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ABSTRACT OF THE DISSERTATION

Object Detection and Activity Recognition in Dynamic

Medical Settings using RFID

by SIDDIKA PARLAK POLATKAN

Dissertation Director:

Ivan Marsic

Establishing context-awareness is key to develop automated decision support sys-

tems for dynamic and high-risk scenarios, where a critical component of context is the

current activity. This thesis addresses the RFID-based detection of used medical objects

with the ultimate goal of recognizing medical activities. We set trauma resuscitation,

the initial treatment of a severely injured patient in the emergency department, as our

target domain.

We first describe the process of introducing RFID technology in the trauma bay.

We analyzed trauma resuscitation tasks, photographs of medical tools, and videos of

simulated resuscitations to gain insight into resuscitation tasks, work practices and pro-

cedures, as well as the characteristics of medical tools. Next, we propose and evaluate

strategies for placing RFID tags on medical objects and for placing antennas in the en-

vironment for optimal tracking and object detection. We also discuss implications for

and challenges to introducing RFID technology in other similar settings characterized

by dynamic and collocated collaboration.

Next we evaluate the use of RFID technology for object detection and activity

recognition in a realistic setting. We tagged 81 medical objects and eight providers in a

real trauma bay and recorded RFID signal strength during 32 simulated resuscitations.
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We extracted descriptive features and applied machine-learning techniques to monitor

object use. We achieved accuracy rates of >90% when identifying the instance of a

particular object type that was used during a resuscitation. Performance for detecting

the usage interval of an object depended on various factors specific to the object. Our

results also provide insights into the limitations of passive RFID and areas in which

RFID needs to be complemented with other sensing technologies.

We also investigated the usability of object motion and location cues for activity

recognition by conducting motion detection and localization experiments under chal-

lenging scenarios. Using statistical methods, we were able to detect object motion with

an accuracy of 80%, and predict the zone where the object is located with an accuracy

of 86%.
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Chapter 1

Introduction

Activity recognition aims to infer the current activity of a person, or a group of people,

from a series of observations. In a typical activity recognition system, required infor-

mation about the user and the environment is collected using data acquisition devices,

such as cameras, microphones, RFID tags or accelerometers. Next, this information

is processed with signal processing techniques to estimate the activity currently being

performed. So far, vision-based activity recognition has been extensively addressed

by many researchers (see [80] for a survey). Recently, sensor-based methods are also

becoming popular with applications in healthcare (e.g., recognition of surgery steps

[5]), assisted living (e.g., fall detection, daily activities recognition [63]) and workflow

tracking to reduce errors. The goal of this thesis is to develop models and techniques

for sensor-based and non-intrusive detection of used medical tools, which is necessary

for recognizing complex medical activities and establishing situational-awareness in dy-

namic medical settings.

1.1 Motivation: The Need for Recognizing Trauma Resuscitation Tasks

Time- and safety-critical settings require collaborative and efficient performance of

tasks. Trauma resuscitation, the treatment of critically injured patients soon after

injury, is an example of this type of setting. Trauma is an important cause of disability

and mortality in children and young adults [30]. Because patients with severe injuries

can rapidly deteriorate, trauma resuscitation needs to be efficient and error-free. To

limit the impact of human factors in this complex and fast-paced domain, Advanced

Trauma Life Support (ATLS) was developed as a standard protocol for trauma resus-

citation [30]. Deviations from ATLS and errors in each phase of ATLS, however, are
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still observed even among experienced trauma teams. An observation study of 100

resuscitations at a major trauma center [12] found an average of 12 errors per event,

with none being error-free. Most errors involved the failure to record or observe infor-

mation needed for decision making. Although some errors may have no direct impact

on patient outcome, they can directly contribute to poor outcome or even death [26].

To determine the causes of trauma teamwork errors, our project team conducted an

observational study in the trauma center of our collaborating hospital over a two-year

period [73]. Trauma events were recorded using ceiling mounted cameras, and the tasks

were transcribed manually. An average of 19 errors were identified per simulation [79]

and 50% of these errors were considered as teamwork errors. The errors occurred due

to failure to perform a task according to the procedure (omission errors), performing an

extra task that is not in the procedure (commission errors), performing appropriate task

but out of order (selection errors) and failure of information exchange (communication

errors).

The errors and inefficiencies that occur during trauma resuscitation highlight the

need for a real-time decision support system that monitors teamwork and steps in the

evaluation process. Because they are deviations from the standard procedure, most

errors can be automatically identified. The feasibility of this approach has already

been shown using an expert system designed to identify errors based on manually

entered observations [25]. However initial attempts to use information systems to aid

trauma teams have shown limited usability [21, 24, 25]. The key reasons cited for the

lack of success include the challenge of manually entering data from diverse sources

in a dynamic environment, the difficulty of synthesizing output and recommendations,

and resistance to technology that offered no major improvements. Therefore, the key

challenge is to automate the process of capturing teamwork and information flow and

to reduce communication errors by effective presentation of information.

In addition to the real-time decision support, automatic task tracking can be used

to achieve the following goals:

• Displaying: Information about past observations and treatments is often used

in subsequent parts of the resuscitation process. This information is currently
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mostly accessed by inquiring other medical personnel [72]. Information display

will improve accuracy and speed of access for past information, and decrease

communication errors.

• Archiving: All information about the trauma patient (patient history, mecha-

nism of injury, medications, treatments) must be recorded for archival purposes.

Currently, this process is handled manually by a designated nurse in the trauma

bay. This method not only requires human effort, but also limits the proliferation

of electronic archival. Although digital pen and paper -based methods are promis-

ing [16], chaotic nature of the environment requires fast handwriting, which is a

challenge for optical character recognition. A sensor-based activity recognition

system may aid manual recording, as well as the digital pen and paper -based

methods.

• Automatic transcription: Transcriptions of the recorded resuscitation videos

are important sources for analyzing the team-work, however manual transcription

is a time-consuming task. Development of methods for automatic capture of

teamwork will be an important contribution by aiding error analyses now limited

by time constraints.

RFID as a Promising Technology for Detecting Objects and Recognizing

Activities

Recent technological advances in the areas of activity, voice, gesture and emotion de-

tection and recognition have opened up new avenues for improving safety and quality

of patient care. Among these, radio-frequency identification (RFID) technology is most

promising given its unobtrusiveness and relatively easy integration into the healthcare

systems. An RFID tag can be passive or active depending on whether it includes a

battery. Operating without batteries, passive tags are small, inexpensive and do not

require maintenance, enabling their use for identification at the item level. Passive

RFID technology also offers several advantages over the existing identification systems.

Compared to the widely used barcode system, RFID does not require focused passing of
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objects over scanners, which minimizes human intervention and interference with task

performance. It also enables faster and simultaneous scanning of multiple items, longer

read range, and does not require line-of-sight (i.e., radio signal is detectable without di-

rect visibility) [86]. Compared to accelerometers [4] and active RFID tags [39], passive

RFID tags do not require maintenance; they are also smaller (convenient for attaching

to small medical objects) and cheaper (usable at the item level and even disposable).

Although computer vision offers most of these advantages, its use is limited by privacy

concerns. Cameras provide a permanent record of people and their activities, while

RFID data contains little or no personal information. Moreover, RFID is better for

detecting small and randomly oriented objects, and is more appropriate for managing

occlusions because it does not require line-of-sight [80]. RFID technology is currently

used for patient and medical personnel tracking [23, 89], resources tracking for rapid

use of medical devices [71], and medications tracking for preventing errors and counter-

feiting [57]. Although the total cost of adopting RFID in healthcare is still significant,

the cost of RFID tags and antennas has been decreasing over the past several years,

opening opportunities for broader application [92].

Despite its growing use in healthcare [31, 89], RFID technology has not yet been

evaluated in time- and safetycritical medical settings, such as trauma resuscitation.

The fast-paced, high-risk environment of trauma resuscitation is a challenging domain

for introducing RFID technology for several reasons. First, resuscitation rooms are

crowded, with many people moving around, causing interference for radio signals. Sec-

ond, the number of objects – medical tools, supplies and equipment – that needs to be

tagged is on the order of 50, requiring many RFID tags, which in turn reduces detecting

capacity of tag readers due to longer read cycles and higher probability of collisions.

Third, while in use, RFID tags may be covered by providers hands, which blocks radio

signals from tags. Fourth, medical tools are made of different materials and some sup-

plies contain fluids, which may have adverse effects on the radio signal. Finally, some

objects come in plastic wrapping and can be tagged only externally; once the wrapping

is removed, tracking of the object stops.
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1.2 Problem Statement and Proposed Solutions

Our long-term research goal is to develop a context-aware system to provide comput-

erized support for real-time decision making during fast-paced and complex medical

events. We envision such system as a combination of different approaches and tech-

nologies – RFID, digital pen technology, computer vision, and other sensors – that

will aid in capturing critical patient information from the environment and be used

at different levels of activity recognition to support real-time decision making. For

example, information collected and synthesized for a task such as patient intubation

could provide feedback to decision makers about the exact timing of the intervention,

the time it took to intervene, and if the intervention was done correctly. Alternatively,

the system could track the use of different instruments during patient care and provide

real-time information about the start and completion of particular tasks (e.g., use of

thermometer indicates measurement of patient temperature).

In this thesis, we focus on one component: the use of passive RFID technology for

detecting used objects and performed activities during trauma resuscitation. Trauma

resuscitation tasks are dynamic activities and consist of many body movements (e.g.,

walking, bending down, raising arms, moving fingers) and manipulations (e.g., inter-

actions with objects and patients). While simple activities, such as walking or raising

arms can be recognized by body motion sensing through computer vision or body sen-

sor networks [11], complex activities require high-level cues, including spoken words,

body location, or objects in use. Among these cues, an object in use can be informative

because most objects are uniquely associated with different tasks. For example, the use

of manual blood pressure (BP) cuff implies that blood pressure is being measured. In

this thesis, our approach will be to detect the used objects with RFID technology. We

will also discuss how to to exploit the object-task relations for inferring the performed

activities.

Specifically, we aim to solve the following problem:

“Given a sequence of RFID readings collected from the RFID tagged

objects in the environment, identify the medical tools that are used.”
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Further issues that must be resolved to achieve our goal are:

• Exploring RFID equipment deployment strategies for optimum tracking of objects

and tasks.

• Developing algorithms for processing the RFID data to infer object usage.

1.3 Contributions of the Thesis

Contributions of this thesis can be summarized as follows:

• Object-based Activity Recognition: Recognizing activities through objects requires

a layered system, where the objects must be inferred from the RFID logs first (ob-

ject detection), and the activities must be inferred from the object sequence next

(activity recognition). This thesis contributes primarily to the first level, which

attracted limited attention in the literature, by proposing techniques for inferring

object use from a sequence of RFID logs. We developed a system consisting of

passive RFID sensors and data processing algorithms for recognizing activities

during trauma resuscitation. To evaluate our system, we recorded RFID data in

the actual trauma bay during 32 simulated resuscitation events. Considering that

we ran the experiments in a close-to-real environment and with off-the-shelf RFID

equipment, our results show promise for future use of RFID in similar patient care

settings.

• RFID System Setup Strategies: Based on our findings from tasks, procedures and

equipment analysis, as well as our laboratory experiments, we derive the RFID

deployment requirements for optimum tracking of objects. This includes both the

reader and antenna deployment in the room, and the tagging of the objects. Our

results will inform other applications (complex and fast-paced settings involving

teamwork) about the efficiency and optimum deployment of RFID technology.

• Emergency Care: We identified the tasks and objects that require tracking for
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real-time support of decision making during fast-paced and complex medical ac-

tivities, such as trauma resuscitation. We also identified the challenges and re-

quirements for introducing RFID technology in time- and safety critical medical

settings. Our results offer insights into the strengths and limitations of passive

RFID in such settings and how other sensors should effectively complement RFID.

• RFID Research: We evaluate the performance of object use detection, as well

as small-scale motion detection and localization when using off-the-shelf passive

RFID tags. Our experiments and findings contribute to the existing RFID re-

search by presenting experimental results in scenarios with significant human

motion and occlusion, which are very likely to exist in dynamic medical settings.

Also, we report results from a real-world deployment at a trauma center during

simulated resuscitations with trauma team members. We show that passive RFID

can be used for detecting use of objects and recognizing activities in dynamic set-

tings.

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, we first introduce the trauma re-

suscitation domain and the RFID technology. Next, we present the related work on

sensors for activity recognition, object-based activity recognition and use of RFID in

critical care. Chapter 3 describes the process of deriving design requirements for track-

ing trauma team activities using RFID technology. We explain our efforts on observing

domain tasks and procedures to identify (i) activities and objects that require track-

ing, (ii) challenges for RFID-based object tracking in the trauma bay and (iii) cues

signaling the use of objects. Findings of this chapter indicated the need to evaluate

the performance of RFID-based motion detection and localization in cluttered dynamic

environments (addressed in Chapters 4 and 5). Chapter 3 also provided the fundamen-

tals when designing experimental setup and scenarios in Chapters 4, 5 and 6, as well

as when designing the RFID equipment deployment in Chapter 6.

Our observational studies in the trauma bay have shown that motion and location
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are important contextual information for detecting object usage and activities. We

performed extensive experiments to evaluate object motion detection (Chapter 4) and

localization (Chapter 5) performance when using passive RFID tags. Different from the

majority of the previous work in motion detection and localization areas, we introduced

human motion and occlusion to the experimental setting in addition to the other indoor

objects.

In Chapter 6, we explain our method for designing and evaluating RFID equipment

setups with the end-goal of detecting use of objects. We also explain our deployment

in the actual trauma bay at CNMC and present initial results in terms of object data

rates. Our findings from this study were summarized as guidelines for RFID equipment

deployment. In Chapter 7, we evaluate the use of passive UHF RFID technology for

detecting used medical objects in a real trauma resuscitation setting. First we provide

an analysis of the RFID data collected during simulated resuscitations. Next, we explain

our method for detecting used objects and present experimental results. We draw our

conclusions in Chapter 8.
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Chapter 2

Background and Related Work

Introducing a context-aware system to a life-critical setting requires through under-

standing of the challenges posed by the application domain, as well as the advantages

and limitations of the technology. Before presenting our observations and findings in

detail (Chapter 3), we introduce the trauma resuscitation domain and the RFID tech-

nology in this chapter. Next, we present the related work on object-based activity

recognition and use of RFID in critical care settings.

2.1 Trauma Resuscitation

Trauma resuscitation is a fast-paced and dynamic process for treating severely injured

patients immediately after injury. The resuscitation process takes place in a designated

room in the emergency department (ED). Resuscitations usually last between 20 to 30

minutes and require specialists from several medical disciplines, including emergency

medicine, surgery, anesthesia, critical care and nursing. Each trauma team member

has a clearly defined role with an associated set of responsibilities so that tasks can be

performed efficiently [50]. The size and composition of the team varies depending on

the hospital size and severity of injury. At academic medical centers, teams typically

consist of a senior surgical resident or fellow (team leader), an attending surgeon, a

junior surgical resident (physician right), an anesthesiologist, a respiratory therapist, a

technician, and nurses (Figure 2.1).

To limit the impact of human factors in this safety-critical domain, trauma teams

follow a standard protocol, Advanced Trauma Life Support (ATLS), which defines the

sequence of evaluation and treatment steps [50]. The protocol starts with the airway

assessment (Airway [A]), and is followed by the assessment of respiratory dynamics
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Figure 2.1: A typical trauma bay. Trauma team members are indicated along with the
roles.

(Breathing [B]), hemodynamic status (Circulation [C]) and neurological state (Disabil-

ity [D]). This initial evaluation of major physiological systems (primary survey) is then

followed by a detailed examination for other injuries (secondary survey). The evaluation

process is repeated iteratively to uncover on-going changes in the patient status and to

monitor the effects of treatments. Deviations from the ATLS protocol can lead to po-

tentially adverse outcome [26]. Because trauma teams mainly interact with the injured

patient, it is difficult to capture and analyze human activities manually. Therefore,

a system automatically acquiring information about human activities and providing

feedback is needed for computerized support of teamwork.

2.2 An Ecology of Resuscitation Equipment

Trauma team members rely on a range of specially designed instruments and equipment

to conduct patient evaluation and administer treatments during resuscitation events.
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Figure 2.2: Airway equipment: Bag Valve Mask (left), laryngoscope handle+blades and
endotracheal (ET) tubes (upper right), cervical collar (lower right).

While the use of instruments in other medical settings varies (e.g., instruments needed

for surgical procedures vary case-by-case [77]), instruments in trauma resuscitation are

relatively constant and are used in almost every case. Typical tools and equipment

found in the resuscitation bay of a trauma center includes the following items.

Airway Management and Ventilation Equipment

Most airway-related equipment is located near the head of the patient bed to allow for

an easy reach during airway management. Basic airway equipment includes intubation

instruments such as laryngoscope handle and blades and endotracheal (ET) tubes for

establishing an airway; nasogastric/orogastric tubes for gastric decompression; cervical

collars for neck immobilization; bag valve masks (BVM) and oxygen masks for venti-

lation; suction equipment for clearing the airway from obstructions; and, a ventilator

(Figure 2.2).
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Figure 2.3: Vital signs monitor and related equipment: vital signs monitor (upper left),
pulse oximeter probe (upper right), automatic BP cuff (middle right), CO2 indicator
(lower left), thermometer (lower right)

Vital Signs Monitor and Related Equipment

The vital signs monitor is positioned next to the patient bed and displays the patients

blood pressure (BP), ECG waveforms, heart rate or pulse, oxygen saturation and res-

piratory rate. To connect the patient to the monitor, a technician places ECG leads,

automatic BP cuff, pulse oximeter, and end-tidal CO2 monitor on the patient. These

activities are performed during the first few minutes upon patient arrival. When the

patient is stabilized and readied for transfer to another hospital unit, a switch is made

from the fixed vital signs monitor to a portable monitor. Other monitoring equipment

(not displayed on the monitor) includes a thermometer, CO2 indicators for verifying

CO2 exhalation upon intubation, the otoscope and ophthalmoscope for assessing the

ears and eyes, respectively, and Foley catheters for monitoring urinary output (Figure

2.3).
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Vascular Access Equipment and Supplies

Access to the vascular system is obtained by the insertion of intravenous (IV) catheters.

These catheters are used for administration of medications, fluid and blood products.

Items used for IV access are packed together in an IV toolkit and include a catheter of

the appropriate size, alcohol swabs, adhesive tape, adhesive dressing, and gauze.

Chest Tube and Equipment for Drainage of the Pleural Cavity

The patient may need a tube in their chest to drain air or blood from the intrapleural

space. Systems for drainage of the pleural cavity provide suction, record the pressure

of the pleural space, and collect fluid. Equipment for inserting the chest tube is placed

along the wall in the trauma bay.

Temperature Control Equipment

Several tools can be used to control the patients temperature, including a blood warmer

device, a hollow blanket that blows warm air, and warm blankets.

Diagnostic and Imaging Equipment

The trauma bay is also equipped with devices to analyze hemoglobin and glucose levels

in blood. Other tools include an ultrasound device for diagnosing intra-abdominal or

thoracic fluid. The x-ray machine is located outside the trauma bay. When needed, the

machine is brought into the room. After taking the x-ray images, the technician carries

the cassettes to the radiology department where images are processed. Cassettes are

read electronically and imaging information is brought up digitally and viewed on an

x-ray workstation in the trauma bay.

Broselow Tape and Wall Charts

The Broselow Pediatric Emergency Tape provides a length-based estimate of medication

doses, dose delivery volumes, and equipment size using color-coded zones. Wall charts
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provide information on treatment parameters by patient age and weight, as well as the

normal ranges of patient vitals by age and weight.

Other Equipment

Cabinets along the wall are filled with instruments and equipment used for patient

evaluation and treatment. There are containers of sterile water for irrigation, scalpels,

dressings, gauze, sponges, syringes, lines and tubes of various sizes, and bags of crys-

talloid solutions. Medications and blood products are also kept nearby in refrigerators

and cabinets. Physicians and residents carry stethoscopes for chest auscultation and

trauma shears for clothes removal.

The space of the trauma bay is filled to capacity with equipment and instruments.

Upon patient arrival, the trauma team members gather around the patient bed (Figure

2.1), positioned in the center of the room. Each member has an initial predetermined

position around the bed, based on role. While all team members have a view of the

patient, only some have a clear view of the equipment in the room. Medical personnel

need rapid access to the equipment but sometimes have difficulties finding it. Some

equipment requires training to use. Finally, the nature of the evaluation tasks often

requires simultaneous use of several tools, which indicates a shared use of physical space.

Although most instruments in trauma resuscitation are associated with a unique

task, several tools can be used jointly to perform a single task. For example, the

laryngoscope, ET tube and CO2 indicator are used only during patient intubation.

In our work, we exploit this feature of trauma work to detect and recognize team

activities. We argue that accurate detection of one tool is sufficient to recognize most

tasks. In contrast, the otoscope can be used for both assessing the patients pupils and

ears. Because this type of one-to-many object-task association is not common during

resuscitations, we exclude it from our work.
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2.2.1 Challenges for Object Detection and Activity Recognition

When recognizing medical activities, a set of used objects is considerably informative

because most objects are uniquely associated with tasks. The context of trauma resus-

citation further limits the possible number of activities. Assuming that the used objects

are correctly identified, most of the trauma tasks can be inferred using existing meth-

ods, such as [61, 63]. However, regardless of which sensor technology is used, accurate

and automatic identification of the used objects is difficult in the trauma setting com-

pared to other domains, such as activities of daily living (ADL). Key domain-specific

challenges can be listed as follows:

Teamwork: Tasks are often performed collaboratively and in parallel, causing multiple

people being present in the trauma bay and multiple objects being in use simultane-

ously. Human occlusions represent challenges for vision algorithms and other sensors

due to interference. Simultaneous tracking of multiple objects implies many objects

communicating with the base station (possibly competing for wireless medium access)

and requires more computational power for tracking the status of each object.

Environmental Dynamics: Team members are often in motion. Also, some trauma

equipment, such as the X-ray machine, can be moved during trauma resuscitation,

causing a dynamic environment.

Lack of Tolerance for Distractions: Sensors must be minimally obtrusive. Other-

wise, people will avoid or forget to use them in such a stressful setting.

Task Uncertainty: During a trauma event, patient history is usually unavailable and

patient management relies on emerging rather than existing information.

Object Characteristics: Trauma equipment consists of several tools with different

characteristics, some of which may introduce challenges for object tracking:

• Size: Medical equipment includes a range of object sizes from syringe and scalpels

to X-ray and ventilation machines. The sensing technology must be able to handle

both small and large objects.

• Orientation: Most of the objects do not remain in a fixed orientation, causing
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problems for vision-based algorithms and passive sensors.

• Packaging: Many medical items are sterilized or produced in wrappings. The

removal of packaging does not necessarily signal the item usage. Also, after the

packaging is removed, any sensors attached to the packaging cannot be used to

track the object itself.

• Amount: Some tools in the trauma bay occur in large numbers, such as syringes,

endotracheal tubes and IV catheters. An inexpensive solution is needed to track

these kinds of items.

• Disposability: Because of sterilization and packaging, many items are not reusable.

Attached sensors must be inexpensive enough to be disposable.

• Material: Medical items are composed of various materials such as plastic (e.g.

chest tube, ET tube, face mask), rubber (e.g. tourniquet, parts of the BP cuff),

metal (e.g. laryngoscope) and even liquids (saline fluid, antiseptic solutions). The

sensor technology must be able to handle various background materials.

• Trays/kits: Items that are used together to perform a task, such as chest tube

insertion and foley catheter insertion, are grouped in a tray or kit. It might be

feasible to attach sensors only to these trays and kits.

2.3 An Overview of RFID Technology

Radio-frequency identification (RFID) is an electronic tagging technology for automatic

identification of an object, place or person. An RFID system consists of three basic

components: a reader equipped with antenna(s) (interrogator), a tag (transponder) and

a host computer (Figure 2.4). A tag can be passive or active depending on whether it

includes a battery. Active tags provide a longer read range (20-100 meters) and more

reliable detection, however, their battery-dependent operation requires maintenance.

Also, active tags are larger and more expensive than passive tags.

In passive RFID systems, the reader generates an electromagnetic signal that pro-

vides energy for the tag to get activated and to transmit its unique ID (or perform
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Figure 2.4: A typical RFID system, consisting of an RFID reader, antenna, tag and a
host computer.

other simple actions). Passive RFID tags may operate at low-frequency (LF: 125-135

kHz), high-frequency (HF: 13.56 MHz) or ultra-high frequency (860-960 MHz). LF and

HF tags communicate with readers through inductive coupling, where the coil in the

tag antenna and the coil in the reader antenna form a magnetic field. Hence the tag

and reader antenna must be close: typical read range is up to 10 cm for LF tags and 1

meter for HF tags [15].

A passive UHF RFID tag reflects part of the received signal while changing the

impedance of its antenna. The reader decodes the ID of the tag by analyzing the

reflected signal pattern. This process is known as backscatter modulation [86]. This

form of tag-reader communication allows read ranges up to 3-4 meters. The energy

propagating between the tag and the reader follows an inverse square law, which can

be expressed by Friis transmission formula in free space:

Preceived =
AetAer

d2t2
Ptransmitted (2.1)

where, Preceived is the received power, Aet and Aer are effective apertures of transmitting

and receiving antennas respectively, d is the distance between tag and reader and λ is

the wavelength [36]. Because of the inverse relation between distance and received

signal strength, RFID can be used for localization and motion detection in addition to

identification.
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Because passive UHF RFID is designed primarily for identification, there are chal-

lenges when it is used for other purposes, such as localization and motion detection.

For maximum efficiency, polarization of the tag and reader antennas must be matched,

which depends on the orientation of the tag. Inverse square law between tag-reader

distance and RSSI gets highly complicated in a realistic environment because of fad-

ing, absorption, multipath and occlusions. High tag population and human motion

are significant sources of noise in small indoor environments. In addition, correct mea-

surement of the received signal strength at the reader is difficult due to poor isolation

between transmit and receive channels. Resulting RSSI can be very noisy even when

both the reader and antenna are static [9, 54].

2.4 Related Work

2.4.1 Sensors for Activity Recognition

Sensor-based methods are becoming widespread for human activity recognition. To

detect and track objects or people, activity recognition systems have employed different

types of sensing technologies and approaches, including GPS [68], GSM [75], WLAN

[51, 44], accelerometers [4, 68], ultra wide band sensors [55], RFID [63, 61], cameras

[80], keyword spotting and digital pen technology. Below, we present a discussion of

the advantages and limitations of these sensing technologies, specifically for recognizing

trauma resuscitation tasks.

GPS and GSM

GPS [68] and GSM [75] are widely used sensors for inferring large-scale outdoor activi-

ties, such as walking, driving or traveling by bus. GPS signals do not propagate through

indoor environments, limiting the applicability of this technology to outdoor activities.

Although GSM can be used indoors, it provides only coarse grained location and motion

detection information, which is not sufficient for recognizing tasks performed within a

room.
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Computer Vision

Computer vision -based algorithms can be used to analyze the videos for object detec-

tion and activity recognition [80, 93]. Vision-based sensing is immune to packaging,

disposability, object material, washing and sterilization issues. It does not impose over-

head of sensors on objects, nor requires human effort to place sensors. The cost of the

equipment is not high when regular cameras are sufficient.

Limitations of computer vision for recognizing resuscitation activities: The trauma

resuscitation environment represents a number of challenges for vision algorithms. The

trauma bay is typically crowded, sometimes with up to 40 people present including

trauma team members. Most participants wear similar uniforms, which makes vision-

based tracking difficult due to visual occlusion. It is a dynamic scene with actors and

equipment constantly and rapidly moving. Medical instruments are also difficult to

detect because they are often made of specular or translucent materials. In addition,

small and randomly oriented objects represent a challenge for vision algorithms. Al-

though high-resolution cameras are efficient for detecting small objects, issues such as

cost, processing, storage and transfer of data may arise. Regardless of the camera

equipment, processing requirements are highly increased when many items need to be

tracked. Although videos include plentiful information about the performed activities,

video recording raises privacy issues because it maintains a permanent visual record of

people and their activities.

RFID and Other Item-based Sensors

Accelerometers, ultra wide band (UWB) sensors, active RFID tags and passive RFID

tags are potential on-item sensors for object motion detection. Among these, passive

radio-frequency identification (RFID) technology offers a non-intrusive, low-cost and

privacy-preserving sensing solution. Unlike accelerometers [4] and active RFID tags [39],

passive RFID tags do not require maintenance because they operate without batteries.

Passive RFID tags are also smaller (convenient for attaching to small medical objects)

and cheaper (usable at the item level and even disposable). Although computer vision
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offers most of these advantages, its use is limited by privacy concerns [80].

Despite these advantages, long-range passive RFID technology has received lim-

ited attention in activity recognition community due to its performance limitations.

