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ABSTRACT OF THE DISSERTATION

Two new computer based results in game theory related

to combinatorial games and Nash equilibria

by Vladimir Oudalov

Dissertation Director: Prof. Vladimir Gurvich

This thesis consists of two chapters.

The first chapter is about the new version of NIM recently introduced by Gurvich

together with a generalization of the minimal excludant function (mex). This game

NIM(a, b) is played with two piles of matches. Two players alternate turns. By one

move, each player can take either “almost the same” number of matches from each pile

(the difference of the two numbers is strictly less than a) or any number of matches from

one pile and strictly less than b from the other. This game further extends Fraenkel’s

NIM = NIM(a, 1), which, in its turn, is a generalization of the classic Wythoff NIM =

NIM(1, 1).

Gurvich introduced a generalization mexb of the standard minimum excludant mex =

mex1 defining mexb(S ⊂ Z+) = min{n : ∀s ∈ S s ≤ n ⇒ s + b ≤ n}. He also showed

that P-positions (the kernel) of NIM(a, b) are given by the following recursion:

xn = mexb({xi, yi | 0 ≤ i < n}), yn = xn + an; n ≥ 0,

and conjectured that for all a, b the limits `(a, b) = xn(a, b)/n exist and are irrational

algebraic numbers. Here we prove it showing that `(a, b) = a
r−1 , where r > 1 is the
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Perron root of the polynomial

P (z) = zb+1 − z − 1−
a−1∑
i=1

zdib/ae,

whenever a and b are coprime; furthermore, it is known that `(ka, kb) = k`(a, b).

In particular, `(a, 1) = αa = 1
2(2 − a +

√
a2 + 4). In 1982, Fraenkel introduced

the game NIM(a) = NIM(a, 1), obtained the above recursion and solved it explicitly

getting xn = bαanc, yn = xn + an = b(αa + a)nc. Here we provide a polynomial time

algorithm based on the Perron-Frobenius theory solving game NIM(a, b), although we

have no explicit formula for its kernel.

The second chapter of the thesis is about the existence of Nash equilibria (NE) in

pure stationary strategies in n-person positional games with no moves of chance, with

perfect information, and with the mean or total effective cost function.

We construct a NE-free three-person game with positive local costs, disproving the

conjecture suggested by Boros and Gurvich in Math. Soc. Sci. 46 (2003) 207-241.

Still, the following four problems remain open:

Whether NE exist in all two-person games with total effective costs such that (I) all

local costs are strictly positive or (II) without directed cycles of the cost zero?

If NE exist in all n-person games with the terminal (transition-free) cost functions,

provided all directed cycles form a unique outcome c and (III) assuming that c is worse

than any terminal outcome or (IV) without this assumption?

For n = 3 cases (I) and (II) are answered in the negative, while for n = 2 cases

(III) and (IV) are proven. We briefly survey other negative and positive results on

Nash-solvability in pure stationary strategies for the games under consideration.
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Chapter 1

A polynomial algorithm and linear asymptotic for a two

parameter extension of Wythoff NIM

1.1 Introduction

For any positive integer a and b, a game NIM(a, b) was recently introduced by Gurvich

(2012) [10] as follows. Two piles contain x and y matches. Two players alternate turns.

In one move, it is allowed to take x′ and y′ matches from these two piles such that

0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y, 0 < x′+y′, and either |x′−y′| < a or min(x′, y′) < b. (1.1)

In other words, a player can take “approximately equal” (differing by at most a − 1)

numbers of matches from both piles or any number of matches from one pile but at

most b− 1 from the other. This game, NIM(a, b), extends further the game NIM(a) =

NIM(a, 1) considered by Fraenkel (1982, 1984) [4, 5], which, in its turn, is a generaliza-

tion of the classic game NIM(1, 1) introduced by Wythoff (1907) [18], see also Coxeter

(1953) [3].

A position of NIM(a, b) is a non-negative integer pair (x, y). Due to obvious symme-

try, positions (x, y) and (y, x) are equivalent. By default, we assume that x ≤ y unless

it is explicitly said otherwise.

Obviously, (0, 0) is a unique terminal position. By definition, the player entering

this position is the winner in the normal version of the game and (s)he is the loser in

its misère version.

In each version, (x, y) is called a P-position if a player entering it (the Previous

player) wins and (x, y) is called an N-position if a player leaving it (the Next player)

wins. It is easily seen and well known that
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• each move from a P-position leads to an N-position;

• from each N-position there is a move to a P-position;

• (0, 0) is a P-position in the normal version of the game and an N-position in its

misère version.

We refer the reader to Berlekamp et. al. (2001–2004) [1] and Conway (1976) [2] for

more details of combinatorial game theory.

The normal version of NIM(a, b) was recently solved by Gurvich (2012) [10], by

means of the following recursion for the P-positions (xn, yn):

xn = mexb({xi, yi | 0 ≤ i < n}), yn = xn + an; n ≥ 0, (1.2)

where xn ≤ yn and the function mexb is defined as follows:

Given a finite non-empty subset S ⊂ Z+ of m non-negative integers, let us order S

and extend it by sm+1 =∞ and by s0 = −b, to get the sequence s0 < s1 < · · · < sm <

sm+1. Obviously there is a unique minimum i such that si+1 − si > b. By definition,

let us set mexb(S) = si + b; in particular, mexb(∅) = 0.

It is easily seen that mexb is well-defined and for b = 1 it is exactly the classic

minimum excludant mex, which assigns to S the (unique) minimum non-negative in-

teger missing in S. Thus, mex1 = mex and (1.2) turns into the recursive solution of

NIM(a, 1) given by Fraenkel (1982, 1984) [4, 5].

Furthermore, Fraenkel solved the recursion and got the following explicit formula

for (xn, yn): Let αa = 1
2(2−a+

√
a2 + 4) be the (unique) positive root of the quadratic

equation ẑ2+(a−2)ẑ−a = 0, or equivalently, 1
ẑ+ 1

ẑ+a = 1. In particular, α1 = 1
2(1+

√
5)

is the golden section and α2 =
√

2. Then, it follows that for all n ∈ ZZ+ we have

xn = bαanc and yn = xn + an ≡ bn(αa + a)c. (1.3)

This recursion implies the asymptotic lim
n→∞

xn(a)
n

= αa and lim
n→∞

yn(a)
n

= αa + a.

As it was mentioned by Fraenkel (1982) [4], the explicit formula (1.3) solves the game

in linear time, in contrast to recursion (1.2), providing only an exponential algorithm.
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Yet, it looks too difficult to solve (1.2) explicitly when b > 1, because of the following

bounds obtained by Gurvich (2012) [10]:

b ≤ xn+1 − xn ≤ 2b and b+ a ≤ yn+1 − yn ≤ 2b+ a. (1.4)

Hence, for b = 1 the difference xn+1 − xn is either 1 or 2, and thus αan is a good

approximation of xn. Yet, when b > 1, it seems harder to find a similar estimate, since

the bound of (1.4) for xn+1 − xn is looser.

Although we are not able to give closed form expressions for xn and yn in the case

b > 1, yet, we can compute these values (and, thus, solve NIM(a, b)) by a polynomial

time algorithm.

Theorem 1 The values xn and yn can be computed in O(g(a, b) log n) iterations (each

of which involves arithmetical operations with integers of size O(n)) for all n ∈ ZZ+,

where g(a, b) is a constant depending only on a and b. Furthermore, given Z ∈ IR+, we

can find the largest index n such that xn ≤ Z using O(g(a, b) logZ) operations.

The proof will be given in Sections 1.2 and 1.3. This theorem provides a polynomial

algorithm to play NIM(a, b). Indeed, given positive integers x and y we can decide

in polynomial time whether the position (x, y) is a P-position of NIM(a, b), that is,

whether x = xn and y = yn for some n ≥ 0. If yes then there is no winning move from

(x, y). If no, we will find in polynomial time a P-position (xn, yn) that can be reached

from (x, y) in one move, in accordance with the rules of NIM(a, b).

Remark 1 There are several other impartial games for which polynomial algorithms

are obtained but no closed formulas for the kernels are known; see Hadad (2008) [11],

Fraenkel and Peled (2013) [7].

Let us also notice that the number (x + 1)(y + 1) of possible positions in the game

beginning in (x, y) is polynomial in x and y but exponential in the size of the input,

log(xy). In contrast, there are many impartial games in which the number of positions

is exponential in the size of the basic parameters and doubly exponential in the size of

the input. Several such examples were considered by Fraenkel (2004) [6], who suggested
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a new concept of complexity for the combinatorial games. According to this concept, a

game is intractable if it contains doubly exponential plays, even if an optimal move in

every position can be computed in polynomial time. Yet, NIM(a, b) remains tractable,

even with respect to this new concept.

For the misère version of NIM(a, b), a recursion very similar to (1.2) was obtained

by Gurvich (2011, 2012) [9, 10] and the above polynomial algorithm should be just

slightly modified; see Section 1.7.2. For the case b = 1 the recursion together with a

closed formula for the misère version were obtained earlier by Fraenkel (1984) [5].

The next step is to show that a linear asymptotic still holds for b > 1. Gurvich

(2012) [10] conjectured that the limits `(a, b) = lim
n→∞

xn(a, b)/n exist for all positive

integer a, b and are irrational algebraic numbers. Here, we prove this conjecture and

provide an explicit formula for the limiting values.

Theorem 2 The limit `(a, b) exists for all positive integer a, b and, when they are co-

prime, gcd(a, b) = 1, it is given by the fraction `(a, b) = a
r−1 , where r > 1 is a unique

positive real root of the polynomial

P (z) = zb+1 − z − 1−
a−1∑
i=1

zdib/ae, (1.5)

which is the characteristic polynomial of a non-negative (b+ 1)× (b+ 1) integer matrix

associated to game NIM(a, b) and depending only on parameters a and b.

Remark 2 Note that, by the Perron-Frobenius theorem, we have |r′| < r for any other

root r′ of P (z).

For notational convenience, we use a variable transformation ẑ = a/(z − 1). Thus,

in the case b = 1, Theorem 2 yields the same as the above cited results of Fraenkel

(1982, 1984) [4, 5].

The case gcd(a, b) > 1 is also covered by Theorem 2, since, as it was shown by Gur-

vich (2012) [10], xn(a, b) (and, hence, yn(a, b) and `(a, b) as well) are uniform functions

of a and b, that is,
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xn(ka, kb) = kxn(a, b), yn(ka, kb) = kyn(a, b), and `(ka, kb) = k`(a, b), (1.6)

for all positive integers a, b and k, n. We provide the proof for Theorem 2 in Sections

1.5 and 1.6. It will be derived with the help of the Perron-Frobenius theorem and the

Collatz-Wielandt formula for the non-negative matrices; see Chapter 8 of the textbook

by Meyer (2000) [16].

Remark 3 Alternatively, Theorems 1 and 2 could be derived from the Cauchy-Ostrovsky

theorem; see theorems 1.1.3 and 1.1.4 in the textbook by Prasolov (2010) [17] and verify

that our polynomial P (z) satisfies all condition of the latter.

