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ABSTRACT OF THE THESIS 

Learning API mappings for programming platforms. 

 
by YOGESH PADMANABAN 

 

Thesis Director: Dr. Vinod Ganapathy 
 

Software developers often need to port applications written for a source platform to a target 

platform.  One of the key tasks here is to find matching API calls in the target platform for the 

given API calls in the source platform. This task involves exhaustive reading in target platform 

API (Application Programming Interface) documentation to identify API methods corresponding 

to the given API methods of the source platform. We introduce an approach to the problem of 

inferring mapping between the APIs of a source and target platforms. It is constructed based on 

independently developed applications on source and target platforms performing similar 

functionality. We observe that in building these applications, developers exercised knowledge of 

the corresponding APIs. We develop two dynamic analysis techniques to systematically harvest 

this knowledge and infer likely mappings between the Graphical APIs of JavaME and Android 

Graphical platform.  

Rosetta Mapper: A tool which provides a ranked list of target API methods or method sequences 

that likely map to each source API method or method sequences.  

Rosetta Classifier: A supervised learning tool which classifies whether the given mapping between 

source API and target API is true or false using support vector machines. 
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Terms and Acronyms 

 

API:  Application Programming Interface is a protocol intended to be used as an interface by 

software components to communicate with each other. 

API Mapping: It is a notion of expressing functional equivalence of API methods from the 

source platform to the target platform.  

Tracing: The process of recording API methods executed by an application is called Tracing.  

Trace files: The logs of API methods obtained by tracing the functionally similar applications run 

on the source and the target platforms. 

SVM: Support Vector Machines. 
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Chapter 1 

Introduction 

1.1 Objective 

Software developers often wish to make their applications available on a wide variety of 

programming platforms or would want to migrate their application to a new programming 

platform. The motives could be performance, more/richer features or business requirements. 

Hence, given a code base in the source platform, the programmer needs to port them to a target 

platform. The process of porting programming code from one system to another is called as Code 

Migration. Code migration is a tedious, error prone and highly labor intensive process. Consider 

an example: suppose that we wish to port a Java2 Platform Mobile Edition (JavaME)-based game 

to an Android-powered device. Among other tasks, we must modify the game to use Android’s 

API [14] (the target platform) instead of JavaME’s API [25] (the source platform). Unfortunately, 

the process of identifying the API methods in the target platform that implements the same 

functionality corresponding to that of a source platform API method is cumbersome. We must 

manually examine the SDKs of the source and target APIs to determine the right method (or 

sequence of methods) to use. One way to address this problem is to populate a database of 

mappings between the APIs of the source and target platforms. In this database, each source API 

method (or method sequence) is mapped to a target API method (or method sequence) that 

implements its functionality. Such a database would make the code migration simpler. 
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1.2 Background 

Code Migration:  

It is the porting of programming code from one system to another. The requirement might be 

portability, performance, and/or more features. Source code conversion is inherently a tedious, 

error-prone and labor intensive process. There are three distinct levels of code migration with 

increasing complexity, cost and risk. Simple migration involves the movement of one 

programming language to a newer version (version migration). A second, more complicated level 

of migration involves moving to a different programming language (language migration). 

Migrating to an entirely new platform or operating system is the most complex type of migration. 

Version Migration:  

Simple movement from one version of a language to a newer version for more efficiency or 

features. Here the basic structure of the programming constructs usually do not change. In many 

cases, the old code would actually work, but new routines or modularization can be improved by 

retooling the code to fit the nature of the new language. Example  Lucene search engine 2.9 to 

3.0, Java 1.5 to Java 5 Transition. Different JRE major versions may implement different versions 

of Unicode, which will change the way some parts of Lucene treat the text. Java 1.4 uses Unicode 

3.0, while Java 5 uses Unicode 4.0. Thus the packages SimpleAnalyzer, StopAnalyzer, 

LetterTokenizer, LowerCaseFilter, may return different results, while package StandardAnalyzer 

will return the same results under Java5 as it did under Java 1.4.[36] 

Language Migration:  

This involves moving to completely new programming language. This type of code migration 

often requires that programmers learn an entirely new language, or new programmers be brought 

in to assist with the migration. At times a transcompiler or a source to source compiler can be 

used but still the automated translation has to go through manual verification. For example, 
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earlier C++ was transcompiled to C with the cfront transcompiler by Bjarne Stroutstrup himself 

[38]. Another example is PHP transcompiled to C++ using HipHop at Facebook. [37] 

Platform Migration:  

The most complex code migration is migrating to an entirely new platform and/or operating 

system. This not only changes the programming language, but also the machine code behind the 

language. While most modern programming languages shield the programmer from lower level 

code, knowledge of the OS and how it operates is essential to producing code that is efficient and 

executes as expected. Example Building ORACLE database for the windows platform from the 

Linux platform involves almost creating entire new database from scratch. Porting applications 

from windows Lumia phone to IPhone of IOS platform would involve translation of 

functionalities from visual C++ to Objective C and the matching the capabilities of Windows 

phone with an IPhone.  

Regardless of the type of code migration, the approach should be the same for code migration. 

The migration team or programmer should break the source code into each module, function and 

sub-routine into its purpose and construct the design for the source program. We map the 

functionalities and classes to the corresponding functions and APIs in the target platform. We 

modify the design for the new code. Generate the new code structure. We translate the Functional 

Logic using the mappings between the functionalities produced. We rewrite the architectural, 

paradigm, programming language differences that exists between the platforms. We then evaluate 

the conversion exhaustively using testing tools, manual verification and repeat the process to 

ensure quality.  
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1.3 J2ObjC 

Consider the transcompiler tool J2ObjC (migration from Java to Objective C of IOS platform 

transcompiler developed by Google [39]. The conversion typically involves the following steps. 

1. Rewriter: rewrites the Java code that doesn’t have an Objective-C equivalent, such as static 

variables. 

2. Autoboxer: adds code to box numeric primitive values and unbox numeric Wrapper classes. 

(int to Integer class) 

3. IOS Type Converter:  Converts types that are directly mapped from Java to Foundation Classes 

(Microsoft Foundation Class library [40]). 

4. IOS Method Converter: maps method declarations and invocations to equivalent Foundation 

class methods. 

5. Initialization Normalizer: moves initializer statements into constructors and class initialization 

methods. 

6.  Anonymous Class Converter: modifies anonymous classes to be inner classes, which includes 

fields for the final variables referenced by that class. 

7. Inner Class converter: pulls inner classes out to be top-level classes in the same compilation 

unit. 

8. Destructor generator: adds dealloc or finalize methods, depending on Garbage Collection 

options. 

This thesis is all about step 4 above. Namely mapping API methods between two programming 

platforms. We consider the JavaME and Android platforms and focus on Graphics API to perform 

our experiments.       
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1.4 Problem in Hand  

A developer of a gaming app, for instance, may wish to make his app available on smart phones 

and tablets manufactured by various vendors, on desktops. The key hurdle that he faces in doing 

so is to port his app to these software and hardware platforms. Why is porting software a difficult 

problem? Consider an example: suppose that we wish to port a Java2 Platform Mobile Edition 

(JavaME)-based game to an Android-powered device. Among other tasks, we must modify the 

game to use Android’s API [14] (the target platform) instead of JavaME’s API [25] (the source 

platform). Unfortunately, the process of identifying the API methods in the target platform that 

implement the same functionality corresponding to that of a source platform API method is 

cumbersome. We must manually examine the SDKs of the source and target APIs to determine 

the right method (or sequence of methods) to use. To add complexity, there could be multiple 

ways in which a source API method can be implemented using the target’s API methods. For 

example, the            method in JavaME’s graphics API, which fills a specified rectangle with 

color, can be implemented using either one of these two sequences of methods in Android’s 

graphics API:                       or as 

                                                         (we have omitted class names 

and the parameters to these method calls). One way to address this problem is to populate a 

database of mappings between the APIs of the source and target platforms. In this database, each 

source API method (or method sequence) is mapped to a target API method (or method sequence) 

that implements its functionality. The database could contain multiple mappings (possibly 

ranked) for each source API method in cases where its functionality can be implemented in 

different ways by the target API. The mapping database significantly eases our task. We need 

only consider the mappings in this database to find suitable target API methods to replace a 

source API method, instead of painstakingly poring over the SDKs and their documentation. Such 

mapping databases do exist, but only for a few source/target API pairs (e.g., Android, iOS and 
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Symbian Qt to Windows 7 [5] and iOS to Qt [3]), and they are populated by domain experts well-

versed in the source and target APIs. 

1.5 Contribution  

We present an approach to automate the creation of mapping databases for any given source or 

target APIs. To bootstrap our approach, we rely on the availability of a few similar application 

pairs on the source and target platform. A source platform application   and a target platform 

application , possibly developed independently by different sets of programmers, constitute a 

similar application pair if they implement the same high-level functionality. 

Our approach builds upon the observation that in implementing S and T, their developers 

exercised knowledge about the APIs of the corresponding platforms.  We provide a systematic 

way to harvest this knowledge into a mapping database, which can then benefit other developers 

porting applications from the source to the target platform. Our approach works by recording 

traces of S and T executing similar tasks, structurally analyzing these traces, and extracting likely 

mappings using probabilistic inference.  

In one method, each mapping output by our approach is associated with a probability, which 

indicates the likelihood of the mapping being true. The intuition is that the more evidence we see 

of a mapping, e.g., the same pair of API methods being used across many traces to implement the 

same functionality, the higher the likelihood of the mapping. The output of our approach is a 

ranked list of mappings inferred for each source API method.  

In the second method, the idea is to train a classifier to classify whether a mapping of API method 

A of source platform is possible or not to an API method B of the target platform. This classifier 

is built upon heuristics collected from the trace files, (different from before). Classifier can also 

act like a validation method to verify whether the given mapping between source API A and 

target API B is true or false. As with any machine learning statistic tools the more traces and 
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better heuristics, the better the classifier. We demonstrate our first approach by building a 

prototype tool called Rosetta Mapper to infer likely mappings between the JavaME graphics API 

[25] and the Android graphics API [14]. We chose JavaME and Android because both platforms 

use the same language (Java) for application development; however, it may also be possible to 

apply Rosetta Mapper to the case where the source and target APIs use different languages for 

application development. We evaluated Rosetta with a set of twenty-one independently-

developed JavaME/ Android application pairs. Rosetta mapper was able to find at least one valid 

mapping within the top ten ranked results for 71% of the JavaME API methods observed in our 

traces. Further, for 42% of JavaME API methods, the top-ranked result was a valid mapping. We 

evaluated the Rosetta classifier with ten independently-developed JavaME/ Android application 

pairs. We obtained training data for 7000 mappings with manual verification. We fed the training 

data to the classifier and obtained the classification with 86% recall and 54% accuracy. 
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Chapter 2 

 

Approach Overview 

We present the workflow of our approach (Figure. 1), tailored to JavaME and Android as the 

source and target platforms, respectively. We only provide informal intuitions here, and defer the 

details to chapter IV. The workflow has four steps.

 

Figure 1. Rosetta 

2.1 The Collection of Similar Application pairs 

 The first step is to gather a database of applications in both the source and target platform. For 

each source application in the database, we require a target application that implements the same 

high level functionality. We have focused on graphical APIs and hence the applications are 

simply games on these platforms. For example, if we have a TicTacToe game for JavaME, we 

should locate a TicTacToe game for Android that is as functionally and visually (GUI-wise) 

similar to the JavaME game as possible. Given the popularity of modern mobile platforms, and 

the desire of end-users to use similar applications across platforms, such games of same names 
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are easy to come by. But to get visually similar games from android and j2me platform, 

downloading the proper apk/jar files were quite a challenge. Given that the games were 

independently developed for these two platforms, there were differences in functionality. For 

example, the Android game may offer more menu options or has ads or smoother play that are 

different from those of the JavaME game which are not sophisticated enough. We shall discuss 

how we overcome some of these irregularities in coming sections. 

2.2 Execution and Collection of traces 

    In this step, we take each application pair, and execute them in similar ways, i.e., we provide 

inputs to exercise similar functionality and ultimately same output in these applications. Or more 

precisely, we give inputs to each of the application run so as to have the same output on the 

screen. This is the place where we ensure the equality of the execution of the application pairs. 

We have several executions per application pair. We choose the ones, where the output matched 

the most visually.  

As we do so, we also log a trace of API calls invoked by the applications. This gives a trace pair, 

consisting of one trace each for the source and target applications. Fig. 3 presents a snippet from a 

trace pair that we gathered for TicTacToe games on the JavaME and Android platforms. They 

were collected by starting the game, waiting for the screen to display a grid of squares, and 

exiting. Since the traces in each pair were obtained by exercising similar functionality in the 

source and target applications, these traces must contain some API calls that can be mapped to 

each other. This is the key intuition underlying our approach. Of course, an application can be 

invoked in many ways, and in this step, we collect up to 5 visually similar trace pairs for each 

application pair. The output of this step is a database of functionally equivalent trace pairs (TraceS 

, TraceT) across all of the application pairs collected in Step 1. In addition to inherent differences 

in the platforms, these applications are created by independent developers and we had to struggle 
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through several randomness of these application pairs, and their executions in order to obtain 

traces pairs of reasonable visual equivalence. 

 2.3 Trace Analysis and inference 

In this step we analyze each trace pair to infer likely API mappings implied by the pair. The main 

idea behind the inference algorithm is that given two traces which perform a common task, the 

components of the traces namely the source and the target API calls can be mapped to each other 

if they exhibit similar values over a number of attributes.  Our attributes are determined by the 

structure of the traces. 

Mapping: A pair of source API and a target API, which would have potentially equal 

functionality with the source API. A mapping is true if their functionality is found to be similar. 

Otherwise it is a false mapping. 

For every such mapping, we take a vector of values for these attributes and feed them to the 

inference engine. We cast the attribute vectors as inputs to a probabilistic inference algorithm (   

IV). The output of this step is a probability for each pair of source and target API calls          

that indicates the likelihood of     mapping to      (denoted here as A        ). In addition to 

“one on one” source to target API mapping, we also try to derive “many to one” mappings. Here 

we had tried to accomplish 2 to 1 and 1 to 2 mappings. Our algorithm can also infer mappings  

between method sequences (e.g.,                            ). 
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Figure 2. Rosetta Mapper 
 

2.3.1 Rosetta Mapper 

We now discuss the attributes used by our approach using our running example. Our aim is to 

find likely mappings for the JavaME calls             and            . For simplicity, we 

restrict our discussion to the snippets of the traces shown in Fig. 3. In reality, our analysis 

considers the entire trace. 

