Staff View
Glycomimetic functionalized collagen hydrogels for peripheral nerve repair

Descriptive

TitleInfo
Title
Glycomimetic functionalized collagen hydrogels for peripheral nerve repair
Name (type = personal)
NamePart (type = family)
Masand
NamePart (type = given)
Shirley Narain
DisplayForm
Shirley Masand
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Shreiber
NamePart (type = given)
David I
DisplayForm
David I Shreiber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Schachner
NamePart (type = given)
Melitta
DisplayForm
Melitta Schachner
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Cai
NamePart (type = given)
Li
DisplayForm
Li Cai
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Yarmush
NamePart (type = given)
Martin
DisplayForm
Martin Yarmush
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Archibald
NamePart (type = given)
Simon
DisplayForm
Simon Archibald
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-01
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Despite the innate regenerative potential of the peripheral nervous system, functional recovery is often limited. The goal of this dissertation was to develop a clinically relevant biomaterial strategy to (1) encourage the regrowth of axons and (2) direct them down their appropriate motor tracts. To this end, we use peptide mimics of two glycans, polysialic acid (PSA) and an epitope first discovered on human natural killer cells (HNK-1), to functionalize type I collagen hydrogels. Previous studies have shown that these molecules, in their glycan and glycomimetic form, are associated with acceleration of neurite outgrowth, glial cell proliferation, and motoneuron targeting. In vitro, we demonstrated the retained functionality of the peptide glycomimetics after conjugation to a type I collagen backbone. While HNK-functionalized collagen increased motor neurite outgrowth, PSA-functionalized collagen encouraged motor and sensory neurite outgrowth and Schwann cell extension and proliferation. When we introduce these glycomimetic-functionalized collagen hydrogels into a critical gap femoral nerve model, we show that both PSA and HNK-functionalized hydrogels yielded a significant increase in functional recovery when compared to saline, native and scramble-coupled hydrogels. However, there was an interesting divergence in the morphological results: PSA-functionalized hydrogels increased axon count and HNK-functionalized hydrogels increased motoneuron targeting and myelination. We believed that these differences may be attributed to distinct mechanisms by which the glycomimetics impart their benefit. Interestingly, however, we found no synergistic gain in recovery with the use of our composite hydrogels which we speculated may be due to an inadequate dose of the individual glycomimetic. To address this possibility, we show that increasing the amount of functionalized peptide functionalized in our composite hydrogels led to increases in axon count and area of regeneration, but does not affect the degree of functional recovery. Finally, in order to assess potential mechanisms by which our glycomimetics impart benefit, we describe a novel platform for studying neural cell/biomaterial interaction through the use of two types of motoneuron cultures, dissociated spinal cord neurons and organotypic spinal cord slices. We show promising evidence that this strategy can be used to probe signaling pathways potentially involved in the action of these bioactives.
Subject (authority = RUETD)
Topic
Biomedical Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4497
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xi, 178 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Shirley Narain Masand
Subject (authority = ETD-LCSH)
Topic
Colloids in medicine
Subject (authority = ETD-LCSH)
Topic
Nerves, Peripheral--Regeneration
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000067804
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3V69H9K
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Masand
GivenName
Shirley
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-01-07 14:49:06
AssociatedEntity
Name
Shirley Masand
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024