1.2 Basic properties

From now on, we assume that a and b are relatively prime positive integers. Then,

a = αb + β, where α ≥ 0 and 0 < β ≤ b are integers; in particular, if b = 1 then

α = a−1, β = 1. Let us introduce the set B = {0, 1, ..., b}. In our complexity estimates

we regard parameters a, b (and α, β) as fixed constants.

We denote by S = S(a, b) = (xn, yn | n = 0, 1, ...) the sequence defined by (1.2), and

note that x0 = y0 = 0 and x1 = b, y1 = b+ a, etc. Let us next note that the sequences

xn and yn are monotone increasing and we have yn+1 − yn ≥ a+ b > b by (1.4). Thus,

every yi is followed by some xj , j > i according to (1.4). Let us then introduce σ(i) = j

denoting the index of the xj following yi immediately in the sequence S. Clearly, σ(i)

is well defined for all i ∈ ZZ+.

The following monotonicity property of the σ operator is immediate from the defi-

nitions:

Lemma 1 If σp(i) < j < σp(i+ 1) for some i, j and p, then, for all t ∈ ZZ+, we have

σp+t(i) < σt(j) < σp+t(i+ 1).

�
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The next statement provides a ”local” description of the sequence S, which will be

instrumental in our proofs and algorithms.

Lemma 2 For i ∈ ZZ+ we introduce j = j(i) such that b + j = xi+1 − xi. Then, we

have

σ(i+ 1)− σ(i) =

 α+ 1 if 0 ≤ j ≤ b− β,

α+ 2 if b− β < j ≤ b.
(1.7)

Furthermore, the sequence S ∩ [yi, xσ(i+1)] looks like

yi, xσ(i), xσ(i)+1, . . . , xσ(i)+`, yi+1, xσ(i+1),

where ` = `(j) ∈ {α, α+ 1}, as indicated by (1.7), and

xσ(i+1) − yi+1 = xσ(i)+` − xσ(i)+`−1 = . . . = xσ(i)+1 − xσ(i) = xσ(i) − yi = b;

furthermore, xσ(i+1) − xσ(i)+` = b+ µ(j), where

µ(j) =

 β + j if 0 ≤ j ≤ b− β,

β + j − b if b− β < j ≤ b.
(1.8)

Proof: By (1.4) we know that yi+1− yi = xi+1 − xi + a = b+ j + a = (α+ 1)b+ β + j.

We also know that there are only x’s between yi+1 and yi, and hence, by the mexb

rule we must have some x’s b-apart, as long as they fit this interval. This implies that

we have b (α+1)b+β+j
b c = α + 1 + bβ+j

b c many x’s between yi+1 and yi. Since we also

know that by definition xσ(i) − yi = b for all indices i, the claims follow by elementary

calculations. �

By default, all considered vectors are assumed to be column vectors, while all row

vectors will be indicated explicitly by the transposition sign.

Let us introduce vectors e = (1, 1, ..., 1) ∈ ZZB, b = (b, b+ 1, ..., 2b) ∈ ZZB, and, for

an arbitrary pair i < j of indices, let us define the vector d(i, j) ∈ ZZB+, where

d(i, j)k = |{s | i ≤ s < j, xs+1 − xs = b+ k}|
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is the number of consecutive x’s between xi and xj the distance between which is exactly

b+ k for k ∈ B.

Let us denote by e` ∈ {0, 1}B the `-th unit vector, for ` ∈ B and remark that, by

definition, for each index i ∈ ZZ+ there is an ` = `(i) ∈ B such that

d(i, i+ 1) = e` (1.9)

The following relations are readily implied by the above definition.

Corollary 1 The following equalities hold whenever i < j < k:

d(i, k) = d(i, j) + d(j, k); (1.10)

j − i = eTd(i, j); (1.11)

xj − xi = bTd(i, j); (1.12)

d(0, 1) = e0. (1.13)

�

Let us also introduce a non-negative integer matrix M ∈ ZZB×B+ by defining

Mi,j =



α = ba+j−1
b c if i = 0 and 0 ≤ j ≤ b− β

α+ 1 = ba+j−1
b c if i = 0 and b− β < j ≤ b

1 if i > 0 and (j + a− i mod b) = 0

0 if i > 0 and (j + a− i mod b) 6= 0

(1.14)
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0 1 · · · b− β − 1 b− β b− β + 1 · · · b− 1 b

0 α α · · · α α α+ 1 · · · α+ 1 α+ 1

1 0 0 · · · 0 0 1 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

β − 1 0 0 · · · 0 0 0 · · · 1 0

β 1 0 · · · 0 0 0 · · · 0 1

β + 1 0 1 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

b− 1 0 0 · · · 1 0 0 · · · 0 0

b 0 0 · · · 0 1 0 · · · 0 0

Let us notice that if xi+1−xi = b+ j, then column j of M provides the distribution

of the consecutive x differences between xσ(i) and xσ(i+1), as shown in Lemma 2. Thus,

the next two relations follow readily from Lemma 2.

Corollary 2 For any i < j we have

d(σ(i), σ(j)) = Md(i, j); (1.15)

Let us next note that Lemma 2 and the corollaries above provide us with a compu-

tational tool, allowing us to compute indices and x-values, as we move forward by the

σ operator.

Corollary 3 Given a positive integer i, the values xi, xi+1, and vector d(0, i), we can

compute the index σ(i), the values xk, and vectors d(0, k) for all σ(i) ≤ k ≤ σ(i + 1)

in O((α+ 1)b2) = O(1) total time.

Proof: Introduce j = xi+1 − xi − b as in Lemma 2 and set µ(j) as defined in (1.8).

Then, by Corollaries 1 and 2, we can compute first σ(i) = eT (d(0, 1) + d(1, σ(i)))

= 1 + eTMd(0, i) and σ(i+ 1) = σ(i) + eTMd(i, i+ 1) = σ(i) + eTMeµ(j). Then, using

Lemma 2, we can compute the vectors

d(0, k) = d(0, 1) + d(1, σ(i)) + (k − σ(i))e0 = (k + 1− σ(i))e0 +Md(0, i) (1.16)
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for σ(i) ≤ k < σ(i+ 1), and finally,

d(0, σ(i+ 1)) = d(0, σ(i+ 1)− 1) + eµ(j).

Since x0 = 0, by (1.12), we obtain that xk = bTd(0, k) for σ(i) ≤ k ≤ σ(i+ 1).

Here, computing Md(0, i) takes O(b2) time, computing Meµ(j) takes O(b) time,

while all other operations are multiplications or additions of vectors of dimension b

and, hence, take also O(b) time each. Since we have O(α + 1) such operations by

Lemma 2, the claim follows. �

To be able to start our algorithms, described in the next section, we need to draw

a few more computational consequences of the above basic results.

Corollary 4 Given positive integers t, i, σ(i), xi, and the corresponding vector d(i, σ(i))

we can compute σ2k(i) and x
σ2k (i)

for all k = 0, 1, ..., t in O(t) time.

Proof: Note first that the powers M2j , j = 0, 1, ..., t can be computed in O(t) time.

Thus, by Corollaries 1 and 2 we get

d(i, σ2k+1
(i)) = d(i, σ2k(i)) + d(σ2k(i), σ2k+1

(i)) =
(
I +M2k

)
d(i, σ2k(i))

for k = 0, 1, ..., t− 1, and hence the claim follows by (1.11) and (1.12). �

Corollary 5 Given a positive integer N , we can compute the largest integer n such

that σn(0) ≤ N in O(log n) time.

Proof: We compute such a largest n in its binary representation. Just like in Corollary

4, let us compute first M2j and σ2j (0) for j = 0, 1, ..., t+1, where σ2t(0) ≤ N < σ2t+1
(0).

Note that we also get all the vectors d(0, σ2j (0)) for j = 0, 1, ..., t. As in the previous

corollary, we can do all these in O(t) time.

Let us also note that for arbitrary integers m and k we have by (1.11) and (1.15)

that

σm+k(0) = eTd(0, σm+k(0)) = σm(0) + eTMmd(0, σk(0)).
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Thus, starting with m = 2t we can find a largest integer j < t for which σm+2j (0) ≤ N .

Then update m ← m + 2j , compute Mm+2j = MmM2j , and repeat, until we have

σm(0) ≤ N < σm+1(0). Then we stop, and output n = m.

Note that after the initialization, we have at most t iterations, in which we need to

try to add 2j to m exactly once for all indices j = 0, 1, ..., t− 1. Since each trial by the

above equalities takes O(1) time, the total time is O(t) = O(log n), as claimed. �

Corollary 6 Given a positive integer X, we can compute the largest integer n such

that xσn(0) ≤ X in O(log n) time.

Proof: Perfectly analogous to the previous proof. We need to use also equation (1.12).

�

1.3 Basic algorithms

We are now ready to describe our main algorithm(s) with which we can answer a number

of different questions about NIM(a, b). The precise complexity estimate will follow in

the next section, where we show that σ(i)n is an exponential function of n. We will

provide three algorithms:

• Compute-X(N): Given a positive integer N , compute xN ;

• Find-N(X): Given a positive integer X, find the maximum N such that xN ≤ X,

return both N and xN ;

• Find-N(Y ): Given a positive integer Y , find the maximum N such that yN ≤ Y ,

return both N and yN .

Let us observe first that we can solve the last question by computing X = Y + b

and finding the largest integer N such that xσ(N) ≤ X. Then, by the definition of the

σ operator, the value yN = xN + a is the right value to return by Find-N(Y ). This

observation makes the algorithmic descriptions very similar and allows us to describe

all three algorithms simultaneously.
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The key idea in our algorithms is to use the σ operator to derive a series of increas-

ingly smaller and smaller windows of upper and lower bounds on the targeted input

parameters N or X. We shall describe all three procedures simultaneously, indicating

the differences in parentheses.

Initialization: We start with computing a largest integer n such that σn(0) ≤ N (or

xσn(0) ≤ X) by Corollary 5 (or 6), in O(log n) time. Then we initialize i = 0, and

set ξi = 0, xξi = 0, xξi+1 = b and d(0, ξi) = (0, 0, . . . , 0) ∈ IRB. We also compute

the matrices Mn in O(dlog ne) time, and M−1 (as rational) in O(1) time.

Parameters: We compute for every index i = 0, 1, . . . , n a corresponding index ξi,

the values xξi and xξi+1, and the vector d(0, ξi), in O(1) time for each index i,

satisfying the following properties.

Invariant(s): We maintain for every i = 0, ..., n− 1 that either

σn(0) ≤ σn−i(ξi) ≤ σn−i−1(ξi+1) ≤ N < σn−i−1(ξi+1+1) ≤ σn−i(ξi+1) ≤ σn+1(0)

holds (for the first problem) or

xσn(0) ≤ xσn−i(ξi) ≤ xσn−i−1(ξi+1) ≤ X < xσn−i−1(ξi+1+1) ≤ xσn−i(ξi+1) ≤ xσn+1(0)

holds (for the last two problems).

Termination: For i = n we have either ξn = N (for the first problem) in which case

xξn = xN is the right output for Compute-X(N), or xξn ≤ X < xξn+1 (for the

last two problems), in which case N = ξn and xN = xξn are the right output

for Find-N(X), and N = ξn−1 and yN = a + xξn−1 are the right output for

Find-N(Y ).