Call frequency:   

Our algorithm works like a reverse engineering process. If      in the source API maps to the      

in the target API, then the frequency with which these method calls occur in functionally-similar 

trace pairs might also match. The trace pairs may differ in the absolute number of method calls 

that they contain, so we focus on the relative count of each method call, which is the raw count of 

the number of times that a method is called, normalized by trace length. Using this attribute, the 

following API mappings appear likely,                                     

                                  , while the others appear unlikely. 
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Figure 3. Snippets from traces of similar executions of tic-tac-toe   
 

We can extend this notion for mapping of one to two api calls. Thus our approach works on 

method sequences as well, and infers that                                    is a 

mapping. 

Call position:   

The location of method calls in a trace pair provides further information to determine likely 

mappings. Why? The reason is simple.  If the API calls tend to do the same task, the introductory 

calls such as an init() call would likely be found at the top 10% of the trace and the conclusive 

calls such as exit API calls would occupy the last 10% of the trace. The sequence of the output is 

ensured to be the same by means of visual verification and consequently the string of API calls of 

both platforms which performs similar output should also have positional similarity. Since the 
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traces exercise the same application functionality, method calls that map to each other must 

appear at “similar” positions in the trace pair. This is a sample to explain the notion of positional 

similarity actual positional information is of the dimension of 1% to 100%. Meaning the traces is 

divided into 100 parts from 1-100 denoting the actual portions of the trace files. 

Call context 

This factor would measure how the API calls interacts with other API calls in a trace file. The 

context in which a method call     appears is defined to be the set of API methods that appears in 

its vicinity in the execution trace. (e.g., within a pre-set threshold distance, preceding or following 

     in the trace). This measures how the interaction is between the any other call     with the 

given API call     of the source platform. We measure similar metric for the target platform. We 

see how the method     shows similarity to the corresponding     of the target platform in 

interaction with other calls of the trace. Why does this attribute make sense?  If the API call     

is predominantly paired up with many sibling API calls of the source trace, then it is natural to 

expect the target API call     to exhibit similar patterns of pairing up with corresponding siblings 

of the target API calls. We can capture this property by means of obtaining the relative 

frequencies of every other call in the trace in the vicinity.  For example,            calls appear 

in the preceding context of            calls in the JavaME trace (using a threshold distance of 2 

calls). Likewise,               and             appear in the preceding context of             

in the Android trace. In fact, the sequence                           appears in the preceding 

context of the first           . From this, we can infer that if                        holds, 

then the following mapping                                      is likely to hold.  

Method names   

Obviously, the similar names implies the API calls are related to each other.  While trace 

structure, as captured by the attributes above, contributes to inference, method (and class) names 
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also contain useful information about likely mappings. We use Levenshtein edit distance to 

compute the similarity of method names. The Levenshtein distance between two words is equal to 

the number of single-character edits required to change one word into the other. This metric 

matches how close the given two API calls are in terms of names. For example, the Levenshtein 

distance between "kitten" and "sitting" is 3, since the following three edits change one into the 

other, and there is no way to do it with fewer than three edits: 

1. kitten → sitten (substitution of 's' for 'k')  

2. sitten → sittin (substitution of 'i' for 'e')  

3. sittin → sitting (insertion of 'g' at the end).  

Using this attribute, for instance, we can lend credence to the belief that             maps to 

            . It is also important to remember that the method names are not sufficient enough 

to find the mapping themselves as it might be tempting to believe so. For example            is 

the closest match to            in terms of their names, yet they perform completely different 

functionality.  

The above metrics are obtained for every trace pair and we compute the corresponding mappings 

between the possible source and the target APIs present in the trace pair and rank them according 

their probabilities of mapping. We use user defined thresholds to limit the number of results that 

are output and verify the obtained results manually. 

Combining inferences across traces:  

Note that this inference in Step 3 was based upon analyzing a single trace pair. In the final step, 

we combine inferences across multiple traces. During combination, we weight inferences 

obtained from individual trace pair analysis using the confidence of that inference. Intuitively, 

more data we have about an inferred mapping from a trace pair, the stronger our confidence in 
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that inference. Thus, our confidence in mapping           obtained from a trace pair where 

these calls occur several times is stronger than the same mapping obtained from a trace pair 

where these calls occur infrequently. We use this heuristic to combine inferences across trace 

pairs. 

2.3.2 Rosetta Classifier 

We want to see if it is possible to automate the classification of a mapping between source API 

and the target API method to be true or false. While the ground truth is still manual verification 

(involves going through the API documentation of the source and target platform), we build a 

classifier which classifies the given mapping as true or not by using supervised learning 

technique. The classifier is based on set of values which describes the nature of the mapping 

called feature vectors, which in turn is based on the structural information of the trace files. Every 

element (mapping) in the dataset is defined by a feature vector. Training data is the set of 

mappings between the source and the target API methods with corresponding feature vectors 

which are known to be either true or false. We shall now discuss the feature vector for an 

element. We have constructed the features which are similar to the factors in factor graph 

approach. While the factor graph obtains the computes factors; obtains mappings from every pair 

of traces individually and combines the results across traces, the Rosetta classifier would compute  

features across traces pair and obtain mappings from all of the trace pairs collectively. Thus 

whenever we have a new pair of traces, we need run the generate newer set of the features and 

train the classifier with better set of training data, to obtain better set of mappings. 
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Figure 4. Rosetta Classifier 
 

Features: 

In machine learning and pattern recognition, a feature is an individual measurable heuristic 

property of a phenomenon being observed. Here the phenomenon is the mapping between the 

source API method and the target API method. Choosing discriminating and independent features 

is key to any pattern recognition algorithm being successful in classification. The set of features 

of a given data instance is often grouped into a feature vector. The reason for doing this is that the 

vector can be treated mathematically. For example, many algorithms compute a score for 

classifying an instance into a particular category by linearly combining a feature vector with a 

vector of weights, using a linear predictor function. In character recognition, features may include 

horizontal and vertical profiles, number of internal holes, stroke detection and many others. In 

speech recognition, features for recognizing phonemes can include noise ratios, length of sounds, 

relative power, filter matches and many others. In spam detection algorithms, features may 

include whether certain email headers are present or absent, whether they are well formed, what 
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language the email appears to be, the grammatical correctness of the text, Markovian frequency 

analysis and many others. 

Mutual Information 

In probability theory and information theory, the mutual information of two random variables   

and   is a quantity that measures the mutual dependence of the two random variables. Mutual 

information measures the information that   and   share: it measures how much knowing one of 

these variables reduces uncertainty about the other. For example, if         are independent, 

then knowing   does not give any information about   and vice versa, so their mutual 

information is zero. At the other extreme, if   and   are identical then all information conveyed 

by   is shared with  : knowing   determines the value of   and vice versa. As a result, in the 

case of identity the mutual information is the same as the uncertainty contained in          alone, 

namely the entropy of          clearly if X and Y are identical they have equal entropy).  

Formally, the mutual information of two discrete random variables   and   can be defined as: 

       ∑ ∑              ( 
          

            
 )

          

 

Where,        is the joint probability distribution function of   and  , and       and      are 

the marginal probability distribution functions of   and   respectively. 

1. Mutual information on frequency 

In our approach we consider the random variables X and Y to be relative frequency of the J2ME 

and Android API methods in their corresponding traces. Thus the random variable relative 

frequency takes the possible values of {0.00 to 0.99} in each of the traces. We are measuring the 

amount of information shared by the relative frequency of the API calls of the J2ME and 

Android, how much information do they share. In other words, how does knowing the relative 
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frequency of the j2me method can affect the uncertainty of the relative occurrence of the android 

API method. The more they share the information amongst each other on the relative frequency, 

it is possible that they are good candidates for a true mapping. 

2. Mutual information on position 

Similar to the information sharing on relative frequency on the source and the target API calls, 

their sharing of information in their position in the trace files also could possibly mean that they 

are potentially true mapping. Thus we compute the mutual information on the position of the API 

calls. We obtain the mutual information of the J2ME and Android calls for 100 different positions 

across the available traces. These are similar to the position and the frequency factors we had 

earlier. 

3. String edit distance 

While trace structure, as captured by the attributes above, contributes to inference, method (and 

class) names also contain useful information about likely mappings. We use Levenshtein edit 

distance to compute the similarity of method names. The Levenshtein distance between two 

words is equal to the number of single-character edits required to change one word into the other. 

This metric matches how close the given two API calls are in terms of names. We simply use the 

name factor once again to generate features for the classifier. 

4. Digrams  

This feature would gauge how the API calls interacts with other API calls in the trace file. This is 

similar to the context factor of the factor graph approach except that instead of the vicinity 

parameter we look for     at the entire trace file for the context of a given API method      We 

measure the relative frequency of every other API call     in trace file along with the given API 

call       We also calculate similarly for the target platform. Now for each mapping between the 
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source and the target platform we have the above features defining the feature vector. These 

feature vectors act as the training data for a classifier built using supervised learning technique 

namely support vector machines. 
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Chapter 3 

Framework to Represent and Infer Mappings 

We now describe the framework used to represent and infer likely mappings between APIs. We 

restrict ourselves to identifying likely mappings between methods of the source and target APIs.  

3.1 API Mapping 

It is a notion of expressing functional equivalence of API methods from the source platform to the 

target platform. We do not claim the equivalence of the API calls. But rather we suggest that “for 

an API method of the source platform, we could try to use this API method of the target platform 

in order to perform the target program functionality”. It is a subjective and subtle notion rather 

than an objective or a declarative way of saying that “method A of source platform maps to 

method α of the target platform” plainly. Basically, it is all in the programmer’s hand and his 

choice of implementing the functional calls. We are simply here to suggest a possible 

replacement API methods for given set of source API methods from the program of the source 

platform, which would ease the creation of program performing similar functionality in the target 

platform.  

We do not currently consider the problem of determining mappings between arguments to these 

methods; that is a related problem that can be addressed using parameter recommendation 

systems (e.g., [33]). we also do not take into account of the return value or its data type of the API 

methods.  We do not account for the transfer of values between the API calls. There are taint 

based technologies, techniques to obtain the flow of data [41]. 

The following is the Framework for Inferring likely mappings between source and the target 

APIs. Let                                         denote the sets of methods in the source 

and target APIs, respectively. Our goal is to determine which methods in T implement the same 

functionality on the target platform as each method in S on the source platform. To denote 
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mappings, our framework considers a set of Boolean variables,   
  where                . The 

Boolean variable   
  is set to true if the method call      maps to the method call    , and false  

otherwise. This framework extends naturally to the case where a method (or sequence of 

methods) in S can be implemented with a method sequence in T. For example, suppose that the 

method     is implemented using the sequence          in the target. We can denote this by 

assigning true to the Boolean variable    
   . Likewise, we can also denote cases where the 

functionality of a sequence of methods          in the source platform is implemented using a 

method      on the target platform by setting the Boolean variable   
   to true . Although our 

framework theoretically supports inference of mappings between arbitrary length method 

sequences (e.g.,      
      = true ), for performance reasons we configured Rosetta to only infer 

mappings between method sequences of length two.  We approach the problem of inferring API 

mappings by studying the structure of execution traces of similar applications on the source and 

target platforms. We use the trace attributes informally discussed before to deduce API mappings. 

Our approach is inherently probabilistic. It cannot conclude whether a call      definitively maps 

to a call    ; rather it determines the likelihood of the mapping. Thus, it infers  

  [  
      ]for each Boolean variable   

 . As it observes more evidence of the mapping   
   

being true, it assigns a higher value to this probability. Therefore, our framework treats each 

Boolean variable   
  as a random variable, and our probabilistic inference algorithm determines 

the probability distributions of these random variables. Each application trace has several method 

calls, and the inference algorithm must leverage the structure of these traces to determine likely 

mappings. The inference algorithm draws conclusions not just about individual random variables, 

but also about how they are related. 
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 For example, consider a trace snippet Trace  

                                of an application from the source API, and a snippet Trace  

                               from the corresponding execution of a similar application on 

the target. Suppose also that these are the only occurrences of                        in Trace   

and Trace    , respectively, and that these execution traces have approximately the same number 

of method calls in total. By just observing these snippets, and relying on the frequency of 3 

method calls, each of the following cases is a possibility:   
      ,   

      ,   
       

       
      . However, if   

      , then because of the relative placement of method calls 

in these traces (i.e., call context), it is unlikely that   
       . Now suppose that by observing 

more execution traces, we are able to obtain more evidence that   
       , then we can 

leverage the structure of this pair of traces to deduce that   
   is unlikely to be a mapping. 

Intuitively, the structure of the trace allows us to propagate the belief that if   
  is true, then   

   

is false. Our probabilistic inference algorithm uses factor graphs [18], [31] for belief propagation. 

3.2 Factor Graphs 

In probability theory and its applications, a factor graph is a particular type of graphical model, 

with applications in Bayesian inference, which enables efficient computation of marginal 

distributions through the sum-product algorithm. Belief propagation, also known as sum-

product is a message passing algorithm for performing inference on graphical models, such as 

Bayesian networks and Markov random fields. It calculates the marginal distribution for each 

unobserved node, conditional on any observed nodes. In our problem the marginal distribution 

represents the probability of a mapping being true, while the factors represents the attributes we 

calculated from the trace files. Now given these attributes values to the factor graph, we get the 

probability of a mapping being true as the output through sum-product algorithm, which basically 

computes the marginal distribution of the for each observed nodes (the mapping represented by 
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means of Squares in the diagram) conditioned on any observed nodes (the attributes represented 

by means of circles in the diagram). Let X                be a set of Boolean random 

variables and J             be a joint probability distribution over these random variables. J 

assigns a probability to each assignment of truth values to the random variables in X. Given such 

a joint probability distribution, it is natural to ask what the values of the marginal probabilities 

       of each random variable    in   are.  

Marginal probabilities are defined as 

       ∑              
 
             [           ] .  

That is, they calculate the probability distribution of    alone by summing up J(: : :) over all 

possible assignments to the other random variables.        allows us to compute   

    [          ]. Factor graphs allow efficient computation of marginal probabilities from joint 

probability distributions when the joint distribution can be expressed as a product of factors, i.e.,  

J             ∏          

Each fi is a factor, and is a function of some subset of variables     . For example, consider a 

probability distribution J       . Let this distribution depend on three factors       , g       

and h   , i.e., J        = f      g       h   ,  

Each of the factors are defined as follows: 

                           , 0.1 otherwise.  

                                 otherwise.  

                           otherwise.  
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Because J is a probability distribution, the product J       is in fact                        , 

where Z is a normalization constant introduced to ensure that the probabilities sum up to 1. In the 

rest of thesis, the normalization constant is implied, and will not be shown explicitly.   

