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Abstract 

  

Leachate from ground wood stockpiled at recycling facilities may be detrimental to water 

quality. Although mathematical modeling of water movement through stockpiles may 

help estimate leachate quantity, information on water retention and unsaturated hydraulic 

conductivity of wood particles needed to run the models are unavailable. Our objectives 

were to (a) estimate the hydraulic properties of field stockpiled wood material, (b) assess 

performance of three models of pore structure in simulating water flow, and (c) determine 

relationships between optimized hydraulic parameters and particle size.  

The particle size distributions (PSDs) of thirty samples collected from stockpiles of 

coarsely and finely ground wood were measured, and their geometric mean diameters 

(dg) and distribution spreads (So) were used to establish two groups (I and II), with Group 

I samples having greater dg values for any given So than Group II samples. Six samples 
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with PSDs representative of both groups were selected for hydraulic characterization. 

Material was packed in acrylic flow cells and outflow was induced by applying 

successive pressure potentials of -2, -10 and -40 cm to the bottom of the cells. Water 

retention data from outflow tests and from steady state measurements carried out in 

pressure extractors at potentials of -200, -500, -2000 and -10000 cm were fitted to 

unimodal and bimodal water retention functions. Inverse modeling of outflow data was 

performed using the software HYDRUS-1D and assuming (1) a unimodal pore-size 

distribution-SPM, (2) a bimodal pore-size distribution –DPM, (3) two distinct and 

interacting pore domains each with their own water retention and hydraulic conductivity 

functions-DPeM. 

Wood material released almost 50% of their total water at -2 cm with Group I samples 

releasing significantly higher volumes than Group II. All models of pore structure 

captured outflow dynamics. Statistical tests indicated that the DPeM followed by the 

SPM were the best models for conductivity and the DPM for water retention. Parameters 

of hydraulic models could be estimated from PSD data. Predictions by all models indicate 

that hydraulic conductivity of the unsaturated material is very low (around 0.09 cm/hr at -

10 cm), suggesting that water would move slowly through stockpiles except during 

intense rainfalls.  
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1. Introduction 
 

 In 2010, 57% of the 17 million metric tons of urban tree and woody yard residue 

generated was recovered for reuse and recycling in the United States (Falk and 

McKeever, 2004; USEPA, 2010). Wood recycling facilities that process tree and woody 

yard residue for landscape mulch typically grind up the incoming material twice, and 

stockpile it outdoors for periods of time ranging from weeks to months. Leachate from 

wood piles is of concern due to it toxicity to aquatic life, which has been attributed to low 

pH and high concentrations of organic compounds such as tannin, lignin, tropolone, 

terpene and lignan (Zenaitis and Duff, 2002; Tao et al., 2007; Hedmark and Scholz, 

2008).  Environmental impacts of leachate to surface and groundwater can be assessed 

with numerical models. For porous systems such as land-filled solid waste and waste rock 

piles from mines, numerical models have been used to simulate the flow, transport and 

distribution of water and contaminants and estimate leachate quantity, as well as provide 

guidance on the design of control and collection systems for leachate (El-Fadel et al., 

1997, Fala et al, 2005; Molson et al, 2005, Khire and Mukherjee, 2007; Fellner and 

Brunner, 2010; Safari et al., 2012). 

We have found only one published study on the simulation of water movement 

through wood chip media. The model in that study (Seng et al., 2012) however, focused 

only on the movement of water in a static cylindrical composting reactor containing 

wood chips through evaporation, diffusion and percolation and did not incorporate the 
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external addition of water into through precipitation which would be required to model 

fluid flow through field stockpiles of ground wood.  

Solutions of non-linear flow equations needed to model fluid movement in 

unsaturated porous media require information on water retention and hydraulic 

conductivity functions of the material (Han et al., 2011). Hydraulic characterization of 

wood particle media has been limited to porosity and saturated hydraulic conductivity 

measurements on woody biofilter media (Table 1), which are highly porous with particle 

sizes and hydraulic conductivities being on the order of those of gravel with sizes of 2-80 

mm (Gee and Bauder, 1986) and 108-10800 cm/hr, (Domenico and Schwartz, 1998), 

respectively.  

