of the feasible 

region. This is due to the fact that the fist term is very dominant, and the sampling is 

directed to points with the most negative predicted feasibility value. For this reason, it is 

advised that the first term is eliminated, in order to account for points with either high 
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uncertainty or a predicted value close to zero. Using this approach, the search is directed 

mostly on boundaries and once any new point is sampled, the Kriging response surface is 

updated. As a consequence, when the Kriging model is updated, the uncertainty (s) in the 

vicinity of the sampled point will decrease, thus the algorithm will avoid sampling in 

points which are close to each other, which is another advantage of the adaptive sampling 

strategy. The explicit form of the modified EI function with only the second term can be 

derived as: 
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This approach shares the convergence characteristics of the EI type methods, which state 

that at infinite number of samples, the method will have sampled the desired region 

densely (D. R. Jones & Law, 1993; Donald R. Jones, et al., 1998) However, it is not 

desired to oversample the space, since the initial goal is in fact to minimize sampling. 

Thus an efficient stopping criterion needs to be formulated. Three criteria are used to 

terminate the sampling: (a) a maximum number of function calls, (b) an average error 

between the predicted feasibility space of the previous iteration and the current, or (c) a 

low value of expected improvement. If either of these three criteria are met, the algorithm 

stops sampling further. After careful evaluation of the performance of the algorithm on a 

variety of complex feasible regions, it is observed that as the complexity of the feasible 

region increases, the value of the EI does not usually reach the tolerance value, however 

the feasible region has been identified with great accuracy. Thus the criterion of the 

average sum of squared differences between the predicted feasibility value of  the 

previous iteration and the current over a grid of points within the investigated space, is a 
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very good way of indentifying whether a new sample will improve the prediction. In 

addition, it should be mentioned that the ability of kriging to provide error s and its 

incorporation into the sampling criterion is very important, because the algorithm chooses 

samples which are on the boundary and far away from each other at the same time, 

during the initial iterations and improves the predicted feasibility space drastically.  Next, 

the steps of  the black-box feasibility analysis are described and shown in Figure 23. 

 Initially, a small sampling set is chosen to produce the initial Kriging response 

surface based on a space filling experimental design. Specifically, the performance of two 

experimental designs can be used, the equally spaced grid and random Latin Hypercube 

sampling design. The experimental design should cover the entire range of uncertain 

parameters. The general rule of thumb of 10
k  

 design points, where k equals to the 

number of uncertain parameters, is often found to be a good starting point. Next, the EfeasI 

criterion is maximized in order to identify the next promising sample, which is collected 

and the kriging response surface is updated. Any global optimization algorithm can be 

used to optimize this function, since it is known in closed form and it is cheap to 

evaluate. In the current implementation, the TOMLAB LGO algorithm is employed, 

which is a MATLAB based multi-start global optimization algorithm. This procedure is 

iteratively performed until any of the aforementioned stopping criteria is met.    
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4.3.1. Results of performance of adaptive sampling strategy for black-box feasibility 

analysis 

 

 In order to test the performance of the proposed black-box feasibility approach, its 

ability and sampling requirements is tested on a variety of different known feasible 

regions, ranging from linear and convex regions to highly non-linear, non-convex and 

even disjoint regions.  

Example 1: Non-linear convex feasible region  
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Chose initial experimental design to get a characteristic sample from the entire range T of 

uncertain parameters. The two proposed designs are: rectangular grid design and Latin 

Hypercube design.  

 

 

   

   
   
 

Develop a Kriging response surface based on experimental data. Set iter=iter+1; 

iter>itermax OR 

EfeasI>tolfeas OR  

MSEfeas>tolerr 
Yes 

No 

Use current parameter values of Kriging model adjusted by their error estimates to predict 

the feasible region within the entire range T of uncertain parameters.  

Maximize 

EfeasI and add 

new point to 

sampling set. 

Figure 23. Adaptive Sampling Methodology for Black Box Feasibility Analysis 
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This first example contains one non-linear constraint which forms a circular region within 

which the process is feasible. An initial Latin Hypercube Design of 21 samples is 

collected along with 7 additional sampling points through the adaptive sampling strategy. 

The real feasible region is shown in Figure 24a, along with the location of all the 

collected points. The initial Kriging  response surface of the feasible region is formed and 

updated to become the more accurate one shown in Figure 24c. Finally, a grid of points is 

tested for feasibility based on the final kriging model and the predicted feasible points all 

lie within the actual feasible region shown in Figure 24d. As it is shown in Figure 24a, 

the red points which are collected through the maximization of the EI function all lie on 

the real boundary.  

 

Figure 24. (a) Actual contours of feasible region, initial LHS points (blue) and points of 

adaptive black box feasibility sampling (red), (b) contours based on initial sampling set, 

(a) (b) 

(c) (d) 



112 

 

 

 

(c) contours based on final sampling set, (d) predicted feasible region points over a grid 

of test data for problem 33. 

 

Example 2: Non-linear convex problem 

 The current example was first presented by Ierapetritou (M.G. Ierapetritou, 2001) 

and it involves two input parameters, and both linear and nonlinear convex constraints. 

The feasibility problem of this case study is defined by the set of inequalities in Problem 

34. For this problem, 21 initial points were designed based on a LHS design, and 25 were 

additionally collected based on the adaptive sampling strategy. From the Figure 25 it can 

be noticed that the sampled points lie on the boundary of the feasible region. The final 

prediction of the feasibility mapping is not accurate for regions far away from boundaries 

(Figure c),however,  this is not an undesirable result since the objective is to minimize 

sampling. From the comparison of figure 25b with Figure 25c, the improvement to the 

feasibility region after the additional samples are collected can be clearly observed. The 

final plot of Figure 25d shows the predicted feasible points (green points) over a fine grid 

of samples based on the final Kriging model.   
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Figure 25 (a) Actual contours of feasible region, initial LHS points (blue) and points of 

adaptive black box feasibility sampling (red), (b) contours based on initial sampling set, 

(c) contours based on final sampling set, (d) predicted feasible region points over a grid 

of test data for problem 34. 

 

Example 3: Non-linear non-convex feasible region.  
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This problem deals with a non-linear non-convex feasible region which is defined by two 

inequalities. From this example, it can be seen that the sampling required for mapping the 

feasible region increases with the complexity of the region. In this case a total of 21 

(a) (b) 

(c) (d) 
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initial samples, plus 91 points based on the adaptive sampling (Figure 26a). The 

improvement of the initial predicted feasible region (b) to the final prediction  (c) is 

dramatic, since the collected samples all lie on the boundaries. Through the 

demonstration of this problem, one of the main advantages of the proposed approach is 

shown, namely the fact that as long as there are regions of high uncertainty and/or 

boundaries, the adaptive search will identify them.  

 

Figure 26. (a) Actual contours of feasible region, initial LHS points (blue) and points of 

adaptive black box feasibility sampling (red), (b) contours based on initial sampling set, 

(c) contours based on final sampling set, (d) predicted feasible region points over a grid 

of test data for problem 35. 

 

Example 4: 3D non-linear, non-convex disjoint feasible region 

(c) 

(a) (b) 

(d) 
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 The performance of the algorithm is tested on a problem of higher dimensionality, 

which is expected to be more demanding in terms of the sampling requirements. The 

formed feasible region is very complex, as it is non-linear, non-convex and is composed 

by four disjoint feasible sets (Problem 36). 
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A total number of 31 points is designed for the initial kriging fitting, while an additional 

55 points are required (Figure 27) to reach to the final prediction as is shown in Figure 28 

.  

Figure 27.  Actual surfaceof feasible region, initial LHS points (blue) and points of 

adaptive black box feasibility sampling (red) for problem 36 
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Figure 28. Predicted feasible region points over a grid of test data for problem 36. 

 

 The developed black-box feasibility approach can be further used in various other 

problems, other than feasibility mapping and DS identification. As it will be discussed in 

chapter 5, this method is the first step of  a global optimization algorithm for solving 

problems which are constrained and rely on expensive simulations.  

 

4.4. Feasibility analysis for mixed integer non-linear problems  
 

So far, black-box feasibility concepts for continuous input variables have been 

described, however, when solving process design under uncertainty and feasibility 

problems two different types of decisions are often necessary: 1) selection of components 

such as processes, type of equipment, etc. which are represented by discrete variables, 

and 2) selection and determination of the operating conditions (Banerjee & Ierapetritou, 

2003; Grossmann, 1990) which are usually defined by continuous variables. In these 

cases, one deals with a Mixed Integer Non-Linear Problem (MINLP) or a Mixed Integer 
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Linear Problem (MIP), depending of the form of the constraints and objective. In these 

problems, discrete/ binary variables are introduced for representing existence of units and 

composing different design configurations.  

Modeling and optimization of pharmaceutical unit operations often includes 

modeling with discrete- sometimes even non-numerical input variables. These parameters 

often represent design variables such as the use, size or configuration of a specific part of 

a piece of equipment (e.g. screw size of a feeder, design of a nozzle). Up to now, 

however, data-driven modeling of pharmaceutical processes not often treats these types 

of variables as integer decision variables. Conversely, discrete or non-numerical variables 

are usually represented in a multivariate data set by coded values based on which the 

final response surface is fitted (Raymond H.  Myers, 1990; Raymond H. Myers & 

Montgomery, 1995).  

What is proposed in this work is that individual models are produced for 

alternative process designs, which are complemented by the assignment of a decision 

variable for each design. A statistical analysis of the design variables is always performed 

initially to identify the variables that are statistically significant. Once variables are found 

to be significant, using the proposed modeling approach enables the formulation of the 

mathematical optimization problem that can lead to the optimum design for different 

values of operating conditions. This is the basic advantage of the proposed method since 

this cannot be achieved if the design is modeled as an additional input variable.  

Consequently, the Design Space can be constructed separately and more accurately for 

each different design configuration while the optimum design is identified for each 

combination of operating conditions.  
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  The steps to identify the Design Space using any type of model are outlined here 

in Figure 29. The basic modification to the analysis performed in the previous section is 

the fact that a surrogate response surface is built for each of the k available designs, and 

the black-box feasibility analysis is performed separately for each one. In order to 

identify the optimal DS over the range of the continuous input variables, an optimization 

problem is solved in order to identify which design is optimal for a given combination of 

input variables.   In this optimization problem, the competing designs are compared and 

the one with the lowest feasibility function is chosen, by imposing an additional 

constraint to ensure that only one design can be chosen for each combination of operating 

parameters. A lower feasibility function value signifies lower constraint violation, which 

can be translated to operating further away from the DS boundaries, which is preferable. 

One additional reason for operating far away from a boundary is that- as will be 

discussed in the next section- DS mapping is always associated with certain amount of 

uncertainty coming from the noise in physical experimental measurements or uncertainty 

of model parameters.   
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Figure 29. Steps towards identification of Design Space for processes with discrete type 

decisions. 

Chose initial experimental design to get a characteristic sample 

from the entire range T of uncertain parameters.  

Develop a Kriging response surface i based on experimental data. 

Set iter=iter+1. 

iter>itermax OR 

EfeasI>tolfeas OR  

MSEfeas>tolerr 
Yes 

No Use current parameter values of Kriging model adjusted by their error 

estimates to predict the feasible region within the entire range T of 

uncertain parameters for design k.  

