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ABSTRACT OF THE DISSERTATION

Emergency Modeling in Transportation via Queuing and

Game Theory

By ZHE DUAN

Dissertation Director: Dr. Melike Baykal-Gürsoy

In modern transportation network, emergencies on roadway and man-made emergencies in

the infrastructure can incur enormous costs to society directly and indirectly. The direct

costs include transportation cost due to incident delay and traffic congestion, and various

risks brought upon the infrastructure by man-made emergencies. The indirect cost can

include economic and psychological impacts on society.

Emergencies on roadways include accidents, disabled vehicles, adverse weather condi-

tions, spilled loads, hazardous materials, etc. Under these cases, non-recurrent congestion

will slow down the traffic flow on certain road link. In previous research, deterministic queu-

ing models are often used for traffic flow modeling. However, due to the random environ-

ment of traffic flow, it is necessary to introduce stochastic elements into current traffic flow

modeling. In our research, we use stochastic queuing models, such as Markov-modulated

queuing systems, for traffic flow modeling under incidents. And non-recurrent and recurrent

congestion models will be combined together to improve travel time estimation.

Man-made emergencies in the infrastructure are terrorist attacks, suicide bombings,

etc. Human casualties are the major goal of intelligent adversaries. We use game theory

in order to allocate first responders’ resources inside the transit infrastructure to minimize

human casualty. In the static zero-sum game model, we show that both the adversary
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and the first responder choose the same group of locations to attack and defend. In the

dynamic case when the first responder is mobile while the adversary is hidden in a cell,

the equilibrium solution for the first responder becomes the best patrol policy within the

infrastructure. This model utilizes partially observable Markov decision process (POMDP)

in which the payoff functions depend on an exogenous people flow, thus, are time varying.

People flow are modeled as an open queuing network in the infrastructure. And illustration

example is shown to provide insight into the competitive nature of this game between first

responder and adversary.
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Chapter 1

Introduction

In modern transportation network, emergencies on roadway and transit infrastruc-

ture can incur enormous cost to society directly and indirectly. The direct costs include

transportation cost due to incident delay and traffic congestion, and economic cost due to

infrastructure damage caused by man-made emergencies, etc. The indirect costs include

economic and psychological impacts of such events. In this research, I plan to investigate

both under impacts of emergencies. In the first part, I will introduce model to represent

traffic flow influenced by incidents. Then I will consider the man-made emergencies on

transit infrastructure. The objective of this research is to help decision makers improve

performance and security level of transportation network, and then reduce the emergency

burden upon transportation network.

The following two sections will briefly discuss my research on traffic flow modeling with

incidents and man-made emergency in transit infrastructure.

1.1 Traffic Flow Modeling under Incidents

Due to increasing oil prices, population and economic growth, changes in the lifestyles

(employees living far from their workplace), etc., the demand for transportation has in-

creased exponentially. On the other hand, the infrastructure has not followed this trend, as

prohibitive investment costs and environmental concerns make it hard to expand current

highway systems. Increased traffic flow on existing roadways results in an inevitable rise in

congestion. Congestion leads to delays, decreasing flow, higher fuel consumption and has

negative environmental effects.
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In this research, queuing models, especially Markov-modulated service queues, are uti-

lized to analyze the traffic flow on roadways in random environment. This research will open

up the analysis and control of systems from transportation networks to telecommunication

networks where service goes through deterioration. Current models are not sufficient to

realistically incorporate the impact of incidents on these systems. This research makes con-

tributions i) to the queuing theory literature; ii) to the decision making in traffic congestion;

and iii) in laying the framework in extended applications of queuing theory.

1.2 Man-made Emergency in Transit Infrastructure

In recent years, more and more people are choosing public transit as their first option to

commute. The skyrocketing energy prices are one of the main reasons. Due to this increasing

trend towards public transit usage, safety and security of the public transit infrastructure

become a critical issue. We have witnessed terrible disasters happened in recent years

that took the life of hundreds of people. For example, the suicide bombings in London

subway train and bus system on July 7 2005, cost 52 innocent lives. The 2004 Madrid train

bombings caused almost 200 casualties. These human-made attacks significantly threaten

ordinary people’s life and transit infrastructure, so in this research, we will analyze the risks

within certain transit infrastructure and effects of some security strategies.

For a meaningful and effective emergency analysis and security improvement, one

should define precise risk measures before performing any analysis for the optimization

of resources and personnel. Therefore, at first, the objective of this research is to provide

risk measures for various transit infrastructures under man-made attack. We will focus

on the airport, train and subway infrastructures with huge pedestrian flows since the ob-

jectives of man-made attacks are to create maximum chaos. Man-made emergencies will

cause significant costs, that might be direct (facility destruction, loss of human lives, etc.),

and indirect (transportation delay, economic and psychological impacts, etc.). Since under

severe man-made attack, human life is the primary target, in this research, we will focus

on human casualties. Thus the occupancy level and pedestrian flow in a facility during an

emergency become the major concern.
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In this research, transit infrastructure are described in grid structure with cells of

various characteristics. Then, game theory and partially observable Markov decision pro-

cesses(POMDP) will be applied to model the infrastructure security problem, and to im-

prove security strategies for first responders. And also, pedestrian flow are modeled using

open queuing network. Based on this pedestrian flow, risk measures can be developed, then

used to evaluate first responders security strategies.
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Chapter 2

Literature Review

This literature review focuses on two areas. We first review traffic flow modeling

with incidents, including both queuing and other methods. Especially, queuing models

with Markov-modulated service speeds, which represent incident effects on roadway, are

investigated thoroughly. Secondly, for man-made emergency, search theory and game theory

models applied into infrastructure security are reviewed, and problems with various types

of first responders and adversaries are investigated too.

2.1 Traffic Flow Modeling

Increasing traffic flow on existing roadways results in an inevitable rise in congestion.

Congestion leads to delays, decreasing flow rate, higher fuel consumption and thus has

negative environmental effects. The cost of total delay in rural and urban areas is estimated

by the USDOT to be around $1 trillion per year NCTIM (2002). Researchers from widely

varying disciplines have been paying attention to modeling the vehicular travel in order to

improve the efficiency of the current highway systems.

2.1.1 Classical Theory

Classical traffic models are mostly based on the treatment of interacting vehicles, their

statistical distribution, or their average velocity and density as a function of time and space.

Main modeling approaches can be classified as microscopic (particle-based), mesoscopic

(gas-kinetic), and macroscopic (fluid-dynamic, deterministic queue) (see Helbing (2001)).

Microscopic approach was developed based on driver’s acceleration and deceleration be-

haviors due to the interaction of vehicles nearby, called as the car-following model (Richards
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(1956), Gazis et al. (1959), Gazis et al. (1961)), and Newell (1961) introduced an optimal

velocity model by considering a distance-dependent velocity to reflect the safety restriction.

Recently, Helbing et al. (1999) proposed an intelligent driver model, taking all the aspects

into account for microscopic traffic modeling such as relative velocity and safe driving dis-

tance.

Macroscopic traffic theory explains the traffic behavior in terms of average parame-

ters, such as average velocity and average traffic density, based on continuity flow equation,

in contrast to microscopic traffic modeling. Lighthill and Whitham (1955) developed the

so-called L-W model on the assumption that there is no interruption to the traffic system

and they obtained the fundamental diagram. Based on the continuity equation, Whitham

(1974) derived the nonlinear wave equation for the propagation kinetic wave and developed

the basis of shock wave theory. Whitham (1974) presented the Burgers equation by intro-

ducing a diffusion term into wave equation based on the relationship between velocity and

density. Kuhne (1987) introduced a viscosity term in the Burgers equation for the nega-

tive drivers’ reaction to the gradient of traffic flow and a Navier-Stokes velocity equation

was obtained. Payne (1971) transformed microscopic variables to macroscopic scale and

obtained the Payne’s velocity equation, which described the reaction of individual vehicles

to the surroundings and adaptation of individual velocity to the equilibrium velocity.

In the mesoscopic approach, driving vehicles are treated as the interacting particles

in gas environment. By the continuity equation in phase space, Prigogine and Andrews

(1960) modeled the acceleration and overtaking behaviors and obtained the critical density

of the phase transition from free flow to congestion (see also Prigogine and Herman (1971)).

Paveri-Fontana (1975) improved this model by introducing various driver types. Helbing

(1995) included a term for adaptation to the road condition and his approximation managed

to explain the increase in velocity variance before a phase transition.

Some other authors considered congestion around planned road work and incidents.

Gas-kinetic models are introduced to describe the behaviors at bottleneck areas by Shvetsov

and Helbing (1999) and Kerner (2004). Redner et al. (1994) introduced the ballistic agglom-

eration to model one-lane traffic flow and clustering. Lia et al. (2008) developed a traffic
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control plan based on empirical data, the Dynamic Late Lane Merge System (DLLMS), to

improve traffic flow volume and solve potential traffic congestion problems close to work

zones.

Kuhne et al. (2002) and Mahnke et al. (2005) developed a stochastic model to describe

the traffic behavior and the general master equation was constructed. Combining Markov

process and optimal velocity model, they concluded that the formation of traffic congestions

was due to stochastic perturbation and dissolution of cluster depended on the cluster size.

In analogy to nucleation mechanism, they developed a multi-cluster model on one-lane

circular road.

Helbing (2003) proposed a deterministic queueing model for traffic network by dividing

the road into free road and congested sections. He estimated the average traveling time

and congestion pattern, assuming a fundamental diagram with linear free and congestion

branches. Lammer et al. (2008) introduced a model to anticipate the queueing process at

the traffic lights and estimate the waiting time. Based on different evolutions of queue

length at green, yellow and red lights, they derived the hybrid dynamical equations to

obtain the required green time to clear the queue. Lammer and Helbing (2008) proposed a

self-organized traffic-light control at intersections with live data input that minimizes the

total waiting time.

2.1.2 Stochastic Queueing Models

The arrival process in roadway traffic is modeled as a singly arriving Poisson process

(Darroch et al. (1964), Tanner (1953)), and as platoons to represent the behavior of the vehi-

cles moving between traffic signals (Alfa and Neuts (1995), Daganzo (1994), Dunne (1967),

Lehoczky (1972)). Daganzo (1994) presented a cell transmission model, representing traffic

on a highway with a single entrance and exit, which can be used to predict changes in the

traffic pattern over time and space. Initially, queuing analysis has been mainly utilized

for performance evaluation using deterministic (fluid-dynamic) models (May and Keller

(1967), Newell (1971)), and synchronization of traffic-lights (Newell (1965)). Stochastic
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queues were studied by Cheah and Smith (1994) that explored the generality and useful-

ness of finite server queuing models with state dependent service rate (traveling speed) for

modeling pedestrian traffic flows. As an extension, Jain and Smith (1997) used such queues

for modeling and analyzing vehicular traffic flow on a roadway segment that can accom-

modate a finite number of vehicles. In the Jain and Smith model, arrivals are assumed

to follow Poisson process (M), travel times are assumed to be generally (G) distributed

random variables, and if the link is full, new arrivals should leave and find alternate paths.

Consider vehicles traveling on a link as shown in Figure 2.1.

 
17.5 ft 

L

Figure 2.1: A Two-Lane Roadway Link

The space occupied by an individual vehicle on the road segment can be considered

as one queuing “server”, which starts service as soon as a vehicle joins the link and carries

the “service” (the act of traveling) until the end of the link is reached. A “server” in this

context is the moving albeit virtual vehicle-space including the safe distance to the vehicle

in front. Thus, the maximum number of vehicles that can be accommodated on the link

provides the number of servers in the model. Although there are several different types of

vehicles utilizing the roadway, in Jain and Smith (1997) they are all assumed to be identical

and considered as a passenger car equivalent. In practice, the service rate (traveling speed)

is assumed to be a decreasing function of the number of vehicles on the link to represent

congestion caused by traffic volume. Such a queue is called an M/G/C/C model with the

first M denoting Poisson arrival process, G representing general service times and finally C

denoting the number of servers/roadway capacity.

Heidemann (1996) used M/M/1 where the second M represents the exponentially dis-

tributed service times, and M/G/1 queues to model uninterrupted traffic flows. Note that

in all queuing models, both deterministic and stochastic, the link is considered as a point

queue (or vertical queue, see Daganzo (1997)). Rakha and Zhang (2005) show the consis-

tency of the total delay and total travel time estimates in the gas-kinetic and deterministic
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queuing models. While in the multi-server case, a link is separated into cells, contrary to the

cell transmission model; there is no interdependence between the service times. However,

we emphasize that these models have been shown to be effective in representing traffic flow.

Woensel and Vandaele (2006) and Woensel et al. (2006) validate the use of queueing models

via empirical data and simulation, respectively. They conclude that M/G/1 queueing mod-

els are the best models to describe normal traffic flow on a highway, while state-dependent

GI/G/m queues were more realistic for the congested traffic. Heidemann (2001) studied

the transient behavior of M/M/1 queues to analyze non-stationary traffic flow. Vandaele

et al. (2000) also used M/M/1 and M/G/1 queues to model traffic flow. Although some of

these queuing models consider congestion, they all ignore the impact of random incidents

on traffic flow.

2.1.3 Modeling Traffic Flow Interrupted by Incidents

Consider vehicles traveling on a roadway link, as shown in figure 2.1, which is subject

to traffic incidents. During an incident, traffic deteriorates such that both the number of

servers and the service rate of all servers decrease. Once an incident occurs, the incident

management system sends a traffic restoration unit to clear the incident. The number

of servers and the service rate of all servers are restored to their normal level when the

incident is resolved. The negative impact of incident involves both congestion and reduction

of road capacity. In this study, a lower service rate, affecting every server will be used

to represent the impact of congestion caused by incidents. The type of service system

with batch interruptions is also considered as a Markov-modulated service mechanism.

Note that, the concepts in this paper also cover, the M/M/1 queuing model considered in

Heidemann (1996), Heidemann (2001) and Vandaele et al. (2000). Consider a queue with C

servers working at free speed service rate µ, subject to random interruptions of exponentially

distributed durations. During interruptions, the free speed service rates of these C servers

drop from µ to µ′. As soon as the interruption is cleared, the service rate of all servers are

restored to µ. We assume that interruptions arrive according to a Poisson process with rate

f , and the repair time is exponentially distributed with rate r. The customer arrivals are
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in accordance with a homogeneous Poisson process with intensity λ. The service times are

assumed to be independent and identical exponentially distributed. The interruption and

customer arrival processes, and the service and repair times are all assumed to be mutually

independent. We would like to emphasize that the Poisson assumption for vehicle arrivals

(Woensel and Vandaele (2006) and Woensel et al. (2006)) and exponential interarrival times

for the incidents (Skabardonis et al. (1998)), are shown to be reasonable. Although the

exponential service times may not seem realistic, in our setting, the total time to traverse a

link (overall service time) is not going to be exponential. Thus, our model may be considered

as having a generally distributed service time.

Queues with Service Interruptions

The study of queuing systems with service interruptions has received significant atten-

tion by researchers in the field. One type of service interruption has already been considered

in the context of “vacation” queues where interruptions only happen as soon as the queue

becomes empty, or a service is completed. In general, queues with server vacations are

used to model non-preemptive priority systems where customers receive service according

to their priority level. The server continuously serves low priority customers until higher

priority customers arrive. When a high priority customer arrives, the server starts serving

the new customer upon completion of the service of one, a number of, or all of the low

priority customers. Thus, in these models only complete service breakdowns that happen

at the instant of service completion are considered. These vacation models in steady-state

are shown to exhibit the stochastic decomposition property. This fundamental result es-

tablishes the relationship between a performance measure (system size distribution, waiting

time distribution, sojourn time distribution, etc.) for the queuing system with vacations,

and the same performance measure for the same queuing system without vacations (Yadin

and Naor (1963), Cooper (1970), Levy and Yechiali (1975), Fuhrmann and Cooper (1985),

Shanthikumar (1986), Altiok (1987), Doshi (1990), Chao and Zhao (1998)).
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Queues with Random Service Interruptions

In the traffic flow models that we consider in this research, incidents happen randomly,

independent of service completions. The literature on queues with this type of interruptions

is relatively scarce. White and Christie (1958) studied a single server queue with preemp-

tive resume discipline, and related such queues to queues with random service interruptions.