Main Iteration: If i = n, then we go to Termination, otherwise we compute, as

in Corollary 3, the indices σ(ξi), σ(ξi + 1) and the values xk and vectors d(0, k)

for all indices σ(ξi) ≤ k ≤ σ(ξi + 1) in O(1) time. We also compute the matrix

Mn−i−1 = M−1Mn−i in O(1) time.

• If σ(ξi + 1) = σ(ξi) + 1, then we set ξi+1 = σ(ξi), i = i + 1, and repeat the

Main Iteration.
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• Otherwise, we compute the indices σn−i−1(k) = eTMn−i−1d(0, k) and the

values xk = bTMn−i−1d(0, k) for σ(ξi) ≤ k ≤ σ(ξi + 1) in O(1) time. These

indices (in case of the first problem) or values (in case of the other two

problems) subdivide the intervals
[
σn−i(ξi), σn−i(ξi + 1)

)
(in case of the first

problem) or
[
xσn−i(ξi), xσn−i(ξi+1)

)
(in case of the other two problems), and

one of these intervals will contain N (or X). Let us then choose index k such

that σn−i−1(k) ≤ N < σn−i−1(k + 1) (or xσn−i−1(k) ≤ X < xσn−i−1(k+1)),

and set ξi+1 = k, i = i+ 1 and return to the Main Iteration.

Theorem 3 The above algorithm(s) correctly compute the answer to all three problems

and terminate in O(n) time.

Proof: The correctness of the computations follow by Lemma 2 and Corollaries 1,2,5

and 6. The complexity then follows since each step in the algorithm takes constant

time, and we repeat only the Main Iteration, n times.

The correctness follows by the maintained Invariants(s), and by the definition of

the σ operator. �

Let us remark finally that to argue that the above procedures are computationally

efficient, it is enough to show that σn(0) is an exponential function of n, which we will

prove in the next section.

1.4 Asymptotic distribution of S(a, b)

Let us denote by rj , j = 0, 1, ..., b the eigenvalues of M and by u(j) and v(j), j =

0, 1, . . . , b the corresponding left and right eigenvectors of M . We label these such that

|r0| ≥ |r1| ≥ · · · ≥ |rb|, (1.17)

and we scale the eigenvectors such that eTu(j) = eTv(j) = 1 for all j = 0, 1, ..., b. Let

us recall from matrix theory that if ri 6= rj , then we must have

u(i)Tv(j) = 0, (1.18)
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as the equalities riu(i)Tv(j) = u(i)TMv(j) = rju(i)Tv(j) imply.

Let us next show thatM is an irreducible aperiodic matrix, which, for a non-negative

matrix, is implied by the fact that a finite power of M has only positive entries.

Lemma 3 Every entry in M2b is a positive integer.

Proof: Let us note that the last β entries in the first row are always positive (and the

whole first row is positive if α > 0). Due to the cyclic arrangement of the 1-s in the

columns of M (in rows 1...b), we get that the last 2β entries are positive in M2, the

last 3β entries are positive in M3, etc. Thus, M b has its first row positive. Note also

that once the first row of a power of M is positive then it remains positive for all higher

powers. Let us observe next that row β is positive in M b+1, and it remains positive in

all higher powers of M . Then row (2β mod b) + 1 is positive in M b+2, and it remains

positive in all higher powers of M . Iterating this argument, using the cyclic structure

of rows 1...b of M , we get that all rows are positive in Mn for all n ≥ 2b. �

Corollary 7 r(a, b) = r0 > 1 is the unique largest eigenvalue of M and the correspond-

ing eigenvectors u(0) and v(0) have positive real components.

Proof: By Lemma 3 matrix M is irreducible, and hence primitive. Thus, we can

apply the Perron-Frobenius theorem and conclude that r0 is a positive real eigenvalue

with multiplicity one, the corresponding eigenvectors u(0) and v(0) have positive real

components and that r0 > |r1|.

To see that r0 > 1, we apply the Collatz-Wielandt formula claiming that

r0 = max
z≥0, z 6=0

min
i:zi 6=0

Mz
zi

for a non-negative matrix M . Observing then that r2b0 is the largest real eigenvalue of

M2b and that M2b has positive integer entries by Lemma 3, we can apply the above

formula with z = e to M2b and obtain that r2b0 ≥ (b+ 1), from which we get

r0 ≥ (b+ 1)1/2b > 1. (1.19)
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�

Remark 4 By the above claims it follows that the eigenvalues of M satisfy the inequal-

ities r0 > 1 and r0 > |r1| ≥ |r2| ≥ · · · ≥ |rb|. Let us also note that all these values

depend only on parameters a and b. Then, let us introduce a parameter

1 > δ = δ(a, b) ≥ |r1|
r0

(1.20)

such that δr0 ≥ 1.

A further useful property of these eigenvectors is that they span all unit vectors

with a positive real coefficient for v(0):

Lemma 4 For every ` ∈ B there is a positive real γ`0 = γ`0(a, b) > 0 and there are

complex coefficients γ`j , j = 1, ..., b such that

e` =
∑
j∈B

γ`jv(j). (1.21)

Proof: Since the right eigenvectors of M span the space (1.21) holds for some com-

plex coefficients γ`j , j ∈ B. By Corollary 7 the left eigenvector u(0) has positive real

components, and by (1.18), we have u(0)Tv(j) = 0 for all j 6= 0. Thus, by (1.21), we

get

0 < u(0)Te` = γ`0u(0)Tv(0).

Since, by Corollary 7, the right eigenvector v(0) has positive components, the posi-

tivity of γ`0 follows. �

Using the above, we can prove the following statement, which will be instrumental

in our proof of Theorem 2.

Lemma 5 There is a positive real C = C(a, b) depending only on parameters a and b

such that for all integers n ≥ 0 we have
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−C(a, b)(n+ 1)δn ≤ σn(1)
rn0

− γ0
0r0

r0 − 1
≤ C(a, b)(n+ 1)δn.

Proof: Let us first note that, since M depends only on parameters a and b, the same

holds for all its eigenvalues and eigenvectors.

Using equations (1.14) and (1.11) iteratively, starting with (i, j) = (0, 1), we obtain

σn(1) = eT
(
I +M +M2 + · · ·+Mn

)
d(0, 1). (1.22)

Since d(0, 1) = e0, by Lemma 4, we get

d(0, 1) = e0 =
b∑

j=0

γ0
jv(j). (1.23)

This, together with (1.22), yields

σn(1) =
b∑

j=0

γ0
j (1 + rj + · · ·+ rnj ),

implying

σn(1) = γ0
0

rn+1
0 − 1
r0 − 1

+
b∑

j=1

γ0
j

n∑
k=0

rkj . (1.24)

Since |rj | ≤ |r1| < r0 for all j = 1, ..., b by Remark 4 and Lemma 4 we get

∣∣∣∣∣∣
b∑

j=1

γ0
j

n∑
k=0

rkj

∣∣∣∣∣∣ ≤ rn0
 b∑
j=1

|γ0
j |

( n∑
k=0

(δr0)k

rn0

)

= rn0

 b∑
j=1

|γ0
j |

 δn

(
n∑
k=0

1
(δr0)n−k

)

≤ (n+ 1)rn0 δ
n

 b∑
j=1

|γ0
j |


Since r0δ ≥ 1 by Remark 4, for every n ≥ 0 we have (n + 1)rn0 δ

n ≥ 1. Thus,

the claim holds with C(a, b) = γ0
0

r0−1 +
∑b

j=1 |γ0
j |, since the coefficients γ0

j , j ∈ B and

eigenvalue r0 depend only on a and b. �

Proof of Theorem 1. It follows directly from Lemma 5 and Theorem 3. �
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1.5 Existence of the limiting average value of xn

Let us first show that the subsequence xσn(1)/σ
n(1) has a limit. For this we prove a

claim for the distribution of xσn(1), analogous to Lemma 5.

Lemma 6 There is a positive real D = D(a, b) depending only on parameters a and b

such that for all integers n ≥ 0 we have

−D(a, b)(n+ 1)δn ≤
xσn(1)

rn0
− γ0

0r0(bTv(0))
r0 − 1

≤ D(a, b)(n+ 1)δn.

Proof: Analogously to the proof of Lemma 5, by using equations (1.14) and (1.12)

iteratively, starting with (i, j) = (0, 1), we obtain

xσn(1) = bT
(
I +M +M2 + · · ·+Mn

)
d(0, 1). (1.25)

Since d(0, 1) = e0, by Lemma 4 we get

d(0, 1) = e0 =
b∑

j=0

γ0
jv(j). (1.26)

This, together with (1.25), yields

xσn(1) =
b∑

j=0

γ0
j (bTv(j))(1 + rj + · · ·+ rnj ),

implying

xσn(1) = γ0
0(bTv(0))

rn+1
0 − 1
r0 − 1

+
b∑

j=1

γ0
j (bTv(j))

n∑
k=0

rkj . (1.27)

Since |rj | ≤ |r1| < r0 for all j = 1, ..., b, by Remark 4 and Lemma 4, we get

∣∣∣∣∣∣
b∑

j=1

γ0
j (bTv(j))

n∑
k=0

rkj

∣∣∣∣∣∣ ≤ rn0
 b∑
j=1

|γ0
j (bTv(j))|

( n∑
k=0

(δr0)k

rn0

)

= rn0

 b∑
j=1

|γ0
j (bTv(j))|

 δn

(
n∑
k=0

1
(δr0)n−k

)

≤ (n+ 1)rn0 δ
n

 b∑
j=1

|γ0
j (bTv(j))|
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Since r0δ ≥ 1 by Remark 4, for every n ≥ 0 we have (n + 1)rn0 δ
n ≥ 1. Thus, the

claim holds with C(a, b) = γ0
0(bTv(0))
r0−1 +

∑b
j=1 |γ0

j (bTv(j))|, since the coefficients γ0
j ,

j ∈ B, eigenvectors v(j), j ∈ B, and eigenvalue r0 depend only on a and b. �

Theorem 4

lim
n→∞

xσn(1)

σn(1)
= bTv(0).

Proof: Let us denote by ±C(a, b) and ±D(a, b) quantities between −C(a, b) and C(a, b)

(respectively, between −D(a, b) and D(a, b)) which guarantee the equality in Lemma 5

and 6. These lemmas imply

xσn(1)

σn(1)
=
rn0

γ0
0r0(bTv(0))

r0−1 ± D(a, b)(n+ 1)rn0 δ
n

rn0
γ0
0r0
r0−1 ± C(a, b)(n+ 1)rn0 δn

=
bTv(0) ± D(a,b)(r0−1)

γ0
0r0

(n+ 1)δn

1 ± C(a,b)(r0−1)
γ0
0r0

(n+ 1)δn
.

Since δ < 1, the factor (n+ 1)δn goes to zero as n→∞, and the claim follows. �

Next we show that the range σn(i) − σn(i − 1) is proportional to rn0 , if n is large,

for all integers i ≥ 1.

Lemma 7 For every integer i ≥ 1 there is an index ` = `(i) ∈ B and a positive real

E = E(`, a, b) such that the following bounds hold for all n ≥ 0:

−E(`, a, b)δn ≤ σn(i)− σn(i− 1)
rn0

− γ`0 ≤ E(`, a, b)δn

Proof: As we noted in (1.4), there exists an index ` = `(i) ∈ B such that d(i−1, i) = e`.