Set design =i 
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4.4.1. Application of black-box feasibility concepts for pharmaceutical processes 

 

Example 1: Continuous blender Design Space 

 The first application of the described concepts is tested on a process for which a 

first principle model is not available and experimental measurements are performed in 

order to map the DS. The objective of this case study is to identify regions within which 

the mixing performance of the blender is acceptable, which is quantified by the final 

relative standard deviation of the API concentration of the outlet stream of the mixer. The 

blender has two different design configurations, all-forward blades and alternate which 

can be used for mixing powder materials. The continuous conditions which are identified 

as significant for the mixing performance of the process (RSD) are the flowrate and 

mixing rotation speed. Through this case study, the aim is to show that under different 

operating conditions, a different design may be optimal.   

 The results obtained by the methodology (Figure 30) agree with the expected 

results based on the existing knowledge of mixing process. In general, rotation rate is an 

important factor in continuous mixing. Increasing the rotation rate leads to a higher 

degree of dispersion of powder in the mixer. However, higher impeller rotation rate also 

decreases the time available for mixing (lower residence time).  Understanding these 

opposing effects is the key to achieving optimal mixing and can explain the fact that 

lowest     is achieved in mid-range rotation rates. In contrast, flow rate is found to be 

the least significant factor using ANOVA and this can explain the fact that for the 

investigated rotation rates, feasible operation can be achieved for all flow rates in the 

range of 30-45 kg/hr. However, this variable must be included in the design space since it 

is a significant factor for feeder performance. Specifically, increasing the flow rate can 
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decrease the output flow variability of the feeder. The fact that this variable does not 

affect the variability in concentration of this specific case study implies that the mixer can 

efficiently filter out the feeder variability, but this might not be the case for other feeding-

mixing integrated systems. For almost the entire design space, better performance is 

achieved when using the ‘Alternate Blades’ configuration, while for high flow rates and 

low rotation rates, the ‘All forward’ design results to better mixing performance. More 

details about the specifics of the experimental data can be found in the original 

publication (Boukouvala, et al., 2010).  

 

Figure30. Design space produced by Kriging approach showing the optimum design 

configurations within the investigated space defined by Impeller Rotation Rate (rpm) and 

Flow rate (kg/hr). 

Example 2: Roller compaction Design Space 

For the roller compaction case study, there are no discrete variables, however 

there are two simultaneous specifications which must be met in order to assess feasibility. 

The model which connects the input variables of interest to the two outputs which are 

considered in the DS is available for this case study, and it is based on Johanson's 
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theory(Dec, et al., 2003).  The existence of a model for this case study, allows us to 

evaluate feasibility using the existing model not relying on experimental data, as well as 

simulate a stochastic case study in order to demonstrate the concepts of stochastic 

feasibility, and finally examine the effect of control of certain variables on the final DS. 

The three independent and significant input variables which are considered in the DS are 

the roll rotation speed (ω) and the compaction pressure (Ph) and inlet feed speed (uin). 

Upper and lower bounds of the two output variables of interest- ribbon density and 

thickness are chosen, based on the desired quality specifications of the product 

(Equations 37), and if both are satisfied, then the process is operating within its DS.  

0 0 0

lb ub

exit exit exit

lb ubh h h

   

              (37) 

Following the black-box feasibility approach, Problem 38  can be defined through the 

introduction of the feasibility function u.  If u is negative or zero, this implies that all 

constraints are satisfied and thus the process is within the Design Space. A positive value 

of u implies that even the minimum possible value of u, violates at least one constraint 

and thus the process is not in the DS.  
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The Design Space in Figure 31 is obtained by using black-box feasibility concepts 

for solving Problem 38  in the three dimensional space. The blue bounded region 

represents the set of conditions that lead to acceptable product in terms of its ribbon 

density, while the operating conditions within the green bounded region satisfy the 

thickness quality constraints, and their intersection defines the region where both 

specifications are met. The results suggest operating the process at low pressures, high 

inlet flowrates and low angular velocities, if the specific quality specifications must be 

met. This DS suggests that the process can produce ribbons of desired properties for a 

range of flow rates and angular velocities, however, as ω increases, uin should also be 

increased. 
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Figure 31. Design Space of Roller compactor 

 

Following a stochastic feasibility approach- similar to the methodology proposed 

in (Peterson, 2008)- uncertainty of the inlet density is incorporated into the DS. In the 

roller compaction case study (Figure 31) MATLAB is used for simulating the process 

under different operating conditions in the presence of uncertainty in the material 

properties. Specifically, it is assumed that the inlet powder density fluctuates as powder 

enters in the process and follows a normal distribution of mean 0.3 g/cm
3
 and standard 

deviation of 0.05. The ability to simulate the process by randomly drawing values from 

the above uncertain parameter from its assigned distributions at each simulation allows 
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the evaluation of the level of uncertainty that has propagated to both roll gap and ribbon 

density. Thus the process is simulated under steady state conditions and by studying the 

predicted density and ribbon throughput, their distribution and the associated parameters 

can be identified. Based on the obtained steady state values of ribbon density and 

throughput for a large amount of random simulations, their distribution type is identified 

as normal and thus the mean and standard deviation can be easily calculated. Based on 

this information, the probability of each output to lie within the predefined acceptable 

limits can be calculated using the cumulative distribution. Finally, the joint probability of 

both outputs belonging within their acceptable limits is the product of the two calculated 

probabilities. Consequently, for each point within the Knowledge space, the value of the 

joint probability can be the figure of merit for defining the reliability or the quantification 

of the assurance of quality of the Design Space based on Equation 29.  

In Figure 32, the deterministic Design Space is compared to the stochastic DS , 

where the effects of the uncertainty of the inlet ribbon density are now taken into account. 
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It can be observed that the first deterministic approach results in an overestimated and 

optimistic DS which suggests one can produce ribbons with the desired characteristics 

operating at regions where the probability of meeting the specifications is only 20- 40%, 

due to the uncertainty of the inlet density. 

  

Figure 32. Comparison of Deterministic and Stochastic DS with respect to the operating 

conditions 

 Finally the effect of an efficient control strategy is assessed for the same case 

study. Specifically, it is of interest to investigate whether the effects of the variability 

caused by the uncertainty of the raw material properties, can be reduced through control. 

For this analysis, an effective control strategy- which is identified as the manipulation of 

the angular velocity is evaluated. When solving the black-box feasibility problem, the 

same optimization problem shown in Problem 38 is solved, however, this time ω is also a 

decision variable to the problem, since it is the control variable and thus an additional 

degree of freedom is added to the problem. Following this approach, the optimal control 

variable ω over the investigated space is chosen such that feasibility is minimized.   

Comparing Figure 33 with Figure 32, it can be seen that the reliability of the process to 

meet quality specifications is higher in a larger fraction of the Knowledge Space, when 

control is employed. Thus, it becomes clear that a successful control strategy can 

alleviate the effects of possible uncertainty of the process input variables, allowing the 

process to have a larger Design Space.  
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Figure 33. Stochastic Design Space when ω is considered a manipulative variable  

4.5. Design Space mapping for integrated systems 
 

The methods for identifying the Design Space described above will be very useful for 

problems of higher dimensionality and multiple discrete type decisions, coming from 

integrated systems. For example, identifying the Design Space of an integrated 

continuous direct compaction process, described in chapter 2, will include multiple input 

variables, multiple sources of uncertainty and perhaps multiple design aspects, which will 

lead to large MINLP feasibility problems. Moreover, as discussed in the final chapter of 

future work, once the work on flowsheet modeling of many production scenarios reaches 

a state where all of the scenarios can be integrated to form a flowsheet synthesis problem, 

an optimal integrated Design Space can be identified following the approach of black-box 

feasibility identifying which flowsheet design is more robust for producing a product of 
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defined specifications for a given set of materials. However, unfortunately, the current 

form of the flowsheet work and the integration of models is not yet at this point, where 

flowsheet synthesis is possible.  

However, the concept of black box feasibility is tested on an integrated case study of 

the production of tablets using a direct compaction flowsheet, where three constraints 

form the Design space are related to the final tablet dissolution properties, API 

concentration and total production count. The identified critical inputs to these outputs 

based on the current flowsheet model are considered as the total throughput of operation 

(kg/h), the mixing rotation speed (rpm), the feeder refilling frequency (%), the MgSt 

concentration, and the compaction force (kPa) of the tablet press, which form the 

investigated space. In a continuous operation of an open-loop direct compaction line, the 

feeder hoppers would need to be refilled in order to supply the mixer with the desired 

components. Based on an extensive study of feeder operation and refilling (Engisch & 

Muzzio, 2010), it has observed that refilling causes a pulse of material to exit the feeders, 

leading to a perturbation in the concentration of the mixture which is fed to the mixer. If 

the total flowrate of operation is high and the residence time of the material in the mixer 

is not sufficient, these perturbations might not be completely filtered out by the mixer and 

affect the quality of the final tablets. In addition, the magnitude of the pulse of material is 

a function of the frequency of sampling, due to the fact that when the feeder is refilled 

more often, the hopper already contains some material and this causes the loss-in-weight 

operation to perform better. When refilling is less frequent, however, less total number of 

perturbations are caused, but if the feeder is refilled when the hopper is almost empty, the 

magnitude of the pulse of material exiting the feeder is very large. Moreover, the 
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concentration of MgSt affects the RSD of the material in the blender, and this is captured 

by an empirical correlation based on experimental data. A constraint added for the 

satisfaction of demand, is enforced such that a minimum number of tablets is produced 

for a time period of four hours (Problem 39). If at any given time point, the properties of 

the produced tablets do not satisfy any of the constraints, they are subtracted from the 

number of produced tablets. In this 5dimensional DS, the application of the black-box 

feasibility concepts is quite useful since the simulation of the direct compaction line for a 

four hour production, during which feeders are refilled and perturbations are imposed, is 

an expensive simulation.   
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 The initial experimental design consists of 51 samples based on a Latin 

Hypercube Design. The adaptive sampling stage for mapping of feasibility requires an 

additional 100 samples (reaches the maximum number of iterations), for which the DS is 

shown in Figure 34.  
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Figure 34. Integrated Design Space for Direct Compaction process.  

Figure 34 can be used to point out one great challenge of the efficient representation 

of multidimensional design spaces, since as the number of critical attributes increases, the 

graphical representation is no longer suitable. Thus, the need for a metric which could 

potentially quantify the DS would be a more efficient and beneficial approach. However, 

the feasibility function proposed in this work, which is used to make this plot, is a very 

efficient quantification metric, since it is an aggregated value of constraint violation and 

it summarizes the DS by one single value (negative indicates within DS, while positive 

indicates outside DS).  
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Chapter 5 

5. Integrated simulation-based optimization of expensive stochastic 

flowsheet models  
 

5.1. Simulation-based optimization using surrogate models with effects of 

noise and black-box constraints 
 

Simulation based optimization using surrogates is a research area that has attracted 

attention to a great extent recently in many industrial applications, where an expensive 

simulator of a product or process must be optimized (Booker, et al., 1999; Fu, 2002; 

Gray, Fowler, & Griffin, 2010; D. Huang, 2005; Donald R. Jones, 2001). Examples of 

expensive simulators used to approximate, design and optimize real systems come from 

many different engineering fields (T. Chen, Hadinoto, Yan, & Ma; Fowler, Jenkins, & 

LaLonde, 2010; Horowitz, Guimarães, Dantas, & Afonso, 2010; Husain & Kim, 2010; 

Kim, von Spakovsky, Wang, & Nelson; Wan, Pekny, & Reklaitis, 2005; Yuan, Wang, 

Yu, & Fang, 2008) and can range from complex CFD models to large-scale integrated 

flowsheet models.   However, common straight-forward optimization techniques cannot 

be applied due to the lack of knowledge of analytic derivatives, possible discontinuities 

caused by if-then operations, high computational cost which prohibits the realization of 

multiple function evaluations, and finally due to the presence of various types of 

disturbances (Bertsimas, Nohadani, & Teo, 2010). Specifically, in these types of 

problems, possible perturbations are classified into two categories: implementation 
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errors, which refer to suboptimal realizations of the decision variables, and parameter 

uncertainty errors, which are caused by modeling inaccuracies, noise, deviations between 

computer simulation and actual model (Jakobsson, Patriksson, Rudholm, & 

Wojciechowski, 2010).  