Compared to active sensors with read range up to tens of meters, passive RFID tags

have a much shorter read range, up to 4 m. Although a significant disadvantage for a

hospital-wide tracking applications, this limitation does not affect activity recognition

systems that are intended for contained and relatively small environments such as the

trauma bay. In addition, detection rates significantly degrade when passive RFID tags

are attached to objects made of metal or filed with liquid. Our laboratory experiments

and real-world deployment have shown that careful placement of RFID tags along the

object edges and using special on-metal tags may help overcome this limitation. Finally,

a passive RFID system requires highly powered readers to enable powering up the tags.

Although prior research has shown that the high power emitted by readers may cause

malfunctioning of medical devices [83], we did not encounter this problem during the

deployment of our system in the actual trauma bay.

Many activity recognition systems use near-field RFID technologies, (e.g., wearable

readers) because they can achieve high accuracy of interaction detection. However

near-field technologies have three significant limitations. First, they require human

participation, which is intrusive in real-world applications, particularly in critical care

[5]. Urgency of the situation may make the workers forget or ignore wearing the readers.

In addition, different team members are frequently joining and leaving the room, which

makes it difficult to equip the entire team with readers and ensure that all active

members are wearing them throughout the event. Even during a study in a relaxed home

setting, participants forgot to wear the readers or grasped objects with the non-equipped

hands [48]. These problems are even more likely in stressful environments. Second, near-

field readers are not feasible for long-term experiments in a clinical setting because they

hinder patient care. We plan to conduct our experiments continuously in an emergency

department, rather than in a few specially arranged experiments. We have designed

the setup of antennas and attached tags to objects to ensure minimal intrusion while

maximizing their performance. Finally, near-field readers only provide binary detection
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information, not signal strength values. Although received signal strength indication

(RSSI) is noisy for passive RFID, especially in environments with many people, it

contains richer information that can be extracted using data processing techniques.

In [9], a new sensing platform was introduced which combines passive UHF RFID

technology with traditional sensors and does not require wearing readers. However this

technology is currently not available commercially and is not suitable for small items.

Limitations of item-based sensors for recognizing resuscitation activities: Regardless

of the domain, primary limitation of object-dependent methods is their inability to

recognize activities involving very few or no objects, such as watching TV and having

conversation. In trauma resuscitation, manual palpations and spoken assessments are

common non-instrumental tasks. A potential solution is to use computer vision or

speech recognition for recognizing these activities.

Many items in the trauma bay, such as endotracheal (ET) tubes and CO2 indica-

tors, are produced and delivered in wrappings. A sensor can only be attached to the

wrapping, which prevents item tracking after its wrapping is removed. A reasonable ap-

proach is to assume that the item will be used when the wrapping is removed. However,

although rarely observed, it is possible that the wrapping is removed but the item is not

used. Moreover, even if the item is ultimately used, a considerable time may pass from

unwrapping it until using it. In the timeline in Figure 2.5, the last three interactions

with the ET-tube tag at 8th and 9th minutes represent handling the empty wrapping,

because the wrapping was removed at the 4th minute.

When the same item is used to perform consecutive tasks without a break, an object-

based recognizer system is unable to distinguish these tasks. For example, an otoscope

is used to assess ears and an ophthalmoscope is used to assess pupils. We observed

that, a trauma team member usually evaluates both pupils and ear once the otoscope

is grasped, and avoids spending time to grab the other device. A potential solution

would be to complement RFID tags with another modality, such as vision or speech.
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Figure 2.5: Timeline of an intubation event. Red bars represent object relocations, blue
bars represent object manipulations (e.g., unwrapping, using), and green bars represent
actual usage. The upper chart represents interactions detected by RFID and the lower
chart represents the actual object usage observed from the recorded video. Time axis
(in minutes) is shown between the lower and upper charts.

Other Sensing Approaches for Recognizing Medical Tasks

Keyword spotting approaches can be helpful when detecting activities. In [90], key-

word spotting is used for aiding the Emergency Medical Services (EMS), which is a

similar application to trauma resuscitation. Keyword spotting accuracy was measured

as 73% and 87% of the annotations were useful even they include errors. In their study,

paramedics use a close talking microphone, and speaker-dependent models are used for

keyword-spotting. These requirements may be hard to satisfy for trauma resuscitation

because whole team must be equipped with microphones and the team composition

changes during the same event and across events.

Digital pen and paper technology can be used as a means to capture vital sign data

and to transfer it in a flow sheet in the electronic medical record [16]. Fast-paced nature

of the trauma resuscitation domain often obliges fast handwriting, which may not be

sufficiently clear for optical character recognition.
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2.4.2 Object-based Recognition of Activities

While simple activities, such as walking or raising arms can be recognized by body

motion sensing through computer vision or body sensor networks [11], complex activities

require high-level cues, including spoken words [42, 90], body location [5, 32, 39, 42],

or objects in use [5, 8, 35, 57, 63, 70, 76]. Among these, objects in use have been

found valuable for identifying tasks in critical care settings [5], daily activities (e.g.,

making coffee) [8, 48, 63], car manufacturing activities (e.g., opening trunk, closing

engine hood) [76] and other medical tasks [1, 5, 19, 56, 70]

Agarwal et al. tracked people and medications to infer events during surgery [1];

Bardram et al. proposed a system for tracking surgery phases by using providers’

locations and interacted objects [5]. Ohashi et al. used RFID-reader equipped carts

to track medications and blood administration during patient care [57]. They tagged

intravenous (IV) fluid bags, syringes and blood sampling tubes with high-frequency

RFID tags, with read ranges up to 10 cm. This approach required placing objects on

the cart for detection. Although this scenario is reasonable for bedside patient care, it

cannot be assumed for procedures in an operating room setting, where multiple people

occupy and use a larger space. To remove this restriction, wearable RFID readers have

been used for tracking nursing tasks [35].

Hospital workers’ activities, such as clinical case assessment and patient care, have

been inferred using Neural Networks and HMMs, based on contextual information,

including used artifacts, their location, and the time of object use [19, 70]. Activity

recognition in both studies was based on manually collected data, rather than automatic

acquisition. A semi-automatic data acquisition approach has been proposed [58], to rec-

ognize steps performed during a laparoscopic surgery based on used instruments and

laparoscope output signals. A left-right HMM, trained and tested on 11 real surgeries,

yielded a recognition rate of 93%. Because an operation consists of several sequential

phases that are planned in advance, a left-right HMM performed adequately. How-

ever, dynamic processes, such as trauma resuscitation, cannot be modeled as a set of

predefined sequential activities.
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2.4.3 Use of RFID Technology in Surgery and Critical Care

Agarwal et al. used RFID readers to track people and medications to infer events during

surgery [1]. A multi-layer rule-based system was developed to infer medically significant

events such as administration of anesthesia. Passive RFID tags were scanned at a

designated RFID reader. Events were detected using 27 rules developed by interviewing

an anesthesiologist and reviewing medical literature. Adding and retrieving rules from

the knowledge base was reported to be a computationally expensive operation.

Vankipuram et al. [84] and Kannampallil et al. [39] used active RFID tags to

deduce coarse-grained activities of clinicians in a trauma unit, including their location

and movement. Our research extends this prior work by exploring the use of passive

RFID tags for detecting and interpreting finer-grained tasks, such as those performed

on patients. We focus on analyzing the use of medical objects and tools rather than

clinicians location and movement patterns. Because objects are uniquely associated

with different tasks, they can serve as reliable indicators for current tasks and team

activities. For example, the use of manual blood pressure (BP) cuff implies that blood

pressure is being measured.

In another study, phases of a surgery (laparoscopic appendectomy) were classified

as preparation, surgery and cleanup, based on the locations of people and tools [5].

To localize medical tools, RFID readers were placed on the anesthesia table, operating

trolley and staff members’ hands. Tags were placed on instruments by attaching a

clip carrying the tag, without considering usability and the background material. The

phases in this domain are sequential and coarsely grained (timescale of hours) and there

are only three different classes. Unlike this, our system recognizes fine-grained tasks on

the timescale of minutes, or even seconds. In addition, we are currently considering ten

different classes of tasks.
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Chapter 3

Introducing RFID Technology in Dynamic and

Time-Critical Medical Settings: Requirements and

Challenges

3.1 Introduction

Use of RFID technology in healthcare settings is becoming prevalent. Major applica-

tion areas include patient and personnel tracking, resources tracking and medication

tracking. RFID-based detection of used objects and performed activities, on the other

hand, has received limited attention. In this chapter, we describe the process of deriv-

ing design requirements for our goal of tracking trauma team activities using minimally

intrusive RFID technology. In this process, we analyzed trauma resuscitation tasks,

photographs of medical tools, and videos of simulated resuscitations to gain insight

into work practices and procedures. Based on these analyses, we identified the activi-

ties and objects that require tracking, challenges for RFID-based object tracking in the

trauma bay and cues for interpreting radio signals from tagged objects, i.e., whether

an object is stationary, carried from one place to another, or in use. To deduce used

objects and team activities based on radio signals, we analyzed work practices and

providers interactions with objects. Our description of the requirements gathering pro-

cess and preliminary results from RFID technology deployment offer valuable insight

into challenges to introducing RFID technology in dynamic work environments.

3.1.1 Outline

In sections that follow, we first introduce our research settings and describe our study

and methods for domain research. Next, we present our findings, which include the list

of tasks and objects for tracking, constraints for RFID-based tracking of objects and
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cues for identifying objects in use.

3.2 Current Study

3.2.1 Research Setting

Our study took place at Children’s National Medical Center (CNMC), a pediatric

Level 1 trauma center in Washington, DC. CNMC is the only hospital in the region

dedicated to the care of children. The hospital serves the DC metropolitan region and

admits over 1,000 injured patients each year. Patients are treated in one of the two

trauma bays equipped with medications and equipment. Both trauma bays have a

high-resolution recording systems installed that include two ceiling-mounted cameras

and microphones, and direct digital output from patient monitors. This study was

approved by the hospitals Institutional Review Board (IRB) as an exempt protocol.

We installed off-the-shelf RFID equipment both in our university laboratory and in

the trauma bay at CNMC. UHF RFID readers (ALR-9900) were acquired from Alien

Technology [49]. These readers operate at 915 MHz and provide both the received

signal strength indication (RSSI) and the binary detection information. We chose

circularly polarized antennas (ALR-9611-CR, 3 dB beam width of 65◦), also from Alien

Technology, to reduce the effect of their orientation on read performance as they radiate

energy in horizontal, vertical and all in-between planes. Passive RFID tags came from

several vendors, including Alien Technology, Avery Dennison and Confidex. The tags

varied by size and shape (e.g., rectangular, long, and thin) and were powered by the

signal transmitted from RFID readers.

3.2.2 Methods

Finding the optimal placement for RFID tags and antennas required an analysis of

object shape and size, as well as providers interactions with patients, medical tools and

equipment. We also needed to develop guidelines for signal interpretation to identify

whether an object is stationary, in use, or carried. To accomplish these goals, we

performed three types of analyses: 1) classification of tasks and objects using task
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analysis; 2) description of objects using content analysis of equipment photographs;

and 3) description of providers-objects interactions using analysis of videos of simulated

resuscitations.

Task Analysis

To define the objects and key personnel involved in different resuscitation tasks, medical

experts on our research team performed task analysis. We focused on the primary

survey because this portion of trauma resuscitation is most important and consistent

between providers and from patient to patient. We also reviewed the medical literature

to determine standards and best practices for each component of the primary survey.

The task analysis yielded over 300 separate tasks, with providers’ roles and objects

assigned to each task. To ensure the accuracy of the task analysis, a physician and

nurse who did not participate in its initial construction revised the task analysis using

a consensus approach.

To better illustrate the task analysis, we provide a sample of the completed task

analysis for airway management task (Figure 3.1). Airway management is a hierarchical

task consisting of five levels and approximately 150 subtasks. Some tasks are constraint-

dependent, which is indicated by the plan specified next to the ancestor task. For

example, assessment of the airway is mandatory, while airway management is required

only if the airway is compromised (Figure 3.1, left). Each task contains a set of subtasks

with clearly defined order, steps within a subtask, key personnel, and medical tools and

equipment. For instance, patient intubation, or ET tube insertion, is a level 4 task

in the airway management sequence of tasks (Manage airway → Establish definitive

airway → Orotracheal intubation → ET tube insertion). It consists of seven subtasks,

each being done by either an anesthesiologist or a respiratory technician and involving

a set of airway tools (Figure 3.1, right).

Analysis of resuscitation tasks provided the needed input required for personnel and

object tracking. In addition, the knowledge acquired through the task analysis allowed

us to focus our analysis of videos on particular providers-objects interactions, their

duration and frequency.



28

Figure 3.1: Snapshots from task analysis diagram for Airway step in the ATLS protocol.
Left diagram shows the top three task levels. Right diagram shows subtasks (level 5)
for patient intubation task (level 4), along with key personnel and required medical
tools.

Content Analysis of Equipment Photographs

Over the course of our study, we took a total of 88 photographs, 63 of which show

commonly used medical tools, supplies and equipment, and 25 show the trauma bay.

The photographs were uploaded to a photo-sharing site accessible to all members on our

research team (Figure 3.2). We used photographs of the room to assess the environment

and identify locations for RFID antennas. Photographs of the objects were used to

determine the tag type and identify locations for tags by assessing the object size,

shape and composition. Experts in trauma resuscitation annotated photographs of

objects, providing the following information for each object:

• Object: Name of the tool, supply item or equipment.

• Purpose: Description of the task that the object is used for.

• Material: General composition of the object.

• Other material: Other materials that compose the object. For example, the

pleural bag fills with blood when in use.

• Wrapping: Whether or not the object is wrapped, and if wrapped, description of

the wrapping material.

• Taggable: Taggable part of the object: itself or the wrapping.
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Figure 3.2: Photograph of a cervical collar. Related information is listed below the
picture.



30

Selection of an appropriate RFID tag type required an analysis of materials that

the object is composed of, as well as the object size and shape. Information about the

object shape and size was used to identify available surfaces for tag placement. Finally,

information about whether or not an object is taggable was used to indicate if the

object could be tagged directly or on a plastic wrapping. If wrapped, the tag can only

be placed on the wrapping, which limits the degree to which the object can be tracked.

Review of Simulated Resuscitation Events

To be able to interpret radio signals from tagged objects and infer whether an object

is in use, stationary or carried, we analyzed video recordings of simulated resuscitation

events to better understand providers interactions with medical tools and equipment.

We reviewed 13 simulation events, with an average duration of ten minutes. To aid

the analysis, we also transcribed the videos. Transcripts included the list of high-

level tasks (e.g., suction applied, intubation starts) along with timestamps and key

personnel involved in performing those tasks. We focused our video analysis on the

following features of work:

1. Current placement and storage of medical tools and equipment

2. The manner in which tools and equipment are used during evaluation and treat-

ment procedures

3. Frequency and duration of interactions with tools

4. Spatial distribution of tools and medical personnel during resuscitations.

Notes from video reviews were collated and analyzed for tools usage patterns.

3.3 Findings

Our findings are structured based on the three research goals. First, we present the re-

sults from the task analysis that helped us identify tasks and objects that need tracking.

We then present our results from laboratory experiments, as well as the results from the

analysis of photographs and videos that guided the placement of RFID antennas and
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tags in the trauma bay. Finally, we present the guidelines we developed for interpreting

radio signals from tagged objects.

3.3.1 Tasks and Objects for RFID Tracking

Based on the task analysis, we created a list of resuscitation tasks for tracking in col-

laboration with a group of representative members from each role on the trauma team

(e.g., physicians, nurses and respiratory therapists). Although the task analysis yielded

over 300 separate tasks for the primary survey, our list focused on a subset of tasks that

were judged as important for the performance of trauma resuscitation; if omitted or

performed incorrectly, these tasks could lead to adverse patient outcomes. In addition,

we excluded lower-level subtasks because detecting them is practically and computa-

tionally more challenging. For example, administering medications occurs throughout

the primary survey and is an important task. However, detecting medications poses

several challenges: the number of medications is substantial; they are liquid and stored

in vials, and liquid interferes with the radio signal; vials are discarded after medications

are drawn, which also requires tagging syringes and matching them with container tags.

We plan to address these challenges in our future work.

Our final list of primary survey tasks, along with required objects (O) and person-

nel (P), as determined by the task analysis, included: neck immobilization (P: physi-

cian right, primary nurse; O: cervical collar), assessing and managing airway (P: team

leader, physician right, anesthesiologist, respiratory therapist, technician; O: laryngo-

scope, ET tube, CO2 indicator), assessing and managing respiratory status (P: team

leader, physician right, primary nurse, respiratory therapist, technician; O: stethoscope,

chest tube, device for drainage of the pleural cavity), obtaining vital signs (P: surgical

resident, primary nurse, technician; O: monitoring equipment and sensors, manual BP

cuff, thermometer), oxygen administration (P: anesthesiologist, respiratory therapist;

O: face mask, bag valve mask), placing cardiac-respiratory monitor or defibrillator (P:

primary nurse; O: ECG leads, pulse oximetry probe), assessing circulatory status (P:

physician right, primary nurse; O: IV equipment and supplies), assessing neurological

status (P: physician right; objects: otoscope, ophthalmoscope), patient exposure (P:
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primary nurse, technician; O: trauma sheers), and estimating patient weight (P: pri-

mary nurse; object: Broselow tape). There is no need to tag monitoring equipment

because their status is already displayed on the vital signs monitor.

Presence and location of medical personnel provides valuable cues for detecting and

recognizing tasks. For example, presence of an anesthesiologist indicates performing of

the airway management task. We can detect the presence of different team members

by attaching RFID tags to their employee badges. The challenge here is that badges

are carried under protective gowns or in pockets, which affects signal reception. An

alternative is to attach RFID tags to team members role tags. Role tags are wearable,

self-adhesive paper tags indicating each members role during trauma resuscitation. At

CNMC, team members attach their role tags to protective gowns. While the practice of

wearing role tags is not common across trauma centers, we decided to track personnel

via role tags for improved signal detection. Tagging personnel requires high performance

passive RFID tags due to their close proximity to human body.

3.3.2 Constraints for RFID-based Object Tracking in Trauma Resus-

citation

Our analysis of tasks and work procedures showed that finding the optimal placement

for RFID tags and antennas in the crowded space of the trauma bay is subject to several

constraints. These constraints can be grouped into two categories based on their cause:

(1) human factors, such as providers movement, object occlusions by hands and body,

and variable handling of objects; and (2) environmental factors, such as room size,

spatial distribution of equipment, and esthetics of the room.

• RFID antennas placement

– Human factors/constraints

∗ Crowded room with many people moving

∗ Concentration of people around the patient bed

∗ Occlusion of object by providers’ hands and body

– Environmental factors/constraints
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∗ Crowded space with walls covered with cabinets and drawers

∗ Surgical lights suspended from the ceiling

∗ Radio interferences with medical equipment

∗ Esthetics

∗ RFID adoption costs

• RFID tags placement

– Human factors/constraints

∗ Variable handling of objects

∗ Occlusion of object tags by providers’ hands and body

∗ Tags may render objects uncomfortable for use

– Environmental factors/constraints

∗ Large number of objects

∗ Variable object sizes

∗ Variable object materials

∗ Variable object shapes

∗ Variable object packaging

∗ Unreliable tag adherence

3.3.3 Cues for Identifying Objects In Use

Results from video analysis of simulated resuscitations showed that interactions with

medical tools and equipment during resuscitation tasks are complex and involve differ-

ent usage patterns, depending on the object and task at hand. Using an object means

fetching it from its current storage place, interacting with it for some time, and then

returning it back to its place. Our results showed that the object-use cycle is more

complex in practice because the process is error-prone and tasks are performed collab-

oratively. For example, a nurse may retrieve an object but realize that she needs a

different size and return the one she already took without using it.
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To show the object-use cycle during resuscitation tasks, we provide two examples

of object use that we observed during simulations at CNMC. First, we describe the use

of the thermometer. Upon learning of an incoming trauma patient, members of the

team gather in the trauma bay and start preparing equipment based on anticipated

patient needs. Because the temperature is measured during the first few minutes after

patient arrival, the primary nurse fetches the thermometer from its storage location

(above counter) and places it on the cart (C2) at the foot of the bed (Figure 6.8). The

nurse then proceeds with preparing other tools to make them available during patient

evaluation. The thermometer remains on the cart for about four and a half minutes

until the team leader asks for the temperature measurement. The nurse fetches the

thermometer again and starts measuring the patients temperature. At this point, the

thermometer is in the patient-bed zone. After using the thermometer for about 20

seconds, the nurse puts it back on the cart, where it remains until the end of the

simulation.

Our second example shows the use of the laryngoscope. The laryngoscope is located

on the cart (C1) in the head zone (Figure 6.8), along with other airway equipment. Af-

ter being asked by the team leader to intubate the patient, the anesthesiologist fetches

the laryngoscope from the cart, places it at the head of the bed and proceeds with

preparing other tools. Shortly after, the anesthesiologist starts intubation, stops for

about 20 seconds to ventilate the patient, and then continues intubation for another 50

seconds. During this time, the laryngoscope is in the patient-bed zone. In addition, the

laryngoscope experiences slight movements as the anesthesiologist attempts to place

the blade correctly. Upon completing the task, the anesthesiologist leaves the laryngo-

scope on the bed (patient-bed zone), where it remains for another eight minutes. The

usage patterns for both the thermometer and the laryngoscope were observed across all

videotaped simulations that involved the use of these objects.

Using the above approach, we analyzed usage patterns for all objects that were

marked for tagging. Based on these analyses, we identified three major cues indicating

that an object is in use:



35

1. Zone-based location: Objects in the patient-bed zone are more likely to be in use

than objects located in the foot or head zones (carts), or in the right (cabinets,

trays along the wall) and the left zones (counter).

2. Motion: Objects in motion are more likely to be in use than idle objects.

3. Contact: Interaction or contact with an object indicates that the object is likely

to be in use.

Zone-based Location Cue

Resuscitation tools, supplies and equipment are stored at different locations in the room:

in cabinets and drawers, on trays and carts along the walls, or attached to the walls

(Figure 6.8). When needed, these objects are taken to different locations depending on

their purpose (relocation). Using the location-based information, we can classify the

objects into three groups:

1) Objects brought to the patient-bed area before use: Some objects are taken

from their storage places before patient arrival during the preparation phase or shortly

upon patient arrival during the patient handover. These objects are placed on the

patient bed or on the cart in the foot zone for an easy reach during patient evalua-

tion. Objects that are brought to the patient-bed area before use include monitoring

equipment, thermometer, IV toolkit, fluid bags, and manual blood pressure cuff.

2) Objects brought to the patient-bed area when needed: Most objects are

brought to the patient-bed area when needed for the actual use. For example, intuba-

tion equipment is readied for use if the patients airway is compromised; a chest tube

placement tray is prepared if a severe chest injury is suspected; and, warm blankets are

applied if the patient is hypothermic.

3) Objects prepared outside the patient-bed area: Wrapped items, such as

tubes, syringes, needles, and CO2 indicators are unwrapped in the patient-bed area to

minimize contamination. These objects may also be unwrapped outside the patient-bed

area where tagged wrappings are thrown away or dropped on the floor. We observed

that even if unwrapped away from the patient-bed zone, the objects are immediately
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brought near the patient because sterile items must be used shortly after removing the

wrapping. Medications belong to this category as well because they are prepared at the

counter (in the left zone) and then brought to the patient-bed area for administration.

Zone-based location is an important cue for detecting objects in use, but this cue

can sometimes lead to misinterpretation of radio signals. For example, if the object

is brought to the patient-bed area long before usage, identifying in-use time based

on location only is not possible. To detect in-use time for those objects, we need to

take into account information about motion and interaction. Similarly, location cue

alone cannot be used for detecting in-use time for wrapped objects that are prepared

(unwrapped) outside the patient-bed area because their tagged wrappings are either

thrown away or left there.

Motion Cue

While in use, some objects may experience slight movements. For example, the auto-

matic blood pressure cuff moves as it inflates during BP measurements; the laryngoscope

moves as the anesthesiologist places the blade; and, the otoscope and ophthalmoscope

move as the physician examines pupils and ears. In contrast, some objects such as cer-

vical collar and fluid bags are still while in use. We use this information about object

movement to further determine whether an object is in use. Based on their motion

status, objects can be classified into two categories:

1) Moving while in use: Objects in this category experience slight movements while

in use. These include: laryngoscope, otoscope, ophthalmoscope, Broselow tape, oxygen

masks, stethoscope, manual and automatic BP cuffs, thermometer, intraosseous line

placement gun, and wrapped objects such as tubes, CO2 indicator, Foley catheter, IV

toolkits, IV catheters and IV tubing. Although some wrapped objects remain still after

placement (e.g., tubes and catheters), we categorize them as moving because we can

only tag their wrapping and detect those tags as the objects are being unwrapped.

2) Standing still while in use: Objects in this category are still while in use and

include cervical collars and fluid bags.
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Contact Cue

Using an object implies that either a provider or patient is in contact with (or touches)

that object. If we attach an RFID tag at the point where the tag will be covered by

providers hand or patients body, the RFID signal will disappear when the contact starts

because human body absorbs the signal. We can exploit the behaviors of RFID tags

during this contact as an additional cue for detecting objects in use. This approach,

however, requires sufficient duration of contact for reliable detection. Based on the

observed duration of contact with different objects, we divide objects as follows:

1) Brief contact: Contact with an object is brief, up to 10 seconds. Objects char-

acterized by short interaction include sterile and wrapped items such as tubes, CO2

indicators, Foley catheters, syringes, and needles. Because sterile objects cannot be

tagged directly, RFID tags can only be placed on the outside wrapping. The contact is

therefore considered brief because it occurs during unwrapping; tags on the wrapping

are readable only for a brief period of time, as the object is being unwrapped. Once the

object is unwrapped, the tags are lost and cannot be used for object detection anymore.

2) Long contact: Contact with an object is longer than 10 seconds. Long contact

was observed for objects used or touched by both patients and providers:

• Patient-object contact: These objects are in contact with the patients skin

when in use. The duration of this contact is long, often throughout the whole

resuscitation. Once an object is placed on the patient, it stays there until the

patient is moved to another hospital unit. Objects in this subcategory include

cervical collars, automatic BP cuff and other sensors, oxygen masks, warm blan-

kets, and the patient bed itself. An exception to this rule is the manual BP cuff

that is used only for the initial BP measurement and then removed.

• Provider-object contact: These objects are in contact with the providers body

or hands when in use. These duration of this contact is shorter than patient-

object interactions because providers move around frequently and perform dif-

ferent tasks. Objects in this subcategory include the stethoscope, thermometer,

laryngoscope, ophthalmoscope, otoscope, Broselow tape, and other tools.
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Table 3.1: Interaction types and statistics for airway equipment. Average and minimum
duration given in seconds.

Interaction type #Interactions Avg. dur. Std. dur. Min. dur.
Laryngoscope

Relocating 7 1.7 0.5 1
Holding (no use) 7 6.8 4.1 2

Using 5 54 42.5 24
ET tube

Relocating 7 1.7 1.2 1
Holding (no use) 4 16 16.9 4

Using 5 24 22.9 4
CO2 indicator

Relocating 4 3.3 1.9 2
Holding (no use) 1 1 n/a 1

Using 2 6.5 0.7 6

To exploit the contact information for object use detection, we developed the method

of tandem tagging: one tag at the point where the tag will be covered by providers hand

or patients body when in use, and the other tag at the location where it will remain

exposed when in use. When an object is not in use, we expect strong radio signal from

both tandem tags; when an object is in use, the tag in contact with provider or patient

will emit weaker signal or no signal at all. One caveat must be considered when detecting

objects in use based on contact information. Due to the dynamic nature of work in the

trauma bay, signals from tags may be lost briefly due to accidental contact or occlusion

caused by human movement. Because distinguishing accidental from purposeful but

brief uses of an object is almost impossible, we realized that we could not use contact

cue for objects characterized by brief contact. We therefore decided not to tag these

objects with tandem tags. To detect when these types of objects are in use, we needed

to rely on zone-based and motion cues.

3.3.4 Identifying False Object Use Detection

Analysis of provider-object interactions showed that only a subset of interactions rep-

resents the actual object use. We observed that brief interactions almost always rep-

resented either relocating the object from one zone to another or holding the object



39

without using it. To identify instances of false object use, we can derive distributions

of duration for different interaction types (e.g., relocating, holding, using) for each ob-

ject. If the distribution of duration of object use does not overlap with distributions of

duration of relocating or holding, these non-use interactions can be distinguished based

on their duration. As an example, we analyzed the use of airway equipment, analyzed

across five simulations in which the patient was intubated (Table 3.1). The longest

interactions were those of using objects for a task purpose while shorter interactions

included relocating the object or unwrapping. For the laryngoscope, the average dura-

tion of actual use was 54 s, which is significantly longer than the average duration of

holding the instrument, 6.8 s. Although standard deviation of 42.5 s may suggest an

overlap between using and holding distributions, the minimum duration for using (24

s) indicates a right-tailed distribution and almost no overlap with the distribution of

holding. Interactions with the laryngoscope shorter than 24 s can then be considered

non-use interaction and filtered out. This threshold for short interactions is relative

and depends on the object type. Because the CO2 detector was used in one simula-

tion only, the data for this object is limited and shows only minimal overlap between

holding and using distributions (Table 3.1). Unlike for laryngoscope and CO2 detector,

statistics for holding and using distributions are similar for the ET tube, indicating a

significant overlap between interaction types, thus the failure to filter out false detec-

tions of use. Because the laryngoscope and CO2 detector are also used for intubation,

and their false alarm rates are lower, our activity detection system is not directly af-

fected by false detections of ET tube use. The example with airway equipment shows

that tasks requiring multiple objects can be detected more reliably using interaction

duration times than tasks requiring a single object.

