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ABSTRACT OF THE DISSERTATION

Analysis of Big Data by Split-and-Conquer and Penalized

Regressions: New Methods and Theories

by Xueying Chen

Dissertation Director: Minge Xie and Cun-Hui Zhang

This dissertation develops methodologies for analysis of big data and its related the-

oretical properties. Recent years, tremendous progress has been made in analysis of

big data, especially techniques via penalization and shrinkages. However, there are

still many challenging problems to be solved. This dissertation focuses on two settings

where (i) the data is too large to fit into a single computer or too expensive to perform

a computationally intensive data analysis; or (ii) there are unknown group structures

of highly correlated variables. In this dissertation, we first propose a Split-and-Conquer

approach to analyze extraordinarily large data. Then, under linear regression settings

with highly correlated variables, we investigate model selection properties of OSCAR

(octagonal shrinkage and clustering algorithm for regression) estimators (Bondell &

Reich, 2008) and propose a more general method Group OSCAR which incorporates

both prior knowledge of group structures and correlation patterns among explanatory

variables.
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We first propose a split-and-conquer approach and illustrate it using a computa-

tionally intensive penalized regression method. We show that the combined result is

asymptotically equivalent to the corresponding analysis result of using the entire data

all together. In addition, we demonstrate that the approach has an inherent advantage

of being more resistant to false model selections. Furthermore, when a computational

intensive algorithm is used, we show that the split-and-conquer approach can substan-

tially reduce computing time and computer memory requirement.

Detecting meaningful ‘groups’ of highly correlated variables has been studied a lot.

OSCAR estimators provide a feasible way to perform variable selection and clustering

simultaneously. However, no theoretical results are provided for OSCAR estimators. In

this dissertation, we provide a set of mild conditions under which OSCAR estimators are

able to select the true model and keep the order of the coefficients by their magnitudes

when the correlations are high.

In the last part of this dissertation, we propose a new method. This method not

only takes use of known group structures but also incorporates the correlation patterns

leading to the underlying unknown group structure. It extends most of the model

selections methods in the literature, and has a general grouping effect.
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Chapter 1

Introduction

Consider a generalized linear model:

E(yi) = g(x′
iβ), i = 1, . . . , n

where yi is a response variable and xi is a p × 1 explanatory vector, β is a p × 1

vector of unknown parameters, and g is a link function. Both the sample size n and

the number of parameters p can be potentially very large. We assume that, given

X = (x1, . . . ,xn)
′, the conditional distribution of y = (y1, . . . , yn)

′ follows the canonical

exponential distribution:

f(y;X,β) =

n∏
i=1

f0(yi; θi) =

n∏
i=1

{
c(yi)exp

[
yiθi − b(θi)

ϕ

]}
, (1.1)

where θi = x′
iβ, i = 1, . . . , n. The log-likelihood function log f(y;X,β) is then given

by

ℓ(β;y,X) = [y′Xβ − 1′b(Xβ)]/n, (1.2)

where b(θ) = (b(θ1), . . . , b(θn))
′ for θ = (θ1, . . . , θn)

′. In the case when p is large (or

grows with n) and β is sparse (i.e., many elements of β are zero), a penalized likelihood

estimator is often used, which is defined as, in a general form,

β̂
(a)

= argmaxβ {ℓ(β;y,X)/n− ρ(β;λa)} . (1.3)
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Here, y is a n× 1 response vector, X is a n× p matrix; ρ is the penalty function with

tuning parameter λa. The superscript a refers to the result obtained by analyzing all

data simultaneously. Depending on the choice of penalty function ρ(β;λa), we have

bridge regression (Frank & Friedman, 1993), LASSO estimator (Tibshirani, 1996; Chen

et al., 2001), LARS algorithm (Efron et al., 2004), SCAD estimator (Fan & Li, 2001)

and MCP estimators (Zhang, 2010), among others. In this dissertation, we focus on

a setting used in the review article of Fan & Lv (2011) which covers most commonly

used penalty functions currently used in practice. Under the setting, Fan & Lv (2011)

show that the penalized estimators under the generalized linear models (1.3) have good

asymptotic properties, such as model selection consistency and asymptotic normality

etc., under some regularity conditions.

Although penalized regression has been a successful method to perform variable

selection when p is large, computational intensive algorithms restrain its application,

especially when massive data is available. To solve computing problems, we propose a

split-and-conquer approach for the situation that n is extraordinarily large, too large

to perform the aforementioned penalized regression using a single computer or avail-

able computing resources to us. In this case, without touching the existing penalized

regression methods, we split the whole dataset into K subsets of smaller sample sizes.

Each subset is then analyzed separately, provided that such an analysis can be per-

formed on the smaller subsets. A set of K results are obtained. Subsequently, the K

results are combined to obtain a final result. We prove that, under some mild conditions

and with a suitable choice of K, our combined estimator using the split-and-conquer

approach is asymptotically equivalent to the penalized estimator obtained from ana-

lyzing entire data all together. The combined estimator can keep the sparsity property
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and is model selection consistent as long as the penalized estimators from the imposed

penalty function are sparse and model selection consistent. When asymptotic normality

is attainable, the combined estimator does not lose any efficiency through the split-and-

conquer process, in the sense that it has the same asymptotic variance as the penalized

estimator using entire data all together. In other words, although the combined esti-

mator may not be exactly the same as the one using the entire data all together, it

is as asymptotically efficient and asymptotically equivalent as the penalized estimator

analyzing the entire data all together. In addition, the split-and-conquer approach in-

volves random splitting in the first step. Taking advantage of this procedure, we further

provides an upper bound for the number of false selected variables and lower bound

for the truly selected variables. In fact, split-and-conquer is a very general approach

that can be applied for any statistical analysis method. As long as a computational

intensive algorithm with computing expenses at the order of O(na), a > 1, is used,

we show using a simple calculation, as well as demonstrate using numerical examples,

that the split-and-conquer approach can reduce computing time and computer memory

requirement. The details of the proposed method are presented in Chapter 2.

In Chapter 3, we restrain models to be simple linear regression model

y =

p∑
i=1

xiβi + ε,

where y = (y1, ..., yn)
T is the response vector of n observations, x1 = (x11, ..., x1n)

T

. . . xp = (xp1, . . . , xpn)
T are the vectors of p explanatory variables, β1, . . . , βp are the

corresponding regression coefficients and ε = (ε1, . . . , εn)
T is the vector of independent

random errors. We assume that the x’s are standardized so that
∑n

j=1 xij = 0 and∑n
j=1 x

2
ij = n, i = 1, . . . , p. The aforementioned methods and also many other pa-

pers published about penalized regression, however, are designed to select individual
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variables with low correlations. They are not particularly effective to incorporate the

correlation structures among variables. However, detecting meaningful ‘groups’ of pre-

dictors are important to prediction accuracy and model interpretation (Zou & Hastie,

2005; Bondell & Reich, 2008). Here, highly correlated variables should be grouped in

the sense that they are jointly included or excluded and have similar or exactly the same

coefficients. Compared with other estimators, OSCAR estimators are more desirable

since they achieve an exact grouping property, that is, the absolute coefficients of two

highly correlated variables are enforced to be exactly the same. While the grouping

effect has been found to be desirable, a fundamental question of OSCAR estimators is

whether they can select the true predictors that have nonzero coefficients. If yes, what

conditions are needed for OSCAR estimators to be model selection consistent? We find

that, unlike other penalized estimators which obtain grouping property by adding a

quadratic or L2 norm-like penalty on coefficients’ differences, OSCAR penalty function

can be rewritten as a L1 norm penalty on coefficients plus a L1 norm penalty on coef-

ficients’ differences. The nondifferentiation of L1 norm function distinguishes OSCAR

estimators from others and leads to the technique difficulties. In this dissertation, we

consider a more restrictive definition of sign consistency which requires estimators to

keep the magnitude order of the coefficients beside selecting the true model. We pro-

vide a set of mild conditions under which OSCAR estimators are sign consistent. The

details are presented in Chapter 3.

In practice, group structures can be retrieved from different sources. On one hand,

as mentioned above, the data itself contain group structures which are not available be-

forehand. For instance, identical or highly correlated variables may need to be grouped

together because of their similarity. In other words, the underlying group information
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is implied in the correlation patterns among explanatory variables. On the other hand,

prior knowledge can provide information about group structures. For example, dummy

variables created to represent different factors of one categorical variable are considered

as one group or the experts who collect the data may suggest to split the explana-

tory variables into several groups. The existing approaches either only take correlation

patterns into consideration (Zou & Hastie, 2005; Bondell & Reich, 2008), or consider

the scenario that group structures are completely given (Yuan & Lin, 2006; Zhao &

Yu, 2006). We propose Group OSCAR that is able to capture group features in the

data from both sources for variable selection. The proposed penalty consists of two

regularity functions. In particular, a representative variable, which is a weighted aver-

age of explanatory variable in a certain group, is created for each known group. The

weights will be automatically determined by the algorithm according to corresponding

coefficients’ magnitudes. Then, if two representative variables are highly correlated,

the corresponding two groups will be merged. In addition, model selection consistency

property is explored. The proposed method is presented in Chapter 4.

The rest of this thesis is organized as follows. In Chapter 2, we develop a general

split-and-conquer approach for extraordinarily large data analysis problem and demon-

strate it using computationally intensive penalized regression. In Chapter 3, we explore

model selection properties of OSCAR estimators. In Chapter 4, we propose Group OS-

CAR that is able to incorporate both prior group information and correlation structures

among explanatory variables.
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Chapter 2

A Split-and-Conquer Approach for Analysis of

Extraordinarily Large Data

2.1 Introduction

In this chapter, we consider the situation that the data size is extraordinarily large, too

large to fit into a single computer or be analyzed with available computing resources.

We propose a split-and-conquer approach to solve the problem and illustrate it using the

aforementioned penalized regression methods. Specifically, we split the whole dataset

intoK subsets of smaller sample sizes. Each subset is then analyzed separately, provided

that such an analysis can be performed on the smaller subsets. A set of K results are

obtained. Subsequently, the K results are combined to obtain a final result. Our task

is to investigate whether the combined overall result can be the same or as good as the

result that is obtained from analyzing the entire dataset and, if conditions are needed,

what they are. Although the split-and conquer approach can apply more generally,

to facilitate our discussion, we focus on a penalized regression setting considered in

the review article of Fan & Lv (2011), which covers most commonly used penalty

functions currently used in penalized regression practice such as LASSO, SCAD, MCP

and others. Under the setting, Fan & Lv (2011) show that the penalized estimators

under the generalized linear models (1.3) have good asymptotic properties, such as

model selection consistency and asymptotic normality, etc. We investigate in this paper
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specifically whether the combined result from the proposed split-and-conquer method

using the corresponding penalized regression still retains these desired properties and,

if so, under which conditions.

The idea behind the proposed split-and-conquer approach is simple and straightfor-

ward. Its essence can be illustrated using a simple special case of the regular Gaussian

linear regression where we have finite p and non-sparse β. In particular, the ordinary

least squares estimator using entire data all at once in this case is

β̂
(a)

= (X ′X)−1X ′y.

When we split the dataset into K pieces, the ordinary least squares estimator obtained

from the kth subset is β̂k = (X ′
kXk)

−1X ′
kyk, where Xk is the design matrix and yk is

the response vector for data in the kth subset. These K least square estimators can be

combined, using the inverse of β̂k’s variance Sk
d
= X ′

kXk as their combining weights,

to form a new estimator

β̂
(c)

= (

K∑
k=1

X ′
kXk)

−1
K∑
k=1

(X ′
kXk)β̂k = (X ′X)−1

K∑
k=1

X ′
kyk = (X ′X)−1X ′y.

This combined new estimator β̂
(c)

is identical to β̂
(a)

. Thus, we do not lose any in-

formation through the split-and-conquer approach in the case of the regular Gaussian

linear regression. For penalized estimators and under generalized linear models, the re-

sults are not so straightforward. Our specific aim in this paper is to investigate whether

we have any similar results to support the split-and-conquer approach under general-

ized linear models and for penalized estimators. We also investigate whether there are

any special properties and benefits for more complex settings beyond this simple case

involving a small fixed p and the least squares estimation.

We prove that, under some mild conditions and with a suitable choice of K, our
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combined estimator using the split-and-conquer approach is asymptotically equivalent

to the penalized estimator obtained from analyzing entire data all at once. Here, the

number of splitting K should be relatively large so that each subset is small enough

and can by analyzed using computing resources available to us. But it should not be

too large either, because each subset should contain enough data to provide a mean-

ingful estimator for the unknown regression parameter β. The combined estimator

can keep the sparsity property and is model selection consistent as long as the penal-

ized estimators from the imposed penalty function have the properties of sparsity and

model selection consistency. When asymptotic normality is attainable, the combined

estimator does not lose any efficiency through the split-and-conquer process, in the

sense that it has the same asymptotic variance as the penalized estimator using entire

data all at once. In other words, although the combined estimator may not be exactly

the same as the one using the entire data all at once, it is as asymptotically efficient

and asymptotically equivalent as the penalized estimator analyzing the entire data all

together. There is no price to pay under a regular Gaussian linear regression. But

we show that under generalized linear models and with more complicated settings, it

requires stronger conditions such as larger coefficients signals or slower growth rate of

p to retain the aforementioned desired properties for the combined estimator from a

split-and-conquer approach.

The split-and-conquer approach involves combining the results of subsets that are

obtained from random splitting. Utilizing this procedure, improvements over the regular

penalized estimators in model selection can be expected through a majority voting in the

combining step. As a result, we are able to establish an upper bound for the expected

number of falsely selected variables and a lower bound for the expected number of
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truly selected variables. Several papers in the literature have found that averaging over

independent observations can reduce the impact of random errors. For instance, Fan

et al. (2010) propose refitted cross-validation to attenuate false correlations among the

random errors and explanatory variables that they call spurious variables. Meinshausen

& Buhlmann (2010) introduce stability selection which is a combination of subsampling

and model selection algorithms. They get an exact error control bound because the

data from subsampling are independent. Shah & Samworth (2012) propose a variant

of stability selection with improved error control property. Similarly, the split-and-

conquer approach provides resistance to selection errors caused by spurious correlations

and keeps a large amount of variables that are in the true model at the same time.

Usually, this control on the selected variables are not available for conventional penalized

estimators.

Furthermore, when a computational intensive algorithm with computing expenses at

the order of O(na), a > 1, is used, we demonstrate that the split-and-conquer approach

can reduce computing time and computer memory requirement. For instance, consider

the example of linear regression with L1 norm penalty function. The LARS (Efron

et al., 2004) algorithm, which has been considered by some researchers as a fast and

efficient algorithm to solve the LASSO problem, requires O(n3) computations when

p ≥ n. The computing time can be costly when both n and p are extraordinarily large.

In this case, we show both mathematically and numerically the proposed split-and-

conquer approach with LARS can save up to (1 − 1/K2)% computing time, where K

is the number of splitting. Indeed, our numerical studies in Section 4 provide several

examples across different models and penalized methods in which the proposed split-

and-conquer approach provides substantial savings in computing time while producing
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comparable estimators. In some practice, the split-and-conquer approach provides a, if

not the only, feasible way to carry out such analysis.

The split and conquer approach is intuitive and similar ideas have also been explored

by the others. For instance, Mackey et al. (2011) propose a divide-and-conquer method

for matrix factorization, in which the authors partition a large-scale matrix into subma-

trix, factor each submatrix and then combine submatrix estimates. A similar practice

can also be found in the computer sciences community under the name of parallel and

distributed computing (see, e.g., Andrews (2000)). However, the research there focuses

mainly on computer sciences aspects, such as accessing to a shared memory, exchanging

information between processors, etc. There is no systemic and theoretical study from

statistical prospects, especially on the combination methodology and the statistical

performance of the overall result from a statistical analysis.

The rest of this chapter is organized as follows. Section 2.2 proposes a split-and-

conquer approach and a combined estimator under the generalized linear regression

models. Section 2.3 studies theoretical properties of the combined estimator and also

investigate issues related to error bound controls and computing time. Section 2.4

illustrates the results using simulations and real data from an application of cargo

screening in the U.S. Port-of-Entries (POEs) practices. Section 2.5 provides further

discussions. Section 2.6 gives mathematical proofs of theorems and lemmas.

2.2 Split-and-conquer for penalized regressions

Suppose β is a p × 1 vector of parameters that lies in the parameter space Ω and the

true parameter, denoted by β0, is sparse. Let us divide the entire dataset of size n into

K subsets and the kth subset has nk observations: (xk,i, yk,i), i = 1, . . . , nk. For the
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kth subset, the log-likelihood function is

ℓ(β;yk,Xk) = [y′
kXkβ − 1′b(Xkβ)]/nk, k = 1, . . . ,K,

where yk = (yk,1, . . . , yk,nk
)′ is a nk × 1 response vector and Xk = (x′

k,1, . . . ,x
′
k,nk

)′ is

a nk × p matrix. Corresponding to (1.3), the penalized estimator for the kth subset is:

β̂k = argmaxβ {ℓ(β;yk,Xk)/nk − ρ(β;λk)} ,

where ρ(β;λk) is the penalty function with tuning parameter λk. To simplify our

discussion and following Fan & Lv (2011), we write ρ(β;λk) =
∑p

j=1 ρ(βj ;λk) and

assume that the penalty function ρ(βj ;λk) satisfy the following condition:

• (PC) Assume ρ(t;λ) is increasing and concave in t ∈ [0,∞), and has a continuous

derivative ρ′(t;λ) with ρ′(0+;λ) > 0. In addition, ρ′(0+;λ) is increasing in λ ∈

[0,∞) and ρ′(0+;λ) is independent of λ.

The class of penalty functions satisfying Condition (PC) covers most commonly used

penalty functions, including L1 penalty, SCAD, MCP, among others.

From Fan & Lv (2011), the penalized estimator β̂k has the so-called sparsity prop-

erty with many zero entries. Let us denote by Âk = {j : β̂k,j ̸= 0} the set of selected

variables (non-zero elements) of β̂k. Also, for any indices set S, denote by β̂k,S a |S|×1

vector that is formed by the elements of β̂k whose indices are in S. Thus, β̂k,Âk
is the

sub-vector that contains only the non-zero elements of β̂k. Note that, since each β̂k is

estimated from a different subset of data, Âk can be different from one to another and

the K vectors β̂k,Âk
, k = 1, . . . ,K, may have different lengths.

In order to obtain a combined estimator of β from β̂k’s that retains good perfor-

mance, we use a majority voting method. There are two considerations. First, the
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combined estimator should be formed based on the estimators from the subsets β̂k’s. A

variable that is not selected in any of Âk = {j : β̂k,j ̸= 0} should also be excluded by the

combined estimator. On the other hand, Âk are subject to selection errors because only

a portion of data is analyzed and the penalized likelihood estimator does not always

guarantee the perfect selection. There is always some mismatch between the set Âk

from the analysis of the kth subset and the true nonzero set, say A d
= {j : β0

j ̸= 0}. We

apply a majority voting method to handle these issues. In our majority voting method,

we define

Â(c) d
=

{
j :

K∑
k=1

I(β̂k,j ̸= 0) > w

}
as the set of selected variables of the combined estimator, where w ∈ [0,K) is a prespec-

ified threshold and I is the indicator function. We always have Â(c) ⊂
∪K

k=1 Âk. When

the numbers of elements in Âk, denoted by |Âk|, for k = 1, . . . ,K, are small and the sets

Âk have lots of common elements, the numbers of elements in Â(c), denoted by |Â(c)|,

can be much smaller than p. In one extreme casein which the threshold w ≥ K−1, the

majority voting set Â(c) contains only those variables that are selected by all penalized

estimators from the subsets. In the other extreme case in which w = 0, Â(c) contains

those variables that are selected by at least one penalized estimator from the subsets.

The majority voting idea is closely connected with the novel developments by Mein-

shausen & Buhlmann (2010) and Shah & Samworth (2012) on stability selection. For

example, we may view the quantity
∑K

k=1 I(β̂k,j ̸= 0)/K as a variant version of Π̂λ
j , the

probability of variable j to be selected with tuning parameter λ, used in Meinshausen

& Buhlmann (2010). However, the goal of Meinshausen & Buhlmann (2010) and Shah

& Samworth (2012) is to develop stable penalized estimators, which is different from

ours. Although our development also cares about performance and stable estimation,
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the main focus is to investigate whether we can analyze extreme large data by split-

ting the task and thus computational feasibility is the forefront of our development.

Different from Meinshausen & Buhlmann (2010) and Shah & Samworth (2012) (which

will be computationally infeasible for extraordinarily large data due to multiple rounds

of calculation and subsampling), the proposed majority voting approach only requires

one-round calculation and each subset has much less observations especially when K is

large. These difference can help improve computing efficiency and time which in turn

increase the feasibility of handling extraordinarily large data. Also, instead of using the

same tuning parameter λ for all subsets, our β̂k from each subset is calculated from sub-

set k with tuning parameter λk chosen by a criterion, e.g. AIC, BIC or cross-validation,

independently within each subset. The K tuning parameters are often not the same.

Finally, our development applies to the case when K −→∞. It subsumes the situation

discussed in Meinshausen & Buhlmann (2010) or Shah & Samworth (2012) in which

K = 2 or finite.

We introduce the following notations. For any θ = (θ1, . . . , θn), define

µ(θ) = (µ(θ1), . . . , µ(θn))
′ and Σ(θ) = diag(σ(θ1), . . . , σ(θn)),

where µ(θ) = ∂b(θ)/∂θ and σ(θ) = ∂2b(θ)/∂2θ. We also define weight matrices

Ŝk
d
= X ′

kΣ(θ̂k)Xk, (2.1)

where θ̂k = Xkβ̂k. The weight matrix Sk comes from the second order condition of the

penalized likelihood function. It is approximately the inverse of the covariance matrix

S0
k = X ′

kΣ(θ0
k)Xk with θ0

k = Xkβ
0, where β0 is the true coefficients.
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We propose to use the following combined estimator, which is the weighted average

of β̂k,Â(c) , k = 1, . . . ,K:

β̂
(c) d

= A

(
K∑
k=1

A′SkA

)−1 K∑
k=1

A′SkAβ̂k,Â(c) , (2.2)

where E = diag(I∑K
k=1 I(β̂k,j ̸=0)>w) and A = EÂ(c) . Here, for any set S, ES stands for

an p× |S| submatrix of E formed by columns whose indices are in S.

2.3 Theoretical results

In this section, we investigate the asymptotic properties of the combined estimator β̂
(c)

defined in (2.2), and compare it with the penalized estimator β̂
(a)

that is obtained from

analyzing the entire dataset all at once as defined in (1.3).

2.3.1 Sign consistency

We first show that the combined estimator is sign consistent, i.e. each component of the

combined estimator has the same sign as that of its true value, given that the penalized

estimator obtained from each subset is consistent.

Denote by β0 = (β0
1 , . . . , β

0
p) the true parameter. Also, denote by A = {i : β0

i ̸= 0}

the true nonzero set and B d
= Ac its complement or the set of noise variables. We write

the minimal signal as β∗ = min{|β0
j | : β0

j ̸= 0}. For any indices set S, XS stands for an

n × |S| submatrix of X formed by columns with indices in S. Similarly, Xk,S stands

for an nk × |S| submatrix of Xk formed by columns with indices in S.