In order to overcome the problem of computational cost, surrogate based optimization 

techniques have been developed (Jakobsson, et al., 2010; Jack P. C. Kleijnen, 2009; 

Queipo, et al., 2005; Regis, 2011; Wan, et al., 2005), which also introduce an additional 

source of uncertainty, namely that caused by the differences between the computer model 

and the surrogate model (or metamodel). Surrogate-based optimization, on the other 

hand, has raised another significant research topic- design and analysis of computer 

experiments- which aims not only to efficiently plan computer experiments for global 

optimization of surrogate model approximations, but also to minimize sampling cost 

(Baldi Antognini & Zagoraiou, 2010; Crary, 2002; E. Davis & Ierapetritou, 2010; D. 

Huang, Allen, Notz, & Zeng, 2006; Jin, Chen, & Sudjianto, 2005; Donald R. Jones, et al., 

1998; Papalambros, Goovaerts, & Sasena, 2002; Pedone, Romano, & Vicario, 2009; 

Pistone & Vicario, 2009; Sacks, Welch, Toby, & Wynn, 1989; Villemonteix, Vazquez, 

Sidorkiewicz, & Walter, 2009; Villemonteix, Vazquez, & Walter, 2009).  

 Surrogate simulation-based optimization belongs into a greater category of 

algorithms which are derivative-free methods, referring to methods which do not use 

derivative information to guide the search for an optimum. A comprehensive review of 

such algorithms  is presented in (Rios & Sahinidis, 2009) where the history and 

performance of such approaches is described and compared. In addition, recently, the 

first text book for derivative-free optimization methods has been published and is 
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available online (Conn, et al., 2009). One of the main categorization of such algorithms is 

ones which search globally, and others which follow a  local search approach.   The 

global search methods use a set of samples which are spanned within the entire 

investigated region in order to fit a global response-surface model, which is then refined 

in regions of interest. This methodology is similar to the one followed by the proposed 

black-box feasibility analysis proposed in chapter 4. On the other hand, local derivative-

free optimization methods focus within a small trust region of the space, which is updated 

based on a set of rules which aim to drive the size of the trust region to zero, when a local 

optimum has been identified. 

 In order to reach to the final proposed algorithm, both types are assessed and 

compared in terms of convergence and ability to locate a global optimum. Global search 

approaches have the advantage of not being dependent on the initial estimate, and have 

greater chance of locating the global optimum, however, this comes at high 

computational cost. On the other hand, convergence of global approaches states on the 

fact that at infinite number of samples, the method will have sampled the space densely, 

thus it will have definitely located the global optimum. Local trust region framework 

methods have been studied for optimality extensively. All of the theoretical proof of 

convergence to a stationary point for trust-region methods can be found in (Conn, et al., 

2009). In summary, however, the three aspects which lead to assurance of optimality will 

be briefly described here.  

When employing a surrogate-based trust region framework the three following aspects 

must be included into the developed algorithm: 
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(1) good control of geometry of the sampling sets: the collected samples within a trust 

region must have good spanning properties, or else, they must be located in such a way 

within the trust region, such that they are a representative sample of the space. A full 

factorial design, for example, has very good spanning properties.  

(2) mechanism to impose descent direction: if the sample set used to build the 

surrogate model is based on a positive basis set, then it is guaranteed that a descent 

direction will be found (if in fact there is one). A set of vectors whose positive span is 

n , is called a positive spanning set, while a positive spanning set whose vectors are 

independent is a positive basis. Thus a positive basis is the minimum number of vectors 

whose convex cone is 
n , thus one can guarantee to find a descent direction if there is 

one.  

(3) mechanism to drive step size to zero: It can be proven that as the step size of the 

trust region decreases when a descent direction is not found, then the algorithm will 

converge to a stationary point where the trust region size is very small. For this 

mechanism to work, it is required to ensure that the accuracy of the surrogate model is 

good within the trust region, or in other words, ensure that a descent direction is not 

found because it really does not exist and not because of the model error.  Local trust 

region methods provide a higher guarantee of convergence to a true stationary point, 

however, they are highly dependent to the initial guess of the algorithm. It is often the 

case, that trust-region methods will find the closed local optima and get trapped there.  

 Clearly, many opportunities lie in the research for simulation-based optimization 

techniques in (a) designing an appropriate computer experiment, (b) identifying an 

efficient surrogate  approximation method which requires the minimum number of 
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function evaluations and can also handle uncertainty caused by various sources of noise, 

and (c) distinguishing the suitable gradient-free optimization technique which can 

successfully identify the global optimum with a limited number of function evaluations in 

the presence of noise and possible constraints. Overall, such approaches are of interest 

because they could be greatly beneficial towards the optimization of solid-based 

flowsheet models which are computationally expensive and contain a large amount of 

noise due to the high uncertainty introduced by the powder raw materials.  

 In the surrogate-based optimization literature, the majority of the developed 

methods deal with unconstrained optimization problems (Bertsimas, et al., 2010), or with 

box-constrained regions defined by upper and lower bounds of the input variables (D. 

Huang, et al., 2006; Jakobsson, et al., 2010; Donald R. Jones, 2001; Donald R. Jones, et 

al., 1998). However, in real systems it is very common that the feasible region is defined 

by a set of linear, or even non- linear constraints which may be known in advance. This 

knowledge can be exploited once it is taken into account in later stages by limiting the 

sampling region for locating the global optimum. Several approaches for avoidance of 

sampling in infeasible regions have been proposed in the literature. In (D. Huang, 2005), 

the criterion used for identifying promising sampling locations is multiplied by an 

assigned probability of a design point to lie within the feasible space, while in 

(Papalambros, et al., 2002) the authors propose a penalty type approach where a large 

penalty constant value is added to the function used for identification of new infill 

samples in order to avoid sampling when the constraints are violated. However, in some 

cases the closed- form expression of the feasibility constraints may not be available in 

advance. In such cases, black-box feasibility techniques (Banerjee & Ierapetritou, 2002, 
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2005; Banerjee, et al., 2010) – described in detail in Chapter 4- are used to approximate 

the feasibility boundaries. Such techniques require the sampling of the experimental 

region for accurate approximation of the feasible space, and this information can be then 

incorporated in the design of computer experiments for optimization, to avoid 

unnecessary sampling.  

 Up to now, however, the effects of uncertainty have not been handled yet. 

Specifically, the interpolating nature of kriging is undesired in this work since it is not 

observed in the types of real processes which will be handled. In this work, the process is 

assumed to have a random error or noise which affect the kriging model (non 

interpolating- Chapter 2)  

Proposed algorithm 

The proposed approach aims to take advantage of the both global and local search 

aspects, by combining them within a framework which searches globally initially, and 

then focuses within small trust regions of interest. Within this framework, the concept of 

black-box feasibility can be used in the initial stages of global search to provide a good 

approximation of the feasible regions and direct sampling within only feasible regions. 

The steps of the algorithm are outlined in Figure 35. 



139 

 

 

 

 

Figure 35. Steps of proposed optimization algorithm for simulation based optimization 

 

 Initially a global space filling design is collected, based on which black-box 

feasibility analysis is performed in order to identify the form of the feasible region. Two 

kriging models are developed, one for the objective function and one for the feasibility 

mapping. Once this initial stage has been completed, a large number of feasible pool of 

points is identified by the prediction of the feasibility function for grid of points within 

the investigated space. These points are ranked in terms of their objective function value 

and cluster analysis is performed to identify possible clusters of warm-start initial points. 

If more than one cluster is identified, then the cluster centers are chosen as initial points 

for the transition to the next stage of local sampling.  This approach aims to minimize the 

decrease the sampling cost of random multistart methods, which choose random initial 



140 

 

 

 

values in order to increase the probability of locating a global optimum. It should be 

noted  that a new kriging model is recalibrated every time a new unique point is added to 

the sample set.  

 The final local trust region framework is governed by the following set of rules, 

based on work described in (Conn, et al., 2009): 

(1) An initial trust region size is chosen and the location of the possible next samples are 

calculated based on a positive basis (n+1 - 2n  points). The current iteration kriging 

model is used to predict the value of these points, and starting from the minimum 

predicted value the true function is called. If at any point an improved and feasible 

objective function is obtained, then the search is designated as successful and no further 

search is performed around this iterate. The new improved sample now becomes the 

center point of the next trust region. If the predicted value for this point is accurate 

compared to the true result, then the poll size is increased. If not, then the trust region size 

remains as is.  

(2)If the entire set of positive basis points around a center point are calculated and no 

improved solution is obtained, the current kriging model is used to optimize the function 

within the current trust region, subject to the constraint of negative feasibility. If such a 

point is found, then the search  is considered successful and the new point is used as the 

next center point. The real function is called for this location and if the prediction to the 

actual point is found to be accurate, then the trust region size is increased. Otherwise it 

remains the same.  

(3) If no improvement in the objective function is obtained after the optimization of the 

local kriging model, then the trust region size is decreased. The new optimum is now 
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chosen as the next central point. This procedure is continued as long as the size of the 

trust region is larger than a small tolerance value. Since all of the aspects of the original 

trust-region mechanisms are followed here, it is proven that the decrease in the size of the 

trust region is associated with the drive to the gradient to zero value.  

5.2. Testing of developed methodology on optimization benchmark examples  

 
 The developed approach is shown to perform quite well in identifying multiple 

promising locations, in the case of multiple optima. This is shown through Figure 36, 

where the performance of the method on a constrained and noisy Branin function 

(Problem 40) is shown.  

 

 

 

           (40) 

 

 

 

The algorithm requires 21 samples for the initial model approximation, an additional 4 

for the feasibility mapping and two clusters of promising regions are located. The local 

search is then initiated from these two cluster centers to converge to two similar global 

optima. The algorithm is further tested on a set of benchmark examples which are 

modified to contain constraints and noise as well. The performance for locating the 

optimum (or optima) is compared to a commercially available multistart algorithm which 

can handle constraints, in terms of the required function evaluations. Table 8 includes the 

 

1 2

2 2

2 1 1 1
,

1 2 2

1

2

2

min  ( ) (1 )cos

. .

1 0

5 10

0 15

( 0.01,0.01)

5.1 5 11, , , 6, 10,
84

x x
x bx cx d h e x h

s t

x x x

x

x

uniform

a b c d h e

 



 

      

  

  

 

 

     



142 

 

 

 

comparison between the number of function calls required from the proposed approach 

and the multistart algorithm, to show that similar accuracy can be obtained with far less 

required calls to the expensive simulation. It should be noted that noise is a very 

significant factor to convergence. In order to verify this, the algorithm is tested without 

the effect of noise, and  by using an interpolating kriging approach. The number of 

required function calls is minimized and the algorithm converges to an optimum 100% of 

the times it is called. However, as the amount of noise increases, the performance of the 

algorithm during the last steps of small trust regions is very much affected by the noise 

and fails to converge to the true optimum after a very large number of iterations. 

However, in the presence of noise and by using a non-interpolating kriging, the 

performance is more stable (Table 8). This is a very significant conclusion, that implies 

that performance can be improved by smoothing the regression function, however, in the 

presence of stochastic effects, only replication would give more accurate estimates of the 

true response. In the current cases, however, replication is not desired due to the fact that 

it would increase computational cost tremendously.  