Because our observations of interactions with objects were based on simulated re-

suscitations (where use of an object is often shorter than in reality), we believe that the

differences between relocating, holding and using an object will be even more apparent

in actual events.
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Chapter 4

Detecting Object Motion Using Passive RFID

4.1 Introduction

Our domain research in Chapter 3 has shown that motion status of an object is a strong

indicator of its use. In this chapter, we explore using passive ultra-high frequency (UHF)

RFID for long-range (2-3 m) detection of object motion within a room. We define ob-

ject motion as any human interaction that causes a change in objects orientation and

location, as well as occlusions with hand or body. These changes affect the energy

reflected by RFID tags and result in frequent changes in Received Signal Strength Indi-

cation (RSSI). These signal changes have different statistical characteristics compared

to the fluctuations caused by changes in the environment (e.g., human movement near

the tag). Our method for motion detection processes the RSSI sequence by machine-

learning techniques to detect fluctuations caused by tag motion. We extract relevant

features from RSSI and classify them as moving or still using binary classifiers. Our

results show the advantages of using scenario-dependent features and classifiers, and

are applicable to other context-aware applications. We have also studied recognition of

the motion type as linear vs. random. We found that identifying motion type is more

challenging than detecting object motion with current passive RFID technology.

4.1.1 Outline

In sections that follow, we first summarize the related work in mobility monitoring

using RFID as well as other sensors (Section 4.2). We then describe our experimental

setup in Section 4.3 and methodology for processing the RSSI data in Section 4.4. We

report the experimental results in Section 4.5 and conclude in Section 4.6.
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4.2 Related Work

4.2.1 Mobility Monitoring with Other Sensors

Several types of sensors have been used for monitoring object or human mobility, e.g.,

GPS [62], GSM [75], WLAN [44, 40], accelerometers [27, 17], cameras [81, 13] and

RFID tags [36]. Among these, GPS and GSM base their algorithms on the coarse-

grained location data, which is not applicable for detecting motion in a typical room-

sized area, such as a trauma bay. It is possible to obtain finer grained information

using WLAN RSSI. A users motion mode was inferred as moving or standing still

in [44] using signal strength with 87% accuracy. The initial decision, based on the

variance of the RSSI, was smoothed with a 2-state HMM. The ComPoScan [40] system

incorporates an HMM-based motion detector for switching between monitor sniffing and

active scanning to ensure the quality of communication while performing localization.

Using spectral features of the WLAN RSSI signal, moving vs. still classification was

performed in a diverse set of conditions in [51], with an average accuracy of 94%. A

method is described in [41] for detecting intra-room mobility of users. The algorithm

compares a set of signal strength descriptors (differences in mean, standard deviation

and histogram comparison) with the previously estimated thresholds. Although [41]

and [40] are closest to our work in terms of granulation, WLAN technology is not

appropriate for tracking small objects due to the aforementioned size limitations.

Hache et al. [27] distinguished mobile from stationary states with 97.4% accuracy

by applying thresholds on accelerometer data. Mobility type (e.g., walking, running)

can also be found using thresholds [27] or machine-learning [17]. Accelerometers are re-

liable and precise, but our application domain requires either low-cost sensors (passive

RFID tags) or cameras to track a large number of possibly small, inexpensive and dis-

posable objects. Cameras provide rich contextual information and statistical methods

for motion tracking [81, 13], but raise privacy concerns, especially in medical domains.
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4.2.2 Mobility Monitoring using RFID

Passive RFID has been used for object localization (using least-squares [18] or Bayesian

[2] approaches), object identification [37] and object motion detection [36]. Although

methods used in [18, 2] are related, they do not apply to our study because our goal

is detecting object motion. Additionally, we do not derive motion status from location

since our definition of object motion includes both orientation changes and small but

frequent location changes.

Prior work on long-range passive RFID-based motion detection focused on less dy-

namic domains such as smart homes [20, 36, 4] and offices, with few tagged objects and

one or no persons present. As a result, in [67] the states were clearly discernable in

the raw RSSI data. In contrast, trauma resuscitation poses challenges for RFID-based

motion detection (Table 4.1). Resuscitations require the collaborative work of medical

teams, often with 15-20 members using tens to hundreds of tagged objects. Because

tasks are performed in parallel, multiple objects might be in use simultaneously, and

the speed and frequency of human movement are high.

To our knowledge, the closest work to ours is [36], where a rule-based method

was used to detect movement of RFID-tagged objects. Although they achieved an

overall accuracy of 94%, their algorithm performed poorly (40-65%) in scenarios with

human movement. Our approach achieved 95% accuracy in the baseline scenario, and

80% accuracy in most challenging scenarios with human movement and multiple tags.

Machine-learning methods not only provided superior performance but also obviated

the need for defining the rules and associated thresholds. We provide guidelines for

feature and model selection under different scenarios and constraints.

4.3 Experimental Setup

Our experimental setup and scenarios were designed to evaluate the effects of three

factors: 1) human presence and movement, 2) multiple tags in view, and 3) concurrent

and nearby tag movement. These factors are variable in trauma resuscitation (Table 4.1)

and likely to affect the radio signal due to interference. We designed our experiments
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Table 4.1: Characteristics of the trauma resuscitation domain

# Characteristics Requirements/Challenges Value
1 # of people in exper-

imental area
Human body occludes and absorbs radio signals.
Effects become more severe as the number of
people increases

5-20

2 # of tagged objects
in view

Due to the collision avoidance mechanism (Slot-
ted Aloha Protocol), number of readings from a
tag decreases with the increasing number of tags
in view.

10-100

3 # of concurrently
moving objects

Nearby concurrently moving tags may affect the
signal strength of each other and cause interfer-
ence.

5-10

4 Duration of interac-
tion

A quick interaction may not be captured as its
effect on the signal strength is smoothed while
windowing.

seconds to
minutes

5 Speed of object
movement

Very slow movements may be perceived as if the
object is still, and not detected. Very fast move-
ments may not be detected as the effect on the
signal strength is smoothed while windowing.

slow to
moderate
(0.5-1 m/s)

6 Speed of human
movement

Fast human movement causes frequently chang-
ing environmental characteristics, causing fluc-
tuations even for a still tag.

moderate
( 1-3 m/s)

7 Frequency of human
movement

Frequent human movement causes frequently
changing environmental characteristics and
more occlusions, causing fluctuations even for
a still tag.

many times
per minute

8 Locale of object in-
teractions

Regions with significant object concentration
must be in coverage of RFID antennas.

scattered,
near pa-
tient bed

9 Tolerance to detec-
tion latency

Less tolerance to latency restricts the use of
post-processing techniques.

few seconds
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Table 4.2: Interaction statistics for various objects and interaction types. Average and
minimum values across 32 trauma resuscitations. (Fluid bags and cervical collars stay
in-use for long time after being placed. Object use statistics extracted only from the
placement period, not from the in-use period following the placement.)

Object Interaction type #Interactions Avg. dur. Min. dur.

CO2 detector
relocation 0.5 8.9 2

use n/a n/a n/a

Laryngoscope
relocation 1.2 12.4 1

use 0.9 28.1 8

Thermometer
relocation 0.4 4.6 2

use 0.8 23.2 12

Fluid bag
relocation 0.8 19.7 2

use 1.5 21.3 2

Cervical collar
relocation 0.6 18.8 4

use 0.9 32.6 7

by varying these parameters and setting other parameters (items 4-9 in Table 4.1) to

fixed values, determined based on the usual conduct of trauma resuscitation.

4.3.1 Observational Analysis of the Trauma Resuscitation Environ-

ment

To design our experiments, we observed object motion in actual resuscitations. The

average duration of object relocation primarily depends on the distance between stor-

age and usage locations (Table 4.2). For example, CO2 detector, laryngoscope and

thermometer are stored on carts near the patients bed. Fluid bags and cervical collars

are stored further away, in or atop a cabinet. Duration of use, on the other hand,

depends on many factors, including the task performed using the object and number

of attempts to accomplish the task. We observed that on average most objects are

used ≥ 20 seconds (Table 4.2). Also, minimum duration of use is often longer than

minimum duration of relocation. We use this information to filter out short accidental

interactions. Object relocation does not always indicate that the object will be used,

and number of interactions involving only relocation may be as high as that involving

use (Table 4.2). Motion type provides additional contextual information to reduce false

alarms. We identified two motion types: linear (during relocation) and random (during
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use).

Duration of object use cannot be determined with sensor-based methods for wrapped

items, such as tubes and CO2 detectors, because we can tag only their wrapping. Tags

on these objects are in view only briefly (< 10 sec), during unwrapping, after which

the wrapping along with the tag is discarded. Although the act of unwrapping can be

interpreted as usage, it is a swift movement and may be confused with environmental

noise, making its detection with passive RFID difficult. The use of wrapped objects

can be detected by other cues, such as location information (e.g., objects on patient

bed are likely to be in use) or relationship information (e.g., if laryngoscope is in use,

then CO2 detector is likely in use, as both objects are needed for intubation) [60]. We

will address the challenge of tracking wrapped objects in our future work. Here, we

focus on detecting motion of non-wrapped objects, which are used for longer times,

thus providing reliable motion detection.

4.3.2 Environmental Setting and RFID Equipment

We designed our laboratory setting similar to a typical resuscitation room: a patient bed

at the center, side furniture, and space in between (Figure 4.1). Trauma resuscitation

room is a challenging environment for RFID-based applications because the furniture

causes multipath fading and distortion of the radio signal. A tagged object was used

at the central table and in the surrounding space. We focused on this region because

most interactions with objects occur at or around the patient bed (Table 4.1). We did

not address antenna coverage here (considered in [60]), but assumed complete coverage

and focused on evaluating our motion detection algorithms.

We used off-the-shelf RFID equipment from Alien [49]: an RFID reader (ALR-9900),

three circularly polarized antennas (ALR-9611-CR) and passive tags (Squiggle ALN-

9540). Because circularly polarized antennas allow tag detection in two orientations, two

perpendicularly placed antennas are usually sufficient to detect tags in all orientations.

We created redundancy by using a third antenna to mitigate the adverse affects on

radio signals (e.g., absorption due to occlusion, multipath fading). All three antennas

were perpendicular to each other (Figure 4.1). One antenna was ceiling-mounted (2.7
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Figure 4.1: Room layout and positioning of the antennas during experiments. Main cov-
erage zones of antennas are circled. Sidewall antenna 1: dashed line; sidewall antenna
2: solid line; overhead antenna: dotted line.

m above floor) facing the center of a plastic-top table sized 0.76x1.27x0.76 m. The

other two antennas were mounted on perpendicular sidewalls, 2 m above the floor to

minimize human occlusion, facing the table at an angle of 60◦ to the floor. Because

workers mostly gather around the patient bed during resuscitation, ceiling-mounted

antenna was less likely occluded and thus critical for our design.

The reader operated in the autonomous mode, collecting data continuously for a

specified time without any control inputs [49]. Regardless of the number of present

tags, the reader scanned for multiple tags instead of fast searching for a target tag.

To obtain results scalable to multiple readers, we used a single reader operating in the

dense reader mode (DRM) to prevent interference among readers. DRM performs best

when tag-to-reader distance is ≥1.5 m [9]. Radio signal was emitted in a round robin

fashion by one antenna at a time (for 0.5 s). Each antenna emitted 1 watt of RF power.
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4.3.3 Data Collection

Our dataset consisted of 240 RSSI recording sessions. Each session lasted 60 s, yielding

a total of 14,000 instances of motion detection. Based on our target application, each

session included linear, random, and no movement, simulated by interacting with an

RFID-tagged cardboard box (19x10x7 cm) in three ways: 1) holding the box while

walking at about 1 m/s (object moving linearly); 2) standing and wiggling the box,

rotating it in 3D and occluding by hand (object moving randomly); and 3) not inter-

acting at all (object standing still). We refer to the tag on the box as the target tag to

distinguish it from the other tags in the experimental area.

We simulated random movement for 20 s to correspond to average use duration

(Table 4.2). Duration of relocation (linear motion) is usually shorter than both use

(random motion) and non-use (still); however we set relocation and still durations to

20 s as well to generate equal amounts of data for each motion type and analyze different

motion types under equal conditions. The three interactions, each 20 s, were performed

continuously in different order to obtain sessions of 60 s.

Recordings were collected in different scenarios, each introducing a new challenge

occurring during actual trauma resuscitations and thus affecting the radio signal be-

havior:

• Scenario #1– Baseline: One tag in view and no movement in the environment (60

sessions).

• Scenario #2 – Human movement: One tag in view and:

– Scenario #2a: One person moving (30 sessions).

– Scenario #2b: Two people moving (30 sessions).

The experimenter(s) continuously walked around the table and from the surround-

ing furniture to the table, at about 1 m/s, simulating human motion observed

during resuscitations.

• Scenario #3 – Multiple tags: 10 tags (including target tag) uniformly scattered

on the table and:
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– Scenario #3a: No people movement (30 sessions).

– Scenario #3b: One person moving without touching tags (30 sessions).

In Scenario #3a, the experimenters were present in the room but they stood still.

• Scenario #4 – Concurrent and nearby tag movement: Two tags attached to dif-

ferent cardboard boxes.

– Scenario #4a: Two experimenters holding the tagged objects walked around

the table and from surrounding furniture to the table at about 1 m/s (30

sessions). Experimenters movement was not synchronized.

– Scenario #4b: The target tag was stationary and the experimenter, standing

still, randomly moved another tag while maintaining the average distance of

the tags at about 15 cm. The goal was to study the effect of a nearby tag

movement when the target tag was still (30 sessions).

4.4 Method

We considered motion detection as a binary classification problem, where raw RFID

data were represented with a set of feature vectors and the mobility status of the object

(moving or still) was represented with a set of class labels. We used a sliding window-

based strategy to map the raw RSSI data to a set of features. At each time point, the

data in the current window were processed to extract a feature vector. We then assigned

each feature either moving or still label using a classifier (Figure 4.2). We also filtered

the label sequence generated by non-temporal classifiers to remove spurious transitions.

We next describe these steps in detail.

4.4.1 Windowing

We experimented with fixed-length windows of 1.5, 2, 3, 5 and 10 seconds. Based on

previous similar studies, we adjusted the shift size to half of the window length [48, 68].

As the window shifted by a half-window length, one classification decision was output

for each window (Figure 4.2). A 1.5-second window was selected as the shortest because
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Figure 4.2: Diagram illustrating the data processing in our system

our setup consisted of three antennas, each with a scanning time of 0.5 s. A 10-second

window was selected as the longest because the latency and smoothing of a longer

window would not be appropriate for our domain. The average duration of object use

in trauma resuscitation is relatively short (20 s, Table 4.2). To detect such interactions

and be able to generalize our results, we limited the window size to 10 s.

4.4.2 Interpolating the RSSI signal

In our setup, tag readings occurred at irregular intervals because:

• The autonomous mode setting caused irregular data arrivals. Data rates varied

from 1 to 33 readouts/sec, with a median rate of 23 readouts/sec (Table 4.3).

• Antennas were activated in a round-robin fashion to avoid mutual interference.

When the reader was transmitting from an antenna, readouts arrived only from

that antenna.

• Multiple tags competed for wireless channel access (using the ALOHA protocol),

reducing data rates per tag even with two tags (90th percentile dropped from

31 to 24 readouts/sec). The presence of 10 tags significantly reduced data rates

(Table 4.3).
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Table 4.3: Data rate (readouts per second) statistics based on the number of tags in
the environment

Data rates
# tags Min 10th prctl. Median 90th prctl. Max

1 1 16 23 31 33
2 4 18 23 24 32
10 0 5 7 9 11

Figure 4.3: A 10-second RSSI capture from one of the antennas. One tag exists in the
environment during the first 5 seconds and 10 tags exist in the environment during the
last 5 seconds. Blocked regions show the intervals when the antenna is inactive (reader
is transmitting through the other antennas.)

The effect of these factors on the RSSI sequence is depicted in Figure 4.3. Before

feature extraction, we preprocessed the RSSI data within the window to fill in missing

samples. The Alien RFID reader reports unitless RSSI values in the range 500 to 50000,

up to one decimal point, which were used without quantization. We first removed

the gaps by concatenating the intervals when the antenna was active; then linearly

interpolated the RSSI values within the window. The number of interpolation points

was determined by the window size so that the resulting data rate per second was the

same for all window sizes in all sessions.

4.4.3 Feature Extraction

By visualizing the RSSI distribution under different scenarios (Figure 4.4), we observed

that the variance was significantly higher for a moving tag (first row) than for a still tag
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Figure 4.4: RSSI values (top two rows) and differences in RSSI of consecutive readings
(bottom two rows) for a moving and still tag. Only data from Antenna 1 (x-axis) and
Antenna 2 (y-axis) are shown (Figure 4.1). Each chart has ≥ 600 datapoints. Scenario
is specified at the top (#1: 1 tag, no people present; #2a: 1 tag, 1 person moving;
#2b: 1 tag, 2 people moving; #3a: 10 tags, no people present; #3b: 10 tags and 1
person moving, #4a: 2 people concurrently moving and carrying tags, #4b: 2 tags and
no people movement (non-target tag moved randomly in place)

(second row). Human movement caused the RSSI to deviate more for both states, but

less for a still tag. With multiple tags, the variance became smaller because of more

RSSI interpolation. Similar to human movement in scenarios #2a and #2b, concurrent

nearby tag movement in scenarios #4a and #4b caused more scattered RSSI values,

but the variance was notably higher for a moving tag. These observations indicate that

standard deviation is a useful feature for detecting object motion.

We also analyzed temporal behavior of the RSSI signal (Figure 4.4, bottom two

rows). In all scenarios, difference between consecutive RSSI readings was much smaller

for a still tag. Compared to the deviation of RSSI (Figure 4.4, top rows), difference
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between RSSI values provided better separation between moving and still states. Based

on these observations, we defined standard deviation (f1) and difference (f2) as our

baseline features. We defined two more features to investigate the effects of an enhanced

feature set:

• Delta Mean (f3): Delta mean represents the amount of change between the RSSI

averages of two successive windows. It should be high when the interaction status

changes.

• Trend (f4): Trend is the slope of the line fitted to the RSSI series in the current

window. It captures the long-term movement of RSSI and should be high for the

linear motion type.

The features f1 to f4 were computed for each antenna separately and concatenated

(instead of averaging) to obtain the final feature vector. Our choice of concatenation

over averaging was based on our preliminary experiments. Change in tag orientation

may cause an increase in reception for one antenna, and a decrease in reception for

the other, leaving average reception the same but missing the orientation change. To

preserve orientation change information, which implies object motion, we concatenated

the feature values from different antennas.

4.4.4 Classification

The above analysis showed that moving and still readouts are overlapping in the feature

space, especially in scenarios with human presence and movement. The time correla-

tion of the data can be exploited to obtain more accurate classification results. We

incorporated the time correlation in three different ways: 1) by applying non-temporal

classification and smoothing the output labels with a Hidden Markov Model (HMM);

2) by applying temporal classification with generative models; and 3) by using temporal

classification with discriminative models. Discriminative temporal models have been

used for RFID-based activity recognition [78], but not for long-range passive RFID.

The details of the three classification methods follow.
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4.4.5 Non-Temporal Classification

We experimented with non-temporal classifiers using WEKA Machine Learning Toolkit

[29]:

• Decision Trees (DT): A tree of decision nodes based on the C4.5 algorithm [3].

This classifier has been used in similar tasks and yielded satisfactory results [48,

68].

• Support Vector Machines (SVM): Trained to maximize the margin between dif-

ferent classes [3]. SVMs are known for their low generalization error.

• Random Forests: An ensemble classifier (i.e., collection of classifiers), comprising

many decision trees, each voting for a class [3]. RFID signals are sensitive to

environmental effects and building an accurate statistical model requires large

amounts of data from different scenarios. Ensemble classifiers integrate multiple

models to reduce over-fitting and increase classification accuracy.

• Boosting: Another ensemble classifier, combining a set of weak learners to obtain

a strong learner. We used the logit boost algorithm [3].

The classifier output was post processed using an HMM to remove spurious tran-

sitions and smoothen the label sequence. We chose an HMM over approaches such

as median filtering because HMM incorporates the domain knowledge. For example,

during resuscitations some objects are used only briefly and otherwise remain still (e.g.,

laryngoscope is typically used for 28 s in a resuscitation lasting 20-30 minutes, Table

4.2 [50]). Expected frequency of transitions between moving and still states, and fre-

quency of self-transitions, can be incorporated into the HMM state transition matrix.

Because our dataset included approximately equal sizes of moving and still classes, we

assumed an equal self-transition probability for both (p = 0.99). Probability of confu-

sion between the two states was estimated by performing classification on training data

and integrated into the HMM as observation probabilities. We compared the predicted

labels with the true labels (ground truth) recorded manually during data collection.
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4.4.6 Temporal Classification with Generative Models

Deciding motion status over time is a sequential learning problem. An HMM is a gen-

erative model that incorporates temporal or spatial information [3]. We built an HMM

where the actual motion states form the hidden state set (still or moving) and the

predicted states form the observation symbols set (named the same: still or moving).

HMM transition probabilities were estimated from the training data. Observation prob-

abilities were modeled with a Gaussian density because histograms of extracted features

showed Gaussian distribution (also visible in Figure 4.4). Parameters were estimated

from the training data using the Maximum Likelihood principle [59].

4.4.7 Temporal Classification with Discriminative Models

Classification using generative models requires fitting a distribution to observations.

Given the dynamic nature of resuscitation with many variable parameters, estimating

an accurate model is difficult. We therefore selected a model that does not require

fitting a distribution to the observed data. Conditional Random Fields (CRF) are

discriminative models, specifying the probability of label sequences conditionally, based

on the observation sequence rather than joint probabilities [45]. We used the hCRF

library to train the CRF-based model 1.

4.5 Experimental Results

We evaluated motion detection using six-fold cross validation 2. Because readouts

across a session were correlated, a complete session must be used either in training or

in testing. Including a part of a session in the training and the remainder of the session

in the testing set would have artificially increased accuracy. We started with baseline

features (standard deviation (f1) and difference (f2)) and later added other features

(f3 and f4). Our evaluation metric is the percentage of accurately classified labels in a

1http://sourceforge.net/projects/hrcf/

2The dataset is randomly partitioned in six subsamples, and one subsample is retained as the
validation set. This process is repeated six times, such that each subsample is used once as validation
data.
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session. The performance score is the average accuracy over all sessions in the testing

set.

4.5.1 Effects of Classifier and Window Size

Here we evaluated motion detection performance of different classifiers and the effects of

window size on classification accuracy. A 10-second window yielded the highest accuracy

for all classifiers (Figure 4.5). Decision Tree (DT) outperformed other classifiers for

the smallest window size (1.5 s). SVM outperformed all classifiers as the window

size increased. Random Forests were no better than DT although they are a boosted

version of DT. Random Forests are known to overfit for noisy datasets [74]. Our results

confirmed these prior findings as we observed significant improvement with increased

window size that yielded less noisy features (Figure 4.5). Our subsequent experiments

showed that the overfitting could be prevented by limiting the growth of trees in the

Random Forest. By limiting the tree growth, we obtained improved scores for Random

Forest, which were even better than the scores obtained using DT.
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Figure 4.5: Comparison of classification accuracy for different classifiers and window
sizes
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Our results showed the advantage of using DT for smaller windows, e.g., when de-

tecting motion of objects that are used only briefly, such as wrapped items or fluid bags

(Table 4.2). Our results also recommended using SVM for longer windows, e.g., when

detecting motion of long-used objects, such as laryngoscope (Table 4.2). Because each

RFID tag provides its object identity, it is possible to set the window size adaptively

at runtime for different object types.

Temporal classifiers HMM and CRF slightly outperformed for a 3-sec window, but

the difference was not statistically significant. Non-temporal classifiers better captured

the change in RSSI due to object motion and were less sensitive to environmental effects.

Integrating temporal information by smoothing the classification output appeared to

be sufficient (Section 4.4.4).

4.5.2 Motion Detection Performance in Different Scenarios

We analyzed how motion detection performance varied from ideal to challenging scenar-

ios that exist in dynamic settings such as trauma resuscitation. All classifiers provided

an accuracy >90% in the ideal scenario (Scenario #1) (Figure 4.6). Motion detection

accuracy decreased with human movement (Scenarios #2a and #2b). The reduction

from Scenario #1 to #2a was higher than that from #2a to #2b. With each new per-

son, the accuracy reduction decreased. The HMM-based classifier yielded significantly

higher scores in the human movement Scenarios #2a and #2b. We concluded that the

observation model has not dramatically changed in the presence of human movement.

HMMs may be useful in scenarios with few tags and significant human movement.

Although multiple tags (Scenario #3a) decreased the accuracy, the combined ef-

fect of multiple tags and human movement was harsher (Scenario #3b). Concurrently

moving tags (Scenario #4a) and movement of a nearby tag (Scenario #4b) did not de-

crease motion detection performance, and even provided an improvement. The nearby

tag caused more scattered feature values when the target tag was moving, but had no

significant effects when the target tag was still (Figure 4.4).
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Figure 4.6: Motion detection performance of classifiers in different scenarios: #1: 1 tag,
no people movement; #2a: 1 tag, 1 person moving; #2b: 1 tag, 2 people moving; #3a:
10 tags, no people movement; #3b: 10 tags, 1 person moving; #4a: 2 tags, no people
moving (both tags moving); #4b: 2 tags, no people moving (nearby tag moving).

4.5.3 Effect of RSSI Data Interpolation

Performance of all classifiers significantly improved with data interpolation (Table 4.4).

We observed that the difference features (f2) for the same motion type in different

scenarios varied and could not be represented by a single parameter set. Because

of this reason, decrease in accuracy was higher for HMMs (Table 4.4); HMM is a

parametric model and a single Gaussian was not sufficient for all scenarios. Although a

more complicated model (e.g., Gaussian mixture) could yield better results, its training

requires more data to estimate the increased number of parameters. In addition, the

number of mixtures must be known ahead. Interpolation provided a simple solution to

decrease the dependency of feature values on the number of visible tags.

Table 4.4: Motion detection accuracy (%) depending on RSSI interpolation. Includes
all data collected din all scenarios.

no interpolation with interpolation
SVM 87.0 90.2
HMM 70.9 90.5
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4.5.4 Effects of Individual Features

Here we analyzed the efficiency of features. We included delta mean (f3) and trend

(f4) features, in addition to our baseline feature set of standard deviation (f1) and

difference (f2), and experimented with several feature subsets. We present the results

of using HMM- and SVM-based classifiers as representatives of temporal and non-

temporal classifiers.
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Figure 4.7: Motion detection performance of different feature sets and window sizes,
using an HMM-based classifier (a), and SVM-based classifier (b).

A richer set of features yielded better scores for HMM (Figure 4.7 (a)). The trend

feature (f4) degraded performance for short windows, but slightly improved scores for

longer windows. Estimation of f4 requires longer observation of RSSI relative to other

features, making it useful for long windows. For SVM, a richer feature set improved the

performance only for a 1.5 s window, because a short window contains less data and

yields poor feature estimation. In this case, the two additional features compensated

for the noise in feature calculation. As the window size grew, added features did not

contribute significantly because the two baseline features were already reliable (Figure

4.7 (b)). We conclude that additional features improved motion detection accuracy for

short windows and generative classifiers such as HMMs. Otherwise, the baseline feature

set performed equally well.
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4.5.5 Motion Type Recognition

Here we classified object motion as still, moving linearly or moving randomly, instead

of still vs. moving. Motion type helps reduce false alarms during activity recognition,

since random motion is a strong indicator of object use. Consider a scenario where

a nurse fetches a thermometer to measure the patients temperature. The patient has

an oxygen mask on his face, preventing temperature measurement, so she leaves the

thermometer on the bed. Later, she takes the thermometer again and measures the

temperature. If the algorithm declared that any detected interaction indicated usage,

the first interaction in this example is a false alarm, which is avoidable if the algorithm

distinguished relocation (linear motion) from usage (random motion).

1.5 sec. 3 sec. 5 sec. 10 sec.
50

60

70

80

90

100

window size (sec.)

Ac
cu

ra
cy

 (%
)

 

 
f1,f2
f1,f2,f3
f1,f2,f4
f1,f2,f3,f4

1.5 sec. 3 sec. 5 sec. 10 sec.
50

60

70

80

90

100

window size (sec.)