Thus, by (1.11) and Lemma 4, we get

σn(i)− σn(i− 1) = eTMnd(i− 1, i) = eTMn
∑
j∈B

γ`jv(j) =
∑
j∈B

γ`jr
n
j .

Since eTv(j) = 1 for all j ∈ B, the above implies

σn(i)− σn(i− 1)
rn0

= γ`0 +
b∑

j=1

γ`j

(
rj
r0

)n
.
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Let us note that γ`0 is a positive real according to Lemma 4. Since |rj |/r0 ≤ δ by

Remark 4, and since E(`, a, b) =
∑b

j=1 |γ`j | is a constant depending only on ` = `(i), a

and b according to Lemma 4, the claim follows from the above equality. �

We also prove an analogous claim for the difference xσn(i) − xσn(i−1).

Lemma 8 For every integer i ∈ ZZ+ there is an index ` = `(i) ∈ B and a positive real

F = F (`, a, b) such that the following bounds hold for all n ≥ 0:

−F (`, a, b)δn ≤
xσn(i) − xσn(i−1)

rn0
− γ`0(bTv(0)) ≤ F (`, a, b)δn.

Proof: As we noted in (1.4), there exists an index ` = `(i) ∈ B such that d(i−1, i) = e`.

Thus, by (1.11) and Lemma 4 we obtain

xσn(i) − xσn(i−1) = bTMnd(i− 1, i) = bTMn
∑
j∈B

γ`jv(j) =
∑
j∈B

γ`j(b
Tv(j))rnj ,

which in its turn implies

xσn(i) − xσn(i−1)

rn0
= γ`0(bTv(0)) +

b∑
j=1

γ`j(b
Tv(j))

(
rj
r0

)n
.

Let us note that γ`0(bTv(0)) is a positive real according to Lemma 4. Since |rj |/r0 ≤

δ by Remark 4, and since F (`, a, b) =
∑b

j=1 |γ`j(bTv(j))| is a constant depending only

on ` = `(i), a and b according to Lemma 4, the claim follows from the above equality.

�

Theorem 5 For every integer i ≥ 1 we have

lim
n→∞

xσn(i)

σn(i)
= bTv(0).

Proof: By Lemma 7, for each integer k ≥ 1 there is a real −E(`(k), a, b) ≤ ε(k) ≤

E(`(k), a, b) such that

σn(k)− σn(k − 1) = γ
`(k)
0 rn0 + ε(k)δnrn0 . (1.28)
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Similarly, by Lemma 8, for every k ≥ 1 , there is a real −F (`(k), a, b) ≤ ϕ(k) ≤

F (`(k), a, b) such that

xσn(k) − xσn(k−1) = γ
`(k)
0 (bTv(0))rn0 + ϕ(k)δnrn0 . (1.29)

Summing these up for k = 1, 2, ..., i and using Lemmas 5 and 6 for k = 0 we get

σn(i) =

(
γ0

0

r0
r0 − 1

+
i∑

k=1

γ
`(k)
0

)
rn0 +

(
i∑

k=0

ε(k)

)
rn0 δ

n

and

xσn(i) =

(
γ0

0

r0
r0 − 1

+
i∑

k=1

γ
`(k)
0

)
(bTv(0))rn0 +

(
i∑

k=0

ϕ(k)

)
rn0 δ

n.

Let us notice that A = γ0
0

r0
r0−1 +

∑i
k=1 γ

`(k)
0 is a positive real, according to Lemma 4.

Furthermore, E(i) =
∑i

k=0 ε(k) and F (i) =
∑i

k=0 ϕ(k) are majorized in absolute value

by (i+ 1) max`∈B E(`, a, b) and (i+ 1) max`∈B F (`, a, b), respectively. Hence, both are

linear in i. Consequently, we get

xσn(i)

σn(i)
=
A(bTv(0))rn0 + E(i)rn0 δ

n

Arn0 + F (i)rn0 δn
=

bTv(0) + E(i)
A δn

1 + F (i)
A δn

from which the claim follows. �

Now we are ready to prove the existence of the limit.

Theorem 6 The limiting average value of xn is given by the formula

lim
n→∞

xn
n

= bTv(0).

Proof: Let us denote by m = m(n) the largest integer for which xn ≥ xσm(1), and fix

an integer 1 ≤ k ≤ m to be specified later. Note that by Lemma 5 we have m ≈ logr0 n

and we will choose k = o(m). Then, there exists an integer σk(1) ≤ i ≤ σk+1(1) such

that σm−k(i) ≤ n < σm−k(i+ 1), by the monotonicity of the σ operator. By Lemma 7

we have with ` = `(i− 1) ∈ B

∆ = n− σm−k(i) ≤ γ`0rm−k0 + E(`, a, b)rm−k0 δm−k,
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and consequently

xσm−k(i) ≤ xn ≤ xσm−k(i) + 2∆b ≤ xσm−k(i) + 2brm−k0

(
γ`0 + E(`, a, b)δm−k

)
.

Since σm−k(i) ≤ n < σm−k(i+ 1) by our choice of i,

σm−k(i) ≤ σm−k(i) + ∆ = n ≤ σm−k(i) + rm−k0

(
γ`0 + E(`, a, b)δm−k

)
.

The above inequalities imply, by using A =
(
γ`0 + E(`, a, b)δm−k

)
, that

xσm−k(i)

σm−k(i) + rm−k0 A
≤ xn

n
≤

xσm−k(i) + 2brm−k0 A

σm−k(i)
. (1.30)

Let us note that by Lemma 5 and by our choice of i we have

σm−k(i) ≥ σm(1) ≥ γ0
0r0

r0 − 1
rm0 − C(a, b)(m+ 1)rm0 δ

m

from which

rm−k0 A

σm−k(i)
≤ rm−k0 A

rm0

(
γ0
0r0
r0−1 − C(a, b)(m+ 1)δm

) = O

(
1
rk0

)

follows. Thus, for k ≈ m/2 we get from the above and (1.30) that

x
σm/2(i)

σm/2(i)

1 +O(1/rm/20 )
≤ xn

n
≤

xσm/2(i)

σm/2(i)
+O(1/rm/20 ),

implying the claim by Theorem 6. �

In what follows, we can provide a simpler expression for the limit bTv(0), by com-

puting precisely the positive real eigenvector v(0).

1.6 Proof of Theorem 2

We divide the proof of Theorem 2 into two subsections. First we compute the character-

istic polynomial of matrix M , and next we determine the eigenvector v(0) corresponding

to the eigenvalue r = r0 as defined in Section 1.4. Using this, we can finally compute

the value of bTv, which, according to Theorem 6, equals to lim
n→∞

xn
n

.
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1.6.1 Characteristic polynomial

To simplify our notations, first we determine the characteristic polynomial of a more

general family of matrices. Recall that we assume gcd(a, b) = 1, and thus we have

a = αb+ β for some integer 0 < β < b satisfying gcd(β, b) = 1.

Given real values x0, x1, ..., xb, we define a (b+ 1)× (b+ 1) matrix X by setting

Xi,j =


xj if i = 0,

1 if i > 0 and (j + β − i mod b) = 0,

0 if i > 0 and (j + β − i mod b) 6= 0.

Lemma 9 The characteristic polynomial of matrix X is

det(X − zI) = (−1)b+1

zb+1 − (xb − x0)− x0z
b − z −

b−1∑
j=1

zjc mod bxj

 , (1.31)

where c = −β−1 in Z/bZ.

Proof: Note that since gcd(β, b) = 1, β−1 is well defined. Let us develop the above

determinant by row i = 0, and denote by T (k) the submatrix we obtain after the

deletion of row 0 and column k, k = 0, 1, ..., b. Then we can write

det(X − zI) = (x0 − z) det(T (0)) +
b∑

j=1

(−1)jxj det(T (j)).

Let us also refer to the rows and columns of T (k) by the original index associated to

it in X − zI. In other words, in matrix T (k) we have rows i = 1, 2, ..., b and columns

j = 0, ..., k − 1, k + 1, ..., b.

Let us note first that matrix det(T (0)) is the characteristic polynomial of the per-

mutation matrix corresponding to the cyclic permutation ei → ei+β mod b, i = 1, ..., b,

with gcd(β, b) = 1, and we obtain

det(T (0)) = (−1)b(zb − 1).

This formula is a special case of the so-called circulant determinant; see, for example,

Meyer (2000) [16].
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Let us note next that for j > 0 matrix T (j) has exactly one non-zero in column 0,

namely T (j)β,0 = 1. Thus, we shall continue computing these determinants by column

0. Let us denote by S(j) the submatrix we obtain from T (j) after deleting column 0

and row β:

det(T (j)) = (−1)β−1 det(S(j)).

We claim that matrix S(j) has exactly one nonzero permutation in the full development

of its determinant. To see this let us first note that for j = β we have two nonzeros in

every row of S(β), except row ` = 2β mod b, where the single nonzero entry is S(β)`,` =

−z. Since this entry must belong to all nonzero permutations, the only other nonzero

S(β)3β mod b,` = 1 in its column cannot belong to any, and thus S(β)3β mod b,3β mod b =

−z must also belong to all nonzero permutations. Since we have a 1 entry in every

column, and since gcd(β, b) = 1 we can continue this for b− 1 steps, proving that only

the −z entries along the main diagonal can belong to a nonzero permutation, implying

det(S(β)) = (−z)b−1.

For j 6= β, we have exactly two columns, k = β and k = b, and exactly two rows,

i = j and i = j + β mod b with a single nonzero entry. All other rows and columns

have exactly one-one −z and 1 entries. Starting with S(j)2β mod b,β = 1 we can mark a

series of 1 entries which must belong to all nonzero permutations, each time increasing

the row by adding β and taking it mod b, until we arrive to row j where we cannot

continue. In this way we mark exactly (jβ−1 mod b− 1) entries of 1s in rows 2β mod b,

3β mod b, ..., j. After deleting the corresponding rows and columns we get a principal

submatrix of S(β) of size b− jβ mod b. It is easy to see that we obtain

det(S(j)) = (−1)β+j+jβ−1−1 mod b(−z)b−jβ−1 mod b.

Note that this expression is correct also for j = β.

Putting the above together we get

det(X − zI) = (x0 − z)(−1)b(zb − 1)

+
∑b

j=1(−1)jxj(−1)β−1(−1)β+j+jβ−1−1 mod b(−z)b−jβ−1 mod b

= (x0 − z)(−1)b(zb − 1) +
b∑

j=1

(−1)bxjzb−jβ
−1 mod b,
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from which the statement follows with c = −β−1 mod b. �

Theorem 7 If gcd(a, b) = 1, a = αb + β, 0 < β < b, the following polynomials are

identical and represent (up to a factor of −1) the characteristic polynomial of matrix

M :

(−1)b+1 det(M − zI) = zb+1 − z − 1− α
b∑

j=1

zj −
β−1∑
i=1

z(iβ−1 mod b) (1.32a)

= zb+1 − z − 1−
a−1∑
i=1

zd
ib
a e (1.32b)

Proof: Let us recall that matrix M coincides with X if x0 = x1 = · · · = xb−β = α and

xb−β+1 = · · · = xb = α+ 1. Thus, we get (1.32a) from (1.31) after these substitutions:

(−1)b+1 det(M − zI) = zb+1 − (α+ 1− α)− αzb − z −
b−1∑
j=1

αzjc mod b −
b−1∑

j=b−β+1

zjc mod b

= zb+1 − z − 1− α
b∑

j=1

zj −
b−1∑

j=b+1−β
zjc mod b

= zb+1 − z − 1− α
b∑

j=1

zj −
β−1∑
j=1

zjβ
−1 mod b

Let us observe next that if either a = 1 or b = 1, then the polynomials (1.32a) and

(1.32b) are identical. For other values of a and b we omit zb+1−z−1 in both expressions,

and reformulate the equality of (1.32a) and (1.32b) in the following equivalent way:

Lemma 10 Let gcd(a, b) = 1, a = αb + β, 0 < β < b and consider the intervals of

integers Ik = {(k−1)a+1, ..., ka} for k = 1, ..., b, and the set S = {b, 2b, ..., (a−1)b, ab}.