 

                                  (a)                                                                (b) 
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   (c)         (d) 

Figure 36. (a) Contours of Problem Branin, initial samples (blue) and feasibility samples 

(red), (b) feasibility u, (c) predicted feasible region and clusters of promising initial 

points, (d) Local trust region performance. 

 

Table 8.Statistics of proposed methodology compared to Tomlab LGO 

 

f 

Current 

method 

Found all 

solutions? 

Function calls 

LGO(multistart)-

Tomlab 

Branin 197 

 

27/30 

 

4038 

Camel 186 

 

28/30 

 

3823 

Rosenbrock 206 

 

23/30 

 

3907 

Hartman 3 191 

 

28/30 

 

4143 

Hartman 6 584 

 

24/30 

 

10071 
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5.3. Optimization of direct compaction using developed methodology 
 

 The approach described in the previous section is implemented for the 

optimization of a 4 hour day operation of a direct compaction flowsheet model by 

satisfying all of the constraints of Problem 39. Specifically, the objective is to minimize 

the cost of operation which includes: operating cost (utilities cost, raw material cost) and 

cost of waste (cost of produced tablets which are off-spec and should be discarded). The 

optimization problem has the following form:  

 

 

 

 

                                                                                                                                            

          (41) 

 

 

 

 

where the decision variables considered with their upper and lower bounds are given in 

Table 9.  The computer experiment is based on a LH design composed initially of 51 

samples. Based on this set of points and based on the methodology described in Chapter 

4, the feasible region is approximated by 60 additional samples, and the black-box 

constraints are approximated with a closed-form using a kriging model. Subsequently, the 

search for the next sampling location can be limited within the feasible space using 
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constrained optimization approaches, starting from three identified cluster centers. This 

entire procedure is implemented in MATLAB, which communicates with gPROMS to 

exchange information. The optimal values are included in Table 9, where it is observed 

that the minimum cost occurs at mid range throughputs and mid range refilling 

frequency, since this balances between the often need for refilling and the magnitude of 

perturbation. Specifically it is observed that at higher throughputs the discarded product 

is very high and this increases the objective function significantly and leads to the 

violation of the minimum demand constraint. In addition to this, the optimal mixing 

rotation speed is at mid range levels which agrees with experimental evidence. The tablet 

compaction pressure is directly and solely related to tablet hardness, so its optimal value 

is solely dependent by the desired hardness characteristics. The amount of MgSt, is a 

little bit higher than the nominal value of 1%, which is also expected since the RSD 

correlation to MgSt imposes the effect of a decrease in RSD with an increase in MgSt 

(based on experimental data). Thus, due to the small amount of MgSt, the cost is not 

significantly affected if more amount is included in the formulation, as long as the 

product specifications allow for this modification.  

Table 9.Decision variables of optimization problem, bounds and optimal values 

Variable  Lower Bound  Optimal value  Upper bound  

Throughput (kg/h)  10  54  100  

MgSt  
(%)  

0.99  1.006  1.01  

Refill ratio 
(%)  

20  52  60  

Compression 

Force (kPa)  
8  8.9  12  

Mixing Rate 
(rpm)  

40  81  250  
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 It is realized that this is a simple optimization problem, however, feeder refilling 

strategies are an important aspect of continuous operation of powder flowing processes. 

As the flowsheet models are improved, through the incorporation of the complete set of 

effects of interest, larger and even more interesting optimization problems will be formed 

for the design of the pilot plant. However, the surrogate-based approaches have not been 

tested by us for large dimensionality problems. It is predicted, that the initial global 

sampling overhead will be a limiting step, as the dimensionality of the problem becomes 

very high. For this reason it is suggested that, if the decoupling of expensive and non-

expensive models is possible, then surrogate models are used only for the components 

which are expensive to evaluate (Caballero & Grossmann, 2008; Henao & Maravelias, 

2011). This way, the dimensionality of the problems will not drastically increase, and a 

fraction of the values will come from the actual true model, which will naturally be more 

accurate.  
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Chapter 6 

6. Conclusions and future perspectives  
 

The initial aim of this work was the integration of various forms of knowledge in 

order to develop tools for the simulation and optimization of powder handling processes. 

However, the nature of the systems which have been studied has also given rise to a 

variety of different problems such as the mapping of the feasibility of complex black-box 

processes and the optimization of constrained expensive simulation models. Overall, this 

work aims to introduce certain PSE tools which can be beneficial towards process and 

product design to the pharmaceutical industry, but also develop more generally applied 

computational tools for the design and optimization of products with high uncertainty and 

quality constraints. 

 The major challenges when dealing with pharmaceutical solid processes can be 

summarized as the lack of knowledge of the properties that characterize the powder 

mixtures, critical operating conditions and how these affect the final product properties. 

Through the development of integrated flowsheet models, the aim is to capture the 

insofar studied and known correlations which govern the behavior of powders as they are 

processed as well as their dynamics. The developed flowsheet configurations describe the 

projected real life typical operation of a continuous plant for the production of 

pharmaceutical tablets. Multiple feeders continuously supply raw materials into a 

blender, from which the exiting blend can be processed through direct compaction, dry 

granulation or wet granulation. The required inputs to the simulation are the total 

throughput, the composition of each individual material, as well as the particle size 
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distribution and bulk density of each material. Through the simulation of different step 

changes and expected perturbations, it is observed that the unit operation models can 

capture certain desired effects, such as the effects in the concentration of the mixture, the 

bulk density and particle size. However, there are several significant effects which the 

developed flowsheet models do not capture efficiently, which should be incorporated in 

order to develop an even better tool for simulation, design and optimization. Several 

methods for allowing the incorporation of additional effects are proposed in chapter 3, 

through reduced order models; however, significant missing correlations are also 

described as future work.  

The lack of first principle models and the use of extremely expensive simulations in 

powder processing, lead us to the development of reduced order data-based models.  

Through the integration of reduced-order models within the flowsheet simulations, it is 

aimed to enlarge the set of effects which are captured by the unit operation models, such 

as design and material property effects.  

In addition, process design space is described in this work as the concept of process 

feasibility and novel methods to identify the boundaries  feasible operation are 

developed. Specifically it is shown that the representation of all the process constraints 

through one aggregated feasibility test value, allows the quantification of a boundary and 

the search for its exact location, which is very critical towards the design of uncertain 

processes.  

Finally, the need for optimization of the developed flowsheet models, which are 

computationally expensive and noisy, has directed us towards the use and development of 

a simulation based optimization approach, which employs surrogate models as 
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approximations of the actual process models. The developed methodology employs 

concepts of global search for both good objective function values and feasibility, and a 

local trust region framework as a final stage to converge to local optima. The developed 

methodology has been applied for the optimization of a direct compaction flowsheet in 

order to minimize cost of 4 hour continuous production of a 3 component formulation 

tablet. The goal of this optimization is the identification of the most efficient refilling 

strategy of the powder feeders, which is found to be at mid fill level of the hopper 

volume. In addition, the optimal operating compaction pressure of the tablet press, 

rotation speed of mixer, MgSt concentration and total throughput of the process are 

identified through this optimization procedure.  

This work aims to point out the great opportunities which arise from merging all the 

insofar available knowledge, experience, experimental and modeling work available for 

the development of computer aided tools for the design and optimization of the 

production of pharmaceutical solid dosage forms. Several new directions to be pursued in 

the future have arised from this work.  

Firstly, the flowsheet modeling library must be refined in order to include a complete 

set of unit operation models which have a common set of inputs and outputs and can 

capture the entire set of correlations of interest. The predicted outputs should be 

correlated with significant and measurable inputs, in order to allow for the system to be 

represented efficiently, designed, controlled and optimized. Specifically, the unit 

operation models which necessarily need further improvement are the hopper and the 

tablet press. The behavior of powders within a hopper is governed by complex 

phenomena which are dependent on the particle size distribution and flow characteristics 



150 

 

 

 

of a powder, as well as hopper geometry. In addition, all of the above characteristics lead 

to various phenomena in the mixer, such as segregation or further mixing of the material. 

All of this phenomena may be described well either by a DEM study, a Population 

Balance Model or a hybrid DEM/PBM model, such as the one described in chapter 3 for 

the mixer. This processing step should definitely be considered as the next step, since 

hoppers are necessary units which highly affect the behavior of processed powders. In 

addition, the tablet press is another major gap in the integrated flowsheets, since an 

experimental data set must be collected in order to estimate the parameters of the 

empirical correlation. In order to improve this model, a reduced-order model based on the 

work of (Gonzalez & Cuitiño, 2012) is proposed, since this is a very detailed  and 

validated simulation of the performance of the tablet press, correlating input parameters 

which can be provided for any material to properties of the actual produced tablet. 

Overall, through this work, a general framework is developed for the extraction of DEM 

data and the methodology required to build  a reduced order model from this data. This 

framework has been integrated in gPROMS as an additional unit operation and it can act 

as a sensor connected to the output of each process exit port of interest. 

 In terms of the future of materials property database, the future project team should 

focus on connecting in-house pure components to the formulation data, which is not 

completed so far. In addition, the variables which represent the performance of   the 

powder mixture downstream within various processes, should be designed and added as 

new columns to the output data, such that they can be correlated to process behavior. 

Towards the decision for which variables should be included in this dataset, every 

process step must be studied at a time, identifying which variables are significant within 
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each process unit, and not yet predicted by the existing models. Finally the necessary 

DOE for the collection of such properties for the set of mixture blends must be decided 

upon. The existence of the continuous pilot plant within Rutgers University should really 

help in performing such integrated experiments, by collecting information from all units 

during one run.  

 

Flowsheet synthesis, which is a steady-state optimization problem that aims to 

identify the optimal process configuration of an integrated system, is the final goal of this 

Specific Aim. Aspects which can be identified by the solution of a synthesis problem are 

optimal operating conditions, but also optimal design configurations, and need for 

recycles based on a given objective. The optimization problem formed enumerates 

possible feasible designs in order to identify the optimal sequence and this implies the 

formation of a large scale mixed-integer non-linear optimization problem. The envisioned 

synthesis framework for tablet manufacturing will be able to identify the most suitable 

configuration (direct compaction, dry or wet granulation) based on the raw material 

properties and final product objectives. A heuristic approach for making such decisions is 

outlined by Ng et al. (Ng & Fung, 2003), however the aim of this work will be to set the 

foundations for the development of a computational tool in order to make these decisions 

in a systematic way. The objective of the optimization synthesis problem may be the 

product variability as well as cost minimization for the production of a specific 

formulation. Following the optimization and feasibility algorithms developed in this 

work, an integrated optimal design space may also be mapped, showing the feasible 

operating or uncertain variable ranges in order to satisfy all of the desired constraints and 

objectives.



152 

 

 

 

Bibliography 

Acevedo, J., & Pistikopoulos, E. N. (1998). Stochastic optimization based algorithms for 

process synthesis under uncertainty. Computers & Chemical Engineering, 22(4-

5), 647-671. 

Akande, O. F., Rubinstein, M. H., & Ford, J. L. (1997). Examination of the compaction 

properties of a 1:1 acetaminophen:Microcrystalline cellulose mixture using 

precompression and main compression. Journal of Pharmaceutical Sciences, 

86(8), 900-907. 

am Ende, M. T., Moses, S. K., Carella, A. J., Gadkari, R. A., Graul, T. W., Otano, A. L., 

et al. (2007). Improving the Content Uniformity of a Low-Dose Tablet 

Formulation Through Roller Compaction Optimization. Pharmaceutical 

Development and Technology, 12(4), 391-404. 

