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ABSTRACT OF THE DISSERTATION

HEAT CONDUCTION IN LOW DIMENSIONAL LATTICE SYSTEMS

By VENKATESHAN KANNAN

Dissertation Director:

Prof. Joel Lebowitz

We study heat conduction and other nonequilibrium properties of one dimensional

chain of particles, ordered and disordered, harmonic and anharmonic. Our results

include derivation of oscillatory temperature profile for harmonic alternating mass

chains, demonstration of finite heat conductivity for disordered harmonic chains with

velocity-flipping noise, description of fluctuations for ordered harmonic systems with

noise, and understanding the behavior of systems with noise and anharmonicity. We

provide a comparative analysis of the effects of the various dynamics and system

parameters on the characteristics of the nonequilibrium steady state of the chain.
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Chapter 1

Introduction

Heat conduction is a very common phenomena, witnessed both in everyday experi-

ences and in standard engineering applications, and it is normally assumed that we

understand the process very well. To a certain extent, this view is correct. As it

happens, heat conduction in almost all known materials is empirically found to obey

Fourier’s Law, according to which the heat current is proportional to (negative of)

the temperature gradient. In three dimensions, we have :

J = −κ∇T (1.1)

where J is the current per unit area and the constant of proportionality κ is the heat

conductivity, a property of the material that depends on the temperature, pressure,

etc. This macroscopic equation is empirically found to be valid for a wide class of

materials, and this relation is taken to be the correct description of heat transport in

most engineering analysis. And yet, despite the seeming universality of this relation,

there is no rigorous derivation of this equation starting from the microscopic dynam-

ics, either classical or quantum. It is this unresolved problem of heat conduction that

we wish to investigate in our work.
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We shall limit our study here to the classical case as (1.1) is also seen to be valid

in molecular dynamical simulations of Newton’s equations, as will be discussed later.

More concretely, we consider a lattice governed internally by Hamiltonian dynamics,

of length l, with fixed cross section area, and ends connected to thermal reservoirs

that are maintained at fixed unequal temperatures Ta and Tb. Given the Hamiltonian

dynamics and also the interactions of the ends with reservoirs, the challenge is to

prove that the heat flow at steady state would be given by

J ∝ Ta − Tb
l

(1.2)

There have been a multitude of attempts to derive this equation for various sys-

tems over a span of more than half a century. While there has not yet been an all-

encompassing rigorous derivation of this relation for a system with realistic dynamics,

a vast literature has emerged in the last few decades revealing several intriguing as-

pects of the problem. In addition to many ingenious models that have been proposed

and successfully solved, a large number of insightful ideas and mathematical results

have sprung up from the study of these systems.

1.1 Overview Of Important Results

One of the earliest results in the study of heat conduction was the rigorous demon-

stration that uniform (also described as ordered) or periodic lattices with harmonic

interactions have a heat current J that is independent of the number of particles

N along the direction of flow, i.e, the conductivity κN , defined as JN
(Ta−Tb)/N

, grows

as N [2, 20]. This behavior can be physically explained by the ballistic transport of

phonons inside the crystal (see Chapter 2 for more discussion).
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Instead of the ordered system, if we had the particle masses to be random, e.g., each

mass was chosen from a fixed i.i.d, it produces the localization of vibrational modes

of the lattice. The extent to which a particular mode is localized depends on the

frequency of that mode and the dimension of the lattice. In such disordered lattices,

it is only the delocalized modes (if there are any) that carry the current. In one-

dimension, where the system is studied quite thoroughly, it has been shown that, for

lattices with on-site pinning (also called pinned lattice) in the bulk, where there is a

gap in the vibrational spectrum, the conductivity decays exponentially with the size

of the system, regardless of the boundary conditions [34]. Such models with pinning

in the bulk physically corresponds to attaching the lattice to a substrate. For the dis-

ordered system that is unpinned in the bulk, the heat current depends on the nature

of the boundary conditions and the spectral properties of the heat baths [22].

The dynamics of real physical materials include complicated interactions that goes

beyond the harmonic nearest neighbor dynamics considered above. An indirect way

to model the effects of these non-harmonic interactions is by introducing stochastic

dynamics within the bulk. An excellent example that is not very physical but il-

lustrative of the significance of stochastic noise is the KMP model [5], where a one

dimensional chain of oscillators interact only by the random redistribution of energy

between neighboring particles. This particular model was solved exactly and the heat

current obeys Fourier’s Law.

A large number of interesting results have been obtained for other systems with ran-

dom dynamics. It has been proven for ordered lattices with stochastic noise that

conserve both momentum and energy, that regular conductivity in obtained in di-

mension d ≥ 3 and superdiffusive heat transport holds for lower dimensions [25].

When the same dynamic appears in a pinned lattice, or one with a momentum non-
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conserving noise, regular transport is obtained in all dimensions d ≥ 1 [26].

A system with a very different type of stochastic interaction is a lattice with self-

consistent reservoirs. In this model, every site in the lattice interacts with a thermal

reservoir, whose temperature is determined by the self-consistency condition at steady

state which requires that there is no net energy exchange between the intermediate

particle and its reservoir [27]. It was proved that Fourier’s Law is satisfied for this

system in any dimension [29].

What happens when stochastic noise is introduced in a disordered lattice? This prob-

lem has been studied only recently, and it has been shown for an energy conserving

noise in general d dimensional lattice, that we get a finite conductivity[32].

While the stochastic dynamics acts as a substitute for the complex interactions found

in physical systems, in order to accurately model a realistic system, it is necessary to

incorporate the nonlinear interaction between sites of the lattice. However, analyzing

systems with anharmonic interactions is notoriously difficult and most results for such

systems have been obtained using numerical computations and molecular dynamical

simulations.

There is growing numerical evidence that the conductivity is finite for one dimen-

sional pinned chains with anharmonic interactions[12, 45, 47, 11]. Analytic ap-

proaches in investigating lattices with quartic pinning potential using kinetic the-

ory of phonons (Peierls-Boltzmann equation) have also pointed to existence of finite

conductivity[13, 14].

For unpinned one-dimensional ordered systems with anharmonic interaction, such as
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the FPU β chain (nearest neighbor potential has both harmonic and quartic compo-

nents), numerical simulations indicate that κ ∼ Nα where the 1/3 ≤ α < 1/2 [7, 8, 9].

Applying the phonon kinetic theory to the system suggests that α = 0.4[10].

In two-dimensional homogeneous unpinned lattices with anharmonic interaction, molec-

ular dynamical simulations for both FPU-β type interaction and Lennard-Jones po-

tential ( V (q) = ε[(σ
q
)12−(σ

q
)6]) have found that the conductivity diverges with system

size although there are disagreements as to whether the divergence is logarithmic or

follows a power law behavior [15, 16].

More recently, the combination of disorder and nonlinearity with on-site pinning in

one dimensional systems has been considered and molecular dynamical simulations

indicate that finite conductivity is obtained [34]. This result naturally raises an in-

teresting question (and the one we will study) as to whether any arbitrarily small

nonlinearity is sufficient to destroy the localization caused by the disorder in one di-

mensional pinned systems.

As with any theory in physics, the best vindication of a theoretical or a numeri-

cal result is experimental confirmation. Although Fourier’s Law is empirically valid

in three-dimensions, it has not been carefully tested in lower dimensional systems.

Fortunately, the advances in nanotechnology, and particularly the development of

nanotubes, allows a more thorough investigation of the system size dependence of

conductivity. The experiments that have been carried out in Single Walled Car-

bon Nantobues (SWCNT) does point to anomalous heat transport in one-dimension

[17, 42]. In another experiment on Multi-Walled Carbon Nanotubes (MWCNT), the

conductivity was found to have a power law dependence on the length [19].
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1.2 Models Studied/Dissertation Layout

The selection of models we have investigated and whose details and results are de-

scribed in the rest of this manuscript vary significantly from each other in terms of

their qualitative features and the analysis carried out to study them. These were cho-

sen less because they presented a natural transition from one to another, but more

because in each case, there was much we needed to understand about the system.

Despite the dissimilarities between them, there are some common elements that we

shall briefly state. Except for one set of simulations and results that was generalized

to two dimensions, all the models we have considered here are one dimensional. The

Hamiltonian for these chains consist of nearest neighbor interactions and, with or

without, an external pinning at every site. In the simulations, the chain is subjected

to a thermal gradient by attaching the first and last particle to heat reservoirs at

unequal temperatures (which is modeled by a Langevin thermal bath).

The following chapters in this manuscript have been organized according to the basic

type of dynamics obeyed by the systems that are studied:

In Chapter 2, we look at the alternating mass harmonic chain. Numerical compu-

tations indicated that the temperature profile oscillates between two values, and the

current depends on whether the total number of particles is even or odd. We derive

an exact analytic expression for both the current and the temperature profile in the

limit N → ∞. Numerical simulations carried out in a two dimensional alternating

mass lattice reveal similar oscillations.

In Chapter 3 we consider a harmonic chain with stochastic dynamics that generates

velocity flip at every site. We demonstrate a mapping of pair correlation functions

at steady state to that of the self-consistent reservoir model, and use the correspon-
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dence to derive the conductivity in the ordered case. Further, the same expression is

obtained using the Green-Kubo formula that determines the conductivity from the

equilibrium current correlations.

For the pinned disordered system, we use exact numerics to demonstrate (a)finite

conductivity at sufficiently large values of N (b) the dependence of the conductivity

on the stochastic strength λ and (c) the dependence of conductivity on the disorder

strength and pinning. From a theoretical perspective, the Green-Kubo formula is

used to establish bounds on the conductivity for disordered systems. For the un-

pinned chain, we consider two cases, one with boundary pinning and the other with

free boundary conditions. We carry out large sets of simulations and demonstrate that

the conductivities are the same regardless of the boundary condition, as N →∞. We

address the interesting question of what happens to the conductivity as λ→ 0?

Finally, we use exact numerics to compute the four-variable correlation functions and

show that the steady state is not Gaussian, unlike the system with self-consistent

reservoirs. Performing hydrodynamical scaling of the system and applying the large

deviation theory an expression is obtained for the fluctuations in the total energy for

the ordered system. We carried out careful numerical simulations to verify this result

for both pinned and unpinned cases.

In Chapter 4, we turn to nonlinear systems with stochastic noise. The anharmonicity

is introduced by a quartic term in the pinning potential and the noise is generated by

velocity flips at individual sites. We study the variation of the current (and conductiv-

ity) with the size of the system, the strength of anharmonicity and stochasticity. Our

data for the ordered masses suggests that both nonlinearity and noise complement

each other in obstructing the ballistic transport of phonons and therefore reducing
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the current. We also use the data obtained to test an expression that was obtained for

the first order correction (in nonlinear coupling strength) to the conductivity. For the

range of parameter values we considered, the first order expansion could not account

for our results.

The disordered system with both anharmoncitiy and stochastic noise is of great inter-

est because of its potential to shed light on the open question of whether any non-zero

anharmonicity can destroy the localization produced by disorder. A very large num-

ber of simulations were run in trying to explore this question but obtaining reliable

and consistent data in certain parameter regimes proved difficult and our results were

unable to resolve the issue.

In the last chapter, we briefly study the effect of introducing a defect in an otherwise

ordered harmonic chain. The types of irregularities at a single site we study are

caused by a different mass value or a velocity-flipping noise or a quartic pinning

term. The data for these models was obtained from exact numerics and dynamical

simulations. We note features of similarity in the temperature profile and current

across the different models and provide heuristic explanation for some of these.
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Chapter 2

Pure Harmonic Systems

One of the most elementary and well-studied systems is the nearest neighbor harmonic

crystal. We shall for simplicity consider explicitly the 1d chain but indicate the

corresponding state of our knowledge about systems with d > 1. The Hamiltonian

for a one-dimensional chain with nearest neighbor harmonic coupling is given by:

H =
1

2

i=N∑
i=1

p2i /2mi +
1

2

N+1∑
i=1

k1(qi − qi−1)2 +
1

2

N∑
i=1

k0q
2
i (2.1)

=
1

2
p.M−1.p+

1

2
q.Φ.q , (2.2)

where q = (q1, q2, . . . , qN) and p = (p1, p2, . . . , pN) denote respectively the displace-

ment and momenta of the N particles of the chain with the boundary condition

q0 = qN+1 = 0. In the second line we have used a compact notation with M defining

the mass matrix and Φ the force-matrix. The ends of the chain are coupled to heat

reservoirs at temperatures TL and TR. k1 > 0 is the interparticle harmonic interac-

tion.

If k0 > 0, the system is pinned (harmonic) at every site and this feature can be phys-

ically interpreted as the chain being attached to a substrate.

The heat current between the sites i and i+1 is given by J i,i+1
N = −1

2
k1〈(qi+1−qi)(vi+
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vi+1)〉 and at steady state we have: J1,2
N = J2,3

N = · · · JN−1,NN = JN , is satisfied. This

can be seen from the fact the equation for the rate of change of the average local

energy εi at any site i is given by:

〈ε̇i〉 = 〈J i−1,iN 〉 − 〈JNi,i+!〉

〈ε̇i〉 =
d

dt
〈εi〉 = 0 (2.3)

We are looking to understand how JN depends on the size of the chain N .

Harmonic systems are amenable to analytic treatment because we can determine

the properties of its vibrational spectrum. The vibrational modes of a harmonic

crystal are independent and non-interacting. One can understand the heat transport

properties of the system by recognizing that each vibrational mode (or, equivalently,

the corresponding phonons) carry the heat across the crystal.

