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ABSTRACT OF THE THESIS 

 

A General Birnbaum-Saunders Model and its Application in ALT Models 

 

by 

Yao Cheng 

 

Thesis Director: 

Elsayed A. Elsayed 

 

 

Fatigue, recognized as one of the main causes of failures of mechanical and 

electrical components, is a class of structural damage that occurs when material 

is exposed to cyclic application of stress with varying or constant amplitudes. It 

is necessary to develop suitable lifetime distributions to predict the reliability and 

useful life of components or systems which experience fatigue failure due to 

random or constant amplitude loading during their usage. 

 

Birnbaum and Saunders (1968) propose the standard Birnbaum-Saunders (SB-S) 

distribution which belongs to the normal distribution family to fit the fatigue 

failure data to a life distribution. This model has a single dominant crack which 

appears and grows as the structure experiences repeated load cycles up to the 
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point that the crack is sufficiently long to cause failure. 

 

The underlying assumptions, derivations, probability density function (pdf), 

cumulative density function (cdf), hazard function, reliability function, 

characteristics and properties of SB-S distribution have been investigated. The 

hazard function of SB-S distribution is shown to be always upside-down, which 

is limited because it fails to cover other types of failure conditions. 

 

In this thesis, we overcome the limitations of the SB-S distribution in modeling 

different types of failure rates and generalize the SB-S to be generalized 

Birnbaum-Saunders (GB-S) distribution. We present the characteristics of the 

distribution and the sufficient and necessary conditions that enable it to model 

multiple failure conditions. We also verify that the GB-S distribution provides 

better fit to failure data and propose new methodologies for the estimation of the 

parameters of the GB-S distribution for different sample sizes and shape 

parameters. 

 

An accelerated life testing (ALT) model can utilize the accelerated failure data 

to predict the reliability and lifetime of components or systems under normal 

environments. In this research, we develop the GB-S based ALT models, and 

deal with the inference procedure. We compare the performance of GB-S 

accelerated model with other ALT models. We also develop the GB-S based 

accelerated life testing plans for reliability performance prediction since a 

properly designed ALT plan makes the reliability estimation and prediction 

more efficient.  
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CHAPTER 1 

INTRODUCTION 

  

1.1Background and Motivation of Research 

 

Fatigue is a class of structural damage that occurs when a material is exposed to 

cyclic application of stress with varying or constant amplitudes. Fatigue failure, which 

is thought to be unsearchable because the fatigue could not be seen or observed, is 

firstly observed in 19th century and has received increasing attention since. The 

fatigue problem is identified in the axles of carriages and wagons in the early 1800s 

and fatigue is also responsible for airplane crashes affecting British cargo planes in 

the 1950s (Diaz-Garcia and Leiva-Sanchez2002). Besides, failure caused by fatigue in 

metallic structures is a pervasive phenomenon and failure of structural materials under 

cyclic application of stress or strain is now a problem of increasing interests of 

industry because most of the mechanical components work under cyclic stresses with 

varying or constant amplitudes during their lifetime of operation. The fatigue 

phenomenon and the final dominant failure of the mechanical components are created 

by these varying or constant stresses. The stress does not only refer to the mechanical 

force but also includes any other type of “stress”, such as humidity, voltage, 

temperature, etc. Previous research has shown that a single static stress or strain, 

which is far below the threshold of the structure and causes no damage to the structure 
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if applied once, could induce fatigue failure if applied repeatedly. This noteworthy 

result emphasizes the importance of fatigue because it can induce the final failure 

with lower amplitude of loading. 

 

Recognized as one of the main causes for the failure of mechanical and some 

electrical components, fatigue has led to a need for developing more precise 

approaches or suitable lifetime distributions to predict the reliability and useful life of 

components which are subjected to fatigue due to random or constant amplitude 

loading during their operations. To model such a failure, which eventually happens 

when the dominant crack surpasses the threshold, researchers utilize the normal 

distribution family to provide an accurate description. Similar to these distributions, 

Birnbaum and Saunders (1968) propose a lifetime distribution, called standard 

Birnbaum-Saunders (SB-S) distribution, which belongs to normal distribution family, 

to fit the fatigue failure data. This model has a single dominant crack which appears 

and grows as the structure experiences repeated loads up to the point that the crack is 

sufficiently long to cause failure. It is assumed that for each stage of loading, the 

increment of dominant crack is non-negative and independent. A large number of 

small increases accumulate in length before failure occurs. Moreover, the total crack 

length follows a normal distribution. Internal and external environments determine the 

distribution of the number of cycles necessary to cause the failure. If the loads occur 

more or less regularly in time, one can replace the probability that the structure will 

fail by a certain number of cycles with the probability it fails within a certain time. 
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The distribution of the failure time can then be used to determine the magnitude and 

behavior of the failure rate. Commonly the hazard rate is utilized since it is referred to 

as the instantaneous failure rate. Hazard rate expression of lifetime is of greatest 

importance for system engineers, designers, and repair and maintenance of a system. 

The failure rate expression is helpful to estimate mean time to failure, the reliability or 

availability of the components or systems, and the warranty policy (Elsayed 2012). 

Likewise, it helps to study the failure behavior, like expected number of failures in a 

certain period by obtaining the cumulative hazard function of the system. Sufficient 

conditions are obtained to show that a lifetime density has a general bathtub-shaped 

failure rate which starts with a high rate at the beginning of the system operation, 

mainly because of the weak units, design and installation and operating errors. Then 

the failure rate decreases gradually until it reaches a constant rate with the remove of 

the failed components, which is the second stage of the system. In the following third 

stage, called the wear out region, the hazard rate starts to significantly increase until 

the final failure occurs. Of course the failure may happen randomly during any of the 

stages. Besides this most common failure rate, in some other situations, failure rate 

can be increasing, decreasing, down-upside, upside-down or multimodal.  

 

The rapid rate of advances in technology and global competition has emphasized the 

increasing need for the accurate estimation of reliability of a product, component or 

system (Zhang 2005). Statistical models for processes of fatigue failure enable us to 

describe the random variation of failure times exposed to fatigue due to different 
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patterns or levels of cyclic forces (Diaz-Garcia and Leiva-Sanchez 2002). 

Nevertheless, predicting reliability using fatigue data at normal operating conditions 

might not be feasible due to the extensive time and resource needed. Therefore, 

testing units at accelerated conditions and utilizing the failure times that observed at 

high levels of stress to predict the lifetime at operating levels of stress is an 

appropriate alternative approach. This type of test is termed an accelerated life test 

(ALT). A model which relates reliability and lifetime under severe conditions to 

normal environments is called an ALT model. 

 

ALT models are classified mainly into several groups: statistic-based model 

(parametric or non-parametric), physics-experimental-based models and 

physics-statistics-based models (Elsayed 2012).  

 

Parametric models assume that failure time at different stress levels are related to each 

other by a common failure distribution with different parameters (usually a mean or 

scale parameters). The life-stress function, which is the function of applied stress, 

substitutes the scale parameters as different levels of stresses applied while the shape 

parameter remains the same. Accelerated failure time (AFT) model is one of typical 

parametric models. 

 

Non-parametric models appear to be a more suitable model when the failure data does 

not fit any failure distribution accurately. Cox’ proportional hazards (PH) model and 



	
  
	
  

	
  

5	
  

the linear model are typical non-parametric models. 

  

Physics-experimental-based models are used when time to failure can be explained 

based on the physics of the failure mechanism by either the development of a 

theoretical or experimental method. Some classic models used to predict time to 

failure are electromigration model, humidity dependence failures model and fatigue 

failures model.  

 

Physics-statistics-based models explain the relationship between applied stress and 

failure rate by utilizing the parameters of the physics of the device in conjunction with 

the statistical parameters to obtain the realistic models. The general log-linear 

relationship is a general life-stress relationship which incorporates other models, for 

example, the Arrhenius model, the inverse-power model and the Eyring relationship. 

 

Most of the previous work related to the SB-S distribution investigates its 

characteristics, properties, inference procedure and the application of SB-S 

distribution in some specific life-stress relationship-based ALT models. For example, 

the properties and characteristics of SB-S distribution are presented (Kundu 2010) and 

the hazard function of SB-S distribution is proven to be always upside-down (Kundu 

2008). Ng et al (2003) provide the modified moment estimation (MME) and other 

modified estimation methodologies to obtain an unbiased estimation of SB-S 

distribution’s parameters. Power-law life-stress relationship is applied to SB-S 
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distribution to develop an accelerated SB-S life model(Owen and Padgett 2000). 

These contributions are discussed in more details in the next chapter.  

 

Since the hazard function of SB-S distribution is unimodal for all values of the shape 

parameter, its application in modeling products with different failure modes requires a 

more flexible fatigue life distribution involving varied failure types. This requirement 

can be achieved by generalizing the SB-S distribution. In this thesis we investigate a 

generalized B-S (GB-S) distribution. We present its properties, characteristics and the 

shape of its hazard function. It is also important to examine when this GB-S 

distribution fits failure data better than the SB-S distribution. Additionally, since ALT 

models can increase the fatigue failure of a specimen, it is interesting to apply ALT 

models to GB-S distribution and design an optimal ALT plan so that reliability and 

lifetime of components and systems using accelerated failure data can be accurately 

predicted at normal operating conditions.  

 

1.2 Problem Statement 

 

It is proven the hazard function of SB-S distribution is restricted to be only 

upside-down. Owen (2004, 2006) presents GB-S distributions to improve the 

flexibility of the SB-S in terms of fitting different failure rate models.  

 

This thesis investigates one of the GB-S distributions in order to facilitate its 
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applicability for other types of hazard functions. More specifically, the thesis 

investigates GB-S distribution and the shape of its hazard function as well as its 

accuracy of fitting failure data. The thesis also develops expressions for the 

characteristics of the GB-S distribution. We begin by presenting the probability 

density function (pdf) and the hazard function of SB-S distribution. The pdf of SB-S 

distribution is given by Eq. (1.1) as: 

 

2
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2 2

t
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Where T, denotes the lifetime, t is the realization of T, and  and α β are the 

parameters of SB-S distribution. The  SB-S hazard function is given as: 

 

.

  

(1.2) 

 

 

 

As stated earlier, Kundu (2008) establishes that the hazard function of SB-S 

distribution is unimodal and presents its change point (the point at which the 

distribution changes from increasing to decreasing hazards) which is the major 
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limitation of SB-S distribution.  

 

Generalized forms of SB-S distribution (Owen 2004, 2006) are proposed by 

introducing another shape parameter. We investigate one of the GB-S distributions 

and discuss the necessary and sufficient conditions that enable the GB-S distribution 

to model different failure rate shapes.  

 

The thesis also compares the performances of SB-S and GB-S distribution by 

applying them to groups of simulated failure data. 

 

The characteristics and properties of the GB-S distribution are also investigated in this 

thesis. Utilizing the relationship between GB-S distribution’s lifetime T and standard 

normal variable Z, we present the moments, expected failure time, variance, skewness, 

kurtosis and other statistical properties of T. 

 

We develop efficient methodologies to estimate GB-S distribution’s parameters. 

Although the maximum likelihood estimator (MLE) provides accurate estimation in 

most cases, exceptions may occur when sample size is small. Ng et al (2003) propose 

the modified moment estimators (MMEs) of SB-S distribution which are easy to 

compute, but biased for large shape parameters and small sample size cases. 

Simulation results of other proposed biased-reduction estimators of SB-S distribution 

reveal that they have advantages and limitations, respectively. Those estimators are 
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discussed in next chapter. 

 

Providing a satisfactory estimation methodology of the GB-S distribution’s 

parameters is one of the problems to be investigated in this thesis. We examine the 

MLE and employ the modified MLE (MMLE) that alleviates most of the limitations 

previously encountered (Cohen 1980). This new methodology substitutes one of the 

local maximum estimation equations with Eq. (1.3): 

 

( )( ) ( )E F X F xk k=
                                              

(1.3) 

 

We perform a simulation study to compare the performance of both MLE and MMLE 

for different sample size and shape parameters. 

 

Power-law life-stress relationship is applied to SB-S distribution to build SB-S 

accelerated life model (Owen and Padgett 2000). The (inverse) power-law model has 

applications to fatigue studies in metals where failure tends to be crack-induced. We 

intend to utilize the ALT models to obtain the GB-S accelerated life model. We apply 

accelerated failure time (AFT) model to GB-S distribution and we also develop other 

ALT models. Those models are used to predict the reliability and lifetime under any 

operating condition by using the accelerated data and their performances are 

compared.To obtain an accurate and efficient prediction of the reliability, we design 

an ALT plan of GB-S distribution which aims to optimize the objective functions 
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under time and budget constraints. 

 

In summary, the SB-S distribution has wide applications but islimited due to its 

inability to model different shapes of failure rate functions. The thesis intends to 

investigate the GB-S distribution to overcome the limitation. Studying the properties 

and characteristics as well as the parameter estimation methodologies of GB-S 

distribution are also investigated. Finally, we generalize the ALT models and apply 

them to GB-S distribution. We also intend to design ALT plans to predict life and 

reliability accurately under normal stresses. 

 

1.3 Thesis Organization  

 

The thesis is organized as follows. Chapter 2 provides a thorough review of literature 

of SB-S distribution. We introduce the work related to SB-S distribution, the 

properties, inference procedure, SB-S distribution related distributions, generalization 

work based on SB-S distribution and its application in ALT models. In chapter 3, the 

thesis introduces the SB-S distribution, the assumptions and derivation, the properties, 

characteristics, several observations, inference procedures and its hazard rate in 

details. Chapter 4 deals with the GB-S distribution that Owen (2004) proposes. We 

investigate the characteristics, properties and observations of the distribution. We also 

examine the various types of failure rate shapes of GB-S distribution. We also 

perform extensive simulation in order to verify that GB-S distribution provides “better” 
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fit to fatigue failure data than the SB-S distribution. Chapter 5 focuses on the 

parameter estimation of GB-S distribution utilizing MLE and MMLE; the 

computational simulation indicates that for different sample sizes and different values 

of shape parameters, the results of MLE and MMLE are significantly different. 

Chapter 6 presents the application of GB-S distribution to ALT models. We propose 

GB-S based ALT models as well as other AFT models. Those models’ performances 

are compared based on experiment accelerated data. Also, we provide an approach for 

the design of optimum ALT plans when the GB-S distribution is utilized in fitting the 

failure data at accelerated stress conditions. Consequently, the reliability 

performances under any operating stress can be obtained.  
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CHAPTER 2 

LITERTURE REVIEW 

 

In this chapter we provide a detailed overview of SB-S distribution and related 

distributions. We also discuss the use of SB-S distribution in accelerated life testing 

(ALT) and reliability prediction. We begin this chapter with basic properties, 

characteristics, observations and the hazard function of SB-S distribution in section 

2.1. We then present are view of different parameter estimation methods of SB-S 

distribution’s parameters in section 2.2. The advantages and disadvantages of such 

methods are also discussed. In section 2.3 we present a review of the literature of 

GB-S distributions and SB-S related distributions. The review indicates that these 

distributions fail to relax the limitation of hazard function of SB-S distribution. In 

section 2.4, power-law accelerated SB-S model is reviewed. The review shows that 

the use of B-S distribution in ALT for life prediction at normal conditions is limited to 

SB-S distribution. However, the use of B-S distribution in ALT model can be further 

generalized by the GB-S distribution. 

 

2.1 Properties and Characteristics of SB-S Distribution 

 

SB-S distribution(Birnbaum and Saunders 1968) is a widely accepted distribution for 

modeling fatigue failure of specimens, products or systems when a dominant crack, 
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which is caused by cyclic or continuous stresses and strains, either time-varying or 

constant, surpasses a predetermined crack length threshold. In this section, we provide 

the basic properties, characteristics, observations and the hazard function of SB-S 

distribution.  

 

The SB-S distribution is derived based on the assumption that crack extension for the 

ith cycle is determined by the applied loading in this cycle only. It is also assumed 

that the crack extension for each cycle is non-negative and mutually independent.  

 

Desmond (1985) notes that a variety of distributions describing crack extension size 

can still result in an SB-S distribution for estimating the fatigue lifetime. It is also 

observed that the fatigue failure life still follows the SB-S distribution when the basic 

assumption of the SB-S distribution regarding the crack growth is relaxed. In other 

words, the SB-S distribution can be used to model the fatigue failure life when the 

crack increment in a certain cycle not only depends on the current loading but also is 

affected by the total crack size caused by previous cycles. 