Anttonen, J. S. R., King, P. I., & Beran, P. S. (2003). POD-based reduced-order models 

with deforming grids. Mathematical and Computer Modelling, 38(1-2), 41-62. 

Aquino, W. (2007). An object-oriented framework for reduced-order models using proper 

orthogonal decomposition (POD). [doi: 10.1016/j.cma.2007.05.009]. Computer 

Methods in Applied Mechanics and Engineering, 196(41-44), 4375-4390. 

Auger, A., Hansen, N., Perez Zerpa, J., Ros, R., & Schoenauer, M. (2009). Experimental 

Comparisons of Derivative Free Optimization Algorithms. In J. Vahrenhold (Ed.), 

Experimental Algorithms (Vol. 5526, pp. 3-15): Springer Berlin / Heidelberg. 

Baldea, M., & Daoutidis, P. (2006). Model reduction and control of reactor–heat 

exchanger networks. Journal of Process Control, 16(3), 265-274. 

Baldi Antognini, A., & Zagoraiou, M. (2010). Exact optimal designs for computer 

experiments via Kriging metamodelling. [doi: DOI: 10.1016/j.jspi.2010.03.027]. 

Journal of Statistical Planning and Inference, 140(9), 2607-2617. 

Banerjee, I., & Ierapetritou, M. G. (2002). Design Optimization under Parameter 

Uncertainty for General Black-Box Models. Industrial & Engineering Chemistry 

Research, 41(26), 6687-6697. 



153 

 

 

Banerjee, I., & Ierapetritou, M. G. (2003). Parametric process synthesis for general 

nonlinear models. Computers & Chemical Engineering, 27(10), 1499-1512. 

Banerjee, I., & Ierapetritou, M. G. (2005). Feasibility Evaluation of Nonconvex Systems 

Using Shape Reconstruction Techniques. [doi: 10.1021/ie049294d]. Industrial & 

Engineering Chemistry Research, 44(10), 3638-3647. 

Banerjee, I., Pal, S., & Maiti, S. Computationally efficient black-box modeling for 

feasibility analysis. Computers & Chemical Engineering, In Press, Corrected 

Proof. 

Banerjee, I., Pal, S., & Maiti, S. (2010). Computationally efficient black-box modeling 

for feasibility analysis. [doi: DOI: 10.1016/j.compchemeng.2010.02.016]. 

Computers & Chemical Engineering, 34(9), 1515-1521. 

Bansal, V., Perkins, J. D., & Pistikopoulos, E. N. (1998). Flexibility analysis and design 

of dynamic processes with stochastic parameters. Computers & Chemical 

Engineering, 22(Supplement 1), S817-S820. 

Barron, M. G., Duvall, S. E., & Barron, K. J. (2004). Retrospective and current risks of 

mercury to panthers in the Florida Everglades. Ecotoxicology, 13(3), 223-229. 

Berkooz, G., Holmes, P., & Lumley, J. L. (1993). The Proper Orthogonal Decomposition 

in the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics, 25(1), 

539-575. 

Bertrand, F., Leclaire, L. A., & Levecque, G. (2005). DEM-based models for the mixing 

of granular materials. Chemical Engineering Science, 60(8-9), 2517-2531. 

Bertsimas, D., Nohadani, O., & Teo, K. M. (2010). Robust Optimization for 

Unconstrained Simulation-Based Problems. Oper. Res., 58(1), 161-178. 

Betz, G., Junker-Bürgin, P., & Leuenberger, H. (2003). Batch And Continuous 

Processing In The Production Of Pharmaceutical Granules#. Pharmaceutical 

Development and Technology, 8(3), 289-297. 

Biegler, L. T., & Grossmann, I. E. (2004). Retrospective on optimization. [doi: 

10.1016/j.compchemeng.2003.11.003]. Computers & Chemical Engineering, 

28(8), 1169-1192. 

Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. (1997). Systematic methods of 

chemical process design. Upper Saddle River, N.J.: Prentice Hall PTR. 



154 

 

 

Biegler T L, Grossmann E I, & Westerberg  W.A. (1997). Systematic Methods of 

Chemica Process Design. New Jersey: Prentice Hall. 

Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., & Trosset, M. W. 

(1999). A rigorous framework for optimization of expensive functions by 

surrogates. Structural and Multidisciplinary Optimization, 17(1), 1-13. 

Boukouvala, F., Dubey, A., Vanarase, A., Ramachandran, R., Muzzio, F. J., & 

Ierapetritou, M. (2011a). Computational Approaches for Studying the Granular 

Dynamics of Continuous Blending Processes, 2 – Population Balance and Data-

Based Methods. Macromolecular Materials and Engineering, In Press. 

Boukouvala, F., Dubey, A., Vanarase, A., Ramachandran, R., Muzzio, F. J., & 

Ierapetritou, M. (2011b). Computational Approaches for Studying the Granular 

Dynamics of Continuous Blending Processes, 2 – Population Balance and Data-

Based Methods. Macromolecular Materials and Engineering, n/a-n/a. 

Boukouvala, F., & Ierapetritou, M. G. (2012). Feasibility analysis of black-box processes 

using an adaptive sampling Kriging-based method. [doi: 

10.1016/j.compchemeng.2011.06.005]. Computers &amp; Chemical Engineering, 

36(0), 358-368. 

Boukouvala, F., Muzzio, F., & Ierapetritou, M. Design Space of Pharmaceutical 

Processes Using Data-Driven-Based Methods. Journal of Pharmaceutical 

Innovation, 5(3), 119-137. 

Boukouvala, F., Muzzio, F., & Ierapetritou, M. (2010). Design Space of Pharmaceutical 

Processes Using Data-Driven-Based Methods. Journal of Pharmaceutical 

Innovation, 5(3), 119-137. 

Boukouvala, F., Muzzio, F., & Ierapetritou, M. (2012). Reduced order DEM modeling. 

Submitted to Chemical Engineering Science, under review. 

Boukouvala, F., Muzzio, F. J., & Ierapetritou, M. G. (2011). Dynamic Data-Driven 

Modeling of Pharmaceutical Processes. Industrial & Engineering Chemistry 

Research, 50(11), 6743-6754. 

Briesen, H., & Marquardt, W. (2000). Adaptive model reduction and simulation of 

thermal cracking of multicomponent hydrocarbon mixtures. Computers & 

Chemical Engineering, 24(2-7), 1287-1292. 



155 

 

 

Caballero, J. A., & Grossmann, I. E. (2008). An algorithm for the use of surrogate models 

in modular flowsheet optimization. AIChE Journal, 54(10), 2633-2650. 

Chen, L., Hontoir, Y., Huang, D., Zhang, J., & Morris, A. J. A. J. (2004). Combining first 

principles with black-box techniques for reaction systems. [doi: 

10.1016/j.conengprac.2003.09.006]. Control Engineering Practice, 12(7), 819-

826. 

Chen, T., Hadinoto, K., Yan, W., & Ma, Y. Efficient meta-modelling of complex process 

simulations with time-space-dependent outputs. [doi: DOI: 

10.1016/j.compchemeng.2010.05.013]. Computers & Chemical Engineering, In 

Press, Corrected Proof. 

Christofides, P. D. (2001). Nonlinear and robust control of PDE systems : methods and 

applications to transport-reaction processes. Boston: Birkhäuser. 

Cizmas, P. G., Palacios, A., O'Brien, T., & Syamlal, M. (2003). Proper-orthogonal 

decomposition of spatio-temporal patterns in fluidized beds. [doi: 10.1016/S0009-

2509(03)00323-3]. Chemical Engineering Science, 58(19), 4417-4427. 

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free 

optimization. Philadelphia: Society for Industrial and Applied 

Mathematics/Mathematical Programming Society. 

Contou-Carrere, M. N., & Daoutidis, P. (2008). Model reduction and control of multi-

scale reaction–convection processes. Chemical Engineering Science, 63(15), 

4012-4025. 

Crary, S. B. (2002). Design of Computer Experiments for Metamodel Generation. Analog 

Integrated Circuits and Signal Processing, 32(1), 7-16. 

Cressie, N. (1993). Statistics for Spatial Data (Wiley Series in Probability and Statistics): 

Wiley-Interscience. 

Cunningham, J. C., Winstead, D., & Zavaliangos, A. (2010). Understanding variation in 

roller compaction through finite element-based process modeling. [doi: DOI: 

10.1016/j.compchemeng.2010.04.008]. Computers & Chemical Engineering, 

34(7), 1058-1071. 

Davis, B., Lundsberg, L., & Cook, G. (2008). PQLI Control Strategy Model and 

Concepts. Journal of Pharmaceutical Innovation, 3(2), 95-104. 



156 

 

 

Davis, E., & Ierapetritou, M. (2007). A kriging method for the solution of nonlinear 

programs with black-box functions. AIChE Journal, 53(8), 2001-2012. 

Davis, E., & Ierapetritou, M. (2008). A Kriging-Based Approach to MINLP Containing 

Black-Box Models and Noise. [doi: 10.1021/ie800028a]. Industrial & 

Engineering Chemistry Research, 47(16), 6101-6125. 

Davis, E., & Ierapetritou, M. (2009). A kriging based method for the solution of mixed-

integer nonlinear programs containing black-box functions. J. of Global 

Optimization, 43(2-3), 191-205. 

Davis, E., & Ierapetritou, M. (2010). A centroid-based sampling strategy for kriging 

global modeling and optimization. AIChE Journal, 56(1), 220-240. 

Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E., & Orszag, S. A. (1991). 

Low?dimensional models for complex geometry flows: Application to grooved 

channels and circular cylinders (Vol. 3): AIP. 

Dec, R. T., Zavaliangos, A., & Cunningham, J. C. (2003). Comparison of various 

modeling methods for analysis of powder compaction in roller press. [doi: DOI: 

10.1016/S0032-5910(02)00203-6]. Powder Technology, 130(1-3), 265-271. 

Engisch, W., & Muzzio, F. J. (2010). Hopper Refill of Loss-in-Weight Feeding 

Equipment. Paper presented at the AIChE Annual Conference.  

Faqih, A. N., Alexander, A. W., Muzzio, F. J., & Tomassone, M. S. (2007). A method for 

predicting hopper flow characteristics of pharmaceutical powders. [doi: DOI: 

10.1016/j.ces.2006.06.027]. Chemical Engineering Science, 62(5), 1536-1542. 

Floudas, C. A., & Gumus, Z. H. (2001). Global Optimization in Design under 

Uncertainty: Feasibility Test and Flexibility Index Problems. Industrial & 

Engineering Chemistry Research, 40(20), 4267-4282. 

Forrester, A. I. J., Sobester, A., & Keane, A. J. (2008). Engineering design via surrogate 

modeling: A practical guide: Wiley. 

Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). Engineering Design via Surrogate 

Modelling - A Practical Guide: John Wiley & Sons. 

Fowler, K., Jenkins, E., & LaLonde, S. (2010). Understanding the effects of polymer 

extrusion filter layering configurations using simulation-based optimization. 

Optimization and Engineering, 11(2), 339-354. 



157 

 

 

Frouzakis, C. E., Kevrekidis, Y. G., Lee, J., Boulouchos, K., & Alonso, A. A. (2000). 

Proper orthogonal decomposition of direct numerical simulation data: Data 

reduction and observer construction. [doi: 10.1016/S0082-0784(00)80197-6]. 

Proceedings of the Combustion Institute, 28(1), 75-81. 

Fu, M. C. (2002). Feature Article: Optimization for simulation: Theory vs. Practice. 