2.1 Discussion of Important Results

The basic model of a one-dimensional chain of uniform masses with nearest neigh-

bor harmonic coupling and connected to Langevin heat reservoirs was studied by

Lebowitz et al [2]. They obtained an exact solution for the non-equilibrium steady

state (NESS) probability density. This was used to show that the heat current JN ,

reached a finite positive value, as N → ∞. In other words the heat conductivity,

κN = JNN diverged as N under the same limit. The temperature profile was deter-

mined to be uniform in the bulk of the chain with a value that was arithmetic mean

of end temperatures (see Fig.2.1). A variation of this model is a chain where the
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0 0.25 0.5 0.75 1
i/N

1

1.2

1.4

1.6

1.8

2

T
i

Temperature Profile
N=400, Ordered Masses (m=1)

Figure 2.1: Temperature profiles for a chain of uniform masses (m=1) of length 400
and with harmonic nearest neighbor interaction. The ends of the chain are connected
to heat reservoirs maintained at temperatures TL = 2 and TR = 1. This system was
first analyzed in [2]

arrangement of masses is periodic, i.e, a chain of period C would satisy the condition

mi+C = mi for any pair of sites i, and i + C. This configuration also gives infinite

conductivity with κN ∼ N [3]. This can be explained in terms of the vibrational

modes of the chain, each of which is extended over the entire length of the chain.

In the phonon picture, this property translates to phonons propagating freely from

one end of the chain to the other. This ballistic transport of phonons implies that

the heat transported is independent of the length of the chain (leaving aside the end

effects). A similar behavior was shown to be true in higher dimensional crystals [20]

, with and without pinning.

2.2 Alternate Mass Chains

We consider the special case of a periodic one-dimensional harmonic chain with the

period being two. Let such a chain of length N have masses ma and mb. The masses
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at the ends of the chain are coupled to temperature reservoirs through the Langevin

dynamics.

2.2.1 Governing equations

The equations of motion of the particles is given by:

miq̈i = −
∑
j=1,N

Φi,jqj + δi,1[−γLq̇1 + (2γLTL)1/2ηL] + δi,N [−γRq̇N + (2γRTR)1/2ηR] , (2.4)

for i = 1, 2, . . . , N , where ηL, ηR are Gaussian white noise chosen from distributions

with averages 〈ηL(t)〉 = 〈ηR(t)〉 = 0 and correlations 〈ηL(t)ηL(t′)〉 = 〈ηR(t)ηR(t′)〉 =

δ(t− t′) and γL, γR are dissipation constants.

Corresponding to the Langevin equations in Eq. (2.4) it is straightforward to write

the Fokker-Planck equation to describe the evolution of the phase space distribution

µ(x, t), x = (q1, · · · , qN , p1, · · · , pN). Following standard methods [21] it can be shown

that the Fokker-Planck equation is given by:

∂µ

∂t
+

N∑
i=1

[
pi
mi

∂µ

∂qi
−

N∑
j=1

Φi,jqj
∂µ

∂pi

]
=
∑
i=1,N

γi
mi

∂

∂pi

[
piµ+ Timi

∂µ

∂pi

]
, (2.5)

where the right hand side of Eq. (2.5) describes the interaction of the end particles

with the heat baths and T1,N = TL,R and γ1,N = γL,R. Let us define the 2N × 2N

matrix

a =

 0 −M−1

Φ M−1Γ

 , (2.6)

where Γ is a N ×N diagonal matrix with Γij = γiδij(δi1 + δiN) . We also define the

2N × 2N matrix d with elements dij = 2γδij(TLδi,N+1 + TRδi,2N). It is known that
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Figure 2.2: Temperature profiles for (a) system with even number of sites N = 32, 64,
and with γL = γR = 1.0 and (b) system with odd number of sites N = 33, 65, and
with γL = 1.5, γR = 0.5. Other parameters were set to ma = 0.75,mb = 0.25, k =
1, TL = 1.5, TR = 0.5. The mass of the first particle is always taken to be ma. Note
that in (a), the heavier particles are hotter, while in (b), the lighter particles are
hotter. The horizontal dashed lines indicate the analytic predictions for N → ∞,
from Eqs. (2.24,2.25).
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the steady state distribution is Gaussian [2] and given by

µs = (2π)−NDet[b]−1/2exp(−1

2

2N∑
i,j=1

b−1ij xixj) ,

where the covariance matrix b with elements bij =< xixj > satisfies

a.b + b.a† = d . (2.7)

2.2.2 Analytic and numerical results

The solution of the linear equations, Eq.(2.7), gives us all the correlations bij and

hence the temperature profile Ti =< p2i > /mi = bN+i,N+1/mi , and the current,

J = k〈(qi+1 − qi)pi/mi〉 = k1(bi+1,N+i − bi,N+i)/mi. In the equal mass case the

covariance matrix for N sites can be obtained in a fairly explicit form [2]. This seems

to be difficult for the alternate mass case. However the matrix equations can be

solved numerically for small system sizes and we can obtain accurate results for the

temperature profile and current for these system sizes. In Fig. 2.2 we show typical

temperature profiles for alternate mass chains with even and odd number of sites for

particular choices of parameter values and N . We see oscillations in the temperatures

of the particles in the bulk in both the even and odd cases, and the amplitude of the

oscillations does not seem to change with system size. In the next section, we will

obtain expressions for the current and the bulk temperatures and show that the

temperature oscillations persist in the N →∞ limit.

To obtain analytic results in the limit N → ∞ we follow [3] and express the covari-

ances in terms of integrals over frequencies. The integrands involve elements of the

following Green’s function:

G+ = [−Mω2 + Φ− iωΓ]−1 . (2.8)
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Here we are interested in the temperature and current and these are given by [3, 4]

Ti =
1

π
mi

[
γLTL

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 + γRTR

∫ ∞
−∞

dω ω2 |G+
iN(ω)|2

]
, i = 1, 2, . . . , N

J =
γLγR(TL − TR)

π

∫ ∞
−∞

dω ω2 |G+
1,N(ω)|2 . (2.9)

We rewrite the above expressions in the following form.

Ti = Ii TL + Îi TR ,

J =
γR
mN

(TL − TR)IN ,

where the

Ii =
miγL
π

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 , Îi =

miγR
π

∫ ∞
−∞

dω ω2 |G+
iN(ω)|2 .(2.10)

are independent of the temperatures TL and TR. Now we note that for the equilibrium

case TL = TR, we must have the same temperature at all sites, i.e Ti = T , and hence

deduce the equality Ii + Îi = 1. Using this fact and defining TL = T + ∆T/2, TR =

T − ∆T/2 we can rewrite the equation for the temperature profile in the following

form:

Ti = T + (Ii − 1/2)∆T = TR + Ii∆T. (2.11)

We thus only need to evaluate the integral Ii, in the limit N →∞.

To simplify our calculations, we only consider the unpinned case k0 = 0. It is straight-

forward to extend the result to the case k0 6= 0. For clarity, we may set the odd sites

to have mi = ma and even sites, mi = mb. Without loss of generality we can rescale

time and mass so that k1 = 1 and ma +mb = 1.
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Our task is to evaluate the integral

Ii =
miγL
π

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 , (2.12)

where G+ = [−Mω2 + Φ − ıωΓ]−1. We consider the case with k = 1. Let us define

∆l,m as the determinant of the sub-matrix of [−Mω2 + Φ− iωΓ] that starts from the

lth row and column and ends in the mth row and column. We also define Dl,m as the

determinant of the sub-matrix of [−Mω2 + Φ] starting from the lth row and column

and ending in the mth row and column. In terms of these one has:

G+
l,1(ω) =

∆l+1,N

∆1,N

, G+
l,N(ω) =

∆1,l−1

∆1,N

(2.13)

with ∆1,l−1 = D1,l−1 − iωγLD2,l−1

∆l+1,N = Dl+1,N − iωγRDl+1,N−1

∆1,N = D1,N − ıω(γRD1,N−1 + γLD2,N)− ω2γLγRD2,N−1 . (2.14)

Let us now define f(l) = D1,2l and g(l) = D1,2l−1. These satisfy the recursion relation,

 f(l)

g(l)

 = B

 f(l − 1)

g(l − 1)

 ,

where B =

 (2−maω
2)(2−mbω

2)− 1 −(2−mbω
2)

(2−maω
2) −1

 ,

with the initial condition f(0) = 1 and g(0) = 0. Hence we get

 f(l)

g(l)

 = Bl

 1

0

 . (2.15)

The matrix B has unit determinant and can be expressed in terms of the Pauli spin
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matrices ~σ as follows:

B = cos q 1 + ı~σ.~n sin q = eı~σ.~nq

where cos q = Tr
B

2
=

(2−maω
2)(2−mbω

2)− 2

2
, (2.16)

and ~n is a three dimensional unit vector. Hence we get:

Bl = = eı~σ.~n lq = cos(lq) 1 + sin(lq)
B− cos q 1

sin q
(2.17)

Combining Eq. (2.17) and Eq. (2.15) we have :

f(l) =
sin(l + 1/2)q

sin(q/2)
(2.18)

g(l) =
sin(lq)

sin q
(2−maω

2) (2.19)

Note that for odd-dimensional matrices with the first mass equal to mb, the determi-

nant would be given by Eq. (2.19) with ma replaced by mb. Using these expressions

in Eqs. (2.13,2.14), we then get the following forms for the integrals Ii, depending on

whether N is even or odd. Case(1) - even N :

Iodd i =
2maγL
π

∫ ∞
0

dωω2

(
sin2

(N−i+1)q
2

sin2 q
(2−mbω

2)2 + γ2Rω
2 sin

2 (N−i)q
2

sin2(q/2)

)
|∆1,N |2

,

Ieven i =
2mlγL
π

∫ ∞
0

dωω2

sin2
(N−i+1)q

2

sin2(q/2)
+ γ2Rω

2 sin
2 (N−i)q

2

sin2 q
(2−maω

2)2

|∆1,N |2
,

IN =
2γLma

π

∫ ∞
0

dω
ω2

|∆1,N |2
, (2.20)

where

∆1,N =

[
sin (N+1)q

2

sin(q/2)
− γLγRω2 sin (N−1)q

2

sin(q/2)

]
+ ıω

[
γL(2−mbω

2) + γR(2−maω
2)
]sin(Nq/2)

sin q
.
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Case(2) - odd N :

Iodd i =
2maγL
π

∫ ∞
0

dωω2

(
sin2

(N−i+1)q
2

sin2(q/2)
+ γ2Rω

2(2−mbω
2)2

sin2
(N−i)q

2

sin2(q)

)
|∆1,N |2

,

Ieven i =
2mlγL
π

∫ ∞
0

dωω2
(2−maω

2)2
sin2

(N−i+1)q
2

sin2 q)
+ γ2Rω

2 sin
2 (N−i)q

2

sin2(q/2)

|∆1,N |2
,

IN =
2γLma

π

∫ ∞
0

dω
ω2

|∆1,N |2
, (2.21)

where

∆1,N =

[
(2−maω

2)
sin (N+1)q

2

sin q
− γLγRω2(2−mbω

2)
sin (N−1)q

2

sin q

]
+ ıω

(
γL + γR

)sin(Nq/2)

sin q
.

We now consider points in the bulk such that x = i/N and (N − i)/N remain finite

in the N →∞ limit. We now note that, for real values of 0 < q < π, Eq. (2.16) has

two allowed solutions for ω, namely:

ω2
− =

1

mamb

[1− φ(q)]

ω2
+ =

1

mamb

[1 + φ(q)] ,

where φ(q) = [1− 2mamb(1− cos q)]1/2 , , 0 ≤ q ≤ π .

These correspond to the frequencies in the acoustic and optical branches of the lattice

with the frequency ranges 0 < ω− <
√

2/M and
√

2/m < ω+ <
√

2/(mM), where

m (M) is the smaller (larger) of the two masses. For frequencies outside these ranges,

Eq. (2.16) gives imaginary values of q. This means that, for these frequencies, terms

such as sinNxq grow exponentially with N . Hence it is clear that, in the limit

N → ∞, the integrals in Eqs. (2.20,2.21) only get contributions from frequencies in
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the acoustic and optical bands. Thus for each of the integrals above, we get:

∫ ∞
0

dωF (ω) =

∫ √2/M

0

dω− F (ω−) +

∫ √2/(mM)

√
2/m

dω+ F (ω+)

=

∫ π

0

dq
∣∣dω−
dq

∣∣ F (ω−(q)) +

∫ π

0

dq
∣∣dω+

dq

∣∣ F (ω+(q))

We now note from Eqs. (2.20,2.21) that the required integrands F (ω) have factors of

the form sin2(Nxq) in the numerators and ∆1,N in the denominators. In the limit

N → ∞ the factors sin2(Nxq) in the numerators can be replaced by 1/2. Next we

note that the determinant ∆1,N always has the following form:

∆1,N = A(q) sin(Nq) +B(q) cos(Nq) , (2.22)

where A and B are smooth complex-valued functions. We now obtain the following

result for any function g(θ, φ) which is periodic in both variables:

lim
N→∞

∫ π

0

dθ g(θ,Nθ) = lim
N→∞

1

N

∫ 2π(N/2)

0

dφg(
φ

N
, φ)

= lim
N→∞

1

N

i=(N/2)∑
i=1

∫ 2πi

2π(i−1)
dφg(

φ

N
, φ) = lim

N→∞

1

N

i=(N/2)∑
i=1

∫ 2π

0

dψg(
2π(i− 1) + ψ

N
,ψ)

= lim
N→∞

i=(N/2)∑
i=1

1

N

∫ 2π

0

dψg(
2π(i− 1)

N
,ψ) =

1

2π

∫ π

0

dθ

∫ 2π

0

dψg(θ, ψ) .