Ac
cu

ra
cy

 (%
)

 

 
f1,f2
f1,f2,f3
f1,f2,f4
f1,f2,f3,f4

HMM SVM

(a) (b)

Figure 4.8: Motion type classification performance of different feature sets and window
sizes, using an HMM-based (left), and SVM-based classifier (right)

The best motion recognition scores were obtained for windows of length 3 and 5

s (Figure 4.8 (a)). As the window size grew, linear and random movements tended

to create statistically similar RSSI sequences, making their discrimination challenging.

For different applications, the optimum window size can be adjusted depending on the

speed of movement and distance traveled, which can be determined by analyzing the

application domain.

HMM achieved accuracy rates of up to 80% using the enhanced feature set (f1, . . . ,

f4) (Figure 4.8 (a)). Compared to binary classification into still or moving (Figure 4.8
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(a)), the enhanced feature set provided greater improvement in accuracy. Recognizing

the type of motion as random or linear requires defining a rich set of features.

We also experimented with cascaded classification, where one classifier discriminated

between moving and still and the second determined motion type as linear and random.

For DT and boosting, cascaded classification yielded better scores that were close to

that of SVMs (Figure 4.8 (b)). However, cascading did not provide any gain for SVM,

which is originally a binary classifier and encapsulates multiple classifiers for performing

multi-class classification. Our cascading strategy was then implicitly embedded in the

multi-class SVM.

4.6 Conclusion

Passive RFID offers a non-intrusive, cost-effective and privacy-preserving sensing solu-

tion for dynamic settings with several people and many tagged objects. We explored

using RFID technology for long-range motion detection in such a setting. We used

algorithms based on statistical machine learning to process noisy RSSI data, rather

than the rule-based approaches used in previous work. Our experiments showed the

feasibility of using passive RFID technology for object motion detection in dynamic

work settings. We next outline our specific observations.

Effect of Human Interference

It is difficult to model the RF propagation in cluttered indoor environments, which is

further complicated in dynamic settings with human movement. In our experiments,

machine learning tools were able to learn statistical fingerprints of object motion and

discern them from environmental effects. Although motion detection performance was

affected by human presence, the accuracy remained high.
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Effects of Multiple Objects (Tags)

Objects for tagging differ in material, size, shape, packaging and usage style. These

features must be considered both when placing the tags and when developing the algo-

rithms. Use durations for different medical objects varied from very short to relatively

long, with an average about 20 seconds (Table 4.2). Objects that were used briefly

(e.g., fluid bags) required shorter windows for detection. Our results showed that some

classifiers perform better for shorter windows, suggesting that they should be selected

for briefly used objects. This can be easily done because object identity is known from

the tag ID. Another parameter that depends on the window size is the optimum set of

features. A short window size yields poor estimate of some features (e.g., trend), which

can be remedied with a more diverse feature set. For long windows, introducing more

features did not result in a visible improvement.

At least one tag must be attached to each object, and most objects require multiple

tags [60]. The high degree of tagging results in a large number of tags in the antenna

view at any time, reducing the read rate from any single tag. Moreover, temporal

features (e.g., difference of consecutive RSSI readings) depend on the data arrival rate,

which in turn depends on the number of tags in view. We showed that the dissimilarity

of features obtained under different conditions could be reduced by data preprocessing

using interpolation.

Other Observations

Because of temporal continuity of RSSI data, we expected that temporal classifiers

would perform better. We did not observe any superiority of temporal classifiers in our

experiments, except in the scenarios with few tags and significant human movement.

Although accuracy rates higher than 90% were achievable for motion detection,

lower scores were obtained for motion type recognition. It may be more reliable to

discern linear and random motion types by coarsely estimating the initial and final

position of the object, instead of recognizing the relocation motion type (linear) based

on the RSSI pattern. It is also possible to exploit inter-object relations when a task
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requires the use of multiple objects, as their usage is likely to be detected in proximal

time intervals. If the use of one object can be identified with high confidence, another

object under the same task may also be in use.

Lessons Learned for Detecting Object Motion in Dynamic Settings

Object use detection is key for recognizing human activities that involve objects, and

motion status of objects is an important indicator of their use. Using long-range pas-

sive RFID technology we achieved a motion detection accuracy of 90% on average, and

around 80% under challenging conditions. These performance scores are promising for

a passive technology, and even comparable to some active sensors (e.g., active RFID

tags [41], Wi-Fi [44, 51]). However, the performance adequacy depends on the applica-

tion requirements. Life-critical medical tasks, for example, require high detection rates

and additional sensors may be needed to complement passive RFID technology. Either

individually or combined with other sensors, passive RFID is promising and worth pur-

suing in dynamic work settings where (1) distractions cannot be tolerated, (2) privacy

is an important concern, (3) tracked objects are small in size, and (4) tracked objects

are large in number and sometimes disposable, necessitating low-cost sensors.
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Chapter 5

RFID-based Localization

5.1 Introduction

Our domain research in Chapter 3 has shown that location of an object is a strong

indicator of its use. In this chapter, our goal is to evaluate the performance of passive

UHF RFID technology for localizing a tagged object in an indoor workplace, an example

of which is a trauma bay. In general, workplaces are cluttered settings due to furniture-

like objects and human motion in the environment. For our experiments, we setup the

experimental environment and scenarios to match a typical workplace. The environment

was occupied with many furniture items which affect the RF propagation by causing

reflection and absorption. We designed the experimental scenarios to create a typical

human workplace environment by introducing (i) human presence (standing still and

occluding the tag) (ii) continuous human movement and (iii) presence of multiple tags.

Each of these conditions represent additional challenges for RFID-based localization

algorithms.

Two types of localization strategies were employed. In zone-based localization, the

aim is to find the two-dimensional region containing the tag. For some applications,

exact coordinates may not be required and a coarse-grained zone information may

be sufficient. As an example, consider an operating room. Detecting that the blood

pressure cuff is on the patient bed (not on the counter) is a strong indicator that the

patient’s blood pressure is being measured. The second approach is exact localization,

where we aim to estimate the two-dimensional coordinates of object location relative

to some reference point. We also propose a coarse-to-fine combination of the zone-

based and exact localization techniques, coarse-to-fine cascaded localization. In this

method, the zone containing the object is determined first. Next, the exact location
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is estimated given that the object is in that particular zone. Although this approach

is efficient in terms of speed, inaccurate classification in the first step may cause high

localization errors. To reduce the effects of wrong classification, we defined a confidence

score and compared it to an empirically identified threshold between the two steps.

We implemented all localization methods based on the RSSI information. We also

experimented with read rate (number readings per second — RR) and compared the

effectiveness of the two information types.

5.1.1 Outline

This chapter is organized as follows. In Section 5.2, we present a summary of the

related work. In Section 5.3, we describe the methodology: placement of the sensory

equipment and localization algorithms. Experimental results are presented in Section

5.4 and conclusions are drawn in Section 5.5.

5.2 Related Work

RFID technology has become popular in the last decade for both localization of tags

[52] [47, 94, 10, 2, 33, 53] and readers [28, 38]. For tag localization, earlier works

concentrated on the active RFID technology [33, 53]. Below, we present an overview

focusing on the passive RFID tag localization.

In [52] and [47], algorithms were developed for localization and indexing of nomadic

objects (which change locations infrequently) in a room-like environment. While the

first algorithm depends on a user carrying a camera-equipped RFID reader, the second

one relies on steerable antennas. As the user or antenna moves, the object is detected

from different vantage points and more precise location is estimated by finding the

intersection of detection ranges. The algorithm in [52] was able to localize 90% of a

hundred objects to an area 0.8 meters a side (in an office with dimensions 4.9 m by 3.4

m). However, a rough scan of the whole room was reported to take about 1 minute,

which might be long for some applications.

A Bayesian approach for localizing passive RFID tags was presented in [2], which is
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also based on rotatable reader antennas. The algorithm first generates detection maps

for different transmitting power levels of the reader. Assuming that all reading events

(for each reader, each power level and each rotation angle) are independent, position of

the tag is determined by maximizing the posterior probability. Localization error was

reported as 0.6 meters with four readers in a 5 m by 4 m environment.

We aim to use multiple fixed antennas to approach the steerable/rotatable antenna

setup explained in [52, 47, 2]. The information type used in these works was RR,

obtained at different attenuation levels. We use the RSSI information for faster local-

ization, because the total time of an event is 15-30 minutes for our target application.

In [10], extensions were proposed to the nearest neighbors algorithm in [53], which

was originally developed for active tags. Tag discrepancies were handled by pre-

processing the signal strength values and reference tags were selected based on the read

rate as well as the distance in RSSI. By including these extensions, mean localization

error decreased from 33.15 cm to 20.89 cm in a one-dimensional setup.

A two-layer localization algorithm was proposed in [94], where an SVM classifier

is used for coarse localization first and the traditional particle-filtering algorithm is

used for finer-grained localization next. Active RFID tags were used to localize people

wearing the tags. In our work, we followed a similar approach for passive tags, and also

incorporated a confidence score between the two layers.

5.3 Methodology

In this section, we describe our methodology for designing the experimental setup, sce-

narios and algorithms for localization. Design choices were made considering a hospital

operating room, which is a challenging workplace environment with many objects and

dynamically moving people. Nonetheless, our methodology, as well as results, can be

generalized to other workplace environments.
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5.3.1 Experimental Setting

Room Layout and Antenna Placement

The experimental setting (Figure 5.1) was designed to match a typical operating room,

where a patient bed sits at the center; cabinets, benches and small tables stand next

to the walls. Medical tools are usually located on/in these furniture items or close to

patient bed, when in-use. People move in the free area between the center object and

the edge furniture. In our experimental setup (Figure 5.1), a table (75× 25× 75 cm)

was positioned at the center of the experimental area. Three small tables (50× 75× 85

cm) were placed at the three sides of the table (right, left and head — foot is usually left

free). Items on these smaller tables are representatives for items on counters, trolleys, as

well as items taken out from the cabinets. The main experimental area was surrounded

with many furniture items such as desks and cabinets (Figure 5.1). These objects are

sources for multipath and other adverse conditions affecting the RF propagation.

Figure 5.1: Room Layout. Black dots: fingerprint locations. Crosses: test locations.
Red full circles: Ceiling mounted antennas. Red half circles: Angled antennas. The
room is separated into four zones: Central, Head, Left and Right.
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Placement of the antennas must be made to cover the central points, as well as the

points close to edges of the workspace. While it is possible to scan the central zone in

a number of ways, covering the edge points is challenging. Placement to the adjacent

wall is not an option because in order to cover the edge zone, the antenna must be very

inclined to the floor (approaching a ceiling-mounted antenna). Placement on another

wall, on the other hand, is susceptible to be affected by human occlusion or motion.

As a result, we preferred to place an antenna at the top of each zone, mounted at the

ceiling, facing the floor (Antennas #4, #5, #6 in Figure 5.1).

Central zone was also scanned by a ceiling mounted antenna (Antenna #1 in Figure

5.1). In addition, two angled antennas were placed to improve localization accuracy

(Antennas #2 and #3 in Figure 5.1). These antennas were positioned facing the central

area, making a 45 degrees-angle with the floor and 2 m. above the floor to avoid

obstructing human motion. Overall placement of the antennas is shown in Figure 5.1.

Full circles represent the ceiling mounted antennas (2.7 meters above floor directly

facing the floor). Half circles represent the 45 degrees-angled antennas. Note that this

placement is realistic, completely applicable to a real world scenario.

RFID Equipment and Reader Coordination

Two RFID readers from Alien Technology (ALR-9900 (Four Antenna / Gen 2 / 902-

928 MHz)) were used in the experiments. Readers operated in the Dense Reader Mode,

which prevents the interference between readers in close proximity and is the best per-

forming mode when tag-reader distance is higher than 1.5 meters [9]. In addition, 5dB

of attenuation was applied on the 1 watt transmission power to reduce the interference

further. Readers operated autonomously and an application on a host computer was

set up to listen for notification messages from the reader containing any tag data that

it has read.

Three circularly polarized antennas (ALR-9611-CR) were connected to each reader.

The antennas have a balloon shaped radiation pattern and are less sensitive to tag

orientation compared to linearly polarized antennae. Squiggle ALN-9540 type passive

RFID tags, attached on foam and cartoon, were used in the experiments.
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Although the RFID readers can operate simultaneously, each reader needs to cy-

cle through the active antenna ports in a round-robin fashion. In our experiments,

each reader visited the three ports in sequence and transmitted for 1 second through

each port. The reader-antenna connections were assigned to minimize the interference:

Antennas #1,#2 and #3 were connected to 1st, 2nd and 3rd ports of Reader 1 and

antennas #4, #5 and #6 were connected to 1st, 2nd and 3rd ports of Reader 2 respec-

tively. Therefore antennas were active sequentially in pairs 1-4, 2-5 and 3-6 (Figure

5.1). Note that, three antennas scanning the central region were never active at the

same time.

5.3.2 Data Collection and Experimental Scenarios

The dataset consists of the RFID readings and location labels (both zone-based and

exact location). An RFID reading has the following format:

< timestamp, readerID, antennaID, tagID,RSSI >

Readings were captured while the item was positioned at:

• Reference points: shown with black dots in Figure 5.1. (24 in central region, 12

in each side region: 60 in total)

• Test points: shown with crosses (“×”) in Figure 5.1. (15 in central region, 6 in

each side region: 33 in total)

Because the target object does not have a fixed orientation, the tag can be in any

orientation as well. Therefore, we captured the RFID readings for three orientations of

the tag: (i) facing the separators, (ii) facing the oval table and (iii) facing the ceiling

(Figure 5.1). Duration for each recording was limited to 30 seconds, which ensures

that sufficient data is recorded for localization (<10 seconds) and allows for performing

localization several times through the recording. There was nobody in the room during

the experiments except the experimenter, who stayed away from the RFID equipment

unless otherwise stated.

The dataset includes RFID recordings in several scenarios designed to imitate a

typical workplace environment:
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• Scenario #1: (Ideal Scenario) There is neither human presence/movement nor

additional tags (other than the target tag) in the vicinity of the experimental

area.

• Scenario #2: (Human Walking Scenario) A person is walking in the free space

between the center table and side tables with a regular walking speed (≈1m/s).

Only the target tag was present in the experimental area.

• Scenario #3: (Human Standing Scenario) A person is standing immediately next

to the tag to create occlusion. Only the target tag was present in the experimental

area.

• Scenario #4: (Multiple Tag Scenario) There is no human presence/movement in

the vicinity of the experimental area. However two additional non-target tags

were placed in each zone (total of 8).

The total data amount is approximately 4 hours (Train: 1.5 hours Test: 2.5 hours).

Training samples were collected only in the ideal scenario (Scenario #1) whereas test

samples were collected in all four scenarios.

5.3.3 Algorithms for Localization

Location of the RFID tagged object was estimated by first extracting the useful statis-

tics within a sliding window (of length 3 seconds) and next applying classification

and/or filtering algorithms on these features. We experimented with two types of fea-

tures: mean RSSI and Read Rate (RR — the number of readings per second). During

feature extraction, readings were grouped according to antenna ID and mean RSSI (or

RR) is computed for each antenna. Next, these values were concatenated to obtain the

final six-dimensional feature vector.

Mapping of the feature sequence to location information can be performed in several

ways. We now explain our methods and propose a cascaded strategy, which is efficient

both in terms of speed and accuracy.
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Zone-based Localization

In zone-based localization, we are interested in estimating the zone which the tag cur-

rently lies in, given observations up to the current time instant. The experimental area

is split into four zones: central, head, left and right (Figure 5.1). Estimation of the

posterior probability density over zone-based location is a Bayesian Filtering problem

and can be computed recursively using prediction and update steps [28, 43].

For the prediction step, position of the object at the next time instant is predicted

based on the current position of the object using a motion model. We defined a simple

and generalizable motion model based on the expected duration in a zone and the

size of the zone. Because an object does not frequently change place, zone transition

matrix was defined with high probability of self-transitions and low probability of out-

transitions. To handle the non-uniformly splitted zones (Figure 5.1) out-transitions

were adjusted proportional to zone sizes, such that an out-transition into a larger zone

has more probability than an out-transition into a smaller zone (P (central|head) >

P (right|head)).

In the update step, an observation model is used to incorporate the sensor measure-

ment into the posterior density estimation over location. Observation likelihood is often

represented with a Gaussian probability density function (pdf), where the parameters

of the pdf are estimated using the training data. However a single Gaussian pdf can

represent only a unimodal density. In case of passive RFID sensing, even the tag is

very close to the reader (in the high RSSI region) the tag may not be detected at all,

resulting in zero RSSI. Level of multipath and reflections may increase at particular

locations causing variations in RSSI. Consequently, it may not be possible to make a

parametric estimate for observation likelihood. To handle this situation, we also used

the Kernel Density Estimation method [3], which is a non-parametric way of estimating

the probability density function of a random variable.
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Exact Localization

In exact localization, the aim is to estimate the 2-D coordinates of tag location. Radio

signals have temporal stability (signal strength from the same source at the same loca-

tion is stable in time) and spatial variability (signal strength from the same source at

different locations differs). Relying on this fact, location of an object can be determined

by comparing the signal descriptors from an object at unknown location to a previously

constructed radio map or fingerprints. We used the Weighted k-Nearest Neighbors al-

gorithm (w-kNN), where we find the most similar fingerprints and compute a weighted

average of their 2-D positions to estimate the unknown tag location [10, 53].

Cascaded Coarse-to-Fine Localization

The idea behind combined coarse-to-fine localization is to incorporate the zone-based lo-

cation information into the exact localization process. This combination can be achieved

by means of a cascade, where zone-based localization finds the most likely zone along

with a confidence score. If the confidence score is greater than some threshold (means

that we are confident about the zone-based localization result), w-kNN algorithm is

run over the fingerprints only in that zone. Otherwise, w-kNN algorithm is run over all

fingerprint points. We used the posterior probability of the zone, given observations up

to the current time instant, as the confidence score. The threshold was empirically set

as 0.8.

5.4 Experimental Results

In this section, we present the experimental results. First we explore to what extent each

antenna contributes to localization performance. Next we evaluate the zone-based and

exact localization approaches in the ideal setting (Scenario #1). Finally, experimental

results in human presence/movement and multiple tags (Scenarios #2, #3, #4) are

reported.

Zone-based localization performance was evaluated with the classification accuracy,

which is defined as :
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Accuracyzone =
true positive + true negative

total # of test samples
(5.1)

Exact localization results are reported in terms of mean localization error, which is

defined as:

Error = mean{
√

(xe − xg)2 + (ye − yg)2} (5.2)

where, (xg, yg) and (xe, ye) denote the actual and estimated locations respectively.

5.4.1 Individual Contribution of the Antennas

In this experiment, we aim to explore the degree of contribution of each antenna to

the localization performance. This analysis is essential to evaluate the necessity of an

antenna, as well as the efficiency of antenna placement and positioning.
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Figure 5.2: Zone-based and exact localization errors when the indicated antennas are
excluded.

Figure 5.2 depicts the localization error for several antenna combinations (Sequence

number of the excluded antenna(s) are shown in x-axis). Lowest error rates were

achieved when all antennas were active, indicating that all antennas contributed to

localization accuracy. However contributions of the 1st and 5th antennas were the

smallest. The 1st antenna had little effect because its main coverage area was scanned

also by the 2nd and 3rd antennas. Moreover, these two antennas provided more dis-

criminative information because they scanned through x and y dimensions and possible
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tag locations lie in the x-y plane (Figure 5.1). Analyzing the behavior of the 5th an-

tenna, we observed that it’s measurement model gives less information about location,

because the observation likelihood (P(observation|location)) has higher standard de-

viation. Because all antennas were identical, different behavior of the 5th antenna

can be attributed to the environmental factors. Our further experiments justified that

the metal cabinets in the right zone (Figure 5.1) cause reflections and unanticipated

behavior of RSSI readings captured by Antenna #5.

When both 1st and 5th antennas are excluded, zone-based classification accuracy

dropped from 92% to 90% and exact localization error increased from 37.9 to 42.0

cm. Considering that the reader used in our experiments was a 4-port one, this result

suggests that using 1 reader and 4 antennas, instead of 2 readers and 6 antennas, might

be more cost and time efficient. However, because the reader needs to traverse four

ports, the latency will be longer (2 seconds, instead of 1.5 seconds).

5.4.2 Zone-based Localization

In this experiment, we aim to find the location of the tagged object as one of the four

zones shown in Figure 5.1. Classification into zones was performed using Bayesian

Filtering with a Gaussian measurement model and with a KDE-based measurement

model. We also calculated the classification scores obtained with other machine learning

algorithms: Support Vector Machines (SVMs) and LogitBoost [3]. Although SVM and

LogitBoost are known to be more powerful classifiers, they do not take the temporal

information into account. In addition to the results obtained with RSSI, we provide

scores obtained with read rate (RR).

Zone-based localization results are presented in Table 5.1. In spite of the very noisy

nature of RSSI, it still provides more helpful information compared to RR in our setup.

Bayesian Filtering outperform the other classification methods because history and prior

information are incorporated in Bayesian Filtering, whereas SVM and LogitBoost do

not consider the temporal structure of the data. We also observe that, while the RSSI

is well modeled with a Gaussian pdf, read rate is better modeled with non-parametric

Kernel Density Estimator (KDE). Therefore, considering non-parametric approaches
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can be helpful when working with readers that do not provide RSSI (or under strict

time constraints such that RSSI providing capability is not used).

Table 5.1: Zone-based localization accuracy scores (%) for various information types
and classification methods

Information Type
Classifier RSSI RR
Bayes. Filt. Gaussian 92.5 81.3
Bayes. Filt. KDE 91.6 85.5
SVM 88.5 83.5
LogitBoost 87.7 83.7

The confusion matrix1 shows that, most of the confusion is between central and left

zones (Table 5.2). Although being symmetric in the experimental area, less confusion

is observed between central and right zones due to the different object placement in the

outer area (Figure 5.1).

Table 5.2: Confusion matrix for Bayesian Filtering with RSSI

classified as → Central Left Head Right
Central 1110 118 13 19

Left 28 476 0 0
Head 0 0 504 0
Right 0 0 30 474

5.4.3 Exact and Cascaded Localization

In this experiment, we aim to estimate the exact location of a tagged object with the k-

NN algorithm. We used k=15 considering that the tag can be in any orientation. Exact

localization errors are presented in Table 5.3, for both the single level k-NN and the

combined strategy with a zone-based classification step first. The combined approach

improves localization accuracy, in addition to reducing the search space. First, zones can

be modeled better because of higher data amount. Fingerprints from unrelated locations

1A visualization of classifier accuracy where each column represents the instances in a predicted
class and each row represents the instances in an actual class.
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can be similar because of environmental effects and can be included in the nearest

neighbor set misleading the estimate. By first classifying into the zones, we implicitly

make use of neighboring fingerprints. Figure 5.3 shows the CDF of localization error

for both methods. With the hybrid method, 50% of the time the error is smaller than

30 cm and 90% of the time the error is smaller than 67 cm.

Table 5.3: Exact and cascaded localization errors (cm) obtained with RSSI and RR

Information Type
Classifier RSSI RR
kNN 44.5 52.0
cascaded 37.4 50.3
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Figure 5.3: CDF of localization error for kNN (exact) and cascaded localization methods

5.4.4 Scenarios #2, #3: Effect of Human Movement and Occlusion

In this experiment, we evaluate the performance of localization methods in case of

human occlusion and movement (Scenarios #2 and #3) and compare with the ideal

setting (Scenario #1). Results are presented in Table 5.4. Human movement causes

a slight decrease in zone-based localization accuracy and does not affect the exact

localization performance. Human occlusion, on the other hand, improves both zone-

based and exact localization scores. The reason can be explained as follows. Human
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Table 5.4: Localization performance in several scenarios

Scenario # Zone-based Loc. Acc. (%) Cascaded Loc. Error (cm.)
1 (ideal) 92.0 37.9
2 (hum. mov.) 90.4 37.9
3 (hum. occ.) 97.0 34.4
4 (multitag) 86.5 42.1

body functions as a barrier between zones and blocks the propagation of waves to the

other zones. Multipath effects are minimized because some part of the reflected signals

is absorbed by human body. Therefore zone-based localization accuracy is considerably

improved. Cascaded localization error also decreases due to the better zone prediction

in the first step. The error for single-stage exact localization was measured to be 40

cm.

5.4.5 Scenario #4: Effect of Multiple Tags in the Environment

In this experiment, we investigate the effect of multiple tags in the environment. During

the experiment, two tags were uniformly placed in each zone in addition to the target

tag.

Both zone-based and cascaded localization scores deteriorated when multiple tags

were present in the environment (Table 5.4). When the number of tags is increased, read

rate per tag reduces because of the collision detection mechanism, therefore processing

more data can be a potential solution. However, increasing the sliding window length,

we observed only a slight improvement. Further analysis revealed that the increase in

error was not uniformly distributed to all locations. While there was no difference for

most of the locations, we observed a high increase for the rest. These locations mostly

correspond to the edges of zones.

5.4.6 Effect of Orientation and Location

To investigate the dependence of localization performance on tag orientation, we calcu-

lated localization error in subsets of different orientations. No significant difference was
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observed between the localization results obtained at different orientations. Therefore

we can deduce that, our antenna setup and localization methods are robust to the ori-

entation changes of the target object. Because our object of interest was made of foam,

fingerprinting in three orientations were sufficient. When the object of interest is made

of another material (e.g. wood or plastic), one may need to collect fingerprints in all

orientations (e.g. facing the cabinets in addition to the table and separators – Figure

5.1).

Next, we analyzed how the error is distributed in the experimental area. Figure 5.4

shows the cascaded localization error for each testing location (Section 5.3.2) averaged

over all scenarios. We observe that the error pattern based on location is highly compli-

cated. Still it is clear that the average error is higher in the central zone, especially at

points close to the head zone. On the other hand, zone confusions were mostly between

central zone and right or left zones. Head zone was separable with high accuracy in all

scenarios, even when multiple tags were present in the environment. These observations

indicate that, even when the zones are separated with 75 cm of distance (Figure 5.1)

and each zone is scanned with one or more antennas, confusion rate is still around 10%.

5.5 Discussion

We developed passive RFID-based methods for localizing a small (and possibly inex-

pensive) object in an indoor workplace. Such environments are challenging for RFID

applications because of random object orientations, human presence or motion and

multiple target objects in the environment. We positioned the RFID antennas and

configured the readers to minimize the obstruction for human activities and the effect

of human presence and movement on the localization system. We experimented with
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Figure 5.4: Spatial distribution of the cascaded localization error (see Figure 5.1 for
the room layout)

both coarse-grained and fine-grained approaches and showed that a coarse-to-fine cas-

cade yields the best location estimate. We conducted experiments introducing human

presence, motion and multiple tags in the environment. Localization results show that,

exact localization error varies between 35-45 cm, and zone-based localization accuracy

varies between 85-95%, depending on the scenario.

Interpreting these results considering our application, we conclude the following. Lo-

calization at the zone level has high accuracy and robust to human body effects, as well

as providing valuable information about object usage. On the other hand, finer-grained

location information would be helpful for reducing false alarms in activity recognition.

As an example, zone-based locationing does not discriminate whether a collar is exactly

on patient’s neck, or lying somewhere on the patient bed. However, exact localization
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results show that, the estimated locations may not be accurate enough to perform such

a discrimination. Most operations during trauma resuscitation are performed around

the patient bed area, which is a small environment. An exact localization error of 35

cm is not at a level to be useful in such a small area. Based on these results, we decided

to use only zone-based locations in our activity recognizer system.
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Chapter 6

Design and Evaluation of RFID Equipment Setups for

Dynamic Medical Settings

6.1 Introduction

Similar to other sensing technologies, the number and positioning of RFID sensing

components (Setup Design) are determined based on application requirements and

constraints. However, passive RFID has two characteristics that necessitate additional

considerations [65, 82]. First, unlike sensors that have a single sensing component (e.g.

accelerometers, temperature and humidity sensors) [14], an RFID system has two com-

ponents – tags on objects and readers as base stations – so the deployment strategy

should consider both in conjunction. Second, sensors with a single sensing component

use wireless communication only for data transmission, whereas RFID uses the wire-

less communication signal for sensing and data transmission. Sensing is performed by

measuring the received signal strength indication (RSSI) value, implying the need for

uncorrupted RSSI values. On the other hand, passive RFID signal reception is sensi-

tive to relative orientation of tags and antennas, and interference caused by surrounding

objects and people. Although it is common to introduce redundancy by deploying mul-

tiple tags and antennas for improved RFID system performance [65, 82], no systematic

method has been proposed for configuring these components. Current practice includes

placing antennas in a regular grid based on intuition rather than controlled experiments

[36, 41], optionally performing preliminary experiments to find the best placement [14],

or using various orientations and judging their usefulness from the observed results [88].

Once setup design is completed, candidate setup(s) must be quantitatively eval-

uated based on a criterion representing the quality of placement (Setup Evaluation).

Prior work on RFID system performance has often measured the quality of placement
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in terms of read rate [65, 9, 85, 6, 66, 34]. Read rate is applicable when aiming only for

reliable identification of tagged objects. For applications requiring inference of high-

level information (e.g. localization, motion detection, use detection) [36], the accuracy

of the target application is a more informative metric. However, all the system com-

ponents must be built for calculating the applications accuracy. In addition, accuracy

results are affected by the performance of the software components (feature extractors

and classifiers employed in a machine-learning-based strategy).