INFORMS JOURNAL ON COMPUTING, 14(3), 192-215. 

Galbally, D., Fidkowski, K., Willcox, K., & Ghattas, O. (2010). Non-linear model 

reduction for uncertainty quantification in large-scale inverse problems. 

International Journal for Numerical Methods in Engineering, 81(12), 1581-1608. 

Gao, Y., Ierapetritou, M., & Muzzio, F. (2011a). Investigation on the effect of blade 

patterns on continuous solid mixing performance. The Canadian Journal of 

Chemical Engineering, 89(5), 969-984. 

Gao, Y., Ierapetritou, M. G., & Muzzio, F. J. (2011b). Periodic section modeling of 

convective continuous powder mixing processes. AIChE Journal, In Press, DOI: 

10.1002/aic.12348. 

García-Muñoz, S., Dolph, S., & Ward, H. W. (2010). Handling uncertainty in the 

establishment of a design space for the manufacture of a pharmaceutical product. 

Computers & Chemical Engineering, 34(7), 1098-1107. 

García-Muñoz, S., Dolph, S., & Ward Ii, H. W. Handling uncertainty in the establishment 

of a design space for the manufacture of a pharmaceutical product. Computers & 

Chemical Engineering, 34(7), 1098-1107. 

García-Muñoz, S., & Polizzi, M. (2012). WSPLS — A new approach towards mixture 

modeling and accelerated product development. Chemometrics and Intelligent 

Laboratory Systems, 1-6. 

Garcia, T., Cook, G., & Nosal, R. (2008). PQLI Key Topics - Criticality, Design Space, 

and Control Strategy. Journal of Pharmaceutical Innovation, 3(2), 60-68. 

Gay, D. H., & Ray, W. H. (1995). Identification and Control of Distributed-Parameter 

Systems by Means of the Singular-Value Decomposition. Chemical Engineering 

Science, 50(10), 1519-1539. 



158 

 

 

Gernaey, K. V., & Gani, R. (2010). A model-based systems approach to pharmaceutical 

product-process design and analysis. [doi: DOI: 10.1016/j.ces.2010.05.003]. 

Chemical Engineering Science, 65(21), 5757-5769. 

Glasser, B. J., Remy, B., Canty, T. M., & Khinast, J. G. (2010). Experiments and 

simulations of cohesionless particles with varying roughness in a bladed mixer. 

Chemical Engineering Science, 65(16), 4557-4571. 

Glasser, B. J., Remy, B., & Khinast, J. G. (2009). Discrete Element Simulation of Free 

Flowing Grains in a Four-Bladed Mixer. Aiche Journal, 55(8), 2035-2048. 

Glasser, B. J., Remy, B., & Khinast, J. G. (2010). The Effect of Mixer Properties and Fill 

Level on Granular Flow in a Bladed Mixer. Aiche Journal, 56(2), 336-353. 

Glosmann, P. (2010). Reduction of discrete element models by Karhunen-LoSve 

transform: a hybrid model approach. Computational Mechanics, 45(4), 375-385. 

Gluba, T., Obraniak, A., & Gawot-Mlynarczyk, E. (2004). The effect of granulation 

conditions on bulk density. Physiochemical Problems of Mineral Processing. 

Gonnissen, Y., Gonçalves, S. I. V., De Geest, B. G., Remon, J. P., & Vervaet, C. (2008). 

Process design applied to optimise a directly compressible powder produced via a 

continuous manufacturing process. [doi: DOI: 10.1016/j.ejpb.2007.09.007]. 

European Journal of Pharmaceutics and Biopharmaceutics, 68(3), 760-770. 

Gonzalez, M., & Cuitiño, A. M. (2012). A nonlocal contact formulation for confined 

granular systems. [doi: 10.1016/j.jmps.2011.10.004]. Journal of the Mechanics 

and Physics of Solids, 60(2), 333-350. 

Gorsek, A., & Glavic, P. (1997). Design of Batch Versus Continuous Processes: Part I: 

Single-Purpose Equipment. Chemical Engineering Research and Design, 75(7), 

709-717. 

Gray, G. A., Fowler, K., & Griffin, J. D. (2010). Hybrid optimization schemes for 

simulation-based problems. [doi: DOI: 10.1016/j.procs.2010.04.150]. Procedia 

Computer Science, 1(1), 1349-1357. 

Gregory W Stockdale, & Cheng, A. (2009). Finding Design Space and Reliable 

Operating Region Using a Multivariable Bayesian Approach with Experimental 

Design. Quality Technology and Quantitative Management, 6(4), 391-408 



159 

 

 

Grossman, I. E., & Floudas, C. A. (1987). Active Constraint Strategy for Flexibility 

Analysis in Chemical Processes. Computers & Chemical Engineering, 11(6), 675-

693. Retrieved from 

http://cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/reading/GrossFlo

uFlexCACE.pdf 

Grossmann, I. E. (1990). Mixed-integer nonlinear programming techniques for the 

synthesis of engineering systems. Research in Engineering Design, 1(3), 205-228. 

Gruhn, G., Werther, J., & Schmidt, J. (2004). Flowsheeting of solids processes for energy 

saving and pollution reduction. Journal of Cleaner Production, 12(2), 147-151. 

Halemane, K. P., & Grossmann, I. E. (1987). Optimal Process Design Under Uncertainty. 

from http://hdl.handle.net/1903/4569  

Hamad, M. L., Bowman, K., Smith, N., Sheng, X., & Morris, K. R. (2010). Multi-scale 

pharmaceutical process understanding: From particle to powder to dosage form. 

[doi: DOI: 10.1016/j.ces.2010.01.037]. Chemical Engineering Science, 65(21), 

5625-5638. 

Hassanpour, A., Tan, H. S., Bayly, A., Gopalkrishnan, P., Ng, B., & Ghadiri, M. (2011). 

Analysis of particle motion in a paddle mixer using Discrete Element Method 

(DEM). Powder Technology, 206(1-2), 189-194. 

Haware, R. V., Tho, I., & Bauer-Brandl, A. (2009). Application of multivariate methods 

to compression behavior evaluation of directly compressible materials. [doi: DOI: 

10.1016/j.ejpb.2008.11.008]. European Journal of Pharmaceutics and 

Biopharmaceutics, 72(1), 148-155. 

Hein, S., Picker-Freyer, K. M., & Langridge, J. (2008). Simulation of Roller Compaction 

with Subsequent Tableting and Characterization of Lactose and Microcrystalline 

Cellulose. Pharmaceutical Development and Technology, 13(6), 523-532. 

Henao, C. A., & Maravelias, C. T. (2011). Surrogate-based superstructure optimization 

framework. AIChE Journal, 57(5), 1216-1232. 

Horowitz, B., Guimarães, L. J. d. N., Dantas, V., & Afonso, S. M. B. (2010). A 

concurrent efficient global optimization algorithm applied to polymer injection 

strategies. [doi: DOI: 10.1016/j.petrol.2010.02.002]. Journal of Petroleum 

Science and Engineering, 71(3-4), 195-204. 

http://cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/reading/GrossFlouFlexCACE.pdf
http://cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/reading/GrossFlouFlexCACE.pdf
http://hdl.handle.net/1903/4569


160 

 

 

Hsu, S.-H., Reklaitis, G., & Venkatasubramanian, V. (2010). Modeling and Control of 

Roller Compaction for Pharmaceutical Manufacturing. Part I: Process Dynamics 

and Control Framework. Journal of Pharmaceutical Innovation, 5(1), 14-23. 

Huang, D. (2005). Experimental planning and sequential kriging optimization using 

variable fidelity data. from 

http://etd.ohiolink.edu/view.cgi?acc_num=osu1110297243 

Huang, D., Allen, T., Notz, W., & Zeng, N. (2006). Global Optimization of Stochastic 

Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global 

Optimization, 34(3), 441-466. 

Huang, J., Kaul, G., Cai, C., Chatlapalli, R., Hernandez-Abad, P., Ghosh, K., et al. 

(2009). Quality by design case study: An integrated multivariate approach to drug 

product and process development. [doi: DOI: 10.1016/j.ijpharm.2009.07.031]. 

International Journal of Pharmaceutics, 382(1-2), 23-32. 

Husain, A., & Kim, K.-Y. (2010). Enhanced multi-objective optimization of a 

microchannel heat sink through evolutionary algorithm coupled with multiple 

surrogate models. [doi: DOI: 10.1016/j.applthermaleng.2010.03.027]. Applied 

Thermal Engineering, 30(13), 1683-1691. 

Ierapetritou, M., Gao, Y. G., Y. J., & Muzzio, F. (2011). Characterization of Feeder 

Effects on Continuous Solid Mixing Using Fourier Series Analysis. Aiche 

Journal, 57(5), 1144-1153. 

Ierapetritou, M., Gao, Y. J., Vanarase, A., & Muzzio, F. (2011). Characterizing 

continuous powder mixing using residence time distribution. Chemical 

Engineering Science, 66(3), 417-425. 

Ierapetritou, M. G. (2001). New approach for quantifying process feasibility: Convex and 

1-D quasi-convex regions (Vol. 47, pp. 1407-1417). 

Ierapetritou, M. G., Boukouvala, F., & Muzzio, F. J. (2010). Predictive Modeling of 

Pharmaceutical Processes with Missing and Noisy Data. Aiche Journal, 56(11), 

2860-2872. 

Ierapetritou, M. G., Portillo, P. M., & Muzzio, F. J. (2006). Characterizing powder 

mixing processes utilizing compartment models. International Journal of 

Pharmaceutics, 320(1-2), 14-22. 

http://etd.ohiolink.edu/view.cgi?acc_num=osu1110297243


161 

 

 

Ierapetritou, M. G., Portillo, P. M., & Muzzio, F. J. (2007). Hybrid DEM-compartment 

modeling approach for granular mixing. Aiche Journal, 53(1), 119-128. 

Immanuel, C. D., & Doyle Iii, F. J. (2005). Solution technique for a multi-dimensional 

population balance model describing granulation processes. [doi: DOI: 

10.1016/j.powtec.2005.04.013]. Powder Technology, 156(2-3), 213-225. 

Jain, S. (1999). Mechanical properties of powders for compaction and tableting: an 

overview. [doi: DOI: 10.1016/S1461-5347(98)00111-4]. Pharmaceutical Science 

& Technology Today, 2(1), 20-31. 

Jakobsson, S., Patriksson, M., Rudholm, J., & Wojciechowski, A. (2010). A method for 

simulation based optimization using radial basis functions. Optimization and 

Engineering, 11(4), 501-532. 

Jin, R., Chen, W., & Sudjianto, A. (2005). An efficient algorithm for constructing optimal 

design of computer experiments. [doi: DOI: 10.1016/j.jspi.2004.02.014]. Journal 

of Statistical Planning and Inference, 134(1), 268-287. 

John Peterson, Guillermo Miro- Quesada, & Castillo, E. d. (2009). A Bayesian Reliability 

Approach to Multiple Response Surface optimization with seemingly unrelated 

regression models. Quality Technology and Quantitative Management, 6(4), 353-

369 

John Peterson, Ronald Snee, Paul McAllister, Timothi Schofield, & Carelia, A. (2009). 

Statistics in Pharmaceutical Development and Manufacturing: GlaxoSmithKlein 

Pharmaceuticals. 

Jones, D. R. (2001). A Taxonomy of Global Optimization Methods Based on Response 

Surfaces. Journal of Global Optimization, 21(4), 345-383. 

Jones, D. R., & Law, C. (1993). Lipschitzian Optimization Without the Lipschitz 

Constant. October, 79(1). 

