
ACCELERATING POPULATION BALANCE MODEL -
BASED PARTICULATE PROCESS SIMULATIONS VIA

PARALLEL COMPUTING

BY ANUJ VARGHESE PRAKASH

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Chemical and Biochemical Engineering

Written under the direction of

Dr. Rohit Ramachandran

and approved by

New Brunswick, New Jersey

January, 2013

ABSTRACT OF THE THESIS

Accelerating Population Balance Model - based

particulate process simulations via parallel computing

by Anuj Varghese Prakash

Thesis Director: Dr. Rohit Ramachandran

The use of Population Balance Models (PBM) for simulating dynamics of particulate

systems are inevitably limited at some point by the demands they place on computa-

tional resources. PBMs are widely used to describe the time evolutions and distributions

of many industrial particulate processes, and its efficient and quick simulation would

certainly be beneficial for process design, control and optimization. This thesis is an

elucidation of how MATLAB’s Parallel Computing Toolbox (PCT), a third-party tool-

box called JACKET, and the MATLAB Distributed Computing Server (MDCS) may

be combined with algorithmic modification of the PBM to speed up these computations

on a CPU (Central Processing Unit), GPU (Graphics Processing Unit) and a computer

cluster respectively. Parallel algorithms were developed for three dimensional and four

dimensional population balance models incorporating hardware class-specific parallel

constructs such as SPMD and gfor. Results indicate significant reduction in computa-

tional time without compromising numerical accuracy for all cases except for the GPU.

The GPU seemed promising for larger problems despite its limitations of lower clock

speeds and on-board memory compared to the CPU. Evaluations of the speedup and

scalability further affirm the algorithms’ performance.

ii

Acknowledgements

To try and thank everyone who made my life and work here at Rutgers - this thesis

being its culmination - a memorable one, is decidedly daunting. Nevertheless, I will

try to try. Foremost, my advisor, Dr. Rohit Ramachandran, for his encouragement

and invaluable suggestions which have guided me since day one of this endeavour, and

also other members of my thesis committee: Dr. Preetanshu Pandey, Prof. Marianthi

Ierapetritou and Prof. Meenakshi Dutt. My sincere gratitude to PhD students Anwesha

Chaudhury, Dana Barrosso and Maitraye Sen for the insightful discussions, instrumental

in giving shape to my thoughts and ideas. Special thanks to Dr. Atul Dubey for

introducing me to the esoteric art of PC building and graciously allowing me to sit in

his impressive office. To Tom McHugh, Mathworks, for providing and extending the

MDCS license without which this work would remain incomplete. Lastly, the people

who made my stay at Rutgers a wonderful one - my fellow group members, room-mates

and dear friends in and out of the CBE family - thank you for the memories, I am truly

indebted.

iii

Dedication

“Whom have I in heaven but thee? and there is none upon earth that I

desire beside thee. My flesh and my heart faileth: but God is the strength of

my heart, and my portion for ever.”

- Psalms 73:25,26

This work is dedicated to my Lord and Savior, Jesus Christ, for giving meaning to

my life; and, of course, to my wonderful, one-of-a-kind family.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Figures . vii

1. Introduction . 1

1.1. Overview . 4

2. Population Balance Modeling . 5

2.1. Developing a 3 dimensional PB framework 5

2.1.1. Aggregation . 7

2.1.2. Breakage . 8

2.2. A four dimensional model for multicomponent granulation 8

2.2.1. Aggregation . 9

2.2.2. Breakage . 10

2.2.3. Consolidation . 11

2.2.4. Drying/Rewetting . 12

3. Parallel, distributed and GPU computing 13

3.1. Multi-core CPU computing with the Parallel Computing Toolbox 14

3.2. Distributed computing with PCT + MDCS 16

3.3. GPU Architecture and parallel programming 18

4. Model development and parallel programming 21

v

4.1. Building the multi-dimensional granulation model and its numerical so-

lution . 21

4.1.1. The cell average method . 22

4.1.2. Numerical solution of the PB model 23

4.2. Programming strategy for parallel implementation 26

4.2.1. Prioritizing . 26

4.2.2. Choosing a parallel programming paradigm 28

4.2.3. Parallel execution procedure and code optimization 31

5. Case studies: Results and discussion . 33

5.1. Comparing CPU-for, GPU-for and GPU-gfor execution 33

5.2. Comparing single CPU to SPMD execution 39

5.3. Speeding up a PBM code integrating more mechanisms 45

5.4. Distributed execution of a 3-D PBM code with breakage and cell averaging 49

5.5. Distributed execution of 4-D PBM code with breakage and cell averaging 55

6. Conclusions and recommendations for future work 64

Bibliography . 67

Vita . 74

vi

List of Figures

3.1. Schematic representation of the contrast between typical CPU and GPU hard-

ware architectures . 19

(a). CPU architecture . 19

(b). GPU architecture . 19

4.1. Flowchart depicting key steps in parallel programming 27

4.2. Algorithm for distributed execution describing the loop-slicing technique in con-

junction with the SPMD keyword. 31

5.1. Piechart representation of MATLAB’s profiler results for a serial version of the

3-D granulation code with only aggregation, run on a single worker. 34

5.2. Comparison of temporal evolution of granule physical properties simulated using

gfor, GPU-for and CPU-for . 37

(a). Evolution of total number distribution of particles over time 37

(b). Evolution of total volume of particles over time 37

(c). Evolution of average diameter of a particle over time 37

5.3. Comparison of simulation times and performance ratios of PBM code incorpo-

rating gfor, GPU-for and CPU-for . 38

(a). Semi-log plot comparing simulation times of gfor, GPU for and CPU

for versions . 38

(b). Speedup ratio of gfor over CPU for version 38

(c). Speedup ratio of gfor over GPU for version 38

5.4. Piechart representation of MATLAB’s profiler results for the streamlined ver-

sion of the 3-D granulation code with only aggregation, run on a single worker. 40

5.5. Comparison of temporal evolution of granule physical properties simulated for

different worker pool classes,grid size=36 . 43

vii

(a). Evolution of total number distribution of particles over time 43

(b). Evolution of total volume of particles over time 43

(c). Evolution of average diameter of a particle over time 43

5.6. Plots of simulation times and obtained speedup of the PB code incorporating

the SPMD construct . 44

(a). Comparison of simulation times with increase in grid size for different

worker pool classes . 44

(b). Speedup and efficiency obtained for a grid size of 36 44

(c). Speedup and efficiency obtained for a grid size of 60 44

5.7. Piechart representation of MATLAB’s profiler results for the 3-D granulation

code with aggregation, consolidation, and liquid drying/rewetting run on a sin-

gle lab. 46

5.8. Comparison of temporal evolution of granule physical properties for a sequential

and parallel PBM code including consolidation and drying/rewetting, Grid size=15 47

(a). Evolution of total number distribution of particles over time 47

(b). Evolution of total volume of particles over time 47

(c). Evolution of average diameter of a particle over time 47

5.9. Comparison of simulation times for a sequential and parallel PBM code 48

(a). Plot comparing variation in simulation times of SPMD and single lab

version with increasing grid size . 48

(b). Semi-log plot comparing simulation times of SPMD and single worker

version with increasing grid size highlighting positive speedup after a

grid size of 6 . 48

5.10. Piechart representation of MATLAB’s profiler results for a serial version of the

3D granulation population balance code run on a single worker. 50

5.11. Comparison of temporal evolution of particle physical properties for a sequential

and parallel PBM code will cell average, Grid size=15 51

(a). Particle average diameter vs time 51

(b). Number frequency vs particle size 51

viii

(c). Particle porosity vs particle size . 51

(d). Total volume of particles vs time . 51

5.12. Comparision of speedup using a 8 threads on a single CPU, 8 cores on 2 nodes,

and maximum speedup as predicted by Amdahl’s law. The dashed line repre-

sents the theoretical upper bound for speedup and is equal to the number of

available workers. 55

5.13. Piechart representation of MATLAB’s profiler results for a serial version of the

4D granulation population balance code run on a single worker. 56

5.14. Comparison of temporal evolution of particle physical properties for a 4-D se-

quential and parallel PBM code will cell average, Grid size=15 57

(a). Evolution of average diameter of a particle over time 57

(b). Average composition distribution of solid component 1 (s1) 57

(c). Evolution of total volume of particles over time 57

(d). Average porosity distribution of a particle 57

5.15. Comparision of speedup with 8 workers on 2 nodes, and maximum speedup as

predicted by Amdahl’s law. The dashed line represents the theoretical upper

bound for speedup and is equal to the number of available workers. 59

5.16. Comparison of overhead curves for 3-D and 4-D distributed PBM code with cell

averaging . 61

(a). Variation of overhead ratio with processor efficiency as the number of

workers are increased for the 3-D population balance simulation 61

(b). Variation of overhead ratio with processor efficiency as the number of

workers are increased for the 4-D population balance simulation 61

ix

1

Chapter 1

Introduction

In the domain of particulate processes, computer aided modeling and simulation now

form an indispensable part of research and development activities within industry and

academia. It accelerates process development and design, enables equipment sizing

and rating, and finally, facilitates process control and optimization.1 This is due in

no small part to significant leaps made in computer hardware architecture over the

last few decades leading to the rise of faster and more efficient CPUs with each new

generation. With CPU clock speeds gradually reaching their theoretical limits,2 pro-

cessor manufacturers are now resorting to the addition of more cores and incorporation

of multi-threading in their CPUs. From a programmer’s point of view, this entails

rewriting sequential code to distribute data and/or tasks to be evaluated separately on

different processing units, a practice known as parallel or concurrent programming.3

Commonly termed ‘parallelization’, it involves the breaking down of a single given

problem into simpler sub-problems that may be solved by utilizing multiple processing

units working concurrently. If factors such as communication between processors, load

balancing and data dependency have been accounted for, parallelization yields con-

siderable reduction in application run time. Owing to the discrete nature of granular

materials, parallel programming lends itself well to the modeling of particulate processes

such as crystallization, granulation, milling and polymerization. These unit operations

are fundamental to the manufacture of bulk commercial products like pharmaceuti-

cals, detergents, fertilizers, and polymers. Progress in research on particulate dynamics

has been rising steadily over the last few decades45,6 notwithstanding the fact that

these systems are inherently dynamic in behavior, making them unpredictable, driven

by complex micro-scale phenomena.7 Granulation is one such particle design process

2

where significant advances have been made in modeling and simulation.8 Approaches

for modeling such systems are as numerous as they are varied: Discrete Element Mod-

eling (DEM),9 population balance modeling (PBM),10,11,6, 12,13,14,15 hybrid models by

combining PBM with DEM,16 PBM with Volume of Fluid (VoF) methods,17 PBM with

computational fluid dynamics (CFD),18 to name a few. PBMs are more suited to sim-

ulate large numbers of particles over extensive time periods due to its semi-mechanistic

approach (compared to the relatively more mechanistic approaches of DEM and VoF).19

It provides a convenient mathematical framework whereby the level of model detail is

user specified, depending on the kernel formulations incorporated.10 Thus, PBM offers

a highly efficient way of developing a comprehensive model for simulation, control and

optimization of the granulation process.20

However, PBM is limited by the computational expenses it incurs in terms of run

time and hardware resources. Depending on the complexity of physical phenomena

modeled into the system, simulations can take anywhere from a few hours to days to

reach completion. This is exacerbated by the fact that computational load increases

almost exponentially on increasing dimensionality of the system, leading to longer run

times, even in a high-level language environment like MATLAB. MATLAB is one of the

preferred languages of development for scientific computing due to the ease with which

algorithms can be developed and prototyped, which in turn, is enabled by its array-

based semantics, powerful visualization capabilities and subject-specific toolboxes, all

encased in an integrated framework 21 . While MATLAB excels on the ‘ease of pro-

grammability’ and ‘portability’ fronts, it has been found to be lacking in the ‘perfor-

mance’ department 22 . This is partly due to the abnormally high memory requirements

of modern scientific applications, and partly due to the fact that MATLAB itself con-

sumes a sizable portion of the system memory. In addition, a MATLAB code for a

process such as granulation typically has several nested for-loops and multiple opera-

tions over large data sets that execute ‘serially’ or ‘sequentially’ by default, drastically

bringing down the rate of simulation. Further discussion of observed execution bot-

tlenecks in a PBM code can be found in the next section. Although researchers are

3

continuously upgrading their hardware to include the latest CPUs and higher amounts

of RAM (Random access memory) in an attempt to improve calculation efficiencies,

most of them do not develop codes that fully leverage the parallel processing capabili-

ties of the current generation of multi-core / multi-processor CPUs. Furthermore, due

to limitations on the power density that can be supplied, peak CPU clock frequency

attainable is restricted (6 GHz for an Intel Core i5 processor23).

By parallelizing the simulation, a programmer is able to circumvent the restric-

tion of having to run code sequentially on one core, and thus harness the power of

multiple processors within the same machine (parallel) or even a cluster of machines

(distributed), saving computational time. MATLAB is a widely used, high-level lan-

guage within the scientific computing community, and therefore this work will describe

code development based on toolboxes (function libraries) supported by it. For parallel

programming, two toolboxes are pertinent: the Parallel Computing Toolbox (PCT)

and MATLAB Distributed Computing Server (MDCS). Specifics on each toolbox can

be found in the next section. In addition to multi-core CPUs, parallelism may be

achieved on many-core devices such as the GPU (Graphics Processing Unit) and the

Intel Xeon Phi coprocessor. For the purpose of GPU computation, the toolbox from

Accelereyes inc. named JACKET was chosen as it clearly outperforms MATLAB’s

built-in capabilities.24 There has been some recent work on the parallelization of PBM

simulations prior to this study. Gunawan et al (2008)25 formulated an efficient way of

parallelizing High Resolution Finite Volume (HRFV)-solved PBEs (Population Balance

Equations) by assigning the operations on particles in the first half of the size range

that were more computationally intensive to processors of greater rank, and operations

on the other size range half of decreasing load intensity to higher ranked processors.

Their strategy enabled efficient load distribution and resulted in near linear speedup.

More recently, Ganesan and Tobiska (2011)26 built upon this work by developing a

finite element approach of splitting the PBE dimensionally into spatial and internal

coordinates, permitting the problem to be parallelized easily without the need for load

balancing.

4

1.1 Overview

This work aims at developing proper coding techniques to enable parallel and dis-

tributed execution on CPUs, GPUs and extend them to clusters with the aid of the

PCT, JACKET and MDCS toolboxes respectively. A combination of both data and

task parallel styles of programming was followed with regard to individual CPUs and

GPUs, while a distributed shared memory approach was chosen for execution on a clus-

ter without the need for load balancing or explicit inter-processor communication. To

illustrate the applicability of these techniques, several multi-dimensional PB models of

granulation were developed and parallelized to run across each class of hardware. This

thesis consists of 6 chapters:

1. ‘Introduction’ provides an overview of parallel computing with its proposed speedup

benefits for population balance model-based simulations. In addition, information

on previous work done in the field is also outlined.

2. ‘Population Balance Modeling’ introduces and explains the fundamentals of pop-

ulation balance modeling, specifically in the context of powder granulation.

3. ‘Parallel, distributed and GPU computing’ details the various ways of incorpo-

rating parallelism based on the problem/hardware combination at hand.