In this chapter, we describe our methodology for designing and evaluating RFID

equipment setups for use cases requiring high-level information inference (e.g. object

use detection). Based on our findings in Chapters 4 and 5, we aim to find an optimum

setup which maximizes the accuracy of motion detection, i.e., binary decision as moving

or still, and zone-based localization, i.e., identifying the coarse-level location. Our setup

design procedure includes the following steps:

1. Observational analysis

2. Requirements analysis

3. Determining the candidate setups

Evaluation of the candidate setups is performed in three steps:

1. Experimental procedure and scenarios design

2. Defining metrics for quantifying the quality of placement

3. Comparing the candidate setups

6.1.1 Outline

In the next two sections, we explain how we applied the setup design and evaluation

procedures for placing the RFID tags and antennas at CNMC. Unlike the prior work

on RFID system performance, which extensively discussed tag deployment strategies

(e.g. depending on material of the object) [66, 34], we primarily focused on the antenna

deployment aspect. We also addressed tag deployment issues specific for our application
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domain and observed the joint effect of tag and antenna deployment. We also report

initial results from the RFID tracking system deployment at our research site and

summarize our findings as guidelines for RFID equipment deployment.

6.2 RFID Antennas Placement

6.2.1 Design Step 1: Observational Analysis

To find the optimal placement for RFID antennas, we performed an analysis of the

trauma bay setting using photographs and videos of simulated resuscitations. Our

analyses focused on spatial distribution of medical equipment, identifying locations of

objects in use, and on positioning of providers during tasks. Based on these analyses,

we divided the space of the trauma bay into five zones (Figure 6.1): patient-bed zone,

right and left zones, and foot and head zones. When in use, objects appear in the

patient-bed zone; when stored or left idle, objects appear in the left, right, and head

zones. These five zones are typical for most trauma bays at major trauma centers. We

then used these five zones as the basis for identifying the optimal placement for RFID

antennas.

6.2.2 Design Step 2: Requirements for RFID Antennas Placement

Based our observational analysis, we specified the requirements for antenna placement

as follows:

• Each zone should be covered by the field of view of at least one antenna. This

requirement, however, does not imply that at least one antenna should be assigned

per zone. The areas outside the zones do not need to be covered because non-

uniform concentration of objects in the trauma bay during work allows for non-

uniform antenna coverage.

• Antennas should be placed so that their reception and readout rates are mini-

mally affected by random orientation and placement of tagged objects within the

coverage area.
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Figure 6.1: Environmental setting of a trauma bay. Primary zones and storage locations
of some objects are indicated.
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• Antennas should be placed so that providers movements minimally obstruct the

visibility of tags to antennas during work. Ceiling-mounted antennas often meet

this requirement, except when providers lean towards the patient and accidentally

cover the object. Angled antennas, on the other hand, are more likely to be

occluded by providers.

• The number of deployed antennas should be minimized to reduce costs, mutual

interference between antennas, radio interference between antennas and the hos-

pital equipment, and to meet the esthetical requirements.

• RFID antennas and readers should be placed so that they do not restrain provider

movement.

6.2.3 Design Step 3: Determining Candidate Setups

At this step, we propose candidate setups that partially or completely meet the require-

ments for antenna placement. During resuscitation, medical objects stay either on the

patient bed or in one of the storage places (left, right, head and foot zones). We created

a prototype setting in our laboratory with only two zones: the patient-bed zone (usage

area, Z1 in Figure 6.2) and the left zone (storage area, Z2 in Figure 6.2). Each zone

contained a 0.9 m tall cart. The carts were separated from 0.8 m to 2.3 m, depending on

the experimental scenario. The target object for tracking was simulated by a cardboard

rectangular box tagged with an RFID tag and handled by the experimenter.

Our baseline setup (Setup #1 in Figure 6.2) included a single floor-facing, ceiling-

mounted antenna, located between the two zones at 2.7 m above the floor. The area

covered by this antenna was determined from the radiation pattern provided by the

vendor. We made a conic beam approximation (a cone with its vertex on the transmit-

ting antenna and its axis along the transmission direction) for the directional radiation

pattern [15]. The 3 dB beam width (65◦), also specified by the vendor, was used as the

aperture angle of the cone. The resulting antenna coverage area was a circle of radius

1.5 m at the height of carts (distanced 1.8 m from the antenna). The coverage area

included both storage and usage zones, meeting the coverage requirement (Req. #1).
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Figure 6.2: Top view of five different antenna setups. Z1 represents the patient-bed
zone and Z2 represents the left storage zone (Figure 6.1). Ceiling-mounted antennas
are shown with ovals; angled antennas are shown with triangles.
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The second and third setups (Figure 6.2) included two antennas with different van-

tage points to obtain diverse information from tags. In Setup #2, an antenna was

located directly above each zone. In Setup #3, antennas were located perpendicularly

to the line connecting the zones. In setups #4 and #5, we increased the number of

antennas per zone to two and three respectively. To increase the diversity of signals

received from a tag, and to account for the variability in tag orientation (Req. #2),

we mounted the new antennas on the sidewalls so that they transmitted through a dif-

ferent (ideally perpendicular) direction with respect to the ceiling-mounted antennas.

Assuming an average human height of 1.7 m, we placed the new antennas at a height of

2 m to reduce human interference (Req. #3), and to minimize hindrance to providers

activities (Req. #4). To cover the experimental area, we also slanted the antennas

60◦ to the floor. In Setup #4, one slanted antenna was added per zone, propagating

towards south. In Setup #5, a second slanted antenna was added per zone, facing east

(Figure 6.2).

6.2.4 Evaluation Step 1: Experimental Procedure and Scenarios

Coarse-grained location and motion status of an object are indicators of its usage [60].

In the trauma bay, objects in the patient-bed zone are more likely to be in-use, compared

to the objects in storage (left, right, head, foot zones, Figure 6.1). Similarly, moving

objects are more likely to be in-use compared to the stationary objects. For example, a

blood pressure cuff is highly likely to be in-use if it is located around patients arm (on

patient bed) and it is moving (because a care provider is using it). Our experiments

separately simulated the location and motion state changes during object use. To

simulate location change, the tagged object stood in Z1 for 10 seconds, moved from Z1

to Z2 at the 10th second and stood in Z2 for another 10 s. We chose the 10-second

interval based on our observations of trauma teamwork: when in use, objects were

handled for at least 10 s (except the items wrapped in packaging) [60]. To simulate

motion state change, the object stood still for the first 10 s and then the experimenter

handled the object for another 10 s. Therefore, each location and motion experiment

ran for 20 s and the object state transition occurred at the 10th second.
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We designed six experimental scenarios with sub-scenarios simulating the environ-

mental characteristics of trauma bay that may affect propagation of RFID radio sig-

nals. If a setup did not perform well under several scenarios, it was omitted from the

remaining scenarios (Scenarios #2-d, #5 and #6). Each scenario was repeated 5 times,

yielding a total of 410 recordings.

• Scenario #1: Stationary environment: The baseline scenario with no environmen-

tal factors introduced.

• Scenario #2: Deviations in zone locations: Although coarse-level zone locations in

the trauma bay are fixed (e.g. cabinets and counter along the walls, patient bed in

the center), the patient bed and carts may slightly move during the resuscitation.

Also, the height of the patient bed is adjustable. To simulate these deviations in

zone locations, we moved the zones (i.e. carts) as follows:

– Scenario #2-a: Z1 and Z2 moved 0.6 m to north (distance between the zones

remained constant at 2 m).

– Scenario #2-b: Z1 moved 0.6 m to north; Z2 moved 0.6 m south (distance

between zones grew to 2.3 m).

– Scenario #2-c: Z1 moved 0.6 m to east; Z2 moved 0.6 m to west (distance

between zones fell to 0.8 m).

– Scenario #2-d: Z1 and Z2 were lowered by 0.3 m each (distance from the

carts to the antennas increased).

• Scenario #3: Changes in object orientation: Object’s tag in the default object

orientation faced the ceiling. However, users may orient the tagged objects ran-

domly during use. To simulate random orientations, we placed the object in two

additional orientations:

– Scenario #3-a: The object was rotated on the side so that the tag faced

north.

– Scenario #3-b: The object was rotated on the side so that the tag faced

west.
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We did not consider south and east directions because orientation of the tags

with respect to the antennas is the same for north and south, as well as for

east and west.

• Scenario #4: Changes in providers’ mobility: Providers movement was simulated

as follows:

– Scenario #4-a: Two people walked at normal walking speed (1 m/s) inde-

pendently of each other.

– Scenario #4-b: Five people walked as in Scenario #4-a.

• Scenario #5: Multiple tags in the environment: To simulate the presence of

multiple tagged objects in the environment, in addition to the target tagged object

we placed four tags in Z1 (representing 2-4 objects in storage) and six tags in Z2

(representing 3-6 objects on patient-bed). The additional tags were scattered

uniformly on the carts, with an average separation of 8 cm.

• Scenario #6: Multiple tags and people movement: Scenarios #4b and #5 were

combined to observe the joint effect of multiple tags and providers movement in

the environment.

6.2.5 Evaluation Step 2: Metrics

To quantify the quality of an antenna setup, we used three metrics with increasing

complexity and bias: 1) Read rate, 2) RSSI distribution distance and 3) Target appli-

cation accuracy. In this section, we describe these criteria and discuss their relation

(illustrated in Figure 6.3).

Read Rate

Depending on the use case, read rate has been defined differently, such as “number of

readouts per time” or “percentage of identified tags among all tags” [66]. Our goal

of object-use detection requires a substantial amount of data from each tag to obtain

reliable results. Accordingly, we define read rate as “the number of responses obtained
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Figure 6.3: Relation between different measures for evaluation of equipment setups.

from a tag per unit of time”. Read rate is simple to calculate and provides the basic

summary information about the quality of a deployment. Most of the prior work on

RFID systems [6, 9, 34, 66, 85] has evaluated their performance in terms of read rate.

RSSI Distribution Distance

High read rates are necessary but may not be sufficient for inferring object use, because

read rate contains information only about the visibility of objects to the antennas. Us-

age of an object, on the other hand, produces “fingerprints” in the RSSI sequence. The

fingerprints of object location and motion are important cues for object use [60], and

they can be extracted from the RSSI sequence because different states of tag location

and motion generate different RSSI patterns. A larger difference in these patterns over

time facilitates discriminating between different states. Therefore, a deployment that

accentuates difference among RSSI patterns is preferable. For example, when the blood

pressure cuff is relocated from its storage place and wrapped around patients arm, an

ideal RFID setup should capture a strong change in the RSSI pattern.

We quantify the difference between the statistical distributions of RSSI values using

two common measures of distribution distance: Kullback-Leibler distance and Maha-

lanobis distance. Let XP be the RSSI sequence generated when the tag is in one state

(e.g. standing still), and XQ be the RSSI sequence generated when the tag is in another

state (e.g. in motion). We assume XP and XQ are generated by normal probability

distributions P and Q that are modeling objects state of motion. Normal probability

distribution is selected based on histogram plots of RSSI values (6.4) as well as prior

findings [38].
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Figure 6.4: Histograms of RSSI values obtained from different objects

Kullback-Leibler (KL) Distance: KL distance is a widely used measure for estimating

the distance between two probability distributions [46]. It represents the expected

number of extra bits to encode samples from a distribution P because of using a code

based on distribution Q, rather than a code based on distribution P [7]. KL distance is

not a symmetric measure (dKL(P,Q) 6= dKL(Q,P )). However, it is a common practice

to make it symmetric [46], as adopted here:

KL(P,Q) = KL(Q,P ) =
1
2

(dKL(P,Q) + dKL(Q,P )) (6.1)

Mahalanobis Distance: The Mahalanobis distance is a measure of similarity between

a vector and a set of vectors characterizing a distribution. Unlike the Euclidean dis-

tance, it takes the correlations between variables into account. This is advantageous for

passive RFID deployments because multiple antennas scanning the same or overlapping

regions (for reliability by redundancy) may generate correlated RSSI values, violating

the independence assumption of the Euclidean distance. Also, the Mahalanobis dis-

tance is scale invariant (does not change when variables are multiplied with a common
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factor), which avoids distance dependence on the magnitude of RSSI values. The Ma-

halanobis distance of a multivariate vector p to a multivariate Gaussian distribution Q

with the mean µ and covariance S is calculated as:

dM (p,Q) =
√

(p− µ)TS−1(p− µ) (6.2)

To calculate the Mahalanobis distance between two Gaussian distributions P and

Q, we define the following distance metric, which favors high inter-distribution distance

and low intra-distribution distance:

M(P,Q) =
1
2

(m(P,Q) +m(Q,P ))− 1
2

(m(P, P ) +m(Q,Q)) (6.3)

where m(P,Q) is defined as the average distance of samples in P to samples in Q:

m(P,Q) =
1
n

n∑
i=1

dM (pi, Q), pi ∈ P (6.4)

The Mahalanobis distance between two distributions is closely related to separability

of classes in a classification problem: as the average inter-class distance increases and

the average intra-class distance decreases (i.e. classes are more separable), classification

performance is expected to improve [3].

Compared to read rate, distribution distance better characterizes how distinguish-

able object states are in different RFID equipment setups. However, it is a more complex

measure because it requires selecting a distance metric and makes assumptions on the

data (e.g. that data obey a normal distribution), both of which may bias the judgment

on the quality of an RFID setup.

We calculated the distribution distance between the first and second 10 seconds of

an RSSI recording session (state changed at the 10th second), using both Kullback-

Leibler and Mahalanobis distances. For setups including multiple antennas, a vector of

RSSI values was formed, where each entry contained an RSSI value received from an

antenna. All antennas were represented in this vector, even if some had lost reception.

Although the object always stayed in view of antennas, we observed cases where no

data was received from an antenna. This indicated two possibilities: 1) the tag was
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too far away (possibly close to the interrogation zone boundary) 2) the tag was in the

interrogation zone but could not be detected due to its orientation or occlusion. We

modeled both of these possibilities by generating Gaussian-distributed values with a

low mean (slightly lower than the smallest RSSI value provided by reader) because we

expect that the reception can be established with a slight improvement in the location

or orientation.

Target Application Accuracy

Target application accuracy represents the similarity between the hypothesis and the

ground truth for the end goal; therefore, it provides the most useful information about

the quality of a setup. Several metrics can be used to measure the similarity between

the hypothesis and ground truth, such as precision, F-score or classification accuracy

[87]. We approximate our end goal of object use detection with two cues: zone-based

location and motion status, and formulate both zone-based localization and motion

detection as classification problems. For assessing the target application performance,

we use classification accuracy, which is defined as [87]:

Accuracy =
true positives + true negatives

total # of test samples
(6.5)

Classification accuracy measures the quality of RFID hardware setup in the con-

text of a target application, which makes it the most informative metric towards the

end goal. However, unlike read rate and distribution distance, accuracy calculation re-

quires building the recognition software, including feature extraction and classification

modules. Also, the results may be biased by the selection of the software components.

We calculated the zone-based localization accuracy for location experiments and

motion classification accuracy for motion experiments. Location experiments consisted

of a binary classification to decide whether the object is located in Z1 or Z2. We

followed a sliding-window based method to map the RSSI data to a set of features.

After experimenting with several window and shift sizes, we selected the values that

performed best: a window size of 5 s and a shift size of 2 s. Our feature vector were

the RSSI means of data received by each antenna. At each time instant, the data
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Figure 6.5: Experimental results for location state change in different setups and dif-
ferent scenarios. (a) Read rate, (b) Mahalanobis distance in logarithmic scale (c) Clas-
sification accuracy with Decision Trees (d) Average classification accuracy for different
setups obtained with different classifiers. Scenarios #2d, #5 and #6 were not simulated
for Setups #1, #3 and #4 (indicated with crosses), but only for comparing Setups #2
and #5 because these setups performed best in the other scenarios.

in the current time interval were averaged to obtain the corresponding feature vector.

Next, zone-based classification assigned one label (Z1 or Z2) to each feature vector. We

reported results with different classifiers such as Decision Trees, Hidden Markov Models,

Random Forests and Support Vector Machines [3] to explore the effect of classifier

selection. For motion state-change experiments, we performed binary classification

to decide whether the object was standing still or in motion. We followed the same

sliding-window based methodology as in the location experiments but with a different

feature set. Standard deviation of the RSSI values was used as the feature in motion

state-change experiments.

6.2.6 Evaluation Step 3: Results

We ran a 70 experimental sessions, each repeated five times, yielding a total of 350 ses-

sions. Our experiments were performed to observe the effects of location state changes

and motion state changes. Results of these two set of experiments are detailed next.
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Location State Change Experiments

Read Rate: We observed slight changes in read rates obtained under different setups

(Figure 6.5(a)). Highest read rates were obtained in Setup #1, with an average of 30

readings per second. In Setups #2 and #3, read rates dropped because both antennas

were connected to the same RFID reader and scanned the experimental area in a round

robin fashion. The reader also spent time when switching between the antennas, which

caused reduction in total interrogation time and hence the read rate (Setup #2: 23

readings/sec, Setup #3: 24 readings/sec).

In Setups #4 and #5, multiple antennas were connected to each reader as well,

however these antennas scanned the environment from different vantage points. This

diversity slightly increased the read rate by enabling the detection of tags in different

orientations (Setups #4 and #5: 25 readings/sec). Compared to Setup #4, read rate in

Setup #5 was more consistent across different scenarios, which indicates its robustness

to environmental changes. As an example, although Scenario #4b included three more

people walking in the environment compared to Scenario #4a, read rates of these

scenarios were similar for Setup #5; however read rates drop in Scenario #4b for

Setup #4.

When multiple tags were present (Scenarios #5 and #6), the read rates decreased

sharply because of the competition for the wireless medium access using the ALOHA

protocol (down to 6 readings/sec in Setup #2). Providing read rates up to 13 read-

ings/second in this scenario, Setup #5 was again superior to other setups.

Distribution Distance: The Mahalanobis distance increased with the increasing

number of antennas (Figure 6.5(b)). Lowest scores were obtained in Setup #1, which

included a single antenna. Comparing Setups #2 and #3 (both included two antennas)

Setup #3 provided lower distance because the two object locations (Z1 and Z2) were

equally distant from the antenna and they were symmetric with respect to the antenna’s

propagation pattern. As a result, similar RSSI patterns were generated when the object

was located in Z1 or Z2. Setup #2 provided greater distance, and in turn better

separability for statistical classification algorithms. Setup #5 provided the greatest
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distribution distance values because it included the maximum number of antennas,

followed by Setups #4 (four antennas) and #2 (two antennas). Both KL distance and

Mahalanobis distance provided similar rankings among different setups, confirming that

our results are independent of the type of distribution distance measure. Therefore, we

believe it is necessary to place at least one ceiling-mounted, floor-facing antenna per

zone. Adding more antennas increases the sensitivity of radio signals to different object

states, but may also violate the cost and esthetic requirements.

Target Application Accuracy (Accuracy of Zone-based Localization): Figure 6.5(c)

illustrates the accuracy scores obtained with a Decision Tree classifier. Setups #2,

#4 and #5 provided the best zone-based localization accuracy for all scenarios. For

these setups, the performance variance across different scenarios was hardly noticeable;

whereas for Setups #1 and #3, classification accuracy significantly varies depending on

the scenario (e.g., Setup #2: accuracy for Scenario #1: 100%, accuracy for Scenario

#4b: 97.5%. Setup #3: accuracy for Scenario #1: 85%, accuracy for Scenario #4a:

53%). Performing the zone-based localization with other classifiers, we obtained a

similar ranking of setups (Figure 6.5(d)). Comparing the best performers, accuracy

obtained with Setup #5 was always slightly higher than Setup #4 but sometimes lower

than Setup #2, although Setup #2 included only two antennas (Figure 6.5(d)). As more

antennas were included, the diversity of reception increased, however the interference

among the antennas has also increased. Also, the side antennas were more susceptible

to interference caused by human motion.

These results justified the importance of the ceiling-mounted antenna per zone:

setups with a centrally placed ceiling-mounted antenna (Setups #2, #4 and #5) out-

performed the others. A ceiling-mounted antenna over a zone provides discernible RSSI

patterns when object is relocated. Also, it is less affected by the interference due to the

human motion in the environment. Although distribution distances for Setups #4 and

#5 significantly outperformed Setup #2, classification accuracy scores were similar for

Setups #2, #4 and #5. This finding indicates that after a certain distribution distance

is exceeded, classification accuracy saturates. The additional side antennas provided a

minor gain in challenging conditions, which may not justify the cost and other issues
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brought by additional antennas.

Motion State Change Experiments

Results of motion experiments1 in terms of read rate, Mahalanobis distance and mo-

tion detection accuracy are shown in Figure 6.6. As opposed to location experiments,

lowest read rates were observed for Setup #1, which included only one antenna (Fig-

ure 6.6(a)). As the object was rotated and translated, the polarization of the reader

antenna may not have matched that of the tag antenna. With multiple reader anten-

nas, the probability of matching increases when the object is being rotated because

an instant orientation can match to any of the reader antennas. Although read rates

were close for the remaining setups (excluding Setup #1), Setup #5 provided more

consistent rates across the scenarios and better rates with multiple tags (Scenarios #5

and #6). These results stress the importance of polarization matching between tag and

reader antennas. With multiple reader antennas deployed in different orientations, po-

larization can be matched in a greater number of orientations. As observed in location

experiments, Setups #2, #4 and #5 generated higher distribution distances, but their

superiority over Setups #1 and #3 was lesser (Figure 6.6(b)). The motion detection

accuracies of a DT classifier for Setups #2, #3, #4 and #5 were close and higher than

Setup #1 (Figure 6.6(c)). Experimenting with other classifiers, we found that Setup

#5 performed best in most cases. Unlike location experiments, Setup #5 was mostly

superior to Setup #2 because it was able to capture different object orientations as it

was handled by the experimenter. Setups #2, #4 and #5 performed best in terms of

motion detection accuracy.

We observed lower distance values for motion states (relative to location state dis-

tances), which also caused the motion detection scores (Figure 6.6(d)) to be lower than

zone-based localization scores (Figure 6.6(d)). We conclude that tag location changes

cause greater deviations in the RSSI, which makes them easier to detect compared to

1Scenario #2a was not performed for motion state change experiments because Z1 and Z2 were not
moved relative to each other. Scenario #4b was also not performed because the experiment required
multiple participants and the results from object location experiments sufficed.
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Figure 6.6: Experimental results for motion state change in different setups and dif-
ferent scenarios. (a) Read rate, (b) Mahalanobis distance on a logarithmic scale (c)
Classification accuracy with Decision Trees (d) Average classification accuracy for dif-
ferent setups obtained with different classifiers. Scenarios #2d, #5 and #6 were not
simulated for Setups #1, #3 and #4 (indicated with crosses), but only for comparing
Setups #2 and #5 because these setups performed best in the other scenarios.

tag movement around the same location.

RFID Antennas Placement in the Actual Trauma Bay

Our experiments showed that achieving optimal coverage and reliable detection of sig-

nals from tagged objects required placing at least one floor-facing, ceiling-mounted

antenna in the zones where objects appear frequently. We placed four such antennas

at 2.7 m above the floor (Figure 6.8, circles): one in the head zone (#2), one in the

patient-bed zone (#3), one in the right zone (#4), and one antenna in the left zone

(#6). The actual deployment of antenna #3 is shown in Figure 6.7, right. We added

two angled antennas to cover the patient-bed zone for improved signal detection rates

and for increased accuracy of localization and movement detection (Figure 6.8, trian-

gles). Although we installed these antennas in the head zone at 2.3 m (antenna #1

in Figure 6.8) and in the foot zone at 2.5 m (antenna #5 in Figure 6.8), they were

facing, and thus covering, the patient-bed zone. The actual deployment of antenna #1

is shown in Figure 6.7, left. Because the foot zone is rarely used for placing or using

objects, we did not scan this area for signals.

The theoretical radius for each of the five major detection zones is about 2.2 m on
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Figure 6.7: Positioning of angled and ceiling-mounted antennas at CNMC. Left picture
shows angled antenna #1. Right picture shows ceiling-mounted antenna #3

Figure 6.8: Environmental setting of the trauma bay. Primary zones, locations for
medical tools, supplies and equipment, as well as antenna positions are also indicated.
Ceiling-mounted antennas represented with ovals, angled antennas represented with
triangles.
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the floor and about 1.5 m on a plane level, roughly 0.8 m above the floor to detect

objects that are carried or placed on the patient bed. Although antennas can detect

tags that are outside the five major zones, probability of detection will decrease.

To speed detection of radio signals, the antennas can be connected to multiple

RFID readers that can operate simultaneously. In this configuration, each reader must

cycle through the active antenna ports in a round-robin fashion and the reader-antenna

connections must be assigned to minimize the interference. We placed two RFID readers

in the trauma bay, hidden in the space above the ceiling. Antennas #1, #2 and #3 are

connected to the first, second, and third port of the reader 1, respectively, and antennas

#4, #5 and #6 are connected to the first, second, and third port of the reader 2,

respectively. This connection scheme allows antennas to be active sequentially in pairs

1-4, 2-5 and 3-6. To reduce signal interference, the antennas scanning the patient bed

are never active at the same time.

6.3 RFID Tag Types and Placement

6.3.1 Design Step 1: Observational Analysis

Medical objects in the trauma bay compose of various materials such as plastic (e.g.

tubes), rubber (e.g. parts of blood pressure cuff), metal (e.g. laryngoscope) and even

liquids (e.g. saline fluid). Objects may be in regular box-like shapes or irregular shapes

possibly with narrow surfaces. Tagging irregularly shaped objects may require folding

the tag for convenient use by providers. Objects that are used together to perform

a task are often grouped into a tray or kit (e.g. intravenous access kit). Parts of

some objects are in contact with providers hands or patient body for long time, which

dramatically reduces reception from that tag.

6.3.2 Design Step 2: Requirements Analysis

To maximize the object detection rates in a dynamic medical setting, a tag deployment

strategy should meet the following requirements.

1. Each object (or a bundle of objects, such as kits) should have at least one tag.
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2. Tags must be visible to the antennas regardless of the orientation of the tagged

object.

3. When tagging metallic objects and liquid containers, either special tags must be

used, or the contact between the object and the tag must be minimized.

4. Tag shape should be preserved (minimize its folding) when attaching it so that

its antenna can function optimally.

5. Tags should be placed on object surfaces that will not be in contact with providers’

hands or body during work.

6. Tag should be placed so that the objects are still convenient for use.

7. Number of deployed tags must be minimized to reduce costs and potential mes-

sage collisions during tag-reader communication, as well as maintaining object’s

esthetics.

6.3.3 Design Step 3: Candidate Setups

We proposed and compared different tag placement approaches depending on the ex-

perimental scenario. Next section includes our scenarios description, along with the

candidate tag setups for each scenario.

6.3.4 Evaluation Step 1: Experimental Procedure and Scenarios

To evaluate our strategies for tag placement, we performed experiments in our two-zone

setting (Figure 6.2). Each experiment was repeated under antenna setups #2 and #5,

which demonstrated the best performances in antenna placement experiments. We also

created a combination of setups #2 and #5 by scanning the storage zone (Z1) with

a ceiling-mounted antenna and the patient-bed zone (Z2), with one ceiling-mounted

antenna and two slanted antennas. A higher number of antennas was preferred for the

patient-bed zone because most object interactions occur in this zone. We experimented

with different medical objects, representing various material, size and shape of objects

in the trauma bay (Figure 6.9).
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Figure 6.9: Objects used in tag placement experiments (a) a fluid bag, 1 tag attached
along the length (b) a stethoscope, 2 tags folded around the tube (c) a Foley catheter
kit, 3 tags attached to the wrapping (d) a cervical collar, 2 tags attached in tandem.

We evaluated different tag types and strategies for their placement using four ex-

perimental scenarios that focused on specific cases, such as tagging liquid containers

and objects with narrow cylindrical surfaces.

Scenario #1:Tag type selection and placement based on material: A major

limitation of passive RFID technology is its poor performance on metallic objects and

liquid containers. Although off-the-shelf special tags are available for metals, they are

expensive and improper for disposable objects. When tagging the metallic items and

liquid containers with regular tags, the overlap between the tag and the object should

be minimized for better performance [66]. For example, tags can be attached to the

edge of the object, provided that it does not interfere with providers activities. We

evaluated this approach by tagging a liquid container in the following ways: (1) The

tag was attached along its length (2) The tag was attached along its width.

Scenario #2: Determining the number of tags: Although a single tag may

be sufficient to detect and identify an object, multiple tags can be used for more reliable

detection. Multiple tagging is especially useful when one of the tags is subject to low

detection rates due to irregularity of object shape, orientation changes or occlusion (by

hand, body or another object). We experimented with two objects to analyze the read

rates when multiple tags are attached: (1) a Foley catheter kit, which has a regular

box-like shape and (2) a stethoscope, which has a thin, cylindrical surface.