Using this we obtain:

∫ π

0

dq
C(q)

|A(q) sin(Nq) +B(q) cos(Nq)|2
=

∫ π

0

C(q)dq
1

2π

∫ 2π

0

dψ
1

|A(q) sinψ +B(q) cosψ|2

=

∫ π

0

dq
C(q)

|A(q)B∗(q)− A∗(q)B(q)|
(2.23)

Using this we get the asymptotic forms of the various integrals in Eqs. (2.20,2.21),

and these lead to the results
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Case (1)- N = 2L, L→∞:

TEo = T + ∆T

[∫ π

0

dq
γLma

2πφ(q)

(mbω
2
+ − 2)2 + 4γ2Rω

2
+cos2(q/2)

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLma

2πφ(q)

(mbω
2
− − 2)2 + 4γ2Rω

2
−cos2(q/2)

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)
− 1

2

]
,

TEe = T + ∆T

[∫ π

0

dq
γLmb

2πφ(q)

4cos2(q/2) + γ2Rω
2
+(maω

2
+ − 2)2

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLmb

2πφ(q)

4cos2(q/2) + γ2Rω
2
−(maω

2
− − 2)2

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)
− 1

2

]
,

JE = ∆T

[∫ π

0

dq
γLγR
πφ(q)

sin2q

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLγR
πφ(q)

sin2q

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)

]
, (2.24)

where the subscript o refers to odd sites and e to even sites.

Case (2)- N = 2L+ 1, L→∞.

TOo = T + ∆T

[∫ π

0

dq
γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ2Rω
2
+(mbω

2
+ − 2)2

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ2Rω
2
−(mbω

2
− − 2)2

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

− 1

2

]
,

TOe = T + ∆T

[∫ π

0

dq
γLmb

2(γL + γR)πφ(q)

(maω
2
+ − 2)2 + 4γ2Rω

2
+cos

2(q/2)

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLmb

2(γL + γR)πφ(q)

(maω
2
− − 2)2 + 4γ2Rω

2
−cos

2(q/2)

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

− 1

2

]
,

JO = ∆T

[∫ π

0

dq
γLγR

(γL + γR)πφ(q)

sin2q

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLγR

(γL + γR)πφ(q)

sin2q

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

]
. (2.25)

When γL = γR = γ, we can explicitly carry out the integrals appearing in these

expressions and we get the following results.



21

0 0.5 1 1.5
γ

0
0.05

0.1
0.15
0.2 J

J - Ac
J - Op

0.5 1 1.5
γ

0.5

1

1.5

2

2.5

Te

To

Te
(Ac) To

(Op)

To

Te
(Op)

(Ac)

Figure 2.3: Temperatures at odd and even sites for a chain with even number of
particles, plotted as a function of γ = γL = γR, ma = 0.75,mb = 0.25, k = 1, TL =
1.5, TR = 0.5. We also plot separately the contributions of the acoustic and optical
modes to the temperature at any site. The inset shows J and also the contributions
of the acoustic and optical modes.
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Figure 2.4: Temperatures at odd and even sites for a chain with odd number of
particles, plotted as a function of γR with γL = 1, ma = 0.75,mb = 0.25, k = 1, TL =
1.5, TR = 0.5. We also plot separately the contributions of the acoustic and optical
modes to the temperature at any site. The inset shows the variation of heat current
with γR and also the contributions of the acoustic and optical modes.
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Case (1) - even N :

Iodd =
mb

2

2(1 + β) + (δ2 + 2δ)2β + 2 β2

1+2βµ
δ2(δ + 1)2

√
2β + 1

√
1 + 2β + 2β2µ

− 4
ma

1 + 2βµ

(√
1 + 2β + 2β2µ

1 + 2β
− 1

)

+
mb

2

|δ|(δ + 1)2

µ(1 + 2βµ)
√

1 + δ2
+ma

2βµ

1 + 2βµ

(
1− |δ|√

1 + δ2

)
(2.26)

Ieven = ma

(
1 +
−(1 + β) + β(2δ − δ2)− δ2(1− δ)2 β2

1+2βµ√
1 + 2β

√
1 + 2β + 2β2µ

+ β
|δ|(1− δ)2√

1 + δ2(1 + 2βµ)

)

+
mb

1 + 2βµ

(
− |δ|√

1 + δ2
+

√
1 + 2β + 2β2µ√

1 + 2β

)
(2.27)

JE = ∆T
γ

β2µ(1 + 4γ2)
[2β + 1 + 2β2µ(1 + δ2 − |δ|

√
1 + δ2)−

√
(2β + 1)(2β + 1 + 2β2µ)]

(2.28)

where µ = 2mamb , δ = ma −mb , β = γ2/(mamb) .

Case (2) - odd N :

Iodd = Ieven =
1

2
, (2.29)

JO = ∆T
γB

G2

(
1−

√
(F +H)2 −G2 +

√
(F −H)2 −G2

2F

)
(2.30)

where

F =
B

2C
(B2 − 4AC)1/2 , G = Cµ , H =

B2

2C
− C(1− µ)− A

and A =
δ

mb

− δβ

ma

, B =
1

mb

+
2mbβ

ma

, C =
β

ma

.

2.2.3 Analysis

We now perform some analysis to better understand the physics contained in the

expressions we have obtained for even N and odd N for various parameter sets.

When γL 6= γR, we evaluated the integrals in Eqs. (2.24, 2.25) numerically (using

Mathematica).
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Case (1): We consider chains with even N and set γL = γR = γ. In Fig.2.3 we plot

the temperatures on the odd (TEo ) and even (TEe ) sites, and also the current (JE in

inset) as a function of the parameter γ. We also separately plot the contributions

of the acoustic and optical modes to the temperatures and current. We note the

following features:

(i) Depending on the value of γ, either the heavier particles (those on odd sites), or

the lighter ones are hotter. At γ ≈ 0.41, the temperatures at the odd and even sites

are equal.

(ii) The temperature of the heavier particles gets its main contribution from the

acoustic modes while that of the lighter particles comes mostly from the optical

modes. The heat current is mostly carried by the acoustic modes.

Case (2): We consider chains with odd N . In this case, γL = γR becomes a very spe-

cial case: the masses of the end particles being equal, this condition implies symmetry

between the left and right reservoirs, and this leads to a uniform bulk temperature

equal to (TL+TR)/2. The more typical situation is when the two couplings are differ-

ent and we consider this by setting γL = 1 and changing γR. In Fig. 2.4 we plot the

temperatures on the odd (TOo ) and even (TOe ) sites, and also the current (JO in inset)

as a function of the parameter γR. We also separately plot the contributions of the

acoustic and optical modes to the temperatures and current. We note the following

features:

(i) Depending on the value of γR, either the heavier particles (those on odd sites),

or the lighter ones are hotter. At a special value of γR = γL, the temperatures at

the odd and even sites are the same. They are both equal to the mean temperature

T = 1.

(ii) As for the even N case, here also we see that the temperature of the heavier

particles gets it main contribution from the acoustic modes while that of the lighter

particles comes mostly from the optical modes. The heat current is again mostly
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carried by the acoustic modes.

2.3 Ordered Chain with Single Site Disorder

The system we consider here is the one-dimensional pure harmonic chain with uniform

masses everywhere expect at one site. The Hamiltonian for a chain of size N in this

case is the given by Eq. (2.2) with the mass matrix M is a diagonal matrix with all

entries being unity expect at site u where it is m0.

Since the procedure we have described earlier for obtaining the pair correlation in Eq.

(2.7) is for a generic configuration of masses, we solve the matrix equation numerically

to obtain the temperature profile and the heat current. When the site of disorder, u,

is the center of the chain, the steady state temperature profile has two segments: the

segment to the left of the of disorder, which has a uniform temperature in the bulk

that is closer the left reservoir temperature TL, and the segment to the right whose

uniform temperature is closer to the right reservoir temperature TR. Around the It is

of interest to also look at the chain where the single disorder is created by choosing

a different harmonic coupling constant k0.

2.3.1 Discussion

We have obtained exact expressions for the temperature-profile and the heat current

in the alternate mass chain connected to heat baths at different temperatures in the

limit of infinite system size. This proves rigorously that the temperature oscillations

of successive particles in the bulk persist even in the thermodynamic limit.

We provided an understanding of these oscillations by noting that in any given normal

mode, the mean kinetic energy of a particle depends on its mass. In an acoustic mode,

the heavier particles have higher mean kinetic energy than the lighter ones, while in

an optical mode, the lighter particles have higher kinetic energy. On connecting the
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chain to heat reservoirs each of the modes are excited to different degrees, depending

on the parameters. The kinetic energy of a particle gets contributions from all the

modes, both acoustic and optical and the net result depends on the distribution of

energy in the different modes. If both the baths have the same temperature, we

have an equilibrium steady state in which each mode has the same average energy

(equipartition). In this case the temperature at all sites are equal. The same is true

locally when the system is in local equilibrium.

The situation is different in the non-equilibrium case where we do not have local

equilibrium and there is no equipartition of energy between the different modes. We

then expect generically that the mean kinetic energy (temperatures) obtained by

adding the contributions of all modes will depend on the mass of the particle. It

is therefore not so surprising that we get different kinetic energies for the different

masses. From the above explanation we expect that temperature oscillations should

also occur in higher dimensional periodic harmonic systems. Simulation results for

two-dimensional strips (see Fig. 2.5) suggest that this is the case, but more extensive

studies are necessary to establish the role of dimensionality.

We will return to this problem in a later section 3.4 where we will demonstrate that

the oscillations in the bulk will gradually die out when we add anharmonic terms in

the Hamiltonian or introduce stochastic noise.
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Figure 2.5: Simulation results for temperature profile for a two-dimensional N ×W
strip of harmonically coupled particles with a periodic arrangement of masses. The
sites on the strip are labeled (i, j) with i = 1, . . . , N and j = 1, . . . ,W . Particles
at sites with even i + j have mass ma and others have masses mb. Heat baths are
attached to all sites on the layers i = 1 (temperature TL) and i = N (temperature TR).
Periodic boundary conditions are imposed in the transverse (j) direction. Upper plot
shows the average temperature on successive layers for chains of lengths N = 32 and
N = 64. There are oscillations in the transverse direction also and this is shown in
the lower plot which shows the temperatures Ti,j on all sites of a section of the N = 64
chain. Note that from symmetry we have Ti,j = Ti,j+2, and this can be observed here.
The width of the strips were taken to be W = 4. The other parameters were taken
to be ma = 0.6, mb = 1.4, γL = γR = 1.0 and TL = 2.0, TR = 1.0.
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Chapter 3

Harmonic systems with bulk noise

3.1 Introduction

We have so far discussed how pure, ordered harmonic systems lead to the heat con-

ductivity, κ ∼ N . This was explained in terms of the ballistic transport of phonons

from one reservoir to another. We also noted that this behavior is still true when we

consider periodic arrangement of masses or generalize the system to higher dimen-

sions.

It is only natural to ask what happens when we consider a lattice with disordered

masses. The vibrational modes of the lattice are found to be localized in such lattices.

For one dimensional harmonic chains, it was shown in [3] that this localization leads

to a very different form of heat transport. A pinned disordered harmonic chain has a

gap in the spectrum and all modes have a finite localization length l and so the current

decays exponentially with the size of the system in this situation [24]. For unpinned

disordered chains, the low frequency modes are delocalized and hence transport heat

[22]. The heat flux now depends on the boundary conditions.

A different dynamics that we can consider is the addition of random noise to the



29

system. This can be done in several ways, with or without, momentum and en-

ergy conservation. The stochastic dynamics results in the scattering of the phonons

and this feature alters the transport properties of the system. There has been sig-

nificantly more success in demonstrating normal conductivity with the addition of

stochastic dynamics. In particular, it has been proven that Fourier’s Law is obtained

for a harmonic chain with energy conserving but momentum non-conserving stochas-

tic perturbation between neighboring sites [26]. Energy and momentum conserving

stochastic noise in harmonic chains was considered in [25] and they exhibit normal

conductivity in dimension d ≥ 3.

Another variation of this is the model is a harmonic chain with self-consistent reser-

voirs [27], where each particle is connected to a Langevin-type heat bath with which

it interacts, with the condition imposed that there is no average net transfer of energy

between the particle and the internal reservoir. This model with ordered masses was

solved exactly and the conductivity was shown to obey Fourier’s Law [29].

The system we investigate is a harmonic chain, both ordered and disordered, pinned

and unpinned, with a stochastic noise in the bulk. The noise is generated by randomly

flipping the velocity of the particles at every site with an average rate λ. We study the

system both analytically and using numerical simulations. It is first established that

there is a map between the pair correlation functions of the velocity flip model and

the self-consistent reservoir model, and the correspondence allows us to demonstrate

that Fourier’s Law is satisfied for any nonzero flipping rate λ. However, we do not

fully understand how the conductivity κ behaves as we take λ → 0 for disordered

unpinned case. In addition we show a mapping of the steady state equations for

one-body and pair-correlation functions to that of the self-consistent reservoirs [27].
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3.2 Velocity-Flip Model

The results in this section apply in any dimension. For simplicity of notation we

consider here explicitly the one dimensional case; a harmonic chain with the Hamil-

tonian:

H =
∑
l=1,N

[
p2l

2ml

+ k0
q2l
2

]
+
∑
l=2,N

k1
(ql − ql−1)2

2
+ k′

[
q21
2

+
q2N
2

]
(3.1)

=
1

2

[
pM̂−1p+ qΦ̂q

]
,

where {ql, pl} denote the position and momenta of the particles. We have used the

notation p = (p1, p2, ..., pN), q = (q1, q2, ..., qN) and M̂ and Φ̂ are N × N matrices

corresponding to masses and forces respectively. When k0 > 0 we have the pinned

case and set k′ = k1. In the unpinned case, k0 = 0, we consider fixed, k′ > 0, and

free, k′ = 0, boundary conditions.