Gaver (1962) and Keilson (1962) also studied a single server queue with random interrup-

tions. Gaver (1962) obtained the generating functions for the stationary waiting time and

the number in the system in an M/G/1 queue. Avi-Itzhak and Naor (1963) derived the

expected queue length for M/G/1 queue with server breakdown, also see, Halfin (1972),

Fischer (1977), Federgruen and Green (1986) and Federgruen and Green (1988). Mitrani

and Avi-Itzhak (1968) analyzed M/M/C queue where each server may be down indepen-

dently of the others for an exponential amount of time. They obtained an explicit form of

the moment generating function of the queue size for one-server and two-server systems,

and gave a computational procedure for cases with more than two servers. In the above

models, servers fail independently of each other and failures are complete service break-

downs. M/G/∞ queue with alternating renewal breakdowns was studied in Jayawardene

and Kella (1996); who show that the decomposition property, a well known property of

vacation type queues, holds for such queues: the stationary number of customers in the

system can be interpreted as the sum of the state of the corresponding system with no

interruptions and another nonnegative discrete random variable. Considering the case of

partial failure, the M/M/1 system in a two-state Markovian environment where the arrival

as well as the service process are affected, is analyzed via generating functions first by Eisen

and Tainiter (1963), then by Yechiali and Naor (1971), and by Purdue (1973). Such queues,

in general, in n-state Markovian environments are said to have Markovian arrival processes

(MAP ) and Markovian service process (MSP ), and might be represented in Kendall nota-

tion as MAP/MSP/1. Yechiali (1973) considered the general MAP/MSP/1 queue. Neuts

(1981) studied M/M/1 and briefly M/M/C queues in a random environment using matrix-

geometric computational methods. O’Cinneide and Purdue (1986) analyzed the n-state

MAP/MSP/∞ queue, where ∞ represents the number of servers as infinite. In infinite
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server queues, customers need not wait because a server is always available. For all these

queuing models no closed form solution was given. Keilson and Servi (1993) studied a ma-

trix M/M/∞ system in which both the arrival and service processes are Markov-modulated.

They obtained the generating function of the stationary number of customers in the system

in terms of Kummer functions. A single server queue with Markov-modulated arrival and

service processes is analyzed in (Adan and Kulkarni (2003)) and asymptotic results are

presented. For the special case of M/M/∞ queue with two-state Markov-modulated arrival

process, they showed that the decomposition property holds, and provided the explicit so-

lution. Baykal-Gürsoy and Xiao (2004) considered the M/M/∞ system with the two-state

Markov-modulated service process, e.g., M/MSP/∞ queue. Using the method introduced

in Keilson and Servi (1993), they proved that this model also exhibits a stochastic decom-

position property, and gave the stationary distribution in closed form.

For the infinite server queue with a two-state service mechanism, Jayawardene and

Kella (1996) in the case of complete breakdown, and Baykal-Gürsoy and Xiao (2004) also

in the case of partial failure, are the first papers showing the validity of the decomposition

property. The latter paper has created a renewed interest in infinite server queues in

Markovian environment (D’Auria (2007), Yechiali (2007), and Pang and Whitt (2009)).

2.2 Man-Made Emergency in Transit Facilities

Due to increasing population, economic growth, changes in the lifestyles (employees

living far from their workplace), etc., the demand for transportation has increased expo-

nentially. The U.S. is one of the most mobile nations in the world, providing over 4 trillion

miles of passenger travel annually Fed (1999). Further, every workday, about 14 million

Americans use some form of public transit USG (2002). Public transit users made more

than 9 billion unlinked trips using the more than 6,000 transit properties in 20011. Due

to this high volume, almost a third of terrorist attacks worldwide target public transit2.

Recent attacks in New York, Madrid, London and Mumbai have forced governments to

1http://www.apta.com/research/stats/

2Congressional Research Service, Transportation Issues in the 107th Congress, Washington, D.C., 2002
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devote significant time and resources to secure transportation infrastructure.

The suicide bombings in three London subway trains and one bus in the morning rush

hours on July 7, 2005 affected the whole population of London. Before this terrible disaster,

there were two other significant attacks on public transit facilities: the sarin gas attack in

the Tokyo subway on March 20, 1995, and Madrid train bombings on March 11, 2004.

Recently 7 bomb blasts hit Mumbai’s commuter rail network during the rush hour on July

11, 2006, killing more than 200 passengers. The dramatic and devastating nature of these

attacks point to the vulnerabilities of the public transit system.

On the other hand, public transit facilities are being used more frequently by ordinary

citizens. Therefore, increasing transit usage puts public-transit facilities under much more

significant security threat. The threat could be substantially reduced by analyzing the

risk associated to each transit infrastructure, planning for emergency preparedness, and

employing best prevention and response policies. Most transit officials accept “that the

public transit systems are open, dynamic, and inherently vulnerable to terrorist attacks

and cannot be closed and secured like other parts of the transportation system” (Loukaitou-

Sideris et al. (2006)). There are other similar systems. Last attacks in Mumbai on a number

of hotels/community centers simultaneously, have broadened the concern to other public

infrastructures. Management of man-made emergencies is an important social task that has

profound effects on the safety and well being of society.

Emergency management problems have the following characteristics: (1) They are

stochastic. The resource (personnel, funds, etc.) availability, as well as the occurrences

and characteristics of emergencies, the size of the affected population are all subject to

randomness. (2) They are resource-allocation problems. Resources should be allocated

wisely among individual response centers to minimize the risk.

2.2.1 Problem Description

The game we consider here is called the hide and seek game. The hider in the problem

is an attacker who is trying to damage transportation facilities by putting bombs in certain

critical locations, meanwhile, avoiding the security staff. The seeker, i.e. security staff, first
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responder, allocate available resources to the different places in facilities to search for bombs

or attackers. In this research, we will consider two game forms, one step noncooperative

game and another dynamic noncooperative game.

In the one-step noncooperative game, adversary is trying to cause as much damage as

possible by an attack, on the other hand, the responder is trying to minimize the damages.

Each place has different importance relative to its occupancy level, so damages will not be

the same. Both zero-sum and nonzero-sum game can be built between the responder and

adversary based upon the information shared between them.

We also consider dynamic games. In this game, the adversary is a suicide bomber, mov-

ing around the cells at every discrete time period, the responder reallocates resources during

the same period. After each stage of the game, the information available for responder and

adversary about the opponent will evolve.

The following sections will discuss prior work on related topics, from both search theory

and security problem standpoints.

2.2.2 Search Theory

Our problem is different from the classic search game. In a typical search game(see

book Alpern and Gal (2003)), the map or domain for the player to hide and search is much

more important, usually it is a network, a tree or even continuous three dimensional area.

So lots of research on search theory devote themselves into generating a good path or route

in a network or map to find the hider. This is not what we want in this research, because

our problem does not involve constant movement from one place to another within a short

time period. The problem here only involve movement in dynamic case and it can only

happen at certain time period. And we already generalized our problem domain from map

into cells, possibly involving simplified structure, so we can focus on the game itself and

pay little attention to the search map.

Gal (1979) considered search games in which the searcher moves along a continuous

trajectory until he captures the hider, in either a network or a two (or more) dimensional

region. The mobile and immobile hider cases were both analyzed. For some of the games, a
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complete solution was found, while for others upper and lower bounds were given. In Alpern

and Gal (2002), the aim of the hider are not known to the searcher, and the hider can be

either a cooperator or an evader. It produces a continuum of search problems, linking a

zero-sum search game to a rendezvous problem. Therefore, these models provide a bridge

between Search and Rendezvous Search. In Gal and Howard (2005), searching happens in

two boxes. With probability p, the hider wishes to be found, and he tries to evade the search

with probability 1 − p. An associated zero-sum game is solved to develop the associated

strategies for the searcher and each type of agent, and a continuous value function v(p),

giving the expected time until the agent is discovered, is obtained. In Alpern et al. (2008),

network search games with immobile hider is considered, and starting point for searcher is

not designated. The searcher’s objective is to minimize the time to find the hider. They

extended previous results to a wider class of networks, by showing that network is simply

searchable. In this case, the optimal searching strategy is any random Chinese Postman

(CP) path.

For dynamic situations, search theory usually considers that the movement can happen

at many time points, even continuously. But in our problem, we only consider discrete time

point movement, this is based on the features of our problem. For example, Thomas and

Washburn (1991) give a description of a dynamic search game on the cells that need to

be searched in a finite set, but the search time is continuous. Searchers are trying to find

the hider as soon as possible. Probability structure is given in the problem, and expected

rewards or costs for players are discounted by time. We will use similar ideas in our dynamic

game to deal with the cost functions. For a thorough review of search theory, see the book

by Alpern and Gal (2003) and a search theory survey by Dobbie (1968).

In one step hide and seek game, Baston and Garnaev (2000) develop a model suitable

for a search game with a protector. In this game, they assume that an object has already

been hidden in one of a finite number of cells. Then, a protector and a searcher will allocate

their own resources into cells respectively. The protector wants to protect the object from

being found, and the searcher wants to detect the object. Both players have exactly the

same information about the probability distribution of where the object is hidden. Then,
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they show the existence of a Nash equilibrium under certain assumptions. A heuristic

algorithm is developed and an example is given. Alpcan and Basar (2006) present two-

player zero-sum stochastic game which models the interaction between malicious attackers

to a system and the Intrusion Detection System(IDS). Sensor network is used to capture

the attack information for IDS, and several information cases are discussed. The methods

used are based on Markov decision process and Q-learning. In Hohzaki (2007), a search

allocation game (SAG) is analyzed. The resources a searcher allocates can last a certain

period of time and can also affect other areas around the drop points. Linear programming

formulation is used to solve the problem.

For the dynamic case, Hespanha et al. (2000) give a sophisticated framework for dy-

namic cell-search game, different from Thomas and Washburn (1991). This paper considers

time as discrete time points, and it is similar to our problem. A partial information Markov

game is considered. A good framework for dynamic game is constructed, but the objectives

for pursuer and evader are greedy, which means that they only consider a static game for

the current situation. Under this framework, they consider one step game first, one step

game is transferred into a matrix game that is easy to solve. For dynamic case, simulation

is proposed to solve the problem. Actually, there are only a few articles dealing with the

dynamic case. Alpern et al. (2009) considers a facility as a graph, and the attacker will

choose several consecutive time periods, uninterrupted by patroller, to commit an attack.

Patroller can follow any path on the graph during a given time period. It is assumed that,

when the patroller and the attacker are at the same node at the same time, the attacker will

be found. The patroller’s objective is to minimize the time to detect the attacker. Optimal

patrolling strategies are determined for various classes of graphs, and used to support deci-

sions on facility reinforcement. In Jotshi and Batta (2008), a dynamic hide and seek game

on a network is discussed, and an algorithm is also developed. In this game, the attacker

is immobile, and the searcher tries to select paths in the network to detect the attacker as

soon as possible.
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2.2.3 Security Problems

There are also some papers focusing on the infrastructure security related issues. To

detect and prevent the terrorist operations, a main challenge is the fusion of information,

from different sources (U.S. or foreign), and of different types (signals, human intelligence,

etc.). In Paté-Cornell (2002a), the author focus on merging contents of signals from various

sources and types, and Bayesian approach is used to update the probability of an event,

as new signals or information are received. This method allows effective fusion of signals

and information, and account for both types of error probabilities (false positives and false

negatives). In Paté-Cornell (2002b), the overarching model for setting priorities among

homeland security countermeasures was presented. First, diverse kinds of information are

gathered, then based on probabilistic risk analysis, decision analysis, and game theory,

priorities among countermeasures were set. The dynamic competition between the U.S.

goverment and terrorist are also considered.

In Pita et al. (2008), a game theoretic model is used to secure Los Angeles International

Airport. A software decision support system called ARMOR is developed, that casts the

police patrolling/monitoring problem as a Bayesian Stackelberg game. ARMOR has been

deployed at the Los Angeles International Airport to randomly assign checkpoints on the

roadways entering the airport and canine patrol routes within the airport terminals (see

Paruchuri et al. (2005), Paruchuri et al. (2006), Paruchuri et al. (2007), and Paruchuri et al.

(2008)). In this game, leaders are the police, and followers are the attackers. First, police

set up checkpoints, and then, the attackers choose their actions based on the current set

of checkpoints. However, in this research, we will consider a game between a responder

and an adversary with simultaneous actions. Other recent papers include Nie et al. (2009a)

and Nie et al. (2009b), where a passenger classification problem is analyzed, based on their

scores at the checkpoints. The same authors also discuss the optimal placement of suicide

bomber detectors within a grid structure Nie et al. (2007). Note that, Nie et al. (2007), Nie

et al. (2009a) and Nie et al. (2009b) only involve single controller optimization models.
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Chapter 3

Queuing Models and their Application to Roadway Traffic

This chapter will present several stochastic queuing systems with Markov-modulated

arrival or Markov-modulated service processes, which later will possibly be applied into

traffic flow modeling with incidents. First, a M/M/C queuing system with finite number

of servers and Markov-modulated service processes are analyzed. Secondly, stochastic de-

composition results for stationary number in the system are presented for a single server

queue with Markov-modulated arrival and service processes. Third, a queue with two ser-

vice speeds represented by generally distributed service time is studied, service completion

time for customers in such a queue is studied and Laplace transform of the completion time

is obtained. Finally, a queuing system with Markov-modulated service process is applied

into traffic flow modeling with incidents, and the results are validated through comparison

with simulation results.

3.1 M/M/C Queues with Markov-modulated Service Processes

Motivated by the need to study traffic flow affected by incidents we consider M/M/C

queuing system where servers operate in a Markovian environment. When a traffic incident

happens, either all lanes or part of a lane is closed to the traffic. As such, we model

these interruptions either as complete service disruptions where none of the servers work or

partial failures where all servers work at some reduced service rate. We analyze the system

with multiple failure states in steady state and present a scheme to obtain the stationary

number of vehicles on a link. The special case of single breakdown case is further analyzed

and performance measures in close form are obtained.
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3.1.1 Mathematical Model

Consider a road link as shown in Figure 2.1 with C servers that are subject to random

system interruptions of exponentially distributed durations. We assume that there is buffer

space available in front of the link so that the vehicles that cannot get a server can wait for

service. As the most general case we consider M/M/C queues with n types of server states.

The server states are denoted as S1, . . . , Sn that have associated service rates µ1, . . . , µn

respectively. Service times are assumed to be independent and identically distributed (i.i.d.)
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Figure 3.1: State transitions for M/M/C queue with deteriorating service

exponentials. The vehicle arrivals are in accordance with a homogeneous Poisson process

with intensity λ irrespective of the server state. Movements between server states include

only the moves to the adjacent states as one state example shown in Figure 3.1. The state

transitions at the boundary states could be presented respectively. This example represents

the case where S1 corresponds to the normal state and the server state deteriorates to

the next state with each interruption and the previous server state is restored with each

clearance action. At server state Sj, the interruptions arrive according to a Poisson process

with rate fj for j = 1, . . . , n − 1, and the clearance times are i.i.d. exponentials with rate

rj for j = 2, . . . , n. Here fn = 0 and r1 = 0. The model considered above also includes

the case that from the normal state with different types of failures the server state goes to

either the moderate failure state or to the severe failure state depending on the severity

of the incident. The clearance times of these incidents also depend on the incident type.

Figure 3.2 presents this case where the server states are represented as N corresponding to
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the normal road conditions, M corresponding to the moderate incident and F corresponding

to the severe incident conditions. The interruption and vehicle arrival processes, and the

service and clearance times are all assumed to be mutually independent. In Figure 3.1 and

3, 0 < i < C and k ≥ C. Note that, for C = 1 the system considered here is a special

case of the MAP/MSP/1 queue studied in Yechiali (1973), since in the later one the server

state can go into any of the other server states.
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Figure 3.2: State transitions for M/MSP/C queue with three server states

The stochastic process {X(t), Y (t)} describes the state of the link at time t, where

X(t) denotes the number of vehicles on the link at t, and Y (t) denotes the server state.