In order to obtain model selection consistency of the combined estimator, we require

certain regularity conditions on the design matrix. Assumption A1 basically requires

that the norms of the design matrices are proportional to the sample sizes in the subsets

and the entire data. These conditions are mild and often satisfied in practice. More
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specifically, we assume

A1

∥[X ′
k,AΣ(Xk,Aβ

0
A)Xk,A]

−1∥∞ = O(bs,Kn−1
k ),

∥[X ′
AΣ(XAβ

0
A)XA]

−1∥∞ = O(bs,Kn−1),

∥X ′
k,AcΣ(θ0

k)Xk,A[X
′
k,AΣ(θ0

k)Xk,A]
−1∥∞ ≤ min{Cρ′(0+)/ρ′(β∗/2;λk), O(nα

k )},

maxδ∈N0 maxj=1,...,p λmax[X
′
k,Adiag{|xk,j | ◦ |µ′′(Xk,Aδ)|}Xk,A] = O(nk),

where {bs,K} is a diverging sequence of positive numbers that depends on s and K;

C ∈ (0, 1), α ∈ [0, 1/2] and N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ β∗/2}. Here, the derivative

is taken componentwise and ◦ is componentwise product.

Since the weight matrices Ŝk = X ′
kΣ(θ̂k)Xk use θ̂k = Xkβ̂ rather than the true θ0

k,

we further assume the following conditions to control the bias caused by an estimation

of the weight matrix.

A2

b(θ) has the third derivative b′′′(θ),

∥XT
k,ADkXk,A{XT

k,AΣ(θ0k)Xk,A}−1∥∞ = o(1),

∥I + {XT
AΣ(θ0)XA}−1

∑K
k=1X

T
k,ADkXk,A∥∞ = O(1),

where Dk = diag(dkj), dkj = b′′′(xT
j δ)x

T
j (δ−β0

A) with δ ∈ N0 and xj in subset k, and

D = diag(Dk).

Let vn,K and un,K be two diverging sequences depending on the total sample size n

and the number of subsets K. Assume the following conditions

A3

bs,Kvn,K/(nβ∗) = o(1), bs,Kρ′(β∗/2;λk)/β∗ = o(1),

nkβ∗s = o(1), nαsβ2
∗/(K

αλk) = o(1),

un,K/(nλk) = o(1), vn,Knα−1/(Kαλk) = o(1),

λkκ0 = o(τ0),

where κ0 = maxδ∈N0 κ(ρ; δ) and τ0 = minδ∈N0 λmin[n
−1
k XT

k,AΣ(Xk,Aδ)Xk,A].
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In Condition A3, vn,k and un,k are related to the error tolerance level. Specifically,

the probability of obtaining the correct signs of nonzero variables will increase with

vn,k; the probability of excluding variables with zero coefficients will increase with un,k.

Therefore, smaller error tolerance probability will lead to larger penalty level (larger

λk) and thus requires larger signal strength β∗.

Compared with the conditions in Fan & Lv (2011), ConditionA3 explains the inher-

ent connections between the minimal signal β∗, model size s, the number of parameters

p and the sample size n rather than just specifies a set of possible choices. Consider

the signal strength used in Fan & Lv (2011), β∗ = O(n−γ log n), γ ∈ (0, 1/2]. In this

case, we get the following conditions which are consistent with the conditions in Fan &

Lv (2011):

A3′

β∗ = O(n−γ log n), γ ∈ (0, 1/2]; s = O(nα0), α0 ∈ (0, 1),

vn,K =
√
Kn log n; un,k = K1/2n1/2−α1(log n)1/2,

bs,K = o(min{K−1/2n1/2−γ
√
log n, s−1nγ/ log n}); vn,Knα−1/(Kαλk) = o(1);

ρ′(β∗/2;λk) = o(b−1
s,Kn−γ log n); λk ≫ n−α1(log n)2/Kα;

K = o{min(n1−2γ log n, n1−α0)}; λkκ0 = o(τ0),

where α1 = min(1/2, 2γ − α0) − α τ0 = minδ∈N0 λmin[n
−1
k XT

k,AΣ(Xk,Aδ)Xk,A], and

κ0 = maxδ∈N0 κ(ρ; δ).

Theorem 2.1 Suppose the regularity A1, A2 and A3 (A3’) are satisfied. Assume that

the dataset is divided into K subsets and nk = O(n/K), then with probability at least

1− 2Ks exp{−v2n,K/(nK)} − 2K(p− s) exp{−u2n,K/(nK)},

the combined estimator is sign consistent, i.e. sgn(β̂
(c)
) = sgn(β0). More specifically,

we have ∥β̂(c)

A − β0
A∥∞ ≤ β∗/2 and β̂

(c)

Ac = 0.
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Because of the split-and-conquer approach, the growth rate of log p is controlled by

n1−α1/K rather than n1−α1 . In other words, if the split-and-conquer approach wants to

detect the same signal strength as complete dataset analysis, it pays the price of allowing

only the slower rate p = o(e(n
1−α/K)) rather than p = o(e(n

1−α)). When K = O(1), the

combined estimator achieves the same convergency order as the complete data analysis

although the probability of sign consistency is still smaller.

2.3.2 Oracle property

In this subsection, we show that, after we strengthen the regularity conditions, our

combined estimator can also have such an oracle property with a better rate of model

selection consistency and asymptotic normality.

First we show that the combined estimator can converge at the order of O(
√

s/n)

under L2 norm. Furthermore, we show that the combined estimator obtains asymptotic

normality with the same variance as the penalized estimator using entire data all to-

gether. Therefore, we fully establish the asymptotic equivalence between the combined

estimator and the penalized estimator using entire data all together.

Assume the following conditions on the design matrix

A4

minδ∈N0 λmin(X
T
k,AΣ(θ̃

δ
k)Xk,A) = cnk,

tr(XT
k,AΣ(θ0

k)Xk,A) = O(snk),

∥XT
k,AcΣ(θ0

k)Xk,A∥2,∞ = O(nk),

maxδ∈N0 maxj=1,...,p λmax[X
′
k,Adiag{|xk,j | ◦ |µ′′(Xk,Aδ)|}Xk,A] = O(nk),

λmax((X
T
AΣ(θ

0)XA)
−1) = O(n−1),

where θ̃
δ
k = Xk,Aδ, ∥A∥2,∞ = max∥v∥2=1 ∥Av∥∞ and N0 = {δ ∈ ℜsn : ∥δ − β0

A∥∞ ≤

β∗/2}. Here, the derivative is taken componentwise and ◦ is componentwise product.
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Condition A4 is generally stronger than condition A1 as it restricts the L2 norm

instead of L∞ norm of the design matrix.

Let un,K be a diverging sequence depending on the total sample size n and the

number of subsets K. We impose the following conditions on the tuning parameters

and signal strength

A5

√
s/nk/β∗ = o(1),

√
s/nk/λk = o(1),

λkκ0 = o(1), ρ′(β∗/2;λk) = min{O(n
−1/2
k ), o(s−1/2n−1/2)},

un,K/(nλk) = o(1), pK exp{−u2n,k/(nK)} = o(1),

where κ0 = maxδ∈N0 κ(ρ; δ).

Condition A5 controls the bias term introduced by the penalty function. Compared

with Condition A3, Condition A5 also requires that the probability of selecting true

model goes to 1 by restricting un,k.

A6
maxi=1,...,nE|yi − b′(θ0i )|3 = O(1),∑n

i=1(z
′
iB

−1zi)
3/2 → 0 as n→∞,

where B = X ′
AΣ(θ0)XA and XA = (z1, . . . , zn)

′.

The equivalence results are stated in the following theorem.

Theorem 2.2 Suppose the regularity conditions A4-A5 hold and s = O(n
1/3
k ). Assume

the dataset is divided into K subsets, K ≤ O(s), and nk = O(n/K) .

(i) With probability approaching 1, β̂
(c)

B = 0 as n→∞ and ∥β̂(c)

A −β0
A∥2 = O(

√
s/n).

(ii) Suppose assumption A6 holds and further assume s = o(n
1/3
k /K1/3) and ρ′(β∗/2;λk) =

o(s
−1/2
n n

−1/2
k K−1/2). If D is a q × s matrix such that DD′ → G, where G is a
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q × q symmetric positive definite matrix, we have

D[XAΣ(θ0)XA]
1/2(β̂

(c)

A − β0
A)

D−→ N(0, ϕG).

Fan & Lv (2011) show that D[XAΣ(θ0)XA]
1/2(β̂

(a)

A − β0
A)

D−→ N(0, ϕG). From

Theorem 2.2 (ii), the combined estimator β̂
(c)

A has the same limiting normal distribution

as β̂
(a)

A under similar conditions. Thus, even with K going to infinity, the combined

estimator β̂
(c)

A is asymptotically as efficient as the penalized estimator β̂
(a)

A which is

obtained using the entire data all together. Together with the fact that both estimators

are model selection consistent, the combined estimator is asymptotically equivalent

to the penalized estimator analyzing the entire data all together. In theorem 2.2,

we require β∗ needs to be larger than O(
√

s/nk) to ensure the sign consistency for

the penalized estimator of each subset. Compared with the signal strength O(
√

s/n)

required by the penalized estimator using the entire dataset, the combined estimator

needs larger coefficients to entail L2 norm consistency. In addition, s has to be at

the order of O(n
1/3
k ) which is smaller than O(n1/3) as needed by analyzing the entire

dataset.

2.3.3 Error control

Since the observations are independent and the splitting is random, the majority voting

proposed in our approach enables us to find an upper bound of the expected number

of falsely selected variables and a lower bound of the expected number of truly selected

variables for the combined estimator. The bounds lead to improved performance of

the combined estimator on model selection. Let s̄k = E(|Âk|) be the average number

of selected variables of the penalized estimator from the kth subset. Theorem 3 below

provides an upper bound of the expected number of falsely selected variables and a
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lower bound of the expected number of truly selected variables, both of which depend

on the choice of the threshold w in the proposed majority voting method. A similar

result is also provided by Meinshausen & Buhlmann (2010) and Fan et al. (2009) which

only considered the K = 2 situation.

Theorem 2.3 Assume the distribution of {1j∈Âk
: j ∈ A} and {1j∈Âk

: j ∈ B} are

exchangeable for all k = 1, . . . ,K. Also, assume the penalized estimators used are not

worse than random guessing, i.e. E(|A ∩ Âk|)/E(|B ∩ Âk|) ≥ |A|/|B|, for the set of

selected variables Âk of any penalized estimator. If s∗ = supk s̄k, s∗ = infk s̄k and

w ≥ s∗K/p− 1, then for the combined estimator β̂
(c)
,

(i) the expected number of false selected variables has an upper bound: E(|B∩Â(c)|) ≤

|B|{1− F (w|K, s∗/p)},

(ii) the expected number of truly selected variables has a lower bound: E(|A∩Â(c)|) ≥

|A|{1− F (w|K, s∗/p)},

where F (·|m, q) is the cumulative distribution function of binomial distribution with m

trials and success probability q.

In an extreme case with w = K− 1, the combined estimator selects a variable when

it is selected by all penalized estimators from the K subsets. Then, the upper bound

for the expectation of selected noise variables is (s∗)K/pK−1. Usually, it is hard to get

s∗. However, as long as s∗ is bounded by c1/Kp1−1/K , the average number of noise

variables is bounded by c, where c is constant. In sparse models, s∗ is usually small

and so is c. Therefore, the combined estimator controls the model selection error in a

foreseeable way. In another extreme case with w = 0, the combined estimator selects

a variable when it is selected by at least a penalized estimator from the K subsets. In
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this case, the lower bound for the expected number of truly selected variables is tight,

achieving the true number of non-zero set |A|. However, in this latter case, the upper

bound for the expected number of false selected variables is very loose, up to |B| the

number of variables in the entire noise set.

Indeed, there is a trade off between the upper and lower bounds in Theorem 2.3 for

the choice of w. A larger w typically gives us a smaller upper bound of the expected

number of false selected variable as well as a smaller lower bound of the expected

number of truly selected variables. A smaller w typically gives us a larger upper bound

of the expected number of false selected variable as well as a larger lower bound of

the expected number of truly selected variables. We use w = K/2 in our numerical

studies in Section 2.4. It appears to be able to provide a good balance between selecting

nonzero coefficients in the true model and excluding noise variables, provided that s∗

is smaller than half of p. Our numerical studies show that when w = 2, the combined

estimators select very few noise variables while keep most variables in the true model.

Our empirical experience seems to suggest that the best choice of w is in [K/3,K/2],

depending on whether higher sensitivity or higher specificity is more desirable.

2.3.4 Computing issues

In this subsection, we discuss potential computing savings through the split-and-conquer

approach. We have the following simple proposition for a computational demanding

procedure.

Lemma 2.1 Assume a penalized linear regression problem with n observations and p

variables where n ≤ p and LARS algorithm is applied to perform variable selection

and coefficients estimation. Then, the LARS algorithm using the entire dataset needs
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5n3/3 + 23n/6 + 4n2(p − 7/8) + 6np computing steps for the best case and 23n3/3 +

71n/6 + 8n2(p− 31/16) + 12np computing steps for the worst case.

Theorem 2.4 Under the assumption in lemma 2.1, suppose the dataset is split into K

subsets and the kth subset has nk observations. If the computing effort of the combina-

tion is ignorable, with nk = O(n/K), K ≥ 3 and n ≥ 4(4 + 3p)/{1 + 8p(1 − 2/K) +

31/K−7}, p ≥ 2, split-and-conquer approach always has less computing steps compared

with the LARS algorithm using the entire dataset.

Theorem 2.4 provides an intuitive interpretation on how much computing time can

be saved for LARS algorithm. In fact, the split-and-conquer approach can results in

a computing saving by the order of K2 times in most cases because LARS algorithm

have a computing order of O(n3) when n ≥ p. In the numerical example of a Gaussian

regression with L1 penalty in Section 2.4.1, the exact order of the computing saving K2

is achieved using the LARS algorithm. Figure 2.1 below demonstrates how computing

time changes for different n using LARS algorithm. Detailed simulation settings can

be found in section 2.4.1. According to Figure 2.1, the computing time is decreased

dramatically for the split-and-conquer approach compared with the computing time

required for analyzing the entire dataset.

In fact, the split-and-conquer approach can achieve tremendous computing savings

for any statistical procedure that requires O(na) computing steps, a > 1. Suppose

the dataset is split into K subsets with almost equal sample size nk = O(n/K) and

the computing effort of the combination is ignorable. Then, the split-and-conquer

approach only needs K×O((n/K)a), that is O(na/Ka−1), steps. Thus, using the split-

and-conquer approach results in a computing saving by the order of Ka−1 times. A
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similar finding in a computational intensive robust multivariate scale estimation is also

reported in Section 5.3 of Singh et al. (2005). Under more complex situations with

generalized linear models and more complicated algorithms such as those studied in

Section 2.4.2, the computing saving is less than what would be predicted by the simple

calculation, although the computing time is still reduced in a great amount in all those

examples. The complexity of an algorithm and its computing time are associated with

its computing paths in search for a numerical solution of the optimization. Cross-

validations used for selecting the tuning parameter in the penalized likelihood function

add another degree of complexity to the problem. We speculate that the computing time

for analysis of the K subset is different, sometimes substantially, from one to another in

these more complex situations. This makes a prediction of computing savings a much

harder task. Although we can not use the calculation to obtain computing savings in

the more complex cases, it still provides an intuition that can help us understand why

the split-and-conquer approach can reduce computing time.

2.4 Numerical studies

In this section, we provide numerical studies, using both simulation and real data, to

illustrate the performance of the proposed split-and-conquer approach. We also com-

pare the combined estimators with their corresponding penalized estimators obtained

using the entire data all together, whenever the latter approach can be performed and

does not reach the limits of our computer. The L1 norm, SCAD and MCP, three of the

most widely used penalty functions in the literature, are used in our illustration. We

focus on two models, the Guassian linear regression model and the logistic model, with

different choices of sample size n, number of parameters p and true model size s (the
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number of nonzero regression parameters). All analyses are performed on a W35653

20GHz, 2G(RAM) workstation using R 2.13.1 under Windows 7.

2.4.1 Linear regression with L1 norm penalty

We consider in this subsection a simple case with a linear regression and the L1 norm

penalty to demonstrate the properties of the combined estimator. In particular, the

response variable y follows a Guassian linear model

y = Xβ + ε,

where ε are IID N(0, 1) errors and the explanatory variables X are generated from a

N(0, I) distribution with I being identity matrix. In our simulation study, we generate

p variables and the true model A0 contains s = ⌊√p⌋ nonzero coefficients with values

around
√

2K log(p)/n. The total sample size is picked to be n <= p. To get the

LASSO estimators using the L1 norm penalty, the LARS algorithm (Efron et al., 2004)

is applied and BIC criterion is used for selecting the tuning parameter. When p ≥ n,

the computing order of the LARS is O(n3) that is computationally intensive.

We repeat our simulation 100 times. For the final overall estimators, we record the

mean of computing time and the number of selected nonzero coefficients. To demon-

strate the error control property, we also calculate model selection sensitivity and model

selection specificity. Here, model selection sensitivity is defined as the number of truly

selected variables divided by the true model size, and model selection specificity is de-

fined as the number of truly removed variables divided by the number of noise variables.

The simulation results are shown in Table 2.1. In Table 2.1, K = 1 means the entire

dataset is used to get the LASSO estimator; otherwise, the combined estimator pro-

posed in this paper is used. To examine the performance of the combined estimator ,
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Table 2.1: Comparison of the combined estimator and the complete estimator (with
standard deviation in the parenthesis)

Simulation setting Model selection

n p K
Computing time

w
# selected sensitivity specificity

(in second) variables (in %) (in %)

500 500 1 41.55 (5.37) - 36.01 (5.87) 100 (0) 97.07 (1.23)
2 5.77 (0.51) 1 66.56 (9.72) 100 (0) 90.68 (2.03)
4 2.74 (0.46) 1 157.55 (16.05) 100 (0) 71.64 (3.36)

2 37.49 (5.10) 98.68 (2.53) 96.70 (1.06)
6 1.71 (0.22) 1 221.92 (14.25) 99.73 (1.08) 58.16 (2.93)

2 63.96 (7.63) 96.73 (3.66) 91.07 (1.58)
3 24.11 (2.61) 86.73 (7.33) 98.95 (0.42)

500 800 1 24.72 (1.77) - 48.32 (6.60) 100 (0) 97.37 (0.86)
2 8.10 (0.60) 1 102.75 (11.84) 99.93 (0.50) 90.31 (1.53)
4 3.60 (0.38) 1 240.06 (14.99) 99.18 (1.89) 72.50 (1.94)

2 50.96 (5.92) 92.29 (5.39) 96.75 (0.74)
6 2.52 (0.27) 1 294.60 (11.50) 97.18 (2.93) 65.36 (1.50)

2 69.31 (6.84) 83.50 (7.28) 94.05 (0.90)
3 20.66 (3.34) 58.46 (9.71) 99.44 (0.27)

500 1000 1 28.06 (1.85) - 59.09 (7.80) 100 (0) 97.20 (0.81)
2 10.04 (0.60) 1 135.72 (16.58) 99.81 (1.32) 89.28 (1.71)
4 4.48 (0.41) 1 284.18 (15.89) 97.03 (2.68) 73.85 (1.64)

2 54.13 (5.80) 83.53 (6.86) 97.17 (0.56)
6 2.92 (0.27) 1 325.83 (10.94) 93.19 (4.34) 69.42 (1.15)

2 64.46 (5.84) 70.31 (7.58) 95.67 (0.63)
3 16.60 (3.16) 41.88 (7.77) 99.67 (0.19)

1000 1000 1 393.10 (46.82) - 47.86 (6.54) 100 (0) 98.36 (0.68)
2 57.30 (2.87) 1 83.51 (12.31) 98.36 (0.68) 94.68 (1.27)
4 20.21 (2.24) 1 217.77 (18.11) 100 (0) 80.81 (1.87)

2 46.53 (4.72) 99.87 (0.62) 98.50 (0.49)
6 12.66 (1.63) 1 381.51 (21.69) 99.94 (0.44) 63.89 (2.24)

2 94.18 (8.31) 99.81 (0.75) 93.57 (0.86)
3 37.51 (3.13) 97.59 (2.62) 99.35 (0.30)

we try different values of K and w, where K = 2, 4, 6 and w = 1, . . . , ⌊K/2⌋.

According to Table 2.1, all estimators select some noise variables in addition to the

true s nonzero variables. This is consistent with a known performance of the LASSO-

type estimators that they usually intend to include more variables than desired in model

selections. For the same fixed w, when K gets larger, the combined estimator gets

worse because each subset has less data. But for the same K, the combined estimator

with larger w shows the benefit of error control with high model selection specificity.

Moreover, the computing time is decreasing when K is increasing. Since the computing
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order for the LARS algorithm is O(n3) when p ≥ n, Theorem 2.4 in Section 2.3.3

suggests that the split-and-conquer approach can save computing time by the order of

K2. This is exactly the order achieved in this simulation study, as indicated in column

4 in Table 2.1.

2.4.2 Generalized linear model with SCAD and MCP penalties

The SCAD and MCP estimators are two commonly used estimators that are obtained

based on non-concave penalized likelihood functions. They often have a better per-

formance than the LASSO estimators, in terms of selecting a tighter model and fewer

noise variables. We consider in this subsection both the SCAD and MCP estimators

under both the linear regression and logistic models.

For the linear regression case, the response variable y follows the model y = Xβ+ε,

where ε are IID N(0, 1) errors. For the logistic regression case, the response variable y

follows the Bernoulli distribution with the success probability p(Xβ) = eXβ/(1+eXβ).

In our simulations, we consider two settings to generate the design matrix X: one is

for independent variables and the other is for correlated variables.

1. Independent variables: a set of p variables are generated from a N(0, I) distribu-

tion, where I is identity matrix.

2. Correlated variables: a set of p variables are generated from a N(0,Σ) distribu-

tion, where Σ(i, j) = 0.6|i−j| is the covariance matrix.

We consider two settings of sample sizes: n = 10000 that is large but not too large

and n = 100000 that is very large. In the linear regression, the number of parameters

p = 1000 and in the logistic model, the number of parameters p = 200. In all cases, the
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true model contains s = 30 nonzero coefficients. The true model size s = 30 is chosen

to be relatively small compared with p and n. In order to get the SCAD and MCP

estimators, the NCVREG algorithm (Breheny & Huang, 2011) is applied and a 10-fold

cross-validation is used to select the tuning parameters.

The simulation is repeated 100 times. Similarly as in the example in Section 2.4.1,

we record the computing time and the number of selected variables and calculate model

selection sensitivity and specificity. In addition, the MSE (mean squared error) is cal-

culated in the linear regression case and the misclassification rate with 0.5 as threshold

is reported in the logistic regression case. The results are displayed in Table 2.2. In the

table, K = 1 refers to the entire data is used all together with no splitting. For any

K > 1, the proposed split-and-conquer approach is applied.

According to Table 2.2, the SCAD estimators performs similar to the MCP esti-

mators. In either case, the combined estimator has good model selection results with

high model selection sensitivity and specificity that are similar to those of the penal-

ized estimator using entire data all together. Moreover, in the linear regression case,

the combined estimator has a similar MSE to that of the penalized estimator using

entire data all together. In the logistic regression case, the misclassification rate of the

combined estimator is also close to that of the penalized estimator using entire data all

together.

The computing time is reduced through the split-and-conquer procedure, although

we cannot calculate the exact order of computing savings in these complicated settings.

For both the SCAD and MCP penalties, the proposed split-and-conquer approach can

reduce the computing time by almost 10 times on average in the linear regression set-

ting. For the logistic model, the average saving is a little less. When the explanatory
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variables are independent, the combined estimator needs about half of the time com-

pared to directly performing the same analysis on the entire data all together. When the

explanatory variables are correlated, the combined estimator by the proposed method

can save up to 25% time compared to directly performing the same analysis on the

entire data all together. When the sample size n = 100000, we are not able to perform

either the SCAD or the MCP regression on the entire data all together due to computer

memory limitations. However, the combined estimators can still be obtained using the

split-and-conquer procedure.