Then we have

|Ik ∩ S| =


α+ 1 if k = iβ−1 mod b for some integer 1 ≤ i ≤ β − 1,

α otherwise.

Proof: The distance from (k−1)a to the smallest integer in Ik∩S is ka mod b = kβ mod

b. Thus, we have |Ik ∩ S| = α + 1 if and only if this distance is positive and less than

β. We can write this as kβ = i mod b for some i = 1 . . . β − 1 or equivalently, as

k = iβ−1 mod b. �
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Let us finally note that, since the characteristic polynomial of M has all coefficients

non-positive, except of the leading term zb+1, we could have used a classical result by

Cauchy and Ostrovsky (see theorems 1.1.3, 1.1.4 in the textbook Prasolov (2010) [17])

to show that M has a unique eigenvalue r0, which is a positive real and strictly larger

than the absolute value of any other eigenvalue.

1.6.2 Computing the first eigenvector of M

Due to the structure of matrix M , for r = r0, we have the following equalities for

v = v(0):

rv(β mod b) = v0 + vb (1.33a)

rv(2β mod b) = v(β mod b) (1.33b)

· · ·

rv(iβ mod b) = v((i−1)β mod b) (1.33c)

· · ·

rvb = v(b−1)β mod b = v(b−β). (1.33d)

Let us introduce µ = v(β mod b). From (1.33a–1.33d) it follows that

v(jβ mod b) =
µ

rj−1
for all j = 1, . . . , b− 1, and vb =

µ

rb−1
. (1.34)

Thus, from (1.33a) and (1.34) we get

v0 =
µ(rb − 1)
rb−1

. (1.35)

Adding together (1.33a–1.33d) we get

r

b∑
i=1

vi =
b∑
i=0

vi

As eTv = 1, we get

v0 =
r − 1
r

(1.36)

Finally, combining (1.35) and (1.36) we obtain

µ =
(r − 1)rb−2

rb − 1
(1.37)
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Thus, we can write v as

v0 = r−1
r ,

v(kβ mod b) = (r−1)rb−k−1

rb−1
, for k = 1, . . . , b− 1,

vb = r−1
(rb−1)r

.

(1.38)

Now we can compute bTv. Substitute (1.38) into bTv. Since the components of v

sum up to 1 we get

bTv = b+
b−1∑
k=1

(
rb−k−1(r − 1)

rb − 1
(kβ mod b)

)
+

b(r − 1)
(rb − 1)r

Using that kβ mod b = ka− b
⌊
ka
b

⌋
, we can see this expression as

b+
b−1∑
k=1

(
rb−k−1(r − 1)

rb − 1

(
ka− b

⌊
ka

b

⌋))
+

b(r − 1)
(rb − 1)r

= b+
rb−2(r − 1)
rb − 1

�

a b∑
i=1

i

ri−1
− b

a−1∑
i=1

b∑
j=b ib

a
c+1

1
rj−1

 (1.39)

Since we have the indentities

b∑
i=1

i

ri−1
=

r2

(r − 1)2
− r3 − br2(r − 1)

rb+1(r − 1)2
(1.40)

and

a−1∑
i=1

b∑
j=b iba c

1
rj−1

=

a−1∑
i=1

r1−b
ib
a c

r − 1
− r2(a− 1)
rb+1(r − 1)

(1.41)

we can rewrite (1.39) as:

= b+

(
ar2

(r − 1)2

(
1− (b+ 1)r − b

rb+1

)
− br2

r − 1

(
a−1∑
i=1

1

rb
ib
a c+1

− a− 1
rb+1

))
rb−2(r − 1)
rb − 1

=

br(r − 1)(rb − 1) + a(rb+1 − br − r + b)− b(r − 1)

(
a−1∑
i=1

rb−b
ib
a c − (a− 1)

)
r(r − 1)(rb − 1)

(1.42)

Since r is a root of the polynomial (1.32b), we have

a−1∑
i=1

rb−b
ib
a c =

a−1∑
i=1

rd
ib
a e = rb+1 − r − 1.
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Therefore, (1.42) can be further rewritten as

=
br(r − 1)(rb − 1) + a(rb+1 − br − r + b)− b(r − 1)

(
rb+1 − r − 1− (a− 1)

)
r(r − 1)(rb − 1)

= brb+2−brb+1−br2+br+arb+1−abr−ar+ab−brb+2+brb+1+br2−br+abr−ab
r(r−1)(rb−1)

=
arb+1 − ar

r(r − 1)(rb − 1)
=

a

r − 1
.

This completes the proof of Theorem 2 �

1.7 Polynomial algorithms solving NIM(a, b)

1.7.1 Normal version

By definition, a game is solved if for any given position v one can decide whether it is

a P-position and if it is not, then one can find a P-position v′ that can be reached from

v in one move. We will show that one can solve game NIM(a, b) for a position (x∗, y∗)

using algorithms Compute-X(N), Find-N(X), and Find-N(Y ) not more than once

each, that is in O(log(max(x∗, y∗)) operations.

Solve-Game(x∗, y∗): Given non-negative integers x∗ ≤ y∗, find an index N and P-

position (xN , yN ) such that it is either the same as (x∗, y∗) or is reachable in one move.

1: Compute N =Find-N(X = x∗). If xN ≤ x∗ − b, go to step 2, otherwise compute

yN = xN + aN . If yN > y∗, go to step 3, otherwise, either (xN , yN ) = (x∗, y∗)

(P-position), or (xN , yN ) can be reached from (x∗, y∗) in one step by decreasing

x∗ to xN and y∗ to yN (since x∗ − xN < b). In either case we are done.

2: Since there is no xi in the interval (xN , x∗] and this interval is longer than b, we

know that there must exists a yM in this interval. We can compute this index

by setting M =Find-N(Y = x∗), and by the above we must have yM > x∗ − b.

Then, the position (xM , yM ) can be reached from (x∗, y∗) by decreasing x∗ to yM

(by less than b) and decreasing y∗ to xM , and thus we are done in this case, too.

3: In this case we have x∗ − b < xN ≤ x∗ and y∗ < yN = xN + aN . Conse-

quently, N ′ = by
∗−x∗
a c < N . Let us then compute the corresponding x-value
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by xN ′ =Compute-X(N = N ′) and set yN ′ = xN ′ + aN ′. Then, the position

(xN ′ , yN ′) can be reached from (x∗, y∗) in one step by decreasing x∗ to xN ′ and

decreasing y∗ by (x∗ − xN ′) + [(y∗ − x∗) mod a].

1.7.2 Misère version

For the joint consideration of the normal and misère versions of an impartial game we

refer the reader to the books by Berlekamp et. al. (2001–2004) [1] and Conway (1976)

[2] Chapter 12; see also the papers by Fraenkel (1984) [5] and Gurvich (2011, 2012)

[9, 10].

In the case a = 1, the set of P-positions PN and PM (of the normal and misère

versions, respectively) “almost coincide”. More precisely, their symmetric difference

consists of only six positions:

PN \PM = {(0, 0), (b, b+1), (b+1, b)}, while PM \PN = {(0, 1), (1, 0), (b+1, b+1)}.

This result was obtained by Fraenkel (1984) [5] for b = 1 and extended for any

positive integer b by Gurvich (2012) [10]. In the book by Belekamp et. al. (2001–2004)

[1], such games, in which PM and PN differ “just slightly”, are called tame.

It is not difficult also to verify (see Gurvich (2011) [9]) that

• (i) from any position of PM \ PN there is a move to PN \ PM ;

• (ii) from any non-terminal position of PN \PM , that is, from (b, b+1) or (b+1, b),

there is a move to PN \ PM ;

• (iii) from any position (x, y) 6∈ PN ∪ PM , either both sets PN and PM or none

of them can be reached in one move.

Thus, for a = 1, the algorithm for the normal version of NIM(a, b) constructed in

the previous section is applicable to the misère version, as well; see Gurvich (2011) [9]

for more details.

For any integer a > 1 (and b ≥ 1) the kernel of the misère version is defined by the
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recursion

x̃n = mexb({x̃i, ỹi | 0 ≤ i < n}), ỹn = x̃n + an+ 1; n ∈ ZZ+. (1.43)

This formula was proven by Fraenkel (1984) [5] for b = 1 and extended to any positive

integer b by Gurvich (2012) [10]. Let us notice that (1.2) and (1.43) differ just slightly.

In particular, comparing these two formulas we immediately conclude that for any

integer a > 1 and b ≥ 1 the sets of P-positions of the normal and misère versions are

disjoint, in contrast to the case a = 1; see Gurvich (2011) [9] for more details and, in

particular, for the cases a = 0 or b = 0, which are not considered in this paper.

Moreover, all properties described in Section 1.2 hold, except that (1.10) looks as

d(0, 1) = e1. Hence, we only need to modify the algorithms of Section 1.3, replacing e0

with e1 in (1.16) in Corollary 3, getting

d(0, k) = d(0, 1) + d(1, σ(i)) + (k − σ(i))e0 = (k − σ(i))e0 + e1 +Md(0, i), (1.44)

and the initial value of xξi+1 with b + 1 in the Initialization step. After these re-

placements, the algorithm Solve-Game(x∗, y∗) can be applied without any further

modifications.

1.8 Conclusions and problems

Two main recursions (1.2) and (1.43) are deterministic, yet, their solutions (the kernels,

or equivalently, the P-positions of the normal and misère versions of NIM(a, b)) behave

in a “pseudo-chaotic way” when b > 1. For which other combinatorial games, their

kernels demonstrate such behavior?

It seems that the four parametric game NIM(a, b; p, q), introduced recently by Gur-

vich (2010) [8], is a good candidate (this game is a generalization of NIM(a, b) from

Gurvich (2012) [10] and NIM(a, p) from Larsson (2006, 2009a) [12, 14]; see also Larsson

(2009, 2009b) [13, 15]), yet, the class in question might be much larger.

However, both recursions (1.2) and (1.43) can be solved by a polynomial algorithm

based on the Perron-Frobenius theorem. Which other recursions can be solved in such

a way?
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For b = 1, the solutions of both recursions are given by closed formulas, while for

b > 1 this is unlikely.

Cases a = 1 and a > 1 also differ substantially. In the first case, the symmetric

difference of two kernels, PN∆PM , consists of only six positions, while in the second

case these two sets are disjoint, PN ∩ PM = ∅ ; see Section 1.7.2. Gurvich (2011)

[9] named such two types of games miserable and strongly miserable, respectively, and

obtained simple characterizations for both classes.