There is, therefore, a need for information about the hydraulic properties of wood 

particles over a wide range of particle sizes. Field techniques to measure hydraulic 

conductivity of porous media such as soils (Amoozegar and Warrick, 1986; Green et al., 

1986) and land filled municipal solid waste (Ettala, 1987; Oweis et al., 1990; Shank, 

1993; Jain et al., 2006) are unsuitable for stockpiles of ground wood because of their 

irregular geometry, the low density of the material and the inability to control boundary 

conditions. Steady state laboratory techniques to measure the water retention curve (Dane 

et al., 2002) have been found to be inadequate to accurately measure near-saturation 

hydraulic properties of porous systems with large-sized pores (e.g. Logsdon et al., 1993) 

and the same may hold true for wood particle media as well.  

The mathematical technique of inverse modeling estimates parameters of interest 

by minimizing an objective function between measured and predicted values of a process 
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that varies with time (Hopmans et al., 2002). Estimation of hydraulic parameters by 

inverse modeling involves selecting water retention and hydraulic conductivity functions 

and solving the governing flow model iteratively (Hopmans et al., 2002). The selection of 

the water retention and associated hydraulic conductivity functions should reflect the 

nature of the pore system of the material studied. Likewise, the process selected for 

simulation should be designed to augment the characteristics of the pore system to be 

characterized. 

Hydraulic parameters for solid waste samples have been determined by inverse 

modeling data of cumulative drainage from saturated columns induced by pressures of 

increasing magnitude applied in multiple steps (Scicchitano, 2010; Han et al., 2011). The 

water retention and hydraulic conductivity functions of the unimodal pore model by van 

Genuchten (1980) have been widely used to describe water retention functions for a 

multitude of materials such as soils (Han et al., 2010), compost (Naasz et al., 2005; 

Londra, 2010; Al Naddaf et al., 2011), solid waste (Kazimoglu et al.,2006; Scicchitano, 

2010; Han et al., 2011), land-filled municipal solid waste (Johnson et al., 2001; Haydar 

and Khire, 2005; Khire and Mukherjee, 2007; Fellner and Brunner, 2010) and waste rock 

piles (Fala et al, 2005; Molson et al, 2005). The assumption, however, of a unimodal 

distribution of pore sizes may not be valid and may not be able to account for preferential 

flow through large pores (e.g. Gärdenäs et al., 2006). Therefore, models incorporating a 

dual (bimodal) subsystem of pores with uniform flow and also assuming dual interacting 

pore domains with non-equilibrium flow need to be considered when modeling porous 

media with a wide range of particle sizes.  
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 The objectives of this work therefore were to: 1) use multistep flow experiments 

to estimate hydraulic parameters of wood particle media with different size distributions 

representative of material stockpiled in the field, 2) assess the performance of different 

models of pore structure of increasing complexity for their ability to simulate the 

movement of water through the wood particles and 3) evaluate relationships between 

predicted hydraulic parameters of the models considered and particle size of the material. 

Inverse modeling was carried out using the software package HYDRUS-1D version 4.14 

(Šimůnek et al., 2009). 
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2. Materials and methods 
 

2.0. Overview of experiments 

 

 Physical characterization of bulk density and particle size distribution (PSD) was 

carried out on 30 samples. A composite of the 30 samples was used to determine water 

retention data at pressure potentials ranging from -200 to -10000 cm. Based on PSD 

analyses a subset of six samples was selected for hydraulic characterization of porosity, 

saturated hydraulic conductivity and multistep outflow. Hydraulic parameters were 

obtained by inverse modeling flow data from the multistep outflow experiments using 

HYDRUS-1D.  