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization of 

Expensive Black-Box Functions. Journal of Global Optimization, 13(4), 455-492. 

Kahrs, O., & Marquardt, W. (2007). The validity domain of hybrid models and its 

application in process optimization. [doi: 10.1016/j.cep.2007.02.031]. Chemical 

Engineering and Processing: Process Intensification, 46(11), 1054-1066. 



162 

 

 

Kim, K., von Spakovsky, M. R., Wang, M., & Nelson, D. J. A hybrid multi-level 

optimization approach for the dynamic synthesis/design and operation/control 

under uncertainty of a fuel cell system. [doi: DOI: 10.1016/j.energy.2010.08.024]. 

Energy, In Press, Corrected Proof. 

Klatt, K.-U., & Marquardt, W. (2009). Perspectives for process systems engineering--

Personal views from academia and industry. [doi: DOI: 

10.1016/j.compchemeng.2008.09.002]. Computers & Chemical Engineering, 

33(3), 536-550. 

Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. [doi: DOI: 

10.1016/j.ejor.2007.10.013]. European Journal of Operational Research, 192(3), 

707-716. 

Kleijnen, J. P. C., & Beers, W. C. M. v. (2004). Application-Driven Sequential Designs 

for Simulation Experiments: Kriging Metamodelling. The Journal of the 

Operational Research Society, 55(8), 876-883. 

Kushner, J. t., & Moore, F. (2010). Scale-up model describing the impact of lubrication 

on tablet tensile strength. Int J Pharm, 399(1-2), 19-30. 

Lang, Y.-d., Malacina, A., Biegler, L. T., Munteanu, S., Madsen, J. I., & Zitney, S. E. 

(2009). Reduced Order Model Based on Principal Component Analysis for 

Process Simulation and Optimization†. [doi: 10.1021/ef800984v]. Energy & 

Fuels, 23(3), 1695-1706. 

Lang, Y., Zitney, S. E., & Biegler, L. T. (2011). Optimization of IGCC processes with 

reduced order CFD models. [doi: DOI: 10.1016/j.compchemeng.2011.01.018]. 

Computers & Chemical Engineering, In Press, Corrected Proof. 

Lebrun, P., Govaerts, B., Debrus, B., Ceccato, A., Caliaro, G., Hubert, P., et al. (2008). 

Development of a new predictive modelling technique to find with confidence 

equivalence zone and design space of chromatographic analytical methods. 

Chemometrics and Intelligent Laboratory Systems, 91(1), 4-16. 

Lepore, J., & Spavins, J. (2008). PQLI Design Space. Journal of Pharmaceutical 

Innovation, 3(2), 79-87. 



163 

 

 

Leuenberger, H. (2001). New trends in the production of pharmaceutical granules: batch 

versus continuous processing. [doi: DOI: 10.1016/S0939-6411(01)00199-0]. 

European Journal of Pharmaceutics and Biopharmaceutics, 52(3), 289-296. 

Liang, Y. C., Lee, H. P., Lim, S. P., Lin, W. Z., Lee, K. H., & Wu, C. G. (2002). 

PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS--

PART I: THEORY. [doi: 10.1006/jsvi.2001.4041]. Journal of Sound and 

Vibration, 252(3), 527-544. 

Lionberger, R., Lee, S., Lee, L., Raw, A., & Yu, L. (2008). Quality by Design: Concepts 

for ANDAs. The AAPS Journal, 10(2), 268-276. 

Lipsanen, T., Antikainen, O., Räikkönen, H., Airaksinen, S., & Yliruusi, J. (2007). Novel 

description of a design space for fluidised bed granulation. International Journal 

of Pharmaceutics, 345(1-2), 101-107. 

Lophaven, S. N., Nielsen, H. B., & Sondergaard, J. (2008). DACE: A Matlab Kriging 

Toolbox. 

Lucia, D. J., Beran, P. S., & Silva, W. A. (2004). Reduced-order modeling: new 

approaches for computational physics. [doi: 10.1016/j.paerosci.2003.12.001]. 

Progress in Aerospace Sciences, 40(1-2), 51-117. 

MacGregor, J., & Bruwer, M.-J. (2008). A Framework for the Development of Design 

and Control Spaces. Journal of Pharmaceutical Innovation, 3(1), 15-22. 

McKenzie, P., Kiang, S., Tom, J., Rubin, A. E., & Futran, M. (2006). Can pharmaceutical 

process development become high tech? AIChE Journal, 52(12), 3990-3994. 

Mendez, R., Muzzio, F., & Velazquez, C. (2010). Study of the effects of feed frames on 

powder blend properties during the filling of tablet press dies. [doi: 

10.1016/j.powtec.2010.02.010]. Powder Technology, 200(3), 105-116. 

Michaut, F., Busignies, V., Fouquereau, C., de Barochez, B. H., Leclerc, B., & 

Tchoreloff, P. (2010). Evaluation of a rotary tablet press simulator as a tool for 

the characterization of compaction properties of pharmaceutical products. Journal 

of Pharmaceutical Sciences, 99(6), 2874-2885. 

Mizonov, V., Berthiaux, H., Marikh, K., Ponomarev, D., & Barantzeva, E. (2004). 

Modeling continuous powder mixing by means of the theory of Markov chains. 

Particulate Science and Technology, 22(4), 379-389. 



164 

 

 

Muzzio, F. J., Dubey, A., Sarkar, A., Ierapetritou, M., & Wassgren, C. R. (2011). 

Computational Approaches for Studying the Granular Dynamics of Continuous 

Blending Processes, 1-DEM Based Methods. Macromolecular Materials and 

Engineering, 296(3-4), 290-307. 

Muzzio, F. J., Portillo, P. M., & Ierapetritou, M. G. (2009). Effects of rotation rate, 

mixing angle, and cohesion in two continuous powder mixers-A statistical 

approach. Powder Technology, 194(3), 217-227. 

Muzzio, F. J., Sudah, O. S., Chester, A. W., Kowalski, J. A., & Beeckman, J. W. (2002). 

Quantitative characterization of mixing processes in rotary calciners. Powder 

Technology, 126(2), 166-173. 

My-Ha, D., Lim, K. M., Khoo, B. C., & Willcox, K. (2007). Real-time optimization using 

proper orthogonal decomposition: Free surface shape prediction due to 

underwater bubble dynamics. [doi: 10.1016/j.compfluid.2006.01.016]. Computers 

& Fluids, 36(3), 499-512. 

Myers, R. H. (1990). Classical and Modern Regression with Applications (Second ed.). 

Boston, MA: PWS-KENT. 

Myers, R. H., & Montgomery, D. C. (1995). Response Surface Methodology: Process 

and Product in Optimization Using Designed Experiments: John Wiley \&amp; 

Sons, Inc. 

Nedderman, R. M., Tüzün, U., Savage, S. B., & Houlsby, G. T. (1982). The flow of 

granular materials--I: Discharge rates from hoppers. [doi: DOI: 10.1016/0009-

2509(82)80029-8]. Chemical Engineering Science, 37(11), 1597-1609. 

Ng, K. M. (2002). Design and development of solids processes - a process systems 

engineering perspective. Powder Technology, 126(3), 205-210. 

Ng, K. M., & Fung, K. Y. (2003). Product-centered processing: Pharmaceutical tablets 

and capsules. AIChE Journal, 49(5), 1193-1215. 

Nosal, R., & Schultz, T. (2008). PQLI Definition of Criticality. Journal of 

Pharmaceutical Innovation, 3(2), 69-78. 

Oh, M., & Pantelides, C. C. (1996). A modelling and simulation language for combined 

lumped and distributed parameter systems. Computers & Chemical Engineering, 

20(6-7), 611-633. 



165 

 

 

Oksanen, C. A., & García Muñoz, S. (2010). Process modeling and control in drug 

development and manufacturing. [doi: 10.1016/j.compchemeng.2010.04.013]. 

Computers and Chemical Engineering, 34(7), 1007-1008. 

Papalambros, P., Goovaerts, P., & Sasena, M. J. (2002). Exploration of Metamodeling 

Sampling Criteria for Constrained Global Optimization. Engineering 

Optimization, 263-278. 

Pedone, P., Romano, D., & Vicario, G. (2009). New Sampling Procedures in Coordinate 

Metrology Based on Kriging-Based Adaptive Designs. In P. Erto (Ed.), Statistics 

for Innovation (pp. 103-121): Springer Milan. 

Peterson, J. (2008). A Bayesian approach to the ICH Q8 definition of Design Space. 

Journal of Biopharmaceutical Statistics, 18(5),  

Peterson, J., & Lief, K. (2010). The ICH Q8 Definition of Design Space: A Comparison 

of the Overlapping means and Bayesian predictive approaches. Statistics in 

Biopharmaceutical Research, 2,  

Pistikopoulos, E. N., & Mazzuchi, T. A. (1990). A novel flexibility analysis approach for 

processes with stochastic parameters. Computers & Chemical Engineering, 14(9), 

991-1000. 

Pistone, G., & Vicario, G. (2009). Design for Computer Experiments: Comparing and 

Generating Designs in Kriging Models. In P. Erto (Ed.), Statistics for Innovation 

(pp. 91-102): Springer Milan. 

Plumb, K. (2005). Continuous Processing in the Pharmaceutical Industry: Changing the 

Mind Set. [doi: DOI: 10.1205/cherd.04359]. Chemical Engineering Research and 

Design, 83(6), 730-738. 

Polizzi, M. a., & García-Muñoz, S. (2011). A framework for in-silico formulation design 

using multivariate latent variable regression methods. International Journal of 

Pharmaceutics, 418(2), 235-242. 

Poon, J. M. H., Ramachandran, R., Sanders, C. F. W., Glaser, T., Immanuel, C. D., Doyle 

iii, F. J., et al. (2009). Experimental validation studies on a multi-dimensional and 

multi-scale population balance model of batch granulation. Chemical Engineering 

Science, 64(4), 775-786. 



166 

 

 

Portillo, P., Ierapetritou, M. G., & Muzzio, F. J. (2008). Characterization of continuous 

convective powder mixing processes. Powder Technology, 182(3), 368-378. 

Portillo, P., Muzzio, F., & Ierapetritou, M. (2008). Using Compartment Modeling to 

Investigate Mixing Behavior of a Continuous Mixer. Journal of Pharmaceutical 

Innovation, 3(3), 161-174. 

Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network-first principles 

approach to process modeling. AIChE Journal, 38(10), 1499-1511. 

Q8 Pharmaceutical Development. (2006). from 

http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128029.pd

f 

Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Kevin Tucker, P. 

(2005). Surrogate-based analysis and optimization. Progress in Aerospace 

Sciences, 41(1), 1-28. 

Ramachandran, R., Ansari, M. A., Chaudhury, A., Kapadia, A., Prakash, A. V., & 

Stepanek, F. (2012a). A quantitative assessment of the influence of primary 

particle size polydispersity on granule inhomogeneity. [doi: 

10.1016/j.ces.2011.11.045]. Chemical Engineering Science(In Press). 

Ramachandran, R., Arjunan, J., Chaudhury, A., & Ierapetritou, M. G. Model-based 

control-loop performance assessment of a continuous direct compaction 

pharmaceutical process. Submitted to Journal of Pharmaceutical Innovation. 

Ramachandran, R., & Barton, P. I. (2010). Effective parameter estimation within a multi-

dimensional population balance model framework. Chemical Engineering 

Science, 65(16), 4884-4893. 

Ramachandran, R., & Chaudhury, A. (2012b). Model-based design and control of a 

continuous drum granulation process. [doi: 10.1016/j.cherd.2011.10.022]. 