 

Birnbaum and Saunders (1968) present the probability density function (pdf), 

expected failure time, variance, skewness ( )1 Tχ and kurtosis ( )2 Tχ respectively as 

follows: 

 

The pdf of the SB-S distribution is: 
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⎛ ⎞ ⎛ ⎞⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥
⎣ ⎦

= +

 

The expected time to failure is:

 

 

2

( ) (1 )
2

E T αβ= +
 

 

The variance of the time to failure is:
 

 

( )
2

2 5( ) 1
4

Var T ααβ ⎛ ⎞
= +⎜ ⎟

⎝ ⎠  

 

The skewness and kurtosis, respectively are:
 

 

( )
( )
2 216 11 6

( )
1 325 4

T
α α

χ

α

+
=

+  

 

( )
( )
2 2

2 22

6 93 41
( ) 3

5 4
T

α α
χ

α

+
= +

+
 

 

Generally, the kth moment of T can be derived (Kundu 2010)as: 
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∫ ∫
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Moreover, if T belongs to SB-S distribution with parametersα and β , T-1 also belongs 

to SB-S distribution with the corresponding parametersα and -1β , respectively (Ng et 

al 2003). Therefore, we readily have: 

 

2
1

2
2 2

-1

-1

( ) (1 )
2

5( ) 1
4

E T

Var T

αβ

αα β

−

−

= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

 

 

The basic properties of SB-S distribution show that the mode of lifetime T isobtained 

by solving a non-linear equation inα . Again for allα , the median is always β . For 

all values of the shape parameter, the shape of pdf is unimodal. Kundu (2008) 

observes that once α approaches zero, the shape of the pdf of the SB-S distribution 

becomes symmetric with respect to =t β , however, SB-S distribution is mainly used 

to model the skewed data so it is not common to haveα close to zero in real life 

applications. 

 

To obtain the moments of T more generally, Rieck (1999) proposes the moment 
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generating function (MGF) and obtains the kth moment of SB-S distribution, where k 

can be either integer or fractional.  

 

 

Figure 2.1 Hazard rate of SB-S distribution with =0.8  1.5  2.5α ， ， and =1β  

 

From Figure 2.1 we observe that larger shape parameters cause the change point (up 

to down) to be more evident for the same value of scale parameter, i.e., larger shape 

parameter results in a sharper peak of the hazard function.  

 

Kundu (2008) discusses the change point of the SB-S distribution’s hazard function 

by defining the changing point as ( )c α .The change point can be obtained by utilizing 

different estimation methods and is a decreasing function ofα . However there is no 

closed-form expression of ( )c α . Kundu (2008) obtains a functional approximation of

( )c α as: 
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( )
( )2

1=
1.8417 -0.4604

c a
α

.                                           (2.1) 

 

It is observed that for α > 0.6, the approximation in Eq. (2.1) works very well. 

However, ( )c α does not exit at 0.249986α = and the approximation gives 

unreasonable values in the range of 0.25 0.5 .α< <  

 

2.2 Parameters’ Estimation Methodologies 

 

In this section, we provide a review of different parameters’ estimation methodologies 

for SB-S distribution and their advantages and disadvantages. The maximum 

likelihood estimator (MLE) for SB-S distribution is also discussed originally by 

Birnbaum and Saunders (1968).Apparently, moment estimator (ME) can be applied to 

this distribution; however, this estimator is biased. In addition, when the sample 

coefficient of variation (CV) is larger than 5 , the ME is no longer available. Even if 

the CV is smaller than 5 , the estimator of the scale parameter β is not unique (Ng 

etal2003). To obtain the MLE ofβ , it is necessary to set a non-linear equation of β

which might result in computational round off errors and potential inaccuracies. 

Although two iterative schemes for the non-linear equation of β are suggested by 

Birnbaum and Saunders (1968), one of them is only applicable for small α and the 

other procedure is not available for some sample space (Ng etal2003). In addition, 

since exact distributions of the MLEs are not available, their asymptotic distributions 

are obtained by Engelhardtet al (1981) for constructing confidence intervals of the 
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parameters. Again, Ng et al(2003) mention that the behavior of the confidence 

interval is not certain when sample size is small. Above all, the MLE of α is biased, 

especially when the sample size is small or when the data is incomplete (Ng et al 

2003).  

 

As we stated earlier, ME and MLE both have application limitations as well as 

computational difficulties. To improve the estimation of conventional estimators, Ng 

et al(2003)propose the modified moment estimator (MME) which always provides 

unique estimation of β . Two modified estimators which improve both ME and MLE, 

called Bias-reduced estimator and Jackknife estimator, are also proposed (Ng 

etal2003).  

 

Monte Carlo simulation is used to compare the results of these estimators (Ng 

etal2003). The simulation results show that the performances of the MLE and MME 

are almost identical regardless of the sample size as long as the shape parameter α is 

not large. The results also show that the MLE and the MME obtain large standard 

deviations for small sample sizes. When shape parameter is large, Jackknife MLE and 

Jackknife ME provide identical results which have less bias but larger standard 

deviations than Bias-reduced MLE and Bias-reduced ME. Ng et al (2003) also prove 

that in terms of computation procedure, when sample size is large, Bias-reduced MLE 

and Bias-reduced ME are simple while the Jackknife MLE and Jackknife ME take 

longer computation time. The asymptotic confidence intervals do not work very well 
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when the sample size is less than 20. 

 

A simple bias-corrected estimator of α by using a regression curve fitted to the bias 

of the MLE of α based on Monte Carlo simulations is provided (Ng et al 2003). This 

technique is proposed and applied to set a bias correction formula for the MLE of a 

two-parameter Weibull distribution. Reick (1999) also proposes the approximation for 

a small shape parameter α with moment generating function (MGF). 

 

Tang and Chang (1993) obtain the coverage probability, change point and reliability 

bound of the SB-S distribution, both point and interval. To achieve this, they construct 

a 100pth percentile confidence interval and use the two-sided tolerance limits for the 

estimation. Dupuis and Mills (1998) obtain the robust estimation of the parameters 

and quantiles of SB-S distribution since in practice the collected data does not always 

follow the SB-S model. The robust estimation technique is based on the optimal 

bias-robust estimator (OBRE) which is similar but better than MLE. This procedure 

considers the weight of each observation and shows that low weights are not suitable 

for fitting the SB-S model. Also, robust confidence interval can be used to estimate 

the change point of the hazard rate function. Rieck (1999) derives the inference 

procedure for the SB-S distribution with symmetrically incomplete data since in 

practice it is common to end a life testing before all items under test fail. Therefore, 

estimation procedures need to be developed to model the censored data. This 
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estimator can be applied for the parameters of SB-S distribution and extends its 

applicability for both complete samples and Type 2 censored samples. 

Although different methods are proposed to estimate SB-S distribution’s parameters, 

there is no widely accepted estimation method that provides a convincing 

approximation of the shape parameter, especially when the sample size is small and 

the shape parameter is large.  

 

2.3 GB-S Distribution and SB-S Related Distributions 

 

Since SB-S distribution is considered as one of the normal distribution family and its 

relationship with similar distributions is discussed. Desmond (1985) discusses the 

relationship between SB-S distribution and the Inverse Gaussian (IG) distribution. 

The SB-S distribution can be written as a combination of an IG distribution and the 

reciprocal of an IG distribution. The hazard functions of the two distributions are very 

similar. Desmond (1985) compares the two distributions and the result shows that 

SB-S distribution is more flexible than IG distribution, whereas the IG distribution 

seems to have applications for incomplete data but SB-S distribution has difficulty in 

incorporating such data. 

 

Kundu (2010) describes properties of the length biased version of SB-S distribution 

(LBBS) which can be easily established where the LB distributions are defined as 

particular cases of the weighted SB-S distribution. The properties of LBBS can be 
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obtained by utilizing SB-S distribution. For example, the pdf of LBBS can be easily 

obtained using the standard transformation method. The cumulative distribution 

function (cdf) of LBBS can also be obtained in terms of ( )Φ g . 

 

Similarly, the pdf of the mixture of two SB-S distributions (MSB-S) distribution can 

be either unimodal or bimodal. The moments of the MSB-S distribution can be 

obtained in terms of the moments of the two SB-S distributions. Likewise, the hazard 

function of the MSB-S distribution can be expressed by the mixture of two SB-S 

hazard functions (Kundu, 2010). 

 

Owen (2004, 2006) presents two GB-S distributions by introducing a second shape 

parameter. One of the GB-S distributions considers the effect of sequence of loading 

and the crack extension thus the crack extension is modeled as a memory process. 

MLE is proposed to estimate the parameters of the distribution. The hazard function 

of this GB-S distribution covers the increasing hazard rate as well. However, this 

relaxation is not general enough when compared with another form of the GB-S 

distributions. In the other GB-S distribution, Owen (2004, 2006) generalizes the SB-S 

distribution by building the relationship between lifetime T and standard normal 

variable Z as: 

 

1 TZ
a T

λ λβ
β

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎣ ⎦                                               
(2.2) 
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Here  and λ α are the shape parameters andβ is the scale parameter of this GB-S 

distribution. T is lifetime of the GB-S distribution and Z is the standard normal 

variable. Therefore, the pdf of lifetime T is given in Eq. (2.3) as: 

 

2 2

2( ; , , ) exp
2

1 2
2

t
f t a

tat

t
ta

λ λ λ λ
λ β

β λ
βπ

β
β

= +
⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞ − + −⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎢⎝ ⎠ ⎥⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭

(2.3) 

 

Including the GB-S distribution above, Diaz-Garcia and Dominguez-Molina (2005) 

present a more general form of the SB-S distribution by providing univariate and 

multivariate extensions; for example, sinh-normal distribution of spherical type. 

Diaz-Garcia and Leiva-Sanchez (2002) extend SB-S distribution to an elliptically 

contoured distribution. From this type of distribution they derive several specific 

Elliptic distributions such as Pearson Type VII, t, Cauchy, Normal, Laplace and 

Logistic distributions. This generalization makes this family of distributions effective 

in covering a wide range of life conditions. Desmond (1985) also uses a biological 

model to provide a more general derivation of SB-S distribution. His generalized 

derivation yields an SB-S distribution family which incorporates lognormal and other 

distributions. 

 

The GB-S distribution as described in Eq. (2.3) has not been thoroughly investigated. 

In other words, the characteristics of the distribution and the conditions that enable it 

to model upside-down hazard rate function and monotonically increasing hazard rate 
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function or their combination which may be useful in modeling the rollercoaster 

failure rate of electronic systems (roller coaster failure rate means that the failure rate 

is multimodal as advocated by Wong (1989)) are the subject of investigation of this 

thesis. We also present the characteristics, properties and inference procedure of this 

GB-S distribution. Furthermore, methods for providing unbiased estimation methods 

of the GB-S distribution’s parameters are investigated.  

 

2.4 SB-S Accelerated Model 

 

2.4.1 ALT Models 

 

ALT models can be divided into several types. Each model has underlying 

assumptions and builds relationship between different reliability measures. AFT 

models assume that the covariates act multiplicatively on the failure time. Expressing 

the stress function as ( )exp aZ , a typical AFT model is defined by

( ) ( )[ ]0; expR t Z R aZ t= . Cox’s proportional hazards (PH) model is the most widely 

used non-parametric ALT model because it relaxes the requirement of the failure time 

distribution’s form. It is mainly based on the assumption that the ratio of the hazard 

rates of two identical units under two stress levels is constant, i.e.,

( ) ( ) ( )0; exph t Z h t aZ= .For the proportional odds (PO) model, the stress function 

( )exp aZ builds relationship between the odds functions under different stress levels, 

where the odds function ( )tθ  is defined as: ( ) ( )
( )
;

1 ;
=

F t Z

F t Z
tθ

−
. Therefore, the PO 
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model is written as ( )
( )

( )
( )

0

0

;
1 ; 1

s aZ

s

F t Z F t
e

F t Z F t
=

− −
.It states that the odds of failure are 

proportional to the applied stress levels.  

 

These ALT models along several others such as the extended linear hazards 

regression models and the proportional mean residual life models are normally used to 

relate the units’ lives at accelerated conditions to their lives at normal operating 

conditions. Although, the B-S distribution model is widely used in fatigue analysis, its 

application to ALT models is limited. In this section, we review the use of SB-S 

distribution as an ALT prediction model. Later in the thesis, we intend to explore and 

generalize its use by using the GB-S distribution. 

 

2.4.2 SB-S Distribution Based ALT Model 

The inverse power law model is commonly used for non-thermal accelerated stresses 

and is given as:  

( ) -= >0, >0,h S S ηγ γ η⋅ (2.4)	
  

Where 

( )h S is a quantifiable life measure, such as mean life, characteristic life, etc 

S represents the stress level 

,γ η are model parameters. 
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Owen and Padgett (2000) develop the inverse power law accelerated form of the SB-S 

distribution and explore the corresponding inference procedures. By substituting the 

scale parameter β with the accelerated life model ( )h S , the accelerated B-S model can 

be written as: 

 

( ) ( )
( ) ( )

( )
2

1 1
1

22 2
21

( ; , )
2 2

h St

h S tah St
f t a h S e

h S tatπ

− + −
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞
⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭= +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦          

(2.5) 

Where 

 

( ) -= >0, >0, h S S ηγ γ η⋅  

 

The MLE of the unknown model parameters in (2.5) can be obtained by minimizing 

the likelihood function: 

 

-

2 -

11
1

222
2

,

,
-

,
, -

=1 = ,,

1
( , , ; )

2 2
,

t S

ta S

i j ii
i ji

nk
i j i

i j i
i j i i ji j

t S
L t S e

S tat

η

η

γ

γ
η

η
γ

α γ η
γπ
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⎝ ⎠⎩ ⎭⎣ ⎝ ⎠ ⎦= +
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∏∏
   

(2.6) 

 

Where 

  

k is the number of accelerated stress levels 

,i jt is observed cycle-to-failure of stress level or type i at the observed time index j 
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j is index for failure times observed for =1,2,......i jS n  

in is number of items tested at stress iS   

 

Owen and Padgett (2000) also utilize the model to estimate lower distribution 

percentiles for any value of the acceleration factor. This SB-S model implies the 

applicability of ALT models to GB-S distribution. Therefore, we intend to investigate 

the use of GB-S distribution in ALT. 

 

 

2.5 Conclusion 

 

In this chapter, the literature concerning the SB-S distribution is reviewed in details. 

GB-S distribution and SB-S distribution families are proposed but they all fail to 

cover a wide range of failure rate functions. There are different methods proposed to 

estimate SB-S distribution’s parameters but little research is conducted to provide 

estimates of the parameters of the GB-S distribution, especially when the sample size 

is small. The inverse power law model is applied to SB-S distribution to relate failure 

times at accelerated conditions to those at normal operating conditions. A thorough 

review of the literature shows that GB-S accelerated model has not been investigated. 

In this thesis we investigate the GB-S distribution by presenting its characteristics and 

properties. We also examine the GB-S distribution’s hazard function and its 

applicability in industry. Moreover, we compare the performances of MMLE and 
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MLE using extensive simulation studies. Finally, we present a generalized ALT 

model and discuss different GB-S based ALT models. We also intend to investigate 

the development of optimal accelerated life testing plans for the GB-S based ALT 

model.  
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CHAPTER 3 

STANDARD BIRNBAUM-SAUNDERS (SB-S) DISTRIBUTION 

 

In chapter 2, we present the probability density function (pdf), expected failure time, 

variance, skewness, kurtosis and some properties of SB-S distribution. We also 

introduce different methods for the SB-S distribution’s parameters estimation and 

highlight the fact that the hazard rate function of SB-S distribution is restricted to be 

only unimodal (Kundu 2008). In this chapter, we provide a detailed discussion of the 

SB-S distribution before we introduce and investigate the GB-S distribution in chapter 

4. 

 

We begin this chapter by stating the underlying assumptions of the SB-S distribution. 

In section 3.2 we present details of the parameter estimation methodologies of the 

SB-S distribution and then examine the shape and the change point of the hazard 

function of SB-S distribution in section 3.3.  

 

3.1 Assumptions and Derivation of SB-S Distribution 

 

Birnbaum and Saunders (1968) propose the SB-S distribution to model fatigue failure 

time of units when a dominant crack, which is caused by cyclic or other types of 

stresses, surpasses or reaches a predetermined crack length threshold. To utilize SB-S 
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model, the stress is not only restricted to mechanical loading but also refers to any 

stress due to environmental conditions, such as humidity, temperature, electric field, 

etc. In this section, we briefly present the assumptions and derivation of SB-S 

distribution. 

 

3.1.1 Assumptions of the SB-S Distribution 

 

Usually, “loading” is expressed as a function that represents the amount of stresses 

acting on the specimen at any given moment in time. To derive SB-S distribution, the 

following assumptions are necessary: 

 

1. A cycle contains m types of applied loadings, for example, temperature, 

humidity, electric field, shock, vibration, etc. Each application of the jth loading 

type in the ith cycle results in a random crack extension. The distribution for this 

random variable depends on the actual crack extension caused by applied 

loadings in this cycle only. 