A factor graph denotes such joint probabilities pictorially as a bipartite graph with two kinds of 

nodes, function nodes and variable nodes. Each function node corresponds to a factor, while each 

variable node corresponds to a random variable. A function node has outgoing edges to each of 

the variable nodes over which it operates. The figure alongside depicts the factor graph of J. The 

AI community has devised efficient solvers [18], [31] that operate over such graphical models to 

determine marginal probabilities of individual random variables. We do not discuss the details of 

these solvers, since we just use them in a black box fashion. Factor graphs cleanly represent how 

the random variables are related to each other, and can influence the overall probability 

distribution. One of the key characteristics of factor graphs, which led us to use them in our work, 

is that they were designed for belief propagation, i.e., in transmitting beliefs about the probability 

distribution of one random variable to determine the distribution of another. To illustrate this, 

consider the probability distribution J       discussed above.   can be interpreted as denoting 

the probabilities of the outcomes of an underlying Boolean formula for various assignments to 

         . Under this interpretation, we could say that the Boolean formula evaluates to true for 

those assignments to           for which the value of J        is above a certain threshold, e.g., 

if the threshold is 0.6, and                      is 0.7, we say that the formula is true under this 

assignment. Now suppose that y is likely to be false, i.e.,   [         ] is above a threshold. 

We are asked to find under what conditions on x and z the Boolean formula still evaluates to true, 

i.e.,            is above the threshold. From the definitions of the factors          , we know 

that   obtains values that are likely to exceed the threshold                           and 

         . Given that y is likely to be      , these factors lead us to deduce that x is also likely to 

be       (giving        a high value) and   is likely to be true (giving                  high 
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values), thereby pushing the value of   above the threshold. Intuitively, the factor graph allows us 

to propagate the belief about the value of y into beliefs about the value of        . §IV shows 

how we cast the problem of inferring likely API mappings using factor graphs, thereby allowing 

us to transmit beliefs about one mapping into beliefs about others. 

3.2 Supervised Learning 

We now discuss the machine learning technique which used by the Rosetta Classifier to classify 

the mapping into true or false mapping based on the feature vector obtained for each mapping. 

Supervised learning is the machine learning task of inferring a function from labeled training 

data. The training data consist of a set of training examples. In supervised learning, each example 

is a pair consisting of an input object (typically a vector) and a desired output value (also called 

the supervisory signal). A supervised learning algorithm analyzes the training data and produces 

an inferred function, which is called a classifier (if the output is discrete, see classification) or a 

regression function (if the output is continuous, see regression). The inferred function should 

predict the correct output value for any valid input object. This requires the learning algorithm to 

generalize from the training data to the testing data and to the unseen in a "reasonable" way. 

In order to solve a given problem of supervised learning, one has to perform the following steps: 

1. Determine the type of training examples. Before doing anything else, the user should 

decide what kind of data is to be used as a training set. In the case of handwriting 

analysis, for example, this might be a single handwritten character, an entire handwritten 

word, or an entire line of handwriting. In our approach, we have the mapping between the 

source and the target api methods and the corresponding features. 

2. Gather a training set. A set of input objects is gathered and corresponding outputs are also 

gathered, either from human experts or from measurements. 
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3. Determine the input feature representation of the learned function. The accuracy of the 

learned function depends strongly on how the input object is represented. Typically, the 

input object is transformed into a feature vector, which contains a number of features that 

are descriptive of the object. Determine the structure of the learned function and 

corresponding learning algorithm. For example, the engineer may choose to use support 

vector machines or decision trees. 

4. Complete the design. Run the learning algorithm on the gathered training set. Some 

supervised learning algorithms require the user to determine certain control parameters. 

These parameters may be adjusted by optimizing performance on a subset (called a 

validation set) of the training set, or via cross-validation. 

5. Evaluate the accuracy of the learned function. After parameter adjustment and learning, 

the performance of the resulting function should be measured on a test set that is separate 

from the training set. 

  In our approach, the input is the feature vector for the mapping. The output is the decision 

whether the mapping is true or false. Training data consists of these feature vectors and known 

decision (true or false) which are obtained manually by searching the API documentation of the 

source and the target platform. 

We have training data consisting of the feature vector and the corresponding known decision. We 

look at the technique which we use to build a classifier which trains on this training data and 

predict the mapping to be true or false for a new feature vector.  
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3.2.1 Support Vector Machines 

In machine learning, support vector machines (SVMs, also support vector networks) are 

supervised learning models with associated learning algorithms that analyze data and recognize 

patterns, used for classification and regression analysis. The basic SVM takes a set of input data 

and predicts, for each given input, which of two possible classes forms the output, making it a 

non-probabilistic binary linear classifier. Given a set of training examples, each marked as 

belonging to one of two categories, an SVM training algorithm builds a model that assigns new 

examples into one category or the other. An SVM model is a representation of the examples as 

points in space, mapped so that the examples of the separate categories are divided by a clear gap 

that is as wide as possible. New examples are then mapped into that same space and predicted to 

belong to a category based on which side of the gap they fall on. In addition to performing linear 

classification, SVMs can efficiently perform non-linear classification using what is called the 

kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. The idea 

behind SVMs is to make use of a (nonlinear) mapping function φ that transforms data in input 

space to data in feature space in such a way as to render a problem linearly separable. The SVM 

then automatically discovers the optimal separating hyperplane (which, when mapped back into 

input space via φ− , can be a complex decision surface). A support vector machine constructs a 

hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can be used for 

classification, regression, or other tasks. Intuitively, a good separation is achieved by the 

hyperplane that has the largest distance to the nearest training data point of any class (so-called 

functional margin), since in general the larger the margin the lower the generalization error of the 

classifier.  

 Given some training data  , a set of n points of the form: 
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Where    is either 1 or −1, indicating the class to which the point   belongs. Each    is a p-

dimensional real vector. We want to find the maximum-margin hyperplane that divides the points 

having      from those having      . Any hyperplane can be written as the set of points 

  satisfying 

         

Where “ ” denotes the dot product and   the normal vector to the hyperplane. The parameter 

 ‖ ‖⁄  determines the offset of the hyperplane from the origin along the normal vector  .  If the 

training data are linearly separable, we can select two hyperplanes in a way that they separate the 

data and there are no points between them, and then try to maximize their distance. The region 

bounded by them is called "the margin". These hyperplanes can be described by the equations 

         &                     

By using geometry, we find the distance between these two hyperplanes is  ‖ ‖⁄ , so we want to 

minimize‖ ‖. As we also have to prevent data points from falling into the margin, we add the 

following constraint: for each  either 

                                    

Or 

                                     

The optimization problem presented in the preceding section is difficult to solve because it 

depends on ‖ ‖, the norm of  , which involves a square root. 
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Figure 5. Classifiers of different margins 

H3 (green) doesn't separate the two classes. H1 (blue) does, with a small margin and H2 

(red) with the maximum margin. Filled circles are positive and hollow circles are 

negative. 

Fortunately it is possible to alter the equation by substituting ‖ ‖ with   
 

 
‖ ‖   (the factor of 1/2 

being used for mathematical convenience) without changing the solution (the minimum of the 

original and the modified equation have the same   and   ). This is a quadratic programming 

optimization problem.   
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Figure 6. Classifiers of maximum margins 

                  Samples on the margin are called the support vectors 

Minimize (in    ) 
 

 
‖ ‖  subject to (for any        )                

By introducing Lagrange multipliers α (a technique to solve constrained optimization problem), 

the previous constrained problem can be expressed as 

   
   

   
   

 {  
 

 
‖ ‖  ∑  [                ]

 

   

} 
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This problem can now be solved by standard quadratic programming techniques and 

programs.  The "stationary" Karush–Kuhn–Tucker condition implies that the solution can be 

expressed as a linear combination of the training vectors. 

  ∑      

 

   

  

Only a few    will be greater than zero. The corresponding    are exactly the support vectors, 

which lie on the margin and satisfy             . From this one can derive that the support 

vectors also satisfy  

           ⁄                                         

Writing the classification rule in its unconstrained dual form reveals that the maximum margin 

hyperplane and therefore the classification task is only a function of the support vectors, the 

training data that lie on the margin.  

Using the fact that   ‖ ‖      and substituting   ∑       
 
      one can show that the dual 

of the SVM reduces to the following optimization problem: 

Maximize (in   ) the Lagrange formula would look like: 

 ̃    ∑   
 

 
∑          

   
   

  ∑  

 

   

 
 

 
∑                

   

 

   

 

Subject to (for any           )  

      

and to the constraint from the minimization in   
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∑       

 

   

 

Here the kernel is defined by.  (     )        

  can be computed thanks to the    terms:      ∑       
 
      

   is the normal vector of the hyperplane which divides the given training set of data into two 

classes.    are the Lagrange multipliers used to minimize the distance between the hyperplane 

and the data points.    are the values of +1 or -1 or the binary classification output values.    are 

the input training data. This plane will tell whether the future points lie on the category 1 or -1. 

Basic idea of support vector machines is that it constructs an optimal hyperplane for linearly 

separable patterns of data. For nonlinear separation it transforms the coordinates into a new space 

by means a kernel function.  

The feature vector consists of the following array of values 

1. Mutual information on frequency,  

2. Mutual information on position.  

3. String edit distance  

4. Digram approach.  

5. Correlation coefficient among the frequency. 

The feature vector generated for the mapping in the dataset is plotted in a k dimensional 

Euclidean space, where k is the number of features considered. The mappings are divided into 

true or false based on the hyperplane created by the SVM. The hyperplane defines the boundary 



33 

 

  

 

beyond which the mappings are true thus corresponding to y=1 and subsequently false to y=-1 for 

the mapping before the boundary. The boundary is matured by training data so as make sure the 

margin (or the distance between the boundary and the nearest data point) is maximized. Now that 

the equation of the decision surface is found we can compute the nature of the future data points 

as positive or negative. Correspondingly the decision surface (hyperplane) can now classify new 

mapping with feature vector as true or false mapping. 

Kernel and SVM 

For non-linearly separable data points, they are translated into a new set of coordinates of higher 

dimensions. The translation from the coordinates of the feature space to this higher dimensional 

space is such that in this higher dimensional space the data points are linearly separable by means 

of a hyperplane. The translation is by means of a kernel function.  We won’t go in detail of the 

various types of kernels and their way of solving nonlinearly separable data classification. 

Consider the following set of data points in the 2D plot figure 7. It has linearly separable data 

{the data points which could be separated by means of a line}. Figure 8 shows how SM would 

classify it using a hyperplane and Support vectors. Figure 9 shows a nonlinearly separable data. 

We extrapolate the points to a 3D using the kernel function: 

                   [         ]  ⁄  .  We see a bunch of black dashes representing the 

hyperplane which separates the data points with max margin. 
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Figure 7. Linearly separable data points in 2D 

Sample linearly separable data points in 2D. Blue diamonds are positive examples and 

red squares are negative examples.

  

 

Figure 8. SVM with linearly separable data 

Using Support vectors (yellow) and the hyperplane decision surface. 
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Figure 9. Nonlinearly separable data 

 

 

 
Figure 10. SVM projects the data from 2D to 3D using kernel.  

                [         ]  ⁄  .  The “+1” and the “-1” represent the Z dimension 

coordinates. Look for the bunch of 8 black dashes. They represent the hyper plane which linearly 

separates the data points into positive and negative examples. Thus increasing the dimension of 
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the data using the kernel improves the ability of the classifier to come up with a linearly 

separating hyper plane. We use such kernels in our problem in order to classify our data points 

corresponding to the mappings described by the feature vectors into positive and negative 

examples or true and false mappings. 
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Chapter 4 

Experimental Setup for Rosetta 

 

We now describe in detail the Rosetta prototype, which currently infers mappings between the 

JavaME and Android graphics API. Specifically, we focus on the machinery that enables Steps 2-

4 discussed in chapter II. We choose graphical APIs for the Java and the Android Platform since: 

1. The visual verification of equal functionality of the given two application is relatively easy 

rather doing it computationally. 

2. We choose JavaME and Android platforms because Games of same names are easier to find in 

both the mobile platforms. 

4.1 Support Vector Machines 

To record execution traces, we instrumented JavaME programs via byte code rewriting. We used 

the ASM toolkit [9] to insert logging functionality that records the name of each method call (and 

class name), prior to invocation. During runtime, this result in a trace of all methods invoked. We 

then filter out just those methods that derive from the class javax/microedition/lcdui—the 

JavaME graphics API. In all, this API has 281 distinct methods. Rosetta infers mappings for those 

methods that appear in application traces. We did not employ bytecode rewriting for Android 

applications because of the lack of publicly-available tools to rewrite Android’s dex bytecode. 

Instead, we leveraged the Dalvik virtual machine (v2.1r1) to record the names of all methods 

invoked by an application. We record all method and class names, and then filter methods in the 

following classes :                                                    
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                                  . This API has 3,837 distinct methods. The difference 

in the sizes of these APIs illustrates in part the difficulties that a programmer manually porting  

an application would face. With this infrastructure, a Rosetta user can collect traces for a pair of 

similar applications on both platforms. As discussed in chapter II, the user must exercise similar 

functionality in both applications, thereby collecting a pair of traces that record this functionality. 

This process can be repeated multiple times for the same application, exercising different 

functionalities, thereby resulting in a database of trace pairs. Given similar games, they will likely 

have the same logic and similar GUIs on both applications. We simply performed the same 

moves on games in both platforms, avoiding situations that involve randomness where possible 

(e.g., choosing the two-user mode to avoid the computer picking moves at random). However, 

randomness is not always avoidable, e.g., some games only support user versus computer modes, 

and this randomness may manifest in the corresponding portions of the traces as well. Despite 

this, Rosetta infers high-quality mappings because its inference algorithm prioritizes method 

mappings that persist both across the entirety of each trace pair, and across multiple trace pairs. 

The games we had selected were simple board games with least amount of dynamic content 

possible. This way the moves and the actions are predictable and the corresponding moves can be 

performed on the other platform to obtain the trace files. 

4.2 Trace Analysis and Inference 

4.2.1 Rosetta Mapper 

In this step, Rosetta analyzes each trace pair collected in the previous step and draws inferences 

about likely API mappings implied by that trace pair. Recall from chapter III that we use a 

Boolean random variable   
  to denote a mapping between             (likewise    

  etc., for 

method sequences). In this step, Rosetta uses factor graphs to compute    [  
      ], for each 

such random variable, where M and m denote individual methods or method sequences from the 
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source and target APIs, respectively. The value of this probability determines the likelihood that 

the corresponding mapping holds.  