Balance Equations

The steady-state balance equations are given below,

State S1,

(λ+ f1)P0,S1
= µ1P1,S1

+ r2P0,S2
(3.1)

(λ+ f1 + iµ1)Pi,S1
= (i+ 1)µ1Pi+1,S1

+ r2Pi,S2
+ λPi−1,S1

(1 ≤ i ≤ C − 1) (3.2)

(λ+ f1 + Cµ1)Pi,S1
= Cµ1Pi+1,S1

+ r2Pi,S2
+ λPi−1,S1

(i ≥ C) (3.3)
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State Sn,

(λ+ rn)P0,Sn
= µnP1,Sn

+ fn−1P0,Sn−1
(3.4)

(λ+ rn + iµn)Pi,Sn
= (i+ 1)µnPi+1,Sn

+ fn−1Pi,Sn−1

+λPi−1,Sn
(1 ≤ i ≤ C − 1) (3.5)

(λ+ rn + Cµn)Pi,Sn
= CµnPi+1,Sn

+ fn−1Pi,Sn−1

+λPi−1,Sn
(i ≥ C) (3.6)

State Sj (j = 2, ...n − 1),

(λ + fj + rj)P0,Sj
= µjP1,Sj

+ rj+1P0,Sj+1

+fj−1P0,Sj−1
(3.7)

(λ + fj + rj + iµj)Pi,Sj
= (i+ 1)µjPi+1,Sj

+ rj+1Pi,Sj+1

+fj−1Pi,Sj−1
+ λPi−1,Sj

(1 ≤ i ≤ C − 1) (3.8)

(λ + fj + rj + Cµj)Pi,Sj
= CµjPi+1,Sj

+ rj+1Pi,Sj+1

+fj−1Pi,Sj−1
+ λPi−1,Sj

(i ≥ C) (3.9)

Generating Function

We will use the partial generating functions,

Gj(z) =
∞∑

i=0

ziPi,Sj ,

to write the overall generating function as,

G(z) =

n∑

j=1

Gj(z). (3.10)
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By multiply the balance equations with zi, and summing all equations for state Sj , we obtain,

[λz(1− z) + f1z + Cµ1(z − 1)]G1(z)− r2zG2(z)

=

C−1∑

i=0

(z − 1)(C − i)µ1Pi,S1
zi, (3.11)

[λz(1− z) + rnz + Cµn(z − 1)]Gn(z)− fn−1zGn−1(z)

=

C−1∑

i=0

(z − 1)(C − i)µnPi,Sn
zi, (3.12)

[λz(1− z) + rjz + fjz + Cµj(z − 1)]Gj(z)− rj+1zGj+1(z)

−fj−1zGj−1(z)

=

C−1∑

i=0

(z − 1)(C − i)µjPi,Sj
zj , (j = 2, 3, ...n− 1). (3.13)

In these n equations, there are nC unknown probabilities, and we can use the balance equations to

reduce them to only n unknowns, P0,Sj
, for j = 1, . . . , n.

Proposition 1 For the n-state M/MSP/C queue, the stability condition is,

λ <

∑n
j=1 Cµj ·

(
∏j−1

i=1 fi ·
∏n

i=j+1 ri

)

∑n
k=1

(
∏k−1

i=1 fi ·
∏n

i=k+1 ri

) . (3.14)

2

Proof We know that Gj(1) corresponds to the probability that the system is in server state Sj in

the long run. If we aggregate all states (i, Sj) in server state Sj as a mega state, then we can easily

obtain the long-run probability that the system is in state Sj as,

Gj(1) =

∏j−1
i=1 fi ·

∏n
i=j+1 ri

∑n
k=1

(
∏k−1

i=1 fi ·
∏n

i=k+1 ri

) . (3.15)

Thus, the stability condition for this system is,

λ <

n∑

j=1

Cµj ·Gj(1), (3.16)

giving the required inequality 3.14. �

In the next part, we will show that the denominator of G(z) has n− 1 distinct real roots that

are unstable. These poles have to be eliminated by the zeros of G(z), thus, giving n− 1 equations

in addition to G(1) = 1 to solve for the n unknowns. To this end, following the notation and the
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method introduced in Mitrani and Avi-Itzhak (1968), let,

g1(z) = λz(1− z) + f1z + Cµ1(z − 1),

gj(z) = λz(1− z) + rjz + fjz + Cµj(z − 1),

(j = 2, 3, ...n− 1),

gn(z) = λz(1− z) + rnz + Cµn(z − 1).

Further let,

A(z) =



















g1(z) −r2z 0 · · · · · · 0 0

−f1z g2(z) −r3z · · · · · · 0 0

...
...

...
...

...
...

0 0 0 · · · · · · −fn−1z gn(z)



















.

~b(z) =



















∑C−1

i=0
(C − i)µ1Pi,S1

zi

∑C−1

i=0
(C − i)µ2Pi,S2

zi

...
∑C−1

i=0
(C − i)µnPi,Snz

i



















, ~G(z) =



















G1(z)

G2(z)

...

Gn(z)



















.

Equations 3.11-3.13 can be written in the following compact form,

A(z)~G(z) = (z − 1)~b(z).

It is easy to show that A(z) has a singularity at z = 1. Since |A(z)| is a polynomial (degree of 2n)

in z, we may write,

|A(z)| = (z − 1)Q(z), (3.17)

where Q(z) is a polynomial of degree 2n− 1. Using Cramer’s rule, for all values of z at which A(z)

is nonsingular, we have,

|A(z)|Gj(z) = |Aj(z)|(z − 1), i = 1, 2, ...n. (3.18)

Here, matrix Aj(z) is obtained by replacing the jth column of A(z) with ~b(z). The equation 3.18

must hold for all z ∈ [0, 1] since all functions in 3.18 are continuous and bounded in [0, 1], in addition

the polynomial |A(z)| may have only a finite number of roots in this interval.

The following Lemma would be needed in the proof of Theorem 1.

Lemma 1 Q(1) > 0. 2
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Proof Using 3.17, equation 3.18 may be rewritten as,

Q(z)Gj(z) = |Aj(z)| j = 1, 2, ...n. (3.19)

Taking the derivative of equation 3.17 with respect to z, then letting z = 1 gives,

Q(1) =
d|A(z)|

dz

∣
∣
∣
∣
z=1

. (3.20)

Let ~aj(z) be the jth row vector of matrix A(z). We know that,

d|A(z)|

dz

∣
∣
∣
∣
z=1

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

~a′1(1)

~a2(1)

...

~an(1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

~a1(1)

~a′2(1)

...

~an(1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ · · · · · ·+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

~a1(1)

~a2(1)

...

~a′n(1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.21)

Using the definition of A(z), we obtain,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

~a1(1)

...

~a′j(1)

...

~an(1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (Cµj − λ) ·

j−1
∏

i=1

fi

n∏

i=j+1

ri.

Then, from 3.20 and 3.21, we have,

Q(1) =

n∑

j=1

(Cµj − λ) ·

j−1
∏

i=1

fi

n∏

i=j+1

rj . (3.22)

The result follows from Proposition 1. �

From equations 16, 17, and the definition of G(z), clearly, the generating function of the number

of customers in the system is,

G(z) =

∑n
j=1 |Aj(z)|

Q(z)
. (3.23)

Letting z = 1 in equation 3.19 gives,

|Aj(1)| = Q(1)Gj(1) j = 1, 2, ..., n. (3.24)
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Q(1) and Gj(1) are given by equations 3.22 and 3.15. The n− 1 of the n equations in 3.24 are all

redundant since multiplying
fj

rj+1
to the jth equation of 3.24 will give the (j+1)st equation. On the

other hand, since |Aj(z)| must be zero whenever Q(z) = 0, 0 ≤ z < 1, the next theorem proves that

the generating function has n − 1 unstable poles. Thus, the remaining equations will be obtained

by equating the nominator of the generating function to zero at these unstable poles.

Theorem 1 The polynomial Q(z) exactly has n− 1 distinct real roots in the interval (0,1). 2

By Lemma 1, we have Q(1) > 0. Then, the proof follows from Mitrani and Avi-Itzhak (1968)

since A matrix has a similar structure as the model considered in Mitrani and Avi-Itzhak (1968).

3.1.2 Special Cases

In this section we consider the case with a single failure state. Thus this case reduces to the

queue with two-state Markov-modulated service process considered in Baykal-Gürsoy et al. (2009).

Since there is only one failure state we will use the failure and repair rates without any subscript

as f and r. The service rate under normal conditions is denoted as µ and when the system failure

occurs the service rate reduces to µ′. Also, let N denote the normal state, and F denote the failure

state. Baykal-Gürsoy et al. (2009) obtained the generating function as,

G(z) =

[λz(1− z) + Cµ′(z − 1) + (r + f)z]
∑C−1

i+0 µziPi,N

+[λz(1− z) + Cµ(z − 1) + (r + f)z]
∑C−1

i+0 µ′ziPi,F

λ2z3 − (λ2 + Cλµ + λf + Cλµ′ + λr)z2

+(Cλµ+ Cλµ′ + C2µµ′ + Cfµ′ + Cµr)z − C2µµ′

. (3.25)

In this case, the stability condition is given as

λ <
r

r + f
Cµ+

f

r + f
Cµ′.

By finding the roots of the denominator one of which is inside (0, 1), we can obtain all of the unknown

probabilities in the generating function. The expected number in the system is then obtained from

G′(1). Finding the single unstable root parametrically so that the generating function is obtained in

closed form is elusive. Thus, in the case of partial failures µ′ > 0, this procedure is numerical. As an

example, consider an M/M/3 queue subject to interruptions that reduce the service rate to a half of

its normal value. The expected number of vehicles on the link versus the service rate µ is plotted in

Figure 3.3. In this figure, λ = 1.0, µ = 2µ′ , and f and r take some particular values. It can be seen
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Figure 3.3: Case: λ = 1.0, µ = 2µ′

from Figure 3.3 that the number of vehicles on the link decreases as the service rate increases. Note

that, for the two top most cases the stability condition requires that µ > 4/9λ, since r/(r+f) = 1/2.

If the service rate does not change, higher incident frequency or slower clearance rate would lead to

more vehicles on the link. Figure 3.4 is used to show the effect of µ′, where µ is fixed at 2 and µ′ is

increased independently. Similar to Figure 3.3, we let λ = 1, and f and r vary over a range. It can

be seen that the expected number of customers also decrease as µ′ increases, more significantly than

in Figure 3.3, where µ and µ′ increase simultaneously. Clearly, the stationary number of vehicles on

the link when no incident occurs will constitute the lower bound.
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Figure 3.4: Case: λ = 1.0, µ = 2.0

On the other hand, closed form solutions can be obtained for the complete breakdown case as

will be shown in the next part.
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M/M/C Queues with System Breakdowns and Repairs (µ′ = 0)

For M/M/C queues with complete server breakdowns and repairs(µ′ = 0), the stability condi-

tion for this kind of system will be,

λ <
r

r + f
Cµ.

As we have said before, the M/M/1 queue under complete server breakdown has been studied

by Mitrani and Avi-Itzhak (1968), and Gaver (1962). The generating function in this case can be

written as,

G(z) =

r
r+f (1− ρ r+f

r )(1 − λ/δz)

(1 − ρz)(1− λ/δz)− f
δ

, (3.26)

where ρ λ
Cµ with C = 1 and δ = λ + r + f. Since the generating function of regular M/M/1 queue

without interruptions is G(z) = 1−ρ
1−ρz , we see from 3.26 that contrary to Doshi (1990) this system

does not exhibit the stochastic decomposition property.

For the M/M/2 queue, the generation function is given in (Baykal-Gürsoy et al. (2009)) as,

G(z) =

r
r+f (1− ρ r+f

r )(1− λ/δz)

(1− ρz)(1− λ/δz)− f
δ

·
C + ηz

C + η
, (3.27)

where η = λ
µ (

λ+r+f
λ+r ).

Finally, we will consider the above M/M/3 queue with complete breakdowns. In this case, the

generating function is,

G(z) =
[λ(1− z) + r + f ](3µP0,N + 2µzP1,N + µz2P2,N )

λ2z2 − (λ2 + λr + fλ+ 3λµ)z + 3µ(λ+ r)
. (3.28)

Since G(1) = 1, equation 3.28 provides,

3P0,N + 2P1,N + P2,N = −
λ

µ
+

3r

r + f
. (3.29)
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Using the balance equations, we evaluate,

P0,F =
f

λ+ r
P0,N ;

P1,N =
λ(λ + r + f)

µ(λ+ r)
P0,N = ηP0,N ;

P1,F =
f

λ+ r
P1,N +

λf

(λ + r)2
P0,N

=
λf(λ + r + f + µ)

µ(λ+ r)2
P0,N ;

P2,N =
λ2(λ+ r + f)2 + fµλ2

2µ2(λ + r)2
P0,N

=

(
1

2
η2 +

fλ2

2µ(λ+ r)2

)

P0,N .

By substituting the above probabilities in equation 3.29, we obtain,

P0,N =
3 r
r+f (1− ρ r+f

r )

3 + 2η + 1
2η

2 + fλ2

2µ(λ+r)2

.

We also have,

3P0,N + 2zP1,N + z2P2,N =
3r

r + f

(

1− ρ
r + f

r

)

·
3 + 2ηz + (12η

2 + fλ2

2µ(λ+r)2 )z
2

3 + 2η + 1
2η

2 + fλ2

2µ(λ+r)2

.

Thus, the final form of generating function is,

G(z) =
(1− λ

δ z)
r

r+f (1− ρ r+f
r )

(1 − ρz)(1− λ
δ z)−

f
δ

·
3 + 2ηz + (12η

2 + fλ2

2µ(λ+r)2 )z
2

3 + 2η + 1
2η

2 + fλ2

2µ(λ+r)2

. (3.30)

As the number of servers increases, this system converges to an infinite server queue. Infinite

server queues are more amenable to analysis even in the case of partial failures. It is shown in

(Baykal-Gürsoy and Xiao (2004)), that the generating function has the following closed form,

G(z) = e(λ/µ)(z−1)Ψ(z), (3.31)

where Ψ(z) is the generating function of the mixture of two independent random variables. De-

pending on the value of µ′ these two random variables are either in the form of generalized negative

binomial (for the complete breakdown case) or Poisson with means distributed as truncated beta
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(for the partial failure case). Clearly, this system (3.31) exhibits the decomposition property.

3.1.3 Summary

The analysis ofM/MSP/C queue with n server states presented in this section clearly indicates

that explicit solutions for the general case would be difficult to obtain. But, numerical methods as

shown, could always be applied. For the special case of system breakdowns and repairs (µ′ = 0),

the explicit solutions are obtained. Because breakdowns might happen during the service time of

customers, the service completion time, i.e., dwell time on a link, will not remain exponential. So,

the system we are solving could be considered as an M/G/C queue with a special service structure.

There is little known aboutM/G/C queues that the closed form solutions obtained in Baykal-Gürsoy

et al. (2009) and this section will help to fill this gap.
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3.2 Stochastic Decomposition for MAP & MSP, and Retrial Queues

Stochastic decomposition property is common for many queueing systems. Decomposing a

performance characteristic for the system into two or more simpler and independent random variables

can make us understand the system more easily. This section will show you stochastic decomposition

results for two useful queueing systems. These systems are utilized prominently in traffic problems

and wireless systems.

Stochastic decomposition results have been found in many queueing models. Only several

papers present very well on the complete distributions of the component random variables. The

paper Baykal-Gürsoy and Xiao (2004) is one of them, it gives stochastic decomposition results for

M/M/∞ queues with Markov-modulated service rates, and explains the distributions of the random

variables well. This paper will discuss more general cases with Markov-modulated arrival and service.

Next, I will give stochastic decomposition results on Markov-modulated arrival and service(2

states) M/M/∞ queue, and M/M/1/1 retrial queue. Also, numerical results are given to show the

comparison of probability mass functions between the component random variables.

3.2.1 Markov-Modulated Arrival and Service Queues

In this section, we consider an M/M/∞ queueing system, the arrival process is Markov-

modulated Poisson process, and the service process for all servers is also Markov-modulated(2 states).

Then, we have the transition rate diagram as follows,

0 1 i

1λ

1
µ

1
λ

1
2µ

1
λ

1iµ

1
λ

1
(i+1)µ

0 1 i

2λ

2
µ

2λ
2

λ 2
λ

2
2µ

2
iµ 2(i+1)µ

f r f r f r

Figure 3.5: Transition Rate Structure for Markov-modulated M/M/∞

Then we have the similar transition structure like in Keilson and Servi (1993). And we assume

that µ1, µ2 > 0 and λ1

µ1
< λ2

µ2
without loss of generality. So, we can see state 2 is the partial failure
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state, and we use f to denote the failure rate, and r to be repair rate. So,

λ =




λ1 0

0 λ2



 ; µ =




µ1 0

0 µ2



 ; Q =




−f f

r −r



 (3.32)

Then, by Keilson and Servi (1993), we can get the probability generating function of the number in

the system,

π(u) = exp
[
λ1

µ1
(u− 1)

]

·
[
fµ2+rµ1

µ2(f+r) ·M
(

f
µ1
, f

µ1
+ r

µ2
,
(

λ2

µ2
− λ1

µ1

)

(u− 1)
)

+ r(µ2−µ1)
µ2(f+r) ·M

(
f
µ1
, f

µ1
+ r

µ2
+ 1,

(
λ2

µ2
− λ1

µ1

)

(u − 1)
)]

(3.33)

Using equation 13.4.3 in Abramowitz and Stegun (1964), we can derive another form for this

probability generating function,

π(u) = exp
[
λ1

µ1
(u− 1)

]

·
[
fµ2+rµ1

µ1(f+r) ·M
(

f
µ1
, f

µ1
+ r

µ2
,
(

λ2

µ2
− λ1

µ1

)

(u− 1)
)

+ f(µ1−µ2)
µ1(f+r) ·M

(
f
µ1

+ 1, f
µ1

+ r
µ2

+ 1,
(

λ2

µ2
− λ1

µ1

)

(u− 1)
)]

(3.34)

Theorem 2 The stationary number of customers in the system(µ1, µ2 > 0 and λ1

µ1
< λ2

µ2
), X, has

the form

X = Xϕ + Y (3.35)

where Xϕ and Y are independent, Xϕ is a Poisson random variable with mean ϕ = λ1/µ1, and

P{Y = n} = pP{Y1 = n}+ (1− p)P{Y2 = n} (3.36)

(i) When µ1 < µ2, using equation 3.33, p = (fµ2+rµ1)/(µ2(f+r)), and Y1 and Y2 are conditionally

Poisson distributed with random means that have truncated beta distributions B(a, b,−2ρ∗) and

B(a, b+ 1,−2ρ∗), respectively, where,

a =
f

µ1
, b =

f

µ1
+

r

µ2
, ρ∗ =

1

2

(
λ1

µ1
−

λ2

µ2

)

(3.37)

2

For probability mass function of Y1 and Y2, please see Baykal-Gürsoy and Xiao (2004) for detail.