2.1. Materials 

 

 A total of 30 samples consisting of both coarsely (once) and finely (twice) ground 

recycled wood material were obtained from material stockpiled at three facilities in New 

Jersey. A composite sample of material from the top middle, and bottom of piles was 

mixed on site and allowed to air-dry for one month at laboratory conditions. The moisture 

content of air-dried samples was on an average 7 (±5) %, and was used to correct bulk 

density and particle size distribution data to oven-dry (105±3°C for 24 hours) moisture 

content. 
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2.2. Sample characterization 

 

2.2.1. Bulk density 

 

 One kilogram of air-dried material was loosely packed in a calibrated container 

and dropped 15 times from a height of 15 cm (ASAE S269.4, 1992) on to a rubber mat. 

The depth of the settled material after the 15
th

 drop was measured at three points in the 

container, and the average depth after each of those drops was converted to volume and 

used to estimate bulk density (ρb). The changing bulk density with increasing number of 

drops for all samples is shown in Appendix I. 

2.2.2. Particle size distribution 

 

 Particle size distribution (PSD) was determined in triplicate by mechanical 

sieving of 2 L samples (ASAE S424.1, 1992) through a set of 10 US Standard sieves with 

openings (µm) of 25400, 19050, 9525, 5660, 2830, 1410, 590, 297, 149, and 63. Non-

wood materials were removed before sieving and results were expressed as mass percent 

of material retained on each sieve.  

 Triplicate measurements of cumulative masses expressed as percent of material 

retained on a sieve (F(d)) was fitted with either a power (Eq. 1) or a sigmoidal (Eq. 2) 

function using the Solver
®
 software in Microsoft Excel

®
 (Microsoft Corp., Redmond, 

WA).  

 ( )    ( )                                                                                                                   (1) 

  ( )  
 

[  (
          

 
)
 
 ]

(  
 
 
)
                                                                                                    (2) 
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Where, d is the opening diameter in a sieve, and b, a, Id and k are fitting parameters. The 

1
st 

(d25) and the 3
rd

 (d75) quartile diameters of a PSD, were estimated with either Eq. (1) or 

Eq. (2) and used to calculate the sorting coefficient (So) of the distribution as (Lotspeich 

and Everest, 1981): 

    √
   

   
                                                                                                                         (3) 

The geometric mean diameter (dg) was calculated as: 

    ∏    
   

                                                                                                                  (4) 

Where dgi is the geometric mean of material retained between the ith and (i+1)th  sieves 

and fi is the mass fraction of particles with geometric mean dgi.  

2.2.3. Steady state measurements of water retention at pressure potentials between -200 

and -10000 cm 

A composite of all samples was made by mixing 1 L of each of the 30 samples and its 

PSD determined in triplicate. The composite was sieved into six size classes with upper 

bounds of 9525 µm, 5660 µm, 2830 µm, 1410 µm, 590 µm and 297 µm. [Note: each size 

class was obtained by passing material through a single sieve and not sequentially 

through a set of sieves]. Four replicate samples in each size class were packed into rings 

(1 cm in height and 5 cm in diameter) and placed in a pressure plate extractor 

(Soilmoisture Equipment Corporation, Santa Barbara, CA) at pressure potentials of -200 

cm and -500 cm for 31 days and at -2000 cm and -10000 cm for 66 days to ensure 

equilibration. Samples removed from the pressure extractors were oven-dried at 105°C 

for 24 hours to determine their water content at the end of the experiment.  
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 The geometric mean diameter of each size class was calculated with Eq. (4) 

considering only the size classes mixed. For each pressure potential, the relationship 

between volumetric water content (θ) and the calculated dg of a size class was given by: 

     
 
                                                                                                                           (5) 

where, p and q are fitted parameters (Table 2). The fitted θ-dg curves (Fig. 1) were 

extrapolated to the dg values of the samples used in outflow experiments to estimate their 

volumetric water contents in the range of pressure potentials measured with pressure 

extractors (-200 cm to -10000 cm). 

2.2.4. Water absorption and porosity measurements in individual wood particles 

 

 A total of 33 air-dried wood particles greater than 297 µm in diameter were 

weighed, saturated in de-ionized water and weighed periodically for 15 days. The volume 

of each particle of wood was determined using an Elcometer
® 

1800 Densimeter 

(Elcometer Inc., MI) and used to determine the porosity of a particle calculated as the 

ratio of the volume of water absorbed in that period to the volume of the particle. 