The system’s evolution has a deterministic part described by the Hamiltonian above

and a stochastic part consisting of two different processes: (i) every particle is sub-

jected to a noise which flips its momentum, i.e. for the lth particle the transition

pl → −pl occurs with a rate λ, (ii) the particles at the boundaries l = 1 and l = N

are attached to heat baths with Langevin dynamics at temperatures TL and TR re-

spectively. Thus the end particles have additional terms in their equation of motion of

the form −γpα/mα + (2γTα)1/2ηα(t), for α = 1, N , with 〈ηα(t)ηα′(t
′)〉 = δα,α′ δ(t− t′),

γ is the friction constant and T1 = TL, TN = TR are the bath temperatures.

The master equation describing the time evolution of the full phase space probability

density is therefore given by:

∂P (x)

∂t
=
∑
l,m

âlmxm
∂

∂xl
P +

∑
l,m

d̂lm
2

∂2P

∂xl∂xm
+ λ

∑
l

[P (...,−pl, ...)− P (..., pl, ...)] ,(3.2)

where x = (q1, q2, . . . , qN , p1, p2, . . . , pN) = (x1, x2, . . . , x2N) and â and d̂ are 2N × 2N
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matrices given by:

â =

 0 −M̂−1

Φ̂ M̂−1Γ̂−1

 d̂ =

 0 0

0 2T̂ Γ̂

 . (3.3)

Here T̂ and Γ̂ are diagonal matrices with diagonal elements given by T̂ll = TLδl,1 +

TRδl,N and Γ̂ll = γ(δl,1 + δl,N) respectively. Similar to the case studied in [28] we also

find that the equations for the one-body and pair correlation functions of the system

are closed. (In fact there are closed equations for each order of the correlation.) We

define the vector ρ , ρl =< xl >, l = 1, 2 . . . 2N and the pair correlation matrix

ĉ =

 û ẑ

ẑT v̂

 . (3.4)

where the N × N matrices û, ẑ and v̂ are given by ûlm = 〈qlqm〉 , v̂lm = 〈plpm〉 and

ẑlm = 〈qlpm〉 . It follows then from Eq. (3.2) ρ and ĉ satisfy the following equations

of motion:

dρ

dt
= −âρ+

(
dρ

dt

)
col

,

dĉ

dt
= −âĉ− ĉâT + d̂+

(
dĉ

dt

)
col

, (3.5)

where the last terms in the above two equations arise from the flip dynamics and are

given by:

(
dρ

dt

)
col

= −2λ

 0

〈p〉


(
dĉ

dt

)
col

= −2λ

 0 ẑ

ẑT 2(v̂ − v̂D)

 , (3.6)
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and v̂D is a diagonal matrix with matrix elements [v̂D]ll = v̂ll = 〈p2l 〉.

In the steady state, dρ/dt = 0 which implies ρ = 0. Setting dĉ/dt = 0 gives the

following set of equations for the pair correlations in the NESS:

ẑT = −M̂ẑM̂−1 ,

v̂ =
1

2
(M̂ûΦ̂ + Φ̂ûM̂) +

1

2
(M̂ẑΓ̂M̂−1 + M̂−1Γ̂ẑTM̂) ,

(M̂ûΦ̂− Φ̂ûM̂) + (M̂ẑΓ̂M̂−1 − M̂−1Γ̂ẑTM̂) + 2λ(M̂ẑ − ẑTM̂) = 0 ,

(Φẑ + ẑT Φ̂) + (M̂−1Γ̂v̂ + v̂Γ̂M̂−1) + 4λ(v̂ − v̂D) = 2T̂ Γ̂ . (3.7)

Using the fact that û and v̂ are symmetric matrices we have N2 +N(N +1) unknown

variables and there are that many independent equations above.

3.3 Mapping to Self-Consistent Reservoir model

Now consider the case of heat conduction across a harmonic chain with Hamiltonian

given by (3.1) and self consistent reservoirs attached to all sites. This is in addition

to the two end reservoirs at fixed temperatures TL and TR. Each of the side reservoirs

is a Langevin bath with a friction constant γ′l and a temperature T ′l , l = 1, 2, ...N ,

which is self-consistently fixed by the condition that there is no net flow of energy

into the reservoir [29]. The stochastic equations of motion of this system are:

dp1
dt

= −Φ1mqm −
γ

m1

p1 −
γ′1
m1

p1 + (2γTL)1/2η1(t) + (2γ′1T
′
1)

1/2ζ1(t)

dpl
dt

= −Φlmqm −
γ′l
ml

pl + (2γ′lT
′
l )

1/2ζl(t) l = 2, ..., N − 1 ,

dpN
dt

= −ΦNmqm −
γ

mN

pN −
γ′N
mN

pN + (2γTR)1/2ηN(t) + (2γ′NT
′
N)1/2ζN(t) ,(3.8)

where η1, ηN and ζl, l = 1, 2, ..., N are independent Gaussian white noise sources with

unit variance. It is immediately established that the probability distribution P (x) in
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the NESS of this model is a Gaussian. The self consistency condition for zero current

into the side reservoirs is given by T ′l = v̂ll = 〈p2l 〉/ml. Making the identification

γ′l = 2λml and correspondingly defining Γ̂′ = 2λM̂ and T̂ ′,the diagonal matrix of T ′l ,

we can see that the equations (3.7) can be rewritten by replacing Γ̂ by Γ̂ + Γ̂′, and T̂

by ˆT + T ′, and thus absorb all the factors containing λ. In this form we can imme-

diately see that they are the system of equations for pair-correlations corresponding

to the self-consistent model defined above.

This identification allows us to immediately use the result for the conductivity for

the ordered case defined in [29] [Eq. 6.7] (with all the masses mi set to unity).

κ =
k1D

8λm
, (3.9)

where D =
4k1

2k1 + k0 + [(k0)(4k1 + k0)]1/2
.

This is an exact result for the ordered system, but there is no immediate extension

using this method, to the disordered case.

3.4 Alternate Mass Chain with Velocity Flip

It should be noted too, that for the alternate mass harmonic chain studied in the

earlier section, the addition of stochastic noise reduces the oscillations, and as N →∞

they decay and we also get regular transport. We briefly discuss this here, under the

categories of momentum conserving and momentum non-conserving noise.

(a) Momentum conserving noise: Here, in addition to the Hamiltonian dynamics

without pinning, one introduces random exchange of momentum between nearest

neighbor particles, which occurs with a rate λ. This conserves both momentum and

energy. In Figs. 3.1 and 3.2, we show the effect of momentum conserving noise on the

temperature profiles for chains of even and odd number of particles. In the even N
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case we see that, on introducing noise, the size of the oscillations has decreased and

the phase of the oscillation on the left half has changed sign. For the odd case, the

choice of parameters (γL = γR = 1) corresponds to a case with no oscillations when

λ = 0. On introducing noise, λ > 0, one gets oscillations very similar to the even

N case. We also see that the oscillation amplitude becomes smaller on increasing

system size, for both even and odd N cases.

Thus we see that the temperature profile in this system with energy-momentum con-

serving noisy dynamics shows the following qualitative features : (i) The oscillations

decay as we go into the bulk, (ii) There is a phase shift in the sign of the oscillation

amplitude as one crosses the center of the chain. The lighter particles at the hot end

are always hotter than the heavier particles. At the cold end, the heavier particles

are hotter. Thus this is qualitatively different from the harmonic case, (iii) For large

N , the temperature profile is not sensitive to whether N is even or odd.

(b) Momentum non-conserving case: In Figs. (3.3,3.4), we show the effect of addition

of velocity flipping dynamics on the temperature profile for harmonic chains with odd

and even number of particles. We observe that for the even case, the oscillations in

the temperature decreases considerably on introducing the noise, and this reduction

is greater when N is larger. For the odd case however, for small systems, introduction

of noise produces small oscillations in the temperature profile, but these oscillations

eventually decrease as the system-size is increased. For both even and odd total

number of particles, the decay of the oscillation amplitude with system size is faster

than for the momentum-conserving case and we quickly get a linear temperature

profile in the bulk of the system.

The rest of the analysis would be focused on understanding the disordered system.
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Figure 3.1: Temperature profiles with energy– and momentum–conserving noisy dy-
namics for a harmonic chain with even number of particles. Other parameters were
taken to be ma = 0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.
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Figure 3.2: Temperature profiles with energy– and momentum–conserving noisy dy-
namics for a harmonic chain with an odd number of particles. Other parameters were
taken to be ma = 0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.



36

0 0.2 0.4 0.6 0.8 1
i/N

1

1.2

1.4

1.6

1.8

2
T i

λ=0: Ν=64
λ=0.01: Ν=64
λ=0.01: Ν=128
λ=0.01: Ν=256

Figure 3.3: Temperature profiles with only energy–conserving noisy dynamics for a
harmonic chain with even number of particles. Other parameters were taken to be
ma = 0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.
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Figure 3.4: Temperature profiles with only energy–conserving noisy dynamics for a
harmonic chain with an odd number of particles. Other parameters were taken to be
ma = 0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.



37

3.5 Green-Kubo Formula

An indirect analytical way to calculate the infinite size conductivity (if it exists) is the

application of the Green-Kubo formula. This approach is based on the assumption

that fluctuations of macroscopic quantities at equilibrium obey the same macroscopic

physical laws as the relaxation of the same quantities when they are perturbed out

of equilibrium. Accordingly, the expression for the conductivity of a one dimensional

system is given by :

κGK = lim
τ→∞

lim
N→∞

1

kBT 2

∫ τ

0

N∑
i=1

〈ji,i+1(t)j0,1(0)〉 (3.10)

The very definition implies that the formula applies to the infinite size limit of the

system, and the resulting value of the expression would be finite only if the system

exhibits regular diffusive transport. There are different derivations of this formula

[30], [31].

3.5.1 Bounds from Green-Kubo formula

Bernardin [32] considered a model of a disordered harmonic chain with a stochastic

noise that changes the momentum of neighboring particles while keeping the sum

of their kinetic energies constant. He obtained an exact result for the Green-Kubo

conductivity of an ordered chain and also rigorous upper and lower bounds for the

conductivity of disordered chains. Here we use Bernardin’s approach for our model

to obtain an exact expression for the ordered chain. We also obtain bounds for

the conductivity of the disordered chain which are slightly improved from those of

Bernardin’s.

The time evolution of the phase space density is given by Eq. (3.2) which we rewrite
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here in a more abstract form for convenience.

∂P (x)

∂t
= LP (x)

where L = A+ λS

AP (x) =
N∑
l=1

[− pl
ml

∂P (x)

∂ql
+

N∑
m=1

Φlmqm
∂P (x)

∂pl
]

SP (x) =
∑
l

[P (...,−pl, ...)− P (..., pl, ...)] . (3.11)

The total current which is carried entirely by the Hamiltonian part can be written in

the following form:

J =
k1
2

N∑
l=1

pl
ml

(ql+1 − ql−1) , q0 = qN , qN+1 = q1. (3.12)

The Green-Kubo expression for the thermal conductivity at temperature T is given

by:

κGK = lim
z→0

lim
N→∞

1

NT 2

∫ ∞
0

dt e−zt 〈J (0)J (t)〉

= lim
z→0

lim
N→∞

1

NT 2

∫ ∞
0

dt e−zt
∫
dx J eLt ( J Peq )

= lim
z→0

lim
N→∞

1

NT 2
〈 J , (z − L)−1 J 〉 . (3.13)

where we have used the notation 〈f, g〉 =
∫
dxf(x)g(x)Peq for any two functions f, g

of phase space variables x = (q1, . . . , qN , p1, . . . , pN) and Peq ∼ exp[−βH] where H is

given by the periodicized version of Eq. (3.1) with k′ set equal to 0.

We note the following relations which are easy to prove:

AJPeq =
∑
l,j

Φljqj
ml

(ql+1 − ql−1)Peq

and SJPeq = −2JPeq (3.14)
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Green-Kubo conductivity for equal mass ordered case

For the equal mass case Eq. (3.14) gives AJPeq = 0. This is true with or without

pinning and corresponds to the fact that for periodic boundary conditions the current

operator commutes with the Hamiltonian. Hence we get:

κGK = lim
z→0

lim
N→∞

1

T 2N

∫
dx J 1

z + 2λ
J Peq = lim

N→∞

〈J 2〉
2λT 2N

.

Using the form of J in Eq. (3.12) we then get the same result as Eq. (3.9)

In the self-consistent model [29], the conductivity was independent of boundary con-

ditions for the ordered case and while not proven we expect this to be true also

for the disordered case for N → ∞ at fixed λ > 0. In fact there is every rea-

son to believe that whenever the Green-Kubo formula for κGK converges to a finite

value when N →∞ then it will agree with the conductivity in the NESS defined as

κ = limN→∞ limTL→TR→T N〈JN〉/(TL − TR).

Upper and lower bounds on the Green-Kubo conductivity

We now consider the random case where the masses are independently chosen from

some distribution. Bernardin’s proof that the conductivity κGK is bounded away from

zero and infinity is based on an identity between 〈J , (z − L)−1J 〉 and a variational

expression (Eq (15) in [32]),

〈J , (z − L)−1J 〉 = Sup{2〈u, J〉 − 〈(z − λS)u, u〉 − 〈(z − λS)−1Au,Au〉} (3.15)

where the supremum is carried out over the set of smooth functions u(q, p). The

derivation of this formula is straightforward for A=0. More generally we can consider

a symmetric L, e.g one corresponding to a stochastic dynamics satisfying detailed

balance with respect to Peq. Then we have that u is the solution of the equation
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Lu = J , and both sides of Eq.(3.15) are equal to 〈J , u〉. For a derivation of Eq.

(3.15) in the case L = S + A with A antisymmetric, see [33].

Lower bound: Choose a test function u = µ
∑

l pl(ql+1 − ql−1), where µ is a varia-

tional parameter:

〈u,J 〉 =
kµT

2

∑
l

〈(ql+1 − ql−1)2〉 = NT 2µD

2
,

〈(z − λS)u, u〉 = (z + 2λ)〈u2〉 = (z + 2λ)µ2T
∑
l

ml〈(ql+1 − ql−1)2〉 .

where D is defined in Eq. (3.9). Denoting by [...] an average over disorder we then

get:

[〈(z − λS)u, u〉] = NT 2(z + 2λ)
µ2D[m]

k
.