We also compare the values of the combined estimators and the penalized estimators

analyzing entire data all together in all the settings of Table 2.2 when both are available;

see Figure 2.2. For the linear regression case, the boxplots of the β estimation in the

true model A = {j : β0
j ̸= 0} are plotted in the top panels. We can see that the

estimation of the combined estimators has the similar mean and spread to those of the

estimators using entire data all together. For the logistic regression, the boxplots of the

β estimation in the true model are plotted in the bottom panels. In the logistic model

case, the estimation of covariance matrix can influence the combined estimator. We use

the maximum likelihood estimator based on only the selected variables in Â to get the

weight matrix. Again, the combined estimators using the proposed split-and conquer

approach perform similarly to the penalized estimators using entire data all together.

2.4.3 Numerical analysis on POEs manifest data

In this subsection, we study a set of manifest data collected at the US Port of Entries

(POEs) to demonstrate an application of the split-and-conquer approach. To counter

potential terrorists’ threats, substantial efforts have been made in devising strategies
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Table 2.2: Comparison of the combined estimator and the complete estimator (standard
deviation in the parenthesis)

Part I: Linear regression
Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity
MSE

matrix (in second) variables (in %) (in %)
SCAD: Linear regression

Independent 10000 1000 1 815.27 (77.98) 34.58 (9.81) 100 (0) 99.53 (1.01) 1.00 (0.01)
10 104.96 (9.55) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 10000 1000 1 755.4 (157.56) 34.00 (12.22) 96.00 (19.79) 99.46 (1.02) 0.96 (0.20)
10 289.17 (61.03) 28.72 (6.13) 95.87 (19.78) 100 (0) 1.00 (0.01)

Independent 100000 1000 1 - (-) - (-) - (-) - (-) - (-)
100 1136.70 (74.65) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 100000 1000 1 - (-) - (-) - (-) - (-) - (-)
100 3074.53 (25.01) 30 (0) 100 (0) 100 (0) 1.06 (0.01)

MCP: Linear regression
Independent 10000 1000 1 2243.45 (155.82) 34.58 (9.81) 100 (0) 99.79 (0.41) 1.00 (0.01)

10 163.72 (12.95) 30 (0) 100 (0) 100 (0) 1.00 (0.01)
Correlated 10000 1000 1 1244.73 (80.86) 31.92 (5.69) 100 (0) 99.80 (0.59) 0.99 (0.01)

10 442.14 (42.42) 29.98 (0.14) 99.93 (0.47) 100 (0) 1.01 (0.02)
Independent 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 1565.54 (132.38) 30 (0) 100 (0) 100 (0) 1.00 (0.01)
Correlated 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 4256.52 (215.60) 30 (0) 100 (0) 100 (0) 1.02 (0.01)

Part II: Logistic regression
Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity Misclassificaton
matrix (in second) variables (in %) (in %) rate (in %)

SCAD: Logistic regression
Independent 10000 200 1 198.85 (5.88) 35.54 (5.71) 100 (0) 96.74 (3.36) 17.32 (0.40)

5 116.49 (2.78) 31.70 (1.33) 100 (0) 99.00 (0.78) 17.40 (0.38)
Correlated 10000 200 1 463.61 (20.16) 38.18 (5.58) 99.33 (1.35) 95.02 (3.15) 9.90 (0.29)

5 359.29 (7.94) 32.38 (2.42) 96.07 (2.75) 97.84 (1.27) 10.10 (0.26)
Independent 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 1352.14 (76.2) 30 (0) 100 (0) 100 (0) 17.38 (0.12)
Correlated 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 4014.48 (284.69) 29.97 (0.2) 99.87 (0.67) 100 (0) 9.96 (0.09)
MCP: Logistic regression

Independent 10000 200 1 201.46 (6.74) 31.8 (2.77) 100 (0) 98.94 (1.63) 17.31 (0.34)
5 118.85 (3.17) 30.24 (0.62) 99.87 (0.66) 99.84 (0.34) 17.38 (0.35)

Correlated 10000 200 1 582.182 (59.02) 35.48 (4.22) 98.73 (1.89) 96.55 (2.27) 9.84 (0.33)
5 557.43 (22.7) 28.7 (1.63) 92.93 (3.85) 99.52 (0.60) 10.17 (0.32)

Independent 100000 200 1 - (-) - (-) - (-) - (-) - (-)
20 1301.95 (63.27) 30 (0) 100 (0) 100 (0) 17.34 (0.13)

Correlated 100000 200 1 - (-) - (-) - (-) - (-) - (-)
20 4485.9 (186.29) 29.58 (0.50) 98.60 (1.66) 100 (0) 10.00 (0.09)
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Figure 2.2: Comparison of parameter estimation for the combined estimator and the
penalized estimator using all data. Box plots of estimation for variables in the true
model. Orange: the combined estimator; Yellow: the estimator using all data. Top
panels: Linear regression; bottom panels: Logistic regression
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for inspecting containers coming through the US POEs every day to interdict illicit

nuclear and chemical materials. Manifest data, compiled from the custom forms sub-

mitted by merchants or shipping companies, are collected by the US custom offices and

the Department of Homeland Security (DHS). Analysis of the manifest data is a part

of effort to build up layered defenses for the national security. In a nuclear detection

project sponsored by the Command, Control, and Interoperability Center for Advanced

Data Analysis (CCICADA), a Department of Homeland Security (DHS) Center of Ex-

cellence, we obtain a set of manifest data that contain all shipping records coming

through the POEs across the US in February, 2009. The goal is to make quantitative

evaluations of the manifest data and to develop an effective risk scoring approach that

can be used to assess future shipments. In our project, a logistic regression model has

been used to enhance the effectiveness of the real-time inspection system with binary

response variable indicating high-risk shipments. Since not all information collected

in the manifest data are relevant to risk scoring and there are also many redundant

information, we need to determine the effects of different sources of information in the

manifest data and penalized regression provides a way to evaluate the importance of

these variables. Table 2.3 provides the definition and a description of some variables

contained in the manifest data. Most of these variables are categorical and dummy

variables for each categorical variable are created which results in p = 213 variables

in total. There are also text fields that can potentially lead to a much larger p. To

simply our discussion and without loss of our focus, we only illustrate the proposed

split-and-conquer approach using this p = 213 variables and we do not consider any

semantic analysis and text mining approaches in this paper.

Practical issues and challenges exist in carrying out this important task. Due to



33

Table 2.3: Manifest data: Dictionary of Variables

Variables Number of Categories Definition

X1 9 Vessel Country Code
X2 69 Voyage Number
X3 9 dp of Unlading
X4 14 Foreign Port Lading
X5 68 Foreign Port
X6 35 Inbond Entry Type
X7 17 Container Cotents

the enormous size of traffic and a large number of entry sites, it is impossible for us

to analyze the whole data simultaneously on a single computer. For instance, there

are 164721 shipments in one week from February 20, 2009 to February 26, 2009. A

computer with 2 GB memory and 3.2GHz CPU fails to perform the SCAD penalized

regression on the one-week data. Even if high-performance computer is available, it

will takes a long time to carry out the task and this is very inefficient in practice,

especially we may need to constantly update the models over the months and years.

Nevertheless, we can solve this problem by applying the split-and-conquer approach

with the assumption that the underlying regression model stays more or less the same

over a short period of time of one week or one month.

Because of security concerns, the indicator of high-risk shipments are not accessible

to us, but we have been told to use the rate 1% to 10% of cargo containers that need

further inspections in the context of inspections of drugs and other illicit materials. To

illustrate our approach, we turn to a simulation to generate the risk scores based on the

given manifest data. In particular, potential influential characteristics are selected to

generate the risk scores using logistic models. Then, we perform the SCAD penalized

regression on everyday’s data and combine the seven daily estimators together to obtain

an overall combined estimator. Note that, due to the computing limitations of our
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Table 2.4: Comparison of the combined weekly estimator and daily estimators (standard
deviation in the parenthesis)

Model selection
# of selected Sensitivity Specificity Misclassificaton
variables (in %) (in %) rate (in %)

Week (Combined) 21.06 (0.38) 95.25 (0.09) 99.95 (0.14) 3.97 (0.05)
Mon 32.66 (4.00) 92.53 (0.36) 94.2 (1.78) 3.99 (0.05)
Tues 29.18 (3.07) 95.4 (0.05) 96.14 (1.44) 3.98 (0.05)
Wed 9.22 (4.58) 23.13 (1.2 98.05 (1.18) 3.99 (0.05)
Thur 10.86 (4.6) 27.73 (1.08) 97.76 (1.28) 3.98 (0.05)
Fri 25.6 (2.09) 95.45 (0) 97.83 (0.98) 4.00 (0.05)
Sat 29.76 (3.47) 95 (0.14) 95.82 (1.61) 3.98 (0.05)
Sun 30.6 (3.31) 95.1 (0.12) 95.44 (1.57) 3.99 (0.05)

personal computer, we are not able to perform the SCAD analysis on the whole week

of data all together.

The results from the split-and-conquer approach are displayed in Tables 2.4 and 2.5,

in which we report the model selection sensitivity, model selection specificity, misclassifi-

cation rate and the average estimates of the non-zero parameters from 100 replications,

based on the split-and-conquer approach as well as the SCAD penalized regression

using the data of a single day. The s = 22 non-zero parameters are from three cate-

gorical variables: Vessel Country Code, Foreign Port Landing and Container Contents.

Clearly, the split-and-conquer approach succeeds in performing the penalized logistic

regression analysis on the whole week manifest data. As we can see from Table 2.4,

the split-and conquer approach has identified most influential variables in the manifest

data. In particular, the combined estimator has both high model selection sensitiv-

ity and specificity. On a contrast, the daily estimators either select many more noise

variables or exclude many influential variables. Also, the combined estimator is more

stable than daily estimators because it has much smaller variances in the values of the

average model size, model selection sensitivity and specificity. Although the combined
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Table 2.5: Manifest data analysis through split-and-conquer approach
Week Daily estimation

Categories (Combined) Mon Tues Wed Thur Fri Sat Sun

Vessel country code

PA 0.33(0.06) 0.2(0.17) 0.36(0.15) 0.07(0.14) 0.14(0.14) 0.46(0.07) 0.41(0.16) 0.4(0.14)
LR 1.78(0.07) 1.7(0.22) 1.75(0.19) 0.8(0.39) 1.64(0.16) 1.78(0.16) 1.75(0.17) 1.73(0.13)
DE 0.26(0.06) 0.22(0.17) 0.39(0.16) 0.01(0.06) 0.02(0.11) 0.47(0.11) 0.32(0.19) 0.31(0.2)

Foreign port lading

570 1.54(0.05) 1.59(0.15) 1.56(0.13) 0.92(0.35) 1.36(0.33) 1.53(0.08) 1.58(0.17) 1.53(0.12)
582 0.9(0.07) 1(0.23) 1.1(0.14) 0.26(0.21) 0.36(0.23) 0.84(0.17) 0.92(0.26) 0.63(0.25)
580 1.13(0.06) 1.39(0.17) 0.85(0.23) 0.03(0.09) 0.45(0.29) 1.33(0.1) 0.72(0.23) 1.27(0.14)

Container contents

Material 1.31(0.1) 1.98(0.24) 2.03(0.18) 0.12(0.27) 0.1(0.22) 2.06(0.17) 2(0.23) 1.97(0.24)
Animals 0.05(0.11) 0.27(0.21) 0.74(0.28) 0(0) 0(0) 0.63(0.21) 0.47(0.24) 0.46(0.25)

Entertainment 1.04(0.15) 1.55(0.36) 1.75(0.32) 0.03(0.12) 0.03(0.14) 1.85(0.23) 1.48(0.31) 1.56(0.33)
Industry 0.76(0.1) 1.39(0.25) 1.5(0.19) 0.03(0.22) 0.01(0.1) 1.55(0.18) 1.43(0.2) 1.44(0.18)
Cloth 0.65(0.08) 1.31(0.17) 1.37(0.12) 0.03(0.19) 0.02(0.13) 1.4(0.1) 1.32(0.17) 1.3(0.15)
Electro 0.44(0.13) 1.02(0.37) 1.09(0.28) 0.01(0.12) 0.01(0.12) 1.38(0.26) 0.91(0.26) 1.02(0.28)
Food 0.7(0.08) 1.41(0.14) 1.4(0.15) 0.02(0.17) 0.05(0.19) 1.46(0.11) 1.36(0.14) 1.34(0.12)

Furniture 1.34(0.11) 2.01(0.25) 2.09(0.22) 0.08(0.24) 0.12(0.23) 2.14(0.18) 2.01(0.26) 1.95(0.22)
Hardware 0.24(0.07) 0.88(0.18) 0.94(0.14) 0.01(0.1) 0(0.03) 0.97(0.1) 0.87(0.17) 0.9(0.15)
Health 0.53(0.09) 1.18(0.15) 1.23(0.13) 0.02(0.14) 0.01(0.12) 1.25(0.1) 1.19(0.15) 1.18(0.13)
Home 1.18(0.1) 1.91(0.24) 1.91(0.19) 0.09(0.26) 0.03(0.16) 1.95(0.15) 1.87(0.2) 1.83(0.2)
Motor 0.28(0.14) 0.89(0.3) 1.01(0.32) 0.03(0.25) 0.01(0.1) 1.19(0.29) 1.18(0.37) 1(0.33)
Media 0.98(0.11) 1.69(0.23) 1.75(0.26) 0.03(0.14) 0.02(0.13) 1.79(0.2) 1.47(0.29) 1.46(0.28)
Office -0.17(0.13) 0.24(0.25) 0.55(0.26) 0.01(0.06) 0(0) 0.55(0.25) 0.4(0.25) 0.54(0.29)

Sporting 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Mature 0.45(0.08) 1.15(0.13) 1.17(0.13) 0.02(0.15) 0.01(0.1) 1.23(0.1) 1.14(0.14) 1.14(0.11)

estimator has a slightly smaller misclassification rate, all estimators have more or less

the similar misclassification rates, which are on average slightly less than 4%.

In terms of estimation, as in Table 2.5, the combined estimator also has smaller

variance than the penalized estimators that only use daily data. For the categories

Animals and Office in Container Contents, some of the daily estimators fails to select

them and they are not significant in the combined estimators. Also, the Sporting

variable is left out in the model by all the estimators. But all other 19 variables are

found by the combined estimator. The same performance can not be achieved by any of

the penalized estimators using only daily data. By incorporating one-week information,

the split-and-conquer approach provides more reliable results with better performance

than any of the daily analysis.
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2.5 Discussions

We propose in this chapter a split-and-conquer methodology for analysis of extraor-

dinarily large data that is too large to be analyzed by the existing statistical meth-

ods. The split-and-conquer approach contains two operational steps. Firstly, the entire

dataset is randomly split into non-overlapped small subsets, and each subset is analyzed

separately using desired statistical procedures. Then, the results from all subsets are

combined together and provide a final overall statistical inference that contains infor-

mation from the entire dataset. We demonstrate the split-and-conquer approach for

penalized regression models that are widely used in the analysis high-dimensional data.

The split-and-conquer approach provides an applicable way to analyze extraordi-

narily large datasets using available procedures. The approach is very general and can

have many applications. As the entire dataset is split into smaller pieces, each subset

requires a smaller storage space and computer memory when we perform our statistical

analysis. Moreover, we have shown that the split-and-conquer approach needs less com-

puting time when the desired statistical method is computationally intensive. Even in

the case in which the desired statistical method is efficient, a reduced computing time

can be expected operationally because we now can analyze different subsets at the same

time using different computers. This computing improvement is very useful in many

practical applications.

One important step in the split-and-conquer approach is the combination. We have

demonstrated in our settings that the combined results obtained from the subsets do not

cause any bias or efficiency loss, asymptotically. The specific combination method to be
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used depends on the desired statistical procedure. As illustrated by penalized regres-

sions in this paper, the properly weighted and linearly combined estimator is asymp-

totically equivalent to the one from analyzing the entire data all together although

the combined estimator requires slightly stronger conditions. According to Singh et al.

(2005), Xie et al. (2011) and Liu (2012), equivalent combined statistics or asymptotic

efficiency are achievable for many other models. The proposed split-and-conquer ap-

proach can be easily extended to other problem settings as well as problems beyond

point estimations including those using hypothesis testings and confidence intervals.

2.6 Appendix

For proving convenience, we state the two lemmas from Fan & Lv (2011).

Lemma 2.2 Fan & Lv (2011) (β̂k,A, 0) is a strict local maximizer if

XT
k,Ayk −XT

k,Aµ(θ̂k)− nkλkρ̄(β̂k,A) = 0, (2.3)

(nkλk)
−1∥XT

k,Ac [yk − µ(θ̂k)]∥∞ < ρ′(0+), (2.4)

λmin[X
T
k,AΣ(θ̂)XA] > nkλkκ(ρ; β̂A). (2.5)

Lemma 2.3 Fan & Lv (2011) Let Y = (Y1, . . . , Yn)
T be the n-dimensional independent

random response vector and a ∈ Rn. Then

a) If Y1, . . . , Yn are bounded in [c, d] for some c, d ∈ R, then for any ϵ ∈ (0,∞)

P(|aTY − aTµ(θ0)| > ϵ) ≤ 2 exp[−2ϵ2/(∥a∥22(d− c)2)].

b) If Y1, . . . , Yn are unbounded and there exist some M, v0 ∈ (0,∞) such that

max
i=1,...,n

E{exp[(Yi − b′(θ0i ))/M ]− 1− |Yi − b′(θ0i )|/M}M2 ≤ v0/2
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with θ0 = (θ0i , . . . , θ
0
n), then for any ϵ ∈ (0,∞)

P(|aTY − aTµ(θ0)| > ϵ) ≤ 2 exp[−ϵ2/(2∥a∥22v0 + ∥a∥∞Mϵ)].

Define c1 = 2/(d− c)2 for bounded responses and c1 = 1/(2v0+2M) for unbounded

responses for the following proofs.

Proof of Theorem 2.1:

According to the definition of the combined estimator, β̂
(c)

Ac=0 if β̂k,Ac = 0 for

k = 1, . . . ,K. So, we will prove the theorem in two steps. First, we show ∥β̂(c)

A −β0
A∥∞ ≤

β∗/2. Then, we prove β̂k,Ac = 0 for k = 1, . . . ,K.

Define ξk = XT
k yk−XT

kµ(θ
0
k), γk(δ) = (γk1, . . . , γks) = XT

kµ(Xk,Aδ) and ηk(δ) =

nkλkρ̄(δ). Consider events E1k = {∥ξk,A∥∞ ≤ c
−1/2
1 vn,K/K}, and E2k = {∥ξk,Ac∥∞ ≤

c
−1/2
1 un,K/K}.

First show that there exists a solution of (2.3) in N0 = {δ : ∥δ − β0
A∥∞ ≤ β∗/2},

k = 1, . . . ,K. Equation (2.3) can be rewritten as

γk,A(δ)− γk,A(β
0
A)− (ξk,A − ηk(δ))

= XT
k,AΣ(θ

0
k)Xk,A(δ − β0

A) + rk − (ξk,A − ηk(δ)) = 0,

where rk = (rk1, . . . , rks) and rkj = (δ − β0
A)

T∇2γkj(δj)(δ − β0
A) with δj being a

s-dimensional vector on the segment between δ and β0
A.

It is equivalent to

δ − β0
A = {XT

k,AΣ(θ
0
k)Xk,A}−1(ξk,A − ηk(δ)− rk). (2.6)
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In N0, ∥ηk(δ)∥∞ ≤ nkλkρ
′(β∗/2). By condition A1 and under event E1k, we have

∥{XT
k,AΣ(θ

0
k)Xk,A}−1(ξk,A − ηk(δ))∥∞

≤ ∥{XT
k,AΣ(θ

0
k)Xk,A}−1∥∞∥ξk,A − ηk(δ)∥∞

= O(c
−1/2
1 bs,Kvn,K/n+ bs,Kρ′(β∗/2;λk))

In addition, because of condition A1,

∥rk∥∞ ≤ max
δ∈N0

max
j=1,...,s

λmax[X
′
k,Adiag{|xk,j | ◦ |µ′′(Xk,Aδ)|}Xk,A]∥δ − β0

A∥22 = O(nkβ
2
∗s).

By condition A3, we have

∥δ − β0
A∥∞ = o(β∗).

Thus, there exists a solution β̂k,A of (2.6) in N0. In addition,

β̂
(c)

A − β0
A = (

K∑
k=1

Ŝk)
−1[

K∑
k=1

ŜkS
−1
k,0{ξk,A − ηk(β̂k,A) + rk}]

By Taylor expansion,

b′′(xjT β̂k,A) = b′′(xT
j β

0
A) + b′′′(xT

j δ)x
T
j (δ − β0

A)

d
= b′′(xT

j β
0
A) + dkj ,

where δ is a s-dimensional vector on the segment between β̂k,A and β0
A.

Written in matrix format

Ŝk = Xk,AΣ(θ̂k)Xk,A = Xk,A{Σ(θ0
k) +Dk}Xk,A,

where Dk = diag(dkj). We have

β̂
(c)

A − β0
A

= {
K∑

k=1

XT
k,A{Σ(θ

0
k) +Dk}Xk,A}−1[

K∑
k=1

{I +XT
k,ADkXk,A(S

0
k)

−1}(ξk,A − ηk(δ)− rk)]
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Therefore, ∥β̂(c)

A − β0
A∥∞ = O(bs,Kvn,K/n+ bs,Kλkρ

′(β∗/2) + bs,Kβ2
∗s) = o(β∗).

We still need to verify (2.4), i.e. show ∥zk∥∞ < ρ′(0+), where zk = (nkλk)
−1{ξk,Ac−

[γk,Ac(β̂k,A)− γk,Ac(β0
A)]}.

By Taylor expansion,

γk,Ac(β̂k,A)− γk,Ac(β0
A)

= XT
k,AcΣ(θ0

k)Xk,A(β̂k,A − β0
A) +wk

= XT
k,AcΣ(θ0

k)Xk,A{XT
AΣ(θ

0)XA}−1(ξk,A − ηk(β̂k,A)− rk) +wk,

where wk = (wk,s+1, . . . , wkp) and wkj = (β̂k,A − β0
A)

T∇2γkj(δj)(β̂k,A − β0
A).

Similar to rk, ∥wk∥∞ = O(nksβ
2
∗). Then, by condition A1, A3 and under event

E2k,

∥zk∥∞ = (nkλk)
−1∥ξk,Ac∥∞ + (λknk)

−1O(nαvn,K/K + nαnksβ
2
∗) + Cρ′(0+)

= o(1) + Cρ′(0+).

The

P{∩Kk=1(E1k ∩ E2k)}

≥ 1−
K∑
k=1

P(Ec
1k)−

K∑
k=1

P(Ec
2k)

≥ 1−
K∑
k=1

s∑
j=1

P(|ξkj | > c
−1/2
1 vn,K/K)−

K∑
k=1

p∑
j=s+1

P(|ξkj | > c
−1/2
1 un,K/K)

≥ 1− 2Ks exp{−v2n,K/(nK)} − 2K(p− s) exp{−u2n,K/(nK)}.

2

Proof of Theorem 2.2:

We first prove part (i). Similar to theorem 2.1, if β̂k,Ac = 0, k = 1, . . . ,K, then

β̂
(c)

Ac = 0.
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The first step is to show that ∥β̂k,A−β0
A∥2 = Op(

√
s/nk). For each k, define event

Fk = {Q̄k(β
0
A) > maxδ∈∂Nτ Q̄k(δ)}, where Q̄k(δ) = ℓ(δ;yk,Xk,A) − ρ(δ;λk) is the

penalized likelihood constrained on the subspace that {β : βAc = 0} and Nτ = {δ :

∥δ − β0
A∥ ≤

√
s/nkτ}.