 

2. Let
ijX represent the crack extensions caused by the jth loading in the ith cycle, 

which are non-negative and mutually independent and iX represent the 

accumulated crack extensions caused by m types of loadings in the ith cycle. Let 

X represent the dominant crack at the end of the nth cycle. The relationship 

among
ijX , iX and X can be expressed as: 

1 1 1

n n m

i ij
i i j

X X X
= = =

= =∑ ∑∑  
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3. The dominant crack at the end of nth cycle X is approximately normally 

distributed with mean nµ and variance 2nσ . Where  and µ σ are the mean and 

standard deviation of the crack that occurs in one cycle, respectively. 

 

4. The fatigue failure happens when the dominant crack length X reaches or 

surpassesthe thresholdω  expressed as: 

 

1 1 1
                                                      3.1                          

n n m

i ij
i i j

X X X ω
= = =

= = ≥∑ ∑∑ （ ）

 

It is also observed that the fatigue life still follows the SB-S distribution when the 

basic assumptions of the SB-S distribution regarding the crack growth are relaxed. 

More specifically, the SB-S distribution can be adopted for modeling the fatigue life 

when the crack increment in a certain cycle depends not only on the current but also 

on previous loadings. In addition, Desmond (1985) notes that a variety of distributions 

describing crack extension size can still result in an SB-S distribution for estimating 

the fatigue lifetime. 

 

3.1.2 Derivation of the SB-S Distribution 

 

The failure threshold of a given product is determined by its own conditions and the 

operating environment. Based on the assumptions mentioned above, the SB-S 
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distribution is derived as follows: 

 

The probability that the crack does not exceed the threshold length ω  is obtained as: 

 

n n

n n

ω µ ω µ
σσ σ

−
Φ = Φ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

Similarly, if T denotes a specimen’s lifetime (expressed in number of cycles), the 

cumulative density function (cdf) of T is approximately given by:  

 

( ) 1
Pr 1= t t t
T t

tt t

ω µ µ ω β
σ σ α βσ σ

≤ Φ − = Φ − = Φ −
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎢ ⎜ ⎟⎥
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

−
         

(3.2) 

 

Where 

= σα
ωµ

, ω
β

µ
= , >0, >0α β  

 

The random variable T, denoting the lifetime, follows SB-S distribution. The 

parameters  and α β are shape and scale parameters of SB-S distribution, respectively.

  

 

The reliability function, the pdf, and the hazard rate function, respectively, are: 
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1( ; , ) 1 ( ; , )=1- t

t
R t a t a β

α β
β β −

⎡ ⎛ ⎞⎤
= −Φ Φ ⎜ ⎟⎢ ⎥

⎣ ⎝ ⎠⎦                           
(3.3) 
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(3.5) 

 

We observe that the derivation of SB-S distribution is similar to a known model called 

Miner’s Rule, which is one of the most widely used cumulative damage models for 

failures caused by fatigue. Miner’s Rule deals with the case that the unit is subjected 

to different types of loadings with multiple levels. Of course, this general model 

incorporates single type of stress or stress with constant magnitude as a special case. 

For a given unit, the jth type of loading in the ith cycle, represented by ijS , produces a 

fatigue life of ijN cycles. The number of cycles representing the damage accumulated 

at stress ijS is ijn .Assessing the proportion of life = ij
ij

ij

n
p

N
consumed at each stress level 

and adding the proportions together, the failure occurs when the sum of proportions 

equals to one. Assuming the failure happens at the end of the nth cycle, Miner’s Rule 

can then be expressed by Eq. (3.6) as: 
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(3.6) 

 

This is similar to Eq. (3.1). Thus, when Miner’s Rule is appropriate to model the 

fatigue failure, the SB-S model can also be properly used for life prediction. 

 

3.2 Maximum Likelihood Estimation (MLE) and Modified Moment Estimation 

(MME) of SB-S Distribution 

 

In chapter 2, we present several estimation methodologies of SB-S distribution’s 

parameters. However, we just mention their advantages and disadvantages. In this 

section, we estimate the parameters  and α β by utilizing MLE and MME. 

 

3.2.1 MLE of SB-S Distribution 

 

Placing the failure time data of a random sample with size n in an increasing order

1 2 ... nt t t≤ ≤ , we readily have the sample arithmetic mean s and harmonic mean r 

given by Eq. (3.7) and (3.8) respectively: 

 

1

1
i

n

i
s tn =
= ∑

                                                       
(3.7) 

 

(3.8) 

Generally, the harmonic mean function ( )K x can be further defined as: 

1 1

=1
n m

ij
i j

p
= =

∑∑

-1
-1

=1
=

n

i
i

r t
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑
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( ) ( )
-1

-1

=1
+ , for 0= i

n

i
x x t xK

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

≥∑
                                          

(3.9) 

 

Where x is a positive variable. 

 

We obtain the likelihood function for the sample as given in Eq. (3.10): 

( )
( )

1 1-
2 2+

=1 -1
; , = exp + -2

=12 2
=1

n t ti i
i n t ti iL t ni nn n iti

i

β β

α β
β β

π α

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞

∏ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎧ ⎫⎡ ⎤⎢ ⎥ ⎪ ⎪⎛ ⎞ ⎛ ⎞⎣ ⎦ ⎢ ⎥∑⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭∏

              

(3.10) 

 

We obtain the log-likelihood function by taking logarithm of Eq. (3.10). Setting the 

partial derivatives of the log-likelihood function with respect to  and α β equal to zero 

respectively, we obtain ( )α β that maximizes the likelihood function with

( )
1
2= + -2s

s
βα β

β

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 for a given β . The estimation ofβ  can be obtained by solving 

Eq. (3.11): 

 

( ) ( )2- 2 + + + =0r K r s Kβ β β β⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                       
(3.11) 

 

Eq. (3.11) is a non-linear equation of β which might result in computational round 

off errors and potential inaccuracies. Birnbaum and Saunders (1968) suggest two 
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iterative schemes for solving this non-linear equation. However, one is only 

applicable for small α and the other is not available for some sample space (Ng et al 

2003). 

 

In addition, since exact distributions of the MLEs are not available, Engelhardt et al 

(1981) obtain the asymptotic distribution of parameters  and α β , which is a bivariate 

normal, to construct confidence intervals of the parameters as given in (3.12): 

 

( )

2

-2

0
2

~ ,
0

0.25+ +

N

n I

α
α α

βββ
α α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎜ ⎟⎡ ⎤⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠                                   

(3.12) 

Where  

 

 

 

( )
1

2 2 2
=1+ +y 1+

2 4
y yg y

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 

 

Again, Ng et al (2003) state that the behavior of the confidence interval is not certain 

when the sample size is small. 

 

3.2.2 MME of SB-S Distribution 

3.2.2.1Moment Estimation (ME) of SB-S Distribution 

( ) ( ){ } ( )
2-1

0
2 1 -0.5I g x d xα α

∞
⎡ ⎤⎣ ⎦= + Φ∫
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Using conventional ME to estimate the parameters of the SB-S distribution, we set Eq. 

(3.13) and (3.14) as: 

 

[ ]
21 (1 )
2

n
tiiE T

n
αβ

∑
== = +

                                          
(3.13)                              

[ ]{ } ( )

2
2

252 22 1 1- 1
4

n n
t ti ii iE T E T
n n

ααβ

⎛ ⎞
∑ ∑⎜ ⎟ ⎛ ⎞⎜ ⎟= =⎡ ⎤ ⎜ ⎟− = = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎝ ⎠

(3.14) 

 

The corresponding ME of  and α β can then be obtained as solutions of α and β of 

the two equations. As stated earlier, conventional ME is biased when the sample size 

is small. In addition, when the sample coefficient of variation (CV) is larger than 5 , 

the ME is no longer available. Moreover, when the CV is smaller than 5 , the 

estimator of the scale parameter β is not unique (Ng et al 2003). 

 

3.2.2.2Modified Moment Estimation (MME) of SB-S Distribution 

 

Instead of using the first and second population moments, Ng et al (2003) propose an 

MME by replacing Eq. (3.14) with Eq. (3.15): 

 

(3.15) -1
2

-1 -1=1 = 1+ 2=

n

i
i
n

t
r αβ

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∑
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Thus MME can be utilized to obtain  and α β  by providing Eq. (3.15) and (3.16):  

 

2
= 1+

2
s αβ

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠                                                     

(3.16) 

 

Solving Eq. (3.15) and (3.16) for α  andβ , we obtain α and β as Eq.(3.17) and 

(3.18): 

 

1
21

2
= 2 -1s

rα
⎧ ⎫⎡ ⎤
⎪ ⎪⎛ ⎞⎢ ⎥
⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭                                                 

(3.17) 

 

( )
1
2= rsβ                                                        (3.18)       

 

Again, the asymptotic joint distribution of  and α β is bivariate normal given by: 

 

2

2
2 2

2
2

0
2

3~ , 1+
40
11
2

n

N

n

α

α α
αβ α ββ

α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

(3.19) 

 

Besides MLE and MME, Ng et al (2003) propose other modified estimation methods 

such as bias-reduced estimator and Jackknife estimator to estimate SB-S distribution’s 
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parameters. Comparison among these estimation methods indicates that there is no 

widely accepted estimation method that provides a convincing approximation ofα , 

especially when α  is large.  

 

3.3 Hazard Function of SB-S Distribution 

 

Commonly, the hazard rate is utilized to determine the magnitude and behavior of the 

failure rate since it is referred to as the instantaneous failure rate. Sometimes, 

distributions with monotone or constant hazard function are used to model failure 

time data. However, it can be often observed that the hazard rate increases to a point 

and then decreases (upside-down) or starts by decreasing from a high rate to a point 

and then rises (down-upside). The hazard rate can be even more complicated with 

multiple ups and downs (roller coaster (Wong 1989)). Generally, bathtub-shaped 

failure rate and roller coaster failure rate can be adopted to model most of the life 

conditions. 

 

3.3.1 Shape of the Hazard Function 

 

To investigate the shape of the hazard function of GB-S distribution in the next 

chapter, it is necessary to examine the shape of the hazard function of SB-S 

distribution which is originally provided by Kundu (2008). 

Set  
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1 1
2 2

1 1-
2 2

1 1
2 2

2

2 -1

( ) ,

1'( )
2

1 1 3''( )
2 22

( ) 2

t t t

t t t

t t t
t

t t t

ε

ε

ε

ε

−

−

−

= −

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

= + −

 

 

Then the pdf and the hazard function of SB-S distribution can be written as Eq. (3.20) 

and (3.21), respectively: 

 

( ) ( ) ( )2

1 1' exp
22

f t t tε ε
απα

⎧ ⎫= −⎨ ⎬
⎩ ⎭                                  

(3.20) 

( ) ( )
( )

( ) ( )

( )
2

1 1' exp
22

1

t tf t
h t

F t t

ε ε
απα

ε
α

⎧ ⎫−⎨ ⎬
⎩ ⎭= =

− ⎧ ⎫
Φ −⎨ ⎬
⎩ ⎭                          

(3.21) 

 

The shape of the hazard function is not clear by observing Eq. (3.21). Investigating 

the shape of ( )h t  by examining whether ( )'h t  is positive or not does not work well 

because of its computational difficulty. Kundu (2008) utilizes a lemma (Glaser 1980) 

to establish the main result regarding the shape of the hazard function. The lemma 

adopted by Kundu (2008) is similar to the lemmas that we utilize when discussing the 

shape of hazard function of GB-S distribution in Chapter 4.  

The Lemma states that f (t),for t> 0, is the pdf of a positive real-valued continuous 
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random variable, and defines ( ) ( )
( )
'f t

t
f t

η = . If there exists a time 0t such that

( ) ( )0' 0 0,t t tη > ∀ ∈ , ( )0' 0tη = and ( ) ( )0' 0 ,t t tη < ∀ ∈ ∞ .The hazard function 

corresponding to f (t) is either an upside-down or a decreasing function of t. 

Furthermore, if ( )
0

lim
t

f tς
→

= exists, possibly equal to 0 or∞ , the hazard function is 

decreasing if ( )
0

lim
t

f tς
→

= = ∞and is upside-down if ( )
0

0lim
t

f tς
→

= = . 

 

For SB-S distribution, ( ) ( ) and 't tη η can be investigated more specifically as: 

 

( ) 2

1 -3
1 1 2 2-2 2

21 1-2 2

''( ) '( ) ( )
'( )

3+
2=

2
2

t t tt
t

t tt t

t t

ε ε εη
ε α α

⎛ ⎞
⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠

⎢ ⎥ ⎛ ⎞⎣ ⎦
⎜ ⎟⎜ ⎟⎝ ⎠

= − −
−

= +
+

 

and 

 

( ) ( ) ( )
( )

2 3 2 2

2 2 3

- + -6 +2 + -3 +4 +2
' =

2 +1

t t t
t

t t

α α α
η

α
 

 

Kundu (2008) shows that for SB-S distribution, there indeed exists a time 0t such that

( ) ( )0' 0 0,t t tη > ∀ ∈ , ( )0' 0tη = and ( ) ( )0' 0 ,t t tη < ∀ ∈ ∞ .Thus, the hazard function 

of SB-S distribution is either upside-down or decreasing.  

 

Furthermore, Kundu(2008) proves that ( )0
lim ; =0
t
h t α

→
.Since ( )0

lim ; =1
t
R t α

→
, we readily 
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have that ( )0
lim ; =0
t

f t α
→

. Therefore, the hazard function of SB-S distribution is 

established as an upside-down function of t  

 

Figure 3.1 GB-S hazard rate with = 0.8, 1.5, 2.5 α and =1β  

 

From Figure 3.1 we observe that larger shape parameters cause the change point to be 

more evident for the same value of scale parameter, i.e., for SB-S distribution, larger 

shape parameter results in a sharper peak hazard function.  

 

3.3.2 Change Point of SB-S Distribution’s Hazard Function 

 

Kundu (2008) discusses the change point of the hazard function of the SB-S 

distribution by defining the change point as ( )c α , which is a decreasing function ofα

and is obtained by solving Eq. (3.23): 
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( ) ( )( ) ( ) ( ){ } ( ) ( )( )2 221 1- - ' + '' + - ' =0t t t t t tε ε ε α ε αφ ε ε
α α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Φ (3.23) 

 

Eq. (3.23) results in acceptable estimates of the parameter α when α is large but is 

difficult to obtain the estimates when α is small. Kundu (2008) observes that whenα

approaches zero, ( )c α approaches infinity. Particularly, the numerical solution of 

(3.23) is unstable whenα < 0.5. 

 

Kundu (2008) proposes a functional approximation of ( )c α given as: 

 

( )
( )2

1=
1.8417 -0.4604

c a
α

(3.24) 

 

Again, for α > 0.6, the approximation in Eq. (3.24) provides a satisfying result. 

However, ( )c α does not exit at 0.249986α = and the approximation gives 

unreasonable values in the range of 0.25 0.5 .α< <  

 

Kundu (2008) proposes the MME and other bias-reduced estimation methods to 

estimate the change point. He also conducts Monte Carlo simulations to compare the 

performances of the estimation methods. The result shows that when sample size 

decreases, both bias and variance of all estimation methodologies increase. Moreover, 

in general, all the methods overestimate ( )c α . 
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3.4 Conclusion 

 

In this chapter, we present the assumptions and the derivation of SB-S distribution; 

then we utilize MLE and MME to estimate the parameters of the distribution. We also 

introduce the procedure of examining the shape of SB-S distribution’s hazard function. 

Since the hazard function is an upside-down function of t, it is obviously limited 

because it fails to cover othertypes of failure conditions. One of the GB-S 

distributions families that Owen (2004) proposes is investigated in depth in Chapter 4. 

We investigate the necessary conditions that result in a wider range of failure rate 

shapes for the GB-S distribution.  
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CHAPTER 4  

GENERALIZED BIRNBAUM-SAUNDERS (GB-S) 

DISTRIBUTION 

 

In chapter 3, we show that the hazard function of SB-S distribution is restricted to be 

only unimodal which fails to cover a wide range of failure rates such as increasing, 

constant or decreasing. In this chapter, we investigate in depth one of the generalized 

B-S (GB-S) distributions that Owen (2004) proposes and determine the necessary and 

sufficient conditions to have a wide range of practical failure rates.In section 4.1, we 

introduce the pdf, the cdf, the reliability function and the hazard function of GB-S 

distribution; we also investigate its characteristics and basic properties. The 

conditions that enable the GB-S distribution to model upside-down hazard rate 

function and monotonically increasing hazard rate function or their combination 

which may be useful in modeling the rollercoaster failure rate of electronic systems 

(roller coaster failure rate means that the failure rate is multimodal as advocated by 

Wong (1989)) are the subject of investigation of section 4.2. In section 4.3, we 

compare the performance of SB-S and GB-S distribution using simulation of failure 

time data.  