(ii) When µ1 > µ2, using equation 3.34, p = (fµ2 + rµ1)/(µ1(f + r)), and Y1 and Y2 are condition-

ally Poisson distributed with random means that have truncated beta distributions B(a, b,−2ρ∗) and

B(a+ 1, b+ 1,−2ρ∗), respectively. a, b and ρ∗ are same as in the above case.
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Proof Since Kummer’s function M(a, b, c(u − 1)) is the generating function of Poisson random

variable Y randomized by truncated beta B(a, b, c), the above results is easy to get. The proof is

very similar to Baykal-Gürsoy and Xiao (2004). �

From Theorem 2, we can get the expectation and variance of number of customers in the

system.

Corollary 1 For the number of customers in the system (µ1, µ2 > 0 and λ1

µ1
< λ2

µ2
), X, its expecta-

tion in steady state is given as

E(X) =
λ1

µ1
+

(λ2µ1 − λ1µ2)f(f + r + µ1)

µ1(f + r)(fµ2 + rµ1 + µ1µ2)
. (3.38)

its variance is derived as

V ar(x) =
λ1

µ1
+

f(λ2µ1 − λ1µ2)(f + r + µ1)

µ1(f + r)(fµ2 + rµ1 + µ1µ2)

+
fr(λ2µ1 − λ1µ2)

2 · [(f + r)2 + 2(fµ2 + rµ1 + µ1µ2) + fµ1 + rµ2]

(f + r)2(fµ2 + rµ1 + µ1µ2)2 · (fµ2 + rµ1 + 2µ1µ2)
(3.39)

2

Proof Take 1st derivative and 2nd derivative of the generating function, then let u = 1, then use

formulas in Abramowitz and Stegun (1964), we can get the 1st and 2nd moments of x. Finally, we

can have the expected number and its variance. �

And we have the following two special cases:

CASE 1 - Markov-modulated Arrival only (µ1 = µ2 = µ): Then, since λ1/µ1 < λ2/µ2, we

have λ1 < λ2. The generating function for the number of customers in the system will be,

π(u) = exp

[
λ1

µ
(u− 1)

]

·M

(
f

µ
,
f + r

µ
,
λ2 − λ1

µ
(u− 1)

)

. (3.40)

From this, we can easily get the stochastic decomposition results,

X = Xϕ + Y (3.41)

Here, Xϕ is still a Poisson random variable with mean ϕ = λ1/µ. But Y is conditionally Poisson
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distributed with random means that have truncated beta distributions B(a, b,−2ρ∗), where

a =
f

µ
, b =

f + r

µ
, ρ∗ =

λ1 − λ2

2µ
. (3.42)

CASE 2 - Markov-modulated Service only (λ1 = λ2 = λ): Then, since λ1/µ1 < λ2/µ2,

we have µ1 > µ2. The generating function for the number of customers in the system will be, (since

µ1 > µ2, we use equation 3.34)

π(u) = exp

[
λ

µ1
(u− 1)

]

·

[
fµ2 + rµ1

µ1(f + r)
·M

(
f

µ1
,

f

µ1
+

r

µ2
,

(
λ

µ2
−

λ

µ1

)

(u− 1)

)

+
r(µ1 − µ2)

µ1(f + r)
·M

(
f

µ1
+ 1,

f

µ1
+

r

µ2
+ 1,

(
λ

µ2
−

λ

µ1

)

(u− 1)

)]

(3.43)

This is actually the exact results from Baykal-Gürsoy and Xiao (2004). Stochastic decomposition

result is given in Baykal-Gürsoy and Xiao (2004), here, we will not explain again.

And then, here we will give the probability mass function graphs for each case. Intuitively, you can

get some idea from these graphs.
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Figure 3.6: Probability Mass Function for the Number in the System (General Case)
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Figure 3.10: Probability Mass Function for the Number in the System (MSP, r=0.2)

From figure 3.8 to 3.10, we can see when r increases, PMF of X is influenced more by PMF of

Xϕ. That’s because the probability that the system is in state 1, r
f+r increases, and Xϕ is a Poisson

random variable with mean λ1/µ1(state 1).

We make the following assumption before, µ1, µ2 > 0. Here, we will discuss the case in which

µ1 > 0 but µ2 = 0. This is the singular case that is also considered in Keilson and Servi (1993).

Then, by Keilson and Servi (1993), we can easily have the probability generating function for the

number in the system as,

π(u) = C1 · e
λ1
µ1

u · [−λ2µ1u+ (f + r + λ2)µ1] · [−λ2µ1u+ λ2µ1 + rµ1]
−

µ1+f

µ1 (3.44)

Using π(1) = 1, the value of constant C1 is,

C1 =
e
−

λ1
µ1 (rµ1)

µ1+f

µ1

(f + r)µ1

Then,

π(u) = e
λ1
µ1

(u−1)

{

r

r + f

[
r/(λ2 + r)

1− λ2u/(λ2 + r)

] f
µ1

+
f

r + f

[
r/(λ2 + r)

1− λ2u/(λ2 + r)

] f
µ1

+1
}

(3.45)

Here,
[

r/(λ2+r)
1−λ2u/(λ2+r)

] f
µ1

is the probability generating function of a negative binomial random variable

with parameters f
µ1

and r
λ2+r , and

[
r/(λ2+r)

1−λ2u/(λ2+r)

] f
µ1

+1

is the probability generating function of a

negative binomial random variable with parameters f
µ1

and r
λ2+r .

Theorem 3 The stationary number of customers in the Markov-modulated
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Arrival and Service system we described above (µ1 > 0, µ2 = 0 and λ1

µ1
< λ2

µ2
), X, has the form,

X = Xϕ + Y (3.46)

where Xϕ and Y are independent, Xϕ is a Poisson random variable with mean ϕ = λ1/µ1, and

P{Y = n} = pP{Y1 = n}+ (1− p)P{Y2 = n} (3.47)

2

where p = r/(r + f), Y1 is NB(f/µ1, r/(λ2 + r)) and Y2 is NB(f/µ1 + 1, r/(λ2 + r)).

Proof Please see above description. �

3.2.2 Retrial Queues

In this section, we will consider an M/M/1/1 retrial queue. In a wireless network, this is a

one channel network, that means there is only one channel in each cell area. When a mobile device

wants to connect to the network, but the channel is occupied by another device, it will retry again

after a random interval or abandon trying with some rate. This is the basic system for wireless

networks where multi-channel and other variations can be studied.

In this system, arrival process is Poisson with rate λ, and service times are i.i.d exponential

with rate µ. The retrial interval for each blocked customer is i.i.d exponentially distributed with rate

ζ, and each customer will renege from the system with a constant rate θ. This case is considered in

Keilson and Servi (1993), please see more details in Keilson and Servi (1993). Then the probability

generating function of the number in the orbit is

π(u) =







K
[

M(b− a, b,−d− e(u− 1)) + λζ
λθ+µ(θ+ζ)M(b− a+ 1, b+ 1,−d− e(u− a))

]

, if θ > 0
(

1 + λ
µ − λ

µu
){

1−λ/µ
1−(λ/µ)u

}

, if θ = 0

(3.48)

Here,

a =
µ

θ
, b =

λ

θ + ζ
+

µ

θ
, d = −

λζ

θ(θ + ζ)
, e = −

λ

θ
.

Since π(1) = 1, we can get

K =
λθ + µ(θ + ζ)

[λθ + µ(θ + ζ)]M(b − a, b,−d) + λζM(b − a+ 1, b+ 1,−d)
(3.49)
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Then for the case θ > 0, we can get this,

π(u) = p1 ·
M(b− a, b,−d− e(u− 1))

M(b− a, b,−d)
+ p2 ·

M(b− a+ 1, b+ 1,−d− e(u− 1))

M(b− a+ 1, b+ 1,−d)
(3.50)

Where,

p1 =
[λθ + µ(θ + ζ)]M(b − a, b,−d)

[λθ + µ(θ + ζ)]M(b − a, b,−d) + λζM(b − a+ 1, b+ 1,−d)
, (3.51)

p2 =
λζM(b − a+ 1, b+ 1,−d)

[λθ + µ(θ + ζ)]M(b − a, b,−d) + λζM(b − a+ 1, b+ 1,−d)
. (3.52)

b− a = λ
θ+ζ > 0 and −d = λζ

θ(θ+ζ) > 0, so we can get p1 > 0, p2 > 0, and also we can easily have,

p1 + p2 = 1.

Let

g1(u) =
M(b− a, b,−d− e(u− 1))

M(b− a, b,−d)
, g2(u) =

M(b− a+ 1, b+ 1,−d− e(u− 1))

M(b− a+ 1, b+ 1,−d)
.

On the other hand, by Fitzgerald (2002), we know that g1(u) and g2(u) are both hyper-Poisson

random variables with four parameters (b− a, b,−d,−e) and (b− a+ 1, b+ 1,−d,−e), respectively.

The probability mass function for a hyper-Poisson random variable Y with four parameters (a, b, c, λ)

is

P{Y = n} =
M(a+ n, b+ n, c− λ)

M(a, b, c)

(a)n
(b)n

λn

n!
. (3.53)

If the first two parameters of hyper-Poisson random variables are equivalent, the hyper-Poisson

will recover the Poisson distribution. For example, in our case, if b− a = b, then µ = 0, that means

there is no service able to be processed. Since b− a = b, M(b− a, b, x) = ex, we can then have,

p1 =
λθ · e−d

λθ · e−d + λζ · e−d
=

θ

θ + ζ
> 0;

p2 =
ζ

θ + ζ
;

g1(u) =
e−d−e(u−1)

e−d
= e

λ
θ
(u−1);

g1(u) = e
λ
θ
(u−1).

So,

π(u) = e
λ
θ
(u−1). (3.54)
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This is just the generating function of a Poisson random variable with parameter λ
θ . Intuitively, this

makes sense also, since the input for system is λ, and output is only the reneging rate θ, no service

rate.

For another case, if d = 0, this means ζ = 0. Then, we will have p1 = 1, p2 = 0, and then,

π(u) = g1(u) = M(b− a, b,−e(u− 1)).

So, this is the generating function of a Poisson random variable randomized by truncated beta

B(b − a, b,−e).

For the case θ = 0, if λ ≥ µ, the number in the system will increase to ∞. So for the stable

system, we need to let λ < µ, that means λ
µ < 1. Then we have

π(u) = p′1 + p′2 · g(u) (3.55)

where p′1 = 1− λ
µ , p

′

2 = λ
µ , so we know p′1 + p′2 = 1 and p′1, p

′

2 > 0.

g(u) = 1−λ/µ
1−λ/µu is the generating function of a Geometric random variable with parameter 1− λ

µ

Then, we have the following theorem.

Theorem 4 The number of customers in the retrial orbit, Y , has the probability mass function as,

P{Y = n} = p1 · P{Y1 = n}+ p2 · P{Y2 = n}, if θ > 0; (3.56)

P{Y = n} = p′1 · P{Y ′

1 = n}+ p′2 · P{Y ′

2 = n}, if θ = 0. (3.57)

where Y1 and Y2 are hyper-Poisson random variables with four parameters (b − a, b,−d,−e) and

(b− a+ 1, b+ 1,−d,−e), respectively. p1 and p2 are given in the above equations 3.51 and 3.52; Y ′

1

is a constant 0, Y ′

2 is Geometric random variables with parameter 1− λ
µ , and p′1 = 1− λ

µ , p
′

2 = λ
µ .2

Proof From the above descriptions, the results are easy to get. �

The following figures are probability mass functions for number in the retrial orbit under

several situations. From Figure 3.11 to 3.13, we can see that with increasing retrial rate ζ, form of

the probability mass function of Y differs more from the form for probability mass function of Y1,

and Y2 remain similar.
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Figure 3.11: Probability Mass Function for the Number in the Orbit (ζ = 3)

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

n

P
ro

ba
bi

lit
y 

M
as

s 
F

un
ct

io
ns

Y
1

Y

Y
2

λ=20;
µ=15;
ζ=10;
θ=0.2.

Figure 3.12: Probability Mass Function for the Number in the Orbit (ζ = 10)
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Figure 3.13: Probability Mass Function for the Number in the Orbit (ζ = 20)
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3.2.3 Summary

In this section, we give stochastic decomposition results for M/M/∞ queue with Markov-

modulated arrival and service(2 states), and present the expected number of customers in the system

and its variance. Then, we present the stochastic decomposition results for a M/M/1/1 retrial queue

with infinity capacity in the retrial orbit.

We have already discovered stochastic decomposition results for various queueing models. How-

ever, we believe that there are much more queueing models which have stochastic decomposition

property. Next, we will focus on M/G/∞ case and other general retrial queueing models.

We only considered the case in which there are only two modulation states. We will search for

stochastic decomposition results for more general Markov-modulated queues. This will be another

future research direction.
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3.3 Completion Time Analysis ofM/G/∞Queue under Two Service Speeds

As an expansion of previous research results on M/M/∞ queues with different service speeds,

in this section, an M/G/∞ queuing system with two service speeds is discussed. The arrivals of

customers is a Poisson process. The cumulative distribution function for service requirements of

each customers is FS(t), probability density function is fS(t), and corresponding Laplace transform

for density function is LS(s). Mean service requirement is 1/µ.

The system’s normal service speed is 1, and when a failure happens to the system, the service

speed will drop to 0 < α < 1. We call the periods that the system works with normal speed as up

periods, and the periods that the system works with lower speed α as down periods. Since α > 0,

this kind of system is called partial breakdown system. The system will alternate between up and

down periods. Up periods duration is exponentially distributed with mean 1/f . However, the down

periods duration is generally distributed with cdf FD(t), with mean duration 1/r. The corresponding

pdf is fD(t), and Laplace transform is LD(s).

And also, in this system, we assume that when a failure happens or a repair is finished, the

service for current customers will restart with the same service requirements distribution.

3.3.1 Completion Time Analysis of M/G/∞ with General Down Periods

Partial Breakdown System

For completion time of an arrival, first, we divide the customers into two groups. The first

group G1 of customers are those who arrives during a system up period. The second group G2 of

customers are those who arrives during a system down period. Mean up periods and down periods

for the system are 1
f and 1

r , so, we can get the probability of any customer in G1 or G2. They are,

P
{
G1

}
=

r

f + r
, P

{
G2

}
=

f

f + r
. (3.58)

In this system, we assumed that when a failure happens or a repair is finished, service for

customers will restart with the same service requirements distribution. Then, for those two groups

of customers we defined, we will get the Laplace transform of conditional completion time separately.

Then combine them together to get Laplace transform for completion time C.
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Customers in G1

Here, we will assume our customers arrive during an up period. And up and down periods are

Ui and Di, and service requirements are Si. And then we define the following events,

An there are n complete up periods, n complete down periods and another incomplete up period in

the completion time (n = 0, 1, 2, . . .). This actually means

S2i−1 > Ui,
1

α
S2i > Di for i = 1, 2, . . . n

and S2n+1 < Un+1. (3.59)

En there are n+1 completed up periods, n completed down periods and another incompleted down

period in the completion time (n = 0, 1, 2, . . .). This actually means

S2i−1 > Ui,
1

α
S2i > Di, S2n+1 > Un+1 for i = 1, 2, . . . n

and
1

α
S2n+2 < Dn+1. (3.60)

In this system, we can get probabilities for each events,

P
{
An|G

1
}
= Pn{S > U} · Pn{S > αD} · P{S < U}

P
{
En|G

1
}
= Pn+1{S > U} · Pn{1/αS > D} · P{1/αS < D} (3.61)

For each events stated above, we will try to get the Laplace transform for conditional completion

time. The conditional completion time C will be,

C =







S1 Event A0

U1 +
1
αS2 Event E0

U1 +D1 + S3 Event A1

· · · · · ·

∑n
i=1 Ui +

∑n
i=1 Di + S2n+1 Event An

∑n+1
i=1 Ui +

∑n
i=1 Di +

1
αS2n+2 Event En

· · · · · ·

(3.62)
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Case An:

E[e−sC |An, G
1] · P{An|G

1}

= En[e−sU |S > U ] · En[e−sD|S > αD] · E[e−sS |S < U ] · Pn{S > U} · Pn{S > αD} · P{S < U}

=
(
E[e−sU |S > U ]P{S > U}

)n
·
(
E[e−sD|S > αD]P{S > αD}

)n
· E[e−sS |S < U ]P{S < U}

(3.63)

where, s is a complex number with positive real part, U ∼ Exp(f), S is the generally distributed

service requirement random variable, and D is the generally distributed down period random vari-

able.