4. ‘Model development and parallel programming strategy’ lays down the general

framework for parallelization, followed a detailed procedure of model development

pertinent to each hardware class.

5. ‘Case studies: Results and discussion’ focuses on execution the parallelized gran-

ulation models from the previous section on a multi-core CPU, a GPU and a

distributed system of two multi-core machines. This is followed by a statistical

analysis of achieved speedup and evaluation of other performance metrics.

6. A summary of this entire work, and a discussion on possible directions to further

research in this area are proposed in the final chapter titled ‘Conclusions and

recommendations for future work’.

5

Chapter 2

Population Balance Modeling

A general form of the population balance equation (2.1) highlighting the temporal

variation of the distribution of one or more intrinsic properties is given below :27

∂F

∂t
(x, t) +

∂

∂x

[
F (x, t)

dx

dt

]
= ℜformation(x, t)−ℜdepletion(x, t) (2.1)

where, F is the particle number distribution and x is the vector of internal coordinates

used to define the process. ℜformation and ℜdepletion represent the net formation and

depletion rates of particles occurring from all discrete granulation mechanisms such as

aggregation, nucleation and breakage. By convention, PBMs have been described by a

single intrinsic property such as particle size.28

2.1 Developing a 3 dimensional PB framework

Dependence on solely particle size was found to be inadequate in characterizing variabil-

ity inherent to the granulation process, and soon thereafter other factors began to find

their way into descriptions of PBMs.29,30 In addition to granule size, binder content

and granule porosity are typically selected as decisive factors in optimizing and con-

trolling the process, as evidenced in current research on granulation.13 Verkoeijen et al

31 had previously described an efficient way of implementing such a multi-dimensional

framework by expressing the intrinsic properties of granules – i.e. the volume of solids

s, volume of liquid l, and volume of gas g – as a vector in volume space with three

coordinates i.e. s, l and g. Particle internal coordinates (Equation (2.2)) are now

represented as:

x =
[
s l g

]
(2.2)

6

where each of these three co-ordinates (s, l, g) comprises unique distributions of phase

volume fractions (solid, liquid or gas) of particles belonging to a pre-defined volume

class, and can therefore be represented as three separate discretized domains or ‘grids’,

containing the distributions. These grids are composed of ‘bins’ that represent the

volume classes for each phase that constitutes a particle in the population. For instance,

the first bin in the solid volume grid represents the particles that have the least solid

volume, the next bin contains a fraction of particles with higher solid content and so on.

This way, the individual solid volumes of the particles can be represented by allocating

them in the corresponding bins. The same principle applies to the other two phase

fraction grids, liquid(l) and gas(g). In this document, the term ‘Grid size’ will be

used to refer to the total number of bins in a grid. This discretized approach has two

important benefits: (a) it enables decoupling of individual mesoscopic processes like

aggregation, consolidation and layering; (b) it improves the numerical solution of the

aggregation model due to the mutually exclusive nature of the internal coordinates.10

Such a 3-D model can now describe changes in the volume distribution of particle

volume with respect to time,6 as shown below:

∂

∂t
F (s, l, g, t) +

∂

∂g

[
F (s, l, g, t)

dg

dt

]
+

∂

∂s

[
F (s, l, g, t)

ds

dt

]
+

∂

∂l

[
F (s, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage + ℜnucleation (2.3)

where F (s, l, g, t) represents the population density function with F (s, l, g, t)dsdldg re-

ferring to the moles of granules with solid volume between s and s+ds, liquid volume

between l and l+dl and gas volume between g and g+dg. The partial derivative term

with respect to s accounts for the layering of fines onto the granule surfaces; the term

with respect to l accounts for the drying of the binder and the re-wetting of granules;

the term with respect to g accounts for consolidation which, due to compaction of the

granules, results in a continuous decrease in pore volume and an increase in pore satura-

tion. The terms on the right hand side of the above equation refers to the source terms,

namely, aggregation (ℜaggregation), breakage (ℜbreakage) and nucleation (ℜnucleation). In

the current work, nucleation is not considered to be a significant factor and will be

7

dropped while building the population balance model.

2.1.1 Aggregation

The ℜaggregation terms (Equations 2.4,2.5,2.6) takes into account the formation/depletion

of granules due to aggregation, for which the terms have been defined in literature32 as:

ℜagg(s, l, g, t) = ℜformation
agg −ℜdepletion

agg , (2.4)

ℜformation
agg =

1

2

∫ s−snuc

snuc

∫ lmax

0

∫ gmax

0
β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)F (s′, s− s′, l′, l − l′, g′, g − g′, t)ds′dl′dg′ (2.5)

ℜdepletion
agg = F (s, l, g, t)

∫ s−snuc

snuc

∫ lmax

0

∫ gmax

0
β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)ds′dl′dg′ (2.6)

where, snuc is the solid volume of nuclei, β(s′, s − s′, l′, l − l′, g′, g − g′) is the size-

dependent aggregation kernel that signifies the rate constant for aggregation of two

granules of internal coordinates (s′, l′, g′) and (s − s′, l − l′, g − g′). Although many

aggregation kernels can be found in the literature,33,34,35 we have implemented in our

model, the empirical kernel proposed by Madec et al36 :

β = β0(V + V ′)

(
(LC + LC ′)α

(
100− LC + LC ′

2

)δ
)α

, (2.7)

where

LC (Liquid binder Content) =
volume of liquid

volume of agglomerate
× 100. (2.8)

and V1 and V2 represent the particle volume of the two particles aggregating. β0, α,

and δ are adjustable parameters, whose values can be found in Table 5.4.

8

2.1.2 Breakage

The ℜbreakage term in the RHS comprises a breakage kernel and a breakage function.

The phenomenon itself involves the disintegration of a larger particle into two or more

smaller fragments and is mainly governed by attrition and impact. Considering this,

the breakage term can then be divided into its corresponding birth and death terms as:

ℜbreak(s, l, g) = ℜform
break −ℜdep

break, (2.9)

such that the birth and death terms can be explained using equations (2.10) and (2.11)

ℜform
break =

∫ smax

0

∫ lmax

0

∫ gmax

0
Kbreak(s, l, g)b(s

′, s−s′, l′, l−l′, g′, g−g′)×F (s′, l′, g′, t)ds′dl′dg′

(2.10)

ℜdep
break = Kbreak(s, l, g)F (s, l, g, t). (2.11)

The breakage function, b(s′, s−s′, l′, l−l′, g′, g−g′) in Equation (2.10) has been obtained

from literature.37 Since one particle breaks down to form two smaller particles, there

is an overall increase in the number of particles. Kernels for breakage can readily be

found in the literature.38,6 In this work we have used a previously proposed kernel39

to address breakage. For specifics regarding the consolidation and re-wetting terms the

reader is directed to subsections 2.2.3 and 2.2.4 respectively.

2.2 A four dimensional model for multicomponent granulation

In a pharmaceutical granulation process, the active pharmaceutical ingredient (API) is

typically granulated with one or more excipients .40 Modeling such a multicomponent

granulation process would require the introduction of a second solid component, causing

granule composition to become a dominant characteristic. Several attempts have been

made in recent years to understand and subsequently model such a process.40,41,42 With

addition of more components, inhomogeneity in granule composition becomes a serious

issue as it can reduce the uniformity in the final dosage form.30,40 For this reason,

a model that assumes homogeneous composition is inadequate. A fourth dimension

9

must be added to the 3-D population balance model to completely account for granule

composition.30 For each additional solid component used, a new dimension must be

added to the population balance model. This inevitably increases computational burden

during simulation leading to even longer run times, which further stresses the need for

parallelization. For the final case study, a four dimensional model has been parallelized

to run across eight cores on two machines. The 4-D population balance was developed

by modifying Equation 2.3:

∂

∂t
F (s1, s2, l, g, t) +

∂

∂g

[
F (s1, s2, l, g, t)

dg

dt

]
+

∂

∂s

[
F (s1, s2, l, g, t)

ds

dt

]
+

∂

∂l

[
F (s1, s2, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage + ℜnucleation (2.12)

where s1 and s2 represent the volumes of the two solid components in each granule.

2.2.1 Aggregation

The aggregation kernel is also modified as shown below:

ℜagg(s1, s2, l, g, t) = ℜform
agg (s1, s2, l, g, t)−ℜdep

agg(s1, s2, l, g, t) (2.13)

ℜform
agg (s1, s2, l, g, t) =

1

2

s1∫
0

s2∫
0

l∫
0

g∫
0

β(s1−s′1, s2−s′2, l−l′, g−g′, s′1, s
′
2, l

′, g′)

×F (s1−s′1, s2−s′2, l−l′, g−g′, t)F (s′1, s
′
2, l

′, g′, t) dg′ dl′ ds′2 ds
′
1 (2.14)

ℜdep
agg(s1, s2, l, g, t) = F (s1, s2, l, g, t)

×
∞∫
0

∞∫
0

∞∫
0

∞∫
0

β(s1, s2, l, g, s
′
1, s

′
2, l

′, g′)F (s′1, s
′
2, l

′, g′, t) dg dl ds2 ds1 (2.15)

10

For aggregation, the kernel proposed by Madec et al.36 was incorporated as it accounts

for liquid binder content and granule size, both of which affect aggregation rate:

β(s1, s2, l, g, s
′
1, s

′
2, l

′, g′) = β0(V + V ′)

(
(LC + LC ′)α

(
100− LC + LC ′

2

)δ
)α

(2.16)

where the two colliding particles are described by (s1, s2, l, g) and (s′1, s
′
2, l

′, g′). V and

LC represent the total volume and fractional liquid binder content of the particles,

given by Equations 2.17 and 2.18. β0, α, and δ are adjustable parameters, whose values

can be found in Table 5.5.

V (s1, s2, l, g) = s1 + s2 + l + g (2.17)

LC(s1, s2, l, g) =
l

s1 + s2 + l + g
× 100 (2.18)

2.2.2 Breakage

Breakage occurs when particles disintegrate into two or more fragments due to impact

and attrition. The breakage rate consists of the depletion of larger granules (ℜdep
break)

and the formation of smaller particles (ℜform
break), as shown in Equations 2.19-2.21.

ℜbreak(s1, s2, l, g, t) = ℜform
break(s1, s2, l, g, t)−ℜdep

break(s1, s2, l, g, t) (2.19)

ℜform
break(s1, s2, l, g, t) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

Kbreak(s
′
1, s

′
2, l

′, g′)b(s′1, s
′
2, l

′, g′, s1, s2, l, g)F (s′1, s
′
2, l

′, g′, t) dg′ dl′ ds′2 ds
′
1(2.20)

ℜdep
break(s1, s2, l, g, t) = Kbreak(s1, s2, l, g)F (s1, s2, l, g, t) (2.21)

The breakage kernel Kbreak(s
′
1, s

′
2, l

′, g′) describes the rate at which particles break, and

the probability distribution function b(s′1, s
′
2, l

′, g′, s1, s2, l, g) determines the properties

of the daughter particles. The fragments of a broken particle can vary in volume but

must be smaller than the parent particle. For the purposes of this study, a uniform

11

probability distribution was assumed for all possible daughter particle bins, represented

by

b(s′1, s
′
2, l

′, g′, s1, s2, l, g) =
1

(h− 1)(i− 1)(j − 1)(k − 1)
(2.22)

∀ (s1, s2, l, g) < (s′1, s
′
2, l

′, g′), where h, i, j, and k are the first and second solid com-

ponent, liquid, and gas bin numbers of the parent particles, respectively. According to

this distribution, a parent particle is equally likely to break into fragments that can be

described by each smaller bin. A semi-empirical breakage kernel was used in this study,

as given by

Kbreak(s1, s2, l, g) =
P1Gshear(D(s1, s2, l, g))

P2

2
, (2.23)

where G is the shear rate, D(s1, s2, l, g) is the particle diameter, and P1 and P2 are

adjustable parameters.39 The values for Gshear, P1 and P2 are included in Table 5.4.

2.2.3 Consolidation

Consolidation, a negative growth process representing the compacting of granules due

to the escape of air from the pores, has been modeled using an empirical expression

proposed by Verkoejin et al.31 It can be given as

dϵ

dt
= −c(ϵ− ϵmin), (2.24)

dg

dt
=

c(s+ l + g)(1− ϵmin)

s
× [l − ϵmins

1− ϵmin
+ g] (2.25)

where, the porosity ϵ for the 3-D case is

ϵ =
l + g

s+ l + g
(2.26)

Here ϵmin is the minimum porosity of the granules and c is the compaction rate con-

stant. The same equations can readily be extended for the 4-D case, by re-defining the

solid term, s, which will now be equal to the sum of individual solid fractions of each

12

component, s1 + s2.

2.2.4 Drying/Rewetting

Liquid binder is added to the granulating system to induce the formation of particle

aggregates. Drying/rewetting is associated with the change in the amount of liquid in

the granulation system due to addition of more liquid or removal due to evaporation.

The liquid rate can be obtained from mass balance as

dL

dt
=

ṁspray(1− cbinder)− ṁevap

msolid
, (2.27)

where,

msolid = msolidfraction + ṁspraycbinder∆t, (2.28)

In the equations above, ṁspray is the binder spray rate, cbinder is the concentration

of solid binder in the slurry added, ṁevap is the rate of liquid being evaporated (in

this work ṁevap = 0, for sake of simplicity), msolid fraction is the volume of solid for

the particles in each bin and L is the liquid content. Due to liquid addition, the

liquid content of each particle changes from xliquid to xliquid + δxliquid which cannot

be readily represented by the values of liquid volume on the grid. Thus, a fraction is

incorporated, which distributes the new volume of liquid contained in the particle into

the two adjacent grids, such that the liquid volume can be conserved. The fraction can

be written as

fraction(j) =
X − x(j)

x(j + 1)− x(j)
(2.29)

where, X = xliquid+ δxliquid, x(j) is the representative liquid volume in the jth grid and

x(j+1) is the representative liquid volume in the j + 1th grid.

13

Chapter 3

Parallel, distributed and GPU computing

Moores Law predicts that processing power of a CPU will double every 18 months,43a

law shown to be reliable only for the duration of the 1990s primarily due to ever-

increasing transistor counts per unit area with each new processor generation. By

2003, this aggressive rise in clock speed began to show signs of slowing down. To dou-

ble the clock speed, distance traversed by an electrical signal per clock cycle has to

be be cut by half, which in turn requires further reduction in size of transistors. To

achieve this, manufacturers would have to place billions of transistors in proximity to

each other on a single die. Such an arrangement will inevitably result in the generation

of excessive heat leading to significant power leakages.44 To overcome this, chip man-

ufacturers are now fabricating CPUs with more (albeit lower clocked) cores instead of

faster ones. A single processor can comprise many such cores, with each core capable of

executing an instruction set. Although a ‘core’ generally refers to the physical compo-

nent providing parallelism, it can also mean a thread (a piece of software), a processor

or even a machine (on a network) executing a stream of instructions depending on

the manufacturer/corporation.45 For instance, the Intel Core i7-2600K processor has

four physical cores, each with two threads raising the total number of (logical) cores

to eight.46 With an increased number of cores the burden falls on the programmer to

optimally parallelize the code to achieve maximum speedup. The fundamental concept

behind parallel programming involves splitting up a large problem into n smaller tasks

that can be handled by n cores/processors to provide a peak speedup of n times over just

one core/processor. However, attaining such gains in runtime performance are virtually

impossible, simply because the time needed for data transfer and synchronization to,

14

from and between cores eventually exceed any time savings from speedup.3 Depend-

ing on the hardware architecture of a parallel computer, and implicitly, the level of

communication required, several parallel programming models have been established,

an elucidation of which can be found in the literature .47,48 The most widely used

approaches are task parallelism, data parallelism and the distributed memory/message

passing model49,50 :

• Task parallelism is achieved by assigning each task (or sub-task) to a unique core

or thread (hence the name ‘threads model’) and finally splitting or combining the

data stream at the end. Implementation: POSIX threads, OpenMP

• Data parallelism involves dividing a large amount of data into sections across

cores, each of which are then operated upon by the same task within each core.