2.3. Flow experiments 

 

 Measurements of porosity (η), saturated hydraulic conductivity (Ks) and outflow 

rate of packed columns of wood mulch were carried out in acrylic flow cells (Soil 

Measurement Systems, Tuscon, AZ) 15 cm in height and 12 cm in internal diameter (Fig. 

2). Each cell had two 1.5 cm diameter ports located 3 cm from the top and bottom, that 

were used to accommodate ceramic tensiometers, 3 cm long and 1cm in diameter with a 

bubbling pressure of ½ bar. Each tensiometer was connected to a pre-calibrated pressure 
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transducer (model 26PCAFA6D, Honeywell Sensing and Control, Morristown, NJ) 

monitored with a CR1000 data logger (Campbell Scientific Inc., Logan, UT). Samples 

were held between perforated metal-plate assemblies with the upper metal-plate used 

only during outflow measurements. 

 Air-dried material was packed directly on top of the lower metal-plate and 

incrementally around the saturated tensiometer-transducer systems to a target dry bulk 

density of 240 kg/m
3
 which was the average determined for the 30 samples. Packed flow 

cells were saturated with deionized and deaerated water for 24 hours (Christianson et al., 

2010). The amount of water added was determined by differences in mass before and 

after saturation. Porosity was calculated as the ratio of the volume of the water added to 

that of the empty flow cell.                                                                                                   

 After the measurement of porosity, saturated hydraulic conductivity was 

determined for the same sample by the constant head method (Chun et al., 2009; 

Christianson et al., 2010) by maintaining a constant pressure head of about 4 cm at the 

upper end of the flow cell by a Mariotte system. The outflow from the flow cell was 

collected every 30 seconds in a container placed on a balance (PB403-S/FACT, Mettler-

Toledo Inc., Columbus OH) connected to a computer through RS-232 data acquisition 

software (WinWedge
®
 version 3.X, TAL Technologies Inc., Philadelphia, PA) . The 

value of Ks (cm/hr) was calculated from (Jury et al., 1991): 

 
    

   

 (   )

                                                                                                              (6) 

where, Q is the flow rate (cm
3
/hr) at steady state (constant for an hour), A is the area 

(cm
2
) and H is the height of the flow cell (cm) and h is the head (cm)]. The procedure 
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was repeated by decreasing h in two consecutive steps of approximately 1 cm and 

determining the corresponding Q values at equilibrium.  

 After determining Ks the flow cell was closed at the upper end with the perforated 

metal plate. At the lower end a disc of saturated sponge cloth (Spontex Inc., Columbia, 

TN) was placed in contact with the wood mulch and a filter paper #40 (Whatman, 

Clifton, NJ) was inserted between the sponge and the lower metal plate (Young et al., 

2002). The Ks of the sponge cloth/filter paper combination was determined by the 

constant head method to be 0.6 cm/hr. The column was re-saturated and left overnight. 

During outflow experiments, the upper end of the flow cell was kept at atmospheric 

pressure and the lower end was equilibrated at successively decreasing pressure 

potentials of -2 cm, -10 cm and -40 cm for all samples but one, in which pressure 

potentials of -2 cm, -5 cm and -50 cm (replicate 1), and of -2 cm, -10 cm and -50 cm 

(replicate 2) were applied. The samples were kept at the pressure potential of -2 cm for 

about 5-7 days, at -5 or -10 cm for about 7- 10 days and at -40 or -50 cm for about 10-14 

days to ensure that outflow was negligible at every pressure step. Data from the pressure 

transducers connected to the tensiometers were collected every 60 seconds for the first 3 

hours after a change in pressure potential and thereafter every 15 minutes. Water draining 

from the flow cell was collected in a burette, which was emptied and weighed 

periodically to determine the cumulative outflow.  