Similarly,

〈(z − λS)−1Au,Au〉 = (z + 4λ)−1〈(Au)2〉 = (z + 4λ)−1µ2T 2
∑
l

(
1

ml

− 1

ml+1

)2

mlml+1 ,

and averaging over disorder gives

[
〈(z − λS)−1Au,Au〉

]
= 2NT 2(z + 4λ)−1µ2

(
[m]

[
1

m

]
− 1

)
.

Thus we have:

1

NT 2
[〈J , (z − L)−1J 〉] ≥ Dµ− Cµ2 (3.16)

where C =
2λD[m]

k
+

1

2λ
([m]

[
1

m

]
− 1) . (3.17)
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The minimum of the bound occurs at µ = D/(2C) and this gives:

[κGK ] ≥ D2

4C
. (3.18)

Upper bound: By neglecting the last term in Eq. (3.15) which is clearly negative,

we get the upper bound:

〈J , (z − L)−1J 〉 ≤ (z + 2λ)−1〈J 2〉 = (z + 2λ)−1T
k21
4

∑
l

1

ml

〈(ql+1 − ql−1)2〉 .(3.19)

Hence,

[κGK ] =
1

NT 2

[
〈J , (z − L)−1J 〉

]
≤ k1D

8λ
[

1

m
] . (3.20)

Combining (3.18) and (3.20) gives:

k1D

8λ[m](1 + k1
[1/m]−1/[m]

4λ2D
)
≤ [κGK ] ≤ k1D

8λ
[

1

m
] (3.21)

As λ → ∞, both bounds behave as 1/λ while for λ → 0, the upper bound diverges

while the lower bound goes to 0 linearly in λ. The behavior of κGK and of κ in the

NESS when λ→ 0 after N →∞ is thus not determined by these bounds and remains

an open problem for both the pinned and unpinned random mass case. What we do

know is that, if λ→ 0 with N finite then there is a significant difference between the

pinned and unpinned cases [34, 22]. As already noted, all phonon modes are localized

for the pinned case with a fixed localization length independent of N and the current

decays exponentially with system size. In the unpinned case the low frequency modes

are extended and the current has a power law decay with an exponent that depends on

the boundary conditions used [22], κN ∼ N−1/2 for fixed BCs [3, 35] and as κN ∼ N1/2

for free BCs [23, 36]. With the addition of the noisy dynamics which conserves energy

but not momentum we expect as noted earlier that the conductivity κ will be equal to

κGK and thus strictly positive for any λ > 0 [26]. In the following section we evaluate
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〈JN〉 as a function of λ and N numerically and via computer simulations, to obtain

information about its behavior when λ→ 0.

3.6 Disordered Masses: Numerics and Simulations

We study the dependence of the heat current in the NESS on the system size and on

the strengths of the disorder and noise. In all our computations we set k = 1. The

masses {ml} are chosen from a uniform distribution between 1 − ∆ to 1 + ∆. This

gives [m] = 1, [1/m] = 1/(2∆) ln[(1+∆)/(1−∆)]. The average heat current from site

l to l + 1 is given by jl+1,l = k1〈qlpl+1/ml+1〉. In the steady state this is independent

of l and we denote jl+1,l = 〈JN〉. We note that 〈JN〉 = k1ẑl,l+1/ml+1 and hence we can

obtain accurate numerical values for the current in the disordered system by solving

the equations for the correlation matrix i.e Eqs. (3.7). This involves solving large

dimensional linear matrix equations and we have been able to do this for system sizes

less than N = 512. For larger sizes we performed nonequilibrium simulations and

obtained the steady state current by a time average. For small sizes we verified that

both methods agreed to very high accuracy. The number for disorder realizations was

100 for N ≤ 64, and varied between 2−16 for larger sizes. The error bars in our data

presented below are calculated using the results from different realizations.

3.6.1 Pinned case

This corresponds to the case with k0 > 0 and here we also set k′ = 1. All results in

this section were obtained by numerical solution of Eqs. (3.7). In Fig. 3.5 we plot

〈JN〉N/∆T versus N for different values of the flipping rate λ and with ∆ = 0.8, k0 =

4. In all cases we see a rapid convergence to a system-size independent value which

then gives the conductivity κ of the system. In Fig. 3.6 we plot κ, obtained from the

large-N data in Fig. 3.5, as a function of λ. For comparison we also plot the lower
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Figure 3.5: Plot of JN/(TL−TR) versus N for for different values of λ. The parameter
values were set at k0 = 4, k = 1,∆ = 0.8. All the data shown here were obtained
from exact numerical computation.

and upper bounds for the Green-Kubo conductivity given by Eqs. (3.18,3.20). It is

seen that κ has a maximum around λ ' 0.5. This can be thought of as a balance

between the flips delocalizing the phonons and acting as scatterers of phonons.

In accord with the bounds we find that at large λ, κ ∼ 1/λ while at small λ, the

numerical results suggest κ ∼ λ. We note that for λ = 0, all phonon modes are

exponentially localized within length-scales ` ∼ (k0∆
2)−1. One can argue that for

small values of λ there is diffusion of energy between these localized states with

a diffusion constant ∼ `2λ. This leads to the κ ∼ (k20∆4)−1λ and we now test this

numerically. In Figs. (3.7,3.8) we show the numerical data which suggests the scalings

κ ∼ ∆−4 and κ ∼ k0
−2.5, which are roughly consistent with the expected behavior.

The reason for the discrepancy could be that we are not yet in the strong localization

regime where the prediction is expected to be most accurate.
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Figure 3.6: Plot of κ versus λ obtained from the numerical data in Fig. 3.5. The
lower and upper bounds for κGK given by Eqs. (3.18,3.20) are shown by the dashed
lines.
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Figure 3.7: Plot of κ versus ∆ for different values of λ and with k0 = 4 and k = 1.
We also show a straight line with slope −4.0.
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Figure 3.8: Plot of κ versus k0 for different values of λ and with ∆ = 0.8 and k = 1.
We also show a straight line with slope −2.5.

3.6.2 Unpinned case

As noted above for the unpinned case with λ = 0, the two different boundary condi-

tions(BC) namely fixed BCs with k′ > 0 and free BCs with k′ = 0 give respectively

〈JN〉 ∼ N−3/2 [3] and 〈JN〉 ∼ N−1/2 [23]. The difference in the asymptotic behavior

of the current for different BCs can be understood as arising from the dependence on

BCs of the transmission of the low frequency modes which carry the current [22]. For

any λ > 0 however we expect that the system should have a unique finite value of the

conductivity, independent of boundary conditions, the same as for κGK . Physically

we can argue as follows: The unpinned system without disorder has a finite positive κ

given by Eq. (3.9), which is independent of BCs [see comments at end of sec. (3.5.1)].

The low frequency modes are weakly affected by disorder hence we expect that as far

as these modes are concerned the unpinned system with and without disorder will
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behave similarly. Since these are the modes which led to the dependence on BCs for

the case λ = 0, we expect that for λ > 0 they will not have any effect.

We now present results of our numerical and simulation studies of the unpinned chain

with free and fixed BCs. The numerical results are obtained by solving Eqs. (3.7). The

simulation involves evolving the system with the Hamiltonian part, the momentum

flips at all sites and the Langevin baths at the boundary sites. For N ≤ 512, the

numerical method was employed to arrive at the solution for the NESS whereas for

larger values of N , we performed simulations to obtain the data. In Fig. 3.9 we plot

JN/(TL − TR) versus N for different values of λ for both fixed and free BCs. The

disorder strength is ∆ = 0.8. For both BCs we can see flattening of the curves at

large system sizes for the parameter values λ = 0.1, 0.01 implying a finite κ, which is

independent of BCs. For λ = 0.001, 0.0001 it appears that reaching the asymptotic

16 64 256 1024 4096

N
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4.00

16.00

64.00

JN
/(

T
L
-T

R
)

λ=0.1
λ=0.01
λ=0.001
λ=0.0001

Figure 3.9: Plot of JN/(TL − TR) versus N for the unpinned case with both fixed
(dashed lines) and free BCs (solid lines) for different values of λ and parameter values
k = 1 and ∆ = 0.8. The data for N < 512 were obtained using exact numerics and in
all these cases simulations give very good agreement with the numerics. For N ≥ 512,
the data were obtained from simulations alone.
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Figure 3.10: Plot of κ versus λ for the unpinned system obtained from the numerical
data in Fig. 3.9. The lower and upper bounds for κGK given by Eqs. (3.18,3.20) are
shown by the dashed lines. Also shown is a straight line with slope −1/2.

limit requires larger system sizes.

Using the large-N data in Fig. 3.9 we estimate the conductivity κ = JN/∆T and

this is plotted in Fig. 3.10. In Fig. 3.11 we show a typical plot of the temperature

profile for the case with fixed BC (this was obtained using exact numerics). The

profile is close to linear consistent with the fact that the conductivity is temperature-

independent. We do not see any significant boundary temperature jumps since the

system size is sufficiently large. In Fig (3.12) we have the profile for N=128 for the

case λ → 0 which shows considerable jump in the temperatures across neighboring

sites.

It appears likely that for all λ > 0 the conductivity κ is independent of BCs. However

this is difficult to verify from simulations since one needs to study very large system

sizes to reach the correct asymptotic limit. The reason for this can be roughly seen
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Figure 3.11: Plot of temperature profile (Ti = 〈p2i /mi〉) for the unpinned case (with
mass disorder ∆ = 0.8) with fixed BCs for N = 128, λ = 5, TL = 4, TR = 1. The
expected linear profile is also shown. The data was obtained from exact numerical
computation.

as follows. In the ordered case the conductivity κ ∼ 1/λ and this can be understood

in terms of an effective mean free path ` ∼ 1/λ for the ballistic phonons because of

scattering from the stochastic process. Hence we can expect that, to see diffusive

behavior for the low frequency ballistic modes, important in the disordered case,

requires one to study sizes N
>∼ ` or N

>∼ 1/λ. Finally we observe from Fig. 3.10 that

at small λ, the conductivity appears to be diverging as 1/λ1/2. In the absence of noise

the localization length `L ∼ 1/ω2, hence it is expected that all modes with `L < `

or ω > λ1/2 stay localized. The low frequency modes 0 < ω < λ1/2 become diffusive

with mean free paths ∼ 1/λ thus resulting in a conductivity κ ∼ λ1/2(1/λ) ∼ 1/λ1/2,

which explains the observed behavior.
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Figure 3.12: Same parameters as Fig. 3.11 except the velocity flip λ→ 0. The data
shown is from an exact numerical computation with λ = 10−9. We have verified that
this is close to the temperature profile for λ = 10−7 and expect that it is converging
to the λ = 0 value.

3.7 Higher Order Correlations

The NESS of self-consistent reservoirs model is exactly Gaussian but this is not so for

our noisy model. Instead it will be in general a superposition of Gaussians. Computer

simulations however indicate that the single particle distributions are very close to a

single Gaussian while the joint distribution of xl and pl or of pl and pj , j 6= l, are

essentially uncorrelated. In addition, the set of equations for the four variable corre-

lation functions was derived and for small values of n, they were solved numerically.

The exact values obtained from these numerics were found to be in close match with

the simulation results. For n=4, and TL = 4, TR = 1, the results from the numerical

solution are shown in Table 3.1 corresponding to 3 different values of λ. It was also

observed that these normalized forms of correlations (that go to zero when the tem-

peratures of the two reservoirs are equal or when there is no velocity flipping) have
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Table 3.1: Values of Correlation Functions for n=4 (TL = 4, TR = 1)
Correlation λ = 0.1 λ = 2 λ = 10
<p41>−3<p21>2

<p21>
2 0.006 0.014 ∼ 10−4

<p42>−3<p22>2

<p22>
2 0.054 0.058 0.049

<p43>−3<p23>2

<p23>
2 0.061 0.110 0.098

<p44>−3<p24>2

<p24>
2 0.038 0.018 0.002

<p21q
2
1>−<q21><p21>
<q21><p

2
1>

0.002 0.004 ∼ 10−5

<p22q
2
2>−<q22><p22>
<q22><p

2
2>

0.011 0.014 0.013
<p23q

2
3>−<q23><p23>
<q23><p

2
3>

0.012 0.025 0.023
<p24q

2
4>−<q24><p24>
<q24><p

2
4>

0.012 0.034 ∼ 10−4

a limit when either the difference in temperature (TL − TR) or strength of stochastic

noise (λ) goes to infinity. When we let λ → ∞, we observed that the correlations

involving p1 and p4 went to zero.

We are currently investigating the O(N) corrections to the pair correlations in the

noisy NESS . These are known to behave like 1/N for certain diffusive lattice systems

and to contribute terms of O(N) beyond those obtained from the local equilibrium to

the variance of the particle number in the NESS. Results of this kind are also known

partially for the continuum case with a different kind of noise, i.e instead of velocity

reversals pairs of nearest neighbor particles diffuse on the circle p2i + p2i+1 = C.

3.8 Fluctuations

We can analyze the macroscopic fluctuations in the energy profile of the ordered

mass chain using the theory of large deviations. We first establish the macroscopic

equations using the hydrodynamical scaling limit.
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3.8.1 Hydrodynamical Equations

The unpinned chain

When k0 = 0 the bulk dynamics conserves two quantities. The first one is the energy

H. The second one is the deformation,
∑

j rj of the lattice, with rj = qj+1 − qj,

j = 0, 1, . . . , N . This second conservation law has to be taken into account in the

hydrodynamic analysis.