First, find the conditional density function for corresponding random variables, then we will be

able to get the following terms,

E[e−sU |S > U ]P{S > U} =
f

s+ f
[1− LS(s+ f)] (3.64)

E[e−sD|S > αD]P{S > αD} = LD(s) =

∫
∞

0

e−stfD(t)FS(αt)dt (3.65)

E[e−sS |S < U ]P{S < U} = LS(s+ f) (3.66)

Then, we can have the Laplace transform for conditional completion time, given that customer

is in G1 and event An happens.

E[e−sC |An, G
1] · P{An|G

1} =

{
f

s+ f
[1− LS(s+ f)]

}n

·

{

LD(s)−

∫
∞

0

e−stfD(t)FS(αt)dt

}n

· LS(s+ f) (3.67)

Case En: Similar to An, we have,

E[e−sC |En, G
1] · P{En|G

1} =
(
E[e−sU |S > U ]P{S > U}

)n+1
·
(
E[e−sD|S > αD]P{S > αD}

)n

· E[e−s 1
α
S |S < αD]P{S < αD} (3.68)

The first 2 terms in above equation are given in case An, and we used similar method to get the last

term.

E[e−s 1
α
S |S < αD]P{S < αD} = LS

( s

α

)

−

∫
∞

0

e−s 1
α
tfS(t)FD

(
t

α

)

dt (3.69)
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Then, we have,

E[e−sC |En, G
1] · P{En|G

1} =

{
f

s+ f
[1− LS(s+ f)]

}n+1

·

{

LD(s)−

∫
∞

0

e−stfD(t)FS(αt)dt

}n

·

[

LS(s/α)−

∫
∞

0

e−s 1
α
tfS(t)FD

(
t

α

)

dt

]

(3.70)

Summary for G1 So, we can get the Laplace transform for the conditional completion time, given

that the customer arrives during up periods.

E
[
e−sC |G1

]
=

∞∑

n=0

E
[
e−sC |An, G

1
]
P{An|G

1}+
∞∑

n=0

E
[
e−sC |En, G

1
]
P{En|G

1}

=
1

1− V
·

{

LS(s+ f) +
f

s+ f
· [1− LS(s+ f)]

·

[

LS(s/α)−

∫
∞

0

e−s 1
α
tfS(t)FD

(
t

α

)]}

(3.71)

where

V =
f

s+ f
[1− LS(s+ f)] ·

[

LD(s)−

∫
∞

0

e−stfD(t)FS(αt)dt

]

Customers in G2

Now, we will consider the customers in group G2, similar method will be used. However, since

down periods are generally distributed, more derivations are needed. Let Y be the remaining down

time after arrival of the customer. Given that customer arrives during down period, conditional

completion time will be,

C =



























































































1

α
S1 if 1

α
S1 < Y Event A0

Y + S2 if 1

α
S1 < Y and S2 < U1 Event E0

Y + U1 +
1

α
S3 if 1

α
S1 < Y,S2 > U1 and 1

α
S3 < D2 Event A1

· · · · · ·

Y +
∑n

i=1
Di +

∑n
i=1

Ui +
1

α
S2n+1 Event An

Y +
∑n+1

i=1
Di +

∑n
i=1

Ui + S2n+2 Event En

· · · · · ·

(3.72)

First, for the remaining down time Y , probability density function is,

fY (t) = r · [1− FD(t)], t > 0. (3.73)
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and Laplace transform for pdf of Y is,

LY (s) =
r

s
[1− LD(s)] (3.74)

Similar method can be used to obtain Laplace transforms of completion time under each events,

E[e−sC |A0, G
2] · P{A0|G

2} = LS

( s

α

)

−

∫
∞

0

e−
s
α
tfS(t)FY

(
t

α

)

dt (3.75)

E[e−sC |E0, G
2] · P{E0|G

2} = LS(s+ f) ·

[

LY (s)−

∫
∞

0

e−stfY (t)FS(αt)dt

]

(3.76)

E[e−sC |An, G
2] · P{An|G

2}

=

[

LY (s)−

∫
∞

0

e−stfY (t)FS(αt)dt

]

·

[

LD(s)−

∫
∞

0

e−stfD(t)FS(αt)dt

]n−1

·

[
f

s+ f
(1− LS(s+ f))

]n

·

[

LS(s/α)−

∫
∞

0

e−s/αtfs(t)FD(t/α)dt

]

(3.77)

E[e−sC |En, G
2] · P{En|G

2}

=

[

LY (s)−

∫
∞

0

e−stfY (t)FS(αt)dt

]

·

[

LD(s)−

∫
∞

0

e−stfD(t)FS(αt)dt

]n

·

[
f

s+ f
(1− LS(s+ f))

]n

· LS(s+ f) (3.78)

Summary for G2 By combining equations 3.75-3.78, we can get Laplace transform for completion

time of customers in G2,

E[e−sC |G2] =
1

1− V
·

[

LY (s)−

∫
∞

0

e−stfY (t)FS(αt)dt

]

·

{
f

s+ f
[1− LS(s+ f)] ·

[

LS(s/α)−

∫
∞

0

e−s/αtfS(t)FD(t/α)dt

]

+ LS(s+ f)

}

+

[

LS(s/α)−

∫
∞

0

e−s/αtfS(t)FY (t/α)dt

]

(3.79)
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Completion Time Laplace transform

By combining equations 3.71 and 3.79, for this system, the completion time Laplace transform

is given by,

E[e−sC ] = E[e−sC |G1]P{G1}+ E[e−sC |G2]P{G2}

=
1

1− V
·

{

r

r + f
LS(s+ f) +

rf

(r + f)(s+ f)
[1− LS(s+ f)] ·

[

LS(s/α) −

∫

∞

0

e−s/αtfS(t)FD(t/α)dt

]

+

[

LY (s)−

∫

∞

0

e−stfY (t)FS (αt)dt

]

·

[

f

r + f
LS(s+ f) +

f2

(r + f)(s+ f)
[1− LS(s+ f)] ·

[

LS(s/α) −

∫

∞

0

e−s/αtfS(t)FD(t/α)dt

]]}

+
f

r + f

[

LS(s/α) −

∫

∞

0

e−s/αtfS(t)FY (t/α)dt

]

Here,

V =
f

s+ f
[1− LS(s+ f)] ·

[

LD(s)−

∫ ∞

0
e−stfD(t)FS(αt)dt

]

3.3.2 Special Cases

In this section, several variants of the original problem are discussed, especially for

the M/M/∞ system with exponentially distributed up and down periods, and results for

completion time here coincide with previous research results.

Completion Time for M/G/∞ Partial Breakdown System With Restart Service

For this part, we will focus on M/G/∞ system with the same partial breakdown rule as

in previous section. However, the down periods duration will be exponentially distributed

with mean r. After each repair or system partial breakdown, every customers in the system

must restart their services with the same distribution S(·).
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we can have Laplace transform for completion time for such an M/G/∞ system,

E[e−sC ] = E[e−sC |G1]P{G1}+ E[e−sC |G2]P{G2}

=
1

(f + r)(1− V )
·

{

rLS(s+ f) +
fr

s+ f
[1− LS(s+ f)]LS

(
s+ r

α

)

+fLS

(
s+ r

α

)

+
fr

s+ r

[

1− LS

(
s+ r

α

)]

LS(s+ f)

}

(3.80)

where,

V =
rf [1− LS(s + f)]

[
1− LS(

s+r
α )

]

(s + f)(s+ r)

If the service requirement S is exponentially distributed with rate µ, then LS(s) =
µ

s+µ .

Plug this into equation 3.80, and we will get the same results as in M/M/∞ section.

Completion Time for M/M/∞ Partial Breakdown System With General Down

Periods

In this section, we made modification on original problem, the service time is changed

to be exponentially distributed with mean 1/µ.

Then, we can get Laplace transform of completion time for this system,

E
[

e−sC
]

=
fµα [s+ µα− r(1− LD(s+ µα))]

(f + r)(s+ µα)2

+
1

1− V
·

{

rµ [s+ µα+ f(1 + α)(1− LD(s+ µα))]

(f + r)(s+ f + µ)(s+ µα)
+

f2rµα [1− LD(s+ µα)]2

(f + r)(s+ f + µ)(s+ µα)2

}

(3.81)

where,

V =
f

s+ f + µ
· LD(s+ µα) (3.82)

If down periods are exponentially distributed with rate r, we can get the same results

as in section 3.3.2.

Completion Time for M/M/∞ Partial Breakdown System

By making both the service time and down periods exponentially distributed, our

system will became an M/M/∞ system with Markov modulated service speeds. Then, we
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can have Laplace transform for completion time for such an M/M/∞ system,

E[e−sC ] = E[e−sC |G1]P{G1}+ E[e−sC |G2]P{G2}

=
µ

f + r
·
r(s+ f + r + µα) + fα(s+ f + r + µ)

(s+ f + µ)(s + r + µα)− fr
(3.83)

Stochastic Decomposition

For stochastic decomposition property, first we know for sure that C = S+Y , here S is

the service requirement for the particular customer, and Y is another random variables we do

not know. So, it is obvious that S and Y are not independent to each other, therefore, from

Laplace transform of completion time, we can not clearly decompose it into multiplication

of Laplace transforms of service requirement and another random variable. However, we

can rewrite the Laplace transform, then get a sense about the completion time for this

system. From equation 3.83, we can rewrite it into,

E[e−sC ] =
r

f + r
·

µ(s+ r + fα+ µα)

(s+ f + µ)(s + r + µα)− fr
︸ ︷︷ ︸

A

+
f

f + r
·

µ(sα+ fα+ r + µα)

(s+ f + µ)(s + r + µα)− fr
︸ ︷︷ ︸

B

Then, we can decompose completion time C into C = r
f+rC1 +

f
f+rC2, and here, random

variables C1 and C2 have Laplace transforms A and B respectively. After inverse, we can

have density function for C1 and C2 as following,

fC1
(t) =

µ(s1 + fα+ r + µα)

s1 − s2
es1t −

µ(s2 + fα+ r + µα)

s1 − s2
es2t (3.84)

fC2
(t) =

µ(s1α+ fα+ r + µα)

s1 − s2
es1t −

µ(s2α+ fα+ r + µα)

s1 − s2
es2t (3.85)

Here, s1 and s2 are two roots for the following equation, also s1 > s2. On the other hand,

it is easy to prove that these two roots are both real negative roots.

(s+ f + µ)(s+ r + µα)− fr = 0 (3.86)

Comparison With Previous Results

In Gaver (1962), completion time for complete breakdown is analyzed, our completion
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time Laplace transform results (if α = 0) coincide with its preemptive-repeate-different

interruptions case. Since for Gaver’s case all services start in an up period, we only need

to compare Gaver’s results with our results for group G1. If α = 0 for our problem, we will

have exatly the same results as Gaver’s.

And also, by little’s theorem, we can get expected number in the system, this results

also coincide with Baykal-Gürsoy and Xiao (2004). The expected completion time for this

system is,

E[C] =
1

µ
+

f(1− α)

f + r
·

f + r + µ

µ(fα+ r + µα)
(3.87)

3.3.3 Summary

Completion time for customers in an M/G/∞ system with two service speeds is ob-

tained. Two service speeds are modulated by generally distributed down periods and ex-

ponentially distributed up periods. Some special cases of this system are further analyzed,

and the results coincide with previous research. In traffic flow modeling, the exponentially

distributed up periods can be viewed as interarrival time of incidents, and the generally

distributed down periods can be viewed as repair time of the road by first responders.

Further research can be extended to multiple service speeds with different partial break-

downs, and also, with extension to generally distributed up periods, the model can adapt

into more complicated breakdown systems.
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3.4 Application on Traffic Flow Modeling with Incidents

Highway congestion delay include recurrent delay and non-recurrent delay caused by

accidents, vehicle breakdowns, and other random events. Recurrent delay is due to travel

demand fluctuations, and the network structure of highway etc. Non-recurrent delay arises

due to incidents.

In this section, a stochastic queuing traffic flow model which combines recurrent and

non-recurrent congestion is presented. We compare the travel time estimate of this model

with the incident only model via simulation experiments.

3.4.1 Combined Traffic Flow Modeling under Recurrent and Non-Recurrent

Congestion

A modified M/MSP/C/C queuing model is used to model the traffic flow subject

to both incidents and recurrent congestion. The following diagram is the state transition

diagram for such a queuing system. The two dimensional stochastic process {X(t), U(t)}

describes the state of the system at time t, where X(t) is the number of customers in the

system, and U(t) is the status of the system at time t. If at time t, the system is experiencing

an interruption, then U(t) is equal to F (failure); otherwise, U(t) is N (normal). The system

is said to be in state (i, F ), if there are i customers in the system which is experiencing an

interruption, while the system is said to be in state (i,N), if there are i customers in the

system which is functioning normally.

Figure 3.14: State Transition Diagram for Modified M/MSP/C/C Model

In this system, we use the exponential congestion factor Ai to modify theM/MSP/C/C
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queuing model with

Ai =
Vi

Vfree
.

Here, Vi is the vehicle speed based on free speed Vfree when there are totally i vehicles on

the road link given by,

Vi = Vfree · exp

[

−

(
i− 1

β

)γ]

For detailed explanation about exponential congestion model, please refer to Jain and Smith

(1997).

Table 3.1: Comparison of analytical models with simulation
C λ µ f r Simulation Incident only Model(M/MSP/C) Combined Model

400 0.3 0.015 0.0002 0.005 74.93 74.57(-0.48%) 85.81(14.52%)
200 0.3 0.03 0.0002 0.005 39.94 39.19(-1.88%) 47.40(18.68%)
100 0.3 0.06 0.0002 0.005 23.38 20.84(-10.86%) 28.85(23.4%)
50 0.3 0.12 0.0002 0.005 13.08 11.08(-15.29%) 13.57(3.75%)

Table 3.1 presents the expected travel times for the incident only model of Baykal-

Gürsoy et al. (2009) and the combined model described in this section, together with the

traffic simulation results. The relative errors between the simulation and analytic mod-

els are given inside the parenthesis in the last two columns. We use INTEGRATION to

simulate a link with travel speed at full capacity v = 57.5km/hr(65miles/hr). Note that

INTEGRATION treats the arrival process as fluid, thus generating l vehicles per hour de-

terministically. We consider various arrival rates and link lengths on a two-lane roadway

where minor incidents happen. Minor incidents take on the average of 7 minutes to clear

(Skabardonis et al. (1998)). They report 0.5 incidents per hour for a one kilometer roadway.

The values for f and r are chosen accordingly. For each setting, we run the simulation to ob-

tain average travel times for 100 replications and each replication simulates a 12000-second

period. Under congestion, each replication takes 5 minutes, thus each scenario takes more

than four hours. This is very time-consuming compared to the analytical model. We would

like to emphasize that in the simulation model as in real life, the service times are also nei-

ther independent nor exponential. The incident process is the only random process in the

simulations. Also, here we take m′ = m/14. From this set of results, we can conclude that,

the incident only model will work well under light traffic situation such as most highway
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traffic, and combined model will usually be effective under heavy traffic situation, such as

city traffic.

3.4.2 Summary

We combined models for recurrent and non-recurrent congestion in traffic flow to-

gether, improved the travel time estimation results on a road link with heavy traffic situa-

tion. Recurrent congestion is represented by empirical exponential congestion model, and

non-recurrent congestion is modeled by queuing system with Markov-modulated service

processes.

Further research can be directed to use queuing network to represent the traffic network.

In this system, various queuing systems can be used to represent different types of road links

on the traffic network.
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Chapter 4

Infrastructure Security Games

For man-made emergencies in transit infrastructure, such as terrorist attacks, suicide

bombings etc. There are adversaries who are trying to do damages or hurt people in

transit infrastructure, and then first responders who are trying to avoid these types of

emergencies from happening. So games of security in infrastructure are constantly played

between adversaries and first responders. In this chapter, we will introduce game theory

into this topic, to help identify the nature of the problem, and also help first responders

to design their resource allocation strategy or patrol strategy in order to avoid or minimize

the damages caused by adversaries.

First, a one-step problem between adversary and first responder is considered, and it

is a resource allocation problem for first responder who is trying to catch adversary with

limited resources. Static game is designed to represent the problem, and resource allocation

strategies under game equilibrium is obtained for first responder, also the mixed probability

strategy for adversary.