 

Figure 11. Algorithm 1 
 

The set of random variables   
  implicitly defines a joint probability distribution J over these 

random variables:  (  
    ,   

 , …,   
   ,   

 , …    
 ,    

 , …). As in chapter III, we can assign J a 

Boolean interpretation. That is, we treat   as a probability distribution that estimates the 

likelihood of an underlying Boolean formula being true, under various truth assignments to the 

random variables   
 ,   

 , etc. From this joint distribution, our goal is to find the probability 

distributions of the individual random variables. Under this Boolean interpretation, if 

  [  
      ] acquires a high value, it means that the Boolean formula underlying J is likely to 

be true if   
  is true, thereby leading us to conclude that     is likely to map to      Likewise, if  

  [  
      ] acquires a low value,     is unlikely to map to     .  
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 Figure 12. Algorithm 2, subroutines needed by Algorithm 1 
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The main challenge in directly realizing this intuition within an inference tool is that the Boolean 

formula underlying J is unknown (for if it were known, then any satisfying assignment to it would 

directly yield an API mapping!). As a result, the joint probability distribution J cannot be 

explicitly computed. However, the attributes described in §II determine the conditions that are 

likely to influence  .Thus, we formalize each of these attributes as factors, and estimate the joint 

probability distribution as the product of these factors. Of course, these factors are not 

comprehensive, i.e., there may be other factors that influence the value of  . Rosetta can naturally 

accommodate any new factors; they are simply treated as additional factors in the product, and 

passed to the factor graph solver. Rosetta’s trace analysis computes four families of factors, one 

each for the four attributes. It combines them and uses them for probabilistic inference of likely 

mappings as shown in Algorithm 1. 

1. Call frequency (ffreq) 

The intuition underlying this factor is that if M maps to m (where M and m are individual 

methods or method sequences), then the frequency with which they appear in functionally similar 

traces might match. Thus, we compute the relative count of M and m as the number of times that 

they appear, normalized by the corresponding trace length. We then use the ratio of relative 

counts of M and m to compute ffreq. This is described in the subroutine simCount, shown in 

Algorithm 2. 

2. Call position (fpos)  

We observed in our experiments that certain API methods and sequences appear only at specific 

positions in the trace. For example, API methods that initialize the screen or game state appear 

only at the beginning of the trace. To identify such methods and sequences, we use a similarity 

metric that determines the relative position of the appearance of the method call or call sequence 

in the trace, i.e., its offset from the beginning of the trace, normalized by the trace length. Of 
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course, there may be multiple appearances of the method call or sequence in the trace, so we 

average their relative positions. In this factor, we restrict ourselves only to calls and sequences 

that are localized in a certain portion of the trace, i.e., if the relative positions are not within one 

standard deviation of the average, this factor does not contribute positively or negatively to the 

likelihood of the mapping (undecided is a probability of 0.5). This is described in the subroutine 

simPos in Algorithm 2. 

3 Method names (fname)  

We use the names of methods in the source and target APIs to determine likely mappings. Unlike 

the other factors, which are determined by trace structure (i.e., program behavior), this is factor 

relies on a syntactic feature. The simName subroutine in Algorithm 2 uses a ratio based upon the 

Levenshtein edit distance, computed using a standard Python library [2]. This ratio ranges from 1 

for identical strings, to 0 for strings that do not have a common substring. simName only returns a 

valid ratio for individual methods; for sequences, it returns undecided. 

4 Call context (fctxt) 

 We define the context of a method call     in a trace as the set of method calls that appear in the 

vicinity of    . Likewise, the context of a sequence         is the set of method calls that appear 

in the vicinity of this sequence (if it exists in the trace). Considering context allows us to 

propagate beliefs about likely mappings. Recall the example presented in chapter III, where 

considering the frequency of the method calls              and     alone does not allow precise 

inference of mappings. In that example, the context of the calls allows us to infer that if   
  is 

true, and then   
   is unlikely to be true. Of the four factors that we consider, fctxt is the only one 

that relates pairs of random variables; the others assign probabilities to individual random 

variables. We define the context of a method call or sequence M in the trace as the set of method 

calls and sequences that appear within a fixed distance k of M in the trace; in our prototype,  
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   . When computing the context of M, we also consider whether the entities its context 

precede M or follow M. To compute context as a factor, we use the function simCtxt, which 

considers all pairs of methods and method sequences (M, N) that appear in the source trace, and 

all pairs (m, n) that appear in the target trace. We then count the number of times M appears in 

the preceding context of N in the source trace (i.e., within     calls preceding each occurrence 

of  ) and normalize this using the trace length (             )  likewise we compute 

               and the corresponding metrics for the target trace. We then check whether 

              “matches”                and               “matches” 

              We do not require the relative counts to match exactly; rather their difference 

should be below a certain threshold (10% in our prototype);              encodes this 

matching function. If both the counts match, then the factor         
     

    positively influences 

the inference that if   
  is     , then   

  is also     , and vice-versa. The simCtxt function 

ensures this by returning a high probability value. Likewise, if the counts do not 

match         
     

    would indicate that   
  and   

  are unlikely to be true simultaneously. 

Note that this does not preclude   
  or   

  from being      individually. Intuitively, the Boolean 

interpretation of         
     

          
      

   . In our prototype, we set the value of high as 0.7. 

We conducted a sensitivity study by varying the value of high between 0.6 and 0.8, and observed 

that it did not significantly change the set of likely mappings output by Rosetta Mapper. To 

illustrate the context factor, consider again the example from §III. There,                  

would be high, while                  would be 1-high (using exact matches for 

         instead of            , to ease illustration). Therefore, we can infer that   
 and   

  

could both be     , but that   
  and   

 are unlikely to be true simultaneously. We implemented 

Rosetta Mapper’s trace analysis and factor generation algorithms in about 1300 lines of Python 

code. We used the implementation of factor graphs in the Bayes Net Toolbox (BNT) [23] for 

probabilistic inference. 
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 Rosetta generates one factor for each Boolean   
  for each of the three factor families ffreq, 

fpos, fname. Letting S and T denote the number of unique source and target API calls observed in 

the trace, there are         such Boolean variables (because M and m include individual 

methods and method sequences of length two). Likewise, Rosetta Mapper generates two fctxt 

factors for each pair (M, N) and (m, n), resulting in a total of         factors. We restricted 

Rosetta to work with method sequences of lengths one and two because of the rapid growth in the 

number of factors. Future work could consider optimizations to prune the number of factors, 

thereby allowing inference of mappings for longer length method sequences. 

 Combining Inferences across Traces: 

 As discussed so far, we apply probabilistic inference to each trace pair, which results in different 

values of   [  
      ], for each Boolean variable   

   . In this step, we combine these 

inferences across the entire database of trace pairs. One way to combine these probabilities is to 

simply average them. However, if we do so, we ignore the confidence that we have in our 

inferences from each trace pair. Intuitively, the more occurrences we see of a method call or 

sequence M in a source trace, the more confidence we have in the values of   [  
      ]  

Therefore, we compute a weighted average of these probabilities, with the relative count of each 

source call as the weight.  

  [  
      ]  

∑                [  
      ]       

∑                   

 

We chose this approach because of its modularity. As we collect more trace pairs and inferences 

from them, we can combine them with mappings inferred from other traces in a straightforward 

way using the weighted average approach. Alternatively, we could have chosen to concatenate 

individual traces (in the same order for both components of each trace pair) to produce a “super-

trace,” and perform probabilistic inference over this super-trace. However, if we do so, then we 
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would have to reproduce the super-trace after each new trace pair that is collected, and execute 

the inference algorithm over the ever-growing super-trace. This approach is neither memory-

efficient nor time-efficient. In contrast, our weighted average approach provides more modular 

support to add inferences from new trace pairs as they become available. This weighted average 

is presented to the user as the output from Rosetta. We present the output of Rosetta to the user in 

terms of the inferred mappings for each source API call. For each source API method or method 

sequence, we present a list of mappings inferred for it, ranked in decreasing order of the 

likelihood of the mapping.  

4.2.2 Rosetta Classifier 

In order to build a classifier which would differentiate between a true mappings and false 

mappings, we obtain the relevant features as discussed before. Each of the features describes the 

mapping. The features are based on structural properties of the traces obtained for the source and 

the target platform. In Rosetta mapper we calculate the factors for every pair of traces, obtain the 

mapping per trace pair using factor graph approach. Finally we combine the mappings obtained 

from all the pairs based on weight average method. In contrast the features of the Rosetta 

classifier are computed for all the trace pairs at once.  In Rosetta mapper the mappings are 

generated for each pair of traces containing J2ME and android API method calls only from that 

pair of trace files. But in Rosetta classifier the mappings are generated from all the available pairs 

of trace files and it contains the all possible J2ME and Android calls from all possible trace files. 

For example Let                                                 denote the sets of methods in 

the source and target APIs, respectively for trace pair  .                                    

                  denote the sets of methods in the source and target APIs, respectively for trace 

pair  . While the Rosetta mapper computes mapping of the form    

    and    

   
, the Rosetta 

classifier looks across the trace files and computes mapping of the form    

    thus the mappings 
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obtained from the classifier would consists of all the possible J2me method calls mapped to all 

possible Android API method calls.  Thus in order to compute the features value for the Rosetta 

classifier, we would take all the possible unique J2me and Android calls present in all the trace 

files. Then for each J2me method, we map it to every possible Android method present in the 

android trace files. For each such mappings obtained, we calculate feature values which are 

computed across all the possible pairs of trace files. Thus the feature values obtained for every 

mapping is a summary of values obtained across trace files. The feature values tend to be indirect 

description of the mapping in hand rather than a direct metric such as frequency factor obtained 

for a single pair of traces as followed by the Rosetta Mapper. We shall now discuss in detail the 

calculation of the features vectors for each of the mapping. 

Feature Extraction: 

Mutual Information on Frequency:  

Mutual information of two random variables X and Y is a quantity that measures the mutual 

dependence between them. Mutual information measures the information that X and Y share.  We 

compute the relative frequency of the API method in every pair of trace files for both platform 

and for every possible unique API methods. Thus each method will have array of relative 

frequency values which corresponds to each of the available trace pairs. Now the random variable 

  and   considered to find the mutual information are the relative frequencies of the API  

methods in J2ME and Android platform in the trace files.  
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 Figure 13. Mutual Information on frequency from Trace Files 
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Figure 14. Mutual information routines 
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       is the probability that the API method of J2ME exhibits a relative frequency of   

among the given   pairs of traces.        is the probability that the API method of  

Android exhibits a relative frequency of   among the given N pairs of traces.  

           is the joint probability that J2ME API exhibits a relative frequency of    

and the Android API exhibits a relative frequency of   divided by the total number  

of trace files. Thus we compute for each possible value of the relative frequency namely from  

0.00 to 0.99 we compute the mutual information which is given by the following formula. 

 

       ∑ ∑              ( 
          

            
 )

          

 

Example:  

Let us consider two pairs of trace files 

                               

                             

Random variable    denote the relative frequency of a J2ME method   in trace. Similarly, 

Random variable    denote the relative frequency of a Android method   in trace. For  

the given example S1 has following relative frequency distribution, 

S1:     =0.5,     =0.25,    =0.25 
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S2:     =0.25,     =0.5,    =0.25 

Similarly for the android file we have, 

T1:     =0.25,     =0.5,    =0.25 

T2:     =0.5,     =0.25,    =0.25 

The possible mappings are  

                                     

  
  denote the count of relative frequency of api method M takes a probability value   among the 

available traces.  

For J2ME methods: 

       
 = 1;      

 = 1 ,        
 = 1 ;      

 = 1  &        
 = 2    

For Android methods 

       
 = 1;      

 = 1 ,        
 = 1 ;      

 = 1  &        
 = 2    

Now dividing these count values by the total number of traces, we get the Probability of the 

random variable (Relative frequency of the API method) taking a particular value. 

For J2ME API method the probability of the random variable    taking a value   is given by 

              
  ⁄     

Where   is the total number of traces. 

For android method   the probability of the random variable     
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taking a value    is given by  

              
  ⁄  

 For each possible mapping J2ME method   and Android method  ,       :  

 For each    value 0.0 to 0.99 taken by the random variable     

 For each    value 0.0 to 0.99 taken by the random variable     

We count the number of times                                            

 
     

      
 

The above denotes the number of times the random variables                                  

Each of the random variables    and     take one value per trace pair          .  

Example For the pair           in the given example,    =0.5,    =0.25  

We divide this number by the total number of traces. We get the joint probability distribution 

given by: 

   (        
    )   

     

       ⁄   

Now the Mutual Information for the mapping J2ME method M, Android method 

                     is given by: 

I(       ∑ ∑           
         ( 

           
      

 (      )         
 )    
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Mutual Information on Position: 

The given trace files are divided into 100 positions. We find the relative frequency of each API 

method for each trace pair in every position for both the platforms. Thus we get 100  mutual 

information on frequency values for each position. We find the average of the mutual information 

over 100 values algorithm. We follow a same algorithm to the mutual information calculation for 

each possible position value. For each position                  Corresponding positional 

mutual information is given by 

  (       ∑ ∑           
         ( 

           
      

 (      )         
 )    

       
    
        

We then average the mutual information values for all position values to find the Mutual 

information on position feature. 

    (         ∑     
       

      ⁄  

Thus the mutual Information obtained is average of all the position wise mutual information. We 

compute mutual information for every possible mapping across all of the given traces at once. 

Thus whenever there is a new trace added to the collection of traces, the corresponding features 

mutual information has to be recomputed and it takes time. 

Digrams:  

This feature would gauge how good the API calls interacts with other API calls in the trace file. 

This is similar to the context factor of the factor graph approach except that instead of the vicinity 

parameter we look for     at the entire trace file for the context of a given API method    . For 
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every trace file                                                 , where           where N 

represents the number of trace pairs available . We collect the all possible unique J2ME API call 

            and all possible Android calls             .We obtain all possible mappings   
  

where M represents the J2ME call while   represents the Android call. Consider every possible 

mapping pairs   
          

  where N and M represent J2ME calls while         represents 

android calls given             .  Now for each tracing pair    and   . We convert the 

trace file into digram file where the API calls other than         are replaced with ‘ ’ from 
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J2ME file and API calls other than         are replaced with    . 

 

Figure 15. Digram feature for all pair of mappings 
 

Thus we have the digram files   ̂                            ̂                       

respectively. We count the number of                                                  

for the J2ME trace files. Now for the Android Trace file, we compute the number of  

                                                for the android file.   
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Figure 16. Digram feature for all pair of mappings  
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For mappings   
          

  we compare the matching number of 

                                                   , 

                                                     

                                        For each match we give a score of 1 and thus the max 

score is 8. We average the scores across the number of trace pairs across every mapping pairs   
  

and store it for each           
  for the array of all possible mappings obtained from before. 