 Once equilibrium was reached at the final pressure potential of -40 (or -50) cm, 

the water content of the material was determined from three sections in the flow cell 

comprising material between the two tensiometers, and above and below the upper and 

lower tensiometers, respectively. The water content remaining in the column was 
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expressed as the average of the water content in the three sections. The saturated water 

content of the material in a column was calculated by adding the cumulative volume of 

water drained during the experiment to the volume of water remaining after the final 

pressure step. Water retention at intermediate pressure potentials was determined by 

subtracting the cumulative volume of water that drained at a given pressure potential 

from the water content at saturation. 

 Water retention data from the outflow experiment (-2 to -40 or -50 cm) was 

supplemented with corrected data from the pressure extractor system (-200 to -10000 cm) 

and fitted with both unimodal (van Genuchten, 1980) and bimodal (Durner, 1994) 

functions (Table 3) using the SWRC Fit web interface (Seki, 2007) 

[http://seki.webmasters.gr.jp/swrc/]. 

2.4. Inverse modeling 

 

 Experimental observations of cumulative outflow and pressure head data from the 

multistep outflow procedures were inversely modeled to obtain the hydraulic parameters 

using the software package HYDRUS-1D (Šimůnek et al., 2009). Three different models 

of pore structure were considered (Table 3 and Fig. (3)): (1) a single porosity model 

(SPM) which assumes that the pore size distribution is unimodal and the water retention 

function is described by the van Genuchten (1980) model, (2) a dual porosity model 

(DPM) characterized by a bimodal distribution of pore sizes consisting of two 

overlapping subsystems of pores. The water retention function of each subsystem is 

described by the van Genuchten (1980) model linearly added to give the function for the 

total pore system (Durner, 1994), and (3) a dual permeability model (DPeM) in which the 
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pore system consists of two overlapping and interacting pore domains, each assumed to 

have an unimodal pore size distribution with their own water retention and hydraulic 

conductivity functions (Gerke and van Genuchten, 1993).  

Both the SPM and the DPM are characterized by a single flow domain with the 

porous medium consisting of impervious particles separated by pores through which flow 

and transport takes place (Šimůnek and van Genuchten, 2008). The DPeM on the other 

hand assumes that the particles of the porous medium are also permeable, with water 

moving relatively fast in the inter-particle pore domain or macropore when close to 

saturation and slowly in the intra-particle pore domain or matrix (Šimůnek and van 

Genuchten, 2008). Differences in permeabilities between the two domains give rise to 

non-equilibrium flow in the DPeM. In this study, the macropore domain in the DPeM 

was assumed to retain water in the pressure potential range from 0 to -2 cm. 

 To ensure that the solution of the inverse problem exists and is unique and stable, 

the number of parameters that need to be estimated to solve the continuity equation(s) 

(Table 3) should be limited (Hopmans et al., 2002). The strategy used to fit the outflow 

and pressure plate data for different models is summarized in Table 3. The sponge-cloth 

filter paper combination placed at the lower end of the flow cell was accounted for as a 

second material during inverse modeling. To ensure that the combination remained 

saturated during inverse modeling, α and n were fixed at 1x10
-20

 cm
-1

 and 1.001 

(Šimůnek et al., 2009), respectively; while its residual and saturated water contents were 

fixed at 0 (complete dryness) and 1 (complete saturation), respectively. 

2.5. Goodness-of-fit 
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 The goodness-of-fit of the models was determined by partitioning the sum of the 

squares of the residuals (SSR) [∑ (     )
  

    ] as (Whitmore, 1991): 

∑ (     )
  

     ∑ ((     )  ( ̅   ̅))
  

    ∑ ( ̅   ̅)  
                                        (7) 

Where, yi are the observations and xi are the corresponding predictions by the model, and 

 ̅ and  ̅ are the mean of the n observations and predictions, respectively.  The first term 

on the right hand side measures the error or random variation between observations and 

predictions (ERR), and the second term measures the lack of fit or systematic variation 

that can be attributed to the model (LOFIT). The model is considered to be reliable if the 

LOFIT is not significantly larger than the ERR (Whitmore, 1991).  