Then, a dynamic game between adversary and first responder is considered, in which

adversary is immobile, and first responder will patrol the infrastructure to detect the adver-

sary. Game theory and partially observable Markov decision process(POMDP) models are

used to analyze the competitive nature of the problem. Risk measure and patrol sequence

strategies under equilibrium are obtained.

4.1 Background

First, let us look at the particular emergency situations to analyze them more deeply.

On July 7 2005 in London, at 8:50 a.m., three bombs exploded within fifty seconds of each
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other on three London Underground trains, and a fourth bomb exploded on a bus nearly

an hour later at 9:47 a.m. in Tavistock Square. The bombings killed 52 commuters and

the four suicide bombers, also it caused disruption of country’s transportation system and

telecommunication system.

Bombers intended to detonate 4 bombs on 4 underground trains which left from King’s

Cross St. Pancras and headed to 4 different directions. But one of the bombers thought the

Northern line he was intended to attack was suspended at that time according to reports.

So, he turned away from the Underground, and took a bus, then finally detonated the bomb

at Tavistock Square. And the other 3 bombs on the underground trains were detonated

nearly at the same time, and they were detonated when two trains were crossing, thus

resulting in more damages.

For most of the day, central London’s public transport system was effectively crippled

because of the complete closure of the underground system, the closure of the Zone 1 bus

networks, and the evacuation of Russell Square. Most of the mainline train stations and bus

networks reopened later that day, however, some train lines kept closed even until August.

Not only the incident hit transportation system, but also caused intermittent unavailability

of mobile and landline phone systems due to excessive usage during that time.

And also, there were immediate impacts on world economy in financial markets and

exchange rate activity. The pound fell 0.89 cents to a 19-month low against U.S. dollar.

The FTSE 100 Index fell by about 200 points in the two hours after the first attack. Stock

market in Germany, France, Spain also closed about 1% down on that day. Then, they

recovered on the second day since the damages were not as significant as originally thought.

Similar things happened during Madrid train bombing incident on March 11 2004,

which killed 191 people, and injured around 2000 individuals. During these incidents, the

attackers were not suicide bombers, instead, they used cell phones to detonate bombs. It

also happened during the morning rush hour in order to cause mass casualties. More trains

were involved, and more bombs were detonated in this incident.

In 1995 Tokyo Sarin gas attack on subway, plastic bags with Sarin gas were placed on

the train, the attacker used an umbrella to poke a hole and then quickly left the train. The
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train continuing to operate caused all passengers to be affected by the gas. There were 12

people killed, and totally over a thousand people injured.

From the previous attacks on transit infrastructures, we can discover that situations

and attack methods can be different from one another. It is hard to model this kind of

emergency exactly according to what happened before, and it is also uncanny to do so since

the attackers will definitely change their strategies to avoid detection next time. However,

all these incidents have some characteristics in common, those are the attackers are trying

to avoid any security detection, on the other hand, securities are trying their best to track

down every footprints attackers left. Therefore, we shall generalize our problems into a

noncooperative game between a responder and an adversary.
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4.2 Resource Allocation Games

In this section, a one-step hide and seek game between adversary and first responder is

analyzed. First responder allocates limited resources into different cells of infrastructure to

maximize detection chances of adversary, while adversary is mixing up attacking position

to avoid detection.

We are trying to work on the dynamic hide and seek game described in section 2.2.1.

As a start point of this research, we will consider this one-step noncooperative game. We

will assume that this static game is a zero-sum game, since the damage to the infrastructure

are the payoff for adversary and cost for responder. The responder and the adversary will

make their respective decisions simultaneously.

4.2.1 One Step Hide and Seek Game

We consider a grid structure composed of cells for the transit infrastructure. Cells

have associated characteristics such as their importance to the adversary, vulnerability to

attacks, and the measure of detection. These factors are all available to both the responder

and adversary. Damage levels and detection are based on these factors and strategies of

both players.

In the remaining part of this section, one step hide and seek game for responder and

adversary will be modeled, characteristics of the game are analyzed, and an appropriate

and efficient algorithm is developed to solve this problem.

Model Formulation

From now on, we will refer the adversary as hider, and refer responder as seeker. The

hider is called player H, and seeker is called player S. The attack targets constitute a finite

collection of cells Nc := {1, 2, . . . m}. For each cell, they have different detection possibility

parameters for the seeker, λi. If λi is larger, bomb will be easier to detect in cell i. Each

cell has a damage impact factor, Ci, if the bomb is detonated at cell i, damage cost for the

seeker will be Ci. Ci is the positive payoff for the hider under this situation. So, this model

is a zero-sum noncooperative two person game.
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Now, we will look at the strategy space for hider and seeker. The strategy for hider

will be the choice of cell to install and then detonate the bomb. In this model, the hider will

choose a mixed strategy for placing the bomb. The mixed strategy is ~p := (p1, . . . , pm)T ,

and pi is the probability that the hider will hide and detonate the bomb in cell i. Strategy

space for the hider will be Uh := {~p|
∑

i∈Nc
pi = 1, ~p ∈ ℜm

+}. For the seeker, we assume

that there is a finite resource capacity X, then the strategy space for the seeker will be

Us := {~x = (x1, . . . , xm)|
∑

i∈Nc
xi ≤ X, and ~x ∈ ℜm

+ , }. Here, xi is the amount of resource

allocated to cell i by the seeker. Then we have the payoff function for hider,

J(~p, ~x) =
∑

i∈Nc

pi · e
−λixi · Ci

Then, for this zero-sum noncooperative two person game, the existence and uniqueness

of the saddle point is easy to prove. This is because the payoff function J(~p, ~x) is continuous

and strictly convex on ~x ∈ Us, and it is also continuous and strictly linear on ~p ∈ Uh.

Solution of the Game

The following lemma will be used to find the solution of the one step game presented

in the above section.

Lemma 2 For saddle point of this game, (~p∗, ~x∗), it satisfies the following two properties,

1. If fi(x
∗
i ) < maxi fi(x

∗
i ), then x∗i = 0;

2.
∑

i∈Nc
x∗i = X.

where fi(xi) = e−λixi · Ci for i ∈ Nc. 2

Proof Let J := {j|fj(x
∗
j) = maxi fi(x

∗
i ), j ∈ Nc}.

Assume for some j ∈ Jc, x∗j > 0, then by continuity of function fj(xj), we can find an

ǫ > 0, let x′j = x∗j − ǫ > 0, such that,

fj(x
∗
j) < fj(x

′
j) < max

i
fi(x

∗
i )

Then for each i ∈ J , we can find a δi > 0, such that,



57

1.
∑

i∈J δi ≤ ǫ and let x′i = x∗i + δi;

2. fi(x
′
i) < maxi fi(x

∗
i ) for i ∈ J ;

3. fj(x
′
j) ≤ fi(x

′
i) for i ∈ J .

Then, for k ∈ J {j}, let x′k = x∗k, so,

max
i

fi(x
′
i) < max

i
fi(x

∗
i )

And ~p∗ is still the optimal response for seeker’s strategy ~x′. Then, (~p∗, ~x′) is a better

situation for seeker, and hider can not improve his/her own payoff under the new seeker’s

strategy ~x′. So, finally we get that (~p∗, ~x∗) is not a saddle point solution for this game. By

contradiction, we know that, for any j ∈ Jc, x∗j = 0, so the proof of part 1 is finished.

For the second part,
∑

i∈Nc
x∗i = X, we also use contradiction to prove it. Assume

∑

i∈Nc
x∗i < X, then let K = X −

∑

i∈Nc
x∗i , then for any j ∈ J , let x′j = x∗j +

K
l , here

l = |J | is the number of elements in J . And for i ∈ Jc, let x′i = x∗i , then we have,

∑

i∈Nc

x′i = X.

And so, it is obvious that

max
i

fi(x
′
i) < max

i
fi(x

∗
i ).

This means that the seeker can reduce his/her cost by changing strategy unilaterally.

Then, (~p∗, ~x∗) will not be a saddle point solution. By contradiction, we know
∑

i∈Nc
x∗i = X,

then the proof for part 2 is finished. �

For a more clear look at the saddle point solution for this one step game, we draw the

graph for security strategies of both players in an example. Security strategy is the best

strategy for one player, assuming that his/her opponent will apply the optimal response

strategy corresponding to every one of his/her strategies. So, for the hider in this game,

his/her problem will be a Min-Max problem, and for the seeker, it will be a Max-Min

problem, based on J(~p, ~x). The following two graphs are security strategies for hider and
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seeker for a 2 cells game.
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Figure 4.1: Hider’s Security Strategy m=2 (Min-Max Problem)
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Figure 4.2: Seeker’s Security Strategy m=2 (Max-Min Problem)

In Figure 4.1, it is a lower envelop for the hider, and the security strategy for hider will

be the highest point of this lower envelop. And in figure 4.2, it is an upper envelop for the

seeker, and then the security strategy for the seeker will be the lowest point of this upper

envelop. And the security value for both players equal to each other, it is 0.5138, so the

security strategies for both players obtained above are saddle point equilibrium solution.
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We also present a 3 cell example in Figure 4.3 and 4.4. The problem also admits the

same security level, and the saddle point equilibrium is obtained.
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Figure 4.4: Seeker’s Security Strategy m=3 (Max-Min Problem)

4.2.2 Summary

One-step hide and seek game is considered in this section. Next, dynamic game between

first responder and adversary will be investigated for development of dynamic security

strategies and adversary’s attacking strategy.
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4.3 Security Games

Dynamic infrastructure security game is developed in this section. A finite time period

is set, adversary choose one cell to attack in the infrastructure, first responder will try to

develop patrol sequence strategy to minimize possible risks. And in this problem, human

life losses will be the risk measures considered.

4.3.1 Introduction

Due to ever increasing petroleum prices, population and economic growth, changes in

lifestyles (employees living far from their workplace due to cheaper housing costs), etc.,

demand for mass transportation has increased exponentially. The U.S. is one of the most

mobile nations in the world, providing over 4 trillion miles of passenger travel annually

Fed (1999). Further, every workday, about 14 million Americans use some form of public

transit USG (2002). Public transit users made more than 9 billion unlinked trips using the

more than 6,000 transit properties in 20011. As a consequence of this high volume, almost

a third of terrorist attacks worldwide target public transit2. Successful and attempted

terrorist attacks throughout the world such as New York, Madrid, London, Mumbai and

Russia have forced governments to devote significant time, money and resources all in a

concerted effort in order to secure transportation infrastructure.

Despite these vulnerabilities, public transit facilities are being used more frequently by

ordinary citizens. As energy prices are skyrocketing, it is expected that, in the near future,

public transit will carry ever more commuters to work, school and shopping. Therefore,

increasing transit usage puts public-transit facilities under much more significant security

threat. Public transit systems by design are open structural environments equipped to move

large numbers of mass transit patrons in an effective and efficient manner. Therefore mass

transit systems are considered soft targets and inherently are vulnerable and susceptible to

terrorist attacks and because of the continuous hours of service cannot be closed and secured

like other sectors of the area transportation system Loukaitou-Sideris et al. (2006). There

1http://www.apta.com/research/stats/

2Congressional Research Service, Transportation Issues in the 107th Congress, Washington, D.C., 2002
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are other similar systems. The 2008 Mumbai attacks involved more than ten coordinated

shootings and bombings across Mumbai, India’s financial capital and its largest city. Attacks

happened at various places, including hospital, hotels, railway station, cinema, and college.

We can see from these events that attackers’ prime target remains to be mass human

casualties in addition to panic and chaos. The threat to any given infrastructural component

or “infrastructure” could be substantially reduced by analyzing the risk associated to each

transit infrastructure, mitigation planning, and employing best prevention and response

policies.

To summarize, emergencies are natural or human-made and can be catastrophic events

that have the potential to affect the entire transportation infrastructure such as major

highways, bridges as well as mass transit stations, utilities, terminals, airports, etc. Emer-

gency management problems have the following characteristics: a) They are stochastic; the

resource (personnel, funds, etc.) availability, as well as occurrences and characteristics of

emergencies, size of the affected population are all subject to randomness. b) They are

resource-allocation problems; resources should be allocated wisely and rapidly among var-

ious locations, facilities in an infrastructure. c) They are network problems; adversary’s

attacks occur randomly over the infrastructure, and search patrol routes should be chosen

carefully based on topology of the infrastructure.

In this section, we approach the infrastructure security problem via game theory by

modeling it as a hide and seek game, Garnaev (2000). For a set of sites that could be

the hiding place of an adversary or bomb, the probability of finding and capturing the

adversary, i.e., probability of detection, depends on the conditions at the site, such as low

visibility, heavy foliage, number of people, etc. Thus, the emergency-management problem

is to allocate resources among the sites in an optimum way, to seek and dispose the threat

in a timely fashion, and ultimately, minimize the risk. We discuss our model in general

terms below.

In the first model, a first responder (emergency-management center) allocates resources

(emergency personnel, or personnel-hours) to the sites of interest in an attempt to find an

object (person or bomb, “adversary”) that has been hidden, while the adversary selects a
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set of best sites to attack. Once the object is hidden, it cannot move during the search

process. Similarly, the first responder can only act once, so a static game between first

responder and adversary is formed. Throughout we use first responder and defender, and

adversary and attacker synonymously.

In the next level of the problem, although the adversary is immobile, the responder can

move among the sites. The probability of finding the adversary, and most importantly the

risk associated with each site, are assumed to be known. Risk here might be defined as the

expected cost of a successful attack. Thus, it is the multiplication of the threat (probability

of an attack), the vulnerability of the infrastructure (probability that an attack at that site

will be successful) and the consequence of an attack. Focusing on the severe attacks, we

consider the loss of human life as the consequence. This measure typically depends on the

occupancy level of the facility. In this paper, we assume that the occupancy level within

the infrastructure can be estimated over time.

First, we briefly review the relevant literature. In section 4.3.3, we introduce the static

game and present examples. In section 4.3.4, dynamic game between an immobile adversary

and a mobile first responder is discussed. In section 4.3.5, numerical results are presented

for an illustrative example. Finally, further applications and future research directions are

discussed.

4.3.2 Related Work

There has been a recent interest in the infrastructure security related issues. Paté-

Cornell (2002a) considers the fusion of intelligence information from various sources and

types in a timely fashion. Paté-Cornell (2002b) presents a model for setting priorities among

defense countermeasures; that combines different types of adversary and threat scenarios,

the vulnerabilities of potential targets, and the consequences of different attack scenarios.

In Pita et al. (2008), a game theoretical model that could be utilized to secure an airport

is developed. A software decision support system called ARMOR is introduced, that casts

the police patrolling/monitoring problem as a Bayesian Stackelberg game. In such models,

also called the interdiction models, the leader and the follower decide on their actions in a
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sequential manner. It is assumed that both the leader and the follower have perfect knowl-

edge about system states and each other’s actions. ARMOR has already been deployed at

the Los Angeles International Airport to randomly assign checkpoints on roadways entering

the airport, and assign canine patrol routes within the terminals Paruchuri et al. (2005),

Paruchuri et al. (2006, 2007, 2008). In this game, leaders are the police, and followers are

the attackers. Police set up checkpoints first, and the attackers will then choose their actions

based on the current set of checkpoints. Brown et al. (2006) consider various Stackelberg

games with the attacker or the defender as leader and give their mathematical program-

ming formulations. Wood (1993), Morton et al. (2007), Lim and Smith (2007) look into

the network interdiction models in which the reliability/survivability of a network becomes

one of the performance measures. Zhuang and Bier (2007, 2009), Dighe et al. (2009), and

Zhuang et al. (2010) study secrecy and deception in an attacker-defender resource allocation

problem. Weaver et al. (2001) consider the terrorist’s decision making process. Other recent

papers include Nie et al. (2009a,b), where a passenger classification problem is analyzed.

The same authors also discuss the optimal placement of suicide bomber detectors on a grid

structure Nie et al. (2007). Hochbaum and Fishbain (2009) investigate the allocation of

mobile sensors in an urban environment in order to detect “dirty bombs”. Note that, the

models in Nie et al. (2007, 2009a,b) only involve a single controller not multiple decision

makers as in a game.

There are also other recent research on games related to our model, mostly on the

static or dynamic hide and seek game. For a thorough introduction of search games, please

see Garnaev (2000); Alpern and Gal (2003); Dobbie (1968). Here, we will review some

of the prior work. A typical search game is a zero-sum game between a searcher and a

hider where the objective of the searcher is to minimize the time to find the hider. It is

assumed that the search terminates when the opponents are in close proximity. Gal (1979)

considers search games in which the searcher moves along a continuous trajectory until s/he

captures the hider, in either a network or a two (or more) dimensional space. The mobile

and immobile hider cases are both analyzed, the upper and lower bounds of the value of the

game are given. In Alpern et al. (2008), network search games with an immobile hider are

presented assuming that the searcher can chose the starting point. The searcher’s objective
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is to minimize the time to find the hider. In the case the network is simply searchable, they

show that the optimal search strategy is a random Chinese Postman (CP) path Edmonds

and Johnson (1973).