Chemical Engineering Research and Design(In Press). 

Ramachandran, R., Immanuel, C. D., Stepanek, F., Litster, J. D., & Doyle III, F. J. 

(2009). A mechanistic model for breakage in population balances of granulation: 

Theoretical kernel development and experimental validation. Chemical 

Engineering Research and Design, 87(4), 598-614. 

http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128029.pdf
http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128029.pdf


167 

 

 

Regis, R. G. (2011). Stochastic radial basis function algorithms for large-scale 

optimization involving expensive black-box objective and constraint functions. 

[doi: DOI: 10.1016/j.cor.2010.09.013]. Computers & Operations Research, 38(5), 

837-853. 

Rios, L. M., & Sahinidis, N. V. (2009). Derivative-free optimization: A review of 

algorithms and comparison of software implementation. AICHE Annual 

Conference, Nashville, TN. 

Romijn, R., Özkan, L., Weiland, S., Ludlage, J., & Marquardt, W. (2008). A grey-box 

modeling approach for the reduction of nonlinear systems. [doi: 

10.1016/j.jprocont.2008.06.007]. Journal of Process Control, 18(9), 906-914. 

Sacks, J., Welch, W. J., Toby, J. M., & Wynn, H. P. (1989). Design and Analysis of 

Computer Experiments. Statistical Science, 4(4), 409-423. 

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and 

opportunities. Computers & Chemical Engineering, 28(6-7), 971-983. 

Salman, A., Hounslow, M., & Jonathan, S. (2007). Granulation: Elsevier Science. 

Samsatli, N. J., Papageorgiou, L. G., & Shah, N. (1998). Robustness metrics for dynamic 

optimization models under parameter uncertainty. AIChE Journal, 44(9), 1993-

2006. 

Sarkar, A., & Wassgren, C. R. (2009). Simulation of a continuous granular mixer: Effect 

of operating conditions on flow and mixing. Chemical Engineering Science, 

64(11), 2672-2682. 

Savage, S. B. (1965). The mass flow of granular materials derived from coupled velocity-

stress fields. British Journal of Applied Physics, 16(12), 1885. 

Savage, S. B., & Sayed, M. (1981). Gravity flow of coarse cohesionless granular 

materials in conical hoppers. Zeitschrift für Angewandte Mathematik und Physik 

(ZAMP), 32(2), 125-143. 

Schaber, S. D., Gerogiorgis, D. I., Ramachandran, R., Evans, J. M. B., Barton, P. I., & 

Trout, B. L. (2011). Economic Analysis of Integrated Continuous and Batch 

Pharmaceutical Manufacturing: A Case Study. [doi: 10.1021/ie2006752]. 

Industrial & Engineering Chemistry Research, 50(17), 10083-10092. 



168 

 

 

Seitz, J. A., & Flessland, G. M. (1965). Evaluation of the physical properties of 

compressed tablets I. Tablet hardness and friability. Journal of Pharmaceutical 

Sciences, 54(9), 1353-1357. 

Sinka, I. C., Cunningham, J. C., & Zavaliangos, A. (2003). The effect of wall friction in 

the compaction of pharmaceutical tablets with curved faces: a validation study of 

the Drucker-Prager Cap model. [doi: DOI: 10.1016/S0032-5910(03)00094-9]. 

Powder Technology, 133(1-3), 33-43. 

Soh, J. L. P., Wang, F., Boersen, N., Pinal, R., Peck, G. E., Carvajal, M. T., et al. (2008). 

Utility of Multivariate Analysis in Modeling the Effects of Raw Material 

Properties and Operating Parameters on Granule and Ribbon Properties Prepared 

in Roller Compaction. Drug Development and Industrial Pharmacy, 34(10), 

1022-1035. 

Sotiropoulos, V., Contou-Carrere, M.-N., Daoutidis, P., & Kaznessis, Y. N. (2008). 

Model reduction of multiscale chemical langevin equations: a numerical case 

study. IEEE/ACM transactions on computational biology and bioinformatics / 

IEEE, ACM, 6(3), 470-482. 

Stephanopoulos, G., & Reklaitis, G. V. (2011). Process systems engineering: From 

Solvay to modern bio- and nanotechnology. A history of development, successes 

and prospects for the future. Chemical Engineering Science, 66(19), 4272-4306. 

Straub, D. A., & Grossmann, I. E. (1993). Design optimization of stochastic flexibility. 

Computers & Chemical Engineering, 17(4), 339-354. 

Swaney, R. E., & Grossmann, I. E. (1985). An index for operational flexibility in 

chemical process design. Part I: Formulation and theory (Vol. 31, pp. 621-630). 

Tabib, M. V., & Joshi, J. B. (2008). Analysis of dominant flow structures and their flow 

dynamics in chemical process equipment using snapshot proper orthogonal 

decomposition technique. [doi: 10.1016/j.ces.2008.04.046]. Chemical 

Engineering Science, 63(14), 3695-3715. 

Turkoglu, M., Aydin, I., Murray, M., & Sakr, A. (1999). Modeling of a roller-compaction 

process using neural networks and genetic algorithms. [doi: DOI: 10.1016/S0939-

6411(99)00054-5]. European Journal of Pharmaceutics and Biopharmaceutics, 

48(3), 239-245. 



169 

 

 

Varshney, A., & Armaou, A. (2008). Reduced order modeling and dynamic optimization 

of multiscale PDE/kMC process systems. Computers & Chemical Engineering, 

32(9), 2136-2143. 

Varshney, A., Pitchaiah, S., & Armaou, A. (2009). Feedback control of dissipative PDE 

systems using adaptive model reduction. AIChE Journal, 55(4), 906-918. 

Verkoeijen, D., Pouw, G. A., Meesters, G. M. H., & Scarlett, B. (2002). Population 

balances for particulate processes - a volume approach. Chemical Engineering 

Science, 57(12), 2287-2303. 

Villemonteix, J., Vazquez, E., Sidorkiewicz, M., & Walter, E. (2009). Global 

optimization of expensive-to-evaluate functions: an empirical comparison of two 

sampling criteria. Journal of Global Optimization, 43(2), 373-389. 

Villemonteix, J., Vazquez, E., & Walter, E. (2009). An informational approach to the 

global optimization of expensive-to-evaluate functions. Journal of Global 

Optimization, 44(4), 509-534. 

Vishal, G., & Marianthi, G. I. (2002). Determination of operability limits using simplicial 

approximation (Vol. 48, pp. 2902-2909). 

Vishal, G., & Marianthi, G. I. (2003). Framework for evaluating the 

feasibility/operability of nonconvex processes (Vol. 49, pp. 1233-1240). 

Wan, X., Pekny, J. F., & Reklaitis, G. V. (2005). Simulation-based optimization with 

surrogate models--Application to supply chain management. Computers & 

Chemical Engineering, 29(6), 1317-1328. 

Wang, J., Wen, H., & Desai, D. (2010). Lubrication in tablet formulations. [doi: DOI: 

10.1016/j.ejpb.2010.01.007]. European Journal of Pharmaceutics and 

Biopharmaceutics, 75(1), 1-15. 

Wassgren, C., Freireich, B., Li, J. F., & Litster, J. (2011). Incorporating particle flow 

information from discrete element simulations in population balance models of 

mixer-coaters. Chemical Engineering Science, 66(16), 3592-3604. 

Wassgren, C., & Sarkar, A. (2010). Continuous blending of cohesive granular material. 

Chemical Engineering Science, 65(21), 5687-5698. 



170 

 

 

Weir, G. J. (2004). A mathematical model for dilating, non-cohesive granular flows in 

steep-walled hoppers. [doi: DOI: 10.1016/j.ces.2003.09.031]. Chemical 

Engineering Science, 59(1), 149-161. 

Werther, J., Reimers, C., & Gruhn, G. (2008). Flowsheet simulation of solids processes - 

Data reconciliation and adjustment of model parameters. Chemical Engineering 

and Processing, 47(1), 138-158. 

Werther, J., Reimers, C., & Gruhn, G. (2009). Design specifications in the flowsheet 

simulation of complex solids processes. Powder Technology, 191(3), 260-271. 

Werther, J., Toebermann, J. C., Rosenkranz, J., & Gruhn, G. (2000). Block-oriented 

process simulation of solids processes. Computers & Chemical Engineering, 

23(11-12), 1773-1782. 

Winkel, M. L., Zullo, L. C., Verheijen, P. J. T., & Pantelides, C. C. (1995). Modeling and 

Simulation of the Operation of an Industrial Batch Plant Using Gproms. 

Computers & Chemical Engineering, 19, S571-S576. 

Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in 

chemistry solved by the PLS method 

Matrix Pencils. In B. Kågström & A. Ruhe (Eds.), (Vol. 973, pp. 286-293): Springer 

Berlin / Heidelberg. 

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of 

chemometrics. [doi: 10.1016/S0169-7439(01)00155-1]. Chemometrics and 

Intelligent Laboratory Systems, 58(2), 109-130. 

Wold, S., Sjöström, M., & Eriksson, L. (2002). Partial Least Squares Projections to 

Latent Structures (PLS) in Chemistry Encyclopedia of Computational Chemistry: 

John Wiley & Sons, Ltd. 

Wu, H., Heilweil, E. J., Hussain, A. S., & Khan, M. A. (2007). Process analytical 

technology (PAT): Effects of instrumental and compositional variables on 

terahertz spectral data quality to characterize pharmaceutical materials and tablets. 

International Journal of Pharmaceutics, 343(1-2), 148-158. 

Yin, J., Ng, S. H., & Ng, K. M. (2011). Kriging metamodel with modified nugget-effect: 

The heteroscedastic variance case. [doi: 10.1016/j.cie.2011.05.008]. Computers 

&amp; Industrial Engineering, 61(3), 760-777. 



171 

 

 

Yu, A. B., Standish, L., & Lu, L. (1995). Coal agglomeration and its effects on bulk 

density. Powder Technology. 

Yu, A. B., Zhu, H. P., Zhou, Z. Y., & Yang, R. Y. (2008). Discrete particle simulation of 

particulate systems: A review of major applications and findings. Chemical 

Engineering Science, 63(23), 5728-5770. 

Yu, L. (2008). Pharmaceutical Quality by Design: Product and Process Development, 

Understanding, and Control. Pharmaceutical Research, 25(4), 781-791. 

Yuan, J., Wang, K., Yu, T., & Fang, M. (2008). Reliable multi-objective optimization of 

high-speed WEDM process based on Gaussian process regression. [doi: DOI: 

10.1016/j.ijmachtools.2007.07.011]. International Journal of Machine Tools and 

Manufacture, 48(1), 47-60. 

Zhu, H. P., & Yu, A. B. (2004). Steady-state granular flow in a three-dimensional 

cylindrical hopper with flat bottom: microscopic analysis. Journal of Physics D-

Applied Physics, 37(10), 1497-1508. 

Zhu, H. P., Yu, A. B., & Wu, Y. H. (2006). Numerical investigation of steady and 

unsteady state hopper flows. Powder Technology, 170(3), 125-134. 

Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of 

particulate systems: Theoretical developments. [doi: 10.1016/j.ces.2006.12.089]. 

Chemical Engineering Science, 62(13), 3378-3396. 

Zinchuk, A. V., Mullarney, M. P., & Hancock, B. C. (2004). Simulation of roller 

compaction using a laboratory scale compaction simulator. [doi: DOI: 

10.1016/j.ijpharm.2003.09.034]. International Journal of Pharmaceutics, 269(2), 

403-415. 

 

 