This Chapter was published (see the second work in Vita / Publications).
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Chapter 2

On the existence of Nash equilibria in pure stationary

strategies for the n-person positional games with perfect

information, no moves of chance, and mean or total

effective cost

2.1 Introduction

2.1.1 Main concepts and definitions

We consider the n-person positional games with no moves of chance, with perfect in-

formation, and with the mean or total effective cost function.

Such a game is modeled by a directed graph (digraph) G = (V,E) whose vertex-set

V is partitioned into n + 1 subsets, V = V1 ∪ . . . ∪ Vn ∪ VT , where vertices Vi are

interpreted as the positions controlled by the player i ∈ I = {1, . . . , n}, while VT is

the set of all terminal (of out-degree 0) positions; VT might be empty. In fact, we can

easily make VT empty by just adding a loop `v in each v ∈ VT . A directed edge (arc)

e = (v, v′) ∈ E is interpreted as a move of the player i whenever v ∈ Vi. A move is

called terminal if v′ ∈ VT . Obviously, a terminal move cannot belong to any directed

cycle (dicycle).

Given a local cost function r : I × E → IR, its value r(i, e) is interpreted as an

amount that the player i ∈ I has to pay for the move e ∈ e. Respectively, −r(i, e) is

frequently referred to as the local reward or payoff. Let us remark that all players i ∈ I

pay for each move e ∈ E, not only that i who makes this move. Of course, costs may

be 0 or negative.

The local cost function r is called terminal [28, 25] (or transition-free [38, 39]) if

c(i, e) = 0 unless e is a terminal move.



31

Remark 5 The n-person games with terminal local costs are referred to as the transition-

free [38, 39] or Chess-like [20, 24] games. If n = 2, these games are called BW games.

In this case V1 = VW and V2 = VB are called the White and Black positions, respectively.

Allowing also Random positions, VR, we would obtain a much more general class of the

Backgammon-like or BWR games; see [50, 25] for more details. It is not difficult to

demonstrate [23, 29] that BWR and the classic Gillette [43] mean cost stochastic games

are in fact equivalent.

In this paper, we restrict the players (and ourselves) by their pure stationary strate-

gies. Such a strategy xi of a player i ∈ I is a mapping that assigns a move (v, v′) to

each position v ∈ Vi. A set of n strategies x = (xi | i ∈ I) is called a strategy profile or

situation.

A situation x and an initial position v0 ∈ V uniquely define a directed path (dipath)

p(v0, x) as follows: Position v0 is controlled by a player i ∈ I whose strategy xi defines

the first move (v0, v′); position v′ is controlled by a player i′ ∈ I whose strategy xi′

defines the second move (v′, v′′); etc. The obtained dipath p(v0, x) is called a play. By

construction, p(v0, x) begins in v0 and either (i) terminates in a v ∈ VT or (ii) ends in a

cycle that is repeated infinitely. Indeed, as soon as the play comes to a position, where

it has already been before, it forms a dicycle that will be repeated infinitely, because

all considered strategies are stationary. In case (i) we will call the play terminal and in

case (ii) a lasso.

Remark 6 By adding a loop `v to each terminal position v ∈ VT , we reduce (i) to (ii),

since every terminal play becomes a lasso too.

Given a lasso L that consists of a a dicycle C repeated infinitely and an initial dipath

P from v0 to C, let us introduce the effective costs R(i, L) as follows:

If L is a terminal play, C = `v, let us set r(i, `v) = 0 for each player i ∈ I and

terminal v ∈ VT , and let R(i, L) =
∑

e∈P r(i, e) be the sum of all local costs of P .

If C is not a terminal loop and r(i, C) =
∑

e∈C r(i, e) 6= 0, let us define R(i, L) =∞

when r(i, C) > 0 and R(i, L) = −∞ when r(i, C) < 0.

Such effective costs were introduced by Tijsman and Vreze [68, 69] and called total.
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Remark 7 Let us note that the case r(i, C) = 0 is more sophisticated and we will

postpone it till Section 2.4.1, assuming that r(i, C) 6= 0 for any i ∈ I and dicycle C

in G, in the rest of the paper. In fact, we will construct our main counterexample

in Section 2.2.2, assuming that (j) r(i, e) > 0 for all i ∈ I, e ∈ E, and hence, (jj)

r(i, C) > 0 for any i ∈ I and C in G too. (Obviously, (j) implies (jj), but in fact,

these two conditions are equivalent; see [28] for a proof based on the Gallai potential

transformation [41]; see also [54, 50, 25].)

Let us repeat that loops `v, which were artificially added to all terminals v ∈ VT ,

are treated differently from the dicycles of G; in particular, in the counterexample of

Section 2.2.2 we will set r(i, ellv) = 0 for all i ∈ I and v ∈ VT .

In Section 2.3 (only), we will consider also the more traditional mean or average

effective cost function, defined by R(i, L) = |C|−1
∑

e∈C r(i, e), where |C| is the length

of the cycle C; see for example, [67, 43] and also [36, 37, 60, 61, 54, 50, 55].

The positional structure is a triplet (G,D, v0), where G = (V,E) is a digraph, the

mapping D : V \VT → I defines a partition that assigns a player to every non-terminal

position, and v0 is a fixed initial position. Respectively, the game in positional form is

defined by a positional structure and a local cost function r : I × E → IR.

The corresponding normal game form is a mapping g : X → L, where X =
∏
i∈I Xi

and Xi is the set of all (pure stationary) strategies of the player i ∈ I, while L is the

set of lassos of the digraph G. Respectively, the game in normal form is a pair (g,R),

where R : I × L → IR is the total or mean effective cost function defined above.

We will consider only one concept of solution: the classic Nash equilibrium (NE)

[63, 64] defined for the normal form game (g,R) as follows: A situation x ∈ X is called

a NE if R(i, g(x)) ≤ R(i, g(x′)) for every player i ∈ I and each situation x′ that may

differ from x only in the ith coordinate. In other words, no player i can reduce his/her

effective cost by replacing his/her strategy xi by another strategy x′i provided all other

players keep their strategies (xj | j ∈ I \{i}) unchanged. Furthermore, we say that x is

a NE in the positional form game (G,D, v0, r) if it is a NE in the corresponding normal

form game (g,R).
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A situation x is called a uniform (or subgame perfect) NE if it is a NE in (G,D, v0, r)

for every choice of the initial position v0 ∈ V \ VT .

Remark 8 The term “subgame perfect” is more frequent in the literature (see, for

example, [38, 39]) and this is justified in case of the recursive or acyclic games. Yet, in

presence of dicycles, none of the two games (G,D, v′0, r) and (G,D, v′′0 , r) is a subgame

of the other whenever v′ and v′′ belong to a dicycle. it seems logical to call properties

that hold for all possible initial positions v0 ∈ V \ VT “uniform” rather than “subgame

perfect”.

2.1.2 Main results and open problems

It is not difficult to construct a NE-free n-person game (G,D, v0, r) with the total cost

function and without zero-dicycles (that is, r(i, C) =
∑

e∈C r(i, e) 6= 0 for all dicycles C

of G and players i ∈ I). Such an example with n = 4 was given in [28]. in Section 2.2

we will obtain a much simpler example with n = 3. In both these examples, digraph G

has a unique dicycle C, yet, it is negative, r(i, C) < 0 for a player i ∈ I.

It was conjectured in [28] that such examples fail to exist if we assume additionally

that all dicycles are positive, that is, (i): r(i, C) > 0 for all i ∈ I and C in G. (As we

already mentioned, (i) is equivalent with a seemingly stronger assumption (ii): r(i, e) >

0 for all i ∈ I and e ∈ E.) In [28] this conjecture was proven for the so-called play-once

games, in which every player controls only one position, that is, |Vi| = 1 for all i ∈ I.

Yet, the general the conjecture fails. In Section 2.2.2 we will give a counterexample.

However, it still remains open if a NE always exists in case of the terminal costs, or

in other words, whether the n-person Chess-like (transition free) game structures are

NS.

In [19, 25], the following two versions of this problem were considered. Obviously,

no terminal move can belong to a dicycle. Hence, r(i, e) = 0 for every dicycle C of G,

its arc e ∈ C, and player i ∈ I. Standardly [28, 19, 25] we assume that in a terminal

game all dicycles form a unique outcome c, in addition to the k terminal outcomes

{a1, . . . , ak}. We might also assume that
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(A): the outcome c is the worst (most expensive) one for all players i ∈ I, that is,

R(i, c) < r(i, aj) for all i ∈ I and j ∈ [k] = {1, . . . , k}.

The above NS problem was answered in the positive for k ≤ 2 [28] and for k ≤ 3

provided (A) holds [32]. Yet in general, with or without assumption (A), NS of the

n-person Chess-like (transition free) game structures remains an open problem [19, 25].

It is solved in the negative if we replace a NE by a uniform (subgame perfect) NE.

The latter may not exist even under assumption (A). An example for n = 3 was given

in [28] and it was strengthened to n = 2 in [25]. Moreover, it was shown recently in

[31] that in both these examples, a uniform NE fails to exist not only in the pure but

even in the mixed strategies.

In contrast, for n = 2 the above problem is solved in the positive, even without

assumption (A) [28, 30]; see the last section of each paper. The proof is based on an

old criterion [45, 46] stating that a game form g is NS if (and only if, of course) a NE

exists in the game (g, r) for each zero-sum cost function r taking only the values ±1. A

slightly weaker form of this criterion was obtained earlier by Edmonds and Fulkerson

[35] and independently in [44]; see also [49, 22, 30] for more details.

Remark 9 The problem of NS of the two-person games structures in which every di-

cycle is a separate outcome (rather than all dicycles form one outcome) was considered

in [30]. In this case, the NS criterion of [45, 46] implies partial results.

Thus, the terminal two-person game structures are NS. In contrast, the following

two problems related the non-terminal total costs remain open: whether NS holds for

the local cost function r such that for all i ∈ I and C in G (i): r(i, C) > 0 or (iii):

r(i, C) 6= 0. Obviously, assumption (i) (which is equivalent with (ii)) is stronger than

(iii).

Yet, NS certainly fails if the equalities r(i, C) = 0 are allowed. Moreover, in Sections

2.3 and 2.4.3 we will construct a two-person NE-free game in which r(i, C) = 0 for all

i ∈ I and C in G. This example is based on an old example of a two-person NE-free

mean cost game from [47]; see also [48, 50].
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In contrast, the zero-sum two-person games with the total cost function are NS. It

was first proven by Tijsman and Vreze in [69], see also [65, 66]. An alternative proof

based on the well-known approach of discounted approximation was recently suggested

in [26, 27].

Given a lasso L that consists of a dipath P and a zero-dicycle C such that r(i, C) = 0

for a player i ∈ I, it seems that the total effective cost function R(i, L) (introduced in

[69], see Section 2.4.1 for the definition) is the only one that guarantees NS, at least for

the zero-sum two-person games. In Section 2.4.2, we will give an example showing that

there may be no saddle point in the game if we “naturally” define for such a lasso:

R′(i, L) = r′(i, P ) =
∑

e∈L r(i, e) =
∑

e∈P r(i, e).