Thus we compute the digram feature which measures how the interaction is among the j2me and 

the android API methods across trace files. 

Training Data: 

After obtaining the feature values for each of the above mentioned features for every mapping, 

we collect training data required for the classifier to perform classification. This is basically 

deciding whether the given mapping is true or false. We go through the documentation for the 

J2ME and Android namely java docs and android docs available online. 

Classification: 

We implemented Rosetta Classifier’s trace analysis and feature generation algorithms in about 

2000 lines of Perl code. We use Support Vector machines implemented in R, a statistical 

programming language with data analytics. R provides a wide variety of statistical 

and graphical techniques, including linear and nonlinear modeling, classical statistical tests,  

time-series analysis, classification, clustering, and others. Once we obtain the training data,  

we divide them into training (two-thirds) and testing data (one-third). We run SVM routines 

implemented in                    modules of R package. We supply the data to SVM and 

get the parameters defining the hyper plane separating the true and false mappings. We vary the 

different available set of kernels and various parameters of each kernel type to find the  
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best match for the classifier. We compute the confusion matrix of {True Positives, True 

negatives, false positives, false negatives} to decide the best possible SVM machine to classify 

the given data points. We also tried Probability min max machine in MATLAB besides the 

regular linear and logistic regression routines of R.   
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Chapter 5 

Evaluation  

5.1 Methodology 

To evaluate Rosetta, we collected a set of 21 JavaME applications for which we could find 

functionally-equivalent counterparts in the Android market. In particular, we chose board games, 

for two reasons. First, many popular board games are available for both the JavaME and Android 

platforms. Checking the functional equivalence of two games is as simple as playing the games 

and ensuring that the moves of the game are implemented in the same way on both versions. 

Second, the use of board games also eases the task of collecting trace pairs. Moves in board 

games are easy to remember and can be repeated on both game versions to produce functionally-

equivalent traces on both platforms.  

 

Figure 17. Trace Stats 
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To collect traces, we ran JavaME games using the emulator distributed with the Sun Java 

Wireless Toolkit, version 2.5.1 [26]. 

 For Android games, we used the emulator that is distributed with the Android 2.1 SDK. Fig. 16 

shows the games that we used, the number of trace pairs that we collected for each game, and the 

sizes of the traces for the JavaME and Android versions. We ran Rosetta on these traces to obtain 

a set of likely mappings. This set is presented to the user as a ranked list of mappings inferred for 

each JavaME method (or method sequence). To evaluate the list associated with each JavaME 

method, we consulted the documentation of the JavaME and Android graphics APIs to determine 

which members of the list are valid mappings.

 

Figure 18. Results of applying Rosetta Mapper 

Results of applying Rosetta to the traces obtained from the games shown in Fig. 17. We 

have shown the number of unique JavaME methods (categorized by class) for which 

Rosetta inferred at least one valid mapping in the top ten (#Top-10), and the total number 

of valid mappings found in the top ten (#TotValid). Also shown is the number of JavaME 

calls for which Rosetta’s top ranked inference was a valid mapping (#Top-1).  
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5.1.1 Rosetta Mapper  

Fig. 18 presents the results of running Rosetta mapper on the traces that we collected. This figure 

shows the number of distinct JavaME methods that we observed in the trace, grouped by the 

parent JavaME class to which they belong. Thus, for example, there were four unique JavaME 

methods belonging to the Alert class in our traces, namely 

                                                                                    

. In all, there were 83 unique JavaME methods in our traces. For each of these 83 JavaME 

methods, we determined whether the top ten ranked mappings reported for that method contained 

a method (or method sequence) from the Android API that would implement its functionality. As 

reported in Fig. 18, we found such valid mappings for 59 of these JavaME methods (71%). Fig. 

19 depicts in more detail the rank distribution of the first valid mapping found for each of these 

59 JavaME methods. As this figure shows, the top-ranked mapping for 35 of these methods was a 

valid one (42% of the observed JavaME methods). Recall that a JavaME method can possibly 

implemented in multiple ways using the Android API. Thus, the ranked list associated with that 

method could possibly contain multiple valid mappings. Rosetta’s output contained a total of 189 

valid mappings within the top ten results of the 59 JavaME methods. Fig. 20 depicts the rank 

distribution of all the valid mappings found by Rosetta Mapper. Below, we illustrate a few 

examples of mappings inferred by Rosetta Mapper: 

(1)                         method in JavaME intersects the current clip with a specified 

rectangle. Rosetta correctly inferred the Android method Canvas.clipRect() as its top ranked 

mapping. 

(2) In                            draws a specified character using the current font and 

color. In Rosetta’s output, the sequence                                   , which first 

sets the color and then draws text, was the second-ranked mapping for                    . 
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(3)                         JavaME method was mapped to the Android methods 

                  (rank 1) and                    (rank 7), all of which can draw 

rectangles. 

 

 Figure 19. Rank distribution of first valid mappings 

This figure shows the rank distribution of the first valid mapping found for each  

JavaME method. In all, for each of 59 JavaME methods, a valid Android mapping  

appeared within the top ten results reported for that method. For 35 JavaME 

methods, the top-ranked mapping was a valid one.  

 

Impact of Individual Factors 

Rosetta’s output is the result of combining all the four factors discussed in IV. We also  

evaluated the extent to which each of these factors contributes to the output. To do so, we 

constructed factor graphs (using the traces in Fig.17) individually with ffreq, fpos, and  

fname. Because fctxt correlates two mappings, we did not consider it in isolation.  
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We also considered a few combinations of factors, to study how the mappings change  

as factors are added. We inferred mappings with these factor graphs, and compared the  

resulting mappings with those obtained by Rosetta. For each factor graph variant in Fig. 21,  

we report the fraction of Rosetta’s 189 valid mappings that correspond to a valid mapping  

inferred by the Variant. As we did with Rosetta, we only report valid mappings that rank in  

the top ten in the output of these factor graph variants. 

 

 Figure 20. Rank distribution of all valid mappings 

This figure shows the rank distribution of all valid mappings found by Rosetta. 

 For each rank, it shows the number of valid mappings that appear at that rank  

across all JavaME API methods observed in our traces. In all, we found 189 valid 

 mappings ranking in the top ten. 

 

As Fig. 21 shows, the addition of more factors generally improves the accuracy of  
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the reported mappings. This is because the addition of more Factors incorporates  

more trace features into the probabilistic inference algorithm, thereby removing  

spurious mappings from the top ten. 

 

Figure 21. Impact of factor graph variants 

 

5.1.2 Rosetta Classifier 

The nature of the features used by the Rosetta classifier is exhaustive. Each of the features is 

obtained for all possible unique combination of source and destination API calls. There is 

combinatorial explosion while generating the features for the Rosetta Classifier.  Thus we  

started with just 10 games out of the available 21 games traced before. Each of the ten games  

had around 5 traces per platform. The total number of possible mappings obtained was around 

86000. Out of which 7000 were chosen to form the classifier. These 7000 mappings were 

manually verified to be true or false after reading the documentation available online. We d 

ivided this dataset into training and testing data. The training data consisted of 259 true  

mappings and 2679 false mappings. The testing data consists of 134 true mappings and 1335  
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false mappings. The SVM built in R using the Bessel Kernel function was able to correctly 

classify 116 out 134 true mappings and 1240 out of 1335 false mappings. Recall R is the  

number of correctly classified positive examples divided by the total number of actual positive 

examples in the test set. Recall rate is 86% for our Rosetta Classifier. Precision P is the number  

of correctly classified positive examples divided by the total number of examples that are 

classified as positive. The Precision rate is 54%. 

5.2 Runtime Performance  

5.2.1 Rosetta Mapper 

We ran Rosetta Mapper on a PC with an Intel Core2 Duo CPU, running at 2.80 GHz and  

4GB memory, running Ubuntu 10.04. For each of the traces reported in Fig. 17, Rosetta took  

between 2–55 minutes to analyze traces and output mappings. On average, approximately  

80% of this time was consumed by the algorithms in IV which produce factor graphs, and  

20% was consumed by the factor graph solver. The solver consumed 2GB memory for the  

largest of our factor graphs. As discussed, Rosetta currently supports inference on method 

sequences of length up to two. We also configured Rosetta to work with longer method 

sequences, which would produce larger factor graphs. However, the factor graph solver ran out  

of memory in these cases.  

5.2.2 Rosetta Classifier 

We ran Rosetta Classifier on Amazon C1 High-CPU Extra Large EC2 instances. It had  

20 ECUs, 8 cores, 7GB memory, Ubuntu Server 11.10 Operating system. Obtaining the  
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features was the most time consuming part. Since the nature of the experiments on the Rosetta 

classifier takes every possible API method into consideration for calculating every possible 

mapping, the size of the data grew huge. Digram are calculated for every possible mapping with 

every other possible mapping and thus it is extremely high intense computation. As the number  

of traces increases, the possible number of J2ME methods and Android API methods increases. 

Thus the number of mappings vastly and consequently the digrams calculation is growing huge. 

But eventually the total number of mappings possible is only 281 * 3837. Hence after a 

significant number of traces, the increase in the number of traces doesn’t affect the  

computation complexity. But still to compute Digrams for 281*3837 mappings with every other  

281*3837-1 over the all the available traces is indeed computation intensive. The irony is that  

for data mining algorithms to work we need really huge amount of data and more the data,  

better the classifier. The problem is that even though we have big datasets from the  

experiments. The training data is obtained manually. Thus for the 10 games (and  

corresponding 50 trace files per platform) we have chosen for Rosetta Classifier, we have  

around 86000 mappings. In that huge set of possible mapping, We eventually obtained  

around 7000 training data which has decision value “true or false”. There is no escape from 

manual efforts here as there is no ground truth which could be automated. But it does  

help to train classifier to choose better. The digram feature took around 10-12 days in these 

instances. At times process would crash for lack of memory.  

The mutual information over 10 games of 50 traces for each of source and target platforms  

took around 3-4 days to generate the values for each combination. Obtaining the SVM did  
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not take much time as we have narrowed down the dataset to 7000 mappings. 

5.3 Experiments with Micro Emulator 

There have been some recent efforts [1], [6], [10], [4] to allow the execution of legacy  

JavaME applications on the Android platform. MicroEmulator [1] is one such open-source  

tool that works on JavaME applications. It rewrites JavaME API calls in the input  

application with the corresponding Android API calls. The implementation of  

MicroEmulator therefore implicitly defines a mapping between the JavaME and  

Android graphics APIs. However, MicroEmulator does not translate the entire JavaME  

graphics API, and only allows JavaME applications with rudimentary GUIs to execute on  

Android devices. Nevertheless, the mappings that it does implement provide a basis to  

evaluate Rosetta. We considered a subset of five JavaME games from Fig. 17 that  

MicroEmulator could successfully translate (Chess, Minesweeper, Snake, Sudoku, and  

Tic-tac-toe), executed them, and collected the corresponding traces of JavaME API calls.  

We then repeated the same set of experiments on the MicroEmulator-converted versions of  

these applications and collected the corresponding traces of Android API calls, and fed these 

trace pairs to Rosetta. In our evaluation, we determined whether the API mappings inferred by 

Rosetta contained the mappings implemented in MicroEmulator. 8 Across the JavaME traces  

for these five games, We observed 18 distinct JavaME graphics API methods translated by  

MicroEmulator. In Rosetta Mapper’s output, we found at least one valid mapping for 17 of  
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these JavaME methods within the top ten ranked results for the corresponding JavaME method. 

Rosetta only failed to discover an API mapping for the JavaME method Alert.setString().  

Out of 17 JavaME methods with valid mappings, 8 appeared as top-ranked mappings for the 

corresponding JavaME methods. MicroEmulator also contains multiple mappings for several of 

the translated JavaME methods. For the 18 distinct methods in our traces, MicroEmulator  

contains a total of 26 mappings. Of these, Rosetta’s output contained 20 valid mappings within 

the top ten results for the corresponding JavaME methods.  
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Chapter 6 

Conclusion  

6.1 Related Work 

The work most directly related to ours is the MAM (mining API mappings) project [34].  

MAM’s goal is the same as Rosetta’s, i.e., to mine software repositories to infer how a source 

API maps to a target API. The MAM prototype was targeted towards Java as the source API  

and C# as the target API. Despite sharing the same goal, MAM and Rosetta differ significantly  

in the approaches that they use, each with its advantages and drawbacks. To mine API mappings 

between a source and a target API, MAM relies on the existence of software packages that have 

been ported manually from the source to the target platform. For each such software package, 

MAM then uses static analysis and name similarity to “align” methods and classes in the source 

platform implementation with those of the target platform implementation. Aligned methods are 

assumed to implement the same functionality. MAM’s use of static analysis allows it to infer a 

large number of API mappings (about 25,800 mappings between Java and C#). It also allows 

MAM to infer likely mappings between arguments to methods in the source and target APIs, 

which Rosetta does not currently do. However, unlike Rosetta, MAM requires that the same 

source application be available on the source and target platforms. MAM’s approach of aligning 

classes and methods across two implementations of a software package does not allow the 

inference of likely API mappings if there are similar, but independently-developed applications 

for the source and target platforms. MAM’s approach is also limited in that it uses name 

similarity as the only heuristic to bootstrap its API mapping algorithm. In contrast, Rosetta uses a 

number of attributes combined together as factors, and can easily be extended to accommodate 

new similarity attributes as they are designed. Most importantly, while MAM uses a purely 
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syntactic approach to discover likely API mappings, Rosetta’s approach uses similarities in 

application behavior. Nita and Notkin [24] develop techniques to allow developers to adapt  

their applications to alternative APIs. They provide a way for developers to specify a mapping  

between a source and a target API, following which a source to source transformation 

automatically completes the transformations necessary to adapt the application to the  

target API. Rosetta can potentially complement this work by inferring likely mappings.  

Androider [29] is a tool to reverse-engineer application GUIs. Androider uses aspect-oriented 

programming techniques to extract a platform-independent GUI model by inspecting in-memory 

representations of GUIs. This model can then be used to port GUIs across different platforms. 

While Androider provides a GUI for a target platform by analyzing GUIs of a source platform  

at runtime, Rosetta instead infers API mappings, and is not restricted to GUI-related APIs. 

Bartolomei et al. [7] analyzed wrappers between two Java GUI APIs and extracted common 

design patterns used by wrapper developers. They focused on mapping object types between the 

two APIs and identified the challenges faced by wrapper developers. Method mappings given by 

Rosetta can possibly be used along with their design patterns to ease the job of writing wrappers. 