The dynamic search games Garnaev (2000); Alpern and Gal (2003), are sometimes also

called pursuit-evasion games Isaacs (1965); Suzuki and Yamashita (1992). These games are,

in general, defined in continuous-time and continuous state spaces, since they were initially

developed for military applications. Thomas and Washburn (1991) describe a dynamic

search game with discounting over a continuous time horizon. There are a finite number

of cells to be searched, and the searchers try to find the hider as soon as possible. Recent

approaches include integration of pursuit-evasion games with map building in an unknown

environment Vidal et al. (2002). Alpern et al. (2009) considers a facility as a graph, where

an attacker may choose several consecutive time periods, uninterrupted by patroller, to

attack. Patroller can follow any path on the graph and can find the attacker when they

are at the same node. The objective of the patroller is to minimize the time to detect the

attacker. Baston and Garnaev (2000) analyze a static search game between a searcher and

a protector, and present an algorithm and prove its effectiveness. In Hespanha et al. (2000),

a dynamic hide and seek game on a cell based structure is presented. A greedy algorithm,

that solves a one-step Nash Equilibrium is proposed. Hohzaki (2007) introduces a search

allocation game (SAG). In Jotshi and Batta (2008), a dynamic hide and seek game on a

network is discussed. In this game, the attacker is immobile, and the searcher tries to select

paths in the network to detect the attacker as soon as possible.This problem is similar to

ours. However, we focus on the consequence of an attack, not only the detection time.

Alpcan and Basar (2006) consider a two-player zero-sum stochastic game which models

the interaction between malicious attackers to a cyber-system, and the Intrusion Detection

System(IDS).

4.3.3 Static Game Model

In this section, we consider the one-step security problem. The adversary and the first

responder simultaneously choose their strategy over the potential sites. Payoff matrices
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for both responder and adversary are based on the occupancy level of each cell in the

infrastructure. We assume that the adversary has the same information about occupancy

and detection probability in each cell as the responder. We assume that impact of an attack

will be based upon the occupancy level of the specific cell where the attack happens and

can only endanger the human lives in that cell. People in neighbor cells will not be hurt

directly due to this attack. As such, we utilize the expected number of casualties as the

risk measure.

Assuming that the infrastructure is an m by n grid, let N = mn, be the total number of

cells the responder and the adversary can occupy (possible actions for both players). Bold

case letters will represent vectors, for example, the occupancy vector is denoted as O where

O(i) is the occupancy level of cell i = 1, 2, . . . N . The expected number of casualties in cell i

is evaluated as Ci = α(i)∗O(i), where α(i) denotes the probability that a person in cell i will

be hurt if an attack happens. If the adversary is detected, all these people are considered to

be saved. Let (i, j) denote the location of the first responder and the adversary, respectively.

In the case that both of them are in the same cell, (i, i), the adversary can be found by

the responder with detection probability given by PD(i, i) , di, otherwise PD(i, j) , 0 for

i 6= j. Therefore, the corresponding elements in the cost matrix for the responder when the

responder is in cell i and the adversary is in cell j are,

(1− PD(i, j)) ∗ Cj − PD(i, j) ∗ Cj = (1− 2PD(i, j)) ∗ Cj , ∀i, j = 1, 2, . . . , N. (4.1)

Then the cost matrix C for the first responder is an N ×N matrix. The elements of

this matrix are derived from equation (4.1) for the action pair (i, j) of the first responder

and the adversary, respectively. For example, on a 2 by 2 grid infrastructure with 4 cells,

we have the following cost matrix for the responder,

C =












(1− 2d1)C1 C2 C3 C4

C1 (1− 2d2)C2 C3 C4

C1 C2 (1− 2d3)C3 C4

C1 C2 C3 (1− 2d4)C4












(4.2)
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Since the responder and the adversary have the same occupancy information, they will

have the same risk measure Ci, and rewards to the responder will be considered as costs

to the adversary. So, this game is a zero-sum matrix game, where the cost matrix for the

adversary, Ca, is given by Ca = −C.

Next, we present a numerical example.

Example 1 Consider a 5× 5 grid infrastructure with 25 cells. Assume that the occupancy

vector O, and the detection probability vector d on the grid are given in the 5× 5 matrix

form,

O =















25 20 18 17 21

15 16 14 23 21

28 23 24 18 30

21 26 30 28 31

20 21 19 13 20















, d =















0.6 0.7 0.5 0.8 0.7

0.7 0.6 0.4 0.3 0.6

0.8 0.7 0.6 0.2 0.5

0.9 0.6 0.5 0.7 0.6

0.7 0.8 0.7 0.6 0.6















.

And the casualty rate for all cells are α = 1. Let X∗ and Y∗ denote the randomized

Nash equilibrium decision vectors for the responder and the adversary, respectively. They

are computed as:

X
∗ =

























0.0503 0 0 0 0

0 0 0 0 0

0.1007 0 0.0177 0 0.217

0 0.0804 0.217 0.115 0.2019

0 0 0 0 0

























, Y
∗ =

























0.138 0 0 0 0

0 0 0 0 0

0.0924 0 0.1438 0 0.138

0 0.1327 0.138 0.1056 0.1113

0 0 0 0 0

























The solution for the first responder prescribes the search of cells {1, 11, 13, 15, 17, 18, 19,

20}, while the same cells may be attacked with the given probabilities according to the

adversary’s decision rule Y∗. 2

For the two person zero-sum game, the mixed saddle-point strategies possess the or-

dered interchangeability property (refer to Basar and Olsder (1999)). This means that even

if the Nash equilibrium is not unique, any combination of players’ strategies provides the

same game value.
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Also, we notice that the search locations for first responder and adversary coincide

with each other in most cases. The following proposition will provide some insights into

this property.

Proposition 1 For the two person zero-sum game under performance measure C given in

equation 4.2, X∗ and Y ∗ are the optimal mixed strategies for player 1 and 2, and Z∗ is the

value of the game. Then, if X∗
j > 0, then Y ∗

j > 0.

Proof For the two person zero-sum game in this problem, we can solve the following primal

and dual linear programming models to obtain the optimal mixed strategy for players 1 and

2.

(P ) Min Z (D) Max W

s.t. CTX ≤ Z s.t. CY ≥ W

N∑

i=1

Xi = 1

N∑

j=1

Yj = 1

X ≥ 0 Y ≥ 0

These are the primal and dual problems, X and Z ( Y,W ) are the dual variables cor-

responding to the inequalities and the equality in the dual problem, respectively. At the

optimal solution, (X∗,Y∗), Z∗ = W ∗ gives the value of the game.

If X∗
i > 0, then by complementary slackness, C(i, ·)Y ∗ = W ∗, where C(i, ·) is the ith row

of C matrix. This implies,

N∑

k=1

CkY
∗
k − 2diCiY

∗
i = W ∗,

while for any other j 6= i, we have,

N∑

k=1

CkY
∗
k − 2djCjY

∗
j ≥ W ∗.
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There exists some l, 1 ≤ l ≤ N , such that Y ∗
l > 0, since

∑N
j=1 Yj = 1. Then,

N∑

k=1

CkY
∗
k >

N∑

k=1

CkY
∗
k − 2dlClY

∗
l ≥ W ∗ =

N∑

k=1

CkY
∗
k − 2diCiY

∗
i . �

Clearly, the above inequality together with Y ∗
i ≥ 0, implies Y ∗

i > 0.

Remark 1 Clearly, it also follows that, if Y ∗
j = 0 then X∗

j = 0. The intuitive explanation

for this property is that if the adversary does not attack certain cell j, the first responder

should not allocate time or resources into that cell too. However, we can not validate the

statement that if Y ∗
j > 0 then X∗

j > 0. Instead, we have the following observations. 2

Remark 2 If the adversary chooses cell j, i.e., Y ∗
j > 0, then the expected number of

casualties in cell j should be at least equal to Z∗, i.e., Cj ≥ Z∗. Furthermore, if Cj > Z∗,

thenX∗
j > 0. This could be seen again from complementary slackness arguments. If Y ∗

j > 0,

then CT (j, ·)X∗
j = Z∗, where, CT (j, ·) = C(·, j)T . This implies,

Cj − 2djCjX
∗
j = Z∗,

giving X∗
j =

Cj−Z∗

2djCj
. Since X∗

j ≥ 0, this implies that Cj ≥ Z∗. In fact, since for any

constraint in the primal problem, we have,

Cj − 2djCjX
∗
i ≤ Z∗,

if Cj > Z∗, 2djCjX
∗
i ≥ Cj − Z∗ > 0, giving X∗

j > 0. 2

4.3.4 Dynamic Security Game

In this section, we consider a mobile first responder dynamically choosing cells to

search for an immobile adversary. The first responder’s objective is to develop a “best”

patrol strategy to find the adversary with maximum reward or minimum cost. We assume

that if the adversary is not caught within a finite time, say T , the adversary will launch

the attack and destroy occupants in the cell s/he is in at time T . The first responder does
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not know the exact location of the adversary. Furthermore, the responder may not also

have the current occupancy information. However, some sensory data are assumed to be

available in order to develop a people flow model and make accurate estimates. Below, we

discuss the exogenous flow model that will be used in the occupancy estimates. Then, we

describe the methodology to obtain best strategies for both players.

People Flow Model

We first develop an exogenous people flow model that influences the decision making

of the game players. Researchers have been using simulation models to describe the char-

acteristics of pedestrian flow Yue et al. (2007), Hanisch et al. (2003). Yue et al. (2007)

introduce a simulation model based on cellular automata on the square lattice with two-

way and four-way pedestrian flow. In this simulation framework, pedestrian movement is

more flexible and adaptive to dynamic conditions than vehicular flow. Hanisch et al. (2003)

develop an online simulation tool for pedestrian flow in large public buildings, such as train

stations, airports, shopping centers, etc. There is also research that concentrates on the

occupancy estimation Meyn et al. (2009b); Niedbalski and Mehta (2007); Niedbalski et al.

(2008). Meyn et al. (2009b) introduce a sensor-utility-network(SUN) method for occu-

pancy estimation in buildings. Other studies have focused on the pedestrian flow in public

buildings following special events, such as football matches, emergency fires, and terrorist

attacks, etc., with crowd control and optimal evacuation as the main objectives Helbing

et al. (2001); Klpfel et al. (2005); Klpfel and Meyer-Knig (2005); Deng et al. (2008); Meyn

et al. (2009a). Alternating periods of congestion and slow movement dominate these cases,

and most research on this topic utilize simulation models as in Bauer et al. (2007), and

Deng et al. (2008).

For our purposes, we model people flow in a public building as a linear, stochastic

dynamic system, and assume that some sensory information is available to be utilized in

correcting the occupancy estimates. In this paper, we will not take account of the effects of

special events, and also not consider crowd control problems.

At the microscopic level, people move like in an open queuing network where each
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cell is considered as a queueing station. Time is discretized, the time horizon is finite and

is equal to T . Cells may have external arrivals and departures, from and to the outside,

respectively, if there is direct connection to the outside, such as entrance doors, or train

platforms from which they get on or off the train. Other cells in the building could be ticket

offices, waiting rooms, food courts, shops, hall ways, etc.

For those cells with entrances, an arrival rate is estimated, vector λ ∈ RN represents

arrival rate for each cell per unit time. Arrival rates may be time varying, as λ(m), rep-

resenting peak and off peak hours during the day. At each time period, people move from

one cell to the other according to the probabilities given by the routing matrix, F. We

assume that pedestrians are all similar, thus, they all have the same routing probability.

These assumptions result in the following stochastic linear dynamic system of equations

representing the pedestrian flow.

Om+1 = FT ·Om + λm+1 +Wm+1, Wm+1 ∼ N (0, Q)

Zm = H ·Om + Γm, Γm ∼ N (0, R)

The first equation is the state equation, where Om denotes the occupancy vector, and

Wm denotes the process noise at time m, that is assumed to be normally distributed with

covariance matrix Q. The second equation is the observation equation. Zm ∈ RM is

the measurement vector of actual occupancies at time m, H is the measurement matrix,

and Γ denotes the measurement noise that is normally distributed with covariance matrix

R. These measurements are obtained from video cameras, sensors, and other inspection

methods. Here M may be less than N , meaning that not all cell occupancies may be

available. However, we assume that the system is observable.

Kalman filter is utilized to predict and correct the occupancy level estimates. The

Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic

system from a series of noisy measurements Kalman (1960, 1962); Kalman and Bucy (1961);

Gürsoy and Baykal-Gürsoy (2010). At each time period, the responder will observe, Zm,

the occupancy vector, and then utilizes these measurements to correct occupancy level
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forecasts. The equations for the Kalman filter are as follows,

Ô−
m+1 = FT · Ôm + λm+1; (4.3)

Ôm+1 = Ô−
m+1 +Km+1 · (Zm+1 −HÔ−

m+1); (4.4)

P−
m+1 = FT · Pm · F+Q; (4.5)

Pm+1 = (I −Km+1H) · P−
m+1 (4.6)

where Pm is the posterior and P−
m is the a priori estimation error covariance matrix, re-

spectively. Km+1 is the Kalman gain given by:

Km+1 = P−
m+1H

T · (HP−
m+1H

T +R)−1.

In these equations, Ô−
m+1 and P−

m+1 are the forecasted values that are used to determine

the initial position and initial patrol sequence. Ôm+1 and Pm+1 are the corrected values

after each measurement. They are used at the beginning of each time period to reevaluate

and update the original patrol sequence.

Example 2 Here is an example representing the cell occupancies in a 2 × 2 grid. This

Figure 4.5: Cell Occupancy

figure is taken from the simulation package we have developed. The number in each cell

represents the current occupancy level. Cells are numbered from 1 to 4, top left cell being

1, and bottom right cell being 4. Assuming that there are entrances in cells 1 and 4, we

have the following arrival rate vector,

λ
T = (λ1, λ2, λ3, λ4) = (λ1, 0, 0, λ4),
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where bold letters denote vectors, and the superscript T denotes the vector transpose.

Below is a 4× 4 matrix representing the routing matrix.

F =












0.2 0.3 0.3 0

0.2 0.3 0 0.5

0.4 0 0.1 0.5

0 0.3 0.2 0.2












From this matrix, notice that people leave the infrastructure from cell 1 with probability

1−0.2−0.3−0.3 = 0.2, will go to cell 2 and 3 with the same probability 0.3, and will stay in

cell 1 with 0.2 probability. Similarly, people leave cell 4 with probability 1−0.3−0.2−0.2 =

0.3. Those cells that people can get in and out are the entrance doors, as well as the train

platforms where they can get on and off the trains. 2

Strategy Development

Occupancy estimates together with the detection probabilities establish the perfor-

mance measure on the infrastructure grid. Note that only the first responder is mobile.

Thus, after picking the initial locations the first responder can patrol the premises to find

the adversary while the adversary remains at its initial location. Next, we describe the first

responder’s patrol strategy starting from an initial position. Then, we will discuss the first

responder’s and adversary’s strategies for picking the best initial location.

First Responder’s Strategy

Consider discrete time periods {m = 0, 1, 2, . . . , T} and the grid structure representing

the infrastructure. The state of the system is given by {lfm, lam,Om, Pm}, where lfm and lam

denote the position of the first responder and the adversary, respectively, at time m. Since

the adversary is immobile, lam = la. However, the adversary’s location cannot be observed

and the first responder only has information about his/her own location, i.e., lfm, and Pm,

thus, arises the need to use the POMDP (partially observable Markov decision process)

model to solve this problem.

Let the first responder’s belief state be bm = {lfm,pa
m, Ôm, Pm}. Here, pa

m is the vector

of belief probabilities of the adversary’s location. Ôm is the estimated occupancy vector at
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time m. The value function for the responder at time m = 0, . . . , T − 1 is given by,

V f
m(bm) = max

k∈Af{lfm}

{

r(bm, k) + γ · (1− Pr{D|bm, k}) · V f
m+1(l

f
m+1,p

a

m+1, Ô
−
m+1

, P−
m+1)

}

(4.7)

where r(bm, k) denotes the one-step expected reward function for the responder in belief

state bm when action k is applied, and γ denotes the discount factor with (γ ≤ 1), km

denotes the responder’s action, i.e., the next cell in the patrol route, and Af{lfm} denotes

the set of responder’s possible actions at the next time period when the responder’s current

location is lfm. Pr{D|bm, k} is the probability of detecting the adversary given the belief

state bm and and applying action k. We assume that when the responder successfully finds

the adversary, the game will end, and no more rewards will be earned. Ô−
m+1

and P−
m+1

are the corresponding forecasted values of the occupancy levels and the error covariance

matrix. The one-step expected reward function is written as:

r(bm, k) = Pr{D|bm, k}(α(k)Ôm(k) + C) (4.8)

where C is the terminal reward for apprehending the adversary, and α(k) is the casualty

rate in cell k if attacked. Here Pr{D|bm, k} is equal to:

Pr{D|bm, k} = dkp
a
m(k). (4.9)

Since the attack will materialize at the end of period T , the terminal value function is

given as the negative of the expected casualty due to this attack,

V f
T (bT ) = −

N∑

k=1

paT (k) · α(k) · ÔT (k). (4.10)

Note that transitions from Ôm and Pm to Ôm+1 and Pm+1, respectively, are associated

with the people flow model and are given through equations (4.3 to 4.6) deterministically.