 Considering that the three models used have different number of parameters 

(Table 3), the best model for the observed data was selected using the Akaike’s 

Information Criterion (AICc) calculated as (Burnham and Anderson, 1998):               

          (
   

 
)     

  (   )

(     )
                                                                           (8) 

Where, N is the number of data points or observations and K is the number of estimable 

parameters in the model. Equation (8) is used when N/K has a value of less than 40 to 

correct for small sample bias. The model with the lowest AICc value (AICcmin) or the 

model with   = 0 is chosen as the best from the set of models tested, where 

                                                                                                                      (9) 

 Whitmore’s (1991) test and the AICc analysis were carried out separately for 

cumulative outflow data and pressure head data for a sample. 
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3. Results and Discussion 
 

3.1. Physical and hydraulic characterization 

 

 Two distinct groups of wood mulch samples were identified based on the values 

of their sorting coefficient (So) and geometric mean diameter (dg), with samples in Group 

I having greater dg values for any given value of So than samples in Group II (Fig. 4). The 

mass percentages of particles passing the sieve with 2800 µm opening (i.e., fines) in 

samples of Group I (66±14%) and Group II (40±6%) in this study were higher than in 

those reported in the literature (Table 1). The shape of the particle size distributions was 

different between groups, with Eq. (1) fitting Group I and Eq. (2) Group II samples (Fig. 

5). The measured and fitted particle size distributions of the 30 samples are given in 

Appendix I. 

 The distribution of particle sizes in a mix influenced the volumetric water content 

θ retained at a given pressure potential (Fig. 1). The increase in θ with dg may be due to 

the decrease in porosity of wood particles (ηp) with decrease in particle size (Table 4, Fig. 

6). Wood particles smaller than 590 µm were observed to be slightly hydrophobic.  

Six duplicate samples with particle size distributions representative of Group I 

and II were selected for hydraulic characterization (Fig. 4). There was no significant 

difference (P>0.05) between the average porosity of the selected Group I (0.73 cm
3
/cm

3
) 

and Group II (0.76 cm
3
/cm

3
) samples or of their average measured Ks values of 58 cm/hr 

and 63 cm/hr, respectively (Table 5). Measured porosities were in the range reported by 

other studies with woodchips, but measured Ks values were much lower than those 
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reported (Table 1). This possibly may be due to the higher amount of fines, which were 

observed to settle at the bottom of the flow cell during Ks measurements, resulting in 

reduced conductivity (Schälchli, 1992). Porosity values measured before the outflow 

experiments were on an average 6.1(±4.4)% lower than the water content at saturation 

back-calculated from the outflow experiment. It is likely that wood particles had 

continued to absorb water in the approximately 48 hour period between the measurement 

of porosity and the start of the outflow experiment. In fact from the water absorption 

study on individual wood particles, particles >9500 µm absorbed water over the 15 day 

period of saturation while smaller particles were fully saturated within 24 hours. Porosity 

values of packed columns of wood particles measured after 24 hour saturation therefore, 

may not be representative of the actual porosity of the material, and must be made after 

allowing the material to saturate for a longer period of time, especially if the material is 

comprised of large particles.  

3.2. Multistep outflow and inverse modeling 

 

 The outflow characteristics of the two groups were different, with Group I 

samples releasing a significantly greater (P= 0.00007) amount of the total water at the 

first pressure potential of -2 cm (56±2%) compared to Group II samples (43±5%). During 

the outflow experiment, differences in pressure potential between the upper and lower 

tensiometers were roughly equal to their differences in height as expected for near 

saturation systems (Fig. 7). For the first two pressure steps, the deviation between the 

expected values of pressure potentials based on the position of the tensiometers and their 

readings at equilibrium were between 0 and 3 cm for samples of Group I, and 0 and 5 cm 

for samples of Group II (Fig. 7). The deviation at the third step increased to an average of 
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8 cm for Group I and 16 cm for Group II. There is no explanation for the larger deviation 

in samples of Group II, but there is a possibility that deviations in general were caused by 

the decrease in contact area between the ceramic tensiometer cup and the irregularly-

shaped wood particles, leading to an increase in tensiometer response time (Watson, 

1965). The outflow and pressure head data for the six duplicate samples are given in 

Appendix II. 