Setting the masses to unity, the energy at a site j ∈ {1, . . . , N} is now given by

Ej =
p2j

2
+ k1

r2j

4
+ k1

r2j−1

4
(3.22)

and E0 = 1
4
k1r

2
0, EN+1 = 1

4
k1r

2
N . To establish the hydrodynamic limits corresponding

to the two conservation laws, we look at the process with time scaled by N2 and

space scaled by N , i.e., in the diffusive scale [38]. Assume that initially the process

is started with a Gibbs local equilibrium measure P̂ associated with a macroscopic

deformation profile u0(q) and a macroscopic energy profile ε0(q):

P̂ =
1

Z

N+1∏
j=0

exp {−β0(j/N)(Ex − τ0(j/N)rj)} , (3.23)

where T0 = β−10 and τ0 are the temperature and tension profiles corresponding to the

given energy and deformation profiles assumed to be continuous. Then we have for

any macroscopic point q ∈ [0, 1]

lim
N→∞

〈r[Nq](0)〉 = u0(q), lim
N→∞

〈E[Nq](0)〉 = ε0(q) , (3.24)

where [y] is the integer part of y and the averages are w.r.t. P̂ .
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The question then is: what happens at any later (macroscopic) time t? We define

lim
N→∞

〈r[Nq](N2t)〉 = u(q, t), lim
N→∞

〈E[Nq](N2t)〉 = ε(q, t) , (3.25)

and we show in Appendix A that u, ε are solutions of the following macroscopic

diffusion equation 
∂tu = k1

2λ
∂2q u

∂tε = k1
4λ
∂2q (ε+ k1u

2/2)

(3.26)

with the initial conditions u(q, 0) = u0(q), ε(q, 0) = ε0(q). Eq (3.26) is to be solved

subject to the boundary conditions

∂qu (0, t) = ∂qu (1, t) = 0,ε− u2

2

 (0, t) = TL,

ε− u2

2

 (1, t) = TR .
(3.27)

The proof for the boundary condition on ∂qu is given in the Appendix B.

Taking the limit t→∞ in these equations we obtain the typical macroscopic profiles

of the system in the NESS, i.e., a flat deformation profile u = 0 and a linear profile

T̄ interpolating between TL and TR,

ε(q) = T̄ (q) = TL + (TR − TL)q , (3.28)

for the energy profile.

The pinned chain

Assume that the system is initially distributed according to a Gibbs local equilibrium

measure associated to the energy profile ε0(q), q ∈ [0, 1], and define ε(q, t) as the
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evolved profile in the diffusive scale, i.e.,

ε(q, t) = lim
N→∞

〈E[Nq](tN2)〉 .

Then ε is the solution of the following heat equation (as shown in the Appendix A.2)


∂tε = ∂q(κ∂qε) ,

ε(q, 0) = ε0(q) ,

ε(0, t) = TL, ε(1, t) = TR .

(3.29)

When t goes to infinity ε(q, t) converges to the linear profile T̄ (q) (given in (3.28))

both for the velocity-flip and the self-consistent model. We note finally that, since

the self-consistent model does not conserve energy in the bulk, we do not expect any

autonomous macroscopic equations in that model.

3.8.2 Energy Fluctuations

The pinned chain

Our goal is to estimate the probability that in the stationary state the empirical

energy profile, θN(q), defined by looking at the microscopic energy Ex, for x equal

to the integer part of Nq, is close to a prescribed macroscopic energy profile e(q)

different from T̄ (q), i.e., we want to find the large deviation function (LDF) for the

NESS.

At equilibrium TL = TR = T = β−1 the stationary state coincides with the usual

Gibbs equilibrium measure PN,eq
T and by the usual large deviations theory (see e.g.

[39]) we have that for any given macroscopic energy profile e(·)

PN,eq
T

(
θN(q) ∼ e(q)

)
∼ e−NVeq(e) (3.30)
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where the large deviation function (LDF)

Veq(e) =

∫ 1

0

e(q)
T
− 1− log

e(q)
T


 dq

coincides with the difference between the free energy of the system in local thermal

equilibrium (LTE) and the true equilibrium free energy with e(q) = T .

Out of equilibrium (TL 6= TR) there is also a large deviation principle [40]

PN
(
θN(·) ∼ e(·)

)
∼ e−NV (e)

but the explicit form of V is in general unknown. What is true however, is that V

depends only on two macroscopic quantities: the heat conductivity and the mobility

[40].

By the Einstein relation the mobility χ(T ) is equal to χ(T ) = κ(T )σ(T ) where σ(T )

is the static compressibility defined by the equilibrium correlation

σ(T ) =
∑
j∈Z

〈(E0 − T )(Ej − T )〉(eq,T ). (3.31)

A simple computation shows that for our system σ(T ) = T 2 and Theorem 6.5 of [40]

applies. It follows that V (·) is given by

V (e) =

∫ 1

0

dq

 e(q)
F (q)

− 1− log

 e(q)

F (q)

− log

 F ′(q)

TR − TL


 , (3.32)
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where F is the unique increasing solution of


∂2qF

(∂qF )2
=
F − e
F 2

,

F (0) = TL, F (1) = TR .

(3.33)

Surprisingly, the function V is independent of the pinning value k0 and of the intensity

of the noise λ. In fact, it coincides with the LDF of the Kipnis-Marchioro-Presutti

(KMP) model considered in [41]. In that model the dynamics are entirely stochastic.

It is now easy to derive the Gaussian fluctuations of the empirical energy. We consider

a small perturbation, e = T̄ + δh, of the stationary profile ē. The functional V has a

minimum at T̄ so that

V (e) = V (T̄ ) +
1

2
δ2 〈h,C−1h〉+ o(δ2)

The operator C is the covariance for the Gaussian fluctuations of the empirical energy

under the invariant measure µNs,v. The computations are the same as in [41] and we

get

C = T̄ 21 + (TR − TL)2(−∆0)
−1 (3.34)

where ∆0 denotes the Laplacian with Dirichlet boundary conditions on [0, 1].

Unpinned Chain

For the unpinned case, we are not able to obtain the expression of the LDF of the two

conserved quantities nor for the energy alone. We conjecture that the LDF for the

energy is the same for the pinned and unpinned case. Moreover, we are able (under

suitable assumptions) to show that, in the unpinned case, (3.34) is still valid [51].



56

N T`, Tr λ s̃N Error
|s∞ −
s̃N |

sloc.eq.∞ s∞

100 8,1 0.1 1.40 0.01
1.20 1.40200 8,1 0.1 1.39 0.01

400 8,1 0.1 1.42 0.02

Table 3.2: Total energy variation in the unpinned model (k0 = 0).

3.8.3 Numerical simulations

We performed numerical simulations for the velocity-flip model as described earlier

Sec. 3.6 to calculate the fluctuations in the energy. We ran the program for a

considerably longer time than before to obtain reliable data.

The total energy H is given by (3.1), and our goal is to estimate numerically its total

fluctuations, by measuring the observable

sN = N
〈H2〉 − 〈H〉2

〈H〉2
.

Using equation (3.34) the measured fluctuations in the total energy should be given

by

s∞ = lim
N→∞

sN = sloc.eq.∞ + c∞ ,

where sloc.eq.∞ =
∫ 1

0
T̄ 2(q)dq/

[∫ 1

0
T̄ (q)dq

]2
is the value we would obtain by a local

equilibrium approximation, and c∞ = 1
12

(Tr − T`)2/
[∫ 1

0
T̄ (q)dq

]2
is the correction

due to the long-range correlations. The prefactor 1
12

is obtained by integrating over

((−∆0)
−11)(q) = q(1− q)/2. Computing the remaining explicit integrals yields then

s∞ =
4T`Tr + 5

3
(Tr − T`)2

(T` + Tr)2
.

To get good statistics, several realizations of the initial data were considered. The

results from numerical simulations for the variation in total energy, denoted by s̃N ,

are collected in Tables 3.2 and 3.3. These results are compared with the theoretical
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N T`, Tr k0 λ s̃N Error
|s∞ −
s̃N |

sloc.eq.∞ s∞

200 8,1 0.25 0.1 1.38 0.01

1.20 1.40
200 8,1 0.5 0.1 1.39 0.01
200 8,1 0.25 1.0 1.39 0.02
400 8,1 0.25 0.1 1.39 0.01
800 8,1 0.25 0.1 1.46 0.05
200 5,1 0.25 0.1 1.30 0.01 1.15 1.30

Table 3.3: Total energy variation in the pinned model (k0 > 0).

estimate, s∞, and with sloc.eq.∞ . We see that there is a very close match between the

predicted s∞ and the measured values.

3.9 Discussion

We have shown here that the stationary one-body and pair correlations in the velocity

flip model are the same (after setting γ′l = 2λml) as in the harmonic chain with self-

consistent reservoirs. We have used this to caclulate the conductivity of the ordered

mass chain as N →∞. This result was also arrived at using the Green-Kubo formula.

In the case of disordered masses, we used the Green-Kubo formula to establish bounds

for the conductivity. To understand further, we numerically investigated the system

and explored the dependence of the thermal conductivity κ on the velocity flip rate

λ (and others such as mass disorder ∆ and the pinning strength k0). For λ→ 0 our

results suggest κ ∼ λ for the pinned system. When the chain was unpinned, the exact

numerics and numerical simulations pointed to the fact that the conductivity κ does

not depend on the boundary conditions (as we should expect from a real system where

conductivity is a bulk property). Our results suggest that κ ∼ λ−1/2 for the unpinned

system although establishing these results conclusively requires further work. We

have also shown that the steady state of the system is not exactly Gaussian as it is

for the case of the self-consistent model.

Furthermore, we studied the flucutations in the total energy of the system. To do this,
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we obtained the hydrodynamical equations for our system, applied the theory of large

deviations of non-equilibrium systems to calculate the fluctuations in the macroscopic

profile of the energy. We obtained a good match between this theoretical result and

the data from numerical simulations of the system.
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Chapter 4

1-D Chains with Anharmonicity

and Noise

4.1 Introduction

The preceding two chapters have dealt with systems where the Hamiltonian consists

of only nearest neighbor harmonic interactions. In real materials, we most often ob-

serve a more complex interaction which results in the net force on a particle having

nonlinear components. It is partly to account for these nonlinearities that we in-

troduce stochastic dynamics which makes the system more tractable analytically. In

this chapter, we shall consider systems with both nonlinearity and anharmonicity and

explore their combined effects.

While a large class of harmonic systems with noise have been solved exactly, this is

not the case for anharmonic systems where there are just a few exact results [45][46],

and most of our knowledge about the behavior and properties comes from numerical

simulations. In fact, even a phenomenological understanding of such systems is not

very deep. Such 1d systems are not only of theoretical but also of practical interest
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[42], [43].

Here, we present the details of investigations of a one-dimensional chain of parti-

cles with anharmonic interactions through numerical simulations. We consider both

ordered-mass and disordered-mass chains, with and without stochastic bulk noise, and

examine the behavior of the heat current and its dependence on various parameters

of the model.

In the case of ordered mass systems with inter-particle harmonic coupling and non-

linear pinning, numerical results suggest that they exhibit normal conductivity[47,

48]. However, the effects of non-linearity which changes the conductivity from being

infinite to a finite value is non-perturbative, and we do not understand the dependence

of the conductivity on the anharmonicity[44].

Our idea has been to approach this very challenging problem in a more indirect

manner. In addition to non-linear pinning term, we include random dynamics in the

bulk of the system. Our analysis of harmonic systems with bulk stochastic dynamics

in Chapter 3 indicated that we obtain normal conductivity and for ordered systems,

we had derived an exact expression for heat current( see 3.3). We may then expect

(hope) that, for systems with both anharmonicity and stochastic bulk dynamics, a

perturbative approach will be valid in the anharmonic interaction term. We also

want to study what happens as we the strength of the bulk noise goes to zero, which

corresponds to anharmonic systems with Hamiltonian bulk dynamics. Introduction

of random dynamics also improves the convergence of simulation. The stochastic

dynamics we have considered in this simulation is a random velocity flipping at every

site.
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4.2 Model

We write the Hamiltonian of the chain as before except that we introduce an addi-

tional term for quartic pinning:

H =
1

2

i=N∑
i=1

p2i /2mi +
1

2

N+1∑
i=1

k1(qi − qi−1)2 +
1

2

N∑
i=1

k0q
2
i +

1

4

N∑
i=1

k3q
4
i (4.1)

where, as earlier, k1 and k0 are the harmonic nearest neighbor interaction and pinning

potential coefficients respectively, and k3 is the anharmonic pinning coefficient.

Once again, the equations of motion of the end particles interacting with the Langevin

heat baths at temperatures TL and TR are given by:

miq̈i = −k1(2qi − qi−1δi,N − qi+1δi,1)− k0qi − k3q3i

+ δi,1[−γLq̇1 + (2γLTL)1/2ηL] + δi,N [−γq̇N + (2γTR)1/2ηR] , (4.2)

where γ is the strength of the coupling to the reservoirs

The stochastic dynamics is generated by velocity reversals at every site, vi → −vi

indepdendently at a rate λ.

The numerical simulations are carried out in a manner identical to the previous sys-

tems we have considered.

For harmonic systems with or without stochastic velocity flips, the heat current de-

pends linearly on the difference in temperature at the ends while for non-linear chains,

this will generally not be true. In other words, the heat conductivity will in general

depend on the temperature. To obtain the conductivity directly from the simulations

requires that the difference in the reservoir temperatures be small compared to their
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average, i.e, TL−TR
TL+TR

<< 1 . Yet, in many of our simulations, the reservoir tempera-

tures are TL = 2 and TR = 1, which gives TL−TR
TL+TR

= 1
3
, a fairly large number. This is

because, as we shall describe in more detail below, obtaining a consistent and reliable

value for the heat current becomes more difficult as the temperature difference is

made smaller.