A number of prior projects provide tool support to assist programmers working with large APIs 

(e.g., [22], [28], [32], [16], [35], [11], [33]). The programmer’s time is often spent in  

determining which API method to use to accomplish a particular task. These projects use  

myriad techniques to develop programming assistants that ease the task of working with  

complex, evolving APIs. Rosetta is complementary to these efforts, in that it works with  

cross-platform APIs. Some of these prior efforts can potentially be used in conjunction with 

Rosetta, e.g., to determine suitable arguments to pass to target API methods [33]. A related  
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line of research is on resources for API learning (e.g., [12], [8], [15], [30], [27]). These projects 

 attempt to ease the task of a programmer by synthesizing API usage examples, evolution of API  

usage, and extracting knowledge from API documentation. Again, most of these techniques  

work on APIs on a single platform. Rosetta cross-platform approach and can possibly be used  

in conjunction with these techniques to facilitate cross-platform API learning. Finally,  

Rosetta mapper’s probabilistic inference approach was inspired by other uses of factor graphs  

in the software engineering literature. Merlin [20] uses factor graphs to classify methods in  

Web applications as sources, sinks and sanitizers. Such specifications are useful for verification  

tools, which attempt to determine whether there is a path from a source to a sink that does not  

traverse through a sanitizer. To infer such specifications, Merlin casts a number of heuristics  

(e.g., the likelihood of a sanitizer not being placed between a source and a sink is low, it is  

unlikely for multiple sanitizers to be placed between a source and a sink) as factors, and uses  

belief propagation. Kremenek et al. [17] also made similar use of factor graphs to infer  

specifications of allocator and deallocator methods in systems code. Factor graphs are just one  

approach to mining specifications; a number of prior projects have considered other techniques 

 for data mining and inferring belief for specification inference and bug detection (e.g., [13], [19],  

[21]). Future work could consider the use of these inference techniques in Rosetta as well. 
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6.2 Issues 

6.2.1 Threats to Validity 

There are a number of threats to the validity of our results, which we discuss now. First,  

although we attempted to find JavaME and Android games that are functionally equivalent, 

Differences do exist in their implementations. This is because JavaME is an older mobile 

platform that does not support as rich an API as Android; many Android calls do not even  

have equivalents in JavaME. Together with randomness that is inherent in certain board  

games (IV), this could result in traces which contain Android calls implementing functionality 

unseen in the source application. They may mislead the attributes used by our inference  

algorithm (e.g., frequency of calls), leading to both invalid mappings as well as valid  

mappings being suppressed in the output. Second, there is no “ground truth” of JavaME to 

Android mappings available to evaluate Rosetta’s output (the mappings in MicroEmulator  

aside), as a result of which we are unable to report standard metrics, such as precision and  

recall. We interpreted Rosetta’s results by consulting API documentation. Such natural  

language documentation is inherently ambiguous and prone to misinterpretation. We  

mitigated this threat by having two authors independently cross-validate the results.  

Finally, a threat to external validity, i.e., the extent to which our results can be generalized,  

comes from the fact that we only inferred mappings using board games. It is unclear how  

many mappings we would have inferred using other graphical applications (e.g., office 

applications). 
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6.2.2 Randomness 

Right from collecting the games to tracing them to produces “equivalent traces”, there is 

randomness in the process. Getting two same games of same look and feel for both J2me  

and android it is quite challenging. We downloaded 7 to 9 apks/jars for each game on an  

average. Then we match the closest possible games. For example, the game chess is available in  

both the J2me and Android platform. But the implementations of chess in both the platform  

vary vastly. While J2ME games are simple, primitive, blurred and has no sophistication, the 

android games were advanced, highly vibrant and produced clearer versions of the games with 

numerous features. The main difference between the games were that the J2Me games were 

predominantly keyboard oriented and android games were mostly mouse oriented but still  

some supported keys. Thus the number of steps required to reproduce the output state were 

different in the games. The following is the summary of the randomness we encountered  

and the possible solution we attempted in order to reduce the dynamic content in the  

trace file, while the tracing the games. 

 

 

 

 

 

 

 

 



73 

 

  

 

 

 

 

Table 1. Randomness in application pairs of JavaME and Android games 

Si 

.No 

 

GAMES Randomness Solution  

1  Checkers, chess, 

Othello, 

Gomuku, 

Scrabble,  

Tic-tac-Toe, 

Analog 

stopwatch  

There is not much 

of randomness as the games 

are always run as 

orchestrated 2 player games. 

Nothing much. 

2 Tetris Due to the incoming brick 

shapes between two versions 

of games. 

Traces are taken with same number 

line of bricks cleared in either 

version of the games. 

3 Sudoku, kakuro Due to the permutations of 

digits in Sudoku/kakuro 

grid. 

Traces are taken with a same 

number of 3*3 grids / number of 

lines {vertical or horizontal} of 

digits filled.  

4 Slots, bingo, 

roulette, wish 

wheel, poker, 

Blackjack 

Due to the very nature of the 

game. 

Games were played so as to equate 

the results of both the 

implementations. E.g. traces 

represents the trials till a jackpot is 

won, bingo is obtained or a 

blackjack is won in both the 

implementations. But still not every 

time it was possible. So we had to 

go through a run which ends in no 

profit, no loss, some profit, and 

some loss. 

5 Solitaire, 

FreeCell, spider 

Cell 

Due to the arrangement, 

permutation of cards. 

games were played so as to equate 

the number of Aces open(free cell), 

number of matches 

possible(solitaire, FreeCell) 

6 Slide Due to arrangement of the 

images in various 

permutations of boxes. 

The traces were taken as a 

horizontal or a vertical line of boxes 

are matched. 

7 Sokoban (a game 

where a teddy 

bear puts boxes 

into bins amidst 

pathways) 

Due to the variation in the 

pathways. 

The traces were taken to make sure 

that the number/direction of boxes 

dropped in bins were same. 
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8 Pipes (a game 

where the broken 

pipes and joints 

are to be turned 

to be connected 

into a circuit to 

make a bulb 

glow) 

The number, orientation of 

the joints and pipes. 

The traces are taken to ensure that 

the number of joints connected is 

the same. 

9 Billiards Due to the very nature of the 

game. 

Tracing were done to ensure that 

the number of balls pocketed were 

same. 

10 Simple dice They are supposed to be 

random. 

games were played till the face up 

is the same 

  

 Besides these, there are randomness due to  

1. The games graphics, 

2. Game input methods (touch, keypad, and mouse) 

3. Ads in between. 

4. Different sounds/motion sequence for different actions. 

5. The highlighting of positions/movements by some of the games. 

6. Videos/animations of the emblems of the manufacturer in between and during the start of  

    games. 

7. Sophistication of games usually in android with more choices/ options/ introduction and  

     copyright claims.  

8. Some of them had more screens.  

6.2.3 Questions 

1. What about other APIs and programming languages? 
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We had chosen graphical APIs in our experiments so as to ease the process of generating traces. 

Visual verification simply solves the problem of making sure that the applications executes 

similarly. The approach could as well be used for other APIs of Java and android as long as we 

have applications of equal functionalities and a mechanism to validate it. Object oriented 

programming languages where the APIs are intensely utilized can use our approach. C# and java; 

Objective C and Java; Visual C# to Visual C++ can be mapped with our approaches. We tried the 

idea with programming contest entries, where the programming task for a contest can be 

implemented in several programming languages such as C#, java by the developers. We asked the 

popular programming contests such as {interviewstreet.com, topcoder.com, El Judge,} for 

datasets with source code/applications which are of different platforms and produce the same 

output. Here there is no need for a mechanism to verify that the applications has equal 

functionalities. However we didn’t get any useful responses from the programming contest 

websites. 

2. What about other programming platforms? 

In other programming platforms such as windows platform the Rosetta tool can used to learn 

mappings VC++ and VC# or from C# to Java since they use API methods for most of the 

functionalities. The factors and features produced in the Rosetta tool are independent of the 

nature of the API calls. Hence our technique transcends the border of APIs and platforms. 

3. What about other programming paradigms? 

Our tool is based on APIs of object oriented nature. It cannot help with migration across 

programming paradigms. For example, the tool might not be of help if we want migrate from C to 

Java. C is a structural language and Java is an object oriented language.  

4. Where our tool might not work? 
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In cases where the APIs of the programming languages are not intensely utilized, the tool is not of 

much help. In scripting languages such as Perl, Python, the utilization of API methods is fairly 

low as the programming tools such as regular expressions, dynamic arrays, hashes, are not API 

oriented.  If we want to migrate from Perl to Java, The number of API methods calls in perl will 

be negligible when compared to that of the Java. 

 

5. Why Visual verification? 

The basic assumption we make in our thesis is that we believe in visual verification of output of 

two games to be same. What if this assumption is incorrect? What if the rectangle produced by 

the game is not due to drawRect or drawline but it is performed by drawImage, where the image 

is simply an empty rectangle. Then the possible mapping would be drawRect maps to drawImage. 

Is this correct? Well it drills down to the definition of functional equivalence between API 

methods. If we define the equivalence of two functionalities as “the result of the performing these 

two functionalities will same have the same effect”. Here the effect of drawImage (using an 

image of a rectangle) and drawRect are simply a rectangle drawn on the canvas. Now let us focus 

on the aim of the thesis the aim of the thesis is to produce a recommendation to the developer, a 

set of possible target API methods for a given source API method. Now the question is “can we 

recommend drawImage as one of alternative to drawRect of the source API method?” The answer 

is yes we can.  It is just fine to draw a rectangle using an image when u have image of the 

rectangle. The rectangle in the image might be more beautiful than the rectangle that can be 

drawn by the target platform. But the reverse is not true. The drawImage cannot be mapped to 

drawRect ().why? There are numerous possibilities for an image rather than drawRect hence 

those mappings would be false. Mappings are usually commutative. But these are one sided 

mappings. This issue is because we have VISUAL verification, which states that “All that appears 
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similar to eyes are similar” and the APIs we have chosen is Graphical APIs. For other APIs, if we 

have corresponding applications using those APIs and valid verification methods, then the 

technique will work fine. 

 

 

 

6. What about scalability? 

The issue of Scalability can be looked upon in two ways. Scalability with the present 

experimental setup and scalability of the techniques we had discussed. 

For the present experimental setup we had taken graphical APIs of J2ME and Android while 

games are the application for these APIs. Right from the initial steps of collection of games till 

the verification of the results of API mappings to be true or false, we are limited by manual 

efforts.  

Collecting games:  We could not get more than 40 unique, downloadable, traceable (reasonably 

equal sized traces), simple, reasonably matching, board games available in both platforms. We 

got around 21 such games. We downloaded around 400 games to get them.  

Tracing games:  The tracing of the games is manual. We cannot automate the process of playing 

the games so as to produce same output screens. 

Verifying the results: The concept of equal functionality is more subjective rather than an 

objective, concrete and tangible notion. Here the end customers could be developers. We are 

trying to give a notion of equality of two API methods calls to them. There is flexibility here so as 

to identify if two functionalities are similar or if two functionalities are related to each other and 
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this involves human time. Once the traces are inferred using the techniques mentioned before, 

they needed to be verified manually as there is no ground truth with us. We had to go through the 

API documentation and pronounce that the API mapping is true or false. For the training data of 

the SVM classifier, we had around 86000 possible mappings to be decided as true or false. We 

did for around 7000 mappings.  

 

 

7. Scalability in terms of the idea of Rosetta: 

The idea of Rosetta if applied for applications for which we know that they are similar, the 

approach is quite scalable except for the verification part. Suppose a software Company has 

created software/applications/android for Java Platform and IOS Platform earlier. This collection 

of applications can now be utilized to create traces of equal functionalities. Visual verification is 

needed only for games from eclectic sources to confirm the equality of their functionalities. For 

applications for which we know that they perform the same task(techniques created by the 

software company), we don’t have to verify them again. The collection of traces can now be 

automated. The more the traces, the better are the metrics. The analytics using factor graph 

approach and the support vector machines are already automated. Thus we can produce the 

mappings from these experiments. Now the verification part is still the bottleneck and has to be 

done manually. It simply cannot be avoided. 

8. Do we really need an API mapping tool? 

 I mean if the results of the experiments are like “drawRect and fillRect are a mapping”, anybody 

can identify them to be one. Meaning, it doesn’t take time for a programmer to come up with 

FillRect in Android for a drawRect of J2ME or consider an obvious mapping “setColor matches 
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to setColor”. Most of the migration is performed like the notion of this simple logic (the names 

are similar). The functionalities developed in the programming languages tend to be similar. But 

the fact is there is a vast set of APIs for which finding the corresponding matching API in the 

target platform is not straightforward. Example, the method “                    

                                    ” maps to the method “                      

                  . Adds a command to the displayable object.  

 

 

9. Why SVM? 

SVMs are the latest generation of learning algorithms for classification.  

Pre 1980: Almost all learning methods learned linear decision surfaces. They had good 

theoretical properties. 

1980’s: Decision trees and neural networks allowed efficient learning of nonlinear decision 

surfaces. Little theoretical basis and they suffer from local minima. 

1990’s: Efficient learning algorithms for non-linear functions based on computing learning theory 

developed. Led to SVM 

Last decade: New efficient separability of non-linear functions that use “kernel functions” 

Unique features of SVM and Kernel Methods: 

• Are explicitly based on a theoretical model of learning. 

 • Come with theoretical guarantees about their performance as well as state-of-the-art success in 

real-world applications. 
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• Have a modular design that allows one to separately implement and design their components  

• Are not affected by local minima 

• Do not suffer from the curse of dimensionality. Curse of Dimensionality is the problem of 

higher dimension which leads to more complex computations and lesser useful results. 

 

 

10. Why the name ROSETTA? 

The name Rosetta is came from Rosetta stone. The Rosetta stone is a stone with writing on it in 

two languages (Egyptian and Greek), using three scripts (hieroglyphic, demotic and Greek).   

This was used to translate the languages. We are trying similar idea for programming languages 

and hence the name. 

11. What is the reason for going all possible mapping generation: 

In the Rosetta approach, the mappings are derived only from the traces pairs individually and  

the combinations of J2ME api calls across traces is not taken care of. Rosetta Classifier takes  

care of mappings across trace pair and it pays the price for it. Huge number of possible mappings. 

But the benefits overweigh the efforts. The mappings obtained from the Rosetta classifier are 

exhaustive! Meaning even there is a slight possibility of the mapping between two unheard API 

calls, the Rosetta Classifier can attempt to classify it. The initial training data is tiresome to 

obtain. But the training session is only once. Once the classifier is trained well enough it  

can keep on updating the parameters with every new value of the mapping and it grows faster. 
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12. How do we incorporate less frequent API calls? 