Implementation: Fortran 90 and 95

• In Message Passing, each sub-task has its own local memory on the core and

exchanges data between cores through messages. Programmer must explicitly

determine the level of parallelism. Implementation: Message Passing Interface

(MPI)

3.1 Multi-core CPU computing with the Parallel Computing Toolbox

Based on Flynn’s taxonomy,51 computing architecture can be classified as: single in-

struction, single data (SISD); multiple instruction, single data (MISD); single instruc-

tion, multiple data (SIMD); or multiple instruction, multiple data (MIMD) systems.

The current generation of Intel processors like the Core i7 fall in the MIMD cate-

gory but utilize SISD (Single Instruction, Single Data) processing units at the lowest

level.52 There are three common approaches toward implementing parallelism on these

system: SIMD (SSE) instructions operating on multiple data sets in parallel with a

single instruction stream; Simultaneous multi-threading (SMT), popularly called ‘Hy-

perthreading’; or as is now generally preferred, through custom libraries or ‘toolboxes’

like MATLAB’s Parallel Computing Toolbox (PCT). PCT allows the programmer to

take advantage of multi-core processors and many-core devices like Graphics Processing

15

Units (GPUs) by providing high-level abstractions such as parallel for-loops with the

parfor construct, specialized arrays (distributed and codistributed arrays), SPMD

(Single Program Multiple Data) blocks, and frequently used numerical algorithms like

fft that have already been parallelized.53 This allows the programmer to focus on

optimizing the algorithm and not on micro-managing parallel communication between

cores, functions taken care of by MATLAB behind the scenes. Depending on the appli-

cation, the programmer can choose one of these abstractions to parallelize his code to

run on multi-core systems. By default, a task (a set of instructions) executed in MAT-

LAB is handled by a master instance of MATLAB called the client instance. When

the command matlabpool open is issued, a specified number of headless MATLAB

instances (instances without an output display) called workers or labs are initiated on

different cores and run as separate system processes. Communication to, from and

between these workers are handled by the client instance of MATLAB. These workers

are executed on cores, but their number need not correspond to the number of cores

present on a device.

In addition to an implicit low-level multi-threading that is pre-built into MATLAB,

there are explicit methods of parallelism available to the developer as well,54 with the

parfor keyword being the easiest to implement in an existing code requiring little

modification. Substantial speedup can be achieved by just replacing (preferably) the

outermost for with parfor. The job of distributing iterations and collecting end re-

sults are handled by MATLAB without any requirement for additional commands from

the programmer. A major caveat of using this construct is that it assumes the task at

hand to be ‘embarrassingly parallel’ in nature. That is, the task may be divided into

a number mutually exclusive sub-tasks, which can then be executed independently of

each other (i.e in any order) on separate cores.3 In practice, it was found that imple-

menting parfor - efficiently - in a program is easier said than done. This is mostly

because any gain in speedup is soon lost when the number of labs exceeds the num-

ber of cores, since communication overhead is always higher between threads than for

cores.55 Another approach to explicit parallelism is by using SPMD blocks created with

the help of the SPMD keyword. The SPMD (Single Program Multiple Data) approach

16

belongs to a class of parallel programming models that utilize a combination of task,

data and message passing paradigms to realize parallelism. Each MATLAB worker is

assigned a copy of the same instruction set (‘program’) which then operate on different

data arrays or different sections of the same data array; hence the term , ‘Single Pro-

gram Multiple Data’. Furthermore, if data exchange and synchronization between the

workers is desired, functions based Message Passing Interface (MPI) commands 56 like

LabSend() and LabReceive() can be applied to send or receive data respectively from

a specified worker. To implement any of the constructs described here, a matlabpool

open command must first be issued beforehand in order for the client session to estab-

lish a connection with available workers. For further information on PCT constructs

and their correct implementation please refer the appropriate section of the MATLAB

manual.53

3.2 Distributed computing with PCT + MDCS

Once a program has been optimized for parallel execution on multiple cores on a single

CPU or across multiple CPUs on a single machine, the next stage involves scaling out

to a computer cluster, an approach known as ‘farming’.2 Each machine or a node in the

network is linked to other nodes either via wired or wireless connections and are capable

of communicating with each other. There are essentially two frameworks that describe

algorithms for distributed systems: the shared memory and message-passing models.

For the purposes of this paper, the message passing model will not be discussed but

further information can be found in the literature.57 In the shared memory - or more

accurately, the Distributed Shared Memory (DSM) - structure it is assumed that CPUs

of all nodes have access to a common memory where variables can be read and modified.

There is no explicit message-passing between the nodes but exchange of information can

be achieved by reading from/ writing data to this common memory. The computations

themselves are performed in a tightly-coupled concurrent manner and is fundamentally

a scaled-up version of parallel execution on a multi-core processor residing in a single

machine.58 The total memory in a DSM is not physically coalesced but distributed

across local memory modules of every node, and together they form the global address

17

space. While MATLAB generally manages all communication between nodes, there are

two factors that must be kept in mind while writing code based on the DSM approach:59

proper distribution of shared data throughout the system to minimize access latency;

maintaining a coherent view of shared data across nodes while minimizing overhead

associated with coherence management. Beyond a single machine or for one with more

than 12 workers, MATLAB requires the Matlab Distributed Computing Server (MDCS)

to be installed in order to harness more workers. Regardless of the underlying hardware

structure, be it a multicore desktop or a computer cluster, all parallel constructs in the

PCT will function in the same manner with the MDCS package.53

As distributed computing gains acceptance, corresponding challenges in schedul-

ing computational tasks (or more appropriately jobs) to cluster environments also in-

crease significantly. Such systems require job managing tools to ensure efficient and

optimized resource allocation at the individual nodes to improve overall performance.

With MDCS, communication to, from and between workers are managed by a software

handler termed the scheduler running on top of the host operating system. In addition

to the in-built ‘job manager’, MATLAB also supports third-party schedulers like PBS

Pro and Windows HPC Server 2008. The primary function of the job manager is to

control the job queue, distribute job tasks to workers or labs for execution, and main-

tain job results. Further information on configuring and submitting jobs through the

job manager may be found in PCT’s user guide.53 Although MATLAB manages work

flow and communication between client and workers, concurrent read/write access to

shared data in a DSM environment can occur, resulting in a serious problem called ‘false

sharing’. Data transfer and reading/writing page table entries necessitates expensive

system calls which increases the risk of false sharing.60 Despite it being a complication

only at page-level granularity, the programmer must keep this in mind while writing

an application and endeavor to incorporate coarse-grain sharing and synchronization

constructs in the parallel algorithm to ensure ordered data access. Another caveat of

executing shared memory jobs on a distributed system is that they do not scale well

with shared and/or updated data.61 To run such an application in a truly scalable

manner, the programmer must manually rework the code to partition both tasks and

18

data across multiple nodes. This process revolves around choosing between complete

data consistency or total scalability while simultaneously ensuring balanced loads across

workers, rendering it a challenging task in and of itself. Therefore, it can be concluded

that code optimized for tightly-coupled parallel execution on local workers may not be

optimized for execution on workers in a distributed system, and vice versa.

3.3 GPU Architecture and parallel programming

For a comparison of hardware architecture layouts of both the CPU and GPU platforms,

refer figure 3.1. The GPU is an excellent example of the SIMD design paradigm. A

GPU is organized as an array of many cores, or ‘streaming multiprocessors’(SMs), as

NVIDIA describes them. Each SM has a certain number of ALUs (Arithmetic and

Logic Units) called streaming processors (SPs) which share a common control logic and

instruction cache (see Figure 3.1(a)). While the CPU design paradigm boasts excellent

performance in sequential operations, presence of a complex control logic and large

cache memory limit the maximum speed achievable in gigaflops.62 The GPU control

logic systems on the other hand are not as bulky, with the GPU themselves fabricated

as relatively wide SIMD vector devices, increasing their parallel processing capacity. It

is also on account of their architecture that GPUs are optimized for data-parallel calcu-

lations, unlike MIMD-based platforms like the Core-i7 CPU which are more suitable for

task-parallel, data-parallel and message passing applications. The GPU card used in

this investigation was a GeForce GTX 280 with 240 SPs each capable of a 1.3 GHz peak.

Each SM has 1024 threads, bringing the total to 30,720 threads within a single GTX280

GPU.63 To program these massively parallel architectures, NVIDIA developed the

Compute Unified Device Architecture (CUDA) modeling platform, which was released

in 2006, permitting high-level programmability within the C language environment64

. CUDA was built upon the three key abstractions of: hierarchy of threaded groups,

shared memories and barrier synchronization. CUDA, in conjunction with an Applica-

tion Program Interface (API) greatly simplifies the process of GPU programming by

transforming CPU code written using C, CUDA FORTRAN, OpenCL or DirectCom-

pute, into GPU primitives. There are a number of custom libraries available to a GPU

19

(a) CPU architecture

(b) GPU architecture

Figure 3.1 Schematic representation of the contrast between typical CPU and GPU hardware
architectures

programmer in addition to MATLAB’s own built-in support via PCT, like GPUmat by

the GP-you group and JACKET by the Accelereyes corporation. For this investigation,

we decided to go with JACKET because of its extensive collection of GPU-ready func-

tions and better performance when compared to the other products .65,66 JACKET

is a third-party MATLAB toolbox acting as a wrapper around CUDA transforming

MATLAB functions into GPU functions at the basic level by converting CPU data

structures into GPU types. This retains MATLAB’s interpretive programming style

while providing real-time, transparent access to the CUDA compiler67 . Of all the

available constructs, the gfor construct (similar to the PCT’s parfor) was applied as

it offered the easiest and most efficient way for parallelizing for-loops to run on the

GPU. It executes for-loops in parallel by distributing the values of all loop iterations

across GPU cores and subsequently executing calculations on each core in a single pass,

resulting in considerable speedup. It must be kept in mind that for both the CPU and

GPU, ideal parallelism is attained only if a task can be divided into a number mutually

20

exclusive sub-tasks, capable of being executed independently of each other on separate

cores - i.e. only if it is embarrassingly parallel in nature. In reality, most problems lie

somewhere between this extreme and the ‘annoyingly sequential’ extreme.

21

Chapter 4

Model development and parallel programming

4.1 Building the multi-dimensional granulation model and its numer-

ical solution

A modern view of the granulation process has been described previously68 as a combina-

tion of three dominant mechanisms: (1) wetting and nucleation, (2) consolidation and

aggregation and (3) breakage and attrition. These stages need not occur sequentially,

but due to variable shear force distribution in granulators (e.g. high-shear) during op-

eration, simultaneous growth and breakage of granules is presumed. In general, the

entire process may be viewed as combinations of coalescence and/or breakage phenom-

ena. We assume a class II type of coalescence,69 meaning the granules were of negligible

elasticity during an initial collision, attributable to the granules’ deformability and/or

being physically confined by surrounding granules. Weak, deformable granules imply

that granular growth falls in the steady-growth region, a regime wherein coalescence

is predominant over layering or nucleation.70 Furthermore, Tu et al.71 showed experi-

mentally that steady-state growth could be observed under certain operating conditions

(liquid:solid = 110:150 and impeller speed = 300 to 600 rpm) in high-shear granulators,

with aggregation and breakage being the primary mechanisms for granule growth. Se-

rial codes based on 3-D and 4-D PBEs were developed from equations (2.3) and (2.12)

respectively to simulate the granulation process with a few simplifications, keeping the

aforementioned assumptions in mind:

• Of the source terms, only aggregation and breakage are considered, eliminating

nucleation (snuc = 0)

22

• Of the growth terms, layering is neglected, keeping liquid re-wetting and consoli-

dation

• For aggregation, an empirical kernel proposed by Madec et al.36 is used

yielding the following PBE (equation 4.1) for the 3D case:

∂

∂t
F (s, l, g, t) +

∂

∂g

[
F (s, l, g, t)

dg

dt

]
+

∂

∂l

[
F (s, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage (4.1)

and for the 4D case:

∂

∂t
F (s1, s2, l, g, t) +

∂

∂g

[
F (s1, s2, l, g, t)

dg

dt

]
+

∂

∂l

[
F (s1, s2, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage (4.2)

4.1.1 The cell average method

To cover the granule size ranges observed in an industrial setting, a linear grid would

require a very large number of bins, leading to longer run-times. In order to reduce

computational burden and achieve reasonable simulation times, a non-linear grid was

used to define the bins in a grid. To distribute particles uniformly into bins in a non-

linear grid, the cell average technique72,73 was implemented. It is an improvement

over the fixed-pivot discretization technique (FPDM) and moving pivot discretization

techniques,74,75 both of which were proposed to aid in the allocation of particles to

neighboring bins when daughter particles did not exactly fall on the pivot (represen-

tative point of a bin, defined as the mid-point between the upper and lower bounds

of a bin) in a non-linear grid. However, both techniques over-predicted the distribu-

tion of particle properties, a drawback that was rectified by the cell-average technique.

It distributes birthed particles falling on non-representative points to the nearest rep-

resentative points, with a pre-defined fraction of the total particles produced sent to

neighboring representative points. A local averaging for each cell is performed at each

time step before distributing the resulting values to the adjoining representative points

23

for a non-linear, arbitrary grid. Likewise, during breakage, a larger granule will frag-

ment into two smaller particles. Of the two daughter particles, one may be considered

to lie on the grid point (the representative point) itself while the other lies at a point

on the bin which may or may not coincide with this representative grid point. There-

fore, this latter particle needs to be reallocated, in pre-defined fractions, to neighboring

bins. To this end, the properties of all particles aggregating or breaking in a bin is

averaged, representing net birth in a bin due to aggregation and breakage. This net

birth is distributed to adjacent bins when the birthed particle does not fall exactly on

the grid point. The actual number of adjacent bins receiving the particle depends on

the number of dimensions present. Therefore, for a three dimensional grid, particles

would get distributed to eight surrounding bins. For the model developed herein, the

re-allocation method involves preservation of two moments, namely the particle density

and mass (or volume, since particle density is constant). This fractionation can cause

multiple births to occur at a single grid point. These births are summed up in order

to obtain the cell average birth which then replaces the the birth term in the PBE. On

the other hand, no redistribution of particles is needed for a death term, as death is

simply the disappearance of particles from a grid point. For an N-dimensional PBE, it

can be deduced via mathematical induction that a particle undergoing breakage would

get distributed into 2N fractions across adjacent grid points. The 2N fractions cor-

responding to the 2N neighbouring bins can be obtained in the same way as the 23

fractions for a 3-dimensional population balance equation. The detailed procedure for

implementing this cell average method may be found in publications by Chaudhury et

al. (forthcoming)76 for a 3-D PBM, and by Barrosso and Ramachandran77 for a 4-D

PBM.