Since
√

s/nk/β∗ = o(1), β∗/2 >
√

s/nkτ when nk is large enough. Thus δ ∈ Nτ

will have sgn(δ) = sgn(β0
A). By Taylor expansion, we have

Q̄k(δ)− Q̄k(β
0
A) = (δ − β0

A)
Tvk − (δ − β0

A)
TVk(δ − β0

A),

where vk = n−1
k XT

k,A[yk−µ(θ0
k)]−ρ̄(β0

A;λk) and Vk = n−1
k XT

k,AΣ(θ
∗
k)Xk,A+diag(ρ′′(β∗

k;λk))

with θ∗
k = Xk,Aβ

∗
k and β∗

k being a vector on the segment joining δ and β0
A.

By condition A4, we have λmin(Vk) ≥ c− λkκ0 ≥ c/2. Therefore,

max
δ∈∂Nτ

Q̄k(δ)− Q̄k(β
0
A) =

√
s/nkτ(∥vk∥2 − c

√
s/nkτ/4),

and by condition A5, ∥ρ̄(β0
A;λk)∥2 ≤

√
sρ′(β∗/2;λk) = O(n−1

k ). Thus,

P(Fk) ≥ P(∥vk∥22 < c2sτ2/(16nk)) ≥ 1− 16nkE∥vk∥22/(c2sτ2) = 1−O(τ−2),

since E∥vk∥22 ≤ n−2
k ϕtr(XT

k,AΣ(θ
0
k)Xk,A)+∥ρ̄(β0

A;λk)∥22 ≤ n−2
k ϕtr(XT

k,AΣ(θ
0
k)Xk,A)+

sρ′(β∗/2;λk) = O(sn−1
k ).

Then, constrained on the subspace {β : βB = 0}, we take Taylor expansion of the

penalized likelihood function at β0
A. Since β̂k,A is local maximum and ∥β̂k,A−β0

A∥2 =

Op(
√

s/nk),

X ′
k,A[yk − µ(θ0

k)]−X ′
k,AΣ(θ0

k)Xk,A(β̂k,A − β0
A)− ρ̄(β̂k,A;λk) +Op(s

3/2n−1
k ) = 0.(2.7)

Since s = O(n
1/3
k ) and ρ′(β∗/2;λk) = o(s−1/2n

−1/2
k ), (2.7) gives

{X ′
k,AΣ(θ0

k)Xk,A}(β̂k,A − β0
A) = X ′

k,A[yk − µ(θ0
k)] +Op(

√
nk).
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Therefore,

{X ′
k,AΣ(θ̂k)Xk,A}(β̂k,A − β0

A)

= {X ′
k,AΣ(θ̂k)Xk,A}{X ′

k,AΣ(θ0
k)Xk,A}−1[X ′

k,A{yk − µ(θ0
k)}+Op(

√
nk)].

By the definition of β̂
(c)
, we have

[

K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A](β̂

(c)

A − β0
A)

=
K∑
k=1

{X ′
k,AΣ(θ̂k)Xk,A}{X ′

k,AΣ(θ0
k)Xk,A}−1[X ′

k,A{yk − µ(θ0
k)}+Op(

√
n/K)]

=
K∑
k=1

{X ′
k,AΣ(θ̂k)Xk,A}{X ′

k,AΣ(θ0
k)Xk,A}−1[X ′

k,A{yk − µ(θ0
k)}] +Op(

√
nK).

Since ∥β̂k,A − β0
A∥2 = O(

√
s/nk), X

′
k,AΣ(θ̂k)Xk,A

P−→ X ′
k,AΣ(θ

0
k)Xk,A. There-

fore,

{
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A + op(1)}(β̂
(c)

A − β0
A)

=

K∑
k=1

(1 + op(1))[X
′
k,A{yk − µ(θ0

k)}] +Op(
√
nK).

The above equation is equivalent to

β̂
(c)

A − β0
A = {X ′

AΣ(θ0)XA + op(1)}−1
K∑
k=1

(1 + op(1))[X
′
k,A{yk − µ(θ0

k)}] + op(
√
K/n).

and

∥β̂(c)

A − β0
A∥2

= ∥{X ′
AΣ(θ0)XA + op(1)}−1

K∑
k=1

(1 + op(1))[X
′
k,A{yk − µ(θ0

k)}]∥2 + op(
√

K/n)

= Op(
√

s/n) + op(
√

K/n) = Op(
√

s/n).

The last step is to show ∥zk∥∞ < ρ′(0+), where zk = (nkλk)
−1{ξk,Ac−[γk,Ac(β̂k,A)−

γk,Ac(β0
A)]}. Consider event E2k = {∥ξk,Ac∥∞ ≤ c

−1/2
1 un,K/K}, where ξk = XT

k yk −
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XT
k µ(θ

0
k). By Taylor expansion,

γk,Ac(β̂k,A)− γk,Ac(β0
A)

= XT
k,AcΣ(θ0

k)Xk,A(β̂k,A − β0
A) +wk

= XT
k,AcΣ(θ0

k)Xk,A{XT
AΣ(θ

0)XA}−1(ξk,A − ηk(β̂k,A)− rk) +wk,

where wk = (wk,s+1, . . . , wkp) and wkj = (β̂k,A − β0
A)

T∇2γkj(δj)(β̂k,A − β0
A).

Then, by condition A4, A5 and under event E2k,

∥zk∥∞ = (nkλk)
−1[∥ξk,Ac∥∞ + ∥XT

k,Acµ(θ̂k)−XT
k,Acµ(θ0

k)∥∞]

≤ (nkλk)
−1∥ξk,Ac∥∞ + (nkλk)

−1[O(nk)∥β̂k,A − β0
A∥2 +O(nk)∥β̂k,A − β0

A∥22]

= o(1),

and

P{∩Kk=1E2k}

≥ 1−
K∑
k=1

P(Ec
2k)

≥ 1− 2K(p− s) exp{−u2n,K/(nK)} −→ 1.

Now we will prove part (ii). Since ρ′(β∗/2;λk) = o(s
−1/2
n n

−1/2
k K−1/2) and s =

o(n
1/3
k /K1/3), (2.7) gives

X ′
k,AΣ(θ0

k)Xk,A(β̂k,A − β0
A) = X ′

k,A[yk − µ(θ0
k)] + op(

√
nk/K).

Similar to the proof of part (i), we have

{
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A + op(1)}(β̂
(c)

A − β0
A)

=

K∑
k=1

{1 + op(1)}[X ′
k,A{yk − µ(θ0

k)}] + op(
√
n).
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Therefore,

{
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A + op(1)}(β̂
(c)

A − β0
A)

=

K∑
k=1

{1 + op(1)}[X ′
k,A{yk − µ(θ0

k)}] + op(
√
n).

The above equation is equivalent to

{X ′
AΣ(θ0)XA + op(1)}(β̂

(c)

A − β0
A) = {1 + op(1)}[XA{y − µ(θ0)}] + op(

√
n).

Thus,

β̂
(c)

A − β0
A = {X ′

AΣ(θ0)XA + op(1)}−1{1 + op(1)}[XA{y − µ(θ0)}] + op(1/
√
n).

In addition,

D[XAΣ(θ0)XA]
1/2(β̂

(c)

A − β0
A)

= D[XAΣ(θ0)XA]
1/2{X ′

AΣ(θ0)XA + op(1)}−1{1 + op(1)}[XA{y − µ(θ0)}] + op(1),

and from condition A6, we have

D[XAΣ(θ0)XA]
−1/2XA[y − µ(θ0)]

D−→ N(0, ϕG).

This complete the proof. 2

Proof of Theorem 2.3:

We fist show that P(j ∈ Âk) ≤ s̄k/p, j ∈ B, and P(j ∈ Âk) ≥ s̄k/p, j ∈ A,

k = 1, . . . ,K.

Because E(|B ∩ Âk|) = E(|Âk|) − E(|A ∩ Âk|) = s̄k − E(|A ∩ Âk|) and E(|A ∩

Âk|)/E(|B∩Âk|) ≥ |A|/|B|, we have E(|B∩Âk|) ≤ s̄k/(1+ |A|/|B|) and E(|A∩Âk|) ≥

s̄k/(1 + |B|/|A|). Therefore, E(|B ∩ Âk|) ≤ s̄k|B|/p and E(|A ∩ Âk|) ≥ s̄k|A|/p.
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Using the exchangeability assumption, P(j ∈ Âk) = E(|B ∩ Âk|)/|B|, j ∈ B and

P(j ∈ Âk) = E(|A ∩ Âk|)/|A|, j ∈ A. Therefore, P(j ∈ Âk) ≤ s̄k/p ≤ s∗/p, j ∈ B and

P(j ∈ Âk) ≥ s̄k/p ≥ s∗/p, j ∈ A.

Since the observations in each subset are independent and w ≥ s∗K/p − 1, P(j ∈

Â(c)) ≤ 1−F (w|K, s∗/p), j ∈ B and P(j ∈ Â(c)) ≥ 1−F (w|K, s∗/p), j ∈ A. Therefore,

E(|B ∩ Â(c)|) =
∑

j∈B P(j ∈ Â(c)) ≤ |B|{1 − F (w|K, s∗/p)} and E(|A ∩ Â(c)|) =∑
j∈A P(j ∈ Â(c)) ≥ |A|(1− F (w|K, s∗/p)). 2

Proof of Lemma 2.1:

We first state the LARS algorithm for LASSO here:

• Initialize, let the active set A = ∅, current estimation µ̂A = 0 and current coeffi-

cient β̂A = 0. a = 0, γ = 0.

• Repeat the following steps until |A| = n.

1. Calculate the correlation between variables and the current residual

ĉ = X ′
Acy − γa Ĉ = max{|ĉj |}

2. Let A = {j : |ĉj | = Ĉ} if A = ∅, sj = sgn(ĉj) and XA = (. . . , sjxj , . . . ), j ∈

A. Calculate the next moving direction GA = X ′
AXA, QA = (1′AG

′
A1A)

−1/2

and wA = QAG
−1
A eA, uA = XAwA.

3. Calculate the size of tuning parameter. Let d̂j = sjwj , j ∈ A and a =

X ′
AcuA. Calculate

γj = −β̂j/d̂j , γ̃ = min
γj>0

(γj).

and

γ̂ =
+

min
j∈Ac
{(Ĉ − ĉj)/(QA − aj), (Ĉ − ĉj)/(QA + aj)},
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where min+ means theta the minimum is taken over only positive compo-

nents.

4. If γ̃ ≤ γ̂, update µ̂← µ̂+ γ̃uA, A← A− j̃ where j̃ is the index for which the

minimizing index in obtaining γ̃, and γ = γ̃. If γ̃ > γ̂, update µ̂← µ̂+ γ̂uA,

A← A+ j̃ where j̃ is the index for which the minimizing index in obtaining

γ̂ and γ = γ̂.

Denote comp(i) the computing steps at step i in each loop. Suppose linear search is

used to find the maximum or minimum and schoolbook matrix multiplication algorithm

is applied. We have comp(1) = 2n(p− |A|).

In step 2, computing QA requires |A|2 computing steps. When compute G−1
A ,

Cholesky factorization is applied to update the inverse matrix. Details are given below.

Get the block representation of GA, the Cholesky factor of GA, denoted by U and the

inverse matrix of U Y = U−1:

GA =

 G11 G12

G′
12 G22

 , U =

 U11 0

U ′
12 U22

 , and Y =

 Y11 0

Y ′
12 Y22

 ,

where GA = UTU and G22 is a one-dimension matrix (a number) representing the

newly added variable. Thus,

G−1
A =

 Y ′
11Y11 + Y12Y

′
12 Y12Y

′
22

Y ′
22Y

′
12 Y ′

22Y22

 ,

where G−1
11 = Y11Y

′
11.

Since U11 and Y11 is known from the previous loop, we can update G−1
A by the fol-

lowing equations: U12 = Y ′
11G12, U22 =

√
G22 − U ′

12U12, Y22 = U−1
22 , Y12 = −Y11U12Y22,

and compute G−1
11 + Y12Y

′
12, Y12Y

′
22 and Y22Y

′
22.
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Thus,

comp(2) = 8|A|2 − 10|A|+ 7 + (2|A| − 1)n.

In step 3 and 4, we have comp(3) = |A|+ (2n− 1)(p− |A|) + 2|A|+ 7(p− |A|), and

comp(4) = 2|A|+ 1.

In all, one loop in LARS algorithm requires 8|A|2−11|A|+(4n+6)p−2n|A|+8−n.

Therefore, since p ≥ n, at most n variables will be fitted and the LARS algorithm

requires at least

n∑
|A|=1

8|A|2 − 11|A|+ (4n+ 6)p− 2n|A|+ 8− n

= 5n3/3 + 23n/6 + 4n2(p− 7/8) + 6np.

Each time dropping variable occurs, it will add additional 8|A|2−11|A|+(4n+6)p−

2n|A| + 8 − n computing steps depending on the number of current active variables.

The worst case would be 6n2 + 4n(p− 3) + 6p+ 8 computing steps each time and the

solution path has n times downsize. The computing steps for the worst case would be

23n3/3 + 71n/6 + 8n2(p− 31/16) + 12np.

As a result, as each sub-sample has nk observations, for the best case, the computing

steps for the combined estimator is
∑K

k=1 5n
3
k/3+ 23nk/6+ 4n2

k(p− 7/8)+ 6nkp. Since∑K
k=1 nk = n, 5n3/3 + 23n/6 + 4n2(p− 7/8) + 6np ≥

∑K
k=1 5n

3
k/3 + 23nk/6 + 4n2

k(p−

7/8)+6nkp. The result follows immediately. Similarly, the combined estimator requires

less computing steps for the worst case. 2

Proof of Theorem 2.4:

We only need to show that under the assumptions, the worst case for split-and-

conquer approach requires less computing steps than the best case for LARS algorithm
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using the entire dataset. When nk = O(nk), split-and-conquer approach requires at

most 23n3/(3K2) + 71n/6 + 8n2(p − 31/16)/K + 12np computing steps and LARS

algorithm using the entire dataset needs at least 5n3/3 + 23n/6 + 4n2(p − 7/8) + 6np

computing steps. It is equivalent to show that

{5n3/3 + 23n/6 + 4n2(p− 7/8) + 6np}

−{23n3/(3K2) + 71n/6 + 8n2(p− 31/16)/K + 12np}

= (5− 23/K2)n3/3 + {4p(1− 2/K) + (31/K − 7)/2}n2 − (8 + 6p)n ≥ 0.

When K ≥ 3 and p ≥ 2, we have 5−23/K2 > 0 and 4p(1−2/K)+(31/K−7)/2 > 0.

Thus, when n ≥ 4(4 + 3p)/{1 + 8p(1− 2/K) + 31/K − 7}, we have (5− 23/K2)n2/3 +

{4p(1− 2/K) + (31/K − 7)/2}n− (8 + 6p) > 0. The result follows immediately. 2
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Chapter 3

Model Selection Consistency of OSCAR estimators

3.1 Introduction

In this chapter, we consider linear regression models:

y = Xβ + ε,

where y is a n× 1 vector, X is a n× p matrix and β are parameters; ε is a n× 1 vector

of errors. For simplicity, each explanatory variable is normalized, that is,
∑n

i=1 xij = 0

and ∥xj∥22 = n, j = 1, . . . , p.

A substantial work has been proposed in the formulation of penalized least squares:

β̂ = argminβ
1

2n
∥y −Xβ∥22 + p(β),

where p(·) is a penalty function. With different choices of the penalty function ρ(·), we

have various penalized least square estimators. For example, ridge regression proposed

by Frank & Friedman (1993) is based on L2 penalty function. Ridge estimator is a

shrinkage method that can handle the low-rank design matrix situation but it does

not lead to sparse coefficients that have many exact zero elements. On the contrary,

Tibshirani (1996), Chen et al. (2001), Efron et al. (2004) consider L1 penalty in Lasso

or least angle regression (LARS). The Lasso estimators can result in exact zero esti-

mation and thus perform both shrinkage and model selection. More recently, smoothly

clipped absolute deviation (SCAD) penalty by Fan & Li (2001) and minimax concave
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penalty (MCP) by Zhang (2010) extend the class of penalty functions broadly. The

SCAD penalty corresponds to a nonconcave quadratic spline function with two knots.

SCAD estimator retains the sparseness of Lasso estimators and are unbiased for large

coefficients. As the SCAD penalty, the MCP also has the property of unbiasedness but

releases the computational and analytical burden resulted from the non-convexity in

the minimization problem in SCAD or SCAD-like penalties.

However, the penalized estimators mentioned above are not able to handle the case

when high correlations exist among variables. Zou & Hastie (2005) have found that

Lasso estimators do not encourage highly corrected variables to be selected all together

but randomly select one of these variables. In practice, ignoring correlation structures

among predictor can lead to wrongly interpreted models. For example, Chen et al.

(2009) integrate genotype and gene expression data to predict complex quantitative

phenotypes and identify genes that actively influence these traits. Since coregulated

or functionally related genes are more likely to have similar expression patterns, gene

expression data is also useful to find coexpression patterns and locate groups of co-

transcribed genes (Lee et al., 2004). Therefore, a good estimator should discover all

possible influential genes to discover gene functions and to find related transcription fac-

tors instead of selecting one of these highly correlated genes. After identifying features

that actively influence the phenotype, further causality tests can be done to discover

causal genes (Chen et al., 2009). In addition, selecting all highly correlated variables

helps in data analysis problems with confounding variables. A confounding variable is

defined as a variable that is correlated with both selected explanatory variables and the

response variable. Without the risk of selecting wrong models, a conservative approach

is to include all possible variables in the model for further causality tests.
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The conservative approach of including highly correlated variables can be realized

by the ‘grouping’ practice in the literature in the sense that they would have similar or

exactly the same coefficients, see Zou & Hastie (2005) and Bondell & Reich (2008). The

grouping property is essentially important in identifying relevant explanatory variables

even causal effects without hurting any prediction accuracy. Indeed, grouping is an

attractive feature in dealing with highly correlated variables. Let’s consider a simple

regression example with two highly correlated variables:

y = β∗
1x1 + β∗

2x2 + ε, (3.1)

where xT
1 x2/n = 1 and β∗

i , i = 1, 2 are true coefficients. If x1 is the causal effect and

x2 is a confounding variable, we have β∗
1 ̸= 0 and β∗

2 = 0. Conservatively, we would

include both variables in the model and enforce their coefficients to be the same:

y = β0
1x1 + β0

2x2 + ε, (3.2)

where β0
1 = β0

2 = (β∗
1 + β∗

2)/2. Model (3.1) and (3.2) are equivalent in prediction but

model (3.2) is not at the risk of selecting wrong models. In the context of grouping

highly correlated variables, we will consider model (3.2) as more appropriate target

model. Inspired by this model, suppose the true model is

y =

p∑
i=1

xiβ
∗
i + ε,

where β∗
i is the true coefficients which reflects causal effects. We reparameterize the

model as following:

y =

p∑
i=1

xiβ
0
i + ε,

where |β0
i | =

∑
l∈Gi
|β∗

l |/|Gi| with Gi = {j : |xT
i xj/n| = 1, j = 1, . . . , p}. Instead of

recovering true coefficients β∗ = (β∗
i , i = 1, . . . , p), our goal is to recover β0 = (β0

i , i =

1, . . . , p).
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In order to achieve the grouping feature, many literatures have proposed doubly

regularized estimators. Zou & Hastie (2005) propose Elastic net (Enet) penalty that

combines L1 norm and L2 norm penalties. They prove that the Elastic net estimators

have a grouping effect that is the upper bound of the difference between the coefficients

of predictor i and predictor j is proportional to
√

1− |ρij |, where ρij = x′
ixj/n is

the sample correlation. As a result, elastic net estimators have similar coefficients

for highly correlated predictors because the difference between the coefficients would

be small when the sample correlation is close to 1. Huang et al. (2010a) extend the

Enet to Mnet penalty in which the L1 norm penalty is replaced by MCP. Li & Li

(2008) and Li & Li (2010) propose a graph-constrained estimation (Grace) procedure.

The Grace penalty is a combination of L1 norm penalty and a Laplacian quadratic

penalty which is associated with the graph structure. Huang et al. (2011) propose

sparse Laplacian shrinkage (SLS) estimation method in which the penalty function is

a combination of MCP and a Laplacian quadratic penalty. The Laplacian matrix used

in SLS is constructed through the adjacency measures among variables which is more

general than the graph structure. They show that MCP can induce sparseness in β

and the quadratic function of β encourages smoothness in the estimation. It is worth

noting that all the methods mentioned above use quadratic penalty functions to enjoy

the grouping property. More precisely, all these penalized estimators with grouping

property can be written as:

β̂ = argminβ
1

2n
∥y −Xβ∥2 + λ1p1(β) + λ2

∑
j<k

|ajk|(βj − sjkβk)
2,

where p1(·) is a penalty that can introduces sparseness, e.g. L1 norm penalty and MCP;

and ajk, sjk are constants chosen by the user arbitrarily.

OSCAR estimators, proposed by Bondell & Reich (2008), further improve the
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smoothing or grouping effect. OSCAR estimators are defined as penalized least squares

where the penalty function combines L1 norm and L∞ norm penalties:

β̂ = argminβ
1

2n
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
j<k

max{|βj |, |βk|}],

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. Compared with elastic net, OSCAR

estimators have an exact grouping property. In particular, the absolute coefficients of

two variables are enforced to be exactly the same if the tuning parameters are larger

than a bound that is proportional to
√

1− |ρij |. In other words, if |ρij | exceeds a

threshold that is controlled by the tuning parameters, predictor i and predictor j will

be grouped since their absolute coefficients are the same. The penalized least square

function of OSCAR estimators can be rewritten as:

β̂
O
= argminβ

1

2n
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
j<k

∣∣|βj | − |βk|∣∣,
with properly adjusted tuning parameters λ1 and λ2. Compared with the penalty

functions using quadratics, OSCAR estimators use L1 norm based penalty function on

the differences of the absolute coefficients rather than quadratic functions. As a result,

OSCAR estimators enforce the coefficients’ differences of highly correlated predictors

to be exact 0.

The difficulty in studying OSCAR estimators arise in the nondifferentiation of L1

norm penalty function on the coefficients’ difference. All the other doubly regularized

estimators such as Enet (adaptive elastic net), Grace and SLS estimators take advantage

of the differentiable quadratic function. Thus, compared with the conditions for LASSO

and MCP estimators, with minor adjustments on the design matrix, one can assess

how well those penalized estimators perform in model selection. On the contrary, the

consistency properties of OSCAR estimators can not be adapted from the LASSO
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estimators’ properties.

In this chapter, we consider a formal and more restrictive definition of sign consis-

tency for model selection. An estimator β̂ is said to be sign consistent if

sgn(β̂i) = sgn(β0
i ), sgn(|β̂i| − |β̂j |) = sgn(|β0

i | − |β0
j |), (3.3)

where β0 = (β0
i , i = 1, . . . , p) is the target coefficient. Compared with the usual defi-

nition of sign consistency which requires that sgn(β̂) = sgn(β0), the definition of (3.3)

also requires that the penalized estimator should keep the magnitude order of the co-

efficients beside selecting the true model. Suppose a group structure exists based on

variable correlations, that is {1, . . . , p} = ∪kGk, where variables in the same group

Gk are highly correlated and the groups Gk’s are unknown non-overlapping subsets of

{1, . . . , p}. We generalize the definition of sign consistent: an estimator β̂ is said to be

group sign consistent if

sgn(β̂i) = sgn(β0
i ), sgn(|β̂i| − |β̂j |) = sgn(|β0

i | − |β0
j |), i ∈ Gk, j ∈ Gl, k ̸= l. (3.4)

The group sign consistency means that the penalized estimator can select the true

model and keep the magnitude order of the coefficients in different groups. Since pe-

nalized estimators are asymptotically unbiased, high correlation between two variables

actually implies closer target coefficients. Here, we provide a distinguishable condition

on the coefficients and show that OSCAR estimators are sign consistent with high prob-

ability when correlations are moderate. When the correlations between variables with

nonzero coefficients are extremely high, we show that OSCAR estimators are group

sign consistent.