4.3 Results

Case (a) : Ordered Chains

We ran several sets of simulations for equal mass chains with bulk anharmonic pin-

ning, harmonic nearest neighbor interactions and stochastic noise (velocity flip). Our

aim was to consider how the heat current depends on the combination of non-linearity

and stochasticity in the system. For a given length of the chain N , with k0 and k1

kept fixed, we varied k3 and λ. The heat current ji = −1
2
〈(vi+1 + vi)(qi+1 − qi)〉,

where 〈.〉 refers to ensemble average, is calculated for every pair of nearest neighbors

in the chain, and ultimately, we take the average over these for i = 2, 3, · · ·N − 1 to

determine the mean current through the chain. We also calculate the difference σj

between the maximum and the minimum value of ji. It was noticed that, for most

choices of the parameters k3 and λ, σj was less than 5% of the average current, and

this bound on was found to be true over several runs of the simulations. As for system

parameters where this was the case, we have taken σj to be the overall error margin

for the current. The effective conductivity for a system of size N , κN , is defined as

J(N)N/(TL − TR) and the error in conductivity was obtained by error propagation

scheme: error in κN is given by σjN/(TL − TR).

In other cases where σj was greater than 5% of the mean current, a set of four
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separate simulations were carried out and the conductivity for each was obtained,

κl, l = 1, · · · 4. The average conductivity κ̄ was determined by taking the arithmetic

mean and error in the mean conductivity taken to be:

√∑4
j=1 κ

j2 − κ̄2

4
.

The conductivities obtained from the simulations are shown in Table 4.1, for N =

200, 400 and 800. The error in the last decimal place of the data value appears next

to the entry (in brackets).

For completeness, we have also included the conductivity in the case of pure noise

(k3 = 0) and pure anharmonicity (λ = 0). The latter system can be solved by exact

numerics by solving for the correlation matrix (as discussed in the previous chapter

(see Sec. 3.6). We could perform this technique only for N < 475 and in these

instances, the error is very small -less than 0.001% - and hence we do not provide any

the error estimate.

There are several immediate observations we can make looking at the table. The first

is that conductivity κN = JN/(TL − TR) does not saturate as we increase N from

N=200 to N=800, for λ ≤ 0.01 This feature is seen in the Fig. 4.1 as well. We also

note that κN(λ, k3), in all but one instance, decreases monotonically with increase in

either stochastic strength or anharmonicity. This can be seen in Fig. 4.2 and Fig.

4.3 for N = 800. It must be remembered that the conductivity has not saturated for

every data point on these plots.

We were having numerical accuracy problems for simulations with N ≥ 1600, and

so we do not have a complete picture of the behavior of the system, especially when

λ . 0.01, the region of parameter space where the convergence in conductivity occurs

beyond N = 800.

Perturbative Expansion
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N = 200
Velocity Flip Rate λ

0 0.0001 0.001 0.01 0.1 1.0

k3

0 27.0 26.0 20.8 7.0 0.94 0.1
0.0001 26.5(1) 26.66(4) 20.8(1) 6.94(4) 0.98(2) 0.106(6)
0.001 26.9(1) 26.0 20.7(1) 6.90(2) 0.96(2) 0.092(8)
0.01 26.08(8) 25.58(6) 20.6(1) 6.90(4) 0.94(2) 0.096(2)
0.1 18.3(1) 18.00(4) 15.22(8) 7.96(2) 0.84(2) 0.088(2)
1.0 2.02(2) 1.98(2) 2.02(4) 1.54(2) 0.52(2) 0.068(2)

N = 400
Velocity Flip Rate λ

0 0.0001 0.001 0.01 0.1 1.0

k3

0 53.6 50.4 34.0 8.0 0.88 0.08
0.0001 53.8(2) 50.1(2) 34.4 8.04(8) 0.8(1) 0.092(4)
0.001 53.3(2) 50.1(2) 33.7(2) 8.1(1) 0.88(8) 0.084(4)
0.01 52.4(3) 49.8(3) 33.5(2) 8.0(1) 0.88(8) 0.088(4)
0.1 28.7(1) 27.9(2) 21.9(2) 6.88(8) 0.80(8) 0.084(4)
1.0 2.1(2) 2.2(1) 2.1(1) 1.64(8) 0.52(8) 0.065(2)

N = 800
Velocity Flip Rate λ

0 0.0001 0.001 0.01 0.1 1.0

k3

0 0.106.7(1) 96.0(4) 49.8(2) 8.7(1) 0.9(1) 0.10(1)
0.0001 107.8(3) 96.5(4) 50.5(1) 8.8(8) 0.96(8) 0.09(2)
0.001 106.4(3) 95.8(5) 49.4(4) 8.8(3) 1.0(1) 0.08(2)
0.01 104.1(1) 93.6(5) 49.1(1) 8.5(2) 1.0(1) 0.09(2)
0.1 41.2(2) 39.1(3) 27.6(2) 7.1(2) 0.9(1) 0.09(2)
1.0 2.22(2) 2.2(2) 2.2(2) 1.6(2) 0.5(2) 0.07(2)

Table 4.1: Variation of conductivity for an ordered chain with velocity flip rate λ and
quartic pinning coefficient k3
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k3 . 0.1.

The conductivity that is conjectured to arise when we add a small anharmonic term

to a pinned harmonic ordered chain is considered to be non-perturbative in origin.

The pinned harmonic ordered chain with random velocity flips, however, has been

shown to have normal conductivity. Hence, an addition of non-linear pinning term to

such a system, would produce a change in conductivity that can be expected to be

perturbative. In this spirit, the first two terms of the perturbation expansion in the

anharmonic coefficient for the infinite-system conductivity has been derived using the

Green-Kubo formula (keeping λ fixed) ([49]).

κT (λ, k3) = κ(λ, 0)− 3
k3T

λ

(
√

4 + k0 −
√
k0)

2

2k0(4 + k0)
+ ...higher order terms... (4.3)

where

κ(λ, 0) =
k21

2λm(2k1+k0+
√
k0(4k1+k0))

Note that the first order correction to the heat conductivity is linear in the tempera-

ture T .
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The data discussed so far is unsuitable for testing this first order approximation for-

mula because, as we saw in Fig. 4.3 the change of conductivity with k3 . 0.1 is too

small (and of the same order as the error in the data). We may attribute this to the

fact that k0 is large in these simulations.

To obtain data that can be used to test the formula, we ran several more simulations.

In these simulations, λ was fixed at 1.0, and N at 50 - large enough for the conduc-

tivity to be within 1% of what it is at the infinite N value.

It must be mentioned that there cannot be a convergent expansion in k3 since a

negative value of k3 corresponds to an unbounded potential. To avoid this trap, we

modified the potential to V ′(q) = 1
4
k3q

4e−αq
2
, which, for α > 0, is bounded regardless

of the sign of k3. By choosing α � 1, we expect that, in numerical simulations, the

systems will show identical behavior. Indeed, we were able to verify that this is the

case for α = 0.02, and for the parameters we have considered below in Table 4.2

(except for the last row).

We had to try several different values of k0 bearing in mind that simulation must

generate reliable and consistent heat current as well as produce a significant change

in the current as we vary k3. Finally, after a number of attempts, we settled on

k0 = 0.6

It is quite clear from the table above that the conductivities from the simulations and

Eq. (4.3) do not agree. It is quite possible that the validity of the expansion holds

only for k3 � 0.006. However, given the numerical accuracy of our simulations it was

impossible for us explore this regime.

Case (b) : Disordered Chains

Simulations with disordered masses are considerably more challenging than ordered
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k3
Conductivity

Simulation First Order Approximation Formula
0 0.118(1) 0.1173

0.006 0.115(1) 0.1081
0.01 0.114(1) 0.1020
0.06* 0.110(1) 0.0255

Table 4.2: Comparison of the conductivities for a chain of length N = 50, between the
value obtained from numerical simulations and that from the first order expansion in
the anharminic coefficient k3 as described in Eq.(4.3). In the simulations TL = 2 and
TR = 1, and we have chosen T in Eq.(4.3) to be TL+TR

2
. * For this case, the current

from simulations with purely quartic potential came to 0.104(1).

chains. It is well known that disordered harmonic chains give rise to localization in

some of the vibrational modes, and in the pinned case, all modes are localized leading

to heat current that diminishes exponentially with the size of the system.

However, we have already learned from the previous chapter that when random

velocity-flip dynamic is added to the system in bulk, the disordered harmonic chain

exhibit normal conductivity (see 3.6). Moreover our results strongly indicated that

Fourier’s Law is valid for any non-zero strength of the noise.

At the same time, it has been shown using numerical simulations that normal con-

ductivity is obtained for pinned disordered chains with non-linear interactions [34]. It

still remains an open question if the transition from exponential decay to regular con-

ductivity occurs at zero or at some finite value of the anharmonic strength. In other

words, we do not know if any non-zero anharmonicity would destroy the localization

produced by the disorder.

The approach here, as in the ordered system, is to combine the anharmonicity with

noisy dynamics. It is reasonable to expect finite conductivity, κ(λ, k3), for arbitrary

combination of random velocity flips of rate λ and anharmonicity k3 (at infinite N).

The interesting question would be to ask what happens when λ→ 0.

The data from our simulations is compiled in Table.(4.3), which shows the variation

of the conductivity across λ and k3. The harmonic pinning coefficient was kept fixed,
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k0 = 0.25, and the mass at each site comes from an independent identical distribution

uniform in the interval [1-∆, 1+∆] with disorder strength ∆ = 0.6. The current for

a given simulation realization was calculated using the same method as that of the

ordered case. Since this a finite disordered system, the current will depend on the

specific realization of the masses. The conductivity we have given in the table is

calculated by taking the average of conductivities from the different realizations of

the disorder. Shown along with the entries are also error bars which are calculated

from the different realizations using the same method as described for ordered masses.

N = 200
λ

0.0001 0.001 0.01 0.1

k3

0 0.49(3) 1.04(2) 1.7(1) 0.87(1)
0.0001 0.42(6) 1.0(1) 1.4(2) 0.86(4)
0.001 0.36(4) 1.0 (1) 1.8(2) 0.90(2)
0.01 0.9(1) 0.76(4) 1.4 (2) 0.84(2)
0.1 0.74(6) 0.70(2) 0.82(2) 0.56(2)

N = 400
λ

0.0001 0.001 0.01 0.1

k3

0 0.25(1) 0.95(5) 1.88(5) 0.89(2)
0.0001 0.28(4) 0.84(4) 2.0(1) 0.84(4)
0.001 0.32(4) 0.80(4) 1.84(4) 0.88(4)
0.01 0.60(4) 0.84(4) 1.56(4) 0.88(4)
0.1 0.68(4) 0.84(4) 0.92(4) 0.64(4)

Table 4.3: Variation of conductivity for disordered chain with velocity flip rate λ and
quartic pinning coefficient k3. Errors indicated inside brackets refer to the final digit
in the entry.

We plot the variation of conductivity with stochastic noise keeping the anharmonicity

fixed in Fig. 4.4. We also plot the variation of conductivity with anharmonicity

keeping the stochastic noise fixed in Fig. 4.5.

We remark on a few immediate observations about the graphs. The conductivity

increases as we increase the stochastic noise when λ ≤ 1, and beyond that point, it

decreases. This behavior is similar to what we found in the disordered chain with only

noise (cf. Chapter 3.6.1). Likewise, although it is not very apparent in the graph, Fig.
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monic pinning coefficient k3 (N = 400).

4.5 shows the conductivity initially increasing with increase the anharmonic strength

(for the curves where the fixed noise λ < 0.01). There is an eventual turnaround in

the plot, beyond which, the conductivity decreases.

These observations indicate that both the stochastic noise and the anharmonicity have

similar effects on the current characteristics of the system. Since we have already
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proven that any finite noise leads to normal transport in the disordered chain, we

believe that the same would be true with addition of non-linear interactions. Yet,

our data is very far from providing the necessary numerical evidence to convincingly

establish this.
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Chapter 5

Ordered Chain with Defect

5.1 Introduction

The class of systems we study here is the ordered, harmonic chains that have a single

defect in the middle. The defect can be of the form of a particle with a mass different

from the rest of the chain, a pinning coefficient at a site that is different from the

others or a velocity flipping dynamics (of the nature we explored in Chapter 3) at a

site on the chain. Finally defect can be created by introducing an anharmonic term

added to the harmonic pinning at the defect site.

The interest in studying these models is to understand how the the temperature pro-

file and the heat conductivity depend on the nature and the magnitude of the defect.

It is observed that the qualitative changes to the temperature profile and the heat

flow of the system is similar for the various types of defects considered here. Whereas

the temperature is a constant in the bulk for the uniform chain, the one dimensional

system with a defect is characterized by two temperatures, one that is uniform to the

left of the defect, and the other to the right of it. A sharp transition between these
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two temperatures in the neighborhood of the defect is observed. Another common

feature was that these two temperatures described above are independent, or vary

very little, with the exact location of the defect.

Although most of our results are from exact numerics, a physical explanation is sought

for the behavior based on the properties of one-dimensional harmonic chains. While

some heuristic explanations are provided for the observed behavior, a systematic and

thorough reasoning is still evading us.

5.2 Harmonic Chain with Mass Defect

The system we consider here is the one-dimensional chain with uniform masses ev-

erywhere expect at a single site in the bulk. The Hamiltonian for a chain of size N

in this case is the given by Eq. (2.2) with the diagonal mass matrix M being unity

everywhere expect at a single location u where it is m0.

Since the procedure we have described earlier for obtaining the pair correlation in

Chapter 2 (Eq.(2.7)) is for a generic configuration of masses, we solve the matrix

equation numerically to obtain the temperature profile and the heat current.