4.1.2 Numerical solution of the PB model

Using a multidimensional population balance with an appropriate kernel ensures im-

proved analysis and prediction of the granulation process. However, incorporating an

efficient numerical technique to solve such integro-partial differential equations is a chal-

lenging task, the multiple time scales and dimensions involved complicating the solution

24

process. Hence the need to develop robust models with efficient solution techniques for

such frameworks. Our approach for obtaining a solution to such equations is based

on a hierarchical two-tiered algorithm as proposed by Immanuel and Doyle.78 This

involves using the finite volume approach for discretization with respect to individual

solid, liquid and gas volumes, followed by first-order Euler integration of the population

balance over the domain of these sub-populations. Neglecting layering and nucleation,

the PBE to be solved is given in Equation (4.1):

∂

∂t
F (s, l, g, t) +

∂

∂g

[
F (s, l, g, t)

dg

dt

]
+

∂

∂l

[
F (s, l, g, t)

dl

dt

]
= ℜaggregation + ℜbreakage (4.3)

Equation (4.1) can be expressed in the discrete form as shown below in Equation 4.4:

dF ′
i,j,k

dt
+

(
F ′
i,j,k

△gk

dg

dt

∣∣∣
gk

−
F ′
i,j,k+1

△gk+1

dg

dt

∣∣∣
gk+1

)
+

(
F ′
i,j,k

△lj

dl

dt

∣∣∣
lj
−

F ′
i,j+1,k

△lj+1

dl

dt

∣∣∣
lj+1

)
= ℜagg(si, lj , gk) + ℜbreak(si, lj , gk) (4.4)

Here F ′
i,j,k =

∫ si+1

si

∫ lj+1

lj

∫ gk+1

gk
F (s, l, g) ds dl dg, si is the value of the solid volume at

the upper end of the ith bin along the solid volume axis, lj is the value of the liquid

volume at the upper end of the jth bin along the liquid volume axis, gk is the value

of the gas volume at the upper end of the kth bin along the gas volume axis △si,

△lj and △gk are the sizes of the ith, jth and kth bin with respect to the solid, liquid

and gas volume axis. Using this technique, the population balance equation, is re-

duced to a system of ordinary differential equations in terms of the rates of nucleation

(ℜnuc(si, lj , gk)), aggregation (ℜagg(si, lj , gk)) and breakage (ℜbreak(si, lj , gk)). Hence,

the triple integral associated with the aggregation term may be evaluated by casting

it into simpler addition and multiplication terms. This is followed by fractioning the

resulting aggregation term into its neighbouring grids through the previously described

cell-average technique. It is assumed that the parent particle will lie exactly on a grid

point before breakage, with one of the daughter fragments staying on the grid point,

post-breakage. The other fragment may or may not fall exactly on the volume grid

25

point and is therefore reassigned to the adjoining bins via cell-averaging. The fragment

that is assumed to lie exactly on the volume grid is dealt with independently of the

other daughter fragment. The two resulting formation terms for each of the fragments

are then summed up to obtain the overall birth terms due to breakage.

This approach is extended for application to the 4-D population balance model via

inclusion of the second solid component term. The resulting four dimensional popula-

tion balance equation was solved numerically as for the three dimensional case. The

descriptive particle property parameters were again discretized into bins according to

the granule volume of each solid, liquid, and gas components. Because the 4-D model

is so computationally expensive, a smaller number of bins were necessary to solve this

model in an acceptable amount of time. Furthermore a non-linear grid was initialized

to define these bins, as shown in equations 4.5-4.8.

s1,h = s1,1 × 3h−1 (4.5)

s2,i = s2,1 × 3i−1 (4.6)

lj = l1 × 3j−1 (4.7)

gk = g1 × 3k−1 (4.8)

The indices h, i, j, and k represent the bin numbers in the four dimensions. In the

(h, i, j, k) bin, the volume per particle of each component is given by (s1,h, s2,i, lj , gk).

The initial population density is distributed over pre-defined bins, usually the first

one designated by (1, 1, 1) for the 3-D case or (1, 2, 1, 2) and (2, 1, 1, 2) for the 4-D

case. The integration was performed to track the population distribution over time,

with a fixed time step. As with any explicit numerical solution to partial differential

equations, numerical instability can occur if the selected time step is too large. The

Courant-Friedrichs-Lewis (CFL) condition, shown in Equation 4.9, must be satisfied:.13

GR∆t

∆s1
+

GR∆t

∆s2
+

GR∆t

∆l
+

GR∆t

∆g
= CFL < 1 (4.9)

26

In this case, the growth rate, GR, is the rate of change in volume due to consolidation

or liquid addition. This condition indicates that the time step must be less than the

time required for particles to travel to adjacent grid points.

4.2 Programming strategy for parallel implementation

Once the serial version of the code has been debugged, partial vectorization of the

code is carried out to ensure most calculations are performed as efficiently as possible.

Vectorization or vector processing is based on Flynn’s definition of vector processors79

to mean a single instruction stream capable of operating on multiple data elements in

parallel. In vectorized code, an operation is performed on all (or multiple) elements

of the input variables in one statement i.e the operands are treated as single vectors.

On the other hand in a non-vectorized code, operations are performed element-wise by

treating each operand as a scalar, using loops to index each element of the array. After

building a sequential version, the code is parallelized for execution on multiple workers.

The procedure for parallel programming involves three basic steps: locating portions of

the code that are most time-consuming with tools like the MATLAB profiler; applying

one of the approaches for parallelism outlined previously(task, data, or message passing

models) as appropriate; and finally optimizing the code for minimal variable transfer

overhead. A flowchart representation of this strategy is given in Figure 4.1.

4.2.1 Prioritizing

The first step is to identify routines that take the most time to run and prioritize them

to obtain most speedup. For this purpose, the MATLAB profiler is indispensable, allow-

ing the programmer to profile the code and locate with precision those statements that

are called the most, and time needed for their execution. Based on the profiler results,

one can then carefully choose portions of the code to be rewritten to yield the best per-

formance without sacrificing scalability. There are some calls which cannot be avoided,

such as those invoked to start a pool of workers and synchronize them at intervals,

overheads from built-in functions etc. These cannot be parallelized or circumvented

27

Figure 4.1 Flowchart depicting key steps in parallel programming

28

easily but their computational costs are usually one-time expenses and not too signifi-

cant. As shown in the next section, the function computing for aggregation proved to

be the most resource-intensive for all simulation cases, followed by the calculations to

relocate the newly-birthed particle phase fractions into adjacent bins via cell-averaging

in both 3D and 4D PB models. Aggregation and its associated cell average calcula-

tions are therefore the main computational bottlenecks in the PBM, rendering them

prime candidates for parallelization. Their computational burden can be attributed to

the presence of several ‘nested for-loops’, prominently those accounting for integral

equations 2.5 and 2.6, which are performed element-wise and sequentially on a single

CPU core. Consequently, broadening the range of each loop index causes individual

iterations to run even slower. Increasing the number of bins in each grid, while raising

the dimensionality of the system, also slows down code execution considerably. This

is termed the curse of dimensionality phenomenon. Although it is preferred to use a

higher grid size for a more accurate representation of the system, the aforementioned

limitations curb the degree of flexibility available to a researcher trying to simulate the

system. There is therefore much potential for speed-up in parallelizing these loops to

run simultaneously on all cores/processors present on the cluster.

4.2.2 Choosing a parallel programming paradigm

The data parallel approach

Once potential sections have been identified for parallelization, the next step is to

decide on a parallel programming paradigm most suited to the script and hardware.

Implementing parallelism with respect to a CPU, GPU and cluster involved the SPMD

paradigm outlined in the previous chapter to achieve data parallelism. Though the bulk

of the PBM code is ‘annoyingly sequential’ in nature, it is less computationally intensive

than the aggregation kernel, which is where the potential for parallelism exists. The

aggregation kernel (assuming a three-dimensional form) typically comprises of 6 nested

for-loops, with two sets of three loops each, to account for interactions between the s,

l, and g fractions of two colliding particles in a bin. Since each MATLAB worker is

29

designed to operate independently of each other with all communications handled by

the client instance, the best approach is to decompose the index space adequately by a

process known as loop-slicing.80 The first step in the process is to identify loop axes (a

range of loop index values) capable of functioning as indices for parallelism, followed by

assigning these loop axes to available MATLAB workers, numlabs, (preferably equal to

the number of cores on the parallel device) by means of labindex . Numlabs returns

the number of workers open in a given matlabpool session, while labindex returns the

currently executing worker’s index. Loop orders may be switched for efficient mem-

ory access patterns and axes may be further sliced if the device memory is found to

be insufficient for a given loop size. For parallel execution on a multi-core CPU, fol-

lowing the SPMD (a type of data-parallel) approach seemed most appropriate due to

the embarrassingly parallel nature of the computations for aggregation and breakage.

Moreover, it would scale well on a distributed system with shared memory (DSM), fur-

ther justifying adoption of this particular mode of parallel programming. Following the

procedure just described, execution of the aggregation kernel (4D) can be parallelized

by slicing the outermost loop:

ℜformation
agg =

∫ size1

0

∫ lmax

0

∫ gmax

0
form(s, l, g) +

∫ size2

size1+1

∫ lmax

0

∫ gmax

0
form(s, l, g)

+

∫ size3

size2+1

∫ lmax

0

∫ gmax

0
form(s, l, g)....+

∫ smax

sizen+1

∫ lmax

0

∫ gmax

0
form(s, l, g)(4.10)

where,

sizen =
smax

numlabs
× labindex (4.11)

and

form(s, l, g) =
1

2
× β(s′, s− s′, l′, l − l′, g′, g − g′)F (s′, l′, g′, t)

×F (s′, s− s′, l′, l − l′, g′, g − g′, t) (4.12)

30

In MATLAB code, this slicing would translate as:

for i =
(labindex− 1)× (grid size)

numlabs
+ 1 :

labindex× (grid size)

numlabs
(4.13)

The parallel algorithm implemented for solving the PB model with cell averaging and

breakage on a distributed system is shown in Figure 4.2. A simplified version same

algorithm is used for parallelizing the 3-D code for a multi-core CPU. For paral-

lel implementation on the GPU, the gfor functionality of the JACKET toolbox was

utilized. JACKET’s gfor employs an algorithm similar to the loop slicing technique

to distribute sections of a for-loop on a GPU, so the programmer does not have to

explicitly manage communication to, from and between workers. The source terms are

encapsulated in function calls to enable faster and better access to kernels like aggre-

gation, improving the overall parallel performance. Kernels are called from within the

gfor loop at every time step. The gfor is preferably kept as the outermost loop, as it

can parallelize all subsequent statements in a single pass, but due to the presence of 6

nested for loops, we decided to replace the fourth for with the gfor loop to minimize

the number of kernel calls and thus reduce memory transfer overheads.

The task parallel approach

Besides data-parallelism, another, more straightforward divide-and-conquer approach

involves task-parallelism, also known as the MIMD (Multiple Instruction Multiple data)

paradigm. Implementations of task-parallelism are generally done through the fork-join

model, described in Refianti et al,81 which relies on multiple threads executing blocks of

sequential code to achieve parallelism. Here, a multiprogramming style was adopted in

order to easily achieve coarse-grained parallelism. This means partitioning the problem

into fewer, but larger tasks able to execute independently of each other. These discrete

sections of code are mapped onto different threads that execute asynchronously and

independently of each other. Task scheduling is done at the time of compilation i.e.

statically. A major shortcoming of this approach is the static nature of task distribution

which leaves the granular complexity of task unbounded. A task with unbounded or

31

matlabpool open distributed_config nlabs

% define inputs and perform initial calculations

....

while time < final_time do

 % send data to workers

 spmd (nlabs)

 % perform calculation on workers

 for
(1) _

+ 1
() _

 % calculate and

 % calculate and

 end

 output = gplus(output,1) % global summation across workers

 end

 %gather results and send back to client

 %calculate output variables and update F(s,l,g)

end

Figure 4.2 Algorithm for distributed execution describing the loop-slicing technique in con-
junction with the SPMD keyword.

variable task size means inefficient CPU usage, since every task runs for different periods

of time depending on the size of the problem and consequently exit workers at different

times.82 Another limitation of task parallel algorithms is the restriction of maximum

degree of parallelism achievable to the number of individual tasks. In contrast, data

parallel algorithms can be readily scaled to (theoretically) any number of processors

(Figure 4.3). Furthermore, due to the variability in run times, task parallelism requires

micro-managing communication and synchronization to balance the computational load

across processors.83

4.2.3 Parallel execution procedure and code optimization

At the start of the simulation, only the MATLAB client instance is actively processing

code sequentially. On reaching an SPMD keyword, the code forks off function calls onto

idle workers concurrently. With every worker active, execution of the allocated serial

tasks now begins asynchronously. After all the workers have completed their respective

32

tasks, the results are summed over all workers (with gplus) and the sum cast to one of

them. Any result on a worker is of the Composite type, but can readily be cast back to

regular CPU single type on the client MATLAB instance and subsequently re-joined.

Execution on the GPU essentially follows the same protocol except that JACKET han-

dles all communication between the processor and GPU device. After calculations, all

gsingle and gdouble (GPU-class) variables are converted back to CPU-class variables

before re-joining. The final step involves evaluating speedup obtained and fine-tuning

the code for optimized performance if necessary. There is no standard protocol to

follow while re-structuring parallel code to achieve optimal speedup. Although there

are several reasons for poor parallel performance, it is typically due to the work han-

dled per processor not being sufficient enough to outweigh the computational costs of

concurrent processing. Therefore, it is the type and complexity of a problem that dic-

tates the need for parallelization and the paradigm to be incorporated. As a rule of

thumb, the programmer must strive to: minimize data transfer overheads; reduce data

inter-dependencies; and finally, balance computational loads across all cores. This final

step is critical to ensure robust performance and scalability. Furthermore, achieving

near linear speedups requires significant tweaking of the original code, and sometimes

having to micro-manage communications between the device memory and processors.

To sum up, the procedure followed herein for parallelizing PBMs for distributed sys-

tems involved three steps: locating portions of the code that are most time-consuming

with tools like MATLAB profiler; applying one of the aforementioned approaches for

parallelism as appropriate; and lastly minimizing overheads associated with variable

transfer, data dependencies and load balancing.

33

Chapter 5

Case studies: Results and discussion

5.1 Comparing CPU-for, GPU-for and GPU-gfor execution

Profiler analysis

The first set of simulations were conducted to compare the speed gains obtained by

running an aggregation-only PB code, based on a simplified form of equation (4.1).