Scenario #3: Tag placement based on object shape: Most objects in the

trauma bay have irregular shapes, requiring different strategies for placing RFID tags.

For example, objects with cylindrical surface may require folding the RFID tag, which
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may impair the radio signal reception. In this scenario, we assess the effect of tag

folding on read rates. We performed our experiments with a stethoscope, which has

a thin cylindrical surface and requires significant bending of the tag for complete at-

tachment. We experimented with four folding levels and styles: (1) tag attached along

its width without folding (2) tag attached along its width with minor folding (3) tag

attached along its width with complete folding and (4) tag attached along its length

with complete folding.

Scenario #4: Contact with human body: Objects are being touched when in-

use. To exploit this contact cue for object use detection, we propose attaching two tags

to an object in tandem: one at a location where the tag will be covered by hand or body

when in-use, and one at a location where it will always be exposed to RF signal. When

the object is not in-use, we expect strong radio signal from both tags; when the object

is in-use, the tag being covered by a care provider or the patient will emit weaker signal,

or no signal at all. Applicability of tandem tagging is limited to objects with a sufficient

duration of contact. Due to the dynamic nature of trauma resuscitation, signals from

tags may be lost briefly during accidental contacts or occlusions. Distinguishing these

accidental contacts from purposeful but brief contacts is impractical. Therefore we

applied tandem tagging and evaluated its effectiveness only on the objects characterized

with relatively longer contacts [60]. We experimented with two different objects: a collar

and a stethoscope. Each object was first tagged randomly, then using the proposed

strategy. The object stood still during first 10 seconds of a recording session and was

used during the second 10 seconds of a recording session (collar placed on human neck,

stethoscope handled to listen for breath sounds).

We ran 57 experimental sessions and repeated each five times, yielding a total of

285 sessions. Each session consisted of a 20-second RFID data recording, with object

state (location for Scenarios #1, #2, #3 or use status for Scenario #4) changing at

the 10th second. For Scenarios #1, #2 and #3, we collected data in both zones, Z1

and Z2, to eliminate zone-specific effects, such as the number of antennas scanning that

zone.
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6.3.5 Evaluation Step 2: Metrics

Our tag experiments addressed specific and challenging object tagging cases, such as

tagging liquid containers or narrow objects. Accordingly, we used the read rate as the

evaluation metric in Scenarios #1, #2 and #3, because obtaining a sufficient number

of readings has the priority for such cases and increasing the distribution distance or

accuracy can be handled by the antenna setup. Because Scenario #4 is directly related

to the high-level information of object-use, we used the metrics of distribution distance

and classification accuracy.

6.3.6 Evaluation Step 3: Results

Tag Placement Based on Material (Scenario #1)

Our experiments with a liquid container showed that, attaching the tag along its shorter

edge further minimized the tag-to-object overlap, and yielded significantly higher read

rates regardless of the setup (Figure 6.10(a)). Setup #5 provided the highest read rate

when the tag was attached along its long edge.

Determining the Number of Tags (Scenario #2)

Using multiple tags on an object improved read rates from both the Foley catheter and

stethoscope for all setups (Figure 6.10(b),(c)). The improvement for the Foley catheter

in Setup #2 was slight because both antennas in Setup #2 were scanning along the

same direction and multiple tags on the object were oriented in the same way. Setup

#5 and the hybrid setup included angled antennas, which increased the diversity and

hence provided higher read rates. We also observed that, as the distance between tags

increased, or the tags were in different relative orientations, read rates were improved.

Effect of Tag Folding (Scenario #3)

Although tag folding generally reduced read rates, in some cases it provided improve-

ments. While read rates from ceiling-mounted antennas were reduced due to tag folding,
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Figure 6.10: Results of tag placement experiments (see text for details).
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reception from the slanted antennas increased because part of the tag was oriented to-

wards slanted antennas after folding. Read rates were lower when the stethoscope was

around person’s neck (Figure 6.10(d),(e)). Setup #5 and the hybrid setup provided

highest read rates in this case.

Effect of Tandem Tagging (Scenario #4)

Because our aim is to infer the usage of objects, we used the distribution distance metric

for evaluation of tandem tagging. For both collar and stethoscope, proposed tagging

strategy yielded higher distribution distance (Figure 6.10(f),(g)).

6.3.7 Tags Placement in the Actual Trauma Bay

Our experiments showed that performance of RFID tags varies based on object material,

size and shape. Tagging of objects in the trauma bay was thus based on the information

about object composition and materials, their shape and their size (Figure 6.11). For

example, the laryngoscope is made of metal and requires special on-metal tags. Putting

a regular tag on a metallic object yields no signal and the object cannot be detected.

Sterile objects with plastic wrapping, as well as objects made of plastic were tagged

using regular tags.

Because performance of an RFID tag is proportional to its size, we used the largest

possible tag. The size of the tag, however, depended on the available surface for tagging.

For example, an otoscope is a small and cylindrical object composed of both metal and

plastic. It requires either a small tag or folding a larger tag around the object. When

the optimal tag position corresponded to a metallic part of the object, we used on-metal

tags. Similarly, the thermometer requires different tag sizes for optimal tracking. The

base was tagged using a larger tag, while the probe required folding a small tag around

it (Figure 6.11 (middle)).

Although passive RFID tags provide only proximity information, using multiple

antennas allowed obtaining proximity information from each antenna. By comparing

the numbers obtained from each antenna and then identifying the closest antenna, we

could accurately predict in what zone the object lies. Because our goal is to infer
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Figure 6.11: Example tagged objects: intravenous fluid bag (left); thermometer (mid-
dle); stethoscope (right). RFID tags are circled.

zone-based information rather than exact coordinates for each object, we found passive

RFID tags adequate for this task.

6.4 RFID Deployment at CNMC

We deployed our RFID tracking system in the trauma bay at CNMC in March 2011

and conducted preliminary experiments during eight simulated resuscitations to assess

the feasibility of our approach. Each simulation lasted up to 15 minutes and included

a diverse set of clinical conditions, patient types and tasks, including intubation, ad-

ministration of fluids and medications, temperature control and chest tube insertion.

We tagged 48 objects: one otoscope, one ophthalmoscope, two cervical collars, one

Broselow tape, two bag valve masks, four fluid bags, six IV toolkits, four IV tubings,

12 IV catheters, one orogastric tube, one Foley catheter, two stethoscopes, one BP cuff,

one thermometer, one intraosseous line placement gun, the patient bed, and airway

equipment (four ET tubes, one laryngoscope, and two CO2 indicators). The number

of tagged objects of each type varied by the simulation scenario and available equip-

ment. For example, we tagged two cervical collars of different sizes because simulations

involved different patient types. Because simulation sessions were performed using a

plastic mannequin, we could not test the behavior of tags that are in contact with pa-

tient body. Before each simulation session, tagged objects were placed in their storage

cabinets and drawers.

We also put RFID tags on the role tags of eight team members: team leader,
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Figure 6.12: Front and back views of a role tag. The RFID tag is attached on the
backside.

physician right, anesthesiologist, primary nurse, scribe, medication nurse, respiratory

therapist, and technician. Role tags were attached to protective gowns in the chest area

(Figure 6.12). To assess the feasibility of tagging employee badges, we asked the primary

nurse and respiratory therapist to carry RFID tags on their badges. The respiratory

therapists badge was clipped to her waist and the nurses badge was placed around her

neck. We deployed a total of 84 RFID tags on objects and personnel combined, with

an average of 72 tags per simulation session.

Two RFID readers with six antennas from Alien Technology were deployed as de-

picted in Figure 6.8 and described in Section 6.2.6. Although we installed the antennas

and readers in an actual trauma bay, RFID scanning was active only during simulated

resuscitations. The readers operated autonomously and were scanning the environment

continuously at given intervals. An application on a host computer listened for notifica-

tion messages from the readers containing tag data. The tag IDs indexed the database

information about the tagged objects (entered manually by the experimenter). Be-

cause the experimenter was not present physically during all simulations, some objects

were tagged by CNMC staff members. In those cases, a staff member informed the

experimenter about the object identity and tag IDs.
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Figure 6.13: RFID readings captured by six antennas over eight simulations. Central
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6.4.1 RFID Data Rates From Antennas in the Trauma Bay

We measured the total number of readouts by each antenna during eight simulations

(Figure 6.13). Statistics from antennas depended on the environment, number of tags

in antenna view and simulation scenarios. The first three antennas that were scanning

the patient-bed and head zones captured most RFID data. Although antenna #5 was

also scanning the patient-bed area, it generated fewer data rates due to its distance from

the patient bed. Antennas #4 and #6 generated the fewest RFID readings. Antenna

#4 was mounted above the cabinets (Figure 6.8) and could not detect objects stored

in the cabinets. When a team member took an object from the cabinet and carried it

to the patient bed, antenna #4 could detect that object only for a short time. As the

result, antenna #4 generated fewer data compared to other antennas. Similar results

were observed for antenna #6 mounted above the counter. Because cervical collars are

stored on top of the cabinets at our site, most of antenna #4 readings came from the

stored collars. In contrast, when a cervical collar was in-use the readouts came from

antennas #1, #2 and #5. We exploited these changes in the reading pattern to identify

tasks and objects in use.
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6.4.2 RFID Data Rates From Object Tags

We measured the total number of readings from 19 tagged objects and people (Figure

6.14). Of the 19 objects, six had one tag attached (Figure 6.14a) and 13 had two tags

(Figure 6.14b). Our results showed that objects with two tags did not always provide

higher combined readout rates than those with one tag. The reason is that, unlike

the laboratory experiments, we could not control other confounding factors such as

frequency and the duration of usage for different objects. Tag folding (indicated with

an asterisk in Fig. 6.14b) impaired radio signal and reduced readout rates, as expected,

except for bag valve mask (BVM), which is usually used throughout the resuscitation.

Although these readout rates for most objects appear relatively small, we will argue in

the next chapter that, high read rates do not guarantee better use detection performance

and even very small readout rates might be quite good for object use detection. Higher

readout rates may not be achievable given the limitations of current RFID technology

and the complexity of the problem domain. To achieve higher use detection rates, RFID

needs to be complemented with other sensory modalities, such as computer vision and

motion sensors.

Among the objects that were always in view and used in all resuscitations, the

fewest readings were observed for the otoscope, ophthalmoscope and stethoscope. The

otoscope and ophthalmoscope set is mounted on a movable mechanical arm suspended

from the ceiling. This arm is usually located between the zones monitored by the readers

(Figure 6.8). During simulations, the arms location and orientation changed randomly

as team members moved the set, which caused intermittent detection. In addition, both

otoscope and ophthalmoscope are small objects with irregular shapes and composition,

containing both metallic and plastic parts. To manage these issues, we bent the RFID

tags around these objects, which impaired the radio signal. Similarly, the stethoscope

has a small and irregular surface, posing significant challenges for RFID tag placement.

Also, the stethoscope is usually carried around the neck and moves constantly, making

it difficult to use motion cue for detecting its actual use. Finally, contact with human

body and occlusion by hand and body when in use (physicians bend towards the patient
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Figure 6.14: RFID readings captured from tagged objects. (a) Objects with one tag.
(b) Objects with two tags. Asterisks indicate objects with folded tags. Central mark
in the box: median. Edges of the box: 25th and 75th percentiles. Whiskers: most
extreme data points not considered outliers. Plus sign: outliers.

during chest auscultation) cause additional signal interference.

Tracking the thermometer had similar problems. We attached two tags to the

thermometer: one to the base and one to the probe. We used a small tag for the probe

and bent it around the probes small and irregular surface. Because of the issues with

the probe tag, almost all readings for the thermometer came from the base tag.

In case of multiple objects of the same type but with different parameters (e.g.,

tubes of different sizes, fluid bags of different volumes or salinity), RFID technology

offers advantages compared to other detection technologies. For example, computer

vision algorithms have difficulty recognizing medical supplies because they are often

made of translucent materials. In addition, vision algorithms cannot reliably determine

objects parameters. In our experiments, we tagged four IV fluid bags. When a team

member took an IV fluid bag from the cabinet, it was hung on an IV pole, which made

the bag detectable. Even when an IV fluid bag was mistakenly fetched and returned

back to the cabinet, we were able to detect this “false use based on the duration of

interaction. Our system also determined the fluid type and volume.
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6.4.3 RFID Data From Personnel Tags

We were able to detect all RFID tags attached to the paper-based role tags (see People

in Figure 6.14). The tag on the badge hanging around the nurses neck was detectable

rarely and the badge clipped to the respiratory therapists waist was not detectable at

all. These results showed that tracking personnel with passive RFID tags depends on

the positioning of the tag on human body, which is consistent with previous findings

[56].

6.5 Discussion

The process of deploying RFID technology in the trauma bay was complex and required

a careful design. We next summarize the challenges faced during our study and draw

conclusions about using RFID technology for tracking dynamic work processes.

6.5.1 Placement of RFID Antennas

The placement of RFID antennas in the trauma bay was informed by our experimental

results and by our analysis of the trauma resuscitation environment. We combined

experimental setups #2 and #5 (Figure 6.8) because these resulted in the highest

sensitivity of received radio signals to object state change. We placed one floor-facing

ceiling-mounted antenna directly above each zone (setup #2), and we also added two

angled antennas to the patient- bed zone (setup #5). We used setup #5 for the patient-

bed zone because most tasks that require tracking are performed in the patient-bed

area.

Based on our experimental and deployment results, we propose the following rules

for determining the optimal placement of RFID antennas in the trauma bay:

1. Divide the room into several zones that represent main locations of object storage

and use.

2. Cover each zone with one floor-facing, ceiling-mounted antenna. If two zones are

close to each other, they could be scanned by a single ceiling-mounted antenna
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placed in the middle of the zones.

3. Place ceiling-mounted antennas closer to the wall, or if possible, closer to metallic

surfaces (e.g., metallic cabinets). This arrangement results in higher sensitivity to

distance changes when objects move (e.g., location change, motion status change)

because metal causes volatile readout rates.

4. In addition to the ceiling-mounted antenna covering the main area of object use

(e.g., patient-bed area), add two angled antennas for improved signal detection

rates.

Because the layout of resuscitation areas is similar across most trauma centers, our

results and rules will be applicable to other trauma centers.

6.5.2 Placement of RFID Tags Based on Object Features

The placement of RFID tags on objects was guided by our analysis of object features

such as size, shape, composition and purpose. This analysis was complemented by an

analysis of providers interactions with objects. The size and shape of the object surface

were important parameters for selecting RFID tag types. Small and irregularly shaped

surfaces posed challenges for tag placement. To tackle these challenges, we used small

tags or bent a larger tag around the object. These solutions, however, caused radio

signal attenuation and difficulties in detecting object use. For example, of the tandem

tags attached to the thermometer, the tag on the probe always performed poorly, which

made it unsuitable for detecting the use of the thermometer. The use of tandem tags

requires additional study to identify an effective strategy for detecting objects in use.

Object composition and material also posed challenges to reliable signal detection.

Regular RFID tags attached to metallic and liquid-based objects yield no signal and

are not detectable. Objects made of metal can be tagged with on-metal tags, but this

is an expensive solution. To tackle the problem of tagging liquid-based objects, such

as fluid bags, we placed tags on the edges of bags to minimize contact between the tag

and the liquid part. This solution produced reliable results. We were able to detect

fluid bags in use and distinguish between different types of fluid. However, RFID tags
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that operated close to human body experienced performance degradation. For example,

stethoscope is carried around the neck and the contact with and occlusions by human

body caused radio signal interference.

Based on our experimental and deployment results, we propose the following rules

for determining the optimal placement of RFID tags on medical objects and equipment

in the trauma bay:

1. Tag type: Select the tag type based on object material and composition. Use

on-metal tags for objects that contain metallic parts. For objects filled with fluid,

use regular tags but attach them along their width for improved signal detection.

2. Number of tags and their placement : For each object, identify surfaces that could

carry a tag. Determining the most appropriate placement for tags will depend

on:

(a) Surface accessibility: For sterile objects, tags should be placed on the wrap-

ping. All other objects can be tagged directly.

(b) Shape constraints: As tag performance degrades with tag folding, surfaces

with less curvature are more appropriate for tagging than those requiring

the folding of a tag.

(c) Surface smoothness: Smooth surfaces are better for tagging because tags

adhere better.

(d) Object-provider interaction characteristics: Identify parts of the object that

are frequently in contact with human body versus those that are rarely

touched by providers. Tags should ideally be placed on parts that are less

prone to contact. Placement of tags will also depend on the duration of

contact with an object:

i. Long contact: For objects characterized by long contact, attach two

tags in tandem, placing one tag at the point where providers hand or

patients body covers the tag when in use, and placing the other tag at

the location where the tag remains exposed when in use.
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ii. Brief contact: For objects characterized by brief contact, tandem tagging

does not apply. Still, we propose attaching two tags to the exposed parts

of the object for more reliable detection. If the object is small, use only

one tag to prevent tag-coupling issues.

6.5.3 Identifying Objects In Use Based on Location, Motion and Con-

tact Information

Although zone-based information, motion status, and interaction modes of objects pro-

vided needed input for guiding the placement of RFID tags, these cues posed several

challenges to reliable signal detection. We argued that objects located in the patient-

bed zone are more likely to be in use than objects in other zones. However, we observed

that inferring an objects use from its location in the area around the bed is not optimal.

Objects were often brought to the patient bed long before use, or they were immedi-

ately returned to their storage place after a short use. Location-based cues were least

reliable for objects that remained in the bed zone even if not in use. For example, the

stethoscope (carried around providers neck) is always around the bed. Another object

that shows the same pattern is the trauma shears that are usually kept in providers

pockets. To decide whether these objects are in use, we needed to include motion and

interaction cues.

Motion and interaction cues too can be problematic for reliable detection of object

use. Although stationary objects are less likely to be in use than moving objects, they

may experience slight movements as well. For example, a cervical collar on the patients

neck moves along with the patient, e.g., when the patient is rolled on a side to check for

back injuries. In general, patient movements are random and difficult to model, which

is especially challenging with children, whose behavior is often unpredictable during

trauma resuscitation. In this work, we focused on objects with predictable motion

patterns, such as the laryngoscope or thermometer. Random human movements and

occlusions pose significant challenges for tracking complex work processes using RFID

technology.
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Finally, we observed providers interacting with objects for different purposes, mak-

ing the interaction cue alone unreliable for task detection. In addition to the actual

use, objects were held during relocation or were taken erroneously and then returned.

Our analysis of the duration of different interaction types showed that it is possible to

eliminate part of the false interactions by adjusting a duration threshold, depending on

the task.

6.5.4 Practical issues

Our initial deployment of RFID technology in the actual setting of the trauma bay

pointed to several practical issues. First, we needed to ensure that the placement of

RFID antennas is minimally obtrusive to team activities. Although the antennas were

active only during simulation sessions, their placement required considering aesthetics

of the setting as well as possible interference with medical equipment in the room.

For example, movable surgical lights are suspended from the ceiling on mechanical

arms over the patient bed. These mechanical arms are often moved during patient

evaluation and may interfere with any objects protruding from the ceiling. Rather than

suspending overhead antennas on a pole, we attached them directly to the ceiling to

avoid obstructing the use of surgical lights.

Second, potential radio interference between RFID technology and medical equip-

ment in the room is a critical issue and may cause equipment malfunctioning if not

addressed. Van der Togt [83] found 68 instances of interference in 246 tests, ranging

from minor effects (e.g., unexpected noise on the computer monitors) to potentially

hazardous failures (e.g., infusion pumps and ventilators stopping). We performed basic

interference tests at CNMC on the patient monitor and defibrillator when RFID an-

tennas were both active and inactive, and found no observable interference. Clinical

implementation of our RFID tracking system will require detailed testing and manage-

ment of this potential issue.

Third, tagging an object was not a one-time activity and required follow-up checking

of the tag status. Medical personnel sometimes removed RFID tags from objects or

used objects without tags. A real-world deployment of RFID technology would require
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tagging of all objects in the trauma bay. At this experimental stage, we only tagged

objects that were used in simulation sessions. Our experiences showed that using RFID

systems in safety-critical work settings such as trauma resuscitation require educating

personnel about the system so that its functioning is reliable.

Despite the challenges and practical issues, our deployment results showed the fea-

sibility of our approach and using passive RFID technology for detecting and tracking

resuscitation objects and tasks. Our approach using passive RFID technology and the

guidelines we have developed for placing RFID antennas and tags in resuscitation rooms

are applicable to other work settings under following circumstances: (a) there is a need

for recognizing people and activities in a highly dynamic and crowded workplace; (b)

privacy is a great concern, making the visual records undesirable; (c) time and resources

for special maintenance (e.g., changing batteries) of objects that need to be tracked are

limited; (d) some objects that need tracking are disposable and the cost of tracking

sensors is a concern; (e) objects that need tracking are relatively small and hand-held

during use, making the size of tracking sensors a concern. We believe that our approach

is applicable to a specific domain if most or all of the above apply.
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Chapter 7

Detecting Used Objects During Trauma Resuscitation

7.1 Introduction

In this chapter, we evaluate the use of long-range passive RFID technology for task

recognition during trauma resuscitation. Because medical objects are often uniquely

associated with performed tasks, we monitor object usage by processing received signal

strength data from tagged objects with machine-learning techniques. We tagged 81

objects and eight trauma team members with off-the-shelf RFID tags in the trauma

bay at CNMC and recorded the signal strength during 32 simulated resuscitations

performed on a patient mannequin. We analyzed the data to investigate the read rates

of objects and to identify cues for activity recognition. Based on the characteristics of

the sensory data, we selected statistical features to extract from the recorded data and

then trained classifiers to detect occurrences of object use, which are associated with

activities.

7.1.1 Outline

This chapter is organized as follows. We first introduce our experimental setup in Sec-

tion 7.2: we present a summary of tag and antenna placement, which were extensively

discussed in Chapter 6 and describe the data collection process. Section 7.3 includes

our analysis on RFID data for developing the object detection and activity recogni-

tion methodology. After describing our method for detecting object interactions and

activities (Section 7.4), we present the experimental results in Section 7.5. Finally, we

discuss the results and draw our conclusions in Section 7.7.
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7.2 Study Setup

Placement of RFID tags and antennas depended on our findings and guidelines pre-

sented in Chapter 3 (Section 6.5). Here, we present a summary of our setup in the

trauma bay at CNMC.

7.2.1 RFID Tag Type and Placement

RFID tag type and placement were determined based on the composition and size of

objects.

Tag Type

We chose the tag type based on object material. Passive RFID tags have performance

issues when attached to metallic surfaces and liquid containers. This limitation requires

using either special tags or minimizing the contact between the tag and the object. We

tagged metallic items (e.g., the laryngoscope) with rigid on-metal tags. Although these

special tags are more expensive, they are feasible for reusable items. Liquid containers

(e.g., IV fluid bags) and objects in aluminum packaging (e.g., CO2 detector) were tagged

with regular tags, keeping the tag contact with liquid (or aluminum) part minimal.

Number of Tags and Their Placement

For each object, we identified surfaces available for tagging and selected the largest tag

that could be attached. Availability of the surface depended on (a) object accessibility:

for sterile objects, only the wrapping was available for tagging; (b) shape constraints:

surfaces with less curvature were preferred as tag folding degrades the performance;

(c) smoothness: tags adhere better to smooth surfaces; and, (d) size: most objects

were tagged using two RFID tags for more robust object detection (if one tag was not

readable, the other tag might still be detected); one tag was used for small objects (e.g.,

IV catheter, IV start kit) to avoid the coupling effect, which may distort signals [36].

We used 126 passive RFID tags for tagging 81 objects of 19 types and eight people

(Table 7.1). During a pilot resuscitation, we noticed that some tags were not detectable
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(e.g. on the stethoscope or thermometer probe). These tags were small and required

folding because of the object shape. In these cases, we replaced the original tag with a

larger one if it did not interfere with the objects use. When it was not possible to use

a larger tag, we changed the tag’s placement.

Table 7.1: List of tagged medical objects, the activity that the object is involved,
number of tags attached to the object and their placement.

Object (# tagged) Task
Tagging

# Placement Taggable
Cervical collar (2) Spine immobilization 2 Tandem itself
Stethoscope (2) Chest auscultation 2-4 Tandem itself
Thermometer (1) Temperature measure-

ment
2 On itself

Laryngoscope (1) Intubation 1 Back (on-
metal tag)

itself

CO2 detector (2) Intubation 2 Edge package
Endotracheal tube (4) Intubation 2 On package
Bag valve mask (2) Ventilation 2 On itself
IV fluid bag (7) Fluid administration 2 Edge itself
IV catheter (31) IV placement 1 On package
IV start kit (16) IV placement 1 On package
IV tubing (4) IV placement 2 On package
Level-1 tubing (1) Rapid fluid infusion 1 On package
Otoscope (1) Ear assessment 2 On & tip itself
Ophthalmoscope (1) Eye assessment 2 On & tip itself
Broselow tape (1) Patient weight estima-

tion
1 On itself

Foley catheter (1) Urine assessment 2 On package
Orogastric tube (1) Tube feeding 2 On package
BP cuff (1) BP measurement 2 Tandem itself
Intraossesous access
gun (1)

IV placement 2 Tandem itself

Team role tags (8) n/a 1-2 On itself

7.2.2 RFID Antenna Placement

Our goal was to ensure complete coverage of the trauma bay with a minimal number of

antennas because of the lack of space, possible radio interference with medical equip-

ment, and for esthetics and cost reasons. To find the optimal antenna placement, we
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studied the resuscitation environment, focusing on providers locations and their inter-

actions with medical equipment. Based on this analysis, we divided the workspace into

five zones: patient-bed zone, right and left zones, and foot and head zones (Figure 6.8).

When in use, objects appear in the patient-bed zone; when stored or left idle, objects

appear in the left, right, and head zones. Since the foot zone is rarely used for storing

or using objects, we did not consider this area. Care providers mainly move in the free

area around the patient.

We evaluated several antenna configurations to achieve high readout rates and to

maximize deviation in the RSSI signal when objects change in-use status. Our final

configuration included:

1) At least one antenna per zone. To reduce the effects of human presence and

movement on the RFID tracking system, one antenna was placed above each zone,

mounted on the ceiling and facing the floor.

2) Two additional antennas in the patient-bed zone to improve signal detection rates,

as well as the accuracy of localization and movement detection. Both antennas were

angled to face the patient bed, and were > 2 meters above the floor to avoid obstructing

team activities and to reduce interference caused by human occlusion and movement.

7.2.3 RFID Data Collection

RFID data was collected during 32 simulated resuscitations. Resuscitations lasted

about 20 minutes each. Each team performed four resuscitation scenarios with injuries

requiring different treatments, including endotracheal intubation, administration of flu-

ids and medications, temperature control and chest tube insertion. The number of

tagged objects of each type that were actually used depended on the patient scenario.

For example, we tagged two cervical collars of different sizes because resuscitations

involved different patient types (i.e., infant and child).

Before each resuscitation, the tagged objects were placed in storage cabinets and

drawers. During the event, a member of the research team started the data collection

when the patient simulator arrived to the room. We developed a simple Java-based

user interface to start and stop the RFID scan. The readers operated autonomously
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and were scanning the environment continuously until stopped. Trauma teams were

not informed or instructed on how to handle the tagged objects.

Obtaining Ground Truth Data for Algorithm Evaluation

Object interactions were annotated by watching videotapes of each resuscitation. Dur-

ing video review, interactions were annotated with the event ID, object ID (e.g., large

collar, stethoscope 2), interaction start and end times, and the task performed (if any)

with the object. Of the tagged 81 objects and 8 member role tags, we annotated the

interactions with 73 objects across all 32 resuscitations. Annotated objects were of 12

different types (Table 7.1). The remaining objects had either very low data rates (e.g.,

otoscope and ophthalmoscope) or were not used in a significant number of events (e.g.,

Broselow tape, Foley catheter, orogastric tube and intraosseous access gun). Both of

these circumstances caused low data amounts and prevented algorithm training. Al-

though we tagged a BP cuff, we decided not to annotate it because its use can be

detected from the patient monitor. Finally, personnel badges were not annotated be-

cause they are not directly related to object interactions.

7.3 RFID Data Analysis

Before developing the object detection and activity recognition methodology, we ana-

lyzed RFID data for cues about used objects and performed tasks. First, we calculated

read rates (number of responses received from an object/tag per unit time) over time

for different object types. We then examined the change in total number of detected

tags/objects over time and correlated this change with resuscitation activities.

7.3.1 Object Read Rates over Time

The number of responses from a tag (read rate) and strengths of these responses

(Received Signal Strength Indication – RSSI) exhibited small and large fluctuations

over time. Small fluctuations were due to environmental effects and multipath fading,

whereas large fluctuations were associated with two types of events:
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1. The object is being relocated or interacted, with the purpose of using it.

2. The object is occluded, or accidentally interacted, without being used.

Changes in object read rate were useful when caused by the first event type. We

processed the RSSI data to detect these fluctuations and infer interactions with objects.

