Staff View
Object detection and activity recognition in dynamic medical settings using RFID

Descriptive

TitleInfo
Title
Object detection and activity recognition in dynamic medical settings using RFID
Name (type = personal)
NamePart (type = family)
Parlak Polatkan
NamePart (type = given)
Siddika
NamePart (type = date)
1984-
DisplayForm
Siddika Parlak Polatkan
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Marsic
NamePart (type = given)
Ivan
DisplayForm
Ivan Marsic
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Parashar
NamePart (type = given)
Manish
DisplayForm
Manish Parashar
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Pompili
NamePart (type = given)
Dario
DisplayForm
Dario Pompili
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Bajwa
NamePart (type = given)
Waheed
DisplayForm
Waheed Bajwa
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Cheng
NamePart (type = given)
Liang
DisplayForm
Liang Cheng
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-01
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Establishing context-awareness is key to develop automated decision support systems for dynamic and high-risk scenarios, where a critical component of context is the current activity. This thesis addresses the RFID-based detection of used medical objects with the ultimate goal of recognizing medical activities. We set trauma resuscitation, the initial treatment of a severely injured patient in the emergency department, as our target domain. We first describe the process of introducing RFID technology in the trauma bay. We analyzed trauma resuscitation tasks, photographs of medical tools, and videos of simulated resuscitations to gain insight into resuscitation tasks, work practices and procedures, as well as the characteristics of medical tools. Next, we propose and evaluate strategies for placing RFID tags on medical objects and for placing antennas in the environment for optimal tracking and object detection. We also discuss implications for and challenges to introducing RFID technology in other similar settings characterized by dynamic and collocated collaboration. Next we evaluate the use of RFID technology for object detection and activity recognition in a realistic setting. We tagged 81 medical objects and eight providers in a real trauma bay and recorded RFID signal strength during 32 simulated resuscitations. We extracted descriptive features and applied machine-learning techniques to monitor object use. We achieved accuracy rates of >90% when identifying the instance of a particular object type that was used during a resuscitation. Performance for detecting the usage interval of an object depended on various factors specific to the object. Our results also provide insights into the limitations of passive RFID and areas in which RFID needs to be complemented with other sensing technologies. We also investigated the usability of object motion and location cues for activity recognition by conducting motion detection and localization experiments under challenging scenarios. Using statistical methods, we were able to detect object motion with an accuracy of 80%, and predict the zone where the object is located with an accuracy of 86%.
Subject (authority = RUETD)
Topic
Electrical and Computer Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4451
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xv, 159 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Siddika Parlak Polatkan
Subject (authority = ETD-LCSH)
Topic
Radio frequency identification systems
Subject (authority = ETD-LCSH)
Topic
Trauma centers
Subject (authority = ETD-LCSH)
Topic
Medicine--Data processing
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000067817
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3MP5209
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Parlak Polatkan
GivenName
Siddika
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-12-22 01:24:17
AssociatedEntity
Name
Siddika Parlak Polatkan
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2013-08-02
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after August 2nd, 2013.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024