The rest of the chapter is organized as follows. In section 3.2, we investigate the

grouping property of OSCAR estimators when the sample size n intends to infinity
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and we show OSCAR estimators are (group) sign consistent. In section 3.3, simulation

studies are presented with comparison of other estimators. In section 3.4, we give final

discussions on OSCAR estimators.

3.2 Model selection consistency

Let the target value of the regression coefficients be β0. Rewrite OSCAR estimator as

β̂ = argminβ
1

2n
∥y −Xβ∥2 + λ∥β∥1 + λδ

∑
j<k

max{|βj |, |βk|}],

where λ > 0 and δ > 0 are tuning parameters.

Without loss of generality, the coefficients are ordered by their magnitudes |β0
1 | ≥

|β0
2 | ≥ · · · ≥ |β0

p−1| ≥ |β0
p |. We consider model selection properties of OSCAR estimators

under a sparsity condition on the regression coefficients. Denote by A = {j : β0
j ̸= 0},

the set of indices of nonzero coefficients. Let s = |A| be the cardinality of A. In ad-

dition, because of the reparameterization, we assume that the coefficients magnitude

are associated with the variable correlations, that is, the differences between two co-

efficients’ magnitudes are proportional to the correlation between the corresponding

variables. Denote β∗ = minj∈A |β0
j | as the minimal signal and ω = (ωj , j = 1, . . . , p)

with ωj = (p− j)δ + 1 be the ordered weights.

Define subspaces Dg ⊂ Rg, g ∈ N:

Dg = {v = (v1, . . . , vg)
T : vj =

∑
l:l<j,1≤l≤g

dlj(j) +
∑

l:l>j,1≤l≤g

djl(j), j = 1 . . . g, (3.5)

with dls(l) ≥ 0, dls(s) ≥ 0 and dls(l) + dls(s) = 1, ∀1 ≤ l < s ≤ g}, (3.6)

where dls(·) is a function on the set {l, s}.

We characterize OSCAR estimators in the following lemma. Lemma 3.1 comes from

the KKT conditions of penalized least square function for OSCAR estimators.
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Lemma 3.1 Suppose α̂1 > α̂2 > · · · > α̂K̂ > 0 are the distinct values of {|β̂j | ̸= 0 :

j = 1, . . . , p}. Then β̂ is OSCAR estimator if

(i) −XT
Ĝk

(y −Xβ̂)/n+ λω̃Ĝk
◦ sgn(β̂Ĝk

) = 0, k = 1, . . . , K̂,

where Ĝk = {j : |β̂j | = α̂k} and ω̃Ĝk
= δvĜk

+ [(p−
∑

l<k |Ĝl|)δ+1]1Ĝk
for some

vĜk
∈ D|Ĝk|; and

(ii) ∥XT
Âc(y −Xβ̂)/n∥∞ ≤ λ, where Âc = {j : |β̂j | = 0}.

To show the model selection consistency of OSCAR estimators, we make the follow-

ing sub-Gaussian assumption on the error terms:

Condition A 3.1 The sub-Gaussian assumption is made on the error terms:

sup
∥u∥2=1

P(u′ε > σt) ≤ e−t2/2, t > 0.

We consider first in Section 3.2.1 the no grouping case, in which all nonzero coeffi-

cients are distinguishable with no ties. It implies that the correlations among variables

are not high. In Section 3.2.2, we provide theoretical results for more complicated case

involving high correlated variables in which unknown potential ties are presented among

non-zero coefficients.

3.2.1 No grouping case

We introduce the following notations: Σ = X ′X/n and for any set S, ΣS denotes the

submatrix of Σ with row index in S and XS denotes the submatrix of X with column

index in S.

Let us consider the case that all nonzero coefficients are distinguishable. Without

loss of generality, for j ∈ A, we assume |β0
1 | > |β0

2 | > · · · > |β0
s | > 0. In this case, we

also make a simple assumption that ΣA is invertible. Specifically, we assume:
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Condition B 3.1 Assume the following conditions on the design matrix:

(i) ∥Σ−1
A ∥∞ ≤ C1,

(ii) ∥Σ−1
A ωA ◦ sgn(β0

A)/n∥∞ ≤ c1

(iii) ∥XT
AcXAΣ

−1
A ωA ◦ sgn(β0

A)/n∥∞ ≤ c2,

where C1 > 0, c1 > 0 and c2 > 0 are constants.

Condition B3.1 are the standard regularity conditions on the design matrix. Con-

dition B3.1(i) require the cross-product matrix for variables with nonzero coefficients

are invertible and the L∞ norm of the inverse matrix is bounded. Condition B3.1(ii)

controls the bias introduced by the penalty. Condition B3.1(iii) put restrictions on the

correlation between variables with nonzero coefficients and variables with zero coeffi-

cients.

Denote ξ = Σ−1
A ωA. We evaluate the magnitude difference between two coefficients

by

dj = {(|β0
j | − |β0

j+1|)− λ|ξj − ξj+1|}/
√
vj ,

where vj = Σ−1
A (j, j)+Σ−1

A (j+1, j+1)− 2Σ−1
A (j, j+1) and Σ−1

A (i, j) denotes the (i, j)

entry of matrix Σ−1
A .

Condition B 3.2 For 0 < ϵ < 1, assume

(i) β∗ − λc1 ≥ C1σ
√
2 log(sϵ−1)/n,

(ii) λ ≥ σ
√

2 log(pϵ−1)/n/(1− c1),

(iii) minj∈A dj ≥ σ
√

2 log{(s− 1)ϵ−1}/n.
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Conditions B3.2(i)-(ii) explains the relationship between minimal signal β∗ and the

tuning parameters. Basically, it requires that the minimal signal should be large enough

to detect and the penalty is under control. Compared with LASSO, OSCAR penalty

will put additional penalty that is as large as (p− 1)δ times the absolute value of coef-

ficients. The additional bias is controlled by c1. If c1 is large, we need to reduce λ and

have β∗ to be large enough to be detected. Condition B3.2(iii) requires the differences

among nonzero coefficients distinguishable so that OSCAR estimators can keep the co-

efficients order. The difference level is adjusted by the bias ξ and correlation between

two variables. Since we need to distinguish s coefficients, the normalized difference level

needs to be as large as O(σ
√

2 log{(s− 1)}/n). In terms of the target coefficients β0,

the difference between biases |ξj− ξj+1| is controlled by C1δ. Therefore, the correlation

between two variables determines how large the difference is needed between their cor-

responding target coefficients. Specifically, when the correlation among two variables

is high or vj is small, the difference between their coefficients should be larger. On the

contrary, if the correlation is low or vj is high, this constraint can be relaxed. This

condition is consistent with the grouping property of OSCAR estimators. As OSCAR

estimators intend to give similar coefficients to highly correlated variables, the true

coefficient difference should be larger for OSCAR estimators to detect. Nevertheless,

since the cross-product matrix for variables with nonzero coefficients are invertible and

the L∞ norm of the inverse matrix is bounded, the correlations among variables in this

case are at most moderate.

The following theorem shows the sign consistency property of OSCAR estimators

under the moderate correlation scenario.
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Theorem 3.1 Assume Condition A, B3.1 and B3.2 hold. Then, we have

P
(
sgn(β̂i) = sgn(β0

i ), sgn(|β̂i| − |β̂j |) = sgn(|β0
i | − |β0

j |)
)
≥ 1− 3ϵ.

3.2.2 Grouping with high correlations case

When the variables are highly correlated and the covariance matrix ΣA is not invertible,

that is, Condition B3.1(i) cannot be satisfied, Theorem 3.1 is not applicable. But in

this case, variables with nonzero coefficients can be grouped together according to their

correlations. In particular, we assume, without loss of generalization, that there are K

groups Gk = {j : j = sk−1 + 1, . . . , sk}, k = 1, . . . ,K where s0 = 0 and sK = s. The

target coefficients are organized such that |β0
1 | ≥ · · · ≥ |β0

s1 | > |β
0
s1+1| ≥ · · · ≥ |β0

s2 | >

· · · > |βsK−1+1| ≥ · · · ≥ |βsK | > 0, and β0
s+1 = · · · = β0

p = 0. If coefficients in the

same group are tied, that is, |β0
sk−1+1| = · · · = |β0

sk
|, k = 1, . . . ,K, we have exact group

structures. Here, we consider a more general scenario that variables in the same group

do not have exactly the same coefficients but close coefficients. This generalizes the

simulation settings considered by Bondell & Reich (2008).

We introduce and define a representing variable zk and its corresponding coefficient

b0k for each group as following:

zk =

sk∑
j=sk−1+1

xjsgn(β
0
j )/|Gk|,

b0k/|Gk| = argminb
∑
j∈Gk

∣∣|β0
j | − b

∣∣ = median(|β0
j |, j ∈ Gk),

where |Gk| = sk − sk−1 is the number of variables in group k. Thus, b01 > b02 > · · · >

b0k > 0. Specifically, zk is the average of variables in group k with sign adjusted and b0k

is the median of absolute coefficients in group k. We will show that with mild conditions

imposed on representing variables, OSCAR estimators achieve group sign consistency.
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In fact, this property reflects the equivalence between OSCAR and methods which

average variables in the same group, e.g. Jornsten & Yu (2003).

Denote Z = (zk, k = 1, . . . ,K) as representing design matrix, HZ = Z(ZTZ)−1ZT ,

P⊥
Z = I−HZ and D = diag(|Gk|, k = 1, . . . ,K). Furthermore, the discrepancy between

b0 = (b0k, k = 1, . . . ,K) and β0
A is evaluated by ∆ =

∑K
k=1

∑
j∈Gk

xjsgn(β
0
j )(|β0

j | −

b0k/|Gk|). Furthermore, define average penalty weights for each group ω̄k =
∑

j∈Gk
ωj/|Gk|

and ω̄ = (ω̄k, k = 1, . . . ,K).

Condition C 3.1 For 0 < α < 1, 0 < u1 < 1 and 0 < u2 < 1, assume the following

conditions on the representative design matrix and coefficients:

(i) ∥(Z ′ZD/n)−1∥∞ ≤ C1,

(ii) ∥(Z ′ZD/n)−1ω̄∥∞ ≤ c1,

(iii) ∥X ′
A cZ(Z ′Z/n)−1ω̄/n∥∞ ≤ c2,

(iv)
∣∣|β0

j | − b0k/|Gk|
∣∣ ≤ (1− α)β∗, j ∈ Gk, k = 1, . . . ,K,

(v) ∥ZT∆/n∥∞ ≤ λu1,

(vi) ∥XT
Ac(I −HZ)∆/n∥∞ ≤ λu2,

where C1 > 0, c1 > 0 and c2 > 0 are constants.

Condition C3.1(i)-(iii) are parallel to Condition B1 but the restrictions are put

on the representative design matrix. Also, Condition C3.1(iv)-(vi) requires that the

coefficients for variables in the same group are close enough. If the coefficients in one

group have the same absolute value, Condition C3.1(iv)-(vi) can be ignored.
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Variables in the same group need to have high correlation to be grouped together by

OSCAR estimators. We evaluate the within group correlation by the closeness between

the subset average and the representative variable. More specifically, define

ϕm
k =

min
|Bm

k |=m
∥P

⊥
Z [z(Bm

k )− zk]√
n

∥−1
2 [λδ

|Gk| −m

2
− | (z(B

m
k )− zk)

T

n
{P⊥

Z∆+ λZ(ZTZ/n)−1ω̄}|],

where z(Bm
k ) =

∑
j∈Bm

k
xjsgn(β

0
j )/m with Bm

k ⊂ Gk and |Bm
k | = m. Again, when vari-

ables in one group have the same absolute coefficients, it can be reduced to ∥P⊥
Z [z(Bm

k )−

zk]/
√
n∥−1

2 [λδ(|Gk| −m)/2− |(z(Bm
k )−zk)

T {λZ(ZTZ/n)−1ω̄}|/n]. Moreover, denote

ξ = (ZTZ/n)−1(ZT∆/n − λω̄) and Σ−1
Z = (ZTZ/n)−1. The magnitude difference

between two group coefficients is evaluated by dk = [(b0k − b0k+1) − |ξk − ξk+1|]/vk,

k = 1, . . . ,K − 1, where vk = Σ−1
Z (k, k) + Σ−1

Z (k + 1, k + 1) − 2Σ−1
Z (k, k + 1) and

Σ−1
Z (k, l) denotes the (k, l) entry of matrix Σ−1

Z .

Condition C 3.2 For 0 < ϵ < 1, assume

(i) αβ∗ − λc1 = C1(σ
√

log(Kϵ−1)/n+ λu1),

(ii) ϕm
k = 2σ

√
2[log(pϵ−1) + log(

(|Gk|
m

)
|Gk|)]/n,

(iii) λ = σ
√

2 log(pϵ−1)/n/(1− c2 − u2),

(iv) minK−1
k=1 dk = σ

√
2 log{(K − 1)ϵ−1}/n.

Condition C3.2(ii) imposes conditions on the correlations for variables within one

group. Roughly speaking, we need any subset average within a group to be close

to the representative variable in order overcome the within group penalty difference

λδ(|Gk| −m)/, k = 1, . . . ,m. In this case, OSCAR estimates for variables in the same

group will have exactly the same absolute value. Compared with Theorem 3.1 in Bondell
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& Reich (2008), this condition is much less restrictive. Here, we only require that each

variable to be close to the representing variable for that group instead of pairwise high

correlation. Also, Condition C2(ii) implies that the larger group size is, the more likely

OSCAR estimator will force coefficients in that group to have identical absolute value.

Condition C3.3(i),(iii) and (iv) are parallel to Condition B3.2 with adjustment to the

additional bias introduced by the within group differences.

Theorem 3.2 Assume Condition A3.1, C3.1 and C3.2 hold. Then we have

P
(
O1 ∩ O2

)
≥ 1− 4ϵ,

where O1 = {sgn(β̂i) = sgn(β0
i ), sgn(|β̂i|−|β̂j |) = sgn(|β0

i |−|β0
j |),k ̸= l, k, l = 1, . . . ,K}

and O2 = {|β̂i| = |β̂j |, i, j ∈ Gk, k = 1, . . . ,K}.

3.3 Numerical studies

3.3.1 Simulation studies

In this section, we present numerical results to study the finite sample performance of

OSCAR estimators, compared with LASSO, SCAD and Elastic Net estimators. For all

methods, BIC criterion is used to select the tuning parameters.

We consider the scenarios with moderately correlated variables and highly correlated

variables. In Bondell & Reich (2008), the simulation studies focus on the settings with

a small number of variables, such as p = 8, p = 40 and so on. To demonstrate the large

sample property of OSCAR estimators, similar to Fan & Peng (2004) and Zou & Zhang

(2009), we choose p = nv, where 0 < v < 1. The response variable is generated from

y = Xβ + ε,
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where ε are generated from IID N(0, σ2).

We evaluate the performance of different penalized estimators in two aspects: model

selection accuracy and prediction. We calculate mean square errors (MSE), model

size, model selection (Model Sel.) sensitivity (in %) and model selection specificity (in

%). Here, model size is defined as the number of variables with nonzero coefficients

estimation; model selection sensitivity is calculated as the ratio of the number variables

with both true nonzero coefficients and nonzero coefficients estimation and the number

of variables with true nonzero coefficients; model selection specificity is calculated as

the ratio of the number variables with both true zero coefficients and zero coefficients

estimation and the number of variables with true zero coefficients.

Example 3.1 In this example, no grouping case is simulated. We consider two

choices of n, n = 100, 400, and two choices of p, p = ⌊
√
n⌋, ⌊n2/3⌋ with a total of four

settings. The covariance between variable ith and jth is Σij = cos(|i − j|π/(2p)) and

X ′X/n = Σ. The number of variables with nonzero coefficients s = ⌊
√
s⌋ and the

coefficients β ≈
√

2 ∗ log(p)/n. The variable correlations and coefficients magnitude

are demonstrated in Figure 3.1. The numerical results are exhibited in Table 3.1 and

Figure 3.3. As we can see from Table 3.1, OSCAR estimators outperform other es-

timators in terms of higher model selection sensitivity and model selection specificity

for both examples. In this example, although explanatory variables are consecutively

correlated, OSCAR estimators are able to distinguish variables with zero coefficients

and variables with nonzero coefficients. Figure 3.3 shows that OSCAR estimators select

variables with the largest absolute coefficient with the highest frequency. The selecting

frequencies decrease as the absolute coefficients become smaller. Most variables with

zero coefficients are excluded as they are never been selected by OSCAR estimators. On
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the other hand, ENET estimators have higher model selection sensitivity than LASSO

and SCAD estimators. However, ENET estimators sometimes are disturbed by the con-

secutive correlation and ignore a few true variables with nonzero coefficients but select

variables with zero coefficients that are highly correlated with variables with nonzero

coefficients. In addition, SCAD estimators will select only one of the highly correlated

variables with nonzero coefficients. LASSO estimators are influenced by the correlation

structures most as they cannot distinguish variables with zero and nonzero coefficients.

All variables will be randomly picked by LASSO estimators.

Example 3.2 In this example, grouping with high correlations case is simulated.

We consider two choices of n, n = 100, 400, and two choices of p, p = ⌊
√
n⌋, ⌊n2/3⌋ with

a total of four settings. The design matrix has K = 4 groups and each group has p/K

variables, where variables {1, . . . , s1} ∈ G1, . . . , {sk + 1, . . . ,K} ∈ GK . X ′X/n = Σ

and Σij = cos(|i−j|π/(2p)), if i, j are in the same group; otherwise Σij = cos(|k−l|+|i−

j|π/(2K)), i ∈ Gk, j ∈ Gl. The number of variables with nonzero coefficients s = ⌊
√
s⌋

and the coefficients β ≈
√

2 ∗ log(p)/n. Group 1 and group 2 have s/2 variables with

nonzero coefficients separately. The variable correlations within and between groups

are demonstrated in Figure 3.2. The numerical results are exhibited in Table 3.1 and

Figure 3.4. According to Table 3.1, highly correlated variables are grouped together

and correlations between variables in different groups are small. In this case, OSCAR

estimators and ENET estimators perform similarly while SCAD estimators still keep

only one variable with nonzero coefficient in each group and LASSO estimators do

random selecting.



65

●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) n=100, p= n=10

Coefficients

Variable index

C
o
e
ff

ic
ie

n
t

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

1 2 3 4 5 6 7 8 9 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) n=100, p=n
2 3

=22

Coefficients

Variable index

C
o
e
ff

ic
ie

n
t

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) n=400, p= n=20

Coefficients

Variable index

C
o
e
ff

ic
ie

n
t

0
.0

0
0
.0

5
0
.1

0
0
.1

5

1 2 3 4 5 6 7 8 9 11 13 15 17 19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) n=400, p=n
2 3

=54

Coefficients

Variable index

C
o
e
ff

ic
ie

n
t

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54

Figure 3.1: Simulation design demonstration of Example 3.1. Left panels: angles be-
tween vectors on two dimensional plane represent arccos(correlation); right panels:
hight represents coefficients’ magnitudes.
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Figure 3.2: Simulation design demonstration of Example 3.2. Left panels: angles be-
tween vectors on three dimensional plane represent arccos(correlation); right panels:
hight represents coefficients’ magnitudes.
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Table 3.1: Comparison of OSCAR, LASSO, SCAD and ENET estimators

MSE Model Size Model Sel. Model Sel. MSE Model Size Model Sel. Model Sel.
Sensitivity Specificity Sensitivity Specificity

Example 3.1

n = 100, p = ⌊
√
n⌋ n = 100, p = ⌊n2/3⌋

OSCAR 0.98 2.54 72.50 94.79 0.97 5.81 92.10 92.91
(0.14) (0.69) (23.97) (8.49) (0.14) (1.84) (16.52) (7.76)

LASSO 0.97 1.97 47.83 92.43 0.97 2.40 29.00 94.38
(0.15) (0.63) (19.65) (8.93) (0.63) (0.09) (11.99) (5.99)

SCAD 0.96 1.00 31.67 99.21 0.96 1.00 20.00 99.97
(0.15) (0.07) (7.28) (3.27) (0.15) (0.07) (0) (0.42)

ENET 0.97 1.75 53.83 98.00 0.97 2.88 56.20 99.62
(0.15) (0.43) (17.58) (5.37) (0.16) (0.36) (8.83) (1.45)

n = 400, p = ⌊
√
n⌋ n = 400, p = ⌊n2/3⌋

OSCAR 0.93 4.86 86.84 91.32 0.99 10.45 96.14 92.09
(0.25) (2.17) (21.85) (10.10) (0.07) (3.91) (12.30) (7.54)

LASSO 0.93 3.41 53.99 92.15 0.99 3.37 38.43 98.56
(0.25) (0.90) (22.63) (5.00) (0.10) (1.05) (12.92) (2.52)

SCAD 0.93 1.01 23.40 99.57 0.98 1.00 14.07 99.96
(0.25) (0.07) (6.13) (1.59) (0.10) (0.07) (1.74) (0.30)

ENET 0.93 2.45 54.92 98.44 0.99 4.97 66.64 99.35
(0.26) (0.58) (17.51) (3.63) (0.10) (0.51) (11.39) (1.47)

Example 3.2

n = 100, p = ⌊
√
n⌋ n = 100, p = ⌊n2/3⌋

OSCAR 0.96 2.71 54.67 84.64 0.96 7.99 73.90 74.76
(0.15) (1.45) (33.26) (17.06) (0.15) (4.33) (29.41) (17.72)

LASSO 0.96 2.62 30.17 75.43 0.96 3.92 37.40 87.91
(0.15) (0.75) (21.03) (11.82) (0.15) (0.88) (24.50) (7.20)

SCAD 0.97 1.30 22.17 90.93 0.96 1.95 15.70 93.15
(0.15) (0.48) (15.77) (9.30) (0.15) (0.26) (8.24) (2.81)

ENET 0.97 2.45 45.33 84.43 0.97 5.55 67.00 87.03
(0.15) (0.95) (30.27) (13.06) (0.16) (2.56) (28.27) (12.76)

n = 400, p = ⌊
√
n⌋ n = 400, p = ⌊n2/3⌋

OSCAR 0.99 5.58 63.00 80.84 0.99 22.28 86.97 65.41
(0.09) (3.57) (32.38) (16.38) (0.09) (9.62) (22.53) (17.69)

LASSO 0.98 4.32 26.12 79.53 0.98 5.44 22.36 91.76
(0.10) (0.84) (19.46) (7.06) (0.10) (1.13) (13.78) (2.86)

SCAD 0.98 1.80 15.62 92.69 0.98 2.00 9.14 97.10
(0.10) (0.42) (12.13) (3.97) (0.10) (0.07) (6.87) (1.05)

ENET 0.99 4.35 54.75 86.50 1.00 9.53 74.00 90.76
(0.10) (2.14) (30.22) (12.57) (0.10) (4.78) (20.24) (9.89)
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Example 1: n= 100 p= 22
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Example 1: n= 400 p= 20
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Example 1: n= 400 p= 54
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Figure 3.3: Coefficients estimation and variable selection frequency for OSCAR,
LASSO, SCAD and ENET: consecutive correlation structure.
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Example 1: n= 100 p= 10
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Example 1: n= 100 p= 22
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Example 1: n= 400 p= 20
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Figure 3.4: Coefficients estimation and variable selection frequency for OSCAR,
LASSO, SCAD and ENET: clustered correlation structure.
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3.3.2 Real data analysis

In this section, we illustrate the performance of OSCAR estimators using gene expres-

sion, genotype and phenotype (growth in the presence of drug) data from segregants

obtained from a cross between two diverse strains of Saccharomyces cerevisisae in Chen

et al. (2009). The goal is to select features from a large pool of markers and transcripts

to predict the growth in the presence of drug. In the dataset, we have 104 segregants,

813 transcripts in gene expressions and 154 different genotypes. We apply OSCAR,

LASSO, SCAD and Elastic Net approaches to fit a linear regression model. The tuning

parameters are chosen by 10-fold cross-validation criterion. Since cross-validation er-

rors represent prediction errors, we report the mean cross-validation error as well. The

fitted values and model selection information are exhibited in Figure 3.5. In addition,

OSCAR selects 25 genes, LASSO selects 74 genes, SCAD selects 13 genes and ENET

selects 45 genes. Together with Figure 3.5, we can see that SCAD performs well in

prediction as it has the smallest cross-validation error. However, SCAD selects too few

genes and may miss the causal gene because of high correlation among the genes. On

the other hand, LASSO selects too many genes leading to a overfitting model. ENET

and OSCAR perform similarly while OSCAR has slightly less cross-validation errors.