To identify computational bottle-necks in the serial version of the code, MATLAB’s

profiler utility was employed and the results graphed as shown in Figure 5.1. From

the figure it is apparent that aggregation, and more specifically, formation, is indeed

the most computationally intensive section of the code consuming up to 73% of the

total simulation time. This makes formation the statement most suited for incorpo-

rating data-parallelism. There are 6 nested for loops that account for aggregation,

enabling the loop slicing technique described in the previous section to be readily im-

plemented. JACKET’s gfor construct is particularly advantageous in this regard in

that it effectively assigns the same task to operate on different partitions of the shared

array concurrently. The formation and depletion functions are consolidated into a sin-

gle function and the fourth nested for loop was replaced with the gfor in order to

minimize overheads due to excessive function calls. This paralleized code was tested

on two platforms: first on a GPU and secondly, on a single CPU core. For the GPU,

two parallel versions of this code were investigated: In one case, standard for loops

were executed on the GPU over GPU-class variables (termed the ‘gpu for’ version);

and the other, termed the gfor version, utilized JACKET’s gfor constructs to loop

over the same GPU-class variables. The CPU version was left un-parallelized, i.e. with

regular for loops, to execute sequentially on a single MATLAB worker. Simulation was

34

Aggregation

(Formation)

73%

Aggregation

(Depletion)

8%

Other lines

19%

Figure 5.1 Piechart representation of MATLAB’s profiler results for a serial version of the
3-D granulation code with only aggregation, run on a single worker.

carried out on a machine with a Core2Quad Q6600 processor (2.4 GHz clock, 4 cores,

no threads), 4 GB of RAM (2 GB × 2 sticks) and an NVIDIA GeForce GTX 280 GPU

(240 CUDA cores, 1296 MHz processor clock, 1 GB memory).

Numerical accuracy validation

Results from the simulation of each of these three cases were first validated by comparing

bulk property plots of total number of particles vs time, total volume vs time and

average diameter vs time after the final time step to verify uniformity. From the curves

depicting temporal evolution of granule properties (Figure 5.2), it is clear that numerical

accuracy of the computations was not compromised during execution either on the CPU

or GPU as the curves in each plot coincide perfectly with one another. As expected,

the total number distribution of particles (Figure 5.2(a)) decreases at a constant rate

due to aggregation, wherein the collision (and therefore, depletion) of two particles lead

to the formation of a new one by coalescence 11 . An analysis of the total volume plot,

Figure 5.2(b) predictably reveals constant value lines considering the fact that total

mass/volume is conserved in the system i.e. no particles are either added to or removed

from the system during the process. The volume of a new, larger granule is equal to the

sum of the volumes of the smaller coalescing particles that formed it. By extension, this

35

is the reason why the average granule diameter plot, Figure 5.2(c) shows a proportional

increase in size of granules over time.

Performance evaluation

To evaluate parallel performance on the GPU device, the time taken to simulate each

case was plotted against grid size , followed by the performance ratio against grid size.

These ratios were calculated as:

Performance Ratio =
single CPU time

gfor time
(5.1)

or

Performance Ratio =
GPU for time

gfor time
(5.2)

The simulation time vs grid size curves in figure 5.3 show the single-worker CPU

version of the code to be much faster than its GPU counterparts, with the slowest of

the set being the code with GPU for loops, followed by the gfor loop version. It

must be noted that the GPU is a stand-alone device and does not share its memory

with the host (CPU) or provide a means for combined virtual memory addressing. In

other words, data will not be communicated automatically between the host and the

device memories, but must be explicitly invoked. This results in severe memory transfer

overheads each time a variable is copied to and from the GPU across the PCI-E bus,84

which is why the GPU versions are drastically slower than their CPU counterparts.

Furthermore, while the INTEL Core2Quad Q6600 CPU can achieve processor clock

speeds of 2.4 GHz, the GPU core clocks in significantly lower at 1.3 GHz forcing the

same computations to take longer to run on the GPU. As anticipated, the code with

gfor ran faster than just for on the GPU owing to gfor’s inherent ability to schedule

and control loop distribution. This speedup is readily discerned in figure 5.3(c), with

the ratio calculated by equation 5.2.

Although these preliminary results seem to indicate that CPUs are better than

36

GPUs for this program, the trend quickly reverses as we increase the size of the grid

(and implicitly, the resolution of the system) beyond 11, as suggested in figure 5.3(b).

The steady increase in the ratio (equation 5.1) curve implies that the simulation time

curves for gfor and CPU-for are converging and will eventually meet at some particular

grid size, after which the GPU will perform significantly better than the CPU in a

progressive manner. Beyond a grid size of 20 it became impractical to run the code for

extensive periods of time and therefore further investigations were not carried out. The

initial drop seen in the CPU for curve in (Figure 5.3(a)) and in the Figure 5.3(b) is an

anomaly, shown to be reproducible even after initiating the simulation at various grid

size values and is likely due to an initial spike in memory overhead during the ‘warm-up’

of the CPU prior to commencement of execution. In addition to the aforementioned

hardware limitations of the GPU, JACKET’s execution of a script in not transparent

to the programmer, and therefore capabilities such as benchmarking, assigning tasks to

specific thread blocks, and controlling memory access patterns is non-existent.

37

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
1.74

1.75

1.76

1.77

1.78

1.79

1.8

1.81
x 10

10

Time (sec)

T
ot

al
 n

um
be

r
of

 p
ar

tic
le

s

gpu "for"
"gfor"
cpu "for"

(a) Evolution of total number distribution of particles
over time

0 0.5 1 1.5 2 2.5 3
0

0.5

1

x 10
−24

Time (sec)

T
ot

al
 v

ol
um

e
(m

3)

gpu "for"
"gfor"
cpu "for"

(b) Evolution of total volume of particles over time

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
399.5

400

400.5

401

401.5

402

402.5

403

403.5

404

Time (sec)

A
ve

ra
ge

 d
ia

m
et

er
 (µ

m
)

gpu "for"
"gfor"
cpu "for"

(c) Evolution of average diameter of a particle over time

Figure 5.2 Comparison of temporal evolution of granule physical properties simulated using
gfor, GPU-for and CPU-for

38

2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Grid size

S
im

ul
at

io
n

tim
e

(s
ec

)

"gfor" code
gpu "for" code
cpu "for" code

(a) Semi-log plot comparing simulation times of gfor,
GPU for and CPU for versions

4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Grid Size

R
at

io
 (

=
 c

pu
 ti

m
e/

 g
fo

r
tim

e)

(b) Speedup ratio of gfor over CPU for version

2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

Grid Size

R
at

io
 (

=
 g

pu
 "

fo
r"

 ti
m

e
/ g

fo
r

tim
e)

(c) Speedup ratio of gfor over GPU for version

Figure 5.3 Comparison of simulation times and performance ratios of PBM code incorporat-
ing gfor, GPU-for and CPU-for

39

5.2 Comparing single CPU to SPMD execution

Profiler analysis

A comparison of the simulation times needed by the PB code to run on a single CPU

thread sequentially and on multiple CPU threads was done, followed by plotting the

speedup gained. Prior to execution, the code was ‘streamlined’ to efficiently search for

and perform computations on relevant particle-containing bins in a grid, unlike the ver-

sion employed in the previous section which looped over all bins irrespective of whether

particles were present. This optimization was carried out to eliminate the time spent

on unnecessary calculations, specifically with respect to empty bins. The GPU version

could not be streamlined since our version of JACKET did not allow for conditional

branching within gfor loops.67 The serial version of this modified code was run on a

single CPU worker, and an analysis of time consumption was carried out with the aid

of MATLAB’s profiler tool. A breakdown of the time spent on various calls is displayed

in Figure 5.4. It is obvious once again that aggregation must be parallelized in order

to see an improvement in performance. Both formation and depletion are are the main

bottlenecks in the code, with formation being slightly more compute-intensive (51% and

47% respectively). Parallelism was attained with the loop-slicing technique described

in section 3. The formation and depletion loops were sliced in accordance with the

pool of MATLAB workers available (one, two, four, six and eight threads) to analyze

the gain in speedup and effects of transfer overhead. The new streamlined code was

run on an Intel Core i7-870 CPU (4 cores, 8 threads, 2.93 GHz clock speed) with 8

GB of RAM. To determine the most appropriate index range for loop discretization,

different combinations of sliced formation and depletion loops were tested for efficiency

of parallelization (refer Table 5.1). Although formation is the primary computational

bottleneck requiring loop-slicing, initial test runs in conjunction with MATLAB’s Pro-

filer tool affirmed that it was also necessary for depletion to execute on at least one

thread for the gain in speedup to outweigh memory transfer overhead. Consequently,

certain combinations based on grid size and number of workers were discarded, with

only pertinent ones being retained. From within these combinations, the ones yielding

40

Formation

(Aggregation)

51%

Depletion

(Aggregation)

47%

 All other lines

2%

Figure 5.4 Piechart representation of MATLAB’s profiler results for the streamlined version
of the 3-D granulation code with only aggregation, run on a single worker.

the lowest simulation times for a grid size of 36 were chosen from each worker pool

class for comparative analysis: 0 formation, 0 depletion (1 thread); 1 formation, 1 de-

pletion (2 threads); 3 formation, 1 depletion (4 threads); and 6 formation, 2 depletion

(8 threads).

Numerical accuracy validation

As done previously, the plots for granule physical properties, Figures 5.5, were examined

to ensure validity of the data and numerical precision of the results. The total number

distribution of particles (Figure 5.5(a)) decreases at a constant rate due to particles

coalescing. Predictably, the total volume plot, Figure 5.5(b) shows a constant value

Table 5.1 Combinations for loop slicing

41

considering total mass/volume is conserved i.e. no particles are either added to or

removed from the system during the process. The volume of a new, larger granule

is equal to the sum of the volumes of the smaller coalescing particles that formed it.

And because particles coalesce during aggregation, the average granule diameter plot in

Figure 5.5(c) shows a proportional increase in size of granules over time. Furthermore,

all plots coincided perfectly for every parallel simulation case, affirming the retention

of their numerical accuracy.

Performance evaluation

Having confirmed that numerical precision was not compromised, the simulation times,

the parallel speedup and efficiency curves were plotted for the five worker pool classes

selected (Figures 5.6a-c). The speedup factor and parallel efficiency were calculated as

given in Wilkinson et al.3

Speedup, S(n) =
Execution time on a single worker

Execution time on n workers
(5.3)

Parallel Efficiency, En =
S(n)

n
× 100 (5.4)

Simply put, the speedup factor directly quantifies the gain in performance of multi-

processor system over a single processor one. As observed in figure 5.6(b) (b), the

maximum speedup achieved with 8 workers was 2.2 times, leading to an average per

worker efficiency of 27.35%. Parallel efficiency is a measure of computational resource

usage, with lower values implying lower utilization and higher values implying bet-

ter utilization on average. Although the speedup achieved for a grid size of 36 was

marginal, it was theorized that an increase in the problem size would improve not only

speedup but also parallel efficiency. As expected, an increase in grid size to 60 posi-

tively affected both the speedup and efficiency of parallel execution as seen in figure

5.6(c). Furthermore, it was also observed that the most efficient way of parallelization

for 6 cores was by splitting formation 5 times and depletion 1 time, as opposed to the

42

previous strategy of splitting formation 4 times and depletion twice. Since depletion is

much less computationally intensive than formation and only becomes challenging at

higher grid sizes, this finding is in line with our expectation that each worker has to

have sufficient work for parallelism to pay off. That is, for a fixed pool of workers, an

increase in problem (grid) size will mean improved speedup. This will also explain the

drop in efficiency as well as speedup from 4 to 6 workers (i.e. with formation sliced 4

and depletion 3 times, figure 5.6(b), 5.6(a)).

Currently, we have restricted ourselves to a grid size of 60 due to MATLAB’s limit

on the maximum possible array size, which is proportional to available system RAM. Of

the three main factors that might have impacted the efficiency of our parallel algorithm,

load balancing and data dependency were ruled out as the for-loops were split evenly

across workers with each loop capable of independent execution on a worker. Thus

the only possible reason could be overheads resulting from communication between

workers. These overheads are generally the result of: computational costs of cache

coherence; memory conflicts inherent to a shared-memory multiprocessing architecture

like the INTEL Core i7;85 and memory conflicts between operating system services.86

Moreover, since MATLAB looks to the Operating System to open a pool of workers, it

does not guarantee proper assignment of each worker to a single physical core/thread,

which would result in exaggerated overheads from different worker instances trying to

communicate with (or waiting for) other instances on the same thread. It must be kept

in mind that there are always statements in code that cannot be parallelized, which

limits the maximum speedup theoretically attainable. It is also interesting to note that

since there are only 4 physical cores which correspond to 4 processing units, the speedup

ratios achieved for the two grid sizes (2.2 and 2.65 times) can be considered effectively

out of a 4 times ideal speedup, meaning an improvement of about 66%.

43

0 1 2 3 4 5 6 7 8 9 10
1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

10

Time (sec)

T
ot

al
 n

um
be

r
of

 p
ar

tic
le

s

form 0,dep 0
form 1,dep 1
form 3,dep1
form4,dep2
form 6,dep2

(a) Evolution of total number distribution of particles
over time

0 1 2 3 4 5 6 7 8 9 10
4.5239

4.5239

4.5239

4.5239

4.5239

4.5239

4.5239

4.5239
x 10

−26

Time (sec)

T
ot

al
 v

ol
um

e
−

 m
3

form 0,dep 0
form 1,dep 1
form 3,dep1
form4,dep2
form 6,dep2

(b) Evolution of total volume of particles over time

0 1 2 3 4 5 6 7 8 9 10
142

143

144

145

146

147

148

149

150

Time (sec)

A
ve

ra
ge

 p
ar

tic
le

 d
ia

m
et

er
 (

µm
)

form 0,dep 0
form 1,dep 1
form 3,dep1
form4,dep2
form 6,dep2

(c) Evolution of average diameter of a particle over time

Figure 5.5 Comparison of temporal evolution of granule physical properties simulated for
different worker pool classes,grid size=36

44

0 5 10 15 20 25 30 35 40
10

−1

10
0

10
1

10
2

10
3

10
4

Grid Size

S
im

ul
at

io
n

tim
e

(s
ec

)

form 0,dep 0
form 1,dep 1
form 3,dep1
form4,dep2
form 6,dep2

(a) Comparison of simulation times with increase in grid
size for different worker pool classes

1 2 3 4 5 6 7 8
20

30

40

50

60

70

80

90

100

W
or

ke
r

ef
fic

ie
nc

y

Number of workers

1 2 3 4 5 6 7 8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

S
pe

ed
up

 (
G

rid
 s

iz
e

36
)

Observed
Ideal

(b) Speedup and efficiency obtained for a grid size of 36

1 2 3 4 5 6 7 8
20

40

60

80

100

W
or

ke
r

ef
fic

ie
nc

y

Number of workers

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

S
pe

ed
up

 (
G

rid
 s

iz
e

60
)

Observed
Ideal

(c) Speedup and efficiency obtained for a grid size of 60

Figure 5.6 Plots of simulation times and obtained speedup of the PB code incorporating the
SPMD construct

45

5.3 Speeding up a PBM code integrating more mechanisms

Profiler analysis

For the third case, we considered a more complex, integrated form of the PB code

incorporating terms for consolidation, aggregation and liquid drying/rewetting. These

mechanisms, in addition to breakage/attrition, are fundamental in describing the gran-

ulation process accurately to a greater extent. From Figure 5.7, it is evident that in

spite of two additional mechanisms being present, aggregation remains the most compu-

tationally intensive, a characteristic that may be attributed to its 6 nested for-loops.