The second event type created false alarms that we tried to distinguish via redundancy

and post-processing (e.g., using multiple tags and antennas, extracting several features,

and ignoring very short interactions). Details of detecting fluctuations, feature extrac-

tion and pre-processing are presented in Section 7.4.

7.3.2 Average Read Rates Based on Object Type

Average read rates of objects provided clues about which objects may be easy or chal-

lenging for use detection. Objects with very low read rates may be problematic because

their data is insufficient for processing. We calculated the average read rate of an object

by normalizing the total number of readings with the number of resuscitations (32) and

the number of objects of that type.

The average read rates varied among different objects (shown in Figure 7.1 for

20 different object types). Some objects generated a low number of readings for the

following reasons:

1) Irregular object shapes required tag folding or using a smaller tag, weakening the

ability of the reader to detect the tag. Examples include the otoscope, ophthalmoscope,

and stethoscope (columns indicated with “IS” in Figure 7.1).

2) Some objects were stored in locations with weak antenna coverage. Examples

include the otoscope, ophthalmoscope and CO2 detector. The otoscope and ophthal-

moscope were mounted on a movable mechanical arm, which usually stands between

the head zone and right zone (Figure 6.8). The CO2 detector was detectable only in-

termittently when in-storage: hanging on the wall (columns indicated with “WC” in

Figure 7.1). We plan to address this issue by using an additional antenna.

3) Some objects were used rarely or appeared late. Their read rates were high when

used, or after they appeared, but their overall read rates were low because of rare usage.



123

Figure 7.1: Average read rate for each object and antenna (averaged over 32 resusci-
tations and number of objects of the same type). Larger bubbles indicate higher read
rates. (None: 0 readings/resuscitation, Largest: 1388 readings/resuscitation). Arrows
indicate the objects with low number of readings, due to irregular shape (IS), weak
coverage (WC), and rare use (RU).

Examples are the orogastric tube, intraosseous access gun and Level-1 tubing (columns

indicated with “RU” in Figure 7.1).

Read rates of antennas varied based on the object trajectory, which in turn depended

on where the object was stored and used (Figure 7.1). For example, the cervical collar

was stored in the right zone when not in use; in this case, antenna #4 had the highest

reception. When the collar was brought to the patient bed area, reception from antennas

#1, #2 and #3 scanning this area increased (antenna #2 had higher reception than

antenna #5 because the object was close to patients head). This change in use status

caused a significant fluctuation in the RSSI of the collar, which facilitated interaction

detection. Detecting interactions with an object by using data from only one antenna

(e.g., the CO2 detector and otoscope) or from the same set of antennas continually

(e.g., stethoscopes, usually carried around neck, mostly stay in patient-bed zone) is

challenging. Interaction detection is easier for objects moving between zones, so that

they are detected by multiple antennas (e.g., collar, IV fluid bag, bag valve mask,
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intravenous tubing, needle, or thermometer).

7.3.3 Change in Numbers of Detected Tags/Objects over Time

We also analyzed the change in total number of detected objects and tags over time.

A tag is “detected” if it yields at least one reading; an object is “detected” if at least

one of its tags is detectable. We summarize our findings as follows:

1) The number of detected objects and number of detected tags changed over time;

the differences between these numbers remained small and relatively constant. Because

most objects were tagged with multiple tags, the number of detected tags was always

higher than the number of detected objects (Figure 7.2). Because the difference between

the two numbers was constant over time, it did not provide cues about activities.

Figure 7.2: Number of detectable objects and tags over time in (a) resuscitation #1
(b) resuscitation #3. Total number of objects, total number of tags and number of
tags detected by antenna #3 shown with black line, thick black line and thick red line,
respectively. Troughs indicate a significant drop in number of detected objects and
tags, caused by simultaneous occlusion of multiple objects. This can be associated with
activities of ear and pupil assessment (by using otoscope and ophthalmoscope) and
rolling the patient.

2) Although the total number of detected objects was relatively constant across re-

suscitations, the fraction of readouts contributed by different antennas to the number

of detected objects varied over time. Antennas #2 and #3 had a minor increase in
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readouts at the beginning of each event as team members started preparing objects

in the patient bed area. These same antennas had higher readouts in the middle of

events, between minutes 4 and 6, as many objects entered or left the patient bed zone,

resulting in more fluctuations. Although antenna #1 also scanned the patient bed, it

transmitted radio waves through the head of the bed, which is a crowded region with

three or more people. The reception of antenna #1 was therefore affected by human

presence, leading to a slight decrease in readouts at the beginning of and fluctuations

during resuscitations. We did not consider repositioning antenna #1 to avoid interfer-

ence with overhead lights. These findings provided information about the progress of

resuscitation, but not necessarily cues for recognizing activities.

Analysis of Individual Resuscitations

We also performed an analysis of changes in the number of detected objects over time

for individual resuscitations. Figure 7.2(a) shows the number of objects detected in

resuscitation #1. By watching the video of this resuscitation, we observed that peaks

in the number of detected objects corresponded to multiple objects appearing at the

same time. Also, because team members were moving, their RFID tags appeared and

disappeared intermittently. For example, the peak around 180 sec. in Figure 7.2(a) was

due to the appearance of a Foley catheter, a laryngoscope, a stethoscope and two team

members’ tags. However, appearances of objects could not be associated with activities

because none of these objects was in-use at the moment where the peak occurred.

By analyzing additional videos, we observed that the troughs in detection rates were

linked with two event types:

1. One or more team members leaned toward the patient to perform a task. For

example, at 450 sec. in Figure 7.2(a), a physician was assessing the patient’s

pupils and ears.

2. The team was rolling the patient to assess for potential back injuries (Figure

7.2(b), between 560-600 sec).

Peaks did not provide any valuable cues about activities performed at that moment
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while troughs indicated a significant drop in the number of detected tags caused by

simultaneous human occlusion of multiple objects. Troughs were associated with ears

and pupils assessment and with patient rolling. Although this information does not

point to a specific activity, it may be used to complement object use detection (e.g.,

for the otoscope). These findings suggest that: 1) effects of human body on passive

RFID tags can be helpful for detecting some activities; and 2) RFID-based sensing can

be helpful even for an activity that does not involve any objects, such as rolling the

patient.

7.4 Methodology for Detecting Objects in Use

Our analysis of RFID data showed that the most useful clue signaling object use was

the change in RSSI over time. This section describes our methods for processing RSSI

to detect occurrences of object use. Because medical objects differ based on their

storage location, usage pattern and handling style, using manually defined rules for use

detection is not feasible. We instead formulated this problem as a binary classification

problem and developed a machine-learning-based strategy with three steps: feature

extraction from RSSI data, classification and post-processing.

7.4.1 Feature Extraction

For each object of interest, we segmented RSSI data into fixed-size overlapping windows

and extracted the relevant features from each window (Figure 7.3). For determining the

relevant features, we analyzed how care providers interact with objects during usage

and identified three major cues that indicate use of objects:

1. Zone-based location: When needed, objects are fetched from their storage and

moved to another place where they will be used. We use the signal strength

received from different antennas as an indicator of zone-based location (Table

7.2).

2. Motion: Objects are often in motion while being used. Movements of an object,

and hence the attached tag, cause fluctuations in the RSSI, which are detectable
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Figure 7.3: Method for detecting object use. Plots show the input and output of each
module for an example interaction with thermometer.

by comparing the data in consecutive time intervals. We divide a time window into

left and right sub-windows (shown with “L” and “R” in Table 7.2) and compute

several statistics to quantify the similarity between left and right sub-windows

(Table 7.2). We also identify the total number of visible antennas because moving

objects are likely to be detected by more antennas.

3. Contact: A care provider’s or patient’s contact with an object indicates that the

object is likely to be in use. For objects tagged with tandem tagging, we expect

strong radio signal from both tandem tags when the object is not in use. When

an object is in use, the tag in contact with provider or patient will emit weaker

signal or no signal at all. For detecting contact, we compute the percentage RSSI

contributed by each tag on the object (Table 7.2).

A cue may display different characteristics depending on the type of object. For

example, when in use, a cervical collar is located at the head of the patient bed; whereas

an IV fluid bag is located at the left side of the patient bed. These different object loca-

tions generate different RSSI patterns, although they both represent in-use. Therefore
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Table 7.2: Cues for detecting object use and related features extracted from RSSI to
capture these cues.

Cue Feature
Location Average RSSI from each antenna (f1 − f6)

Motion

Difference of average RSSI between L and R from each antenna (f7 − f12)
Total difference between L and R (f13)

Spearman Rank Correlation Coefficient between L and R (f14)
Number of antennas that are common in L and R (f15)

Mahalanobis distance between L and R (f16)
Number of visible antennas (f17)

Contact Percentage RSSI contributed by each tag on the object (f18)

each cue must be interpreted separately for each type of object. Defining manual rules

for each cue and object pair was infeasible; therefore we preferred a machine-learning

based approach. We extracted 18 features from the RSSI data to reveal these cues

(Table 7.2) and concatenated the features to obtain a feature vector. To handle the

feature variance across different objects, we trained a separate classifier for each type

of object (Figure 7.3).

7.4.2 Learning the Classifier

We followed a supervised approach for training a classifier. Our dataset included an-

notations about interactions in addition to RSSI data received from objects. Features

extracted from RSSI and human annotations served as input to a learning algorithm,

which then outputted a classifier. In testing phase, extracted features are mapped to

labels using the classifier (Figure 7.3).

By visualizing the distribution of features for our dataset, we observed that they

could not be modeled with a simple and well-known probability distribution. We there-

fore did not model the distribution of features, but used algorithms that directly learn

the discriminator via discriminative classification methods [3]. Tree-based classifiers

have been shown to perform well in similar detection tasks [5, 42]. We used the Log-

itBoost algorithm, an ensemble of one-level decision trees, to train our model [22]. To

train and test classifiers, we used the Weka data mining software [29].
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7.4.3 Post-processing

A classifier generates hypothesized labels as outputs, but it does not provide informa-

tion about confidence of the hypotheses. We obtained confidence estimates (posterior

probabilities) of the binary labels by fitting a logistic regression model to the classifica-

tion output [3]. We also processed the posterior probability sequence with the following

steps (Figure 7.3):

• Smoothing: The sequence was filtered with a smoothing Gaussian filter to elimi-

nate sudden jumps in the posterior probability sequence.

• Thresholding: An occurrence of object use was declared if the smoothed proba-

bility values were higher than a threshold. We obtained a precision-recall curve

by adjusting this threshold.

• Merging adjacent use instants: If two use instances were less than 30 seconds

apart, we merged them to a single event. The rationale being that close uses

of the same object can be associated with one activity, precluding the need for

detecting these use events individually.

• Eliminating very short interactions: We eliminated use instances that were shorter

than a specific time interval, depending on the object type. These time intervals

were determined using annotated data. For example, annotations showed that

the mean time of thermometer usage was 23 seconds and the minimum time was

12 seconds. A 10-second threshold was therefore used for the thermometer.

7.5 Evaluation

We evaluated the performance of object use detection in two aspects:

• Object Parameter Detection: Identifying which instance of a particular object

type was used during resuscitation (e.g., a small collar and IV catheter #6 were

used in resuscitation #17).
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• Detecting Time of Object Use: Detecting the exact time interval an object was

used (e.g., IV catheter #6 was used between 126 – 149 seconds in resuscitation

#17).

7.5.1 Evaluation Method and Metrics

Both object parameter detection and use time detection performance were evaluated

with five-fold cross-validation. Because resuscitations differed based on the scenario,

and hence objects used within each, random partitioning of 32 resuscitations might have

resulted in incompatible training and test sets (e.g. object was used during training

set resuscitations, but not during test set). To eliminate these options, we divided

our RFID data across all resuscitations into segments of 200 seconds. These segments

served as the building blocks of training and test folds during cross-validation. We did

not apply segmentation for object parameter detection because we aimed to identify

instances of used objects throughout the whole resuscitation.

We evaluated use detection performance with three sets of metrics. The first set

included precision and recall, which are widely used metrics in detection problems [64].

We also used F-measure (the harmonic mean of precision and recall) as a combined

measure of performance. If TP , TN , FP and FN denote number of true positives,

true negatives, false positives and false negatives, respectively, precision, recall and

F-measure are formalized as:

Precision =
TP

TP + FP
(7.1)

Recall =
TP

TP + FN
(7.2)

F−measure =
2 · Precision · Recall
Precision + Recall

(7.3)

High precision rates indicate that most detections are correct (fewer false detec-

tions). High recall rates indicate that most true instances are detected (fewer missed

instances).
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Although precision, recall and F-measure are informative about the number of false

positive and false negatives, they do not specify the type of misses and false alarms.

For example, a false alarm may be due to a late detection or complete miss, and one

of these errors may be more serious depending on the application. To address the type

of errors, we use a second set of evaluation metrics defined by Ward et al. [87]. False

negatives are categorized into three types:

• Underfill: Predicted segment matches a ground truth segment but partially misses

at the start or end (underfill-start, underfill-end).

• Fragmentation: Two or more predicted segments match a ground truth segment.

• Deletion: A ground truth segment is not matched at all.

False positives are also categorized into three types:

• Overfill: Predicted segment matches a ground truth segment with a spill at the

start or end (overfill-start, overfill-end).

• Merge: Predicted interval includes two or more ground truth segments.

• Insertion: Predicted interval does not match to a ground truth segment at all.

Another flaw of precision and recall metrics is that, they do not take the number of

true negatives into account, especially when the dateset is skewed, precision and recall

may cause biased calculations by ignoring true negatives. The third set of metrics that

we used included unbiased measures of performance: informedness, markedness and

Matthew’s correlation coefficient (MCC), which are defined as [64]:

invPrecision =
TN

TN + FN
(7.4)

invRecall =
TN

TN + FP
(7.5)

Informedness = Recall + invRecall− 1 (7.6)

Markedness = Precision + invPrecision− 1 (7.7)
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MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7.8)

MCC is considered as one of the best representations of a confusion matrix because it

incorporates all elements of the confusion matrix.

Informedness and markedness vary in the range of [0,1]. Because maximum value

for inverse precision and inverse recall is 100%, informedness and markedness are often

smaller than precision and recall. MCC measures the goodness of a prediction by com-

puting its correlation with the ground truth: the higher the correlation, the better the

prediction. Being a correlation-based metric, MCC varies between [-1,1]. MCC values

close to 1 indicate high correlation between the ground truth and the hypothesis, and

hence good prediction performance. An MCC of zero indicates that the hypothesis and

the ground truth are not correlated, which indicates poor performance. Negative MCC

values represent inverse correlation between two signals. When evaluating detection

performance, negative MCCs are observed only when they are very close to zero.

7.5.2 Experimental Results

We examined the use-detection performance on 72 objects of 11 types: two cervical col-

lars, two stethoscopes, a thermometer, a laryngoscope, two CO2 detectors, two BVMs,

four ET tubes, seven IV fluid bags, 31 IV catheters, 16 IV start kits and four IV tub-

ings. Because one of the stethoscopes was tagged with four tags, we consider it as

a different type. These tools are involved in several activities as listed in Table 7.1.

These are important tasks and must be performed in all resuscitations. Their omission

or incorrect performance could lead to adverse patient outcomes.

Performance of Passive RFID for Object Parameter Detection

Certain types of medical objects are available in different sizes to accommodate different

patients and needs. In the trauma bay, cervical collars, ET tubes and IV catheters are

available in several sizes. IV fluid bags may also contain fluids with different salinity

levels. When these objects are needed, the appropriate parameter must also be deter-

mined depending on the patient information (e.g., age and weight) or patient’s current
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status. Using objects with improper parameters usually represents a medical error and

may result in adverse outcomes.

Objects of same type but different parameters often have very similar shape or

packaging. It is difficult to identify the parameter through visual analysis of videos. In

the resuscitations that we videotaped, only parameters of the cervical collars and CO2

detectors were partially visible because collars had different sizes and CO2 detectors

were in packages of different colors. The salinity of fluid bags and size of IV catheters

and ET tubes, on the other hand, were not distinguishable during video review.

Through human and machine vision, the object type is first recognized (e.g., a

cervical collar), and then objects parameters are realized (e.g., a small cervical collar).

Using identification technologies, on the other hand, both object type and parameter

can be identified simultaneously. By tagging objects with RFID tags and recording the

tag IDs with corresponding object information, objects parameters can be pulled from

a database when its tag is detected as in-use. Accurate knowledge of used objects and

their time of use convey the parameter information perfectly for the used objects. For

cases in which only the use time prediction is erroneous (predicted time interval does

not match the true time interval exactly), RFID data still provide information about

parameters of objects that are used in a particular simulation.

In this experiment, we studied long-range passive RFID technology for identifying

the specific instance of the object type used during a simulation. Once the exact

instance of object type was identified, identifying its parameters was straightforward.

We first ran our use detection algorithm for each of the resuscitations. If an object was

detected as being used at least once, we assumed a positive prediction for the object

in that resuscitation. Similarly, if ground truth was positive at least once throughout

a simulation, we assumed a positive ground truth for the object in that resuscitation.

We report results for eight type of objects that are produced in different parameters:

collar, CO2 detector, ET tube, BVM, IV fluid bag, IV start kit, IV catheter and IV

tubing.

For all object types, except the ET tube, we were able to detect the exact instance,

and hence the parameters, of the object with an accuracy of >85% (Figure 7.4 last bar
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Figure 7.4: TP, TN, FP, FN and accuracy rates for object parameter detection

in each group). Highest accuracy rates, as well as highest TP rates, were observed for

fluid bag and cervical collar because use of these objects can be detected more reliably

compared to the other objects. As previously discussed, if an object’s usage can be

detected accurately, its parameters can be easily obtained. TN rate is higher for fluid

bag compared to cervical collar because number of tagged fluid bags (four) was higher

than the number of tagged cervical collars (two). When the trauma team uses one

instance from each type, used instances (one collar and one fluid bag) represent ground

truth positives and unused instances (one collar and three fluid bags) represent ground

truth negatives. Because fluid bag has higher number of unused instances, it has a

higher TN rate. IV start kit and IV catheter also have high TN rates because of the

same reason (31 IV catheters and 16 IV start kits were tagged).

Although we tagged only two CO2 detectors, its TN rate is high and TP rate is low

because this object was not used in several simulations. Because our system did not

generate many false alarms when the object was not used, its TN rate is high.

FP rate is high for the endotracheal tube because instances of this object were in

antennas’ view even if they were not used. Locations of used and not-used objects

were close and could not be distinguished with passive RFID technology. Also, team

members interacted with almost all tubes when searching for the appropriate one. These
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interactions triggered more false alarms.

Performance of Passive RFID for Detecting Time of Use

For detecting time of object use, we extracted features from the RSSI data using a

12-second sliding window, and trained a separate Logitboost classifier for each object

type (a total of 12 classifiers).

Our findings from this experiment are:

1) Use detection performance depended on object type. We obtained the best MCC

scores for collar (81.2%), thermometer (48.9%), BVM (72.3%) and fluid bag (62.3%)

(Table 7.3). Except BVM, these objects were relocated from left or right zones to the

patient bed zone when needed. Relocations from other zones to patient bed zone or

within patient-bed zone appeared more difficult to detect. BVM was stored in the head

zone but it was hung on the wall at a higher height than the patient bed. When needed,

this object was relocated to patient bed zone and to a lower level, both increasing the

fluctuations in the RSSI signal and facilitating use detection. MCC for thermometer was

lower compared to the other three objects for a few reasons. In some resuscitations, the

thermometer was brought to patient bed long before being used. When it was actually

needed, a nurse brought it closer to the patient, however this relocation was not always

noticeable in the RSSI signal. Second, collar, BVM and fluid bag stayed in their use

location for long time (e.g., once a collar is placed on patients neck, it stayed there

usually until the end of the resuscitation). In contrast, the thermometer was in-use for

a much shorter time. As the time of object use became shorter, it was more likely that

the use moment is missed or confused with accidental movements.

For collar, most errors were start overfills, which occurred when the collar was

brought to patient bed before it is used. Our tandem tagging approach helped only for

few cases because a plastic manikin was used instead of a real patient. When the collar

was placed, its tag was not in contact with human body but with plastic. For ther-

mometer and IV fluid bag, almost half of the misses were deletions and the remaining

half were underfills and fragmentations. The average time of underfill was measured

as 18 seconds, which might be reasonable even for a real-time decision support system.
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Table 7.3: Precision (P), recall (R), F-measure (F), markedness (M), informedness (I)
and Matthews correlation coefficient (MCC) for several objects. Confidence interval for
MCC at 95% confidence level is also shown.

P R F M I MCC
Collar 79.4 97.7 87.6 78.5 88.9 83.6± 0.3

Stethoscope (4tags) 24.2 18.2 20.8 13.9 10.8 12.2± 1.3
Stethoscope (2tags) 7.8 6.42 7.0 2.5 2.0 2.2± 2.8

Thermometer 31.0 67.3 42.4 30.1 63.6 43.8± 2.5
Laryngoscope 9.0 10.4 9.7 4.0 4.6 4.3± 0.9
CO2 indicator 32.1 10.6 16.0 31.8 10.6 18.3± 4.2

ET tube 8.9 22.1 12.7 8.4 20.8 13.2± 2.5
BVM 89.4 74.1 81.3 78.2 70.0 74.0± 1.3

IV fluid bag 74.8 54.0 62.7 69.6 51.8 60.0± 1.1
IV catheter 10.7 69.0 18.5 10.6 68.0 26.8± 3.0
IV start kit 3.9 29.6 6.8 3.8 28.7 10.4± 0.3
IV tubing 16.8 39.9 23.6 15.5 35.6 23.5± 0.9

Also, considering the subjectivity of use start and end times, as well as video-RFID

synchronization issues (Section 7.7.3), we believe that the exact underfill interval could

be shorter. Fragmentation rate is also high for IV fluid bag (Figure 7.5) because this

object remained in-use for a long time. When fluid administration starts, it contin-

ues for a long time without any interruptions. Therefore fragmentation errors are not

serious for this object.

We observed lowest MCC for the stethoscope tagged with two RFID tags (Table

7.3). Hypothesized labels for this object included a significant number of insertions and

deletions, which constituted the majority of false negatives and false positives (Figure

7.5). For most errors, the predicted time interval did not overlap with the ground

truth. Although using two additional tags provided improvements, MCC remained

around 21.6%. We noticed that a stethoscope possesses specific characteristics that

are challenging for RFID-based tracking. First, it can be considered a personal object

because a care provider carries it throughout the resuscitation. Because team members

are always in motion and gather around patient bed, a stethoscope is always in motion

and close to the patient. Second, it is often in contact with human body. When being

carried around neck or held in hand, the tag was not detectable. When in-use, it is
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usually not in contact with human body, but instead is occluded because the user leans

over the patient to listen to breath sounds. The data rate for this object was much lower

than for other objects. One of the tandem tags that was supposed to disappear only

when covered by hand in use often disappeared due to occlusion. Finally, we observed

variability in usage style of providers. When idle, some providers carry the stethoscope

around their neck, while the others put the stem part behind their body. Because of

these factors, it was challenging to detect actual use of the stethoscope.

Time of use for intubation equipment (laryngoscope, CO2 indicator and endotracheal

tube) could not be detected with high accuracy because these objects were stored in

the head zone, which is closer to patient bed compared to left and right zones. When

the team decided to intubate the patient, these objects were placed near the patients

head, for easy access. As the result, the exact time of use could not be detected with

high accuracy. Similarly, IV catheters and IV start kits were almost always prepared in

advance and brought to patient bed. MCC was therefore higher for IV tubing because

this object was mostly brought at the time of use.

We deduced that inter-zone relocations (especially from left and right zones to pa-

tient bed) were detectable using passive RFID. If object was fetched from its storage

long before usage and then only relocated within the zone, the exact time of use cannot

be detected reliably using the current passive RFID technology.

2) Data rates were not always correlated with use-detection performance. Although

very low data rates caused degraded use detection performance, high data rates did not

always improve use detection scores. In our dataset, endotracheal tubes generated high

amounts of RFID data (Figure 7.1) however their use instance could not be detected

with high accuracy (Figure 7.5, Table 7.3). This finding is important because the

common criterion for success of RFID systems is read rate. A change in RSSI must

be detected to decide object use; however, high read rates do not guarantee that a

change will be detectable. Therefore, when deploying RFID tags and antennas for use

detection, first priority must be to ensure that every object is detectable with sufficient

data rates. As the second priority, the deployment strategy should maximize the change

in signal pattern due to a change in objects state, instead of maximizing data rates.
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3) Confidence intervals of our results were at most 4.2%. We ran the cross-

validation ten times, calculated the performance metrics for each run and found the

average to obtain the results in Table 7.3. Because train and test bins are determined

randomly in each run, we obtained different results. High variance of results across

different runs could be a sign for the chance factor and unreliability of results.

For each object, we calculated the confidence interval at 95%, which are reported

for MCC in Table 7.3. The confidence interval was at most 4.2%, and much smaller

for most objects. The consistent performance at both high- and low-performance ends

provides an insight into the strengths and limitations of passive RFID, and aids in our

understanding of how other sensors modalities may complement RFID. For object types

for which the use detection is better, passive RFID provided adequate performance.

For challenging object types, such as stethoscope, other sensor modalities should be

considered, such as active RFID tags or accelerometers. A key advantage of passive

tags – the batteryless operation – is not significant for the stethoscope. Unlike other

objects in the trauma bay, the stethoscope is a personal object, similar to pager. It

is reasonable then to expect the owner to monitor and replace the sensor batteries

required for active RFID tags or accelerometers.

4) Different metrics emphasize different aspects of performance evaluation. We

report results in three sets of metrics:

• Set 1: Precision, recall, F-measure (shown in Table 7.3).

• Set 2: Distribution of correct and erroneous inferred labels, and type of errors

(shown in Figure 7.5).

• Set 3: Informedness, markedness and Matthews correlation coefficient (shown in

Table 7.3).

We obtained similar results with the first and third sets (Table 7.3) with the excep-

tion of five objects: cervical collar, stethoscope, thermometer, laryngoscope and fluid

bag. The first four among these five objects have a smaller number of instances com-

pared to other objects, such as IV catheter and IV start kit. Type of objects with many
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instances also have very high number of ground truth negatives. Unless FP rate is too

high, the third set of measures favor objects with high number of ground truth nega-

tives. As a result, these objects yielded MCC scores close to their F-measure. Objects

with low number ground truth negatives yielded lower MCC scores than their F-scores.

The intravenous bag is an exception to this rule. Although it has a low ground truth

positive to negative ratio, its MCC is close to its F-score because its FP rate is very low

(Figure 7.5). We conclude that, if an object has a very high ground truth negative to

positive rate or it has a very low FP rate, first and third set of measures yield similar

values. For the remaining objects, third set of measures yield lower values.

Second set of metrics (Figure 7.5) show TP and FN rates normalized with respect to

ground truth positives, and TN and FP rates normalized with respect to ground truth

negatives. For the objects with high number of ground truth negatives, even a very

small FP rate means a high number of false positives. For example, thermometer and

IV catheter show very similar distributions (Figure 7.5). Although their TP and TN

rates are similar, MCC for thermometer is 48.9% and MCC for IV catheter is 14.2%

(Table 7.3).

7.6 Recognizing Activities from Used Objects

In this section, we illustrate the performance of RFID for detecting activities. First we

run the object use detection algorithm to obtain decisions about object usage (Figure

7.3). Next we defined simple rules to infer the activity from the object. For activities

performed with a single object (e.g., c-spine immobilization, temperature measure-

ment), we defined the time of activity as the time of use for the associated object (i.e.,

temperature measurement was performed when the thermometer was in use). For ac-

tivities performed with multiple objects (e.g., intubation), we defined rules such that

i) use of at least two objects must be detected and ii) time of use must be sufficiently

close for these two objects. Activity detection results obtained with these basic rules

are illustrated in Figures 7.6, 7.7 and 7.8 for different simulations.
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Figure 7.6: Ground truth and hypothesis for object usage and activities (simulation
#1)

7.7 Discussion

7.7.1 Detecting Object Parameters with RFID

Using long-range passive RFID, we were able to identify the parameters of used objects

with accuracy rates higher than 85%. Our object parameter detection is similar to

medication and blood tracking, which has already been addressed by other works [42,

57]. These prior studies, however, were based on short-range technologies, such as

barcode readers or low-frequency RFID. Short-range technologies require participation

of providers in the sensing process. This type of participation is obstructive for their

activities, and hence may be forgotten or ignored. We showed that specific instances of
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Figure 7.7: Ground truth and hypothesis for object usage and activities (simulation
#4)

objects can be tracked using long-range passive RFID, without the need for intervention

in object sensing.

7.7.2 Detecting Time of Object Use with RFID

Our experimental results showed that detecting time of object use depended on the

three major factors:

1. Storage location: Objects that were detected best were the cervical collar, IV

fluid bag, thermometer and IV tubing. A common property of these objects is

that each is stored in Left or Right Zones, which are sufficiently far away from

the patient bed. Relocation from these zones to the patient bed was clearer in
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Figure 7.8: Ground truth and hypothesis for object usage and activities (simulation
#12)

the RFID RSSI sequence, compared to relocation from head zone to the patient

bed.