The two plots (Fig. 5.1 and Fig. 5.2) show the temperature profile of the chain of

size N = 129 for the two cases of the mass in the center, m0 ≥ 1 and m0 ≤ 1. It can

be clearly seen that the temperatures in the bulk is split into two: one to the left of

the defect, and the other to the right.

The variation of the temperature on the left segment of the chain with the mass

of the defect m0 is plotted in Fig. 5.3 and Fig. 5.4. The temperature is found to

increases as the difference between the mass of the center site and the rest of the chain,

|m0 − 1| increases. This behavior is expected since we can understand the defect as



74

T
em

pe
ra

tu
re

 (
T

i)

1

1.2

1.4

1.6

1.8

2

Position 
0 20 40 60 80 100 120 140

M=1.0
M=1.1
M=1.3
M=1.7
M=2.5
M=3.5
M=5.0

Figure 5.1: The various curves correspond to temperature profiles for a chain of length
N = 129 with mass of the center particle m0 equal to 1.0, 1.1,1.3,1.7,2.5,3.5 and 5
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as we take m0 closer to unity.

an impurity at which the phonons are scattered. In the process, the phonons that

would otherwise exhibit ballistic transport is now partially reflected. However there

is still unobstructed transport in the two segments, one between the left reservoir and

the defect site, and the other between the defect site and the reservoir on the right,

and these correspond to the regimes of uniform temperature. In the limit m0 → ∞,

there will be no modes extended across the defect, and the steady state would split

into two parts, namely, the left and right side of the defect, each of which would be at

equilibrium with the left and right reservoirs respectively and thus have temperatures

equal to TL and TR.

In Fig. 5.5 and Fig. 5.6, the heat current is observed to decrease as the deviation

of mass of the defect from unity is increased. This dependence is again expected
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based on the reasoning that greater the difference of defect mass from the rest of the

chain, greater is the scattering of the phonon modes at the defect site. As heat is

carried across the chain by the phonons, this obstruction causes reduction in the heat

current. In the limit m0 →∞, we expect the current to go to 0.

5.3 Single Site Velocity Flip

We consider the ordered unpinned harmonic chain with a random velocity-flip dy-

namics at a single site. The behavior of the system is very similar to the case of

the mass defect. In Fig.5.7, we plot the temperature profile for various flip rates.

The uniform temperature regions on either side of the defect site can be immediately

noted.

Fig. 5.8 shows the variation of the temperature of the left segment of a chain of length
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Figure 5.7: Temperature profile for an ordered harmonic chain of length N = 129
with random velocity flip dynamics at a single site (u = 65) with rate λ. The ends
are connected to reservoirs maintained at temperatures TL = 2 and TR = 1.

N = 129 as a function of the rate of velocity flip at the center site. The explanation

for this property can be ascribed to the scattering of the phonons at the defect, which

results in partial reflection.

Fig. 5.9 plots the variation of the conductivity for the same chain against the velocity-

flip rate λ. As in the earlier case of a mass defect, the conductivity decreases as we

increase λ.

5.4 Anharmonic Pinning Potential

In this section, we consider the ordered pinned harmonic chain with a quartic pin-

ning potential (V3(q) = 1/4k3q
4) to a single site at the center. The harmonic pinning

potential k0 is set to unity at all sites. Unlike the previous cases of defects created by

a different mass or velocity flips, there is no analytic expression for the steady state

characteristics. Hence, we run numerical simulations to determine the temperature

profile and the current for this system.
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Figure 5.10: Temperature profile for a chain of length N = 200 for various values
of quartic pinning potential at the center site. The ends are connected to reservoirs
maintained at temperatures TL = 2 and TR = 1.

The simulations that we have considered here were performed using the same proce-

dure as described in Chapter 4.2. In Fig. 5.10, we plot the temperature profile for

three different values of the quartic pinning coefficient. Much like in the previous two

cases, we get a profile that has a uniform temperature on either side of the site of

anharmonic pinning. The waviness that is seen in the curve is due to the fact that

the temperatures were calculated from numerical simulations.

The variation of the temperature in the left segment with the strength of quartic

pinning at the center is plotted in Fig. 5.11.

Fig. 5.12 plots the variation of the conductivity as a function of the coefficient of

the quartic potential. It can be immediately noted that the conductivity is mostly

independent of the anharmonicity for k3 < 0.1 and the subsequent decrease with
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Figure 5.11: Temperature of the left segment of chain for various values of quartic pin-
ning potential k3 at the center site. The ends are connected to reservoirs maintained
at temperatures TL = 2 and TR = 1.

increase in the strength of the pinning is more gradual than in the previous cases of

defect created by mass and stochastic noise.

5.5 Conclusions

As stated earlier, several common features about the behavior of the system are ev-

ident from the graph. The temperature profiles for systems with the types of defect

considered here splits into two flat sections, one between the left reservoir and the de-

fect and the other, between the defect and the right reservoir (ignoring the boundary

effects). This observation can be well explained by noting that these two segments

can be regarded as ordered sub systems, and consequently, the phonons travel across

their length without obstruction. At the defect site, there is scattering, and that ac-

counts for the sharp temperature variations occurring in the immediate neighborhood

of the defect.
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coefficient of the quartic pinning potential at the center site. The ends are connected
to reservoirs maintained at temperatures TL = 2 and TR = 1.

Greater the magnitude of the defect, greater is the scattering and hence, more the

sharp change in temperature between the two segments. This relationship between

scattering and the defect also explains the decrease in current with the increase in

the magnitude of the defect. The transmission amplitudes of the vibrational modes

across the defect is lower when the magnitude of the defect is higher and this leads

to decrease in corresponding decrease in average current.

The most prominent dissimilarity in the behavior of the system to the different types

of defects considered here is the variation of current (conductivity) as the magnitude

of defect is increased. This dependence for the anharmonic-pinning defect (Fig. 5.12)

has two characteristics that sets it apart from the other cases (Fig. 5.5, 5.6, and
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5.9): first, the current decreases more slowly with the defect strength and the second,

it is concave downwards unlike the others. The first could possibly be the result

of differences in scaling but we do not have a good explanation for the second. To

understand it better, we will have to perform a quantitative analysis of the scattering

at the defect.
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Appendix A

Hydrodynamical Equations

We have to demonstrate that the variables u(q), ε(q) defined in Eq.(3.25) satisfy the

diffusion equations given in Eq.(3.26) for the unpinned chain and Eq.(3.29) for the

pinned chain. Consider a generic equation that is defined on the interval [0, 1] of the

form:

∂tw = ∂q(σ∂qy) (A.1)

To prove that w(q, t) and y(x, t) satisfies the above equation, we need to show the

following for all smooth functions G : [0, 1] → R satisfying the boundary conditions

G(0) = G(1) = G′(0) = G′(1) = 0.

∫ 1

0

G(q)(w(q, t)− w(q, 0))dq =

∫ t

0

∫ 1

0

G(q)
∂

∂q
(σ(q)

∂

∂q
y(q, t))dqdt (A.2)

Equivalently, given the boundary conditions on G, we need to show:

∫ 1

0

G(q)(w(q, t)− w(q, 0))dq =

∫ t

0

∫ 1

0

G
′′
(q)σ(y)y(q, t)dqdt (A.3)
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A.1 Unpinned Chain

To prove the diffusion equation for energy given by Eq.(3.26), we will need to argue

that it satisfies a relation of the form Eq.(A.3), with w = ε, y = ε + u2/2 and

σ = 1/(4λ). We start from the microscopic variables for a chain of size N , and

rewrite the heat current between sites i and i+ 1:

jei−1,i = −k1ri−1(pi + pi−1) = −∇φi + L(hi) (A.4)

where L is the generator defined in Eq.(3.11), φi = 1
4λ

(p2i+k1riri−1), hi = −1/(2λ)jei−1,i

and ∇ is the discrete derivative (∇φ)i = φi−φi−1. Integrating the heat current equa-

tion for each site, we have:

N−1
N∑
i=1

G(i/N)〈Ei(tN2)〉 −N−1
N∑
i=1

G(i/N)〈Ei(0)〉

N−1
N−1∑
i=2

∫ tN2

0

G(i/N)(〈jei−1,i(s)〉 − 〈jei,i+1(s))ds

N−2
N∑
i=2

∫ tN2

0

G( i
N

)−G( i−1
N

)

1/N
)〈jei−1,i(s)ds

≈ N−2
N∑
i=2

∫ tN2

0

G′(i/N)〈jei−1,i(s)〉ds

≈ N−3
N∑
i=2

∫ tN2

0

G′′(i/N)〈φi(s)〉ds

+N−2
N∑
i=2

∫ tN2

0

G′(i/N)〈(Lhi)(s)〉ds

≈ N−1
N∑
i=2

∫ t

0

G′′(i/N)〈φx(sN2)〉ds

+N−2
N∑
i=2

G′(x/N)
{
〈hi(tN2)〉 − 〈hi(0)〉

}
≈ N−1

N∑
i=2

∫ t

0

G′′(i/N)〈φi(sN2)〉ds+O(N−1) . (A.5)
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In the above derivation, we have used at several steps, the boundary conditions on

G and assumed N →∞ to approximate discrete difference by differentials. From as-

sumption of local thermal equilibrium , with the macroscopic profile given by u(q, t)

and ε(q, t), we have

〈φi(tN2)〉 =
1

4λ
〈p2i + k1riri−1〉

=
1

4λ
(T (i/N, t) + k1u(i/N, t)2)

=
1

4λ
(ε(i/N, t) + k1u(i/N, t)2/2) (A.6)

The mean represented above by 〈.〉 are averages calculated over time scales sufficiently

short that the macroscopic profile does not change significantly. We have used the

following relations, 〈ri(tN2)〉 = u(i/N, t) and 〈Ei(tN2)〉 = T (i/N, t) + k1u
2(i/N, t)/2

in the derivation. Plugging Eq.(A.6) back into Eq.(A.5) and taking the limit N →∞

we obtain the equation of the form given in Eq.(A.3).

The current jri−1,i for the deformation can be written as

jri−1,i = −pi = − 1

2λ
(∇ri) + L(

1

2λ
pi). (A.7)

By following the same procedure with a test function G satisfying the appropriate

boundary conditions, we can show that the the macroscopic deformation satisfies the

relation given in Eq.A.3) with w = u, y = u and σ = 1/(2λ).

A.2 Pinned Chain

There is only one quantity that is conserved by the bulk dynamics for this case,i.e,

energy. To derive the relation given in Eq.(3.29) for the macroscopic energy profile,
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we once again rewrite the expression for the current,

jei−1,i = −k1ri−1(pi + pi−1) = −∇ξi + L(hi) (A.8)

where hi is the same function as defined earlier and

ξi =
k1
4λ

(p2i − (k0 + k1)q
2
i − k1qi−1qi+1 + k1qi+1qi + k1qiqi−1). (A.9)

If we carry out a similar expansion as we did for the unpinned case in Eq.(A.5), we will

find arrive at an expression of the form Eq.(A.3) with w = ε and σ(i/N)y(i/N, t) =

〈ξi(tN2)〉t. As before 〈.〉t is the mean that is calculated on a time scale where the

macroscopic profile of energy and deformation does not change appreciably.

Defining 〈qiqj〉T = θ(i − j), and in the bulk where i, j are far from the boundaries,

θ(z) can be regarded as an even function of z. It is the solution to the interaction

matrix Φ̂ defined in Eq.(3.1) in the limit N →∞, i.e, Φ̂−1i,j = θ(i− j).

(k0 + 2k1)θ(z)− k1θ(z − 1)− k1θ(z + 1) = Tδz=0. (A.10)

Performing a Discrete Fourier Transform of Eq. (A.10), we obtain

θ̃(p) = T/(k0 + 4k1 sin2(p/2)).

Inverting the expression again we get

θ(z) = T

∫ 2π

0

dp
eipz

k0 + 4k1 sin2(p/2)
.
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We now have :

〈ξi(tN2)〉T (i/N) =
k1
4λ

(T (i/N, t)− (k0 + k1)θ(0)− k1θ(2) + 2k1θ(1))

=
k1
4λ

(T (i/N, t)− k0(θ(0) + θ(1))

=
k1
2λ

1

k0 + 2k1 +
√
k0(k0 + 4k1)

T (i/N, t)

= σε(i/N, t) (A.11)

where ε = T and σ is the conductivity which agrees with our result earlier Eq.(3.9).
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Appendix B

Boundary Condition

For the unpinned chain, we have that

∂t

∫ 1

0

u(q, t)dq = 0

=

∫ 1

0

∂2qu(q, t)

⇒ ∂u(0, t) = ∂qu(1, t) = f(t) (B.1)

where we have used Eq.(3.26) in the second step. To show that f(t) = 0 consider the

following:

Lp1 = (r1 − r0)− (γ + 1)p1, Lr0 = p1. (B.2)

1

N

{
〈p1(tN2)〉 − 〈p1(0)〉

}
=

∫ t

0

N
[
〈r1(sN2)〉 − 〈r0(sN2)〉

]
ds

− (γ + 1)N

∫ t

0

〈p1(sN2)〉ds,

∫ t

0

〈p1(sN2)〉ds =
1

N2

{
〈r0(tN2)〉 − 〈r0(0)〉

}
The second equality shows that N

∫ t
0
〈p1(sN2)〉ds vanishes as N goes to infinity. The

left hand side of the first equality is of order 1/N and since
∫ t
0
N [r1(sN

2)− r0(sN2)] ds
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converges to
∫ t
0
(∂qu)(0, s)ds =

∫ t
0
f(s)ds, we have f(s) = 0 for any s.quality shows

that N
∫ t
0
〈p1(sN2)〉ds vanishes as N goes to infinity. The left hand side of the

first equality is of order 1/N and since
∫ t
0
N [r1(sN

2)− r0(sN2)] ds converges to∫ t
0
(∂qu)(0, s)ds =

∫ t
0
f(s)ds, we have f(s) = 0 for any s.
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