Parallelization was achieved with the fork-join technique, a type of task parallelism.

The SPMD keyword is used to force consecutive but independently executing sections of

code to be split among the available pool of workers, followed by collection of calculated

data at the end. The functions parallelized were those computing for drying/rewetting,

consolidation, and finally aggregation (formation and depletion), each of which were

assigned to run on individual workers, to improve parallelism.

Numerical accuracy validation

The temporal evolution of physical properties were plotted for both the SPMD and

the single CPU versions of the code (Figure 5.8). As can be seen from Figure 5.8(a),

the total number of particles predictably decrease over time due to aggregation by

coalescence. The total volume of the particles, Figure 5.8b, on the other hand rises

at a steady state as a result of continuous liquid binder addition over time and is

also the reason why the average granule diameter increases gradually in Figure 5.8c.

The tendency for these curves to level off after a certain period of time is due to

the limited number of bins in the grid, 15, which restricts the the extent of granule

aggregation and growth. This further serves to stress the need for faster simulations

through parallelization in order to circumvent these restrictions and run the code for

longer and for higher number of bins. Data for both the SPMD and single CPU versions

are in good agreement with each other, affirming numerical precision and validity of

the SPMD version results.

46

Formation

76%

Depletion

18%

Consolidation &

Drying / re-wetting

~ 0%

All other lines

6%

Figure 5.7 Piechart representation of MATLAB’s profiler results for the 3-D granulation code
with aggregation, consolidation, and liquid drying/rewetting run on a single lab.

Performance evaluation

The simulation was carried out on the INTEL Core 2 Quad Q6600, utilizing all four

cores. The grid size was varied and the corresponding simulation times plotted(Figure 5.9(a)).

Even for a grid size of just 15 a speedup of 15.5 times was achieved, which is surprising

considering how only four workers are used. The semi-log plot in Figure 5.9(b) is also

shown to highlight the positive change in speedup beyond a grid size of 6. This is an

example of superlinear speedup, where for n processors, a speedup of greater than n

is produced.87 Superlinear speedup is a special case, and may occur if problem size

per processor is small enough to fit into registers, data caches or other smaller, yet

faster memory banks instead of the on-board RAM.88 Since some of the paralellized

functions like drying/rewetting and consolidation utilize just a few variables per proces-

sor, causes of parallel inefficiency (load imbalance, interprocessor communication) are

masked, resulting in faster multiplication-addition (MAD) operations than on a uni-

processor machine, where bandwidth consumption would be higher than the rate at

which RAM could deliver. This particular case proves that task-parallelism can indeed

be useful in cases where the problem can be partitioned into sections capable of being

executed independently and asynchronously in am embarrassingly-parallel manner.

47

0 5 10 15 20 25 30 35 40 45 50
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

10

Time (sec)

T
ot

al
 n

um
be

r
of

 p
ar

tic
le

s

SPMD version
single worker version

(a) Evolution of total number distribution of particles
over time

0 5 10 15 20 25 30 35 40 45 50
0.027245

0.027250

0.027255

0.027260

0.027265

0.027270

0.027275

Time (sec)

T
ot

al
 v

ol
um

e
(m

3)

SPMD version
single worker version

(b) Evolution of total volume of particles over time

0 5 10 15 20 25 30 35 40 45 50
142

144

146

148

150

152

154

Time (sec)

A
ve

ra
ge

 g
ra

nu
le

 d
ia

m
et

er
 (µ

m
)

SPMD version
single worker version

(c) Evolution of average diameter of a particle over time

Figure 5.8 Comparison of temporal evolution of granule physical properties for a sequential
and parallel PBM code including consolidation and drying/rewetting, Grid size=15

48

5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

450

500

Grid size

S
im

ul
at

io
n

tim
e

(s
ec

)

SPMD version
single worker version

(a) Plot comparing variation in simulation times of SPMD and
single lab version with increasing grid size

5 6 7 8 9 10 11 12 13 14 15
10

0

10
1

10
2

10
3

Grid size

S
im

ul
at

io
n

tim
e

(s
ec

)

SPMD version
single worker version

(b) Semi-log plot comparing simulation times of SPMD and sin-
gle worker version with increasing grid size highlighting positive
speedup after a grid size of 6

Figure 5.9 Comparison of simulation times for a sequential and parallel PBM code

49

5.4 Distributed execution of a 3-D PBM code with breakage and cell

averaging

Profiler analysis

The serial version of the 3D population balance code was developed as described in the

previous section. After issuing the profile on command to initiate the MATLAB pro-

filing utility, the script was executed on one worker. The profiler results are displayed in

figure 5.10. As can be observed from the figure, the primary computationally intensive

parts are those forming the core aggregation kernel: Solid, liquid and gas phase fraction

relocating into adjoining bins (using the cell-average method), followed by formation

and then depletion. Breakage and its associated functions took relatively much lesser

time to compute, mainly due to the lack of integral terms. Previously, it was shown

that formation was the primary bottleneck in a 3D PBM simulation using a linear grid.

However, a non-linear grid would require much fewer bins than the linear grid to cover

the same granule size range. This justifies the incorporation of the cell average method

for relocating particle phase fractions to appropriate adjacent bins, albeit, at a slightly

higher initial cost of computation. Once computational bottlenecks were identified,

the next step was to incorporate parallelism into the code. The data parallel approach

was deemed ideal for this algorithm owing to the presence of nested for loops that

perform numerous MAD (Multiply-ADd) operations on all elements of the same data

set. Moreover, this divide-and-conquer strategy would likely scale well on distributed

systems with shared memory. The loop slicing technique described in the previous sec-

tion was utilized to implement data parallelism, effectively assigning the same task to

operate on different partitions of the shared array concurrently. The aggregation and

breakage functions were consolidated into a single function and the outermost for loop

was sliced in accordance with the number of workers available (refer Equation 4.13),

followed by a performance assessment for five cases: one(sequential), two, four, eight

local workers and 8 distributed workers. For the 8 distributed worker case the parallel

code was executed in a distributed manner using 4 cores per node. The distributed

50

Solid fraction relocation

(Aggregation)

20.6%

Liquid fraction relocation

(Aggregation)

20.3%

Gas fraction relocation

(Aggregation)

20.3%
formation(Aggregation)

17.3%

depletion(Aggregation)

7.6%

All other statements

13.9%

Figure 5.10 Piechart representation of MATLAB’s profiler results for a serial version of the
3D granulation population balance code run on a single worker.

system consisted of two nodes linked via a high speed gigabit ethernet cable, each node

housing a quad-core Core i7-2600 CPU running at 3.4GHz (stock), and 16GB of local

memory (4 DIMMs × 4GB @ 1600 MHz).

Numerical accuracy validation

Speedup benefits of parallelization are meaningless if the simulation results are not

reproducible and reasonably accurate, numerically. To verify this, the resulting data

from each of the four parallel cases are superimposed to confirm numerical precision

of the each parallel simulation case (see Figures 5.11(a),5.11(b),5.11(c),and 5.11(d)).

Initial input parameters for the simulation are given in table 5.5. Figure 5.11(a) shows

that the average diameter linearly rises due to the combined effects of liquid binder

addition and aggregation, offsetting consolidation and breakage. Both particle number

and porosity distribution (Figures 5.11(b) and 5.11(c)) is limited to the 0 - 100µm

size class by the end of the short simulation period (t = 20 sec), while the increase in

total volume (Figure 5.11(d)) at each time step is very minimal due to gradual liquid

binder addition into the system. It is evident that the results from each parallel version

conforms numerically to the results of the sequential version (1 worker) showing that

51

computational accuracy was not compromised during distributed execution.

0 5 10 15 20 25
83

84

85

86

87

88

89

Time (sec)

A
ve

ra
ge

 D
ia

m
et

er
 (µ

m
)

1 worker
2 workers
4 workers
8 workers(local)
8 workers(distributed)

(a) Particle average diameter vs time

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size (µm)

N
or

m
al

iz
ed

 n
um

be
r

fr
eq

ue
nc

y

1 worker
2 workers
4 workers
8 workers(local)
8 workers(distributed)

(b) Number frequency vs particle size

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Size (µm)

P
or

os
ity

1 worker
2 workers
4 workers
8 workers(local)
8 workers(distributed)

(c) Particle porosity vs particle size

0 5 10 15 20 25

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
x 10

−28

Time (sec)

T
ot

al
 v

ol
um

e
(m

3)

1 worker
2 workers
4 workers
8 workers(local)
8 workers(distributed)

(d) Total volume of particles vs time

Figure 5.11 Comparison of temporal evolution of particle physical properties for a sequential
and parallel PBM code will cell average, Grid size=15

Performance evaluation

The most direct metric for measuring parallel performance is the speedup factor, and

is generally represented as the ratio of serial execution time to parallel execution time

(Equation 5.3). The speedup ratios thus calculated were plotted versus number of

workers. In Figure 5.12, speedup is shown for a simulation that was run on a single

CPU making use of 1, 2, 4, and 8 labs. These 8 labs were initiated on 8 threads

present in the quad-core CPU (4 cores X 2 threads each) with the matlabpool open

command. Another linearly rising plot in the same figure highlights the improvement

in speedup after using 8 distributed workers running on 2 nodes over 8 labs on a single

52

node. This comparison serves to show why assigning tasks to cores (equivalent to

workers) provides better performance than assigning the same number of tasks to labs

(equivalent to threads). This is not unexpected since memory transfer overheads for

inter-thread communication are much higher than for cores.55 A speedup of 3.79 was

achieved with 8 labs on a single CPU (an improvement of 94.7%), which is very close

to the theoretical maximum speedup possible i.e 4 times (corresponding to 4 cores).

On a distributed system, this performance increase is pushed even higher with a peak

speedup of 6.21 times on 8 workers (77.61% improvement). The ideal speedup line

shown in both figures indicates the theoretical maximum for each worker pool set and

is equal to the number of physical cores (workers) available. It must be kept in mind

that there are almost always some statements in a parallel algorithm that cannot be

parallelized, and have to be executed serially on one worker. This serial fraction (f)

limits the maximum speedup attainable with a certain pool of workers (n), given by

equation 5.5, also known as Amdahl’s law.89

S(n) =
n

1 + (n− 1)f
(5.5)

The maximum speedup according to Amdahl is calculated for each parallel case and

plotted in Figure 5.12. From the graph it is clear that the observed speedup factor line

is initially in proximity with the maximum speedup line, but gradually diverges as the

number of workers increase. This leads us to the issue of scalability, a property of cluster

systems exhibiting linearly proportional increase in performance of the parallel algo-

rithm with corresponding increase in system size (i.e. addition of more processors).90

Several metrics have been proposed to synthetically quantify scalability, and due to the

pre-determined nature of the initial problem size, the fixed serial work per processor

approach based on efficiency was adopted, and the resulting speedup is termed scaled

speedup. It relies on the problem size (number of bins in a grid) remaining constant

even as the number of processors are increased. Only if the memory overheads associ-

ated with distributed execution rise linearly as a function of n, and parallel execution

time (Tn) keeps on decreasing, will the algorithm be considered scalable. Efficiency

53

(equation 5.4), in its fundamental form is defined as the fraction of time that workers

actually take to perform computations, and is expanded in equation 5.6.

En =
Ts

Tn × n
=

S(n)

n
× 100 (5.6)

where Ts is the serial execution time. A more descriptive definition of efficiency may

be given as:91

En =
tcW

nTn
=

tcW

tcW + T0(n,W)
(5.7)

where En is efficiency of the system size n; T0(n,W) the total overhead of the dis-

tributed system; tc the average execution time per operation in the architecture and is

a constant; W is the problem size, which translates to processor work; and tcW is the

serial computing time (Ts) of an algorithm. T0(n,W) is calculated as:

T0 = pTn − Ts (5.8)

Since tc is a constant and depends on the underlying architecture itself, it can be calcu-

lated from processor specifications. We used a Intel Core i7 ‘Sandybridge’ CPU which

maintained a 3.512 GHz clock during the simulations i.e, 3.512 × 109 cycles/second.

In the Sandybridge architecture, 4 floating point operations (flops) can be computed

per clock cycle, which allows us to calculate the maximum theoretical flops that can

be processed in a second (v): 1 core × 4 flops/core/cycle × 3.512 ×109 cycles/sec =

14.046 gigaflops/sec; therefore the time required to compute 1 flop, tc is 7.119 ×10−11

seconds. Using this information we can determine the serial work W from equation

5.7. Parallel work Wn is defined as:

Wn = n× Tn × v (5.9)

See table 5.2 for the calculated values of efficiency, parallel overhead and processor

work. Extracting the expressions for Ts and Tn from equations 5.7 and 5.9 respectively

54

Table 5.2 Table of performance evaluation metrics for the parallel 3-D PBM simulation with
cell averaging

Workers T0(sec) En Wn (flops)

1 – 1 2.149× 1014 (serial work, W)

2 919.3 0.9433 2.278× 1014

4 3405.9 0.8179 2.627× 1014

8(local) 16992.1 0.47 4.536× 1014

8(distributed) 4409.3 0.776 2.768× 1014

and combining them with equation 5.6 yields: En = W
Wn

. It can be inferred that En

cannot exceed 1 and addition of workers beyond n does not increase Sn if parallel work

Wn exceeds the serial work W . From table 5.2, it is apparent that parallel work is in-

deed consistently greater than serial work for increasing worker counts, supporting this

observation. Even increasing the number of workers to infinity only results in bringing

down efficiency closer to zero (refer equation 5.6). Therefore, for constant-problem sized

scaling, the speedup does not continue to increase with the increasing number of pro-

cessors, but tends to saturate or peak at a certain system size, a principle apparent from

the trajectory of the speedup curve (Figure 5.12). Thus the 3-D granulation population

balance algorithm cannot be perfectly scalable for a fixed-size problem. According to

Amdahl, even with an infinite number of processors the maximum speedup for a code

is restricted to 1/f, the inverse of its serial fraction, which yields a value of 83.33 times

for our simulation. This implies that utilizing more than 84 workers will not produce

any additional improvement in performance. Even this limit is virtually impossible to

reach, as Amdahl’s equation does not take into account memory transfer overheads,

effects due to improper load balancing and synchronization, all of which become more

dominant as the number of workers increase. Moreover, to remain scalable, Wn must

be a function of the number of processors, n, to ensure that parallel overhead T0 does

not grow faster than n rises.91 This is where another metric ,the overhead ratio, proves

useful for testing the performance of our parallel algorithm with additional workers.

This concept is introduced in the next section, followed by an analysis of this ratio for

both 3-D and 4-D granulation codes with a view to compare scalabilities.

55

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of workers, n

S
pe

ed
up

 r
at

io
,

S
(n

)

Using threads
Using cores
Maximum speedup(Amdahls law)
Ideal speedup

Figure 5.12 Comparision of speedup using a 8 threads on a single CPU, 8 cores on 2 nodes, and
maximum speedup as predicted by Amdahl’s law. The dashed line represents the theoretical
upper bound for speedup and is equal to the number of available workers.