 

4.1 Characteristics and Properties of GB-S Distribution 
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In this section, we start with the relationship between GB-S distribution’s failure time 

T and standard normal random variable Z. We present the pdf, the reliability function, 

the cdfand the hazard function of GB-S distribution. We investigate its characteristics 

and basic properties in this section. 

 

4.1.1 GB-S Distribution 

 

The relationships between SB-S distribution’s variable T and standard normal variable 

Z are: 

 

1 1
2 21 t

Z
a t

β
β

= −
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

(4.1) 

2
2

1
2 2
aZ aZ

T β= + +
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

(4.2)
 

 

Where T is the time to failure. 

 

Similar to (4.1) and (4.2), the relationships between GB-S distribution’s variable T 

and the standard normal random variable Z are: 

 

1 tZ
a t

λ λβ
β

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎣ ⎦                                               
(4.3) 
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1

2

1
2 2

aZ aZ
T

λ

β= + +
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦                                              

(4.4) 

 

Where  ,α β  andλ are corresponding parameters of GB-S distribution. The parameters

 and α λ are the shape parameters of the GB-S distribution and β is the scale 

parameter. The SB-S distribution is a special case of GB-S when =0.5λ .  

 

The density function of ( )~ , ,T GB S α β λ− is given by (Owen 2004): 

 

( )2 2

2

1
2

2( ; , , )
2

, 0 , 0, 0, >0
t

tat
f t a e

tat
t

λ λβλ λ
βλ β

β λ
βπ

α β λ
− + −

⎧ ⎡ ⎤⎫⎪ ⎪⎛ ⎞⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎣ ⎦⎭= +
⎡ ⎤⎛ ⎞ ⎛ ⎞ < < ∞ > >⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠⎣ ⎦

(4.5) 

 

We obtain the corresponding reliability function, the pdf, and the hazard function. 

 

The cdf is expressed as: 

 

( ) 1; , , = tF t
t

λ λβα β λ
α β

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞Φ −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎪ ⎪⎣ ⎦⎩ ⎭                                   

(4.6) 

 

The reliability function is: 

 

1( ; , , ) 1 ( ; , , ) 1 tR t F t
t

λ λβα β λ α β λ
α β

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞= − = −Φ −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎪ ⎪⎣ ⎦⎩ ⎭                  

(4.7) 
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The hazard rate is: 
2 2

2
1 2
2

2( ; , , )( ; , , )
( ; , , ) 11

t
tat e

ttf th t
R t t

t

λ λβλ λ
β

λ λ

λ β
βπα β λα β λ

α β λ β
α β

α

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎛ ⎞ ⎪⎢ ⎥− + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎣ ⎦= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞−Φ −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎢⎝ ⎠ ⎥⎪ ⎪⎣ ⎦⎩ ⎭       

(4.8)
 

 

Other reliability characteristics can be easily obtained using the above expressions. 

 

4.1.2 Characteristics and Properties of GB-S Distribution 

 

The characteristics and properties of SB-S distribution are presented in Chapter 3. In 

this section, we obtain the moments, mean time to failure, variance, skewness, and 

kurtosis of the GB-S distribution. We also provide additional properties of GB-S 

distribution. 

 

4.1.2.1 Characteristics of GB-S Distribution 

 

We utilize Eqs.(4.1) and (4.2) to explore the characteristics of SB-S distribution. 

Similarly, we investigate the moments of GB-S distribution by considering Eqs. (4.3) 

and (4.4) which are repeated below. 
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1 T
Z

T

λ λβ
α β

= −
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦  

1

2

1
2 2

aZ aZ
T

λ

β= + +
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦  

 

Using the above transformations, we obtain, as shown in Appendix A, that: 

 

For 2 2 or Z
α α

= − , 2 2

20
 2

r k kZ

k

r
T

k

γ

λ α
λ

β
−∞

∑
=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎝ ⎠
(4.9) 
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α α
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2
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T

k s

γ
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λ λ
β

+
+

∞ ∞
∑ ∑
= =
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(4.10) 

 

For 2 2-  or Z Z
α α

< > , 
2 2

20 0
2 2

r s r s
Z

k s

r r k
T

k s

γ
λ λα

λ λ
β

− −∞ ∞
∑ ∑
= =

⎛ ⎞⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠          

(4.11) 

 

Then we obtain the rth moment of T as: 

 

(4.12) 

 

Where 
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2 2
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2 2
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s k zI z dz

α

α
α +

+
−

⎛ ⎞⎛ ⎞
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(4.13) 

 

2 2 2 22 2
22 2

exp exp
2 2

r s r rs sa
I

z zz dz z dz
λ α λ λ

α

− − ∞− −

−∞
= ⋅

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− + −∫ ∫
          

(4.14) 

 

Equations (4.13) and (4.14) can be written as: 

 

 

 

( )
2 2

2 22 1

2

1 1
2

2 1 2,

2

r rs s

r s
I

r sλ λ

λ

α λ
α

− −

− +
= − + Γ

⎛ ⎞⎡ ⎤ ⎜ ⎟
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

− +
 

 

It is worth noting that the moments of GB-S distribution do not exist when 2
Z

α
< − .	
  

Once we obtain the rth moment of T, we investigate the expected time to failure ( )E T , 

the variance ( )Var T , the coefficients of skewness ( )1 Tγ and the kurtosis ( )2 Tγ as 

follows: 

 

( ) ( )1 2

0 0

1 1
2 2

k s
E I I

k
T

k s
β λ λ

∞ ∞
∑ ∑
= =

= ⋅ +
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

 

( )1

2 1
2 1 2 1 2 222 , 1 1

22 2

s k
s k s k s kI

a

− − −
+ + + + += Γ −Γ − +

⎡ ⎛ ⎞⎤⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎝ ⎠⎦
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( ) ( ) ( )[ ]22

1 2
0 0

2 1
2

k s

Var T I I E T
k

k s
β λ λ

∞ ∞

= =

= ⋅ + −
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑
 

 

 

( ) ( )
( )

( )

( )

1 2
4 0 0

2

4

2 2

4 2
2

3 3
k s

I I
E T

Var Var T

k

k s
T

T

β λ λ

γ

∞ ∞

= =

⋅ +

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠− −

∑∑
 

 

It is observed that the skewness and kurtosis are not affected by the scale parameter β . 

Kurtosis, a measure of the shape of a probability distribution, is an important statistics 

as higher kurtosis means the variance is the result of infrequent extreme deviations, as 

opposed to frequent modestly sized deviations. 

 

 

 

Figure 4.1 Kurtosis of GB-S distribution with different  and α λ when 1β =  

( ) ( )
( )

( )

( )

1 2
3 0 0

1.5

3

1 1.5

3 3
2 2

k s

I I
E T

Var Var T

k

k s
T

T

β λ λ

γ

∞ ∞

= =

⋅ +

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑
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In Figure 4.1, we set 1β = since the scale parameter has no influence on the kurtosis. 

We observe that when λ becomes smaller, the kurtosis increases sharply. In other 

words, for a GB-S distribution with constantα , the smaller the parameterλ  the 

higher the contribution of infrequent extreme deviations; whenλ is large, the GB-S 

distribution has more frequent modestly sized deviations. 

 

4.1.2.2 Properties of GB-S Distribution 

 

Since the reliability function of GB-S distribution is always monotonously decreasing 

from 1 to 0 and the cdf of GB-S distribution is increasing from 0 to 1, we only 

examine that the pdf of GB-S distribution as a unimodal function of t. Figure 4.2 

shows that the pdf of GB-S distributions are all unimodal for different values ofλ .  

 

 

Figure 4.2 GB-S density function with differentλ  
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Another important observation about the inverse of T is that: if T belongs to GB-S 

distribution with parameters ,  and α β λ , thenT-1 also belongs to GB-S distribution 

with the corresponding parameters -1,  and α β λ , respectively. Therefore, we readily 

have: 

 

 

and 

( ) ( ) ( ) 22

1 2
0 0

1 1
2 1

2
k s

Var T I I E T
k

k s
β λ λ

∞ ∞
−

= =

− −= ⋅ + −
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟ ⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑

  

Since the skewness and kurtosis are only affected by the shape of the distribution, the 

skewness and kurtosis of 1T − are the same as the skewness and kurtosis ofT . Thus, 

 

( ) ( )
( )

( )

( )

1 2
0 0

1.5

3

3
1

1 1.5 11

3 3
2 2

k s

I I
E T

Var TVar

k

k s
T

T

β λ λ

γ

∞ ∞

= =

−

−
−

−−

⋅ +

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑
 

 

( ) ( )
( )

( )

( )

1 2
4 0 0

2

4

1
2 2 11

4 2
2

3 3
k s

I I
E T

Var TVar

k

k s
T

T

β λ λ

γ

∞ ∞

− = =

−

−
−−

⋅ +

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠− −

∑∑
 

 

( ) ( )1 2

1

0 0

1 1
1

2 2
k s

E I I
k

T
k s
λ λ

β
−

∞ ∞
∑ ∑
= =

= ⋅ +
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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4.2 Hazard Function of GB-S Distribution 

 

As we discuss earlier in chapter 3, the hazard function of SB-S distribution is upside 

down for all t . In this section, we utilize a similar methodology to that adopted in 

chapter 3 to investigate the shape of GB-S distribution’s hazard function. Again, 

without loss of generality we set =1β . We also set: 

 

( )t t tλ λε −= − (4.15)

 
 

( )1 1'( )t t tλ λε λ − − −= + (4.16) 

 

( ) ( )2''( ) 1 1t t t
t

λ λλε λ λ −− ⎡ ⎤= − + +⎣ ⎦ (4.17) 

 

2 2 2( ) 2t t tλ λε −= + − (4.18)     

 

Then the pdf and the hazard function of SB-S distribution can be written as Eqs. (4.19) 

and (4.20), respectively as: 

 

( ) ( ) ( )21 1' exp
22 2

f t t tε ε
πα α

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭                                

(4.19) 
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( ) ( )
( )

( ) ( )

( )

21 1
' exp

22 2
1

t t
f t

h t
tF t

ε ε
πα α

ε
α

−

= =
−

Φ −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭                          

(4.20) 

 

Similar to the SB-S distribution’s hazard function, we discuss the shape of the hazard 

function of GB-S distribution by utilizing similar Lemmas to the ones that Kundu 

(2008) adopts when investigating the hazard function of SB-S distribution. 

 

The following Lemmas (Glaser 1980) are necessary for studying the shape of the 

hazard function of GB-S distribution: 

 

Lemma 1: Suppose f (t),for t> 0, is the pdf of a positive real-valued continuous 

random variable, and defines ( ) ( )
( )
'f t

t
f t

η = − . If there exists a 0t such that

( ) ( )0' 0  0,t t tη > ∀ ∈ , ( )0' 0tη = and ( ) ( )0' 0  ,t t tη < ∀ ∈ ∞ .The hazard function 

corresponding to f (t) is either an upside-down or a decreasing function of t. 

 

Lemma 2: If ( ) ( )' 0  0,t tη > ∀ ∈ ∞ , the hazard function is an increasing function of t. 

 

Lemma 3: If Lemma 1 holds and ( )
0

lim
t

f tς
→

= exists, possibly equal to 0 or∞ , the 

hazard function is decreasing if ( )
0

lim
t

f tς
→

= = ∞ and is upside-down if

( )
0

0lim
t

f tς
→

= = . 
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More specifically, for GB-S distribution, we obtain: 

 

( ) ( )
( )

( ) ( ) ( )2 1 2 1

2 1+ 1 2

' 1 1''( ) '( ) ( ) =
'( )

t tf t t tt t tt
f t t t t

λ λλ λ

λ λ

λλ λε ε εη
ε α α

− − −−

−

−− + +⎡ ⎤
= − = − − +⎢ ⎥ +⎣ ⎦    

(4.21) 

( ) ( )
( )22 1 1 4

'
s t

t
t t tλ λ λ

η
α + −

=
+

                                       

(4.22) 

 

Where 

 

( ) ( ) ( ) ( )
( ) ( )

8 2 2 6 2 2 4

2 2 2 2 2

2 22 4 2 4 2

4 2 2

t t t

t

s t λ λ λ

λ

λ λ α λ λ α λ α

λ α λ α λ λ

⎡ ⎤− + + − − − −⎢ ⎥⎣ ⎦
⎡ ⎤+ − + + +⎣ ⎦

=

+
       

(4.23) 

 

According to the Lemmas mentioned above, we study the shape of the GB-S 

distribution’s hazard function by examining ( )' tη .Since

( ) ( )22 1 1 4 0 0,t t t tλ λ λα + −+ > ∀ ∈ ∞ , we only need to investigate ( )s t  

 

With the substitution method, we set 2x t λ= : 

 

( ) ( ) 4 3 2s t s x ax bx cx dx e= = + + + +                                  (4.24) 

 

and 
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( ) 3 2 3 2' 4 3 2s x ax bx cx d Ax Bx Cx D= + + + = + + +                       (4.25) 

 

Where  

22a λ λ= −  

( )2 2 24 2b α λ λ α= + − −  

2 24 2c λ α= −  

( )2 2 24 2d λ α λ α= + − +  

22e λ λ= +  

 

and 

 

4A a=                                                           (4.26) 

3B b=                                                           (4.27) 

2C c=                                                           (4.28) 

D d=                                                            (4.29) 

 

Now we can examine the shape of GB-S distribution’s hazard function by 

investigating the root conditions of ( )'s x . 

 

The discriminant Δ of a cubic polynomial can be utilized to obtain the information 

about its roots. According to Shengjin’s formula (1988), we obtain the discriminant of 

a cubic polynomial 3 2Ax Bx Cx D+ + + as: 
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2= ' 4 ' 'B A CΔ −                                                      (4.30) 

 

Where 

 

2' 3A B AC= −                                                    (4.31) 

' 9B BC AD= −                                                    (4.32) 

2' 3C C BD= −                                                    (4.33) 

 

So the discriminant Δ of a cubic polynomial is:  

 

2 2 2 2 2 3 3' 4 ' ' 3 54 81 12 12B A C B C ABCD A D AC B DΔ = − = − − + + +                (4.34) 

 

Then, we obtain the discriminant and the roots conditions in Appendix B. The 

discriminant and the roots conditions have the following relationship: 

 

If 0Δ > , the cubic polynomial has one root as: 

 

3 3
1 2

11 3
B Y Y

x
A

− − −
=

                                              
(4.35) 

 

Where 
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( )2

1,2

3 ' ' 4 ' '
'

2

A B B A C
Y A B

− ± −
= +  

 

If 0Δ = , the cubic polynomial has two roots as: 

 

21
'
'

B Bx
A A

= − +

  

22
'

2 '
Bx
A

=  

 

If 0Δ < , the cubic polynomial has three roots as: 

 

( )
31

2 ' cos
3

3

B A
x

A

θ⎛ ⎞− − ⎜ ⎟⎝ ⎠=  

( )
32,33

' cos 3 sin
3 3

3

B A
x

A

θ θ⎛ ⎞− + ±⎜ ⎟⎝ ⎠=  

 

Where 

 

1.5

2 ' 3 'arccos
2

A B AB
A

θ −⎛ ⎞= ⎜ ⎟⎝ ⎠
 

 

More specifically, upon substituting Eqs. (4.26) - (4.29) into Eq. (4.34), we obtain the 

discriminant of ( )'s x as: 
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2 2 2 2 3 3108 1296( ) 384 324b c abcd a d ac b dΔ = − − − + +                     (4.36) 

 

For 0Δ < , ( )'s x has three roots which are placed in order of 31 32 33' ' 'x x x< < , then we 

have 31 32 33t t t< < , where 2 2 2
31 31 32 32 33 33', ', 't x t x t xλ λ λ= = = . Similarly, when 0Δ = , ( )'s x

has two roots and we have 21 22t t< , where 2 2
21 21 22 22', 't x t xλ λ= = .When 0Δ > , ( )'s x has 

only one root 11x and we have 2
11 11t xλ= . The details of the roots can be found in 

Appendix B. 