The state of art is summarized by the following Table 2.1, the last four lines of

which were announced in the Abstract.

Let us underline that in Table 2.1 the cost is not assumed to be zero-sum. For the

latter case, a (much more positive) picture is outlined in the next subsection.

Cost Dicycles n = 2 n = 3
mean positive No No

total
arbitrary No No
non-zero Open No
positive Open No

transition-free
worst Yes Open

arbitrary Yes Open

Table 2.1: Summary of the results on Nash-solvability

2.1.3 Two-person zero-sum games

Every two-person zero-sum BW game has a saddle point in pure stationary uniformly

optimal strategies. For the the mean effective costs, R(i, L) = |C|−1
∑

e∈C r(i, e), this

was proven by Moulin [60, 61] for complete bipartite graphs, by Ehrenfeucht and My-

cielski [36, 37] for all bipartite graphs, and by Gurvich, Karzanov, and Khachiyan [50]

in general.

In contrast, we will show in Section 2.3 that saddle points may fail to exist in case

of the additive but non-averaged cost functions R′(i, L) =
∑

e∈C r(i, e).
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For the BW games with the total effective cost (see Section 2.3) the above existence

result was obtained by Tijsman and Vreze [69]. An alternative simpler proof based on

the classic discounted approximation was recently given in [26, 27].

Finally, let us note that the existence of a saddle point in pure stationary uniformly

optimal strategies for the two-person zero-sum mean cost games holds not only for

BW but for a more general BWR [50, 22] model, which includes not only Black and

White but also Random positions. This can be easily derived from the classic results of

Shapley [67], Gillette [43], Liggett and Lippman [58], since Gillette’s and BWR mean

cost models are in fact equivalent [23, 29]. Yet, for the BWR games with total effective

cost there is no proof.

Remark 10 The case of the terminal (transition free) cost function was considered

much earlier. Zermelo [72] was the first who proved solvability of Chess (but in fact, of

any two-person Chess-like zero-sum game with perfect information) in pure strategies.

Let us notice that already the digraph of Chess has dicycles, since a position can be

repeated in the play. However, Zermelo did not restrict the players by their stationary

strategies. This was done later, by König [57] and Kalmar [53]; see also [71] and [20]

for a recent survey.

In contrast, for the non-zero-sum case the existence of a NE in pure stationary (but

not necessarily uniformly optimal) strategies was proven in [28] only for the two-person

Chess-like (transition free) games. Two open problems for n = 2 along with several

negative results [25, 31] are summarized in the previous section.

2.2 NE-free three-person games with total effective costs

2.2.1 Arbitrary local costs

In the beginning, let us wave the requirement of positivity. Then, a quite simple example

can be constructed; see Figure 2.2.1. Players 1 and 2 control respectively positions v1

and v2, which form a dicycle of length 2. Each of these two players has two strategies:

to terminate (T) or proceed (P). Player 0 controls the initial position v0 and also has
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Three players I = {0, 1, 2} control three non-terminal positions V \ VT = V \ {vt} =
{v0, v1, v2}. To save space, we replace the positions just by their indices 0, 1, 2 (which
denote the corresponding players, too) and t.

Figure 2.1: Not Nash-solvable three-person game form.

two strategies (1) and (2): to move to v1 or v2, respectively.

The corresponding normal game form g given by the 2× 2× 2 table in Figure 2.2.1.

Every its entry is a situation x ∈ X that defines the play (lasso) L(x), as shown in

Figure 2.2.1.

We want to find a local cost function r : I × E → ZZ such that the obtained game

(g,R) is NE-free, where the total effective cost R(i, L) is defined for a given player

i ∈ I = {0, 1, 2} and a lasso L = L(x) as follows: If L = L(x) is a terminal play, that is,

a dipath P = P (x) from v0 to the (unique) terminal position vt (in which, by convention,

we add to P a loop `vt with r(i, `vt) = 0 for all i ∈ I) then R(i, L) =
∑

e∈P r(i, e). If

L = L(x) is a cyclic play, which ends in a dicycle C, then R(i, L) is ∞ (respectively,

−∞) when r(i, C) = r(i, (v1, v2)) + r(i, (v2, v1)) is positive (respectively, negative).

Remark 11 In the present example, the equality r(i, C) = 0 holds for no i ∈ I. In

Section 2.4.1, we will recall the definition of the total effective cost for this case and

construct an example of a two-person NE-free game in which r(i, C) = 0 for all i ∈ I

and C in G.

By the definition, a game (g,R) has no NE if and only if for every x = (x0, x1, x2) ∈

X there is a player i ∈ I = {0, 1, 2} and a situation x′ = (x′0, x
′
1, x
′
2) ∈ X that differs
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from x only in the coordinate i and such that R(i, L(x′)) < R(i, L(x)). In Figure 2.2.1,

for every x ∈ X the arrow from the corresponding x′ is drawn. Yet, we have to verify

that these arrows (strict inequalities) are not contradictory. This should be done for

each i ∈ I separately, since there are no relations between the local costs of different

players. It is easily seen that for i ∈ I = {0, 1, 2} we obtain the following three systems:

r(0, (v0, v2)) + r(0, (v2, vt)) < r(0, (v0, v1)) + r(0, (v1, vt))

r(0, (v0, v1)) + r(0, (v1, v2)) < r(0, (v0, v2)) + r(0, (v1, vt))

r(1, (v1, vt)) < r(1, (v1, v2)) + r(1, (v2, vt))

r(1, (v1, v2)) + r(1, (v2, v1)) < 0

r(2, (v2, v1)) + r(1, (v1, vt)) < r(2, (v2, vt))

r(2, (v1, v2)) + r(2, (v2, v1)) > 0

Remark 12 In this example, the total cost of a cyclic play is either ∞ or −∞. Re-

spectively, in these two cases it is > or < than the total cost of any terminal play, which

is finite. Let us also notice that some terms of the corresponding sums are canceled in

the above inequalities.

It is easy to verify that all three systems are feasible. For example, we can set

r = (r(i, (v0, v1)), r(i, (v1, vt)), r(i, (v0, v2)), r(i, (v2, vt)); r(i, (v1, v2)), r(i, (v2, v1))) to

(1, 4, 3, 1; 1, 1), (1, 1, 1, 1; 1,−2) and (1, 1, 1, 3; 1, 1) for i = 0, 1, and 2, respectively.

Remark 13 Let us unite two players 0 and 2 and replace them by the single player 2

getting I = {1, 2}. It can be verified that the obtained two-person game structure is NS.

The corresponding normal 2 × 4 game form g contains five distinct outcomes (plays):

(v0, v1, vt) and (v0, v2, vt) appears twice each, (v0, v1, v2, v1) and (v0, v2, v1, v2) form the

same outcome c, finally, (v0, v1, v2, vt) and (v0, v2, v1, vt) form two separate outcomes.

It is easy to verify that the last two outcomes cannot simultaneously be the best responses

of the player 2, since the corresponding system of strict linear inequalities is infeasible.

It is interesting to notice that the criterion of NS of [45, 46] “a two-person game form
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is NS if and only if it is tight” does not seem to be applicable in this case. Indeed,

the considered game form is NS but not tight. The reason is, it is not a game form in

the sense of [45, 46], since the outcomes are now the plays and the total payoff being

additive cannot take any values, unlike [45, 46]; see [22, 30] for the definition and more

details. The above NS criterion might be extendable for such generalized two-person

game forms, yet, it should become the subject of a separate research.

A similar NE-free four-person game was constructed in [28]; see Figure 6 on page

223.

Let us notice that in both these NE-free examples n > 2 and there is a dicycle that

is negative for at least one player. Whether similar NE-free two-person examples (with

a positive or arbitrary local cost) exist is still an open problem.

2.2.2 Positive local costs

However, here we will show a computer-generated three-person NE-free game (G,D, u1, r)

with positive integer local costs r, thus, disproving the conjecture of [28].

Graph G = (V,E) is given in Figure 2.2; V = {u1, v1;u2, v2;u3, v3, t} is its ver-

tex set. For each i ∈ I = {1, 2, 3}, the two positions with the subscript i are con-

trolled by the player i. Let us note that this graph contains a unique dicycle C =

(v1, v3), (v3, v2), (v2, v1). The initial position is u1. The integer positive local costs

r(i, e) are also given in this figure.

The out-degrees of the vertices are 3, 2; 3, 2; 2, 2, respectively. Hence, players 1 and

2 have 3 × 2 = 6 strategies each, while 3 has only 2 × 2 = 4 strategies. The corre-

sponding normal game form and game in normal form are given by the Tables 2.2 and

2.3 respectively. Each of these two tables consists of 4 subtables of the size 6× 6 that

correspond to the four strategies of the 3d player, while the strategies of the players 1

and 2 correspond to the rows and columns of each subtable, respectively. The strategy

of a player i ∈ I = {1, 2, 3} that recommends the moves (ui, w′i) and (vi, w′′i ) is denoted

by w′i, w
′′
i for short, where w′i, w

′′
i is a pair of positions of V ; see Tables 2.2 and 2.3.

In Table 2.2 each entry is a play, while in Table 2.3 it is the the triplet that defines
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Figure 2.2: A NE-free three-person game with positive integer local costs

the effective total costs of players 1, 2, and 3. In these tables all cyclic plays, as well as

the corresponding total effective costs, (∞,∞,∞), are replaced by the word “cycle”.

In Table 2.3, all minima in each column are given in bold. Hence, by the definition, a

NE would be an entry in which all three numbers are bold. Since there exists no such

entry, the considered game is NE-free.

2.3 Mean effective costs

Given an infinite play with the sequence of local costs r = (r1, r2, . . . , ) the mean

effective cost is defined as the Cesaro average RM = 1
k limk→∞

∑k
j=1 rj .

In general, the limit may fail to exist but it surely exists when the considered play is

a lasso L. In this case, the sequence r is pseudo-periodical r = (r′1, . . . , r
′
a(r
′′
1 , . . . , r

′′
b )∞)

(meaning that the second part, (r′′1 , . . . , r
′′
b ), is repeated infinitely) and RM = 1

b

∑b
j=1 r

′′
j .

A saddle point (NE, in pure stationary strategies) exists in every two-person zero-

sum mean effective cost game [43, 36, 60, 61, 37, 50]; see Introduction for more details.

However, this claim cannot be extended to the two-person but not necessarily zero-

sum games. The following BW non-zero-sum game was constructed in [46, 50]; see
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Figure 2.3: A NE-free two-person non-zero-sum mean effective cost game

Figure 2.3. It is defined on the complete bipartite 3 × 3 digraph G = (V,E), that is,

White and Black have three positions each and there is a move from every White to

each Black position and vice versa. Every double-arrowed arcs in Figure 2.3 should be

replaced by a pair of oppositely directed arcs on which the local costs of each player

are equal.

Remark 14 Such symmetric zero-sum BW games on complete bipartite digraphs were

interpreted by Moulin as ergodic extensions of matrix games [60, 61]. Since the consid-

ered game is not zero-sum, it can be viewed as the ergodic extension of the next bimatrix

game.

0 0 1 1 0 0

ε 0 0 0 1 0

0 ε 0 1− ε 0 1

In [48], it was shown that the above example is minimal, since any BW game on

a complete bipartite 2 × k digraph has a NE. The proof is based on the criterion of

[45, 46].