The less frequent calls confuses the metrics and causes a lot of exception problems.  

The attributes we measure for factors or frequencies are all about the structure of the traces 

predominantly. When the number of calls appearing the traces is negligible compared to  

the size of the traces ~0.1% then the probability metrics such as mutual information gives 

erroneous output as getting negative values for the mutual information. Apparently, values  

of mutual information should be in bits and always greater than zero. But the point wise  

mutual information namely the     
      

        
                     Now because of their 

lower frequencies the total probability calculation for the mapping may not sum up to one and 

subsequently the mutual information, the expected value of poit-wise information is reduced to 

negative value. The lower frequency API calls also creates problem with the Rosetta Mapper,  

in a conclusion cannot be arrived about their mapping. Suppose if a mapping is made of two  

less frequent API methods which are rarely found in the trace file, the attributes would be 

ineffective as the evidence to declare them as mapping or not is insufficient. The solution  

would be to more number of traces, but even that has similar problems. 

13. What about Android’s own internal calls? 

Many a times while tracing the Android applications, Android comes up with variety of API 

methods which are simply aliases/references/internal pointers to other methods of the inner  

class and when these aliases are traced, we have no clue what to do with them.  We simply  

ignore them. Example, access$000 Landroid/view/SurfaceView; here,”access$000” is a  
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pointer to function present at location 000 of the android inner class member from an outer  

non static member function. 

14. Is many to many mapping possible?? Yes.  Why haven’t we uncovered it??  

Many-to-many mappings might be present in the traces just like any                

            mapping sequences. In Rosetta Classifier, it was computation constrained  

as the approach is encompassing all the possible API calls and all possible mappings. In Rosetta 

mapper, the mapping sequences of size 2        ) was computation intensive in itself.  It 

takes weeks to run the factor generations for method sequences of size 2. For many to many 

mappings (at least of size      ) , it could take weeks even with our high machines(64GB 

RAM , 32 cores).For Rosetta Classifier especially the digram feature  

this could span for a month.  
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6.2 Appendix 

Sample Code: 

The following code is used to obtain the mutual information on frequency and position for a 

collection of trace files. 

 

#!/usr/bin/perl -w 

use Math::BigFloat; 

Math::BigFloat->precision(-4); 

opendir(IMD, ".") || die("Cannot open directory"); 

@thefiles= readdir(IMD); 

open(FILE2,">formfile.txt") or die"cant open the file 3 $!"; 

open(FILE3,">resultfile1.txt") or die"cant open the file 3 $!"; 

open(FILE4,">debug.txt") or die"cant open the file 4 $!"; 

print @thefiles; 

my %hash1=(); 

my %hash2=(); 

my %hash3=(); 

my $indexA=0; 

my $indexJ=0;   

my $prob; 

my $i=0; 

my $j=0; 

my $sum=0; 

my $su=0; 

my $count2=0; 

my $word=0; 

my $index=0; 

my $flag=0; 

my $size=0; 

my $count=0; 

my $prob_index=0;    

my $position=0;   

my $sizeJ=0; 

my $sizeA=0; 

my @mutual_info=(); 

my $mut=0; 

my $px=0; 
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my $py=0; 

my $probx=0; 

my $proby=0; 

 

sub hashposAscNum  

{ 

   $hash{$funct}[2]{$b} <=> $hash{$funct}[2]{$a};    

} 

 

sub hash2posAscNum  

{ 

  $hash2{$funct}[2]{$b} <=> $hash2{$funct}[2]{$a};    

} 

 

foreach $file1(@thefiles) #for All files 

{ 

  if( $file1!~/^\.+$/ && $file1=~/J.*.txt/)    #count the files like J* 

    { 

       $sizeJ++; 

    } 

 

 if( $file1!~/^\.+$/ && $file1=~/A.*.txt/) #count the files like A* 

    { 

       $sizeA++; 

    }  

}   

 

foreach $file1(@thefiles) #for All files 

{ 

   if( $file1!~/^\.+$/ && $file1=~/J.*.txt/) #select the files like J* 

    { 

          print FILE3 "index: $indexJ\t filename:$file1\n"; 

          open(FILE, "$file1") or die"cant open the file $file1 $!"; 

          my @words=<FILE>; #collect the function calls in an array 

          $count=0; 

           $size=scalar(@words); 

           foreach $word (@words) #foreach function call 

 { 

      @ka=split(/\n/,$word); #remove \n or \* in them 

       if($ka[0]=~/\*/)  

        { 

              @ta=split(/\*/,$ka[0]); 

                        $word=$ta[1];     

        } 
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       else 

             { 

  $word=$ka[0]; 

              } 

 $count++; 

 

# $hash{word}[0][indexJ][0] 

# hash-> This is the hash variable which collects all the data 

# we have hash(J2ME) and hash2(Android) 

# {word}->function call strings are the keys for the hash. 

# $hash{word}[0]-> this is 2D array with 2 columns for every row.  

# $hash{word}[0][$indexJ]-> indexJ/A marks the index for every file(J2ME or Android) 

# $hash{word}[0][$indexJ][0]->denotes the frequency of the word in the file. (an element) 

# $hash{word}[0][$indexJ][1]->denotes the probability of the word in the file.(an element) 

# $hash{word}[0][$indexJ][2][0]->denotes the positions of the word in the file in an array. 

# $hash{word}[0][$indexJ][2][1]->denotes the specific positional indices from 0.1 to 1.0 (hash) 

# $hash{word}[0][$indexJ][2][1]{$indexP}->denotes the count of specific positional indexP 

# $hash{word}[1]-> stores the probability index(0.01 to 0.99) and (a hash) 

# $hash{word}[1]{prob_index}[0]->the count of the prob index found in files.  

# $hash{word}[2]{pos_index}-> stores the possible probability values existing in every positions  

# $hash{word}[2]{pos_index}{prob_index}[0]-> stores the count of prob index found at various positions in various files. 

 

  if (exists $hash{$word})  

  { 

      $hash{$word}[0][$indexJ][0]=$hash{$word}[0][$indexJ][0]+1;  

                                   $position=sprintf "%.2f",$count/$size; 

      push @{$hash{$word}[0][$indexJ][2][0]},$position;    

       if(exists $hash{$word}[0][$indexJ][2][1]{$position}) 

          { 

              $hash{$word}[0][$indexJ][2][1]{$position}=$hash{$word}[0][$indexJ][2][1]{$position}+1;    

          } 

                      else 

         { 

              $hash{$word}[0][$indexJ][2][1]{$position}=1; 

                       } 

  } 

  else  

  { 

       $hash{$word}[0][$indexJ][0]=1; 

       $position=sprintf "%.2f",$count/$size; 

       push @{$hash{$word}[0][$indexJ][2][0]},$position;     
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  if(exists $hash{$word}[0][$indexJ][2][1]{$position}) 

         { 

             $hash{$word}[0][$indexJ][2][1]{$position}=$hash{$word}[0][$indexJ][2][1]{$position}+1;    

                                       } 

  else 

                        { 

              $hash{$word}[0][$indexJ][2][1]{$position}=1; 

          } 

   }     

 } 

          print FILE3 "count : $count\n";    

   

     foreach $word (@words) 

     {       

                

          $hash{$word}[0][$indexJ][1]=sprintf "%.2f",$hash{$word}[0][$indexJ][0]/$size;      

     } 

 

     foreach $word (keys %hash)  

    {           

          $prob_index=$hash{$word}[0][$indexJ][1]; 

    

           if(exists $hash{$word}[1]{$prob_index})     

         {  

              $hash{$word}[1]{$prob_index}[0]=$hash{$word}[1]{$prob_index}[0]+1; 

         } 

         else 

       { 

             $hash{$word}[1]{$prob_index}[0]=1; 

        } 

    }          

 

    $indexJ++; 

} 

 

if( $file1!~/^\.+$/ && $file1=~/A.*.txt/) 

    { 

            #print FILE2 "index: $indexA\t filename:$file1\n"; 

            open(FILE, "$file1") or die"cant open the file $file1 $!"; 

            my @words2=<FILE>;  

            $count2=0; 

            $size=scalar(@words2); 

 

         foreach $word (@words2) 

        { 
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 @ka=split(/\n/,$word); 

 if($ka[0]=~/\*/) 

 { 

      @ta=split(/\*/,$ka[0]); 

       $word=$ta[1];     

 } 

 else 

 { 

      $word=$ka[0]; 

 } 

 $count2++;    

               if (exists $hash2{$word}) 

 { 

       $hash2{$word}[0][$indexA][0]=$hash2{$word}[0][$indexA][0]+1; 

       $position=sprintf "%.2f",$count2/$size; 

       push @{$hash2{$word}[0][$indexA][2][0]},$position;    

      

             if(exists $hash2{$word}[0][$indexA][2][1]{$position}) 

                           { 

                                $hash2{$word}[0][$indexA][2][1]{$position}=$hash2{$word}[0][$indexA][2][1]{$position}+1;    

            } 

                           else 

            { 

  $hash2{$word}[0][$indexA][2][1]{$position}=1; 

             } 

 } 

 else  

 { 

          $hash2{$word}[0][$indexA][0]=1; 

                         $position=sprintf "%.2f",$count2/$size; 

          push @{$hash2{$word}[0][$indexA][2][0]},$position; 

      

                         if(exists $hash2{$word}[0][$indexA][2][1]{$position}) 

            { 

  $hash2{$word}[0][$indexA][2][1]{$position}=$hash2{$word}[0][$indexA][2][1]{$position}+1;    

           } 

           else 

           { 

  $hash2{$word}[0][$indexA][2][1]{$position}=1; 

           } 

    }              #print "keys at hash2 :".(keys %{$hash2{$word}[0][$indexA][2][1]}); 

         } 

        #print FILE2 "count2 : $count2\n";   

        foreach $word (@words2) 

 { 
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                      $hash2{$word}[0][$indexA][1]=sprintf "%.2f",$hash2{$word}[0][$indexA][0]/$size;     

 } 

       foreach $word (keys %hash2)  

 {  

                      $prob_index=$hash2{$word}[0][$indexA][1]; 

       if(exists $hash2{$word}[1]{$prob_index}) 

       {  

             $hash2{$word}[1]{$prob_index}[0]=$hash2{$word}[1]{$prob_index}[0]+1; 

       } 

     else 

      { 

            $hash2{$word}[1]{$prob_index}[0]=1; 

       } 

              }  

     #print FILE3 "sum:$sum\nsu:$su\n";    

     $indexA++; 

      } 

}   

# compute the positional probability values in each of the $hash{word}[2]{pos_index}-> stores the possible probability 

values existing # in every positions  

# $hash{word}[2]{pos_index}{prob_index}[0]-> stores the count of prob index found at various positions in various files. 

$indexJ=0; 

$indexA=0; 

foreach $file1(@thefiles) #for All files 

{ 

      if( $file1!~/^\.+$/ && $file1=~/J.*.txt/) #select the files like J* 

     { 

            #print FILE2 "index: $indexJ\t filename:$file1\n"; 

            open(FILE, "$file1") or die"cant open the file $file1 $!"; 

            my @words=<FILE>; #collect the function calls in an array 

            $count=0; 

            $size=scalar(@words); 

             foreach $word (@words)           #foreach function call 

 { 

         @ka=split(/\n/,$word);   #remove \n or \* in them 

         if($ka[0]=~/\*/)  

        { 

  @ta=split(/\*/,$ka[0]); 

  $word=$ta[1];     

        } 

        else 

      { 

            $word=$ka[0]; 

                     } 

# $hash{word}[0][indexJ][0] 



91 

 

  

 

# hash-> This is the hash variable which collects all the data 

#         we have hash(J2ME) and hash2(Android) 

# {word}->function call strings are the keys for the hash. 

# $hash{word}[0]-> this is 2D array with 2 columns for every row.  

# $hash{word}[0][$indexJ]-> indexJ/A marks the index for every file(J2ME or Android) 

# $hash{word}[0][$indexJ][0]->denotes the frequency of the word in the file. (an element) 

# $hash{word}[0][$indexJ][1]->denotes the probability of the word in the file.(an element) 

# $hash{word}[0][$indexJ][2][0]->denotes the positions of the word in the file in an array. 

# $hash{word}[0][$indexJ][2][1]->denotes the specific positional indices from 0.1 to 1.0 (hash) 

# $hash{word}[0][$indexJ][2][1]{$indexP}->denotes the count of specific positional indexP 

# $hash{word}[0][$indexJ][2][2]{$indexP}-> prob of occurence at position w.r.t the entire file with a two digit precision. 

# $hash{word}[1]-> stores the probability index(0.01 to 0.99) and (a hash) 

# $hash{word}[1]{prob_index}[0]->the count of the prob index found in files.  

# $hash{word}[2]{pos_index}-> stores the possible probability values existing in every positions  

# $hash{word}[2]{pos_index}{prob_index}[0]-> stores the count of prob index found at various positions in various files. 

 

   if (exists $hash{$word})  

   { 

        foreach $position (keys %{$hash{$word}[0][$indexJ][2][1]}) 

        { 

 #print FILE3 " $position:"; 

 #calculating the prob of occurence at position "$position" w.r.t the entire file to a two digit precision. 

 

               $hash{$word}[0][$indexJ][2][2]{$position}= 

               sprint"%.2f",$hash{$word}[0][$indexJ][2][1]{$position}/$hash{$word}[0][$indexJ][0]; 

 

 #print FILE3 "$hash{$word}[0][$indexJ][2][2]{$position},";    

        } 

    }      

} 

  foreach $word (keys %hash)  

   {           

       foreach $position (keys %{$hash{$word}[0][$indexJ][2][1]}) 

       { 

               $prob_index=sprintf "%.2f",$hash{$word}[0][$indexJ][2][1]{$position}/$hash{$word}[0][$indexJ][0]; 

  

               #print FILE3 ", position: $position: \t ind $prob_index\n"; 

 

              if (exists $hash{$word}[2]{$position}{$prob_index}) 

  {   

         $hash{$word}[2]{$position}{$prob_index}[0]=$hash{$word}[2]{$position}{$prob_index}[0]+1; 

                 } 

             else 

 { 

                        $hash{$word}[2]{$position}{$prob_index}[0]=1; 
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 } 

         } 

    }          

    $indexJ++; 

} 

 

 if( $file1!~/^\.+$/ && $file1=~/A.*.txt/) 

    { 

        #print FILE2 "index: $indexA\t filename:$file1\n"; 

        open(FILE, "$file1") or die"cant open the file $file1 $!"; 

        my @words2=<FILE>;  

        $count2=0; 

        $size=scalar(@words2); 

        foreach $word (@words2) 

        {     

 @ka=split(/\n/,$word); 

 if($ka[0]=~/\*/) 

 { 

                    @ta=split(/\*/,$ka[0]); 

       $word=$ta[1];       

 } 

 else 

 { 

         $word=$ka[0]; 

 } 

 if (exists $hash2{$word})  

 { 

                      foreach $position (keys %{$hash2{$word}[0][$indexA][2][1]}) 

                     { 

            #print FILE2 " $position:"; 

                           #calculating the prob of occurence at position "$position" w.r.t the entire file to a two digit precision.  