5.5 Distributed execution of 4-D PBM code with breakage and cell

averaging

Profiler analysis

The serial version of the 4 dimensional population balance model code was built fol-

lowing the procedure described in chapter 4. The initial grid size was set to 8 along

each dimension, with a process run time of 20 seconds in order to keep actual execution

time within a feasible range sufficient for comparison. After debugging, some sections

were vectorized to partially reduce the overall execution time and concentrate burden-

some computations on aggregation and breakage. Using the MATLAB profiler utility,

a breakdown of the time spent calculating each statement was obtained and the results

charted (Figure 5.13). Once again, it is clear that aggregation and its associated calls

are the main bottlenecks in the code: Solid, liquid and gas phase fraction relocation

into adjoining bins using cell-average take the most time, followed by formation due

to aggregation. Aggregation-induced depletion consumes nearly 10% of the total run

time, while breakage and its associated calls took relatively much lesser time to com-

pute. The second solid component (‘solid 2’) present in the initial distribution adds

56

further computational complexity to our 4D PBM code as it introduces another pair

of for-loops to cover the entire grid range. In all, there are eight nested for-loops

accounting for the integral terms (Equation 2.14) making it the candidate of choice

for parallelism via loop slicing. The outer loop enclosing the aggregation and breakage

functions was sliced in accordance with Equation 4.13 to ensure data-parallel execution

on 8 workers.

Solid 1 fraction relocation

(aggregation)

14.7%

Solid 2 fraction relocation

(aggregation)

14.7%

Gas fraction relocation

(aggregation)

14.5%

Liquid fraction

relocation(aggregation)

14.5%

formation(Aggregation)

12.5%

All other statements

29.1%

Figure 5.13 Piechart representation of MATLAB’s profiler results for a serial version of the
4D granulation population balance code run on a single worker.

Numerical accuracy validation

To confirm numerical precision of the parallel simulation results for a 4-D PB code, a

more accurate set of initial parameters was used (see Table 5.5) instead of those for

profiling and performance analysis. This was done to validate the effectiveness of our

parallel model with approximately realistic parameters. In addition, the results were

compared for only 2 cases - 1 and 4 workers - due to our trial version of the MDCS

toolbox expiring soon after. Results from each case were directly superimposed as in

the case of the 3-D model to check for consistency of numerical precision (see Figures

5.14(a),5.14(b),5.14(c), and 5.14(d)). By visual inspection it is evident that the data for

57

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

A
ve

ra
ge

 d
ia

m
et

er
 (µ

m
)

Time (sec)

1 worker
4 workers

(a) Evolution of average diameter of a particle
over time

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

A
ve

ra
ge

 c
om

po
si

tio
n

(%
)

Time (sec)

1 worker
4 workers

(b) Average composition distribution of solid
component 1 (s1)

0 100 200 300 400 500 600 700 800 9001000
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 n
um

be
r

fr
eq

ue
nc

y

Size (µm)

1 worker
4 workers

(c) Evolution of total volume of particles over
time

0 100 200 300 400 500 600 700 800 9001000
0

5

10

15

20

A
ve

ra
ge

 p
or

os
ity

 (
%

)

Size (µm)

(d) Average porosity distribution of a particle

Figure 5.14 Comparison of temporal evolution of particle physical properties for a 4-D se-
quential and parallel PBM code will cell average, Grid size=15

58

granule properties in the 4 worker parallel case is entirely identical to the data from the

serial version (1 worker), confirming that computational accuracy was not compromised

during distributed execution. Figure 5.14(a) shows the evolution of particle diameter

over time. It linearly rises due to the combined effects of liquid binder addition and

aggregation, offsetting consolidation and breakage phenomena. This brought up the

average diameter from under 100 µm to around 500 µm. Distribution of the average

composition of solid component 1 (s1) remains constant (Figure 5.14(b)) because of

the conservation of mass with respect to s1 in the system. Particle size distribution

after granulation, weighted by volume and normalized, is presented in Figure 5.14(c).

Average particle porosity is directly affected by the volumes of liquid and gas in a

particle, and the distribution is plotted in Figure 5.14(d).

Performance evaluation

The speedup ratios were calculated from Equation 5.3 and plotted against the number

of workers. As shown for the 3D case, running on a distributed system produced

better performance as opposed to execution on threads, since distributed workers can

create local arrays simultaneously, saving transfer time.53 Hence, there was no need

to perform a speedup comparison between cores and threads for this particular case.

Eight workers were initiated on 8 cores divided across two nodes (4 cores per node) with

the matlabpool open command. Each core on the INTEL Core i7 2600 CPU has a

theoretical SSE (Streaming SIMD Extensions) rate of approximately 14 gigaflops per sec

as computed in the previous section. Figure 5.15 shows the speedup for a simulation

run on the distributed system making use of 1, 2, 4, and 8 workers. Initial input

parameters for the simulation are given in table5.4. The linearly rising plot shows a peak

speedup of 5.6 times over a single worker, using 8 workers. The maximum permissible

speedup as calculated according to Amdahl’s law is roughly 7.6 times considering a non-

parallelizable, serial fraction of 0.8% of the total execution time. The ideal speedup

line shown in both figures indicates the theoretical maximum for each worker pool

set and is equal to the number of physical cores (workers) available. The observed

speedup line diverges from the theoretical ideal and Amdahls’s speedup much more

59

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of workers, n

S
pe

ed
up

 r
at

io
,

S
(n

)

Using cores
Maximum speedup(Amdahls law)
Ideal speedup

Figure 5.15 Comparision of speedup with 8 workers on 2 nodes, and maximum speedup
as predicted by Amdahl’s law. The dashed line represents the theoretical upper bound for
speedup and is equal to the number of available workers.

rapidly than for the 3-D granulation simulation case, a trend evident in the speedup

plot (Figure 5.15). As a result, we expect the scalability of the algorithm to naturally

decrease as more nodes housing CPUs of the same specifications are added. To quantify

scalability, we once again rely on the fixed-problem size scaled approach since the

initial 4D grid size will remain the same even when the available pool of workers are

increased. The algorithm is considered scalable only if the overheads associated with

data transfer between the job manager and workers rise only linearly as a function of the

number of workers n.92 While discussing scalability, an aspect to be considered is the

scalability of an algorithm with respect to underlying hardware. Algorithms scalable

on one architecture need not necessarily scale well on others, and hence deploying the

application on heterogeneous cluster systems may prove to be counter-productive. Since

our distributed system is homogeneous in terms of underlying hardware, we can safely

assume that if the algorithm is scalable on the existing system, it will also scale well

on additional workers of the exact same specifications. An important measure of such

an algorithm’s efficiency is its overhead ratio - a ratio of its communication overhead

to parallel execution time (Equation 5.10). The lower the ratio, the more each worker

will perform effectively. Typically, this ratio increases swiftly with increasing number

60

of workers but decreases as the problem size grows.90 For the specific case of the 4-D

granulation simulation, this intrinsic property of a parallel algorithm presents the best

means of explaining the accelerated decline in speedup as worker counts increase.

Overhead ratio, Ø =
Parallel overhead

Parallel execution time
=

T0

Tn
(5.10)

Table 5.3 displays the calculated values for efficiency, parallel overhead in seconds and

processor work in flops. From the relation En = W
Wn

, it can be inferred that En cannot

exceed 1 and addition of workers beyond n will not increase speedup if parallel work,

Wn, remains greater than the serial work, W . From the table it is evident that parallel

work is indeed consistently greater than serial work for increasing worker counts, proving

that perfect scalability is unattainable for the 4-D PBM. Moreover, Wn must remain a

function of the number of processors, n, to ensure that parallel overhead T0 does not

grow faster than n rises.91 To observe this trend, we plot the overhead ratio against

the number of workers, as seen in Figure 5.16(b). A relatively linear rise of parallel

overhead with the number of processors is observed for 8 workers accompanied by the

inevitable decrease in processor efficiency. On comparison with the 3-D granulation

simulation (Figure 5.16(a)), we find the overhead ratio is approximately 3 times lesser

than for the 4-D code across 8 workers. The most apparent reason for this difference is

that the time required for distribution of 4 dimensional arrays across workers is much

higher than for 3 dimensional data arrays. Larger, multi-dimensional arrays have a

higher memory requirement during data creation and modification, entailing longer

read/write times over the network. Thus, we can classify this 4-D PBM simulation

Table 5.3 Table of performance evaluation metrics for the parallel 4-D population balance
model simulation

Workers T0(sec) En Wn (flops)

1 – 1 7.24× 1013 (serial work, W)

2 749.9 0.865 8.36× 1013

4 1207.1 0.81 8.94× 1013

8 2131.05 0.708 1.02× 1014

61

as a case of memory-constrained parallelism. This additional access overhead alone

consumes a significant portion of useful processor time especially as the input grid

size increases, bringing down processor efficiency drastically. This is apparent from

the nearly 10% drop in efficiency from using a 3-D to 4-D grid for 8 workers (see

Figures 5.16(a) and 5.16(b)). Following Amdahl’s hypothesis, an infinite number of

processors will only yield a maximum speedup of 1/f, the serial fraction, which yields

a value of 125 times for the 4-D case, implying that utilizing more than 125 workers

will not produce any additional improvement in performance. Nevertheless, this value

is a gross overestimate as explained in the previous section, and more so for the 4-D

case as Amdahl’s equation does not take into account memory transfer overheads, the

performance-deteriorating effects of which have just been demonstrated.

1 2 3 4 5 6 7 8
0

1

2

O
ve

rh
ea

d
ra

tio

Number of workers n
1 2 3 4 5 6 7 8

0.6

0.8

1

P
ro

ce
ss

or
 e

ffi
ci

en
cy

(a) Variation of overhead ratio with processor
efficiency as the number of workers are in-
creased for the 3-D population balance sim-
ulation

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10
O

ve
rh

ea
d

ra
tio

Number of workers n
1 2 3 4 5 6 7 8

0.6

0.8

1

P
ro

ce
ss

or
 e

ffi
ci

en
cy

(b) Variation of overhead ratio with processor
efficiency as the number of workers are in-
creased for the 4-D population balance sim-
ulation

Figure 5.16 Comparison of overhead curves for 3-D and 4-D distributed PBM code with cell
averaging

62

Table 5.4 Process parameters and initial conditions used in 3-D PBM simulation.

Parameter name Value

ρsolid 2700 kg/m3

ρliquid 1000 kg/m3

ρgas 1.2 kg/m3

Granulation time 20 s
Time step size 0.4 s

Volume of first bin, solid component s1,1 1× 10−13 m3

Volume of first bin, liquid binder l1 2× 10−13 m3

Volume of first bin, gas g1 1× 10−13 m3

Total number of bins of in each dimension 16
Initial particle count F in bin (1, 1, 1) 1× 10−15 mol

Aggregation constant β0 8× 1014 mol−1s−1

Aggregation constant α 1
Aggregation constant δ 1
Breakage constant P1 7× 10−11 m−1

Breakage constant P2 1.3 m−1

Shear rate Gshear 60 s−1

Consolidation rate constant c 1× 10−21 s−1

Minimum porosity ϵmin 0.2
cbinder 0.1

Liquid binder spray rate V̇spray 5× 10−3 m3/s

63

Table 5.5 Process parameters and initial conditions used in 4-D PBM simulation.

Parameter name Value

Granulation time 900 s
Time step size 0.5 s

Volume of first bin, solid component 1 s1,1 1× 10−13 m3

Volume of first bin, solid component 2 s2,1 1× 10−13 m3

Volume of first bin, liquid binder l1 2× 10−14 m3

Volume of first bin, gas g1 1× 10−14 m3

Total number of bins of in each dimension 8
Initial particle count F in bin (1, 2, 1, 2) 3× 10−13 mol
Initial particle count F in bin (2, 1, 1, 2) 7× 10−13 mol

Aggregation constant β0 1× 1019 mol−1s−1

Aggregation constant α 1
Aggregation constant δ 1
Breakage constant P1 1 m−1

Breakage constant P2 1
Shear rate Gshear 85 s−1

Consolidation rate constant c 1× 10−7 s−1

Minimum porosity ϵmin 0.1
Liquid binder spray interval 120 s < t < 360 s

Liquid binder spray rate V̇spray 25 mL/s

64

Chapter 6

Conclusions and recommendations for future work

Parallel computing has been a subject of intense study for several years, but its applica-

tion to particulate processes described by population balance models has been limited

to a few studies in crystallization26.25 This study has explained the development and

implementation of parallel algorithms describing granulation behaviour on 3 hardware

platforms: a multi-core CPU; a many-core GPU; and a dual-node distributed comput-

ing system. The procedure followed herein for parallelizing PBMs involved three steps:

locating portions of the code that are most time-consuming with tools like MATLAB

profiler; applying one of the two paradigms for parallelism as appropriate; and finally,

optimizing for minimal variable transfer overhead. We have proposed here, two methods

of efficiently parallelizing the integro-differential PBEs that make up the aggregation

term for a multi-core CPU, either using loop-slicing, or alternately, via a brute force,

fork-join method in conjunction with MATLAB’s Parallel Computing Toolbox. This

approach to parallelism provides the easiest approach to reducing simulation times.

The results show a speedup of 2.6 times with 8 labs over a sequential code.

For the first time, a method describing the utility of GPU computing for PBMs is

demonstrated. The JACKET toolbox for MATLAB was utilized to efficiently parallelize

for-loops across the 240 cores on a single NVIDIA GTX 280 card. Although the

performance advantage of the GPU over CPU did not seem encouraging initially, due

to lower clock frequency and on-board memory and JACKET’s own restrictions, a closer

analysis of speedup ratios revealed that the GPU has potential to outclass the CPU at

very large grid sizes, especially given the significant advances made in its architecture

with each new generation. Thirdly, a relatively more complex code, integrating several

mechanisms, was parallelized with the SPMD keyword, yielding a superlinear speedup of

65

15.5 times.

For distributed computing, two processes were modeled based on population balance

principles: a single-component granulation process represented by a three-dimensional

PBM; and a multi-component granulation process represented by a four-dimensional

PBM. Both models incorporated a breakage mechanism and a cell averaging technique

to re-allocate daughter particles in adjacent bins. Profiling both codes showed that the

cell average technique consumed the most time and needed to be parallelized. Following

a distributed shared memory approach to achieve data parallelism, the models were

parallelized with the loop slicing technique. The MATLAB toolboxes utilized for this

purpose were the Parallel Computing Toolbox in conjunction with the Distributed

Computing Server. The results show a good speedup of 6.2 times with 8 workers for

the 3-D PBM code while the 4-D code was slightly less efficient with a speedup factor

of 5.7 times.

It was shown that perfect scalability is theoretically impossible to attain for either

PBM, since fixed-problem size scaling does not allow for 100% per processor efficiency,

which in turn is due to serial work being consistently overwhelmed by parallel work.

By Amdahl’s law, even with an infinite number of processors, the speedup is limited by

the fraction of algorithm that has not been parallelized. With the aid of the overhead

ratio we compared scalabilities of the two algorithms on our homogeneous distributed

system. While the overhead ratio rose linearly with respect to the number of workers in

both cases, the performance is clearly better for the 3-D model which also displayed a

higher processor efficiency with 8 workers. This is is usually a good indication that the

3-D algorithm will scale better than the 4-D, with a lower execution time. The 3-D code

is predicted to yield no speedup benefit beyond 83 workers, whereas the speedup for

4-D code will be restricted to less than 125 workers. Amdahl’s equation does not take

into account memory transfer overheads, improper load balancing and synchronization,

the effects of which becomes more dominant as the number of workers increase. In

all parallel cases, simulation results were shown to be equal to the sequential versions’

confirming that numerical precision was not compromised during distributed execution.