3.4 Discussion

In this chapter, we investigate the model selection property of OSCAR (octagonal

shrinkage and clustering algorithm for regression) estimators when the number of ob-

servations increases, and provide a set of mild conditions under which model selection

consistency can be achieved. These theoretical results provide insights of the character-

istics of OSCAR estimators. It is shown that OSCAR estimators are able to select the
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True observations

OSCAR Fitted Value (model size= 25 ,Cross Validation Error=0.050)

LASSO Fitted Value (model size= 74 ,Cross Validation Error=0.085)

SCAD Fitted Value (model size= 14 ,Cross Validation Error=0.043)

ENET Fitted Value (model size= 45 ,Cross Validation Error=0.081)

Figure 3.5: The top bar represents growth in the presence of drug; each column is
associated with a different segregant (matched horizontal positions within the panel)
sorted by growth from low (red) to high (green). The fitted growth rates are presented
in the bottom 4 bars.
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true model under reasonable conditions. The conditions reveal the relationship between

coefficients’ magnitudes and correlations among variables. Simulation studies further

show that, compared with other penalized estimators, OSCAR estimators perform best

when noise variables are highly correlated with variables with nonzero coefficients. The

drawback of OSCAR estimators is that it is computationally intensive, especially when

the number of parameters is large. An efficient computing algorithm would be desirable

to make OSCAR estimators more applicable.

3.5 Appendix

Proof of Lemma 3.1:

By definition, β̂ is an OSCAR solution if 0 ∈ ∂Pn(β̂), where Pn(β) = 1
2n∥y −

Xβ∥2 + λ∥β∥1 + λδ
∑

i<j max{|βi|, |βj |}] and ∂Pn(β̂) is the subgradient of Pn(·) at β̂.

We only need to calculate the subgradient for max{|βi|, |βj |}. When |βi| > |βj | > 0,

lim
γ→0

[
max{|β̂i + γbi|, |β̂j + γbj |} −max{|β̂i|, |β̂j |}

]
/γ = bisgn(βi).

When |βi| = |βj | > 0,

lim
γ→0

[
max{|β̂i + γbi|, |β̂j + γbj |} −max{|β̂i|, |β̂j |}

]
/γ ≥ sgn(βi)dibi + sgn(βj)djbj ,

for di ≥ 0, dj ≥ 0 and di + dj = 1.

When |βi| = |βj | = 0,

lim
γ→0

[
max{|β̂i + γbi|, |β̂j + γbj |} −max{|β̂i|, |β̂j |}

]
/γ ≥ dibi + djbj ,

where |di| ≤ 1, |dj | ≤ 1 and |di|+ |dj | ≤ 1.

Together with the well known subdifferential of L1 norm penalty, the conclusion

follows immediately. 2
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Before we prove the theorems, we establish the following lemma to characterize the

g−dimensional vector v ∈ Dg defined in (3.5).

Lemma 3.2 For any g−dimensional vector v = (v1, . . . , vg)
T such that v1 ≥ v2 ≥

· · · ≥ vg ≥ 0, then v ∈ Dg if and only if(
m

2

)
≤

m∑
i=1

vi ≤ m(g − 1)−
(
m

2

)
, ∀1 ≤ m ≤ g.

Proof: We simplify the notation by rewriting dls(l) = dls, ∀1 ≤ l < s ≤ g. Firstly, if

v ∈ Dg, there exists 0 ≤ dls ≤ 1, 1 ≤ l ≤ s ≤ g such that

vj =
∑
l:l>j

djl +
∑
l:l<j

(1− dlj).

Therefore,

m∑
j=1

vj =

m∑
j=1

g∑
l=m+1

djl +

(
m

2

)
.

Since 0 ≤ dls ≤ 1, 1 ≤ l ≤ s ≤ g,(
m

2

)
≤

m∑
i=1

vi ≤ m(g − 1)−
(
m

2

)
.

On the other hand, if(
m

2

)
≤

m∑
i=1

vi ≤ m(g − 1)−
(
m

2

)
.

There exists a solution of 0 ≤ dls ≤ 1, 1 ≤ l ≤ s ≤ g such that

m∑
j=1

g∑
l=m+1

djl =

m∑
j=1

vj −
(
m

2

)
≤ m(g −m).

2

Proof of Theorem 3.1: Define oracle estimator β̂
O

with
β̂
O
A = Σ−1

A XT
Ay/n− λΣ−1

A ωA ◦ sgn(β0
A)

β̂
O
Ac = 0.
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Consider three events E1 = {∥XT
Aε/n∥∞ < C−1

1 (β∗ − λc1)}, E2 = {∥XT
Ac(I −

HA/n)ε/n∥∞ ≤ λ(1 − c2)}, HA = XAΣ
−1
A XT

A and E3 = {|ηj − ηj+1| ≤ dj
√
vj , j =

1, . . . , s− 1}, where η = Σ−1
A XT

Aε ◦ sgn(β0
A)/n. Under these events, we first show that

β̂
O

= argminβ∥y −Xβ∥22/(2n) + λ
∑n

i=1 ωi|βi| and ∥β̂
O
A − β0

A∥∞ < β∗. Then if β̂
O

satisfies sgn(|β̂O
i | − |β̂O

j |) = sgn(|β̂0
i | − |β̂0

j |), it means β̂
O

is the OSCAR estimator.

We need to verify that β̂
O

satisfies the KKT conditions for optimization function

∥y − Xβ∥22/(2n) + λ
∑n

i=1 ωi|βi|. Since β̂
O
A = Σ−1

A XT
Ay/n − λΣ−1

A ωA ◦ sgn(β0
A) =

β0
A + Σ−1

A XT
Aε/n − λΣ−1

A ωA ◦ sgn(β0
A), by condition B3.1(i) and (ii) and under event

E1,

∥β̂O
A − β0

A∥∞ ≤ ∥Σ−1
A XT

Aε/n∥∞ + λ∥Σ−1
A ωA ◦ sgn(β0

A)∥∞

≤ C1∥XT
Aε/n∥∞ + λc1 < β∗.

Therefore, sgn(β̂
O
A) = sgn(β0

A) and

ΣAβ̂
O
A −XT

Ay/n+ λωA ◦ sgn(β̂A) = 0. (3.7)

In addition, by condition B3.1(iii) and under event E2,

∥XT
Ac(y −XAβ̂

O
A∥∞

= ∥XAc(I −XAΣ
−1
A XT

A/n)ε/n+ λXT
AcXAΣ

−1
A ωA ◦ sgn(β0

A)/n∥∞

≤ λ(1− c2) + λc2 = λ

Together with (3.7), we conclude that β̂
O
= argminβ∥y −Xβ∥22/(2n) + λ

∑n
i=1 ωi|βi|.

Since β̂O
j = β0

j + ηjsgn(β
0
j ) − λξjsgn(β

0
j ), we have |β̂O

j | = |β0
j | + ηj − λξj and

|β̂O
j | − |β̂O

j+1| = |β0
j | − |β0

j+1|+ (ηj − ηj+1)− λ(ξj − ξj+1). Therefore, under event E3,

∣∣(|β̂O
j | − |β̂O

j+1|)− (|β0
j | − |β0

j+1|)
∣∣ ≤ |ηj − ηj+1|+ λ|ξj − ξj+1|

< |β0
j | − |β0

j+1|,
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and sgn(|β̂O
j | − |β̂O

j+1|) = sgn(|β0
j | − |β0

j+1|). So, we have shown that β̂
O

is the OSCAR

estimator and sgn(|β̂i|−|β̂j |) = sgn(|β0
i |−|β0

j |) under events E1, E2 and E3. Therefore,

P
(
sgn(|β̂i| − |β̂j |) = sgn(|β0

i | − |β0
j |)
)
≥ P(E1 ∩E2 ∩E3) ≥ 1−P(Ec

1)−P(Ec
2)−P(Ec

3).

Compute the probabilities: by condition B2,

P(Ec
1) ≤

s∑
j=1

P(|xT
j ε|/n ≥ C−1

1 (β∗ − λc1)) ≤ s exp{−[nC−2
1 (β∗ − λc1)

2]/[2σ2]} = ϵ,

and

P(Ec
2) ≤

p∑
j=s+1

P(∥xT
j (I −HA/n)ε/n∥∞ ≥ λ(1− c2))

≤ (p− s) exp{−[nλ2(1− c2)
2]/[2σ2]} ≤ (p− s)ϵ/p,

and since the variance of |ηj − ηj+1| is vjσ2/n,

P(Ec
3) ≤

s−1∑
j=1

P(|ηj − ηj+1| ≥ dj
√
vj)

≤
s−1∑
j=1

P
(
|ηj − ηj+1|/

√
vj ≥

s−1
min
j=1

(dj)
)

≤ (s− 1) exp−[
√
n

s−1
min
j=1

(dj)]
2/[2σ2] ≤ ϵ.

The conclusion follows immediately. 2

Proof of Theorem 3.2: Define β̃ = argminβ
{
∥y − Zβ∥22/(2n) + λ

∑K
k=1 ω̄kβk

}
=

(ZTZ/n)−1y − λ(ZTZ/n)−1ω̄ and the oracle estimator β̂
O

with
β̂
O
Gk

= β̃ksgn(β
0
Gk

)/|Gk|)T

β̂
O
Ac = 0.

Consider events E1 =
{
∥ZT ε/n∥∞ ≤ C−1

1 (αβ∗ − λc1) − λu1
}
, E2 = {∥XT

Ac(I −

HZ)ε/n∥∞ < λ(1 − c2 − u2)}, E3 = {|(z(Bm
k ) − zk)

TPZε/n| ≤ λδ(|Gk| − m)/2 −

|(z(Bm
k ) − zk)

T [PZ∆ + λZ(ZTZ/n)−1ω̄]|/n, z(Bm
k ) =

∑
j∈Bm

k
xjsgn(β

0
j )/m,∀Bm

k ⊂
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Gk, |Bm
k | = m}, and E4 = {|ηk − ηk+1| < b0k − b0k+1 − |ξk − ξk+1|, k = 1, . . . ,K − 1},

where η = (ZTZ/n)−1ZT ε/n.

For better presentation, we decompose y −XAβ̂
O
A as follows

y −XAβ̂
O
A

= y −
∑
k

∑
j∈Gk

xjsgn(β
0
j )|β0

j |+
∑
k

∑
j∈Gk

xjsgn(β
0
j )(|β0

j | − b0k/|Gk|)

+
∑
k

∑
j∈Gk

xjsgn(β
0
j )(b

0
k/|Gk| − β̃k/|Gk|)

= ε+∆+

K∑
k=1

zk(b
0
k − β̃k).

We first show that |β̃k− b0k|/|Gk| < αβ∗ and sgn(β̃k− β̃k+1) = sgn(b0k− b0k+1). Then

we prove that β̂
O

satisfies the KKT conditions for OSCAR estimators
−xT

j (y −Xβ̂
O
)/n = λω̃jsgn(β̂

O
j ), j ∈ A

|xT
j (y −Xβ̂

O
)|/n ≤ λ, j ∈ Ac,

where ω̃Gk
= 1|Gk| + δvGk

, vGk
∈ D|Gk|, k = 1, . . . ,K.

Therefore, by condition C3.1 and under event E1

∥D−1(β̃ − b0)∥∞

= ∥(ZTZD/n)−1[ZT ε/n+ZT∆/n]− λ(ZTZD/n)−1ω̄∥∞

≤ C1∥ZT ε/n∥∞ + C1λu1 + λc1

< αβ∗,

and |β̂O
j −β0

j | = |β̃k/|Gk|−β0
j | ≤ |β̃k− b0k|/|Gk|+

∣∣b0k/|Gk|−β0
j

∣∣ < β∗. Thus sgn(β̂
O
A) =

sgn(β0
A).

Similar to the proof of theorem 3.1, we have β̃k = b0k + ηk + ξk and under event E4

|(β̃k − β̃k+1)− (b0k − b0k+1)|

= |(ηk − ηk+1) + (ξk − ξk+1)| ≤ b0k − b0k+1,
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thus sgn(β̃k − β̃k+1) = sgn(b0k − b0k+1).

To show that the oracle estimator satisfies KKT condition in Lemma 3.1

−XT
Gk

(y −XAβ̂
O
A)/n+ λδvGk

sgn(β̂
O
Gk

) + λ[(p− sk)δ + 1]sgn(β̂
O
Gk

) = 0,

for some vGk
∈ D|Gk|, by Lemma 3.2, we only need to prove for 1 ≤ m ≤ |Gk|

(m− 1)/2 ≤ ∥X̃T
Gk

(y −XAβ̂
O
A)/n− λ[(p− sk)δ + 1]1|Gk|∥(1,m)/m ≤ λδ(|Gk| −m/2− 1/2) (3.8)

where X̃Gk
= (xjsgn(β

0
j ), j ∈ Gk) and ∥u∥(1,m) = max|B|=m ∥um∥1 with B being an

index subset.

Since we already know −zT
k (y −XAβ̂

O
A)/n+ λω̄k = 0 which implies

∥X̃T
Gk

(y −XAβ̂
O
A)/n− λ[(p− sk)δ + 1]1|Gk|∥(1,|Gk|)/|Gk| = λδ(|Gk| − 1)/2,

we only need to prove that for 1 ≤ m ≤ |Gk| − 1,∀Bm
k ⊂ Gk and |Bm

k | = m

|(z(Bm
k )− zk)

T (y −XAβ̂
O
A)|/n

≤ λδ(|Gk| −m)/2,

where z(Bm
k ) =

∑
j∈Bm

k
xjsgn(β

0
j )/m.

Under event E3,

|(z(Bm
k )− zk)

T (y −XAβ̂
O
A)|/n

= |(z(Bm
k )− zk)

T [P⊥
Z ε+ PZ∆+ λZ(ZTZ/n)−1ω̄]|/n

≤ |(z(Bm
k )− zk)

TP⊥
Z ε/n|+ |(z(Bm

k )− zk)
T [P⊥

Z∆+ λZ(ZTZ/n)−1ω̄]|/n

≤ λδ(|Gk| −m)/2.

Finally, we show the KKT conditions are satisfied for variables with zero coefficients,
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by condition C3.1,

∥XT
Ac(y −XAβ̂

O
A)/n∥∞

= ∥XT
Ac(I −HZ)ε/n+XT

Ac(I −HZ)∆/n+ λXT
AcZ(ZTZ/n)−1ω̄/n∥∞

≤ ∥XT
Ac(I −HZ)ε/n∥∞ + ∥XT

Ac(I −HZ)∆/n∥∞ + λ∥XT
AcZ(ZTZ/n)−1ω̄/n∥∞

≤ λ(1− c2 − u2) + λu2 + λc2 ≤ λ.

Therefore we have conclude that β̂
O
is OSCAR estimator and satisfiesO1 = {sgn(|β̂i|−

|β̂j |) = sgn(|β0
i | − |β0

j |),k ̸= l, k, l = 1, . . . ,K} and O2 = {|β̂i| = |β̂j |, i, j ∈ Gk,

k = 1, . . . ,K}. In addition,

P(O1 ∩ O2) ≥ P(E1 ∩ E2 ∩ E3 ∩ E4)

≥ 1− P(Ec
1)− P(Ec

2)− P(Ec
3)− P(Ec

4).

Since ∥zk∥2 ≤
√
n, calculate the probabilities: by condition C3.2

P(Ec
1) = P(∥ZT ε/n∥∞ ≥ C−1

1 (αβ∗ − λc1)− λu1
}
)

≤ P(∥ZT ε/n∥∞ ≥ C−1
1 (αβ∗ − λc1)− λu1)

≤
K∑
k=1

P(|zT
k ε/n| ≥ αβ∗ − λc1 − λu1)

≤ ϵ,

and

P(Ec
2) ≤ P

(
∥XT

Ac(I −HZ)ε/n∥∞ ≥ λ(1− c2 − u2)
)

≤
p∑

j=s+1

P
(
|xT

j (I −HZ)ε/n| ≥ λ(1− c2 − u2)
)

≤ (p− s)ϵ/p,
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and

P(Ec
3)

≤ P(|(z(Bm
k )− zk)

TP⊥
Z ε/n| ≥

λδ(|Gk| −m)/2− |(z(Bm
k )− zk)

T [P⊥
Z∆+ λZ(ZTZ/n)−1ω̄]|/n,

Bm
k ⊂ Gk,m = 1, . . . , |Gk| − 1, k = 1, . . . ,K)

≤
K∑
k=1

|Gk|−1∑
m=1

(
|Gk|
m

)
exp{−n(ϕm

k )2/(2σ2)}

≤ sϵ/p,

and

P(Ec
4) ≤

K−1∑
k=1

P(|ηk − ηk+1| ≥ b0k − b0k+1 − |ξk − ξk+1|)

≤
K−1∑
k=1

P(|ηk − ηk+1|/vk ≥ dk) ≤ ϵ.

2
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Chapter 4

Group OSCAR parameter estimation and model selection

in presence of unknown group structures

4.1 Introduction

In this chapter, also consider the linear regression model

y =

p∑
i=1

xiβi + ε,

where y = (y1 . . . yn)
T is the response vector, x1 = (x11 . . . x1n)

T , . . . , xp = (xp1 . . . xpn)
T

are the vectors of p explanatory variables, β1, . . . , βp are the corresponding regression

coefficients and ε = (ε1, . . . , εn)
T is the vector of independent random errors. Classical

literature typically considers the case when p is finite and small. But in recent years,

with increasing availability of large size data and computing power, there is a tremen-

dous amount of publications dealing with data of large p. Variable selection plays an

important role in this development. In this paper, we address a model selection problem

where the variables are naturally grouped but only part of the group structure is known.

There are several papers that have taken group structures into consideration in recent

literatures. However, most of them only consider the situation that the group structure

is completely given and known. See, e.g. Yuan & Lin (2006), Zhao et al. (2008) and

so on. In practice, there are situations where the underlying group structures are not

known. Bondell & Reich (2008) study the “unknown predictive clusters” of potentially
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highly correlated explanatory variables. Here, we consider model selection problems

with both types of groups, known or unknown structures, to make full use of available

group information.

Our research is motivated by a project of nuclear detection sponsored by the US

Department of Homeland Security through the Command, Control, and Interoperabil-

ity Center for Advanced Data Analysis (CCICADA), a DHS Center of Excellence. In

this project, we need to analyze and process a variety of information in customs forms

from large volumes of shipping containers. The data compiled from the custom forms,

referred as “manifest data”, is used to detect high-risk containers and to learn about

important variables. The manifest data have special features and require special con-

siderations. For instance, most of the information contained in the manifest data is

given by categorical variables, which are often represented by dummy variables that

form natural groups; see, e.g., Yuan & Lin (2006) who described this type of groups

as the known groups of “derived input variables”. In addition, some of the groups of

categorical variables can be highly correlated. For example, although ‘Voyage Number’

and ‘Inbond Entry Type’ are two different variables, they are highly correlated because

of redundant information. Such and other complications could cause problems in model

fitting. Nevertheless, the group structures of variables provide an important source of

regularization which can properly handle these issues and help model building.

Recently, penalized regression is a subject that has generated a lot of publications

and it has emerged as a successful technique for model selection, see, e.g. ridge regres-

sion (Frank & Friedman, 1993), L1 norm penalty (Tibshirani, 1996; Chen et al., 2001;

Efron et al., 2004), SCAD (Fan & Li, 2001) and MCP (Zhang, 2010). The penalized
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regression technique have also been extended to handle the case when explanatory vari-

ables are grouped. When the group structures in the explanatory variables is known,

Yuan & Lin (2006) generalize the LASSO method, the LARS algorithm and the non-

negative garrotte penalty for selecting grouped variables. They define an L2 norm of

the coefficients associated with a group of variables as the component of the penalty

functions. Zhao et al. (2008) propose composite absolute penalties (CAP) families

which combine the norm penalties at the between-group and within-group levels and

group selection occurs for nonoverlapping groups. Li et al. (2010) address this problem

differently using the derivative of the conditional mean to achieve groupwise dimension

reduction for the explanatory variables. Huang et al. (2009) use a specially designed

group bridge approach to carry out variable selection at the between-group and within-

group levels simultaneously. Wang et al. (2009) consider the same problem in Cox

regression with known group structure by reparameterizing the coefficients and impos-

ing a L1 norm penalty. All these methods assume the group structure is completely

known.

Group structures can be retrieved from different sources. On one hand, prior knowl-

edge can provide information about group structures. For example, dummy variables

created to represent different factors of one categorical variable are considered as one

group or the experts who collect the data may suggest to split the explanatory variables

into several groups. On the other hand, the data itself contain group structures which

are not available beforehand. For instance, identical or highly correlated variables may

need to be grouped together because of their similarity. In other words, the underlying

group information is implied in the correlation patterns among explanatory variables.
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In order to identify the group structure and incorporate the correlation patterns, super-

vised clustering can be used to determine useful groups of explanatory variables. One

approach that has been used by Jornsten & Yu (2003) is to create a new explanatory

variable by averaging the explanatory variables in the same group. Equivalently, one

can also achieve this goal by assigning identical coefficients or imposing smoothness

among coefficients corresponding to highly correlated explanatory variables. Bondell &

Reich (2008) construct the OSCAR penalty function by combining L1 norm and pair-

wise L∞ norm of the parameters to enforce highly correlated variables with identical

coefficients. Huang et al. (2010b) establish the sparse Laplacian shrinkage (SLS) esti-

mator which has a generalized grouping property with regards to the graph represented

by the Laplacian quadratic in the penalty function. SLS has a grouping property like

other general L2 penalties such as elastic net by Zou & Hastie (2005) which combines

the L1 and L2 penalties.

In this chapter, we propose a penalized approach that is able to capture group fea-

tures in the data from both sources for variable selection. Unlike most aforementioned

publications, we do not assume the group structure is completely known. Also, unlike

OSCAR, this method does not discard any prior group information but utilizes both

known group structure and correlation patterns in the existing data. It can be shown

that the group lasso (Yuan & Lin, 2006), CAP (Zhao et al., 2008) or OSCAR (Bondell

& Reich, 2008) are all special cases of our general model.

The rest of this chapter is organized as follows. In Section 4.2 and Section 4.3, we

define the general model and consider some special cases along with an iterative algo-

rithm. In Section 4.4, the large sample properties of the penalized regression approach

are investigated. In Section 4.5, simulation studies and detailed analysis of the manifest
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data are presented. In Section 4.6, further discussions are provided.