 

It is observed that ( )0
lim ; , , 0
t
f tς α β λ

→
= = . We also investigate

( ) ( )20 2 0 0,s tλ λ= + > ∀ ∈ ∞ . When 0.5λ < , ( ) s ∞ = −∞ and when 0.5λ > ,

( ) s ∞ = ∞ .Following are the different conditions that enable ( )' tη to be positive or 

negative; we can determine the conditions that result in different shapes of GB-S 

distribution 

 

1.When 0Δ < and 0.5λ < , for 31 32 33 31 32 330 ' ' '  and  ' 0 ' 'x x x x x x< < < < < < , if ( )32 0s t > , 

there exists a 0t such that ( ) ( )0' 0 0,s t t t> ∀ ∈ , ( )0' 0s t = and ( ) ( )0' 0 ,s t t t< ∀ ∈ ∞ , 

according to Lemma1 andLemma3, the hazard function of GB-S distribution is an 

upside-down function; if ( )32 0s t ≤ , the hazard function is a roller coaster hazard 

function. 

 

2. When 0Δ < and 0.5λ < , for 31 32 33 31 32 33' ' 0 ' and ' ' ' 0x x x x x x< < < < < < , 



	
  
	
  

	
  

60	
  

according to Lemma 1 and Lemma 3, the hazard function is upside-down function 

because there always exists a 0t such that ( ) ( )0' 0 0,s t t t> ∀ ∈ , ( )0' 0s t = and

( ) ( )0' 0 ,s t t t< ∀ ∈ ∞  

3. When 0 and 0.5λΔ = < , whether 21 22 21 22 21 22' ' 0 or 0 ' 'or ' 0 'x x x x x x< < < < < <  , 

there always exists a 0t such that ( ) ( )0' 0 0,s t t t> ∀ ∈ , ( )0' 0s t = and

( ) ( )0' 0 ,s t t t< ∀ ∈ ∞ . According to Lemma 1 and Lemma 3, the hazard function is 

always an upside-down function. 

 

4. When 0 and 0.5λΔ > < , for either 11 11' 0 or 0 'x x< < , there always exists a 0t such 

that ( ) ( )0' 0 0,s t t t> ∀ ∈ , ( )0' 0s t = and ( ) ( )0' 0 ,s t t t< ∀ ∈ ∞ . So the hazard function 

is an upside-down function according to Lemma 1 and Lemma 3. 

 

5. When 0Δ < and 0.5λ > , for 31 32 330 ' ' 'x x x< < < , if ( ) ( )31 330 and 0s t s t> > , we 

observe that ( ) ( )' 0 0,s t t> ∀ ∈ ∞ , according to Lemma 2, the hazard function of 

GB-S distribution is an increasing function; if ( ) ( )31 330 or 0s t s t≤ ≤ , the hazard 

function of GB-S distribution is a roller coaster function.  

 

 6. When 0 and 0.5λΔ < > , for 31 32 33 31 32 33' 0 ' 'or  ' ' 0 'x x x x x x< < < < < < , if

( )3 0s t > , we observe that ( ) ( )' 0 0,s t t> ∀ ∈ ∞ , according to Lemma 2, the hazard 

function of GB-S distribution is an increasing function; if ( )3 0s t ≤ , the hazard 

function of GB-S distribution is a roller coaster function.  
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7. When 0Δ < and 0.5λ > , for 31 32 33' ' ' 0x x x< < < , it always holds that

( ) ( )' 0 0,s t t> ∀ ∈ ∞ , according to Lemma 2, the hazard function of GB-S 

distribution is an increasing function. 

8. When 0Δ = and 0.5λ > , for 21 220 ' 'x x< <  and ( )' 0s x < for any ( )21 22,x x x∈ , 

according to Lemma 2, the hazard function of GB-S distribution is an increasing 

function if ( )2 0s t > and the hazard function is a roller coaster function if ( )2 0s t ≤ . 

 

9. When 0Δ = and 0.5λ > , for 21 220 ' 'x x< <  and ( )' 0s x > for any ( )21 22,x x x∈ , 

according to Lemma 2, the hazard function of GB-S distribution is an increasing 

function if ( )1 0s t > and the hazard function is a roller coaster function if ( )1 0s t ≤ . 

 

10. When 0Δ = and 0.5λ > , for 21 22' 0 'x x< <  and ( )' 0s x < for any ( )21 22,x x x∈ , 

the hazard function of GB-S distribution is an increasing function if ( )2 0s t > and 

the hazard function is a roller coaster function if ( )2 0s t ≤ . 

 

11. When 0Δ = and 0.5λ > , for 21 22' 0 'x x< <  and ( )' 0s x > for any ( )21 22,x x x∈ , 

it always holds that ( ) ( )' 0 0,s t t> ∀ ∈ ∞ . So according to Lemma 2, the hazard 

function of GB-S distribution is an increasing function. 

 

12. When 0Δ = and 0.5λ > , for 21 22' ' 0x x< < , it always holds that

( ) ( )' 0 0,s t t> ∀ ∈ ∞ . So the hazard function of GB-S distribution is an increasing 

function. 
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13. When 0Δ > and 0.5λ > , for 11 0x > , if ( )1 0s t > , we observe that

( ) ( )' 0 0,s t t> ∀ ∈ ∞ , according to Lemma 2, the hazard function of GB-S 

distribution is an increasing function; if ( )1 0s t ≤ , the hazard function of GB-S 

distribution is a roller coaster function.  

 

14. When 0Δ > and 0.5λ > , for 11 0x < , we observe that ( ) ( )' 0 0,s t t> ∀ ∈ ∞ , 

according to Lemma 2, the hazard function of GB-S distribution is an increasing 

function. 

 

15. When 0.5λ = , the distribution is SB-S distribution and the hazard function is 

always an upside down function (Kundu 2008). 

 

Table 4.1 is a summary of the conditions which make the hazard function of the 

GB-S distribution to be increasing, upside-down and roller coaster. 

Table 4.1 Roots condition of ( )'s x and shape of GB-S hazard rate 

λ  Δ  Roots Conditions of ( )'s x  Shape of 

h(t) 

 

0.5λ <  

 

0Δ <  

31 32 33 31 32 330 ' ' '  or  ' 0 ' 'x x x x x x< < < < < <  

( )32 0s t >  

upside-down 

  31 32 33 31 32 330 ' ' '  or  ' 0 ' 'x x x x x x< < < < < <  rollercoaster 
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0.5λ <  

 

0Δ <  ( )32 0s t ≤  

0.5λ <  0Δ <  
31 32 33 31 32 33' ' 0 ' or ' ' ' 0x x x x x x< < < < < <  upside-down 

0.5λ <  =0Δ  
21 22 21 22 21 22' ' 0 or 0 ' ' or ' 0 'x x x x x x< < < < < <  upside-down 

0.5λ <  0Δ >  11 110 ' or ' 0x x< <  upside-down 

0.5λ >  0Δ <  
31 32 330 ' ' 'x x x< < <  

( ) ( )31 330 and 0s t s t> >  

increasing 

0.5λ >  0Δ <  
31 32 330 ' ' 'x x x< < <  

( ) ( )31 330 or 0s t s t≤ ≤  

rollercoaster 

0.5λ >  0Δ <  
31 32 33 31 32 33' 0 ' ' or  ' ' 0 'x x x x x x< < < < < <  

( )3 0s t >  

increasing 

0.5λ >  0Δ <  
31 32 33 31 32 33' 0 ' ' or  ' ' 0 'x x x x x x< < < < < <  

( )3 0s t ≤  

rollercoaster 

0.5λ >  0Δ <  
31 32 33' ' ' 0x x x< < <  increasing 

0.5λ >  0Δ =  21 220 ' 'x x< <  

( )' 0s x < for any ( )21 22,x x x∈ , ( )2 0s t >  

increasing 

0.5λ >  0Δ =  21 220 ' 'x x< <  roller 
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( )' 0s x < for any ( )21 22,x x x∈ , ( )2 0s t ≤  coaster 

0.5λ >  0Δ =  21 220 ' 'x x< <  

( )' 0s x > for any ( )21 22,x x x∈ , ( )1 0s t >  

increasing 

0.5λ >  0Δ =  21 220 ' 'x x< <  

( )' 0s x > for any ( )21 22,x x x∈ , ( )1 0s t <  

roller 

coaster 

0.5λ >  0Δ =  
21 22' 0 'x x< <  and ( )' 0s x < for any

( )21 22,x x x∈ , ( )2 0s t >  

increasing 

0.5λ >  0Δ =  
21 22' 0 'x x< <  and ( )' 0s x < for any

( )21 22,x x x∈ , ( )2 0s t ≤  

rollercoaster 

0.5λ >  0Δ =  
21 22' 0 'x x< <  and ( )' 0s x > for any

( )21 22,x x x∈  

increasing 

0.5λ >  0Δ =  21 22' ' 0x x< <  increasing 

0.5λ >  0Δ >  11 0x > , ( )1 0s t >  increasing 

0.5λ >  0Δ >  11 0x > , ( )1 0s t ≤  rollercoaster 

0.5λ >  0Δ >  11 0x <  increasing 

0.5λ =  0Δ >

0Δ =  

any upside-down 
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0Δ <  

 

 

So far, we discuss all possibilities of the shape of GB-S distribution’s hazard function 

by investigating the nature of roots of ( )'s x . In general, the hazard function of GB-S 

distribution covers three types of failure conditions: the hazard function can be either 

an increasing or a roller coaster function of t when 0.5λ > ; the hazard function can be 

either an upside-down or a roller coaster function of t when 0.5λ <  and the hazard 

function is always an upside down function of t when 0.5λ = . 

 

Figure 4.3 GB-S hazard function when =1,5 and =1α β with different  λ  

 

The GB-S distribution covers a wider range of hazard functions than the SB-S 

distribution. Figure 4.3 presents three types of failure modes that the GB-S 
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distribution covers. The generalization enables the B-S distribution to be more 

flexible to model increasing hazard rate which is common when a component 

experiences wear-out or deterioration. The B-S distribution can also model the roller 

coaster failure rate of an electronic system 

4.3 Simulation Study 

 

We have shown that the GB-S distribution can model different types of failure rates. 

We have also shown that the SB-S distribution is a special case of the GB-S 

distribution and verify this by fitting failure data with both distributions. In this 

section, we utilize simulation data to compare the performance of GB-S distribution 

and SB-S distribution. We use MATLAB to generate the simulation data with given 

distribution parameters. 

 

Without loss of generality, we set 0.5λ =  and generate four groups of simulated 

data with different  and α β as shown in Table 4.2.   

 

Table 4.2 Parameters of SB-S and GB-S distribution 

 

 Group 1 Group 2 Group 3 

α  1 0.5 3 



	
  
	
  

	
  

67	
  

β  1.5 4 1 

 

After generating the random failure data we fit both the SB-S and GB-S distribution 

to the three groups of data, respectively. We use the Maximum Likelihood Estimation 

(MLE) approach to estimate the parameters. When generating the failure data, λ is 

fixed at 0.5. We just estimate  and α β for SB-S distribution while  , α β and λ are all 

estimated for the GB-S distribution. Since the failure data are generated with the 

given parameters, we can obtain the theoretical hazard rate functions and compare 

them with the estimated hazard rate functions.  

 

Figure 4.4 Theoretical and predicted hazard rate by SB-S and GB-S when 

1, 1.5α β= =  

 



	
  
	
  

	
  

68	
  

 

 

 

 

Figure 4.5Theoretical and predicted hazard rate by SB-S and GB-S when 

0.5, 4α β= =  
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Figure 4.6Theoretical and predicted hazard rate by SB-S and GB-S when 

3, 1α β= =  

 

Figures 4.4 to 4.6 present the theoretical and estimated hazard rates with different 

values of  and α β .We summarize the sum of squared errors (SSE) of those 

estimations in Table 4.3. 
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Table 4.3 SSE of SB-S and GB-S distribution’s hazard rate estimates 

 

 GB-S SB-S 

Group 1  .0192 .0298 

Group 2 .0024 .0108 

Group 3 .5811 1.5834 

 

The simulation results show that the GB-S distribution provides more accurate hazard 

rate estimation than SB-S distribution.  

 

4.4 Conclusion 

 

In this chapter, we investigate the GB-S distribution and obtain its characteristics and 

properties. We also investigate the effect of the distribution parameters on the shape 

of the GB-S distribution’s hazard function. The proposed GB-S distribution is more 

flexible than the SB-S distribution as it exhibits increasing, roller coaster and 

upside-down hazard rate functions. Furthermore, we explore the necessary conditions 

that enable GB-S distribution to model these failure rate functions. We show that 

indeed the GB-S distribution provides better fit to fatigue failure data than the SB-S 

distribution. 
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CHAPTER 5 

GB-S DISTRIBUTION’S PARAMETER ESTIMATION 

 

In chapter 4, we investigate the shape of GB-S distribution’s hazard function and 

obtain its characteristics and properties. We show the necessary and sufficient 

conditions that enable the GB-S distribution to model different failure conditions. In 

this chapter, we deal with the estimation of GB-S distribution’s parameters. In section 

5.1, we estimate the parameters by utilizing the traditional Maximum Likelihood 

Estimation (MLE) methodology which in most cases is considered to be reasonable in 

comparison with other estimation methodologies. However, in case of insufficient 

sample, MLE is highly biased and the variance obtained by constructing the Fisher 

information matrix is large. In section 5.2, a modified MLE (MMLE) method (Cohen 

and Whitten 1980) is utilized to see whether the modification can improve the 

estimation’s accuracy in case of small sample size. To validate the MMLE, we apply 

both MLE and MMLE to several groups of random failure time data and compare the 

performances of the two methodologies. The detailed computational procedure and 

results of the simulation are discussed in section 5.3. 

 

5.1 Maximum Likelihood Estimation (MLE) 
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5.1.1 The Estimation Function 

 

The MLE of SB-S distribution is discussed originally by Birnbaum and Saunders 

(1968). However, obtaining the MLE of β  by setting a non-linear equation of β

might result in computational round off errors and potential inaccuracies. Now we 

investigate the application of MLE to GB-S distribution’s parameters. 

 

The likelihood function for a sample of size n from GB-S distribution is 
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The logarithm of the likelihood function is 
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Taking the derivatives of (5.2) with respect to ,  and α β λ and equating the resultants 

to zero respectively, we obtain 
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To obtain the estimates of the parameters, we solve the above non-linear equations 

using standard iterative procedures. Simple trial-and-error techniques coupled with 

linear interpolation are also adequate. In this chapter, we perform extensive 

simulation and estimate the mean and standard deviation of the simulation results. 

The simulation details are presented in section 5.3. 

 

5.1.2 Fisher Information Matrix and Variance-Covariance Matrix 
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One of the major benefits of utilizing MLE is that the logarithm of the likelihood 

function can be utilized to construct the Fisher information matrix I. Then the 

variance-covariance matrix I-1 can be easily obtained by taking the inverse of the 

Fisher information matrix. 

 

The covariance matrix of the GB-S distribution can be written as: 
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To obtain I-1, we construct the Fisher information matrix I first. The (ij)th element of 

the information matrix I is: 
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More specifically, for the GB-S distribution, the Fisher information matrix I is 

constructed as: 
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Where 
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With the likelihood functions and the variance-covariance matrix, we theoretically 

obtain the point estimations of the mean and standard deviations of the parameters. 

However, in case of small sample size, MLE fails to exhibit clearly defined local 

maximum equations. Consequently, it is necessary to investigate other estimators for 

small samples. 

 

5.2 Modified Maximum Likelihood Estimation (MMLE) 

 

Cohen and Whitten (1980) present a modified estimation methodology (MMLE) by 

replacing one of the local MLE equations Eqs. (5.3)-(5.5) with  

 

( )( ) ( )k kE F X F x=                                               
(5.13) 

 

Where E is the expectation symbol, 
kX  is the kth order statistics in a random sample 

of size n if we place the sample in order 1 2 ...... nX X X≤ ≤ . ( )kF x is the value of 

associated cdf. 
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Since ( )( )
1kE F X
k
n

=
+

, for GB-S distribution, Eq. (5.13) can be rewritten as 
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Here we replace Eq. (5.3)-(5.5) with (5.14) respectively. Accordingly, the estimation 

equations of MMLE-1 consist of Eqs. (5.4), (5.5) and (5.14); the estimation equations 

of MMLE-2 consist of Eqs. (5.3), (5.5) and (5.14); the estimation equations of 

MMLE-3 consist of Eqs. (5.3), (5.4) and (5.14). 

 

More specifically, for MMLE-1, we obtain the estimation equations consisting of Eqs. 

(5.4), (5.5) and  

 

1

11
k k

k
nl

t tλ λ

α

α
β β

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Φ
+∂ = −

∂
−

                                              

(5.15) 

 

The elements of MMLE-1’s Fisher information matrix I1 are: 
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121 21 122 22, 123 23 131 31, 132 32 133 33,   ,  ,  ,  I I I I I I I I I I I I= = = = = =  

 

Where 1ijI represents the (ij)th element of MMLE-1’s Fisher information matrix I1. 