                          $hash2{$word}[0][$indexA][2][2]{$position}= 

                          sprintf "%.2f",$hash2{$word}[0][$indexA][2][1]{$position}/$hash2{$word}[0][$indexA][0]; 

                          #print FILE2 "$hash2{$word}[0][$indexA][2][2]{$position},"; 

                     } 

 } 

          } 

 

        foreach $word (keys %hash2)  

        {           

              foreach $position (keys %{$hash2{$word}[0][$indexA][2][1]}) 

             { 

                $prob_index=sprintf "%.2f",$hash2{$word}[0][$indexA][2][1]{$position}/$hash2{$word}[0][$indexA][0]; 

                  if(exists $hash2{$word}[2]{$position}{$prob_index}) 

                  {   
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           $hash2{$word}[2]{$position}{$prob_index}[0]=$hash2{$word}[2]{$position}{$prob_index}[0]+1; 

                   } 

 else 

    { 

            $hash2{$word}[2]{$position}{$prob_index}[0]=1; 

    } 

            }  

      } 

     $indexA++; 

    } 

}   

print FILE2 "\n\n HASH\n\n"; 

     foreach $funct (keys %hash)  

    { 

          print FILE2 "$funct:\t\t\n"; 

          foreach $j (0 ..$#{ $hash{$funct}[$i]} ) 

          { 

                 print FILE2 "\n\tfrequency = "; 

  if($hash{$funct}[0][$j][0] eq "")  

 { 

        print FILE2 "0\t"; 

 } 

 else 

                { 

         print FILE2 "$hash{$funct}[0][$j][0]\t"; 

 }  

 print FILE2 "probability = "; 

 

 if($hash{$funct}[0][$j][1] eq "") 

 { 

         print FILE2 "0\t"; 

 } 

 else 

 { 

                 print FILE2 "$hash{$funct}[0][$j][1]"; 

 } 

 print FILE2 "\tpos={"; 

               foreach $i (@{$hash{$funct}[0][$j][2][0]}) 

 { 

       print FILE2 " $i "; 

 } 

 print FILE2 "}\n"; 

           } 

           print FILE2 "frequency distribution \n"; 

           foreach $prob_key (keys %{$hash{$funct}[1]})  
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           { 

  if($prob_key eq "") 

  { 

         print FILE2 "0\t"; 

                 } 

 else 

 { 

         print FILE2 "$prob_key:"; 

 } 

 print FILE2 "$hash{$funct}[1]{$prob_key}[0]\n"; 

          } 

           print FILE2 "\n";  

           print FILE2 "Positional distribution \n"; 

          foreach $pos_key (sort {$a <=> $b} (keys %{$hash{$funct}[2]}))  

          { 

 if($pos_key eq "") 

 { 

        print FILE2 "0=>{"; 

 } 

 else 

 { 

       print FILE2 "position:$pos_key=>{"; 

 } 

               foreach $prob_key (keys %{$hash{$funct}[2]{$pos_key}})  

 { 

        if($prob_key eq "") 

         { 

              print FILE2 "0\t"; 

                       } 

          else 

       { 

             print FILE2 "$prob_key:"; 

                     } 

       print FILE2 "$hash{$funct}[2]{$pos_key}{$prob_key}[0],"; 

 } 

 print FILE2 "}\n"; 

          } 

         print FILE2 "\n"; 

    } 

    print FILE2 "\n\n HASH2\n\n"; 

     foreach $funct (keys %hash2)  

     {    

            print FILE2 "$funct:\t\t\n"; 

           foreach $j (0 ..$#{ $hash2{$funct}[$i]} ) 

           { 
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  print FILE2 "\n\tfrequency = "; 

  if($hash2{$funct}[0][$j][0] eq "")  

  { 

          print FILE2 "0\t"; 

                } 

 else 

                { 

                      print FILE2 "$hash2{$funct}[0][$j][0]\t"; 

 }  

 print FILE2 "probability = "; 

 if($hash2{$funct}[0][$j][1] eq "") 

 { 

        print FILE2 "0\t"; 

 } 

 else 

 { 

                      print FILE2 "$hash2{$funct}[0][$j][1]"; 

 } 

 print FILE2 "\tpos={"; 

 foreach $i (@{$hash2{$funct}[0][$j][2][0]}) 

 { 

      print FILE2 " $i "; 

 } 

 print FILE2 "}\n"; 

           } 

          foreach $prob_key (keys %{$hash2{$funct}[1]})  

          { 

   if($prob_key eq "") 

   { 

           print FILE2 "0\t"; 

   } 

   else 

   { 

          print FILE2 "$prob_key:"; 

   } 

   print FILE2 "$hash2{$funct}[1]{$prob_key}[0]\n"; 

          } 

                print FILE2 "\n"; 

                print FILE2 "Positional distribution \n"; 

 print FILE2 "K:".keys %{$hash2{$funct}[2]}; 

 foreach $pos_key (sort {$a <=> $b} (keys %{$hash2{$funct}[2]}))  

 { 

                      if($pos_key eq "") 

       { 

             print FILE2 "0=>{"; 



96 

 

  

 

                      } 

       else 

       { 

             print FILE2 "position:$pos_key:=>{"; 

                       } 

                      foreach $prob_key (keys %{$hash2{$funct}[2]{$pos_key}})  

       { 

  if($prob_key eq "") 

  { 

                        print FILE2 "0:"; 

  } 

  else 

  { 

          print FILE2 "$prob_key:"; 

  } 

  print FILE2 "$hash2{$funct}[2]{$pos_key}{$prob_key}[0],"; 

                       } 

         print FILE2 "}\t"; 

 } 

 print FILE2 "\n"; 

           } 

   

#Calculation of mutual information between the inidividual function calls.  

#the Random variables are the presence of the function calls in the trace files.   

#obtain the individual and the combined probabilities of occurence of the function calls at discrete intervals 

#P(X=0.00) to P(X=0.99) and P(x=0.0,Y=0.0 to X=0.99,Y=0.99) 

my $probX=0; 

my $probY=0; 

my $probXY=0; 

my $XYcount=0; 

my $mut_sum=0; 

my %MUTUAL=(); 

my $mut_string=0; 

 

foreach $j2me (keys %hash) 

{  

      #$j2me="setColor javax/microedition/lcdui/Graphics"; 

      #$j2me="setTimeout javax/microedition/lcdui/Alert"; 

    #   $j2me="drawRect javax/microedition/lcdui/Graphics"; 

    #calculate px 

    foreach $andr (keys %hash2) 

    {    

            #calculate py 

            #$andr="drawRect Landroid/graphics/Canvas;"; 

            # $andr="getChildCount"; 
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            #$andr="getHeight Landroid/view/View;"; 

            $mut_string=$j2me."::::::".$andr;   

            $mut_sum=0; 

            my $err_cnt=0; 

            my @mut_add=(); 

            my $l=0; 

            my $k=0; 

            for( $i=0;$i<=100;$i++) 

 { 

                     $px=sprintf "%.2f",$i/100;    

        if(exists $hash2{$andr}[1]{$px}) 

        { 

   $probX=$hash2{$andr}[1]{$px}[0]/($sizeA); 

  if($probX>0) 

  { 

                        #print FILE3 "px:$px\t"; 

          for( $j=0;$j<=100;$j++) 

         { 

   $py=sprintf "%.2f",$j/100;       

   if(exists $hash{$j2me}[1]{$py}) 

   { 

                         $probY=$hash{$j2me}[1]{$py}[0]/($sizeJ);     

                                        if($probY >0) 

                          { 

    $XYcount=0;                                      

    for($l=0;$l<$sizeA;$l++) 

    { 

            $PX=sprintf "%.2f",$hash2{$andr}[0][$l][1]; 

                          $PY=sprintf "%.2f",$hash{$j2me}[0][$l][1]; 

 

           for( $k=0;$k<$sizeJ;$k++) 

           { 

              

               if($hash2{$andr}[0][$l][0]>0 && $hash{$j2me}[0][$l][0]>0) 

               { 

     if($PX==$px && $PY==$py) 

     { 

          print FILE3 "pX:$px pY:$py\tPX: $PX\tPY :$PY\n"; 

          $XYcount++; 

     }                                  

             }  

       }        

              } 

         my $size=$sizeJ; 

         $probXY=$XYcount/($sizeJ);       
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   if($probXY > 0) 

   {   

                                                      my $sum=($probXY*log($probXY/($probX*$probY)))/log 2; 

          $mut_sum+=($probXY*log($probXY/($probX*$probY)))/log 2; 

                                                print FILE3 "PAIR:$mut_string\tprobxy:$probXY\t"; 

                                                      print FILE3 "px:$probX\tpy:$probY\tMI_bit:$sum\t aggr_MI:$mut_sum\n"; 

                         push @mut_add,$probX; 

           push @mut_add,$hash2{$andr}[1]{$px}[0]; 

                                   push @mut_add,$px; 

            push @mut_add,$probY; 

           push @mut_add,$hash{$j2me}[1]{$py}[0]; 

           push @mut_add,$py; 

           push @mut_add,$probXY; 

           push @mut_add,$XYcount; 

           push @mut_add,$probXY*log($probXY/($probX*$probY)); 

   }         

          }  

    } 

            }     

        }  

              }     

      }  

      $MUTUAL{$mut_string}[0]=$mut_sum; 

 

      if($MUTUAL{$mut_string} <0 || $MUTUAL{$mut_string} >=1) 

      { 

 print FILE4 "\n\n$mut_string\n$MUTUAL{$mut_string}\n\n";      

 print "\nmutual additions\n"; 

 foreach $i(@mut_add) 

 { 

         print FILE4 $i."\n"; 

 } 

            } 

       } 

}   

sub hashValueAscendingNum  

 { 

       $MUTUAL{$b}[2] <=> $MUTUAL{$a}[2]; 

 } 

 $probX=0; 

 $probY=0; 

 $probXY=0; 

 $XYcount=0; 

 $mut_sum=0; 
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 my %MUTUALP=(); 

 my %MUTUALS=(); 

 $mut_string=0; 

foreach $j2me (keys %hash) 

{  

        foreach $andr (keys %hash2) 

        {  

 $mut_string=$j2me."::::::".$andr;   

 my $err_cnt=0; 

 my @mut_add=(); 

 my $l=0; 

 my $k=0; 

 $probX=0; 

 my $mut_cnt=0; 

 for($k=0;$k<=100;$k++) 

 { 

                         $mut_sum=0; 

          $pos=sprintf "%.2f",$k/100; 

         if((exists $hash2{$andr}[2]{$pos}) and (exists $hash{$j2me}[2]{$pos})) 

        { 

  $mut_cnt++; 

  for( $i=0;$i<=100;$i++) 

  { 

                        $px=sprintf "%.2f",$i/100;    

          if(exists $hash2{$andr}[2]{$pos}{$px}) 

         { 

   $probX=$hash2{$andr}[2]{$pos}{$px}[0]/($sizeA); 

   if($probX>0) 

   { 

                        #print FILE3 "\tpx:$px\n"; 

          for( $j=0;$j<=100;$j++) 

         { 

    $py=sprintf "%.2f",$j/100;       

    if(exists $hash{$j2me}[2]{$pos}{$py}) 

    { 

                         $probY=$hash{$j2me}[2]{$pos}{$py}[0]/($sizeJ);   

                          if($probY >0) 

           {  

                                      $XYcount=0;                                     

       

                                                                            for($l=0;$l<$sizeA;$l++) 

     { 

          $PX=sprintf "%.2f",$hash2{$andr}[0][$l][2][2]{$pos}; 

          $PY=sprintf "%.2f",$hash{$j2me}[0][$l][2][2]{$pos}; 

          if($hash2{$andr}[0][$l][2][1]{$pos}>0 ) 
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                                                                                   { 

                                                                                       if($hash{$j2me}[0][$l][2][1]{$pos}>0) 

              { 

                if($PX==$px && $PY==$py) 

                { 

      $XYcount++; 

                }    

                                                                                      }                                      

                                      }       

     } 

     my $size=$sizeJ;  

     $probXY=$XYcount/($sizeJ);     

  

     #print FILE3 "\txycount:$XYcount $size \nprobXY:$probXY\n"; 

    if($probXY > 0) 

    { 

        my $sum=($probXY*log($probXY/($probX*$probY)))/log 2; 

        $mut_sum+=($probXY*log($probXY/($probX*$probY)))/log 2; 

        #print FILE3 "\tPAIR:$mut_string\tprobxy:$probXY\tpx:$probX"; 

                                                                  # print FILE3 "\tpy:$probY\tMI_bit:$sum\taggr_MI:$mut_sum\n"; 

                           }         

              }  

      } 

            }  

     }     

           }  

    }  

          } 

          $MUTUALP{$mut_string}{$pos}=$mut_sum; 

     }  

   

        foreach $position (keys %{$MUTUALP{$mut_string}}) 

        { 

 $MUTUALS{$mut_string}+=$MUTUALP{$mut_string}{$position};    

        }  

         

        if($mut_cnt>0) 

       { 

             $MUTUALS{$mut_string}=$MUTUALS{$mut_string}/$mut_cnt; 

       } 

        #my $getch=<STDIN>;   

  

      $MUTUAL{$mut_string}[1]=$MUTUALS{$mut_string};  

      $MUTUAL{$mut_string}[2]=$MUTUAL{$mut_string}[0]+$MUTUAL{$mut_string}[1]; 

      $MUTUAL{$mut_string}[3]=$MUTUAL{$mut_string}[0]*$MUTUAL{$mut_string}[1]; 
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   } 

} 

    

 sub hasValueAscendingNum  

{ 

   $MUTUAL{$a} <=> $MUTUAL{$b}; 

} 

                   #print the output to the file. 

print FILE3 "\n\n\nMUTUAL INFORMATION\n\n\n"; 

foreach $mut_key (sort hashValueAscendingNum (keys %MUTUAL))  

{ 

       print FILE3 "\n$mut_key,$MUTUAL{$mut_key}[0],$MUTUAL{$mut_key}[1]"; 

}   

 