4.2 Variable Selection via Penalized Regression

4.2.1 A general formulation for penalized regression with group struc-

tures

Suppose there are p explanatory variables in all. Let Gj ⊆ (1, ..., p), j = 1, ..., J be the

J non-overlapping subsets of the indices (1, ..., p) associated with groups of variables.

Denoted by G = {G1, ..., GK} the given group structure, |Gj | = pj and
∑J

j=1 pj = p,

where |Gj | is the cardinality of Gj . Here, we assume G is given or known. In this

chapter, we also assume that there are potentially high correlations among some of

these J groups. For instance, let us say s groups, Gj1 , ..., Gjs among G = {G1, ..., GJ}

have high correlations. In the context of linear models, they provide exactly the same

or similar information for regression analysis. Thus, it is reasonable to merge them into

one new group G∗
k = ∪si=1Gji . Therefore, the division G = {G1, ..., GJ} reflects the

prior knowledge about group structures while G∗ = {G∗
1, ..., G

∗
K}, K ≤ J , incorporates

both prior information and the correlation patterns in the design matrix. Thus, G

refines G∗. In the case when G∗ ≡ G, it reduces to the setting consider by Yuan & Lin

(2006), Zhao et al. (2008) and so on. In the case when |Gk| = pk ≡ 1, it becomes the

setting considered by Bondell & Reich (2008).

Without loss of generality, we assume that the x’s are standardized so that
∑n

j=1 xij =

0 and
∑n

j=1 x
2
ij = n, i = 1, . . . , p. Also denote the corresponding coefficients for each
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group as βGj
= (βl, l ∈ Gj). In order to handle model selection and correlation prob-

lems simultaneously, we propose the penalized least squares estimator as:

β̂ = argminβ
1

2n
∥y −Xβ∥22 + λ1ρ1(βGj

, j = 1, ..., J) + λ2

∑
i ̸=j

ρ2(c(Gi, Gj)), (4.1)

where λ = (λ1, λ2) are tuning parameters; ρ1, ρ2 are penalty functions and c(Gi, Gj) is

a function which reflects the relationship between Gi and Gj . The two penalty terms

perform different functions in the regularization. The first part ρ1 induces sparsity in

model selection while the second term ρ2 encourages highly correlated groups to have

the same impact on the response variable, that is, they will have identical groupwise

coefficients. It means Gi and Gj are merged into one super group.

It is worth noting that (4.1) is a general model and contains several important

special cases as ρ1, ρ2 and c functions can be chosen flexibly. For example, if set

ρ1 =
∑

j(β
T
Gj

BjβGj
)1/2 with symmetric positive definite matrix Bj ’s and set ρ2 ≡ 0

(i.e. ignoring the correlation patterns in the predictors), the estimator is (4.1) is Group

Lasso estimator (Yuan & Lin, 2006). The CAP (Zhao et al., 2008) can be obtained

from (4.1) by setting ρ1 =
∑

j(∥βGj
∥nj )

n0 and ρ2 ≡ 0, where ∥βGj
∥nj is Lnj norm. In

addition, Group bridge estimators (Huang et al., 2009) can be obtained from (4.1) by

defining ρ1 as
∑

j cj∥βGj
∥γ1 and ρ2 ≡ 0, where cj and γ are constants. Furthermore,

Bondell & Reich (2008) consider another special case of (4.1). They choose ρ1 as the

L1 norm penalty of β and ρ2 as the summation of L∞ norm for pairwise β. Finally,

if MCP is chosen as ρ1 and Laplacian quadratic is used as ρ2 for the combination, we

have Sparse Laplacian Shrinkage estimator (Huang et al., 2010b).



86

4.2.2 Group OSCAR

To incorporate both prior group structure and correlation patterns, we further repa-

rameterize βkj as

βGj
= γjθGj , j = 1, ..., J, (4.2)

where γi ≥ 0. The parameter γj controls all the βGj
in Gj while θi, i ∈ Gj show the

differences of coefficients within the certain group. Thus, the impact on the response

variable of a certain group can be written as XGjβGj
= γjXGjθGj , j = 1, . . . , J . The

correlations between two groups Gi and Gj are reflected by the correlation between

XGiθGi and XGjθGj . Similar practice of creating a new explanatory variables by

averaging the grouped variables can be found in Jornsten & Yu (2003); Dettling &

Bühlmann (2004) as well.

Note that since the group representing variables zj = XGjθGj , j = 1, . . . , J are

rescaled by θ’s, it is important to remove the scale effect in order to identify true group

correlation structures. To tackle this issue, we further impose a constraint

∥zj∥22 = ∥XGjθGj∥22 = n. (4.3)

Therefore, γj can be expressed explicitly in terms of βGj
:

γj = ∥XGjβGj
∥2/
√
n. (4.4)

Inspired by OSCAR (Bondell & Reich, 2008), we define Group OSCAR estimator

as

β̂ = argminβ∥y −Xβ∥22/(2n) + λ1

J∑
j=1

γj + λ1δ
∑
i<j

max(γi, γj)

= argminβ
∥y −Xβ∥22

2n
+ λ1

J∑
j=1

∥XGjβGj
∥2√

n
+

λ1δ√
n

∑
i<j

max(∥XGiβGi
∥2, ∥XGjβGj

∥2),
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where λ1 > 0 and δ > 0 are tuning parameters.

The grouping effect of the estimator is quantified by the following theorem.

Theorem 4.1 Let ẑj = XGj θ̂Gj and ẑj′ = XGj′ θ̂Gj′ . Define the group correlation

between Gj and Gj′ as ϕ̂jj′ = cor(ẑj , ẑj′), j ̸= j′ where cor(u,v) is sample correlation

for vectors u and v.

Then, for a given pair of groups Gj and Gj′ , suppose both γ̂j > 0 and γ̂j′ > 0 are

distinct from other γ̂’s. Thus, if λ1 and δ are chosen such that

λ1δ > ∥y∥
√

2(1− ϕ̂jj′)/n

we have γ̂j = γ̂j′.

The group correlation ϕ̂jj′ defined in Theorem 4.1 amounts to the weighted correla-

tion of the explanatory variables in two groups. If there are highly correlated variables

in two groups with nonzero θ′s, their group correlation are likely to be large and hence

likely to be merged into one group. On the other hand, even highly correlated explana-

tory variables exist in two groups, if at least one of them has zero θ, the group correlation

may still be small and does not lead to grouping. This property is a result from an

interaction of the two-level selection and grouping effect. This result is an extension of

Bondell & Reich (2008) to our setting. In the special case with p1 = p2 = · · · = pK = 1,

this theorem is the same as Theorem 1 in Bondell & Reich (2008).

4.3 Asymptotic properties

In this section, we investigate the asymptotic properties of the penalized estimator.

Without loss of generality, assume the true regression coefficients are β0 = (β0
i , i =



88

1, . . . , p) and

γ01 = · · · = γJ1 > γ0J1+1 = · · · = γ0J2 > · · · > γJK−1+1 = . . . γJK > 0, γJK+1 = · · · = γJ = 0,

where γ0j = ∥XGjβ
0
Gj
∥2/
√
n. That is, the first JK groups G1, . . . , GJK have nonzero

coefficients and can be merged into K hyper groups.

Denote by A = {i : β0
i ̸= 0} which is the set of indices of nonzero coefficients and

s = |A| be the cardinality of A. Let α0
1 > α0

2 > · · · > α0
K > 0 be the set of distinct

values of {γ0j : j = 1, . . . , JK}. For presentation convenience, define a notation for

hyper-groups and merged groups:

G h
k = {j : γ0j = α0

k}, G∗
k = {Gj : γ

0
j = α0

k}k = 1, . . . ,K.

Denote ωj = (J − j)δ + 1 and ω̄ = (ω̄k, k = 1, . . . ,K), where ω̄k =
∑

j∈G h
k
ωj/|G h

k |.

Recall the definition of subspaces Dg ⊂ Rg, g ∈ N in Chapter 3:

Dg = { v = (v1, . . . , vg)
T : vj =

∑
l:l<j,1≤l≤g

dlj(j) +
∑

l:l>j1≤l≤g

djl(j), j = 1, . . . , g,

with dls(l) ≥ 0, dls(s) ≥ 0 and dls(l) + dls(s) = 1, ∀1 ≤ l < s ≤ g},

where dls(·) is a function on the set {l, s}.

We characterize Group OSCAR estimators in the following lemma.

Lemma 4.1 Suppose α̂1 > α̂2 > · · · > α̂K̂ > 0 are the distinct values of {|γ̂j | ̸= 0 : j =

1, . . . , J}. Then β̂ is Group OSCAR estimator if

−XT
Ĝ∗

k

(y −Xβ̂)/n+ λ1ρ̄(βĜ∗
k
) = 0, k = 1, . . . , K̂,

and

∥XGj (X
T
Gj

XGj )
−1XT

Gj
(y −Xβ̂)/n∥2 ≤ λ1/

√
n, for γ̂j = 0,
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where Ĝ∗
k = {Gj : |γ̂j | = α̂k} and ρ̄(βĜ∗

k
) = (ω̃jX

T
Gj

XGj β̂Gj
/(∥XGj β̂Gj

∥2
√
n), j ∈ Ĝ h

k )

with ω̃Ĝ h
k
= δvĜ h

k
+ [(J −

∑
l<k |Ĝ h

l |)δ + 1]1Ĝ h
k
for some vĜ h

k
∈ D|Ĝ h

k |.

Now we investigate the estimation and model selection properties of Group OSCAR

estimators. Note that the correlation between the estimated group representative vari-

ables XGiβ̂Gi
/∥XGiβ̂Gi

∥2 and XGj β̂Gj
/∥XGj β̂Gj

∥2 is different from the correlation

between true group representative variablesXGjβ
0
Gj

/∥XGjβ
0
Gj
∥2 andXGiβ

0
Gi
/∥XGiβ

0
Gi
∥2.

Thus, to ensure model selection consistency, the estimated representative variable and

true representative variable should be close enough. We impose the following condition

on the design matrix:

Condition A 4.1 Assume there exist constants κk > 0, k = 1, . . . ,K such that for

any u ∈ Rs

∥XAu∥2 ≥
K∑
k=1

∑
j∈G h

k

κk∥XGjuGj∥2.

We further define a subspace in Rs in which group subvectors are close to the true

coefficients for corresponding groups:

U = {u, κk∥XGj (uGj − β0
Gj

)∥2/
√
n ≤ λω̄k/2 +

√
(λω̄k)2/4 + 2κkω̄k∥XGjβ

0
Gj
∥2/
√
n,

j ∈ G h
k , k = 1, . . . ,K}.

Since both estimated and true representative variables are normalized, the differences

among them can be quantified by the angle between these two, i.e.

θj = arccos
[
(XGi

uGi
/∥XGi

uGi
∥2)T (XGj

β0
Gj

/∥XGj
β0
Gj
∥2)
]
, j = 1, . . . , JK .

For u ∈ U , we have that sin(θj/2) ≤ ck
√
λω̄k, j ∈ G h

k , where ck = min{c : 2/c2 +

√
λω̄k/c ≤ ∥XGjβ

0
Gj
∥2/
√
n, j ∈ G h

k }. Therefore, if estimated coefficients are in U ,

estimated representative variables and true representative variables are close enough.
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We further impose the following conditions:

Condition B 4.1 Denote

Fu = (fk, k = 1, . . . ,K),

where |G h
k |fk =

∑
j∈G h

k
(XGjuGj/∥XGjuGj∥2. Assume

1. For i ∈ G h
k , j ∈ G h

l , k ̸= l,

γ0i − γ0j

>
ω̄k/κk − ω̄l/κl

2
+

√
(λω̄k)2/4 + 2κkλω̄kγ

0
i

κk
−

√
(λω̄l)2/4 + 2κlλω̄lγ

0
j

κl

2. ∃ 0 < t0 < 1, such that

sup
u∈U
∥(PXGi

− PXGj
)(PXA

− PFu)F
0γ0/

√
n∥2 ≤ t0λ1δ/4,

and

sup
u∈U
∥(PXGi

− PXGj
)Fu(F

T
u/n)

−1ω̄∥2/
√
n ≤ t0δ/4,

i, j ∈ G h
k , k = 1, . . . ,K

3. For groups with zero coefficients,

sup
j>JK

sup
η
∥XGj (X

T
Gj

XGj )
−1XT

Gj
XA(X

T
AXA)

+η∥2 ≤ C1 < 1,

where η = (ωiX
T
Gi
XGiuGi/(∥XGiuGi∥2

√
n), i ∈ G h

k , k = 1, )̇, u ∈ U and ωG h
k
=

δvG h
k
+ [(J − Jk−1)δ + 1]1G h

k
for some vG h

k
∈ D|G h

k |.

Condition B 4.2 Assume the following conditions on the tuning parameters: for 0 <

ϵ < 1,
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1. For k = 1, . . . ,K, let ck = maxj∈G h
k
{Σ−1

Gj
(d, d), d = 1, . . . , pj} and p∗k = max{pj , j ∈

G h
k }, assume

λ1ω̄k − σck
√

p∗k ≥ σ
√

2 log(2|G h
k |K/ϵ)/n.

2. For i, j ∈ G h
k , k = 1, . . . ,K, assume ∃cij > 0, such that

trace(PXGi
P⊥
XGj

+ P⊥
XGi

PXGj
) ≤ cijλ1δ/

√
s

and

(1− t0)λ1δ − σλ1δcij ≥ σ

√
2 log[2

(
|G h

k |
2

)
K/ϵ]/n

3. For j = JK + 1, . . . , J , ∃cj > 0 such that

√
trace(PXGj

P⊥
XA

) ≤ cj
√
pj ,

and

λ1(1− C1)− σcj
√
pj ≥ σ

√
2 log[2(J − Jk)/ϵ]/n.

Theorem 4.2 Assume Conditions A4.1, B4.1 and B4.2 hold. Then we have

P
(
sgn(γ̂i − γ̂j) = sgn(γ0i − γ0j ))

)
≥ 1− 3ϵ.

4.4 Computation

4.4.1 Computing algorithm

To find the Group OSCAR estimator

(γ̂, θ̂) = argminγ,θ∥y −Xβ∥22/(2n) + λ1

J∑
j=1

γj + λ1δ
∑
i<j

max(γi, γj),
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subject to ∥XGjθGj∥22 = n,

an iterative algorithm is applied here. More specifically, we first estimate θ’s and find

out the representative variable for each group. Then we fix the updated θ’s and update

γ’s.

Since the objective function for Group OSCAR is convex, the optimal solution can

be characterized by the subgradient equations. More specifically, for group Gj , we have

XT
Gj

(y −Xβ̂)/n ∝XT
Gj

XGj β̂Gj
/∥XGj β̂Gj

∥2.

We are interested in the normalized group representative variable zj = XGjθGj ∝

XGjβGj
, according to the formula above, we have

XGj β̂Gj
∝XGj (X

T
Gj

XGj )
−1XT

Gj
(y −Xβ̂)/n, j = 1 . . . , J.

Therefore,

ẑj =
√
n

PXGj
r

∥PXGj
r∥2

,

where PXGj
= XGj (X

T
Gj

XGj )
−1XT

Gj
is the the projection matrix on to the space

spanned by XGj and r = y −Xβ̂ is the residual.

The detailed algorithm is

a. Initialization: m = 1, set γ
(0)
j = 0, j = 1, ..., J and r(0) = y.

b. Iteration: during the mth iteration

Step 1: Find out the representative variable for each group:

z
(m)
j =

√
n

PXGj
r(m−1)

∥PXGj
r(m−1)∥2

, j = 1, . . . , J
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Step 2: Update γ’s:

γ̂(m) = argminγ∥y −
J∑

j=1

z
(m)
j γj∥22/(2n) + λ1

J∑
j=1

γj + λ1δ
∑
i<j

max(γi, γj),

and

r(m) = y −
J∑

j=1

z
(m)
j γ

(m)
j .

m=m+1

c. Repeat part b. until convergence

4.4.2 Choosing the tuning parameters

The selection of tuning parameters (λ, δ) can be done by cross-validation. Since there

are two tuning parameters, we first pick a grid of values for the grouping tuning param-

eter δ. For each δ, a 5-fold or 10-fold cross validation is applied. Suppose the dataset

is divided into N partitions: (y1, y2, . . . , yn)
d
= (D1, D2, ..., DN ). Denote β(Di) is the

estimated coefficients without data Di. Then the cross validation criterion is formed

as:

CV(β) =
N∑
i=1

∑
j∈Dc

i

{yj − xjβ(Di)}2.

Tuning parameters (λ, δ) which minimize the criterion CV(β) are selected. However,

the cross validation approach is computationally intensive, especially when the data set

is large. Alternative techniques are AIC, BIC criteria or generalized cross validation

score.

In addition, (θ̂kj = 0, j = 1, ..., pk)⇔ γ̂k = 0. Then, according to Zou et al. (2007),

we can approximate the number of effective parameters for a given λ by d(λ) = |B(λ)|,

where B(λ) is the active set in the Lasso regression step for θ’s.
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An AIC-type criterion is:

AIC(λ) = log(∥y −Xβ̂(λ)∥22/n) + 2d(λ)/n.

An BIC-type criterion is:

BIC(λ) = log(∥y −Xβ̂(λ)∥22/n) + log(n)d(λ)/n.

A generalized cross validation score is:

GCV(λ) = ∥y −Xβ̂(λ)∥22/{n(1− d(λ)/n)2}.

For a given δ, the selection of tuning parameter λ is chosen to minimize the AIC(λ),

BIC(λ) or GCV(λ). Usually, the AIC(λ) tends to select more variables while BIC(λ)

performs better in shrinkage.

4.5 Numerical Studies

4.5.1 Simulation study

We use simulations to evaluate the performance of the proposed estimator. To demon-

strate the grouping property, two scenarios are considered. For generating models in

Example 4.1, correlations of some variables on within-group level are relatively large and

so are group correlations of some groups in the model. Only highly correlated groups

have nonzero coefficients. In Example 4.2, the correlations of variables within the same

group are moderate but correlations between some groups in the model are relatively

large. However, we have both highly correlated groups and independent groups have

nonzero coefficients. In addition, Example 4.3 works as a control example in which

correlations of variables on both within-group and between-group levels are small or

moderate. Simulation setting details are provided below.
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Example 4.1 There are 5 groups with 15 variables and each group consists of

3 variables. Firstly, we generate 6 variables for group 1 and group 2, x11, . . . ,x13

and x21, . . . ,x23 from standard normal distributions with covariance cov(xki,xk′j) =

0.9|i−j|, k, k′ = 1, 2, i, j = 1, . . . , 3 andXG1 = XG2 . Then 9 variables are generated from

standard normal distribution with covariance cov(xki,xk′j) = 0.6|k−k′| ∗ 0.9|i−j|, k, k′ =

3, 4, 5, i, j = 1, . . . , 3 for group 3, group 4 and group 5. Thus, G1 and G2 are highly

correlated with group correlation 0.95. But they are independent of the other three

groups G3, G4 and G5. Groups G3, G4 and G5 are also moderately correlated with

each other as well. Moreover, the within-group correlations in each group could be as

large as 0.9.

We assume the true model for the response y is

y =

2∑
k=1

pk∑
i=1

xkiβki + ε

where ε are independently generated from N(0, 1) and β0
G1

= β0
G2

= (0.3, 0.3, 0.3), with

all other β0
kj = 0. Or, alternatively, the true model with only the significant covariates

is

y = XG1β
0
G2

+XG2β
0
G2

+ ε.

In each simulation, we generate n = 110 response observations from this model. The

first 100 observations are used to fit a regression model, and the last 10 observations

are used to evaluate the predictions the fitted model. This simulation is repeated 200

times.

Example 4.2 There are 8 groups with 40 variables and each group consists of 5

variables. For G1 and G2, we first generate 10 variables (z11, z21), . . . , (z15, z25) from bi-

variate normal distribution with correlation=0.95. For the G3, . . . , G8, z1, ..., z6 vectors
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are generated from the standard normal distribution with cov(zk, zk′) = 0.7|k−k′|, k, k′ =

3, . . . , 8 and let zkj = zk, j = 1, . . . , 5. Then we generate wk1, . . . , wk5, k = 1, . . . , 8 vec-

tors from standard normal distribution independently .

Then The explanatory variables are obtained by xkj = 0.7×wkj+0.3×zkj . Thus, G1

and G2 are highly correlated with correlation around 0.9 and the absolute correlations

among G3, . . . , G8 range from 0 to 0.2. However, the within-group correlations that are

in the range of [0,0.7] are moderate.

The response vector with n = 110 observations is generated by

y =
8∑

k=1

pk∑
i=1

xkiβ
0
ki + ε

where ε are independently generated from N(0, 1) and β0
G1

= β0
G2

= (0.3, . . . , 0.3),

β0
G3

= (0.5, . . . , 0.5) with all other βkj = 0. Again, the first 100 observations are used

to fit a regression model and the last 50 observations are used to evaluate the prediction

of the fitted model. This simulation is repeated 200 times.

Example 4.3 There are 4 groups with 40 variables and each group consists of

10 variables. For group 1 and group 2, 10 variables are generated from N(0, 1) with

covariance cov(xki,xkj) = 0.5|i−j|, k = 1, 2. In other groups, variables are generated

from N(0, 1) independently of each other. Thus, between-groups correlations are small

which do not exceed 0.15 and the within-groups correlations are also moderate which

range from 0 to 0.6.

In this example, we assume the true model for the responses is

y =
4∑

k=1

pk∑
i=1

xkiβki + ε

where ε are independently generated fromN(0, 1) and βG1
= βG2

= (0.3, 0.5, 0.7, 0.9, 0, . . . , 0)
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Table 4.1: Simulation: Frequency (%) of occasions on which exact true groups are
selected, group sensitivity, group specificity, number of groups selected and prediction
error (PE) over 200 replications (with standard deviation in parentheses).

% Group % Group
# Groups PE

Sensitivity Specificity

Example 1

Lasso 11.00(2.08) 96.33 (1.24) 0.33 (0.60) 1.00 (0.45)

GLasso 32.00(2.51) 77.67 (2.22) 1.31 (0.53) 1.00 (0.44)

Gbridge 39.50 (2.05) 42.33 (2.50) 2.52 (0.85) 1.02 (0.46)

GOSCAR 78.00 (4.16) 57.00 (2.65) 2.85 (0.90) 1.01 (0.44)

Example 2

Lasso 3.00 (0.96) 91.40 (1.66) 0.52 (0.99) 1.12 (0.50)

GLasso 11.00 (1.64) 77.80 (1.33) 1.44 (0.66) 1.12 (0.50)

Gbridge 51.33 (1.98) 41.00 (2.23) 4.49 (1.19) 1.18 (0.62)

GOSCAR 40.33 (12.24) 77.60 (1.95) 2.33 (0.94) 1.11 (0.49)

Example 3

Lasso 100 (0) 52.25 (35.55) 2.96 (0.71) 1.22 (0.27)

GLasso 100 (0) 97.00 (11.90) 2.06 (0.24) 1.29 (0.29)

Gbridge 100 (0) 86.00 (24.12) 2.28 (0.48) 1.16 (0.24)

GOSCAR 100 (0) 100 (0) 2.00 (0) 1.14 (0.24)

with all other βkj = 0. Thus, the true model with only the significant covariates is

y =
4∑

j=1

x1jβ1j +
4∑

j=1

x2jβ2j + ε

We generate n = 150 response observations from the model. The first 100 observations

are used to fit a regression model, and the last 50 observations are used to evaluate the

prediction performance of the fitted model. This simulation is also repeated 200 times

In order to demonstrate the performance of our proposed method, we also analyze

all simulated data with Lasso, Group Lasso and Group OSCAR methods. The tuning

parameters are chosen by BIC criteria for all the methods. The results are compared

in terms of group selection. In the group selection, if any variable in a certain group

is selected, we consider this group is selected regarding two-level selection property.