2. Duration of use: The cervical collar and fluid bag are in-use for an extended

time, leading to less chance of miss or confusion with other disturbances. As the

duration of interaction with the tag increased, detection became better.

3. Time between relocation and use: Some objects are brought to patient bed long

before use, even before patient arrives. Examples include IV start kits and IV

catheters. Team members prepare these objects because they are used in almost

all resuscitations for IV establishment. Also, these objects are small and do not
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occupy a large place on the patient bed. We also observed that the cervical

collar was brought to patient bed long before use, but it was only a few times.

In contrast, IV catheters and start kits, were, brought to the bed before patient

arrival in almost all simulations.

7.7.3 Practical Observations

We observed two types of errors in the ground-truth annotations, serving as a realistic

comparison between human visual processing and RFID-based data mining.

1. Detecting errors in object usage: We tagged two cervical collars: one small, one

large. In two out of 32 recordings, a large collar was annotated as used, although

the small one was actually used. Based on our discussions with the annotator,

the team should have used a large collar in that resuscitation (determined by the

body/neck size of the child). The RFID detection algorithm caught a team error

that was not noticed by the annotator. This finding highlights the strength of

RFID in identifying the parameters of objects (e.g., volume, salinity, size), similar

to medication and fluid tracking applications using near-filed technologies. Our

experiments showed that passive RFID technology with long-range readers could

also be used for identifying the parameters of used objects.

2. Detecting use of untagged objects: An untagged object was mistakenly used in-

stead of a tagged object of the same type in nine of 32 resuscitations. Because

the tag is small, it was difficult to see in the video whether the object was tagged.

These instances were incorrectly annotated and represented erroneous ground

truth annotation. In contrast, RFID data showed that the tagged objects were in

storage. This observation indicates the strength of RFID in identifying location

or use of small objects.

Annotating object interactions by reviewing videotaped resuscitations was a labo-

rious and time-consuming task. We list the additional challenges confronted as follows:

• In our setup, videotaping and RFID data recording had to be started and stopped

independently. However they were not always started simultaneously, and we
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observed an offset of up to 280 seconds between annotations and RFID data

for each simulation. Also, the video recording and the RFID data recording

corresponding to a simulation were not the same length. We cropped the longer

one from the end to make them equal.

• When the team used untagged objects instead of the tagged ones, these objects

were annotated as if they were used because the annotator could not distinguish

whether the object was tagged or not. We corrected the erroneous annotations

that we were able to detect based on the RFID data.

• It was usually hard to identify object parameters from video recordings. In our

dataset, only parameters of the cervical collars and CO2 indicators were noticeable

by video review because collars had different sizes and CO2 indicators were in

packages of different colors. The saline concentration of IV fluid bags and size of

IV catheters and ET tubeswere not distinguishable from the resuscitation videos.

We identified these by comparing the RFID data and annotations.

7.7.4 Limitations of RFID-based Object and Activity Detection

A major limitation of sensor-based, including RFID-based, activity tracking is the in-

ability to recognize non-instrumental activities, such as manual palpations, checking

pulse or verbal statements. Such non-instrumental actions may also appear as parts of

a higher level activity. Vision or speech-based technologies can be used for detecting

these kinds of activities.

Sterile items in the trauma bay, such as endotracheal (ET) tubes and CO2 indica-

tors, are produced and delivered in wrappings. A sensor can only be attached to the

wrapping, which prevents item tracking after its wrapping is removed. Our approach

was to assume that the item would be used when the wrapping was removed.

We confronted with challenges when attaching RFID tags to some objects due to

their irregular shapes and uneven surfaces (e.g., otoscope, stethoscope, laryngoscope).

These objects were mostly personal or relatively expensive (i.e., not disposable). Using

active RFID tags for these kinds of objects might be feasible solution.
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Chapter 8

Conclusions

Safety-critical medical settings require efficient and error-free performance of tasks, as

well as a documentation of the procedure for archival and educational purposes. The

fast-paced and chaotic nature of these settings, on the other hand, triggers errors, such

as failure to record important information or inefficient performance of tasks. In this

thesis, our example setting was trauma resuscitation, which refers to the initial manage-

ment of injured patients in the emergency department. The errors and inefficiencies that

occur during trauma resuscitation highlight the need for context-aware computerized

systems that monitors the resuscitation process. Initial attempts to use information

systems to aid trauma teams have shown limited usability due to the challenge of man-

ually entering data from diverse sources in a dynamic environment, the difficulty of

synthesizing output and recommendations, and resistance to technology that offered no

major improvements. Therefore, the key challenge is to automate the process of cap-

turing teamwork and information flow and to reduce communication errors by effective

presentation of information. The goal of this thesis is to develop models and techniques

for sensor-based and non-intrusive detection of used medical tools, which is necessary

for recognizing complex medical activities and establishing situational-awareness in dy-

namic medical settings.

Our efforts started with a domain research to recognize the characteristics and chal-

lenges of trauma resuscitation, a domain which has not been studied yet by the activity

recognition community. In Chapter 3, we present our analysis on trauma resuscitation

tasks, photographs of medical tools, and videos of simulated resuscitations, performed

to gain insight into characteristics of medical tools, resuscitation tasks, work practices
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and procedures. Findings of this chapter provided the fundamentals for motion detec-

tion and localization studies, designing the experimental environment and scenarios, as

well as RFID equipment deployment strategies.

Our observational studies in the trauma bay have shown that object motion and

location are important contextual information for detecting object usage. We performed

extensive experiments to evaluate the feasibility of using passive RFID for object motion

detection (Chapter 4) and localization (Chapter 5). Using long-range passive RFID

technology we achieved a motion detection accuracy of 90% on average, and around 80%

under challenging conditions. Motion type recognition, on the other hand, could not be

achieved with such high accuracy. We deduced that it may be more reliable to discern

linear and random motion types by coarsely estimating the initial and final position

of the object, instead of recognizing the relocation motion type (linear) based on the

RSSI pattern. Our localization experiments indicated high accuracy rates for zone-

based localization. Fine-grained locations, on the other hand, could not be estimated

with high accuracy and reliability. These findings suggested a use detection system,

exploiting zone-based locations and binary mobility status of the object.

In Chapter 6, we developed strategies for placing RFID tags on medical tools and

for placing antennas in the environment for use cases requiring high-level information

inference (e.g. object use detection). Based on our findings in Chapters 4 and 5, our

goal was to find an optimum setup which maximizes the accuracy of motion detection,

i.e., binary decision as moving or still, and zone-based localization, i.e., identifying the

coarse-level location. Based on the findings of this chapter, we deployed the RFID

equipment in the actual trauma bay at Children’s National Medical Center (CNMC).

Our methods and findings in this chapter apply to other domains when (a) passive RFID

technology the most feasible sensing solution because there are privacy concerns, sensor

maintenance is undesirable or objects that need to be tracked are small, inexpensive

and large in number (b) some high-level information (object use, human activities)

needs to be inferred from object tag signals in a dynamic and crowded environment.

Having completed the domain research, preparatory studies in our laboratory and

the deployment in the actual trauma bay at CNMC, our next steps were developing our
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object use detection methodology and performing evaluation in the real setting. We

tagged 81 medical tools in a real trauma bay and recorded radio signals during 32 simu-

lated resuscitations performed by trauma teams. We exploited the fact that the objects

in trauma resuscitation are almost uniquely associated with specific resuscitation tasks.

To address the algorithmic challenges in this realistic setting with multiple objects and

different usage patterns, we applied machine-learning techniques to process the data,

rather than simple logical rules used in prior work. We selected statistical features to

extract from the recorded data and then trained classifiers to detect occurrences of ob-

ject use, which are associated with activities. Our feature set was determined based on

cues indicating object use (Chapter 3), as well as the reliability of these cues as derived

in Chapters 4 and 5. Our final set included features to represent coarse-level location

of objects, binary mobility status of the objects and contact with objects.

Our key findings from this work can be summarized as follows: First, using long-

range passive RFID, we were able to identify the parameters of used objects with high

accuracy rates (>90%). Our goal here was similar to medication or blood tracking where

barcodes or other near field technologies have been preferred by previous studies. We

showed that specific instances of objects can be tracked using long-range passive RFID,

without the need for human cooperation in sensing. Second, the performance of object

use time detection depended on several factors, such as storage location, duration of use

and the time between relocation and use. Passive RFID-based tracking yielded better

results for objects that are stored sufficiently far away from the usage zone, used right

after being relocated and stay in use for long time.

8.1 Future Work

Our ultimate goal is to develop a context-aware system that automatically acquires

information about human activities in real time and provides feedback to improve the

effectiveness of trauma resuscitation. Building such a system requires a combination

of different approaches and technologies – RFID, digital pen technology, computer vi-

sion, and other sensors. In this thesis, we focused on passive RFID and identified the
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strengths and limitations of this technology to be used for situational-awareness in emer-

gency care. We also provided a discussion on potential sensing technologies that can

complement RFID in particular areas. Next steps include investigating the efficiency

of these sensors, building a multimodal sensing layer and evaluating its performance in

the real setting.

Main focus of this thesis was to detect usage of medical objects, based on the

assumption that objects are strongly associated with activities. We also illustrated how

to infer activities from objects using simple rules. Such rules might not be sufficient for

activities performed with multiple objects or when using multiple sensors. Future work

includes exploring complex [91] and/or probabilistic [69] rule-based approaches when

recognizing activities from a set of used objects.
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Activity recognition for context-aware hospital applications: issues and opportuni-
ties for the deployment of pervasive networks. Mobile Networks and Applications,
12(2):155–171, 2007.

[20] K. Fishkin, B. Jiang, M. Philipose, and S. Roy. I sense a disturbance in the force:
Unobtrusive detection of interactions with rfid-tagged objects. UbiComp 2004:
Ubiquitous Computing, pages 268–282, 2004.

[21] M. Fitzgerald, P. Cameron, C. Mackenzie, N. Farrow, P. Scicluna, and R. G. et al.
Trauma resuscitation errors and computer-assisted decision support. Archives of
Surgery, 146(2):218–225, 2011.

[22] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Annals of Statistics, 28(2):337–407, 2000.

[23] E. A. Fry and L. A. Lenert. Mascal: Rfid tracking of patients, staff and equipment
to enhance hospital response to mass casualty events. In AMIA 2005 Symposium
Proceedings, pages 261–265, Austin, USA, 2005.

[24] A. X. Garg, N. K. J. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J. De-
vereaux, J. Beyene, J. Sam, and R. B. Haynes. Effects of computerized clinical
decision support systems on practitioner performance and patient outcomes: A
systematic review. JAMA, 293(10):1223–1238, 2005.



152

[25] A. S. Gertner and B. L. Webber. Traumatiq: Online decision support for trauma
management. IEEE Intelligent Systems, 13:32–39, 1998.

[26] R. L. Gruen, G. J. Jurkovich, L. K. McIntyre, H. M. Foy, and R. V. Maier. Patterns
of errors contributing to trauma mortality: Lessons learned from 2594 deaths.
Annals of Surgery, 244, 2006.

[27] G. Hache, E. D. Lemaire, and N. Baddour. Wearable mobility monitoring using
a multimedia smartphone platform. IEEE Transactions on Instrumentation and
Measurement, 60(9):3153–3161, 2011.

[28] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and
localization with rfid technology. In Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004 IEEE International Conference on, volume 1, pages 1015 – 1020
Vol.1, 2004.

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: An update. In SIGKDD Explorations, volume 11,
2009.

[30] J. S. Hammond. Trauma:Priorities, controversies and special situations.
Surgery:Basic Science and Clinical Evidence, pages 247–259, 2001.

[31] T. Hansen, J. Bardram, and M. Soegaard. Moving out of the lab: Deploying
pervasive technologies in a hospital. IEEE Pervasive Computing, 5(3):24 –31,
july-sept. 2006.

[32] A. Hendrich and Z. L. M.P. Chow, B.A. Skierczynski. A 36-hospital time and
motion study: How do medical-surgical nurses spend their time? Permanente
Journal, 12(3):25–34, 2008.

[33] J. Hightower, R. Want, and G. Borriello. Spoton: An indoor 3d location sensing
technology based on RF signal strength. (00-02-02), Feb. 2000.

[34] S. Hodges, A. Thorne, H. Mallinson, and C. Floerkemeier. Assessing and optimiz-
ing the range of uhf rfid to enable real world pervasive computing applications.
Pervasive Computing, 4480:280–297, 2007.

[35] T. Inomata, F. Naya, N. Kuwahara, F. Hattori, and K. Kogure. Activity recogni-
tion from interactions with objects using dynamic bayesian network. In Proceedings
of the 3rd ACM International Workshop on Context-Awareness for Self-Managing
Systems, Casemans ’09, pages 39–42, New York, NY, USA, 2009. ACM.

[36] B. Jiang, K. Fishkin, S. Roy, and M. Philipose. Unobtrusive long-range detection
of passive rfid tag motion. Instrumentation and Measurement, IEEE Transactions
on, 55(1):187 – 196, feb. 2006.

[37] M. Jo, H. Y. Youn, S. Cha, and H. Choo. Mobile rfid tag detection influence
factors and prediction of tag detectability. IEEE Sensors Journal, 9(2):112–119,
2009.



153

[38] D. Joho, C. Plagemann, and W. Burgard. Modeling rfid signal strength and tag
detection for localization and mapping. In Robotics and Automation, 2009. ICRA
’09. IEEE International Conference on, pages 3160 –3165, May 2009.

[39] T. Kannampallil, Z. Li, M. Zhang, T. Cohen, D. J. Robinson, A. Franklin, J. Zhang,
and V. L. Patel. Making sense: Sensor-based investigation of clinician activities in
complex critical care environments. Journal of Biomedical Informatics, 44(3):441
– 454, 2011. Biomedical Complexity and Error.

[40] T. King and M. B. Kjaergaard. Composcan: adaptive scanning for efficient con-
current communications and positioning with 802.11. In Proceedings of MobiSys,
MobiSys ’08, pages 67–80, New York, NY, USA, 2008. ACM.

[41] K. Kleisouris, B. Firner, R. Howard, Y. Zhang, and R. P. Martin. Detecting intra-
room mobility with signal strength descriptors. In Proceedings of the eleventh ACM
international symposium on Mobile ad hoc networking and computing, MobiHoc
’10, pages 71–80, New York, NY, USA, 2010. ACM.

[42] M. Kranzfelder, A. Schneider, S. Gillen, and H. Feussner. New technologies for
information retrieval to achieve situational awareness and higher patient safety
in the surgical operating room: the mri institutional approach and review of the
literature. Surgical Endoscopy, 25:696–705, 2011. 10.1007/s00464-010-1239-z.

[43] J. Krumm. Ubiquitous Computing Fundamentals. Chapman & Hall/CRC, 1st
edition, 2009.

[44] J. Krumm and E. Horvitz. Locadio: Inferring motion and location from wi-fi signal
strengths. In Proceedings of International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous 04). Citeseer, 2004.

[45] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
ICML, pages 282–289, 2001.

[46] T. W. Liao. Clustering of time series data – a survey. Pattern Recognition,
38(11):1857–1874, november 2005.

[47] X. Liu, M. Corner, and P. Shenoy. Ferret: Rfid localization for pervasive multime-
dia. In P. Dourish and A. Friday, editors, UbiComp 2006: Ubiquitous Computing,
volume 4206 of Lecture Notes in Computer Science, pages 422–440. Springer Berlin
/ Heidelberg, 2006.

[48] B. Logan, J. Healey, M. Philipose, E. Tapia, and S. Intille. A long-term evaluation
of sensing modalities for activity recognition. In Proc. 9th Int’l conference on
Ubiquitous computing, pages 483–500, 2007.

[49] Alien Technology. Rfid readers, http://www.alientechnology.com/readers/alr9900.php,
last accessed, December 2012.

[50] American College of Surgeons. Advanced Trauma Life Support. Chicago, IL, 8th
edition, 2008.



154

[51] K. Muthukrishnan, M. Lijding, N. Meratnia, and P. Havinga. Sensing motion using
spectral and spatial analysis of WLAN RSSI. In Proceedings of the 2nd European
conference on Smart sensing and context, pages 62–76. Springer-Verlag, 2007.

[52] A. Nemmaluri, M. D. Corner, and P. Shenoy. Sherlock: automatically locating
objects for humans. In Proceeding of the 6th international conference on Mobile
systems, applications, and services, MobiSys ’08, pages 187–198, New York, NY,
USA, 2008. ACM.

[53] L. Ni, Y. Liu, Y. C. Lau, and A. Patil. Landmarc: indoor location sensing using
active rfid. In Pervasive Computing and Communications, 2003. (PerCom 2003).
Proceedings of the First IEEE International Conference on, pages 407 – 415, 2003.

[54] P. Nikitin and K. Rao. Antennas and propagation in uhf rfid systems. In RFID,
2008 IEEE International Conference on, pages 277 –288, april 2008.

[55] G. Ogris, T. Stiefmeier, P. Lukowicz, and G. Troster. Using a complex multi-
modal on-body sensor system for activity spotting. In Proceedings of the 12th
IEEE International Symposium on Wearable Computers, pages 55–62, 2008.

[56] K. Ohashi, S. Ota, L. Ohno-Machado, and H. Tanaka. Comparison of rfid sys-
tems for tracking clinical interventions at the bedside. In AMIA 2008 Symposium
Proceedings, pages 525–529, 2008.

[57] K. Ohashi, S. Ota, L. Ohno-Machado, and H. Tanaka. Smart medical environment
at the point of care: Auto-tracking clinical interventions at the bed side using rfid
technology. Computers in Biology and Medicine, 40(6):545 – 554, 2010.

[58] N. Padoy, T. Blum, H. Feussner, M. Berger, and N. Navab. On-line recognition of
surgical activity for monitoring in the operating room. In Proc. of IAAI-08, 2008.

[59] S. Parlak and I. Marsic. Monitoring Interactions with RFID Tagged Objects using
RSSI. In Proceedings of the 7th International ICST Conference on Mobile and
Ubiquitous Systems (MobiQuitous), December 2010.

[60] S. Parlak, A. Sarcevic, I. Marsic, and R. Burd. Introducing rfid technology in
dynamic and time-critical medical settings: Requirements and challenges. Journal
of Biomedical Informatics, 45:958–974, 2012.

[61] D. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained activity recog-
nition by aggregating abstract object usage. In Proc. 9th IEEE Int’l Symp. on
Wearable Computers, pages 44 – 51, oct. 2005.

[62] D. Patterson, L. Liao, D. Fox, and H. Kautz. Inferring high-level behavior from
low-level sensors. In UbiComp 2003: Ubiquitous Computing, pages 73–89. Springer,
2003.

[63] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox, H. Kautz, and
D. Hahnel. Inferring activities from interactions with objects. IEEE Pervasive
Computing, pages 50–57, 2004.



155

[64] D. M. W. Powers. From precision, recall and f-measure to roc, informedness,
markedness and correlation. Journal of Machine Learning Technologies, 2(1):37–
63, 2011.

[65] A. Rahmati, M. H. L. Zhong, and R. Jana. Reliability techniques for rfid-based ob-
ject tracking applications. In Proceedings of IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 113–118, 2007.

[66] K. Ramakrishnan and D. Deavours. Performance benchmarks for passive uhf rfid
tags. In Proceedings of the 13th GI/ITG Conference on Measurement, Modeling,
and Evaluation of Computer and Communication Systems, pages 137–154, 2006.

[67] L. Ravindranath, V. Padmanabhan, and P. Agrawal. Sixthsense: RFID-based
enterprise intelligence. In Proc. of the 6th Int’l conference on Mobile systems,
applications, and services, pages 253–266. ACM, 2008.

[68] S. Reddy, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Determining trans-
portation mode on mobile phones. In Wearable Computers, 2008. ISWC 2008.
12th IEEE International Symposium on, pages 25 –28, 28 2008-oct. 1 2008.

[69] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006.

[70] D. Sánchez, M. Tentori, and J. Favela. Activity recognition for the smart hospital.
IEEE Intelligent Systems, 23(2):50–57, 2008.

[71] R. Sangwan, R. Qiu, and D. Jessen. Using rfid tags for tracking patients, charts
and medical equipment within an integrated health delivery network. In Proc. of
IEEE Networking, Sensing and Control, pages 1070 – 1074, march 2005.

[72] A. Sarcevic and R. S. Burd. Information handover in time-critical work. In Pro-
ceedings of the ACM 2009 international Conference on Supporting Group Work,
GROUP ’09, pages 301–310, New York, NY, USA, 2009. ACM.

[73] A. Sarcevic, I. Marsic, and R. S. Burd. Teamwork errors in trauma resuscitation.
ACM Transactions on Computer-Human Interaction, 19(2):13:1–13:30, july 2012.

[74] M. Segal. Machine learning benchmarks and random forest regression. Technical
report, Center for Bioinformatics and Molecular Biostatistics, 2004.

[75] T. Sohn, A. Varshavsky, A. LaMarca, M. Chen, T. Choudhury, I. Smith, S. Con-
solvo, J. Hightower, W. Griswold, and E. De Lara. Mobility detection using ev-
eryday GSM traces. UbiComp 2006: Ubiquitous Computing, pages 212–224, 2006.

[76] T. Stiefmeier, D. Roggen, G. Troster, G. Ogris, and P. Lukowicz. Wearable activity
tracking in car manufacturing. IEEE Pervasive Computing, 7(2):42–50, 2008.

[77] M. Svensson, C. Heath, and P. Luff. Instrumental action: the timely exchange of
implements during surgical operations. In Proc. ECSCW, pages 41–60, Limerick,
Ireland, September 2007.

[78] G. E. T. van Kasteren, A. Noulas and B. Krse. Accurate activity recognition in a
home setting. In Proceedings of UbiComp, pages 1–9, 2008.



156

[79] M. S. Tinti, A. Sarcevic, I. Marsic, J. S. Hammond, and R. S. Burd. Quantifying
error types, attribution and timing in trauma resuscitation. In Proceedings of the
American Association for the Surgery of Trauma 67th Annual Meeting, 2008.

[80] P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea. Machine recognition
of human activities: A survey. Circuits and Systems for Video Technology, IEEE
Transactions on, 18(11):1473 –1488, nov. 2008.

[81] P. Vadakkepat and L. Jing. Improved particle filter in sensor fusion for tracking
randomly moving object. IEEE Transactions on Instrumentation and Measure-
ment, 55(5):1823–1832, 2006.

[82] N. Vaidya and S. Das. Rfid-based networks – exploiting diversity and redundancy.
ACM SIGMOBILE Mobile Computing and Communications Review, 12(1):2–14,
january 2008.

[83] R. van der Togt, E. J. van Lieshout, R. Hensbroek, E. Beinat, J. M. Binnekade,
and P. J. M. Bakker. Electromagnetic interference from radio frequency identifi-
cation inducing potentially hazardous incidents in critical care medical equipment.
Journal of the American Medical Association, 299(24):2884–2890, 2008.

[84] M. Vankipuram, K. Kahola, T. Cohena, and V. Patel. Toward automated work-
flow analysis and visualization in clinical environments. Journal of Biomedical
Informatics, 44(3):432–440, 2011.

[85] C. Wang, B. L. aand M. Daneshmand, K. Sohraby, and R. Jana. On object
identification reliability using rfid. Mobile Networks and Applications, 16(1):71–
80, 2011.

[86] R. Want. An introduction to rfid technology. Pervasive Computing, IEEE, 5(1):25
– 33, jan.-march 2006.

[87] J. Ward, P. Lukowicz, and H. Gellersen. Performance metrics for activity recog-
nition. ACM Transactions on Intelligent Systems and Technology, 2(1):6:1–6:23,
january 2011.

[88] E. Welbourne, K. Koscher, E. Soroush, M. Balazinska, and G. Borriello. Longi-
tudinal study of a building-scale rfid ecosystem. In Proceedings of MobiSys, pages
69–82, 2009.

[89] A. M. Wicks, J. K. Visich, and S. Li. Radio frequency identification applications
in hospital environments. Hospital Topics, 84:3–9, July/September 2006.

[90] R. H. Wouhaybi, M. D. Yarvis, P. Muse, C.-Y. Wan, S. Sharma, S. Prasad,
L. Durham, R. Sahni, R. Norton, M. Curry, H. Jimison, R. Harper, and R. Lowe.
A context-management framework for telemedicine: an emergency medicine case
study. In Wireless Health 2010, WH ’10, pages 164–173, New York, NY, USA,
2010. ACM.

[91] W. Yao, C. Chu, and Z. Li. Leveraging complex event processing for smart hospi-
tals using rfid. Journal of Network and Computer Applications, 34:799–810, 2011.



157

[92] W. Yao, C. H. Chu, and Z. Li. The adoption and implementation of rfid technolo-
gies in healthcare: A literature review. Journal of Medical Systems, 36(6):3507–
3525, 2012.

[93] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput.
Surv., 38, December 2006.

[94] K. Yun, S. Choi, and D. Kim. A robust location tracking using ubiquitous rfid
wireless network. In J. Ma, H. Jin, L. Yang, and J. Tsai, editors, Ubiquitous
Intelligence and Computing, volume 4159 of Lecture Notes in Computer Science,
pages 113–124. Springer Berlin / Heidelberg, 2006.



158

Vita

Siddika Parlak Polatkan

Education

2008-13 Ph.D. in Electrical and Computer Engineering, Rutgers University

2006-08 M.Sc. in Electrical and Electronics Engineering, Bogazici University

2001-06 B.Sc. in Electrical and Electronics Engineering, Bogazici University

Experience

2012 Interim Engineering Intern, Qualcomm Inc., Santa Clara, CA

2009-2012 Graduate Research Assistant, Department of Electrical and Computer En-
gineering, Rutgers University, New Jersey, USA

2011 Visiting Researcher, UC Berkeley, CA

2008-2009 Teaching Assistant, Department of Electrical and Computer Engineering,
Rutgers University, New Jersey, USA

2007-2008 Research Assistant, Department of Electrical and Electronics Engineering,
Bogazici University, Istanbul, Turkey

2007-2008 R&D Engineer, Airties Inc., Istanbul, Turkey

Publications

2013 Parlak S., Bajwa W., Sarcevic A., Waterhouse L., Marsic I., Burd R. S.
“Passive RFID for Recognizing Activities During Trauma Resuscitation”,
in preparation.

2013 Parlak S., Ayyer S., Liu Y. Y., Marsic I., “Design and Evaluation of RFID
Equipment Setups for Dynamic Medical Settings”, under review, IEEE
Transactions on Information Technology in Biomedicine.

2012 Parlak S., Marsic I., “Detecting Object Motion Using Passive RFID: A
Trauma Resuscitation Case Study”, under second review, IEEE Transac-
tions on Instrumentation and Measurement.



159

2012 Parlak S., Sarcevic A., Marsic I., Burd R. S., “Introducing RFID Tech-
nology in Dynamic and Time-Critical Medical Settings: Requirements and
Challenges”, Journal of Biomedical Informatics, 45(5): 958-974, October
2012.

2011 Parlak S., Marsic I., Burd R. S., “Activity Detection for Emergency Care
using RFID”, in Proceedings of the 6th International Conference on Body
Area Networks (2011), 40-46.

2011 Parlak S, Marsic I., “Non-intrusive Localization of Passive RFID Tagged
Objects in an Indoor Workplace”, in Proceedings of the IEEE International
Conference on RFID - Technologies and Applications (2011), 181-187.

2010 Parlak S., Marsic I., “Monitoring Interactions with RFID Tagged Objects
using RSSI ”, in International ICST Conference on Mobile and Ubiquitous
Systems (Mobiquitous), December 2010.

Other Publications

2012 Parlak S., Saraclar M., “Performance Analysis and Improvement of Turk-
ish Broadcast News Retrieval”, IEEE Transactions on Audio, Speech and
Language Processing, 20(3): 731- 741, March 2012.

2012 Parlak S., Jariyasunant J., Sengupta R., “Using Smartphones to Perform
Transportation Mode Determination at the Trip Level”, to appear in 91st
Annual Meeting of Transportation Research Board (TRB), January 2012.

2009 Arisoy E., Can D., Parlak S., Sak H., Saraclar M., “Turkish Broadcast
News Transcription and Retrieval”, IEEE Transactions on Audio, Speech
and Language Processing, 17(5):874-883, July 2009.

2008 Aran O., Ari I., Akarun L., Dikici E., Parlak S., Saraclar M., Campr
P., Hruz M., “Speech and Sliding Text Aided Sign Retrieval form Hear-
ing Impaired Sign News Videos”, Journal on Multimodal User Interfaces,
2(1):117-131, November 2008.

2009 Parlak S., Saraclar M., “Spoken Information Retrieval for Turkish Broad-
cast News”, in ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR), July 2009.

2008 Parlak S., Saraclar M., “Spoken Term Detection for Turkish Broadcast
News”, in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2008.

2008 Parlak S., Aksungurlu T., Sak H., Saraclar M, “Comparison of Language
Modeling Approaches for Turkish Broadcast News”, IEEE Signal Process-
ing, Communication and Applications Conference (SIU), April 2008.