 

For MMLE-2, the estimation equations consist of Eq. (5.3), (5.5) and  
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Then the elements of MMLE-2’s Fisher information matrix I2 are: 
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Where 2ijI represents the (ij)th element of MMLE-2’s Fisher information matrix I2. 

 

For MMLE-3, the estimation equations consist of Eq. (5.3), (5.4) and 
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Then the elements of MMLE-3’s Fisher information matrix I3 are: 
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311 11 312 12 313 13, ,  I I I I I I= = = , 321 21 322 22 323 23, ,  I I I I I I= = =  

 

Where 3ijI represents the (ij)th element of MMLE-3’s Fisher information matrix I3. 

 

It is clear that the Fisher information matrixes I1, I2, I3 are not symmetric.  

 

5.3 Simulation Study 

 

In section 5.1 and 5.2, we show the estimation equations and variances of MLE and 

MMLE. Usually, the non-linear estimation equations can be solved by Newton’s 

iterative method or the gradient of the likelihood method. In this section, we compare 

the performances of the two estimation methods with simulated failure data. We use 

MATLAB to generate the data with given distribution parameters.  

 

5.3.1 Computation Procedure 

 

To make a comprehensive comparison between the two estimation methodologies, a 

simulation study for different sample sizes and for different values of the shape 

parameters is performed. We apply both estimation methods to several groups of 
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simulation failure data. Those groups of random data are generated with different 

values of shape parameters and different sample sizes. The simulation results are 

based on 1000 runs. 

 

We take the sample size as n=10, 50, 100 and the shape parameters as =1.8  =1.5α β，

and =0.4  =0.3α λ，  while β is kept fixed at 1.0 without loss of generality since it is a 

scale parameter. If β is not 1, the values of the bias and standard deviation of 

estimates of β should be multiplied by β . Estimations are based on the first order 

statistics. Table 5.1 summarizes the values of the shape parameters and each group’s 

sample size. 

 

Table 5.1 Sample sizes and values of the shape parameters 

 

 n α  λ  β  

Group1 100 1.8 1.5 1 

Group2 50 1.8 1.5 1 

Group3 10 1.8 1.5 1 

Group4 100 0.3 0.4 1 

Group5 50 0.3 0.4 1 

Group6 10 0.3 0.4 1 

 

Taking group 1 for example, we first generate 100 random failure data with
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1.8 , =1 and =1.5α β λ= , and then apply MLE and MMLE-1, 2, 3 to the 100 random 

failures data. Then we take the means and the deviations of the estimates over 1000 

such runs. The same procedure is applied to other groups.  

 

5.3.2 Simulation Result 

 

Tables 5.2 to5.7 report the results obtained from the simulation. It is clear that the 

sample size has significant impact on both bias and variances. When the sample is 

large, for example, n=100, the performances of MLE and MMLEs are almost 

identical in terms of the means of the estimates. However, the variances of MMLEs 

are smaller than MLE. When sample size decreases to a small number, the MLEs are 

highly biased and possess large variances while the MMLEs provide almost unbiased 

results and smaller deviations. The difference between the two methodologies is 

significant regardless of the value of the shape parameters. Thus, for GB-S 

distribution, the MMLE is recommended especially when the sample and the shape 

parameters are small.  
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Table 5.2 Means of the estimates of parameters when n=10 

 

n=10 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE 2.4729 1.0270 2.0113 2.3300 1.2494 2.7790 

MMLE-1 1.7310 1.0173 1.5895 .3094 1.2268 .3958 

MMLE-2 1.6778 .9062 1.3565 .3158 1.0513 .3743 

MMLE-3 2.0241 1.0217 1.7608 .3072 1.2268 .3919 

 

Table 5.3 Means of the estimates of parameters when n=50 

 

n=50 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE 1.2803 .9763 1.3389 .3020 .9568 .4224 

MMLE-1 1.7276 .9723 1.6635 .3039 .9568 .4250 

MMLE-2 1.3121 .9166 1.3555 .2618 1.0981 .3423 

MMLE-3 1.6578 .9729 1.6288 .3017 .9568 .4221 

 

Table 5.4 Means of the estimates of parameters when n=100 

 

n=100 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE  1.9030 .9949 1.5134 .3083 .9554 .4035 

MMLE-1 1.8788 .9943 1.5004 .3137 .9553 .4103 

MMLE-2 1.8809 .9910 1.5013 .3067 1.0161 .3960 
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MMLE-3 1.8625 .9939 1.4908 .3101 .9553 .4058 

 

 

Table 5.5 Variances of the estimates of parameters when n=10 

 

n=10 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE 6.5104 .0134 1.6594 5.8197 .0148 2.2577 

MMLE-1 1.2577 .0157 .0342 .2876 .0224 .0062 

MMLE-2 .9215 .3769 2.4345 .0170 .0017 .0329 

MMLE-3 .1029 .0149 .8523 .0008 .0226 .03581 

 

 

Table 5.6 Variances of the estimates of parameters when n=50 

 

n=50 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE .5947 .0030 .3989 1.0114 .0023 1.8908 

MMLE-1 1.0904 .0026 .0066 .2700 ..23 .0013 

MMLE-2 .4556 .1216 .2519 .0328 .0085 .0045 

MMLE-3 .0146 .0026 .7296 .0002 .0023 .3673 
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Table 5.7 Variances of the estimates of parameters when n=100 

 

n=100 1.8α =  1β =  1.5λ =  0.3α =  1β =  0.4λ =  

MLE .4361 .0020 .1273 .5258 .0013 .8587 

MMLE-1 .8844 .0019 .0027 .2688 .0013 .0006 

MMLE-2 .3392 .2476 .0912 .0346 .0693 .0371 

MMLE-3 .0087 .0019 .4811 .0001 .0013 .3407 

 

 

5.4 Conclusion 

  

In this chapter, we investigate the estimation of GB-S’s parameters. We utilize MLE 

and MMLE to present the estimation equations and variances and compare the 

performances of MLE and MMLE under different sample sizes and different shape 

parameters. The simulation study indicates that MLE is highly biased and possesses 

large deviations in case of small samples for GB-S distribution especially when the 

shape parameters are small. By utilizing MMLE, we provide a satisfactory estimation 

of GB-S distribution’s parameters. 
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CHAPTER 6  

GB-S ACCELERATED LIFE MODELS 

 

In the previous chapters, we investigate the properties, characteristics, the inference 

procedure and the hazard function of GB-S distribution. It is also worth noting that 

the B-S model is initially derived to describe the fatigue phenomenon and to predict 

the reliability and useful life of mechanical components which are subjected to fatigue 

due to random or constant amplitude loading. In this chapter, we investigate the 

application of the GB-S distribution to ALT models. More specifically, we utilize the 

observed accelerated failure data to predict the reliability under normal conditions 

with GB-S life distribution and compare the performance of GB-S ALT model with 

other ALT models. We also optimally design several ALT plans that meet different 

optimization criterion. In section 6.1, we propose an GB-S ALT model which utilizes 

inverse power law accelerated model. To validate the performance of the GB-S ALT 

model, we apply an exponential acceleration form which is more flexible and 

incorporate the inverse power law acceleration form as its special case. In section 6.2 

we provide the likelihood functions and partial derivatives with respect to the ALT 

model’s unknown parameters. In section 6.3, we compare the performances of those 

ALT models based on several experimental data sets. These data sets are utilized to 

obtain the parameters of the models which are then used for reliability prediction at 

any stress conditions. We also calculate the SSE of each model.  
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An appropriate ALT model is important since it reflects how the applied stresses 

affect the lifetime of a component or a system. On the other hand, a properly designed 

ALT plan makes the reliability estimation and prediction more efficient. In section 6.4, 

we design ALT plans based on the GB-S distribution to predict the reliability 

performances more accurately. 

 

6.1 GB-S and Other Accelerated Models 

 

Once a baseline lifetime distribution with scale parameter or mean is adopted and an 

appropriate acceleration form is selected according to the applied stress type, the 

unknown parameters can be estimated by observing failure times at elevated stress 

levels which are then used to predict reliability at normal operating conditions. In this 

section, we present the expressions of GB-S accelerated models, as well as Weibull 

and SB-S accelerated models, either in specific or general forms. 

 

6.1.1 The Inverse Power Law Accelerated Models 

 

The power law model has applications in fatigue testing of metals and the aging of 

multi-component systems, especially in components subject to non-thermal stresses: 

 

( ) -= >0, >0,h V V ηγ γ η⋅                                                  
(6.1) 
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Where 

 

h(V)is a quantifiable life measure, such as mean life or characteristic life 

V represents the stress level 

,γ η are model parameters. 

Typically, h(V) is substituted for a mean or scale parameter in a lifetime distribution. 

By substituting the scale parameterβ with the accelerated life model ( )h V , the inverse 

power law accelerated GB-S model can be written as: 

 

( ) 1
;

t t
F t V

V Vη η

λ λ

α γ γ− −

−

= Φ −
⎧ ⎡ ⎤⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎣ ⎦⎭                             

(6.2) 
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⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

= +

− + −

                         

(6.3) 

Then the parameters can be estimated using the likelihood function and partial 

derivatives with respect to the parameters , ,  and α λ γ η as described in section 6.2. 

 

Compared with Weibull, lognormal and other distributions which fit failure data well 

especially within the central region of the distribution, B-S distribution has been 

shown to provide an accurate description of failure data especially under low stress 
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levels. In order to compare the performance of the GB-S accelerated model with other 

ALT models, we derive the inverse power law Weibull accelerated models as follows: 

 

( )
--

; 1-

k
t
VF t V e

ηγ
⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠=                                                     

(6.4) 

 

( )
1

;

k
k t

Vt k
V V

f t V eη η

ηγ

γ γ− −

−
⎛ ⎞− ⎜ ⎟
⎜ ⎟⎝ ⎠

−⎛ ⎞= ⎜ ⎟⎝ ⎠                                      

(6.5) 

 

The inverse power law SB-S accelerated model is given by Owen and Padgett (2000) 

as: 

 

( )
1 1

2 21
;

t t
F t V

V Vη ηα γ γ

−

− −=Φ −
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

                            (6.6) 

The pdf of the model is  

( )
2

2

1
; 1 exp 2

22 2
V tV

f t V
tV tVt

η
η

η η

γ γ
α γπα γ −= + − − +

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦           

(6.7) 

 

6.1.2 General Exponential Acceleration Form 

 

The inverse power law accelerated model is usually limited to modeling the 

relationship between lifetime and mechanical stress. Here we consider a general 

exponential acceleration form of life-stress relationship: 
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( ) ( )0 1 1exph Z a a z= +                                                    
(6.8) 

 

Where 

Z is the stress vector (varied types of stress can be used) 

0 1and  a a are model parameters. 

 

When ( )0exp a γ= , and ( )1exp a z V η−= , the exponential model yields the 

inverse-power accelerated model. Indeed, this exponential acceleration form yields 

other acceleration models such as Arrhenius, Temp-Non Thermal, Temp-Humidity, 

etc. Substituting the scale parameter of each life model, we obtain the general 

accelerated models for Weibull, SB-S and GB-S distributions respectively: 

( ) ( )0 1exp
; 1

k
t
a a z

WeibullF t z e

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

−
+

= −                                            
(6.9) 

 

( ) ( ) ( )

1 1
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− =Φ
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(6.10) 

 

( ) ( ) ( )0 1 0 1

;
1

exp expGB SF t z
t t
a a z a a z

λ λ

α

−

−
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(6.11) 

 

So far, we derive the accelerated models based on three baseline distributions and two 

acceleration forms. In the next section, we investigate the estimation of the model 
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parameters. 

 

6.2 Parameter Estimation 

 

6.2.1 Estimation of Inverse Power Law Accelerated Models’ Parameters 

 

The estimation of the unknown model parameters in above models can be obtained by 

maximizing the likelihood function for the observed accelerated failure data. Usually 

multilevel stresses are applied in the ALT test, here we assume two stress levels 

1 2 and V V are applied and the corresponding two failure time data sets are obtained, 

then the reliability under any stress level can be predicted with those estimated 

parameters. Generally, for the inverse power law GB-S accelerated model, the 

likelihood function is obtained as: 

 

( )
2

1 1

( , , , ; , ) , , , ; ,
in

ij i ij i
i j

L t V f t Vγ η α λ γ η α λ
= =

=∏∏
                            

(6.12) 

 

Where 

 

i is the ith stress level 

j is the jth failure data in the corresponding data set 

ni is the number of observations in ith data set 

tij represents the jth failure observation in the data set obtained under ith stress level 

Vi is the ith stress level 
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In this section, the data are obtained from the Instrument Development Unit of the 

Physical Research Staff, Boeing Aircraft Company, by subjecting metal-coupons to 

repeated alternating stresses and strains (Owen and Padgett 2000), the three data sets 

obtained under three stress levels are listed below: 

 

Sample 1 (Stress/cycle: 42.1 10× psi): 

3.70, 7.06, 7.06, 7.46, 7.85, 7.97, 8.44, 8.55, 8.58, 8.86, 8.86, 9.30, 9.60, 9.88, 9.90, 

10.00, 10.10, 10.16, 10.18, 10.20, 10.55, 10.85, 11.02, 11.02, 11.08, 11.15, 11.20, 

11.34, 11.40, 11.99, 12.00, 12.00, 12.03, 12.22, 12.35, 12.38, 12.52, 12.58, 12.62, 

12.69, 12.70, 12.90, 12.93, 13.00, 13.10,13.13, 13.15, 13.30, 13.55, 13.90, 14.16, 

14.19, 14.20, 14.20, 14.50, 14.52, 14.75, 14.78, 14.81, 14.85, 15.02, 15.05, 15.13, 

15.22, 15.22, 15.30, 15.40, 15.60, 15.67, 15.78, 15.94, 16.02, 16.04, 16.08, 16.30, 

16.42, 16.74, 17.30, 17.50, 17.50, 17.63, 17.68, 17.81, 17.82, 17.92, 18.20, 18.68, 

18.81, 18.90, 18.93, 18.95, 19.10, 19.23, 19.40, 19.45, 20.23, 21.00, 21.30, 22.15, 

22.68, 24.40 

 

Sample 2 (Stress/cycle: 42.6 10× psi): 

2.33,2.58,2.68,2.76,2.90,3.10,3.12,3.15,3.18,3.21,3.21,3.29,3.35,3.36,3.38,3.38,3.42, 

3.42,3.42,3.44,3.49,3.50,3.50,3.51,3.51,3.52,3.52,3.56,3.58,3.58,3.60,3.62,3.63,3.66, 

3.67,3.70,3.70,3.72,3.72,3.74,3.75,3.76,3.79,3.79,3.80,3.82,3.89,3.89,3.95,3.96,4.00, 

4.00,4.00,4.03,4.04,4.06,4.08,4.08,4.10,4.12,4.14,4.16,4.16,4.16,4.20,4.22,4.23,4.26, 

4.28,4.32,4.32,4.33,4.33,4.37,4.38,4.39,4.39,4.43,4.45,4.45,4.52,4.56,4.56,4.60,4.64, 

4.66,4.68,4.70,4.70,4.73,4.74,4.76,4.76,4.86,4.88,4.89, 4.90,4.91,5.03,5.17,5.40,5.60 
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Sample 3 (Stress/cycle: 43.1 10× psi): 

0.7,0.9,0.96,0.97,0.99,1.00,1.03,1.04,1.04,1.05,1.07,1.08,1.08,1.08,1.09,1.09,1.12, 

1.12,1.13,1.14,1.14,1.14,1.16,1.19,1.20,1.20,1.20,1.21,1.21,1.23,1.24,1.24,1.24,1.24, 

1.24,1.28,1.28,1.29,1.29,1.30,1.30,1.30,1.31,1.31,1.31,1.31,1.31,1.32,1.32,1.32,1.33, 

1.34,1.34,1.34,1.34,1.34,1.36,1.36,1.37,1.38,1.38,1.38,1.39,1.39,1.41,1.41,1.42,1.42, 

1.42,1.42,1.42,1.42,1.44,1.44,1.45,1.46,1.48,1.48,1.49,1.51,1.51,1.52,1.55,1.56,1.57, 

1.57,1.57,1.57,1.58,1.59,1.62,1.63,1.63,1.64,1.66,1.66, 1.68, 1.70,1.74,1.96,2.12 

 

To examine the performance of inverse power law GB-S model, failure data from any 

two of the three samples are utilized to estimate the unknown parameters of the model 

and these estimated parameters are then used to predict the reliability under the third 

stress. The predicted reliability is then compared with the theoretical reliability 

(observed data set). To illustrate, we use data sets 1 and 2 to estimate the unknown 

parameters. The log-likelihood function of the inverse power law GB-S model can be 

written as: 
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Taking partial derivatives of the log-likelihood function with respect to 

, ,  and α λ γ η  yields the following four equations: 
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Similarly, from Eq. (6.5), we take the logarithm of the likelihood function and partial 

derivatives with respect to the unknown parameters of inverse power law Weibull 

accelerated model: 
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The likelihood function of inverse power law SB-S accelerated model is given by 

Owen and Padgett (2000):  
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We obtain the partial derivatives with respect to each parameter as: 
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Newton’s iterative method is applied to solve the partial derivatives of the log 

likelihood functions. The iteration ends when the estimate converges. Usually for a 

nonlinear equation, there exists more than one local optimal solution. These solutions 

are returned to the likelihood function and the global optimal value is obtained 

accordingly. 