We calculate the frequencies of occasions on which only true groups are selected. To

illustrate the selection errors, we define group selection sensitivity and group selection
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specificity. Group sensitivity is defined as the ratio of number of selected groups that are

truly in the model to the total number of true groups in the model. Group specificity is

defined as the ratio of number of groups that are excluded and not in the model to the

total number of groups that are not in the model. Here, in the performance evaluation,

the calculation is based on the known groups.

Furthermore, we also report the average numbers of selected groups and the average

numbers of selected variables to illustrate model complexity. Since Lasso does not have

grouping property, the numbers of selected groups are obtained based on the prior

known group structure G to make the results comparable. The prediction error for

the holdout m = 10 observations in each simulation is defined as
∑m

i=1(yi − (ŷi))
2/m,

where ŷi is the fitted value that is obtained from the selected model with least square

estimates.

It can be seen from Table 4.1 that when high correlations exist among explanatory

variables, weighted group ridge performs better than any other methods in the sense of

group selection and prediction errors. In fact, if both between-group and within-group

correlations are large, Group OSCAR has better performance than other methods.

Lasso would randomly pick among highly correlated variables which explains its low

variable sensitivity. It also tends to select more groups as their selected variables are

distributed in different groups with low group specificity. This is because Lasso is

designed to select individual variables and ignore the information contained in the

prior group structure. Group Lasso and Group OSCAR take the prior group structures

into account. Therefore, they achieve good results in terms of group selection.
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4.5.2 Manifest data analysis

We analyze the manifest data to demonstrate the application of the penalized least

square estimator. The denotation of a nuclear weapon on the U.S. soil is among the

most dangerous types of terrorist attacks. Standardized shipping containers, which

transport 95% of the U.S. imports by tonnage, are highly vulnerable vehicles for de-

livering nuclear and radiological weapons. The cost of an exploded bomb at a major

U.S. shipping port has been estimated to be a trillion dollars. To counter the potential

threat, substantial efforts have been made in devising strategies for inspecting con-

tainers and interdicting illicit nuclear materials. Practical issues and challenges exist

in carrying out this important task. Due to the enormous size of traffic and a large

number of entry sites, there are now 307 ports of entry representing 621 official air, sea

and land border crossing sites. Entering these ports everyday via 57, 000 trucks, 2, 500

aircrafts, and 580 sea vessels are the cargoes that much of this country’s commercial life

depends on. As the result, we have two competing priorities in the inspecting process.

On one hand, we must detect any illicit nuclear materials to safeguard the national

security. On the other hand, we need to move the cargoes as fast possible from their

port of entries to reduce the waiting cost.

It is important to make quantitative evaluations of manifest data. We address this

problem by constructing a linear regression model to enhance the effectiveness of the

real-time inspection system. Our primary goal is to identify high-risk shipment, i.e.

get the risk score for each shipment and determine the effects of different sources of

information in the manifest data. Table 2.3 provides the definition and description of the

variables contained in the manifest data. These seven categorical variables cannot be

used directly in the linear regression and dummy variables for each categorical variable
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are created which results in p = 216 variables in total. These dummy variables naturally

form a group. Moreover, some of these categorical variables are highly correlated which

can be reflected by high correlations of dummy variables among these groups. The

response variable is the risk score for each shipment. Here, we focus on the data on

February 28, 2009 with 24373 shipments.

However, the risk scores of the 24373 shipments are not accessible, due to security

concerns. To illustrate our approach, potential influential characteristics are selected

to generate the risk scores. Thus, it is possible to test our approach in identifying

risk factors. We treat the knowledge based on the representation of different levels

for categorical variables as explicit group structure while the correlations patterns are

implicit group information. For further evaluation, we also select 24000 observations as

the training set and then predict the risk score for future shipments. Only information

about G is known. The group labels used are:

(1, . . . , 1︸ ︷︷ ︸
|G1|=8

, 2, . . . , 2︸ ︷︷ ︸
|G2|=68

, 3, . . . , 3︸ ︷︷ ︸
|G3|=8

, 4, . . . , 4︸ ︷︷ ︸
G4|=13

, 5, . . . , 5︸ ︷︷ ︸
|G5|=69

, 6, . . . , 6︸ ︷︷ ︸
|G6|=34

, 7, . . . , 7︸ ︷︷ ︸
|G7|=16

)

Example 4.4 The risk scores are generated by

y =
7∑

k=1

pk∑
i=1

xkiβki + ε

where ε are independently generated fromN(0, 1). The coefficients are βG1
= (0, . . . , 0),

βG2
= (0.3, . . . , 0.3︸ ︷︷ ︸

13

, 0 . . . , 0) βG3
= (0, . . . , 0), βG4

= (0, . . . , 0), βG5
= (0, . . . , 0), βG6

=

(0.3, . . . , 0.3︸ ︷︷ ︸
13

, 0 . . . , 0), βG7
= (0, . . . , 0︸ ︷︷ ︸

8

, 0.8, . . . , 0.8︸ ︷︷ ︸
8

)

Similar to simulation study, we also compare our method with Lasso. OSCAR is

eliminated in the real data analysis because of its extremely computational burden.

Here, we still use least square estimates with the selected model to predict the risk

score for the future 373 shipments. The results displayed in Table 4.2 confirm what
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Table 4.2: Simulation: Frequency (%) of occasions on which exact true groups are
selected, group sensitivity, group specificity, number of groups selected and prediction
error (PE) over 100 replications (with standard deviation in parentheses).

% Group % Group
# Groups PE

Sensitivity Specificity

Lasso 96.00 (1.97) 16.75 (2.19) 6.21 (1.39) 0.96 (0.21)

GLasso 66.67 (0) 30.75 (1.06) 4.77 (0.42) 1.03 (0.06)

Gbridge 96.00 (1.97) 9.25 (2.15) 6.51 (1.40) 1.38 (0.31)

GOSCAR 97.83 (8.24) 100.00 (0) 2.94 (0.25) 0.99 (0.08)

we have found in the simulation studies. By incorporating the correlation patterns

and group structures, Group OSCAR beats the other two methods in terms of group

selection and prediction errors. Lasso is bad at group selection since it always include

less groups.

4.6 Discussion

In this chapter, we propose a new penalized regression model which performs model

selection and variable grouping functions simultaneously. It explicitly incorporate the

correlation structures in the explanatory variables. The definition of correlation among

groups is important in the general formulation of our estimator defined in (4.1). As a

specific model, the Lν norm for groupwise coefficients are used in this paper. However,

it is possible to generalize the correlation definition by establishing other connections

in explanatory variables.

The proposed penalized regression approach can also be applied to other regression

models when there exists strong correlation patterns in the explanatory variables, such

as general linear regression models or Cox regression. the penalized regression criterion
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can be written as:

β̂ = argminβ
1

2n
l(yi;

p∑
j=1

xiβj) + λ1ρ1(βdGj , j = 1, ..., J) + λ2

∑
i̸=j

ρ2(c(Gi, Gj))

where l is a given loss function ρ1, ρ2 are penalty functions and c(Gi, rGj) denotes the

correlations between Gi and Gj . Although for these general models, new computational

algorithms need to developed.

Another advantage of Group OSCAR over regular OSCAR methods is that since the

number of groups is much smaller than the number of variables with nonzero coefficients,

Group OSCAR can reduce the computing burden a lot.

4.7 Appendix

Proof of Theorem 4.1:

Denote rk and rk′ are the ranks of γ̂k and γ̂k′ respectively, i.e. rk = #{γ̂l : γ̂l ≤ γ̂k}

and rk′ = #{γ̂l : γ̂l ≤ γ̂k′}.

Now suppose γ̂k ̸= γ̂k′ . Then rk ̸= rk′ . Since both γ̂k > 0 and γ̂k′ > 0 and they are

different from the other γ̂’s, given (θ̂kj), we can differentiate the penalized least square

function and obtain

− 1

n
x̂T
k (y − X̂γ̂) + λ1{δ(rk − 1) + 1} = 0,

− 1

n
x̂T
k′(y − X̂γ̂) + λ1{δ(rk′ − 1) + 1} = 0,

where x̂k =
∑pk

i=1 θ̂kixki, k = 1, . . . ,K and X̂ = (x̂k, k = 1, . . . ,K).
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Therefore

|λ1δ(rk − rk′)|

≤ | 1
n
(x̂′

k − x̂′
k′)(y − X̂γ̂)|

≤ 1

n
∥(x̂′

k − x̂′
k′∥2∥y − X̂γ̂∥2

≤ 1

n
∥(x̂′

k − x̂′
k′)∥2∥y∥2

≤
√

2(1− ϕkk′)∥y∥2/
√
n.

Therefore, when λ1δ >

√
2(1− ϕ̂kk′)(∥y∥2/

√
n, contradiction occurs. We must have

γ̂k = γ̂k′ . 2

Lemma 4.2 When λ1 = δ = 0, the proposed method is equivalent to Group Lasso:

β̂ = argminβ∥y −Xβ∥22/(2n) + λ2

K∑
k=1

∥Xkβk∥2/
√
n. (4.5)

And β̂ = (β̂A ,0) if and only if

(i) for 1 ≤ k ≤ s, (XT
A XA /n)(β̂A − β0

A ) = XT
A ε/n− λ2P̄ (β̂A ),

(ii) for s+ 1 ≤ k ≤ K, ∥ −XT
k y/n+XT

kXA β̂A ∥k∗ ≤ λ2/
√
n,

where P̄ (β̂k) = XT
kXkβ̂k/(∥Xkβ̂k∥2

√
n), ∥ · ∥k∗ is the dual norm of ∥u∥k ≡ ∥Xku∥2

and ∥u∥k∗ = ∥Xk(X
T
kXk)

−1u∥2.

Proof: When δ = 0, it is Group Lasso estimator. We obtain the KKT conditions for

δ = 0 first. Introduce slack variables vj such that ∥Xjβj∥2 ≤ vj , j = 1, . . . , J . Thus,

(4.5) is equivalent to

min
β,v
∥y −Xβ∥22/(2n) + λ1

J∑
j=1

vj/
√
n,
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with constraints ∥Xjβj∥2 ≤ vj . Or equivalently, (βj , vj) ∈ Cj , Cj = {(x, t) : ∥x∥j ≤

t}.

According to Bach (2008) and Bach et al. (2011), the Lagrangian dual problem with

dual variables η1 = (η1j , j = 1, . . . , J) and η2 = (η2j , j = 1, . . . , J) is

L (β,v,η) = ∥y −Xβ∥22/(2n) + λ2

J∑
j=1

vj/
√
n−

J∑
j=1

(ηT
1jβj + η2jvj),

where (η1j , η2j) ∈ Cj∗ , Cj∗ is the dual cone of Cj .

The derivatives with respect to primal variables are

▽βL (β,v,η) = −XTy/n+XTXβ/n− η1,

and

▽vL (β,v,η) = λ2/
√
n− η2.

The KKT conditions for reduced variables β and η1 are

∀k ∥η1j∥j∗ ≤ λ2/
√
n

∀k −XT
j y/n+XT

j Xβ/n = η1j

∀k ηT
1jβj + ∥Xkβj∥2λ2/

√
n=0

The last equation is satisfied if βj = 0 or η1j = −λ2X
T
j Xjβj/(∥Xjβj∥2

√
n).

Together with the first and second KKT condition, the lemma is proved for δ = 0. 2

Proof of Lemma 4.1:

When δ ̸= 0, the weights ω̃j will be different for each group coefficients ∥XGjβGj
∥2/
√
n

rather than 1. Together with the subgradients of the L∞ norm in Chapter 3, the results

follow immediately. 2
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To prove theorem 4.2, we first define Oracle Group OSCAR estimator β̂
O
as follow-

ing: β̂
O
Ac = 0 and

β̂A = argminβA
∥y −XAβA∥22 + λ

K∑
k=1

∑
j∈G h

k

ω̄k∥XGjβGj
∥2/
√
n,

subject to ∥XGiβGi
∥2 = ∥XGjβGj

∥2 for i, j ∈ G h
k , k = 1, . . . ,K.

We can see that β̂
O
A is the converging point of the Oracle Algorithm:

a. Initialization: m = 1, set γ
(0)
j = 0, j = 1, ..., JK and r(0) = y.

b. Iteration: during the mth iteration

Step 1: Find out the representative variable for each group:

z
(m)
j =

√
n

PXGj
r(m−1)

∥PXGj
r(m−1)∥2

, j = 1, . . . , J

and let

f
(m)
k =

∑
j∈G h

k

z
(m)
j , k = 1, . . . ,K.

Step 2: Update γ’s. Let F (m) = (f
(m)
k ) and

b(m) = [(F (m))TF (m)]−1[(F (m))Ty + λ2ω̄],

and γ
(m)
j = b

(m)
k , k = 1, . . . ,K. Then,

r(m) = y −
J∑

j=1

z
(m)
j γ

(m)
j .

m=m+1

c. Repeat part b. until convergence

We first find out how close true representing variables and estimated representing

variables are for each group. The results are stated in the following lemma.
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Lemma 4.3 Let ∆̂A = β̂
O
A−β0

A. Under the event {λω̄k > ∥XGj (X
T
Gj

XGj )
−1XT

Gj
ε∥2/
√
n, j ∈

G h
k , k = 1, . . . ,K}, we have

∥XGj∆̂
O
Gj
∥2/
√
n ≤ ω̄k/κk/2 + (1/κk)

√
(λω̄k)2/4 + 2κkλω̄kγ

0
i , j ∈ G h

k , k = 1, . . . ,K

and thus

max
j∈G h

k

∥XGj∆̂
O
Gj
∥2/∥XGjβ

0
Gj
∥2 ≤ ck

√
λω̄, k = 1, . . . ,K.

Proof: For any ∆A ∈ Rs, define

F (∆A) = ∥XA∆A∥22 − εTXA∆A/n+ λ1

K∑
k=1

∑
j∈G k

h

(∥XGj (β
0
Gj

+∆0
Gj

)∥2 − ∥XGjβ
0
Gj
∥2)/
√
n.

Consider the cone

C = {∆A : ∥XGj∆Gj∥2 ≤ ω̄k/κk/2 + (1/κk)
√

(λω̄k)2/4 + 2κkλω̄kγ
0
i , j ∈ G h

k , k = 1, . . . ,K}.

We will show that ∆̂A ∈ C. If ∆̂A ̸∈ C, the segment connecting ∆̂ and 0 will cross the

boundary of C, ∂C. Then there exist ∆̃A ∈ ∂C such that ∆̃A = t∆̂A, 0 ≤ t ≤ 1. And

we have

F (∆̃A) ≤ tF (∆̂A) + (1− t)F (0A) = tF (∆̂A) ≤ 0.

The last inequality is because by the definition of β̂
O
A , F (∆̂A) < 0.

However, for any ∆A ∈ ∂C, under the events

{λω̄k/2 > ∥XGj (X
T
Gj

XGj )
−1XT

Gj
ε∥2/
√
n, j ∈ G h

k , k = 1, . . . ,K},
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we have

F (∆)

≥
∑
k

∑
j

κk∥XGj∆Gj∥22/(2n)−
∑
k

∑
j

(XT
Gj

ε)T∆Gj/n

+λ1

∑
k

∑
j

(∥XGj (β
0
Gj

+∆0
Gj

)∥2 − ∥XGjβ
0
Gj
∥2)/
√
n

≥
∑
k

∑
j

κk∥XGj∆Gj∥22/(2n)−
∑
k

∑
j

∥XT
Gj

ε∥j∗∥∆Gj∥j/n− λ1

∑
k

∑
j

ω̄k

∥XGjβ
0
Gj
∥2√

n

>
∑
k

∑
j

[κk∥XGj∆Gj∥22/(2n)− (λ1ω̄k/2)∥XGj∆Gj∥2/
√
n− λ1ω̄k∥XGjβ

0
Gj
∥2/
√
n]

≥ 0

when ∥XGj∆Gj∥2/
√
n is large enough.

A simple calculation will give that ω̄k/κk/2 + (1/κk)
√

(λω̄k)2/4 + 2κkλω̄kγ
0
i is suf-

ficient. Contradiction. Then we have ∆̂A ∈ C. 2

Proof of Theorem 4.2:

Consider the following events E1 = {λω̄k/2 > ∥XGj (X
T
Gj

XGj )
−1XT

Gj
ε∥2/
√
n, j ∈

G h
k , k = 1, . . . ,K}, E2 = {∥(PXGi

− PXGj
)PXA

ε/n∥2 ≤ (1 − t0)λ1δ/2} and E3 =

{∥PXGj
(I − PXA

)ε/n∥2 ≤ λ1(1− C1), j = JK + 1, . . . , J}.

According to Lemma 4.3, we have |γ̂Oj −γ0j | ≤ ω̄k/κk/2+(1/κk)
√

(λω̄k)2/4 + 2κkλω̄kγ
0
i .

Therefore, under Condition B4.1(1),

sgn(γ̂Oi − γ̂Oj ) = sgn(γ0i − γ0j ).

Then, we will show that the Oracle estimator restricted on the subspace Rs is the

Group OSCAR estimator. It is equivalent to show that

(∥PXGj
r∥2/
√
n, j ∈ G h

k ) = λ1δvG h
k
+ λ1[(J − Jk−1)δ + 1]1G h

k

where r = (y−XAβ̂
O
A)/n and vG h

k
∈ D|G h

k |. By the definition of the Oracle Algorithm,
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we know that

∑
j∈G h

k

(∥PXGj
∥2/
√
n)/|G h

k | = λ1ω̄k.

According to Chapter 3 in this dissertation, we only need to show that for m =

1, . . . , |G h
k |, k = 1, . . . ,K, ∀Bm

k ⊂ Gk with |Bm
k | = m

∣∣ ∑
j∈Bm

k

∥PXGj
r∥2/m−

∑
j∈G h

k

∥PXGj
r∥2/|G h

k |
∣∣/√n ≤ λ1δ(|G h

k | −m)/2.

Denote ẑj =
√
n

PXGj
r

∥PXGj
r∥2 , j = 1, . . . , JK , f̂k =

∑
j∈G h

k
ẑj , k = 1, . . . ,K, and F̂ =

(f̂k, k = 1, . . . ,K). Then, we can rewrite the residual r as

r = (I − PF̂ )(ε/n+ F 0γ0)− λ1F̂ (F̂
T
F̂ /n)−1ω̄.

Since the space spanned by F̂ is in the space spanned by XA, we have P⊥
F̂

= P⊥
XA

+

PXA
− PF̂ . Therefore,

PXGj
r = PXGj

(PXA
− PF̂ )(ε/n+ F 0γ0/n)− λ1PXGj

F̂ (F̂
T
F̂ /n)−1ω̄.

Since

∣∣ ∑
j∈Bm

k

∥PXGj
r∥2/m−

∑
j∈G h

k

∥PXGj
r∥2/|G h

k |
∣∣/√n

≤
∑
j∈G h

k

∑
i∈Bm

k

(∥PXGi
r∥2 − ∥PXGj

r∥2)/(m|G h
k |),

we only need to show that

∣∣∥PXGi
r∥2 − ∥PXGj

r∥2
∣∣

≤
∣∣∥(PXGi

− PXGj
)r∥2 ≤ λ1δ/2.

Under condition B4.1(2) and events E2, the conclusion follows immediately.
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Finally, we will show the condition for zero groups in Lemma 4.1 is satisfied. We

have shown that β̂
O
A is the Group OSCAR estimator restricted on the nonzero groups,

then

XA(y −XAβ
O
A) = λ1

¯
ρ(ˆ

O
A)β,

where ρ̄(β̂
O
A) = (ωiX

T
Gi
XGiβ̂

O
Gi
/(∥XGiβ̂

O
Gi
∥2
√
n), i ∈ G h

k , k = 1, )̇,and ωG h
k
= δvG h

k
+

[(J − Jk−1)δ + 1]1G h
k
for some vG h

k
∈ D|G h

k |.

Then ∀j = JK + 1, . . . , J

∥PXGj
r∥2/
√
n

= ∥PXGj
(I − PXA

)ε/n+ λ1PXGj
XA(X

T
AXA)

+ρ̄(β̂
O
A)∥2/

√
n

≤ ∥PXGj
(I − PXA

)ε/n∥2/
√
n+ λ1C1

≤ λ1.

It completes the proof that the Oracle estimator is the Group OSCAR estimator.

Now we will compute the probability of the three events.

For event E1, denote ε̃j = PXGj
. Then ε̃j ∼ N(0, σ(XT

Gj
XGj )) and

E(∥ε̃j∥2) ≤

√√√√ pj∑
d=1

Σ−1
Gj

(d, d) ≤ ck
√
pj ≤ ck

√
p∗k.

Then

P(Ec
1) ≤

K∑
k=1

∑
j∈G h

k

P(∥ε̃j∥2 ≥ λω̄k)

≤
K∑
k=1

∑
j∈G h

k

2 exp{−n(λω̄k − ck
√

p∗k)
2/2}

≤ ϵ.

For event E2, (PXGi
− PXGj

)PXA
ε ∼ N(0, σΣij), where Σij = PXA

(PXGi
P⊥
XGj

+
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P⊥
XGi

PXGj
)PXA

. Similar to event E1,

E(∥(PXGi
− PXGj

)PXA
ε∥2) ≤

√
trace(Σij)

≤
√

trace(PXA
)trace(PXGi

P⊥
XGj

+ P⊥
XGi

PXGj
)

≤
√
sλ1δcij/

√
s

≤ λ1δcij .

Then

P(Ec
2) ≤

K∑
k=1

∑
i<j,i,j∈G h

k

P(∥(PXGi
− PXGj

)PXA
ε∥2/
√
n ≥ (1− t0)λ1δ/2)

≤
K∑
k=1

∑
i<j,i,j∈G h

k

2 exp{−n((1− t0)λ1δ/2− λ1δcij)/2}

≤ ϵ.

For event E3, PXGj
(I − PXA

)ε ∼ N(0, σPXGj
(I − PXA

)PXGj
) and

E(∥PXGj
(I − PXA

)ε∥2) ≤
√

trace(PXGj
(I − PXA

)PXGj
)

≤
√

PXGj
(I − PXA

) ≤ cj
√
pj .

Then

P(Ec
3) ≤

J∑
j=JK+1

P(∥PXGj
(I − PXA

)ε∥2/
√
n ≥ λ1(1− C1))

≤
J∑

j=JK+1

2 exp{−n[λ1(1− C1)− cj
√
pj ]/2}

≤ ϵ.

This complete the proof. 2



111

Bibliography

Andrews, G. (2000). Foundations of multithreaded, parallel, and distributed program-

ming, vol. 1. Addison-Wesley.

Bach, F. (2008). Consistency of the group lasso and multiple kernel learning. The

Journal of Machine Learning Research 9 1179–1225.

Bach, F., Jenatton, R., Mairal, J. & Obozinski, G. (2011). Convex optimization

with sparsity-inducing norms. Optimization for Machine Learning 19–53.

Bondell, H. & Reich, B. (2008). Simultaneous regression shrinkage, variable selec-

tion, and supervised clustering of predictors with OSCAR. Biometrics 64 115–123.

Breheny, P. & Huang, J. (2011). Coordinate descent algorithms for nonconvex

penalized regression, with applications to biological feature selection. The Annals of

Applied Statistics 5 232–253.

Chen, B., Causton, H., Mancenido, D., Goddard, N., Perlstein, E. & Pe’er,

D. (2009). Harnessing gene expression to identify the genetic basis of drug resistance.

Molecular systems biology 5.

Chen, S., Donoho, D. & Saunders, M. (2001). Atomic decomposition by basis

pursuit. SIAM review 129–159.
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