66

Future work will include building better parallel algorithms with efficient task

scheduling for greater speedup, utilizing next-generation Tesla architecture-based NVIDIA

GPUs. To further reduce transfer overheads in both the parallel and distributed algo-

rithms, memory pre-allocation may be done using distributed data types and employing

MPI-based constructs like labSend and labReceive for better memory read/write pat-

terns. This will also offset the higher demand for system RAM that comes with utilizing

larger arrays and/or increasing the dimensionality of the system.

GPU computing is still in its infancy with regard to MATLAB, primarily due to

limited function support. With advances in many-core architectures - NVIDIA’s Ke-

pler, GPUs integrated into CPUs (AMD Fusion, INTEL HD 3000), newer devices like

INTEL’s Xeon Phi coprocessor - and their support for MATLAB increases, simulation

times can be further reduced. This is due to the fact that once parallelized, PB models

are well suited for execution on massively parallel architectures. Methods developed

for CPU and GPU parallel computing can also be easily extended to other particulate

processes described by PBMs such as crystallization, milling, blending and polymeriza-

tion, with potential to aid computer-aided modeling and simulation, offering invaluable

economic benefit to industries that deal with such processes.

67

Bibliography

1. Chen, C.-C. and Mathias, P. M. AIChE Journal 48(2), 194–200 (2002).

2. Schmeisser, M., Heisen, B. C., Luettich, M., Busche, B., Hauer, F., Koske, T.,

Knauber, K.-H., and Stark, H. Acta Crystallographica Section D 65(7), 659–671

Jul (2009).

3. Wilkinson, B. and Allen, M. Parallel Programming: Techniques and Applications

Using Networked Workstations and Parallel Computers. Prentice Hall, 1 edition,

(1999).

4. Cundall, P. A. and Strack, O. D. L. Geotechnique 29(1), 47–65 (1979).

5. Matthews, H., Miller, S. M., and Rawlings, J. B. Powder Technology 88(3), 227–235

(1996).

6. Ramachandran, R., Immanuel, C. D., Stepanek, F., Litster, J. D., and Doyle III,

F. J. Chemical Engineering Research and Design 87(4), 598 – 614 (2009).

7. Muzzio, F. J., Shinbrot, T., and Glasser, B. J. Powder Technology 124(1-2), 1–7

(2002).

8. Iveson, S. M., Litster, J. D., H., K., and Ennis, B. J. Powder Technology 117(1),

3 – 39 (2001).

9. Gantt, J. A., Cameron, I. T., Litster, J. D., and Gatzke, E. P. Powder Technology

170(2), 53 – 63 (2006).

10. Immanuel, C. D. and Doyle III, F. J. Powder Technology 156(2-3), 213 – 225

(2005).

68

11. Poon, J. M.-H., Immanuel, C. D., Doyle III, F. J., and Litster, J. D. Chemical

Engineering Science 63(5), 1315–1329 (2008).

12. Dosta, M., Heinrich, S., and Werther, J. Powder Technology 204, 71–82 (2010).

13. Ramachandran, R. and Barton, P. I. Chemical Engineering Science 65(16), 4884 –

4893 (2010).

14. Ramachandran, R. and Chaudhury, A. Chemical Engineering Research & Design

Accepted, doi:10.1016/j.cherd.2011.10.022 (2011).

15. Ramachandran, R., Ansari, M. A., Chaudhury, A., Kapadia, A., Prakash,

A. V., and Stepanek, F. Chemical Engineering Science Accepted, doi:

10.1016/j.ces.2011.11.045 (2011).

16. Gantt, J. A. and Gatzke, E. P. AIChE Journal 52(9), 3067–3077 (2006).

17. Stepanek, F., Rajniak, P., Mancinelli, C., Chern, R., and Ramachandran, R. Pow-

der Technology 189(2), 376 – 384 (2009).

18. Rajniak, P., Stepanek, F., Dhanasekharan, K., Fan, R., Mancinelli, C., and Chern,

R. T. Powder Technology 189, 190–231 (2009).

19. Freireich, B., Li, J., Litster, J., and Wassgren, C. Chemical Engineering Science

66(16), 3592 – 3604 (2011).

20. Ramachandran, R., Arjunan, J., Chaudhury, A., and Ierapetritou, M. Journal of

Pharmaceutical Innovation 6, 249–263 (2011).

21. Raeth, P. and Chaves, J. In High Performance Computing Modernization Program

Users Group Conference (HPCMP-UGC), 2010 DoD, 438–441, June (2010).

22. Panuganti, R. A High Productivity Framework for Parallel Data Intensive Com-

puting in MATLAB. PhD thesis, The Ohio State University, (2009).

23. Swinburne, R. January (2011).

69

24. Zhang, Y., Mueller, F., Cui, X., and Potok, T. Journal of Parallel and Distributed

Computing 71(2), 211–224 (2011).

25. Gunawan, R., Fusman, I., and Braatz, R. D. AIChE Journal 54(6), 1449–1458

(2008).

26. Ganesan, S. and Tobiska, L. Chemical Engineering Science (2011).

27. Salman, A. D., Seville, J. P., and Hounslow, M. Granulation, volume 11 of Handbook

of Powder Technology Series. Elsevier Science, (2007).

28. Kapur, P. C. and Fuerstenau, D. W. Industrial & Engineering Chemistry Process

Design and Development 8(1), 56–62 (1969).

29. Annapragada, A. and Neilly, J. Powder Technology 89, 83 – 84 October (1996).

30. Iveson, S. M. Powder Technology, Control of Particulate Processess IV 124(3), 219

– 229 (2002).

31. Verkoeijen, D., Pouw, G. A., Meesters, G. M. H., and Scarlett, B. Chemical Engi-

neering Science 57(12), 2287–2303 (2002).

32. Ramkrishna, D. Population balances: Theory an applications to particulate systems

engineering. Elsevier Science, (2000).

33. Adetayo, A. A. and Ennis, B. J. AIChE Journal 43(4), 927–934 (1997).

34. Hounslow, M. KONA 16, 179–193 (1998).

35. Sastry, K. V. International Journal of Mineral Processing 2(2), 187 – 203 (1975).

36. Madec, L., Falk, L., and Plasari, E. Powder Technology 130(13), 147 – 153 (2003).

37. Pinto, M. A., Immanuel, C. D., and Doyle, F. J. Computers and Chemical Engi-

neering 31(10), 1242 – 1256 (2007).

38. Bilgili, E. and Scarlett, B. Powder Technology 153(1), 59 – 71 (2005).

39. Pandya, J. and Spielman, L. Chemical Engineering Science 38(12), 1983 – 1992

(1983).

70

40. Lee, K., Kim, T., and Rajniak, P. Chemical Engineering Science 63, 1293–1303

(2008).

41. Marshall, C. L., Rajniak, P., and Matsoukas, T. Chemical Engineering Research

and Design In Press, Corrected Proof, – (2010).

42. Jr., C. L. M., Rajniak, P., and Matsoukas, T. Powder Technology (0), – (2012).

43. Moore, G. E. Electron. Mag. 38(8), 114–117 (1965).

44. University of Notre Dame (2012, M. . Online, May (2012).

45. ORACLE. Technical report, Oracle Corporation, 500 Oracle Parkway, Redwood

Shores, CA 94065, May (2010).

46. SPEC. Third Quarter 2011 SPEC CPU2006 Results. Standard Performance Eval-

uation Corporation, 7001 Heritage Village Plaza, Suite 225, Gainesville, VA 20155,

September (2011).

47. Grama, A., Gupta, A., Karypis, G., and Kumar, V. Introduction to Parallel Com-

puting. Addison Wesley, 2 edition, January (2003).

48. Foster, I. Designing and building parallel programs. Addison Wesley, 1 edition,

January (1995).

49. Barney, B. August (2011).

50. Gao, W. and Kemao, Q. Optics and Lasers in Engineering (2011).

51. Duncan, R. Computer 23, 5 – 16 February (1990).

52. Siewert, S. Technical report, Atrato, Inc., december (2009).

53. MathWorks. Parallel Computing Toolbox: Product description. MathWorks Inc., 3

Apple Hill Drive, Natick, MA 01760-2098, USA, September (2011). Online.

54. Luszczek, P. International Journal of High Performance Computing Applications

23, 277–283 (2009).

71

55. Warg, F. Techniques to Reduce Thread-Level Speculation Overhead. PhD thesis,

Department of Computer Science and Engineering, Chalmers University Of Tech-

nology, (2006).

56. Gropp, W., Lusk, E., and Skjellum, A. Using MPI : Portable programming with the

Message-Passing Interface. Massachusetts Institute of Technology press, 2 edition,

(1999).

57. Peleg, D. Distributed Computing: A Locality-Sensitive Approach. Society for In-

dustrial Mathematics, 1 edition, (1987).

58. Chaudhuri, M., Heinrich, M., Holt, C., Singh, J., Rothberg, E., and Hennessy, J.

Computers, IEEE Transactions on 52(7), 862 – 880 jul (2003).

59. Protic, J., Tomasevic, M., and Milutinovic, V. Parallel Distributed Technology:

Systems Applications, IEEE 4(2), 63 –71 summer (1996).

60. Itzkovitz, A., Niv, N., and Schuster, A. Journal of Systems and Software 55(1), 19

– 32 (2000).

61. Bohm, A. and Kanne, C.-C. Information Systems 36(3), 565 – 578 (2011).

¡ce:title¿Special Issue on WISE 2009 - Web Information Systems Engineer-

ing¡/ce:title¿.

62. Kirk, D. B. and Hwu, W. W. Programming massively parallel processors: A hands

on approach. Morgan Kaufmann, (2010).

63. Nvidia corporation. NVIDIA GeForce GTX 200 GPU Architectural Overview:

Second-Generation Unified GPU Architecture for Visual Computing, (2008).

64. NVIDIA Corporation. NVIDIA CUDA Programming Guide, version 3.0 edition,

February (2010).

65. Chafi, H., Sujeeth, A. K., Brown, K. J., Lee, H., Atreya, A. R., and Olukotun, K.

In Proceedings of the 16th ACM symposium on Principles and practice of parallel

programming, PPoPP ’11, 35–46 (ACM, New York, NY, USA, 2011).

72

66. Bouchez, F. Technical report, Indian Institute of science, Bangalore, (2010).

67. Accelereyes. November (2011).

68. Iveson, S. M., Litster, J. D., Hapgood, K., and Ennis, B. J. Powder Technology

117(12), 3 – 39 (2001).

69. Iveson, S. M. Chemical Engineering Science 56(6), 2215 – 2220 (2001).

70. Iveson, S. M. and Litster, J. D. AIChE Journal 44(7), 1510–1518 (1998).

71. Tu, W.-D., Ingram, A., Seville, J., and Hsiau, S.-S. Chemical Engineering Journal

145(3), 505 – 513 (2009).

72. Kumar, J. Numerical approximations of population balance equations in particulate

systems. PhD thesis, (2006).

73. Kumar, J., Peglow, M., Warnecke, G., and Heinrich, S. Powder Technology 182(1),

81 – 104 (2008).

74. Kumar, S. and Ramkrishna, D. Chemical Engineering Science 51(8), 1333 – 1342

(1996).

75. Kumar, S. and Ramkrishna, D. Chemical Engineering Science 51(8), 1311 – 1332

(1996).

76. Chaudhury, A., Kapadia, A., V., A., Barrasso, D., and Ramachandran, R. Com-

puters and Chemical Engineering , Manuscript submitted. (2012).

77. Barrasso, D. and Ramachandran, R. Chemical Engineering Science 80(0), 380 –

392 (2012).

78. Immanuel, C. D. and Doyle III, F. J. Chemical Engineering Science 58(16), 3681

– 3698 (2003).

79. Flynn, M. J. IEEE Trans. Comput. 21(9), 948–960 September (1972).

80. Klockner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A. Parallel

Computing 911, 1–24 (2011).

73

81. Refianti, R., Refianti, R., and Hasta, D. In International Journal of Advanced

Computer Science and Applications (IJACSA), volume 2, 99–107, (2011).

82. Haines, M. D. Distributed runtime support for task nd data management. PhD

thesis, Colorado State University, (1993).

83. Haveraaen, M. SCIENTIFIC PROGRAMMING 8, 231–246 (2000).

84. Zhang, Y., Mueller, F., Cui, X., and Potok, T. Journal of Parallel and Distributed

Computing 71(2), 211–224 (2011).

85. Martin, M. M. K., Hill, M. D., and Sorin, D. J. Technical report, Duke University,

Department of ECE, August (2011).

86. Brightwell, R., Camp, W., Cole, B., Debenedictis, E., Leland, R., Tomkins, J., and

Maccabe, A. B. Concurrency and Computation: Practice and Experience 17(10),

1217 – 1316 (2005).

87. Akl, S. G. Journal of Supercomputing 29, 89–111 (2001).

88. Gustafson, J. L., Montry, G. R., Benner, R. E., and Gear, C. W. SIAM Journal

on Scientific and Statistical Computing 9, 609–638 (1988).

89. Amdahl, G. M. In Proceedings of the April 18-20, 1967, spring joint computer

conference, AFIPS ’67 (Spring), 483–485 (ACM, New York, NY, USA, 1967).

90. Wu, X. and Li, W. Journal of Systems Architecture 44(34), 189 – 205 (1998).

91. Gupta, A., Gupta, A., and Kumar, V. Technical report, Department of Computer

Science, University of Minnesota, (1993).

92. Heath, M. T. Lecture at University of Illinois at Urbana-Champaign.

74

Vita

Anuj Varghese Prakash

2013 M. S. in Chemical and Biochemical Engineering, Rutgers University

2009 B. Tech. in Biotechnology and Biochemical Engineering from Kerala Uni-
versity, India

2005 Graduated from M.E.S Indian School, Qatar.

Publications

1. A quantitative assessment of the influence of primary particle size polydispersity
on granule inhomogeneity. Rohit Ramachandran, Mansoor A. Ansari, Anwesha
Chaudhury, Avi Kapadia, Anuj V. Prakash, Frantisek Stepanek. Chemical Engi-
neering Science. March 26, 2012

2. Parallel simulation of population balance model-based particulate processes us-
ing multi-core CPUs and GPUs. Anuj V. Prakash, Anwesha Chaudhury, Rohit
Ramachandran. Chemical Engineering Science (Under Review)

3. Simulation of population balance model-based particulate processes on a dis-
tributed computing system. Anuj V. Prakash, Anwesha Chaudhury, Dana Bar-
rasso, Rohit Ramachandran. Journal of Parallel and Distributed Computing (Un-
der Review)

4. An Extended Cell-average Technique for Multi-Dimensional Population Balance
Models describing Aggregation and Breakage. Anwesha Chaudhury, Avi Kapa-
dia, Anuj V. Prakash, Dana Barrasso, Rohit Ramachandran. Computers and
Chemical Engineering (Under Review)