 

6.2.2 Estimation of General Accelerated Models’ Parameters 

 

From Eq. (6.9)-(6.11), we obtain the likelihood functions of the three general 

accelerated models, then the partial derivatives with respect to each model’s 

parameters can be obtained with the same procedure that stated in 6.2.1. 

 

6.3 ALT Models Comparison 

 

An ALT model is usually used to estimate reliability performance under the desired 

stress level by utilizing failure data obtained at different stress levels to estimate the 
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parameters of the model. In this section, we consider all the scenarios where any two 

of the data sets are utilized to estimate the parameters of each proposed model and the 

predicted reliabilities are compared with the theoretical ones. 

 

Applying data sets 1 and 2 to each model and comparing with the third data set, each 

model’s estimated parameters and sum of squared errors (SSE) are obtained as 

summarized in Table 6.1. Figures 6.1 and 6.2 plot the cdf predicted by each model 

and cdf of the observed data (set 3): 

 

Table 6.1 Estimated Parameters and SSEs of each accelerated model (Sets 1&2) 

Inverse power law Weibull accelerated model 

ˆ ˆ ˆ0.347,   1775.6,   =1.756k γ η= =  SSE=19.918  

Inverse power law SB-S accelerated model 

ˆ ˆ ˆ0.249,    821.186,    =5.548α γ η= =  SSE=5.089  

Inverse power law GB-S accelerated model 

ˆˆ ˆ ˆ0.164, =0.333, 1045.834, =5.855α λ γ η= =  SSE=1.003  

General Weibull accelerated model 

0 1
ˆ ˆ ˆ2.618,   3.852,   1.868k a a= = = −   SSE=30.328  

General SB-S accelerated model 

0 1
ˆ ˆ ˆ0.248,   6.674,   5.533a aα = = = −   SSE=4.032  

General GB-S accelerated model 

0 1
ˆˆ ˆ ˆ0.258, =0.522, 6.758, 5.629a aα λ= = = −  SSE=2.896  
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Figure 6.1 Predicted cdf (Data sets 1&2) of three inverse power law models and 

theoretical cdf 

 

 

Figure 6.2 Predicted cdf (Data sets 1&2) of three general models and theoretical cdf 

 

The Weibull accelerated model results in the largest SSEs for all scenarios implying 

that its prediction as an Accelerated Failure Time (AFT) model for these fatigue data 

is inaccurate. The GB-S accelerated model has the smallest SSEs for both inverse 

power law and the general cases. 
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For the general accelerated models, the estimates of the SB-S and GB-S’s shape 

parameters are almost identical (estimates of λ are close to 0.5). For the inverse 

power law accelerated models, there exist significant differences among the three 

models in terms of SSE and the estimates of parameters. Clearly, GB-S model 

provides the most accurate prediction among all models. 

 

Now we use data sets 2 and 3 to conduct similar estimation procedure. Table 6.2 

provides the estimation of the parameters as well as SSEs. Figures 6.3 and 6.4 plot the 

predicted cdf of each accelerated model and theoretical cdf: 

 

Table 6.2 Estimated Parameters and SSEs of each accelerated model (Sets 2&3) 

Inverse power law Weibull accelerated model 

ˆ ˆ ˆ4.950,   323.241,   =4.552k γ η= =  SSE=11.407  

Inverse power law SB-S accelerated model 

ˆ ˆ ˆ0.166,    1496.527,    =6.211α γ η= =  SSE=1.754  

Inverse power law GB-S accelerated model 

ˆˆ ˆ ˆ0.029, =0.089, 1496.527, =6.211α λ γ η= =  SSE=1.628  

General Weibull accelerated model 

0 1
ˆ ˆ ˆ4.393,   5.169,   4.043k a a= = = −   SSE=22.890  

General SB-S accelerated model 

0 1
ˆ ˆ ˆ0.166,   7.299,   6.207a aα = = = −   SSE=1.573  

General GB-S accelerated model 

0 1
ˆˆ ˆ ˆ0.160,   =0.482,  7.299,   6.207a aα λ= = = −   SSE=1.571  
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Figure 6.3 Predicted cdf (Data sets 2&3) three inverse power law models and 

theoretical cdf 

 

 

 

Figure 6.4 Predicted cdf (Data sets 2&3) of three general models and theoretical cdf 

 

Apparently, if we use data sets 2 and 3 to estimate the parameters, GB-S accelerated 

model still has the smallest SSEs for both inverse power law and general models. 

Weibull accelerated model fails to provide accurate predictions.  

 

For the general accelerated models, the estimates of the SB-S and GB-S’s parameters 

0 1ˆ ˆ,  a a coincide up to three decimal places. It is also worth noting that SB-S and GB-S 
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GB-S’sλ is closed to 0.5), Fig. 6.4 shows that the cdf of SB-S and GB-S overlap.  

 

For the inverse power law accelerated models, GB-S model performs slightly better 

than SB-S model in terms of SSE. The estimates of the shape parameters  and α λ

have significant difference; however, the ratios of ˆˆ /α λ  of SB-S and GB-S models 

are close. 

  

When applying data sets 1 and 3 to the models, the results are also similar. We now 

conclude that Weibull accelerated models are not suitable for this group of data while 

GB-S accelerated model performs best among the three models. 

 

6.4 Accelerated Life Testing Plan 

 

In order to increase the accuracy of reliability prediction at normal operating 

conditions, a carefully designed ALT plan is required. The test plan is designed to 

optimize a specified criterion under the design stress level, for example, minimizing 

the variance of a reliability-related estimate, such as reliability function, or 

maximizing mean time to first failure or a percentile of failure time, under specific 

time and cost constraints. In this section, we investigate the design of GB-S based 

ALT plans for several objectives under both constant stress and step stress cases. We 

only consider a single type of stress application. 

 

 



	
  
	
  

	
  

103	
  

6.4.1 GB-S ALT Plan with Constant Stress 

 

When designing an ALT plan with single constant stress, we need to select the stress 

types to be used in the experiment, determine the stress levels and the proportion of 

test units to be allocated to each stress level. Figure 6.5 shows the stress condition of 

constant stress test. 

 

In this section, we select the temperature as the applying stress; the goal is to 

determine the selection of the stress level zi and the proportion of units pi to allocate 

for each zi such that an optimization criterion can be achieved. Of course, the test 

duration might be predetermined or a decision variable. The following assumptions 

are necessary: 

 

1. Test is run at three levels of stresses. 

2. Total test time is limited to τ units of time. 

3. A total of N units are available for testing. 

4. The highest level of stress, denoted by Uz , at which the failure mechanisms 

remain the same as those at normal operating conditions 

5. The operating or design stress condition is denoted by zD. 
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Figure 6.5 Constant-stress test 

 

6.4.1.1 Variance of Reliability Estimate 

 

For GB-S ALT model with exponential acceleration form, we have: 
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Define the indicator function ( )I I t τ= ≤  in terms of the censoring timeτ as: 

 

1 if ,  failure observed before time ,
( )

0 if ,  censored at time .                  
t

I I t
t

τ ττ
τ τ

⎧
⎨
⎩

≤
= ≤ =

>  

 

The log likelihood of a single observation with failure time it from Type I censored 

data at a stress iz is: 

 

ln ( ; ) ln ( ; ) (1 )ln ( ; )i i i i i i il L t z I f t z I R t z= = + −                        (6.28) 

 

Then the sample log likelihood l for n independent observations is: 
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Taking the first partial derivatives with respect to the model parameters, we obtain: 
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(6.32)

 

 

Setting these four equations equal to zero and solving them simultaneously, we obtain 

the maximum likelihood estimates for the model parameters. 

 

 

The elements of the Fisher information matrix for an observation are the negative 
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expectations of the second-partial derivatives with respect to the model parameters as 

shown below: 

 

2 2 2 2
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If Np1 of the test units are tested at the low stress level zL, and FL is the Fisher 

information matrix for a test unit, similarly, Np2 units and N(1 - p1- p2) units are tested 

at medium stress level zM and high stress level zH, FM and FH are the corresponding 

Fisher information matrix for a test unit, then the Fisher information matrix for the 

entire sample is 

 

1 2 1 2(1 )L M HF Np F Np F N p p F= + + − −  

 

Then we obtain the variance covariance matrix Σ  of the maximum likelihood 

estimates 0 1
ˆˆ ˆ ˆ, , ,a aα λ , which is the inverse of the corresponding Fisher information 

matrix. 
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With the optimal criterion to minimize the asymptotic variance of the reliability 

estimate over a prespecified period of time T at the design stress Dz , we formulate the 

objective function: 

 

Min 
0

ˆ[ ( ; )]
T

DVar R t z dt∫ . 

 

Decision variables: 

 

, ,L M Hz z z : low, medium, high stress levels respectively 

1 2 3, ,p p p : proportion of test units allocated to , ,L M Hz z z , respectively 

 

Constraints: 

 

0 1,   1,2,3ip i≤ ≤ =  

3

1
1i

i
p

=

=∑   

D L M H Uz z z z z≤ ≤ ≤ ≤  

2
L H

M
z zz +=  

Pr[ | ] ,   1,2,3i iNp t z MNF iτ≤ ≥ =  

WhereMNF is the minimum numbers of failures at each stress level iz . 
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6.4.1.2 Mean Time to First Failure or Quantile Failure 

 

Early failures increase the warranty cost significantly. Therefore estimation of low 

quantile failures at design stress using accelerated life testing data is important. Also, 

the time of the first failure in a batch of N  devices is the specific case of lower life 

quantile. Therefore, we propose to determine the optimal test plan with respect to 

maximize the mean time of the first failure in a group ofN units at normal operating 

conditions. Also we consider another optimal criterion that maximizing the lower 

quantile failure at normal operating conditions.   

 

6.4.1.2.1 Quantile Failure 

 

Let pt be the p-th quantile of the failure time at normal operating conditions, then: 

 

( ) ( ) ( )0 1 0 1

1
exp exp

; p p
p D

D D

t t
F

a a z a a z
t z p

λ λ

α

−⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

Φ −
+ +

= =

    

(6.33) 

We solve: 

 

( ) ( )
0 1

1
21 1  4

2
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t e

λ
α α− −
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⎛ ⎞⎡ ⎤Φ + Φ +⎜ ⎟⎣ ⎦= ⋅ ⎜ ⎟
⎜ ⎟⎝ ⎠                      

(6.34) 
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Now we formulate the optimization problem with the objective to maximize the time 

of the p-th percentile of the failures under normal operating conditions, that is: 

 

Max pt  

 

Constraint: 

 

0 1,   1,2,3ip i≤ ≤ =  

3

1
1i

i
p

=
=∑   

D L M H Uz z z z z≤ ≤ ≤ ≤  

2
L H

M
z zz +=

 

Pr[ | ] ,   1,2,3i i iNp t z MNF iτ≤ ≥ =  

 

Here we have the decision variable x
%

where  
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We maximize the p-th percentile of the failures by searching a group of most 

satisfying model parameters. Those parameters are estimated base on the accelerated 

data. Obviously, different allocation of accelerated stress and proportion of test units 

provide different experimental data. 

 

6.4.1.2.2 Mean Time to First Failure 

 

To determine the optimal test plan based on the criterion of maximizing the mean 

time to first failure in a group ofN units at normal operating conditions, we first 

derive the analytic expression of the time of first failure forN units as follows: 

 

Assuming the failure time of a single unit follows a GB-S distribution. Then we have: 

 

( ) ( ) ( )
1

' '|
| |

N
D

D Dt

dF t z
Nf t z f t z dt

dt

−∞⎛ ⎞⎜ ⎟⎝ ⎠
= ∫  

 

We now determine the 
( )1 | DF td z
dt

 that the first failure of N devices occurs in

[ ],t t dt+ . This can be expressed as: 

 

( ) ( ) ( ) ( )
1

1
1

|
'| | ' |D

D D D

N

t

t zdF
f Nf f dtt z t z t

d
z

t

−∞⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∫

              
(6.35) 
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Then the mean time to first failure is: 

 

( ) ( )

( ) ( )

0

1

1
1 1

0

0

| |

         = | |

D D

N
D D

E
dF t z dF t z
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t

tNf t z R t z dt

∞ ∞
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= ⋅ ⋅ = ⋅ ⋅

⋅
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(6.36) 

 

Then we formulate the optimal problem as: 

 

Max

( ) ( )

( ) ( )

0

1

1
1 1

0

0

| |

         = | |

D D

N
D D

E
dF t z dF t z

t dt t dt
dt dt

t

tNf t z R t z dt
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∫ ∫

∫
 

 

Constraints: 

 

0 1,   1,2,3ip i≤ ≤ =  

3

1
1i

i
p

=
=∑   

D L M H Uz z z z z≤ ≤ ≤ ≤  

2
L H

M
z zz +=

 

Pr[ | ] ,   1,2,3i i iNp t z MNF iτ≤ ≥ =  
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6.4.1.3 Numerical Example 

 

An accelerated life test is to be conducted at three temperature levels in order to 

estimate thelife distribution of the units at design temperature of 50oC. The test needs 

to be completed in 250 hours. The total number of units to be placed under test is 200 

units.  To avoid the introduction of failure mechanisms other than those expected at 

the design temperature, the testing temperature cannot exceed 250oC.The minimum 

number of failures for each of the three temperatures is specified as 20.   

 

We use 1/(Absolute Temperature) as the covariate z in the ALT model, i.e., the design 

stress level zD = 1/323.16K, and the highest stress level zU = 1/523.16K. Also, a 

baseline experiment is conducted to obtain initial values for the GB-S accelerated 

model. These values are: 

 

0 1
ˆˆ ˆ ˆ0.5, 0.6, 0.001, 3000a aα λ= = = = −  

 

We use the initial baseline values for the model parameters, the design stress level zD 

and highest stress level zU as well as total test units N, test durationτ and minimum 

number of failures for each stress level. The optimum plans derived that optimize the 

objective function and meet the constraints are shown in Table 6.3: 
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Table 6.3 Optimal solutions to different objectives with constant stress 

Objective (Max) Solution 

25% quantile failure 1 2 30.56,  0.28,  0.16
89,  158,  227L M H

p p p
z z z

= = =
= = =

 

Mean time to first failure 1 2 30.58,  0.29,  0.13
101.7,  175.8,  239.9L M H

p p p
z z z

= = =
= = =

 

 

6.4.2 GB-S ALT Plan with Step Stress 

 

A step-stress ALT plan allows test conditions to change during the testing time. The 

stress on each unit is not constant but increases by planned steps at specified times. 

The test starts at a low stress. At the specified stress change time, the stress increases 

and holds constant for a specified time. Such step is repeated until all the test units fail. 

The step-stress assures that failures occur more quickly.  

 

A simple step-stress tests use only two stress levels (Figure 6.6). In a simple time-step 

test, units are initially placed on test at low stress level and run until a specified time. 

Then the stress changes to the high stress level and the test is continued until a 

predetermined censoring time. In this section we present the optimum simple 

time-step tests which are defined by optimal low stress level 1z and optimal stress 

change point 1τ . 
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Figure 6.6 Simple step-stress test 

 

6.4.2.1 Cumulative Damage Model 

 

Let Fi (t) denote cdf of time to failure for units run at constant stress zi, i =1,2. 

Suppose step 1 at stress z1 runs to time 1τ . The population cdf of units failed by time 

t in step 1 is: F0(t) = F1(t). Step 2 has an equivalent start time 1 'τ  which is the 

solution of ( ) ( )2 1 1 1'F Fτ τ= . More specifically, for the GB-S model: 
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The cdf of units failing by time t> 1τ  is: 

FGB-S (t) = FGB-S (t - 1τ +
1'τ ; z2) 

 

6.4.2.2 Likelihood Function 

 

A test unitmay either fail under stress level z1 before the stress changes at time 1τ or 

does not fail by time 1τ  and continues to run either to failure or to censoring time 1τ

2τ at stress level z2. First, we define the indicator function 1 1 1( )I I t τ= ≤  in terms of 

the stress change point 1t and the indicator function 2 2 2( )I I t τ= ≤  in terms of the 

censoring time 2τ by: 

1 1
1 1 1

1 1

1 if ,  failure observed before time ,
( )

0 if ,  failure observed after time .   
t

I I t
t

τ τ
τ

τ τ
⎧
⎨
⎩

≤
= ≤ =

>
 

2 2
2 2 2

2 2

 1 if ,  failure observed before time ,
( )

0 if ,  censored at time .    
t

I I t
t

τ τ
τ

τ τ
⎧
⎨
⎩

≤
= ≤ =

>  

 

Where 1 2τ τ≤ . 