The obtained game is NE-free for any sufficiently small positive ε, say, ε = 0.1.
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Figure 2.4: A saddle point free zero-sum game with the additive (“pseudo-mean”) cost
function

One could also try to “simplify” the formula RM = 1
b

∑b
j=1 r

′′
j for the mean effective

cost of a lasso replacing it by R′M =
∑b

j=1 r
′′
j , that is, considering the additive rather

than mean effective cost. However, then NS fails already for the two-person zero-sum

games. The example is given in Figure 2.3. It represents the ergodic extension of the

2× 3 matrix game

3 1 −2

−2 1 3

Again, each double-arrowed edge should be replaced by two oppositely directed

arcs. White controls 2 positions and has 32 = 9 strategies; Black controls 3 positions

and has 23 = 8 strategies; the corresponding 9 × 8 game form and the matrix game

are given by Table 2.4. It is easily seen that this game has no saddle point, since

2 = max min < min max = 3. Thus NS fails already in the two-person zero-sum case.

Remark 15 In fact, the averaged cost function R(i, L) = |C|−1
∑

e∈C r(i, e) is in many

respects “nicer” than R′(i, L) =
∑

e∈C r(i, e). For example, the latter is NP-hard to

maximize even for positive local costs, r(i, e) > 0, for all e ∈ E and a given i ∈ I, since

this problem generalizes the classic Hamiltonian cycle [42]. In contrast, maximizing
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u2 u1 u2 u1 u2 u1 u2 u1 u2 v1 u2 v1 u2 v1 u2 v1
v2 u1 v2 u1 v2 v1 v2 v1 v2 u1 v2 u1 v2 v1 v2 v1
w2 u1 w2 v1 w2 u1 w2 v1 w2 u1 w2 v1 w2 u1 w2 v1

u1 u2 u1u2u1 u1u2u1 u1u2u1 u1u2u1 u1u2v1u2 u1u2v1u2 u1u2v1u2 u1u2v1u2

v1 u2 6 6 6 6 −4 −4 −4 −4
u1 u2 u1u2u1 u1u2u1 u1u2u1 u1u2u1 u1u2v1v2u1 u1u2v1v2u1 u1u2v1v2v1 u1u2v1v2v1
v1 v2 6 6 6 6 3 3 2 2
u1 u2 u1u2u1 u1u2u1 u1u2u1 u1u2u1 u1u2v1w2u1 u1u2v1w2v1 u1u2v1w2u1 u1u2v1w2v1
v1w2 6 6 6 6 2 6 2 6
u1 v2 u1v2u1 u1v2u1 u1v2v1u2u1 u1v2v1u2u1 u1v2u1 u1v2u1 u1v2v1u2v1 u1v2v1u2v1
v1 u2 2 2 3 3 2 2 −4 −4
u1 v2 u1v2u1 u1v2u1 u1v2v1v2 u1v2v1v2 u1v2u1 u1v2u1 u1v2v1v2 u1v2v1v2
v1 v2 2 2 2 2 2 2 2 2
u1 v2 u1v2u1 u1v2u1 u1v2v1w2u1 u1v2v1w2v1 u1v2u1 u1v2u1 u1v2v1w2u1 u1v2v1w2v1
v1w2 2 2 3 6 2 2 3 6
u1w2 u1w2u1 u1w2v1u2u1 u1w2u1 u1w2v1u2u1 u1w2u1 u1w2v1u2v1 u1w2u1 u1w2v1u2v1
v1 u2 −4 2 −4 2 −4 −4 −4 −4
u1w2 u1w2u1 u1w2v1v2u1 u1w2u1 u1w2v1v2v1 u1w2u1 u1w2v1v2u1 u1w2u1 u1w2v1v2v1
v1 v2 −4 3 −4 2 −4 3 −4 2
u1w2 u1w2u1 u1w2v1w2 u1w2u1 u1w2v1w2 u1w2u1 u1w2v1w2 u1w2u1 u1w2v1w2

v1w2 −4 6 −4 6 −4 6 −4 6

Table 2.4: The corresponding normal form; 2 = max
col

min
row

< min
row

max
col

= 3

and minimizing R(i, L) can be easily reduced to LP; In [54], Karp suggested even more

efficient procedures.

2.4 Total effective costs

2.4.1 Definitions

Given an infinite play with the sequence of local costs r = (r1, r2, . . . , ) the total effective

cost is defined as the Cesaro average of the sums r1, r1 +r2, r1 +r2 +r3, . . . , rather than

of the local costs r1, r2, r3, . . ., in other words,

RT = limk→∞
∑k

j=1
k−j+1
k rj ; cf. to RM = limk→∞

1
k

∑k
j=1 rj .

The limit may fail to exist in general but, as we already mentioned, for a lasso L

sequence r is pseudo-periodical, r = (r′1, . . . , r
′
a(r
′′
1 , . . . , r

′′
b )∞). In this case the limit

exists and

RT =
a∑
j=1

r′j +
b∑

j=1

b− j
b

r′′j . (2.1)

In particular, when the play is terminal, the corresponding lasso L ends with the

zero-loop `v for some v ∈ VT ; in this case b = 1, r = (r′1, . . . , r
′
a(0)∞) = (r′1, . . . , r

′
a, 0, 0, 0, . . .),

and RT = r′1 + . . .+ r′a =
∑a

j=1 r
′
j is just the total cost of the terminal path P of L.
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Figure 2.5: A saddle point free zero-sum game with a “pseudo-total” cost function

The same formula holds for any play L that ends in a cycle C in which all local

costs are zeros; the terminal zero-loop `v is just a special case. It is also clear that

RT (L) =∞ (respectively, −∞) when the corresponding cycle C is positive,
∑b

j=1 r
′′
j > 0

(respectively, negative). Yet, when C is a zero but not identically zero dicycle RT is

defined by (2.1).

For example, the total cost function looks relevant to describe the accumulation of

pension contributions. Summation r1 + (r1 + r2) + . . .+ (r1 + r2 + . . .+ rt) + . . . reflects

the fact that the contribution ri works beginning with the year i. The corresponding

play ends with a zero-loop at the year when the individual is retired.

Applications to shortest paths interdiction problems are considered in Section 2.4.4.

2.4.2 A saddle point free game with a pseudo-total costs

In this case, one could try to “simplify” (2.1) replacing it by R′T =
∑a

j=1 r
′
j , since∑b

j=1 r
′′
j = 0. In other words, if a lasso L ends in a cycle C such that

∑
e∈C r(i, e) = 0

for all i ∈ I, it seems logical to define R′T (i, L) =
∑

e∈L r(i, e) =
∑

e∈P r(i, e).

However, the following example shows that already a two-person zero-sum game

with such a pseudo-total cost function may have no saddle points. Such a game is given

in Figure 2.5 and Table 2.5 in the positional and normal forms respectively. It is easy

to verify that the game has no saddle points, since 0 = max min < min max = 1.

In contrast, any two-person zero-sum game with the total cost function defined by

(2.1) has a saddle point. First, it was proven in 1998 by Tijsman and Vreze [69]; see

also [68].
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2 2′ 2 2′ 2 t 2 t
2′ 2 2′ t 2′ 2 2′ t

1 2 122′2 122′t 12t 12t
1 1 0 0

1 2′ 12′22′ 12′t 12′2t 12′t
0 2 1 2

Table 2.5: The corresponding normal form; 0 = max
col

min
row

< min
row

max
col

= 1

An alternative proof that is based on the well-known approach of the so-called dis-

counted approximation was recently suggested in [26, 27].

2.4.3 Embedding the mean cost games into the total cost ones

Given an infinite play with the sequence of local costs r = (r1, r2, . . . , ) let us replace

each local cost rj by the pair rj ,−rj getting the sequence r′ = (r1,−r1, r2,−r2, . . . , ).

The partial total sums for the latter are r1, 0, r2, 0, . . .. Thus, 2R′T = RM .

Similarly, given an arbitrary mean payoff game Γ = (G,D, v0, r), let subdivide every

arc e ∈ E into e′ and e′′ and set r′(i, e′) = r(i, e), r′(i, e′′) = −r(i, e) for all e ∈ E and

i ∈ I. Let us notice that in the obtained game Γ′ = (G′, D′, v0, r′) contains only zero-

dicycles, r(i, C) =
∑

e∈C r(i, e) = 0 for all i ∈ I and C in G′. By the above arguments

the total effective cost game Γ′ and the mean effective cost game Γ are equivalent.

Thus, the mean cost games are embedded into the total cost games that contain only

zero-dicycles.

Hence, the former (mean cost) games may be NE-free already for n = 2 (see example

of Section 2.3 in Figure 2.3), we conclude that the two-person total cost game with

only zero-dicycles may have no NE in pure stationary strategies. Yet, as we know, NS

becomes an open problem if r(i, C) 6= 0 (or even if r(i, C) > 0) for all i ∈ I = {1, 2}

and C in G′.

2.4.4 Total cost games and the shortest path interdiction problem

The two-person zero-sum total cost games are closely related to the so-called shortest

path interdiction problem (SPIP) raised by Fulkerson and Harding [40]; see also a short

survey by Israely and Wood [52] for more references. The simplest version of SPIP is
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as follows:

Given a digraph G = (V,E), with weighted arcs r : E → IR, and two vertices

s, t ∈ V , eliminate (at most) k arcs of E to maximize the length of a shortest (s, t)-path.

This problem is NP-hard; moreover the inapproximability bound 10
√

5−21 ≈ 1.36 was

derived in [21] (from the same bound for the Minimum Vertex Cover Problem in graphs

obtained by Dinur and Safra [34] and improving the previous bound 7/6 ≈ 1.17 given

by H̊astad [51]).

Unlike the above total budget SPIP, the following node-wise budget SPIP is more

tractable. In this case, we are given a node-wise budget allowing to eliminate (at most)

k(v) outgoing arcs from each node v ∈ V .

The case of non-negative weights (local costs) was considered in [56], where an

efficient interdiction algorithm was obtained. Given a digraph G = (V,E), a local cost

function r : E → IR+, constraint k(v) in each node v ∈ V , and an initial node s, this

algorithm finds in quadratic time an interdiction that maximizes simultaneously the

lengths of all shortest paths from s to every node v ∈ V . The execution time is just

slightly larger than for the classic Dijkstra shortest path algorithm.

Let us remark that after elimination of the interdicted arcs a dicycle C might be

reachable from s. The algorithm of [56] maximizes the total effective cost among all

lassos, including the terminal ones, which ends in the artificially added a zero-loop

`v, v ∈ VT .

In case of arbitrary real local costs the SPIP is equivalent (see [56]) with solving the

zero-sum mean payoff BW-games. Although the latter problem is known to be in the

intersection of NP and co-NP [55], yet, it is not known to be polynomial.

It is also worth noting that the BW mean cost games are a special case of the node-

wise interdiction problem corresponding to k(v) = 0 for v ∈ VB and k(v) = outdeg(v)−1

for v ∈ VW . Indeed, White, the maximizer, is entitled to choose any move in a position

v ∈ VW and cannot restrict the choice of Black in any v ∈ VB.

This Chapter was published (see the first work in Vita / Publications).
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