Also because action k identifies the location of the first responder in the next time period,

the transition probability for POMDP from state bm to bm+1 = {k, pam+1, Ôm+1, Pm+1} is
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as follows,

Pr {bm+1|bm, k} =







1− Pr{D|bm, k}, for pa
m+1

as in equations (4.12,4.13)

Pr{D|bm, k}, for pa
m+1

= ek.

(4.11)

In both cases above, the first responder moves to cell k to search for the adversary, so

the location of first responder at time m+1 is cell k. In the first case, the first responder is

not able to detect the adversary in cell k, so the belief probabilities will be updated through

equations (4.12,4.13) given below. In the second case, the responder finds the adversary in

cell k, so the belief probability vector is ek, the kth coordinate vector. Dynamic security

game terminates after finding the adversary, all future value functions V f
m will be 0, so the

corresponding term in equation (4.7) is eliminated.

Here are the Bayesian update equations for belief probabilities. If the responder fails

to detect the adversary at time m in cell k, then the belief probability of cell k is reduced

while the belief probabilities of other cells are increased as given by:

pam+1(k) = Pr
{
lam+1 = k|pa

m,Detection Failed
}
=

(1− dk) · p
a
m(k)

1− dk · pam(k)
, (4.12)

pam+1(j) =
pam(j)

1− dk · pam(k)
for j 6= k, (4.13)

where, dk is the detection probability for cell k.

Bellman equation (4.7), representing POMDP, together with the terminal value func-

tion in equation (4.10), can be solved using dynamic programming algorithms. The solution

provides a sequence of actions (patrol strategy) for the first responder, as well as the total

expected risk or reward for the responder, i.e., the value function V f
m(bm). In most cases,

given the initial position of the first responder, the patrol strategy is deterministic. How-

ever, due to different detection results and changing occupancy levels, this patrol strategy

will be reevaluated after each search based on the current flow information.

Next, we will discuss the initial position game between the responder and the adversary.

Responder and Adversary’s Initial Position Game

The responder and the adversary must decide on their initial positions first. This
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is a static game between two players. To obtain the elements of the reward matrix, say

(i, j)th element, first, the POMDP model generates an optimal patrol sequence starting

from the initial position of the first responder (cell i). Then, given the initial position of

the adversary(cell j), the expected rewards are calculated based on this patrol sequence.

The expected rewards will be different from the value function obtained in the POMDP.

The value function in the POMDP is the expected reward for every possible location of

the adversary, however, the rewards we obtain for this static game is the expected rewards

for fixed location combination (i, j) of the first responder and the adversary. In this initial

position game, since future sensory information is not available at the time, forecasted

occupancy levels are used. The elements of the reward matrix are obtained as follows,

Rf (i, j) =
T−1∑

m=0

Pr{D at time m|S, la = j}γmÔm(j) − Pr{No D within T |S, la = j}γT ÔT (j),

(4.14)

where S is the patrol sequence obtained through the POMDP with S(n) denoting the cell

searched at time n, and S(0) = i. Pr{No D within T |S, la = j} denotes the probability

that the adversary will not be detected, thus, the attack at time T will materialize, and is

given as,

Pr{No D within T |S, la = j} =

m−1∏

n=0

[1− I{S(n) = j}dj ] ,

where I{·} denotes the indicator function for the event represented inside the parenthe-

sis, i.e., if the event happens then the function takes value 1, otherwise its value is zero.

Pr{D at time m|S, la = j} denotes the probability that detection of the adversary happens

exactly at time m, given the first responder’s patrol sequence and adversary’s position,
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which can be written as,

Pr{D at time m|S, la = j} = Pr{No D within m− 1|S, la = j}I{S(m) = j}dj

=
m−1∏

n=0

[1− I{S(n) = j}dj ] · I{S(m) = j}dj (0 < m < T )

Pr{D at time 0|S, la = j} = I{S(0) = j}dj

where I{S(m) = j} is the indicator function of the first responder being in cell j at time

m.

This static game is then solved to obtain the mixed strategy of initial position for first

responder and the adversary. Note that with this randomized initial position for the first

responder, the optimal patrol sequence will also be randomized.

4.3.5 Illustrative Example

In this section, we use an example to explain details of the POMDP model and initial

position game. First, we describe the POMDP procedure, and then we present the results

of the initial position game between the responder and the adversary. Together, an optimal

patrol strategy for the first responder is developed.

A 3× 3 grid infrastructure is considered, and cells are numbered from 1 to 9 from top

left to bottom right. Total time periods are T = 7. The flow transition probabilities are

given below as a 9× 9 matrix,

F =

















0.1 0.3 0 0.2 0 0 0 0 0
0.1 0.2 0.4 0 0.3 0 0 0 0
0 0.3 0.1 0 0 0.4 0 0 0
0.2 0 0 0.1 0.4 0 0.3 0 0
0 0.1 0 0.2 0.4 0.1 0 0.2 0
0 0 0.2 0 0.3 0.1 0 0 0.4
0 0 0 0.2 0 0 0.1 0.3 0
0 0 0 0 0.3 0 0.1 0.2 0.4
0 0 0 0 0 0.1 0 0.2 0.1
















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Arrival rates to each cell from outside is as follows,

λ = [25, 0, 20, 0, 0, 0, 10, 0, 15]T

The number of arrivals per period is a Poisson distributed random variable with above

arrival rates. From this, we can see that there are gates in cells 1, 3, 7 and 9 in this facility.

Initial occupancy levels are given as,

O0 = [50, 32, 41, 42, 80, 35, 51, 45, 39]T

Casualty rate α is a one vector, which means the attack will kill every occupant in the

cell.

Q is a diagonal matrix with diagonal elements given as

[25, 36, 50, 40, 37, 28, 48, 35, 40]

R is a diagonal matrix with diagonal elements as

[10, 6, 8, 7, 8, 9, 4, 15, 10]

P0 is a diagonal matrix with diagonal elements as

[4, 5, 5, 3, 9, 2, 5, 4, 3]

And H is an identity matrix in this example, which means that the measurements are

actually observations on the actual occupancy levels.
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The detection probabilities for each cell are,

PD = [0.8, 0.9, 0.7, 0.9, 0.6, 0.7, 0.8, 0.75, 0.8]T

The prior adversary-location belief probabilities are equally distributed among 9 cells.

Detection costs are all assumed to be negligible, and detection terminal reward is also

zero. The discount factor is γ = 1, since this is a short period game, it is appropriate to

assume that penalty and reward are not discounted in such a short period.

POMDP Results

First, assuming that the initial position of the responder is known, we use POMDP

model to optimize the responder’s patrol strategy for each time period. At each time period,

the responder will observe, Zm, the occupancy vector through video camera, sensors or other

methods, and then utilize these measurements to correct occupancy level forecasts. The

actual occupancy levels and measurements for each time period are given as follows,

O =

















50 97 52 42 47 45 46 39
32 39 67 63 62 65 63 51
41 92 59 79 54 64 50 58
42 54 44 44 48 43 42 53
80 79 91 111 113 115 113 112
35 35 56 45 57 44 50 43
51 60 34 32 16 45 27 30
45 42 59 50 49 53 53 53
39 71 50 74 64 64 59 59

















, Z =

















103 53 39 49 43 44 42
37 70 63 65 65 65 51
90 57 79 54 63 49 60
57 47 44 48 40 42 55
77 92 107 109 113 111 110
37 59 47 60 46 52 40
61 37 32 15 44 28 32
42 56 42 45 51 57 57
73 54 75 67 73 61 61

















(4.15)

The actual occupancy levels O is a 9 × 8 matrix, formed by column vector O0, O1 to OT .

Measurements Zm for each time period are given in matrix Z (9 × 7 matrix), and column

m of Z, Zm, represents the measurements on actual occupancy levels at time m.

Let the first responder start from cell 4. If measurements in Z are not available, then
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the optimal patrol sequence for the responder is {4, 5, 8, 9, 6, 3, 2}. However, if they are

available, then the first responder will correct the forecasts on occupancy levels, and then

use the POMDP to develop a new patrol sequence which will only be used for the next

move. The optimal patrol sequence in this case is {4, 5, 2, 3, 6, 9, 8}. This is different from

the previous patrol sequence due to the Kalman filter correction procedure. Both patrol

sequences will check same cells, but in different orders, thus will generate different expected

rewards for the first responder.

The following two matrices contain patrol sequences for the first responder, starting

from every initial cell, either without or with actual measurements. The first matrix gives

the patrol sequences when Z is not available, and the second matrix are patrol sequences

when Z is available. Each row represents one patrol sequence.

















1 4 5 2 3 6 9
2 1 4 5 8 9 6
3 2 1 4 5 8 9
4 5 8 9 6 3 2
5 8 9 6 3 2 1
6 9 8 5 4 1 2
7 4 1 2 5 8 9
8 9 6 3 2 5 4
9 8 5 4 1 2 3

































1 4 5 2 3 6 9
2 1 4 5 6 9 8
3 2 1 4 5 8 9
4 5 2 3 6 9 8
5 8 9 6 3 2 1
6 9 8 5 2 1 4
7 4 1 2 5 8 9
8 9 6 3 2 5 4
9 8 5 4 1 2 3

















(4.16)

Most of the patrol sequences are similar under both cases, except starting from initial

cells 2, 4, and 6. The patrol sequences will be updated due to the information obtained

through measurements. Updated patrol sequences usually generate better rewards for the

first responder.

Initial Position Game

When the responder and the adversary decide on their initial positions, the responder

does not have the information about future measurements provided in Z. So Z is not

needed in this procedure. For each initial position of the first responder, the optimal patrol

sequence is already given in the first matrix of equation 4.16, based only on the forecasted
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occupancy levels. The people flow model forecasts the future occupancy levels to provide

expected risk measures throughout the finite time period T .

Given the position of both the first responder and the adversary, and the patrol se-

quence, the expected rewards can be easily calculated by using equation 4.14. So, Rf , the

reward matrix for the first responder in the initial position game can be built.

Given the simplest case, that the initial position game is a zero-sum game, the following

Nash Equilibrium strategies for the first responder and the adversary are obtained,

X∗ =(0.1464, 0.0000, 0.0000, 0.4776, 0.0000, 0.0000, 0.3556, 0.0000, 0.0204)T

Y ∗ =(0.0014, 0.0000, 0.4691, 0.0000, 0.0000, 0.0038, 0.5256, 0.0000, 0.0000)T

One can see that the first responder can choose from cell 1, 4, 7, 9 as initial position,

and the adversary can choose from cell 1, 3, 6, 7 as attacking position. The game value for

this initial position game is -5.1602. This means that the expected reward for the first

responder is negative, so the first responder needs to improve the probability of detection

or deploy more personnel to do the search.

Please note that this game value is calculated based on the forecasted occupancy levels

without any correction. To calculate the actual expected reward of the first responder

under strategy (X∗, Y ∗), the actual occupancy levels O in equation 4.15 are used. Both the

updated and non-updated patrol sequences are given in eq. 16. The actual expected reward

obtained under updated patrol sequence is −3.2757, while it is −5.6281 when updates are

not available. Clearly, updated patrol sequence is better. However, this is not always the

case, there exists some cases in which updated sequences generate less expected reward than

non-updated sequences. Generally speaking, when people flow experiences unusual shocks,

such as sudden influx or out flux of people, updated patrol sequence will work much better.

On the other hand, if the first responder improves the detection probability to 1 for all

cells, the actual expected rewards for non-updated and updated patrol sequences become

3.8816 and 3.9608. Updated patrol sequences generate slightly better reward for the first

responder in this case too. They both are much better than the original case with lower

detection probabilities. Of course, in this case, non-updated, updated patrol sequences and

the mixed strategy for the initial position (X∗, Y ∗) will all be different from the original
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case.

4.3.6 Summary

In this section, we consider static and dynamic game models for the infrastructure

security problem. In these models, rewards and costs are based upon the occupancy level at

each location in the infrastructure. Our models can be used in obtaining real time strategies

for the infrastructure security personnel.

For the static game, we proved certain properties of the equilibrium. While for the

dynamic game where the first responder is mobile we present a solution methodology that

is based on the POMDP model. Throughout, examples are provided.

Next, we plan to study the two-controller resource allocation problem in which a num-

ber of sites (targets) are attacked by the adversary and are defended by the first responders.

Depending on the players’ objectives, such a problem can be modeled as a zero-sum stochas-

tic game Baykal-Gürsoy (1989, 1991); Avsar and Baykal-Gürsoy (2006, 1999), or a Nash

game Avsar and Baykal-Gürsoy (2002). Our approach will consider discrete and known

environment, and incorporate risk measures into the objective function.
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Chapter 5

Future Research

5.1 Stochastic Queuing Systems

5.1.1 Further Completion Time Analysis for Various Queuing Systems

In our research, completion time analysis has been done on one queuing systems. Since

completion time in queuing systems correspond to travel time in traffic flow problems,

research of completion time for other queuing systems is a clear direction for future research.

And with more research on completion time for other queuing systems, different types of

road links can be represented by these queuing systems, so travel time can be estimated

with more accurate models. And also besides mean travel time, other characteristics of

travel time can be derived from model results, such as standard deviation of the travel

time, confidence interval etc.

5.1.2 Queuing Network Model for Transportation Network

In our research, single link travel time is estimated by using a queuing model with

congestion and incidents. In future research, instead of a single link, travel time estimation

in a transportation network will be our main task. Transportation network will be modeled

as an open queuing network. In such a model, each road link on will be modeled as a

Markov-modulated queue. Our previous queuing models can be adapted into this open

queuing network, such as the finite server and capacity queue with incidents, infinite server

queue with incidents, and state-dependent service rate queue for incidents and congestion

combined. Different road conditions will be modeled as different queuing systems. For

example, in city transportation network, finite server and capacity is a better fit for the

situation, however in highway transportation network, an infinite server queue can be a
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good approximation for the system, since less congestion will happen, unless there is a

major incident.

For illustrative purposes, consider a simple network between an O −D pair composed

of two parallel routes, 1st route has two links, and the other one has only one link, as

shown in Figure 5.1. Assume that 1st route is a local road, and 2nd route is a section of

the freeway. Under this situation, we will model the 2nd route as a M/M/∞ queue with

Markov-modulated service rates and general repair times due to incident. Both mean and

variance for travel time can be obtained from the completion time analysis. For 1st route,

two finite server queues M/M/C and G/M/C/C with incidents will represent link 1 and

2 for this route respectively. For first link, since we assume no arrival of vehicle will be

lost, we need to use an infinite buffer queue M/M/C to model this link. For second link,

there is no room for vehicles to wait, if there are more vehicles, they will stay in the first

link, so G/M/C/C is an appropriate model for this link. And since arrival for second link

is dependent on output of first link, we use a general arrival model to analyze. Under this

situation, we can consider 1st route as a tandem queue model with incidents involved.

Figure 5.1: Analysis of Alternative Routes for 1 O-D pair with Queuing Model

In the previous example, 2nd route is freeway, but it is possible that there are multiple

intersections along the way, such as in the following figure. Under this situation, the waiting

time for each intersection along the road link will be estimated. Durations of red lights

are constant, however for each individual car, when the car arrived at the intersection,

remaining duration of the red light will be the car’s waiting time. Once we have the arrival

process for vehicles at the intersection, the distribution for waiting time in this intersection

can be analyzed. After we have waiting times for each intersection, by combining with

completion time analysis results for the whole road link without intersections, we can get

the distribution for travel time on the road link with intersections.
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Figure 5.2: Freeway with Multiple Intersections

5.2 Infrastructure Security Games

5.2.1 Mobile Adversary Problems

Mobile adversary case should be considered to accommodate more general case of

security problems. With mobile adversary, the problem is significantly complicated, and

competitive POMDP model needs to be studied to represent this problem. Computation

will be time consuming, and theoretical results will be even harder to achieve. However,

this is the correct way to handle fast changing nature of adversary attacks. Simulation and

heuristic algorithm can be a good way to reach satisfied results from the model.

5.2.2 Simulation Package

Simulation package should be developed to accommodate such a complicated problem

with pedestrian flow simulation underneath. And real-time updates should be an option

for improving the model results. It will certainly facilitate our research and application to

real problems.
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