 

The log likelihood of the single observation t is expressed as: 
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2 1 1 1 2 2 2ln ( ; ) { [ln ( ; )] (1 )[ln ( ; )]} (1 )[ ( ; )]L t z I I f t z I f t z I t z′ ′= + − + − −Λ   (6.37) 

 

Where, 1 1't t τ τ′ = − + and 2( ; )t z′Λ is the cumulative hazard function. Then we can 

obtain the first partial derivatives with respect to each parameter and construct the 

variance covariance matrix. 

 

6.4.2.3 Formulating Optimal Problems 

 

We optimally design a simple step-stress ALT plan under the constraints of available 

test units N, censoring time 2τ and specification of minimum number of failures 

MNF at low stress level z1. The optimal decision variables – low stress level *
1z  and 

stress change time *
1τ  are determined by solving the nonlinear optimization problem.   

 

6.4.2.3.1 Variance of Reliability Estimate 

 

To design a simple step-stress ALT plan such that the variance of the reliability 

estimate at design stress is minimized over a prespecified period of time T. we 

formulate the problem as: 

 

Objective function: 

 

Min   
 0

ˆ[ ( ; )]
T

DVar R t z dt∫
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Constraint: 

 

( )1 1 1Pr ;N t z MNFτ⋅ ≤ ≥  

21D Hz z z z=≤ ≤  

 

The decision variables are the low stress level zL and time to change the stress level τ1 

represented by
1

Lz
τ
⎡ ⎤
⎢ ⎥
⎣ ⎦

. In all the following formulations for step-stress test plans the 

decision variables are
1

Lz
τ
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

 

6.4.2.3.2 Quantile Failure and Mean Time to First Failure 

 

If we optimally design the test such that the time of the p-th percentile of the failures 

under normal operating conditions is maximized, the problem can be formulated as: 

 

Max pt  

 

Constraint: 

 

( )1 1 1Pr ;N t z MNFτ⋅ ≤ ≥  

21D Hz z z z=≤ ≤  
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Also, if the objective is to maximize the mean time to first failure, we formulate the 

problem as: 

 

Max

( ) ( )

( ) ( )

0

1

1
1 1

0

0

| |

         = | |

D D

N
D D

E
dF t z dF t z

t dt t dt
dt dt

t

tNf t z R t z dt

∞ ∞

∞ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= ⋅ ⋅ = ⋅ ⋅

⋅

∫ ∫

∫

 

 

Constraints: 

 

( )1 1 1Pr ;N t z MNFτ⋅ ≤ ≥  

 

 

Here we also assume that pre-estimates ( 0 1
ˆˆ ˆ ˆ, , ,a aα λ ) are available through either the 

baseline experiments or engineering experience. 

 

6.4.2.4 Numerical Example 

 

A simple step stress accelerated life test is conducted in order to estimate the 

performance of units at design temperature of 50oC. The test needs to be completed in 

250 hours. The total number of test units placed under test is 200 units. To avoid the 

introduction of failure mechanisms other than those expected at the design 

21D Hz z z z=≤ ≤
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temperature, the testing temperature cannot exceed 250oC. The minimum number of 

failures for low temperature is specified as 40. Again, the initial values of parameters 

for the GB-S accelerated model are: 0 1
ˆˆ ˆ ˆ0.5, 0.6, 0.001, 3000a aα λ= = = = −  

 

We usethe initial baseline values for the model parameters, the design stress level zD 

and highest stress level Uz as well as total test units N, test duration and minimum 

number of failures for low stress level MNF. The solutions that optimize the objective 

functions and meet the constraints are shown in Table 6.4: 

 

Table 6.4 Optimal solutions to different objectives with step stress 

Objective (Max) Solution 

25% percentile of failures 1161.1 ,        143.0o
Lz C τ= =  

Mean time to first failure 1177.5 ,        129.1o
Lz C τ= =  

 

6.5 Conclusion 

 

In this chapter, we investigate the GB-S accelerated model in details. We start with 

developing GB-S based ALT models, followed by the parameter estimation. Then we 

compare the performance of GB-S accelerated model with SB-S and Weibull based 

ALT models. The GB-S accelerated model is validated by fitting the model to several 

data sets at accelerated conditions to obtain the parameters of the model which are 

τ
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then used for reliability prediction at normal operating conditions. We also develop 

the GB-S based accelerated life testing plans for reliability performance prediction. 

The constant stress ALT plans determine the levels for each stress type and the 

number of test units allocated to each level in order to optimize different objectives at 

normal operating conditions. Similar plans for simple step stress which determine the 

lower stress level and stress changing time are also developed. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

 

In this thesis, we investigate a general Birnbaum-Saunders (GB-S) distribution in 

details. After briefly review previous and current research on B-S distribution in 

chapter 2 and 3, we obtain several conclusions from our research.  

 

In chapter 4, we investigate the GB-S distribution and obtain its characteristics and 

properties. We mention that the moments of GB-S distribution does not exist for some 

conditions. We also overcome the limitation of the SB-S distribution in modeling 

different types of failure rates by presenting the sufficient and necessary conditions 

that enable GB-S distribution to model multiple failure conditions. More specifically, 

by introducing a new shape parameter, the shape of GB-S distribution can be 

increasing, upside-down and roller coaster. In addition, extensive simulation verifies 

that GB-S hazard function is more flexible than SB-S distribution in modeling failure 

data. 

 

In chapter 5, we investigate the estimation of GB-S’s parameters. We utilize MLE and 

MMLE to present the estimation equations and variances and compare the 
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performances of the two parameter estimation methods. Simulation study shows that 

MMLE provides a satisfactory estimation of GB-S distribution’s parameters under 

most of the conditions, especially when MLE is highly biased as sample size is small  

 

There is research in the literature that deals with the application of SB-S distribution 

to ALT. However, the GB-S ALT has not been investigated. In chapter 6, we develop 

the first GB-S based accelerated model. We also develop other ALT models with 

known failure time distribution and life-stress relationship. Comparison shows that 

the GB-S accelerate model is most suitable in modeling accelerated fatigue data. 

Besides, we optimally design the GB-S ALT plan that result in accurate reliability 

performances estimate at normal operating conditions.   

 

7.2 Future Work 

 

Currently, we investigate the accelerated GB-S model and design the ALT plan based 

on the GB-S model with the simplest stress condition (single stress type). The 

research can be extended to the multiple stresses ALT plan that investigates the best 

combination of different stress types and their stress levels, which is much more 

complicated because of the uncertainty of interaction of the stresses and other factors. 

	
  

Also, the research on the GB-S life model can be extended to the accelerated 

degradation life testing (ADT) or degradation modeling at normal conditions. 

Combining ALT data and degradation data to provide better estimates of reliability at 
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normal conditions is another challenging research topic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  
	
  

	
  

125	
  

 

Reference 

 

Bhattacharyya, G.K. and Fries, A., 1980. Fatigue failure models: Bimbaum-Saunders 
vs Inverse Gaussian. IEEE Transaction on Reliability, 31(5), 439-440. 
 
Birnbaum, Z.W. and Saunders, S.C., 1968.A new family of life distribution.Applied 
Probability, 52(6), 319-327. 
 
Chang, D.S. and Tang, L.C., 1993. Reliability bounds and critical time for the 
Birnbaum-Saunders distribution.IEEE Transaction on Reliability, 42 (3), 464-469. 
 
Cohen, A.C. and Whitten, B.J., 1980. Estimation in the three-parameter log-normal 
distribution.American Statistical Association, 75 (370), 399-404. 
 
Cordeiro, G.M. and Lemonte, A.J.,2011. The β-Birnbaum-Saunders distribution: An 
improved distribution for fatigue life modeling. Computational Statistics & Data 
Analysis, 55 (3), 1145-1461. 
 
Desmond, A.F, 1985. Stochastic models of failure in random environments. The 
Canadian Journal of Statistics, 13 (2), 171-183. 
 
Desmond,A.F., 2012.A mixed effects log-linear model based on the 
Birnbaum-Saunders distribution. Computational Statistics & Data Analysis. 56 (2), 
399-407. 
 
Díaz-García, J.A. and Dominguez-Molina,J.R., 2005. 
GeneralizedBirnbaum-Saundersandsinh-normal distributions.Comunicación 
Técnica,5(1), 1-19. 
 
Díaz-García, J.A. and Leiva-Sánchez, V., 2002.A new family of life distribution 
based on Birnbaum-Saunders distribution. Comunicación Técnica,2(1), 1-16.  
 
Dupuis,D.J. and Mills, J.E., 1998. Robust estimation of Birnbaum-Saunders 
distribution.IEEE Transaction on Reliability, 47 (1), 88-95. 
 
Elsayed, E.A., 2012.Reliability Engineering. 2nded. New Jersey: John Wiley & Sons. 
 
Engelhardt, M., Bain, L.J. and Wright, F.T, 1981.Inferences on the Parametersof the 
Birnbaum-Saunders Fatigue Life Distribution Based on MaximumLikelihood 
Estimation.American Statistical Association,23 (3), 251-255. 



	
  
	
  

	
  

126	
  

Escobar, L.A. and Meeker, W.Q., 2006.A review of accelerated testing models. 
Statistical Science, 21 (4), 552-577. 
 
Glaser, R.E., 1980. Bathtub and related failure rate characterizations.Journal of the 
American Statistical Association, 75 (371), 667-672. 
 
Kundu, D., Kannan, N. and Balakrishnan, D.,2008. On the hazard function of 
Birnbaum-Saunders distribution and associated inference. Computational Statistics & 
Data Analysis, 52(5), 2692-2702. 
 
Mann, N.R., Schafer, R.E. and Singpurwalla, N.D.,1974. Methods for 
StatisticalAnalysis of Reliability and Life Data.New York: John Wiley & Sons. 
 
Meintains,S.G., 2010. Inference procedures for the Birnbaum-Saunders distribution 
and its generalizations. Computational Statistics & Data Analysis, 54 (2), 367-373. 
 
Ng, H.K.T, Kundu, D. and Balakrishnan, D., 2003.Modified moment estimation for 
thetwo-parameter Birnbaum-Saunders distribution.Computational Statistics & Data 
Analysis, 43 (2003), 283-298. 
 
Owen, W.J., 2004. Another look at the Birnbaum-Saunders distribution.Available 
from: http://www.stat.lanl.gov/MMR2004/Extended%20Abstract/WOwnn.pdf. 
 
Owen, W.J., 2006.A new three-parameter extension to the Birnbaum-Saunders 
distribution. IEEE Transactions on Reliability, 55 (3), 457-479. 
 
Rieck, J.R., 1999. A Moment-generating Function with Application to 
theBirnbaum-Saunders Distribution.Communications in Statistics-------Theoryand 
Method,28 (9), 2213-2222. 
 
Santos-Neto, M., 2012.On new parameterizations of the Birnbaum-Saunders 
distribution.Pak. J. Statist, 28 (1), 1-26. 
 
Sen, D., 1999.Accelerated life testing: concepts and models. Thesis (MS), Concordia 
University. 
 
Wang, B.X., 2012. Generalized interval estimation for the Birnbaum–Saunders 
distribution.Computational Statistics & Data Analysis, 56 (12), 4320-4326. 
 
Wang, Z., Desmond, A.F. and Lu, X., 2006.Modified censored moment estimation for 
the two-parameter Birnbaum-Saunders distribution.Computational Statistics & Data 
Analysis, 50 (4), 1033-1051. 
 



	
  
	
  

	
  

127	
  

Wong, L.K. and Lindstrom, D.L., 1989.Off the bathtub onto the roller-coaster curve 
[electronic equipment failure].Reliability and Maintainability Symposium, 
1988.Proceedings., Annual,356-363 
Zaindin, M., 2009.Parameter estimation of the modified Weibull distribution.Applied 
Mathematical Sciences, 3(11), 541-550. 
 
Zhang, H., 2005.Modeling and planning accelerated testing with proportional 
odds.Dissertation (PHD), Rutgers University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  
	
  

	
  

128	
  

Appendix A 

 

Derivatives of Moments of GB-S Distribution 

 

According to Newton’s generalized binomial theorem: 

 

If x and y are real numbers with the absolute value of x is larger than the absolute 

value of y , r is any complex number, then 

 

( ) ( ) ( ) ( )1 2 2 3 3

0

1 1 2
  ...

2 3!
r r k k r r r r

k

r r r r rr
x y x y x rx y x y x y

k

∞
− − − −

=

− − −⎛ ⎞
+ = + + + +⎜ ⎟

⎝ ⎠
∑  

 

The relationship between  and ZT (Eq. (4.4))can be written as: 

 

2 2 2 2

0
1 1

2 2 2 2

r r k
r k
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r
T Z Z Z Z

k

λ λα α α α
λ
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−
∞

=

⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠
∑  
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α α
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Then we obtain the rth moment of Tas Eq. (4.11). 
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AppendixB 

 

Roots and Discriminant of Cubic Polynomials 

 

For a cubic polynomial, its roots conditions are determined by its discriminantΔ . 

According to Shengjin’s formula, a cubic polynomial

( ) 3 2 3 2' 4 3 2s x ax bx cx d Ax Bx Cx D= + + + = + + + , with discriminant 

2 2 2 2 2 3 3' 4 ' ' 3 54 81 12 12B A C B C ABCD A D AC B DΔ= − =− − + + + , has the following 

root conditions: 

 

When 0Δ < , ( )'s x has three roots which we place in order of 31 32 33' ' 'x x x< < :  
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arccos 6 9 24 12 6 36
3 sin

3
' min , , min

b b ac a bc ad
b b ac

a

b b ac a bc ad

b b ac
b b ac a bc ad

x x x x

⎛ ⎞
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⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪
⎨ ⎬

⎛ ⎞⎪
⎜ ⎟⎪
⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩ ⎭

− − −
− − −

− − −

− + −
− − −

+

= =

( )
( ) ( )( )

( ) ( )( )

2

2

2

,
12

arccos 6 9 24 12 6 36
cos

3
3 9 24

arccos 6 9 24 12 6 36
3 sin

3

12

a

b b ac a bc ad

b b ac
b b ac a bc ad

a

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎪⎪ ⎪
⎪⎪ ⎪
⎪⎪ ⎪
⎪⎪ ⎪⎪ ⎪

⎨ ⎬
⎪ ⎪
⎪ ⎪⎧ ⎫⎛ ⎞
⎪ ⎪⎪ ⎪⎜ ⎟
⎪ ⎪⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎛ ⎞⎪ ⎪⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪⎩ ⎭

− − −

− + −
− − −

−

⎪

 

 

{ }

( ) ( )( )

( )
( ) ( )( )

( ) ( )( )

2

2

2

2

2

33 31 32 33

arccos 6 9 24 12 6 36
( 3 2 9 24 ) cos

3
,

12

arccos 6 9 24 12 6 36
cos

3
3 9 24

arccos 6 9 24 12 6 36
3 sin

3
' max , , max ,

12

3

b b ac a bc ad
b b ac

a

b b ac a bc ad

b b ac
b b ac a bc ad

x x x x
a

⎛ ⎞− − −
⎜ ⎟− − −
⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞− − −
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎝ ⎠ ⎪− + − ⎨ ⎬

⎛ ⎞⎪ ⎪− − −
⎜ ⎟⎪ ⎪+
⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭= =

−( )
( ) ( )( )

( ) ( )( )

2

2

2

arccos 6 9 24 12 6 36
cos

3
9 24

arccos 6 9 24 12 6 36
3 sin

3

12

b b ac a bc ad

b b ac
b b ac a bc ad

a

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎧ ⎫⎛ ⎞− − −⎪ ⎪⎪ ⎪⎜ ⎟
⎪ ⎪⎪ ⎪⎜ ⎟
⎪ ⎪⎪ ⎝ ⎠ ⎪+ − ⎨ ⎬⎪ ⎪

⎛ ⎞⎪ ⎪− − −⎪ ⎪⎜ ⎟⎪ ⎪−⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎩ ⎭⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

{ }32 31 32 33' , ,x x x x∈ and 31 32 33' ' 'x x x< < .  



	
  
	
  

	
  

132	
  

 

When 0Δ = , ( )'s x has two roots 21 22' 'x x< : 
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When 0Δ > , ( )'s x has only one root 11x : 
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