Water retention data from outflow experiments and pressure extractors were fitted 

with the van Genuchten (1980) and the Durner (1994) functions (Tables 6a and 6b). 

Fitted parameters from both models showed great variation between sample replicates 

and also between samples, and when used as inputs in HYDRUS-1D they did not 

simulate the outflow dynamics well. Therefore, inverse modeling of cumulative outflow 

and pressure potential data were used to optimize parameters defining the shape of water 

retention functions over the entire range investigated (SPM) or near saturation (DPM and 

DPeM). For the DPM and DPeM, parameters defining the drier range of water retention 

functions obtained by fitting data from pressure extractors were used to limit the number 

of parameters optimized during inverse modeling (Table 3). Consequently, inverse 

modeling with models SPM, DPM and DPeM required the optimization of two, three and 

six parameters, respectively (Table 3). Water retention data between -2 and -10000 cm 

was only included for optimization in the objective function of the DPM since 

preliminary runs indicated that water retention did not improve the fitting in either the 

SPM or the DPeM.  Also, since our focus was on outflow prediction, the weight given to 

cumulative outflow data was five times that given to pressure head data for inverse 

modeling.  
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All models fitted the measured data reasonably well with R
2
 greater than 0.82 in 

most cases (Tables 7a, 7b and 7c). According to the Whitmore (1991) test, all three 

models reproduced the major features of outflow dynamics (Table 8). Among the models, 

the DPeM provided the best prediction of cumulative outflow (lowest AICc value) in 

eight of the twelve samples, and the SPM in the remaining four samples. For pressure 

head data predictions, the AICc analysis supported the SPM in 42% of the cases over 

other models (Table 8).  However, the sum of square of the residuals (SSR) of the 

pressure head increased with sample dg for all three models suggesting that the 

tensiometer measurements in columns with large dg may have not captured the pressure 

potentials inside the column.    

Since the particles of wood are porous, the assumption of the pore system in wood 

mulch as two overlapping and interacting flow domains with vastly different hydraulic 

properties by the DPeM would seem to be most favorable to represent the material. This 

characterization allows the DPeM to simulate macropore flow during saturated conditions 

and also base matrix flow during unsaturated conditions (Gärdenäs et al., 2006) making it 

suitable to capture the dynamics of flow through the wood mulch system as opposed to a 

single flow domain as assumed by the SPM and the DPM. The DPeM also outperformed 

the more commonly used SPM in a study to determine the hydraulic properties of paper 

waste of different sized particles from laboratory multistep outflow experiments (Han et 

al., 2011).  

Defining two subsystems of pores for the hydraulic functions as in the DPM 

enabled it successfully replicate the measured water retentions with accuracy comparable 

to those obtained by fitting static water retention data (Fig. 8). On the other hand, the 
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SPM and the DPeM which assume a homogeneous distribution of pores in their domains 

(single and dual, respectively) overestimated the water content at -2 cm by an average of 

21% and 14%, respectively, and under estimated the water contents at pressure potentials 

less than about -10 cm by an average of 8%. In a research using paper waste the SPM 

performed similarly to this study and underestimated the water content in the matrix 

domain (Han et al., 2011). The DPeM in this investigation additionally under estimated 

the saturated water contents by an average of 7%.  In comparison the only noticeable 

deviation of the DPM occurred at -2 cm and was an average of 5%. Measured and 

predicted water retentions for the six duplicate samples are given in Appendix III. 

Predictions by the models indicate that the hydraulic conductivity of the material 

will quickly drop with the application of pressure potentials less than -10 cm (Fig. 9 and 

Appendix III). Hydraulic conductivities at -10 cm were significantly (P=0.011) different 

between the two groups and were on an average 0.12 and 0.03 cm/hr for Groups I and II, 

respectively. This trend is expected since samples in Group I comprise of larger sized 

particles and therefore have fewer smaller sized pores available for conductivity than 

Group II samples at the same pressure potentials. The same analysis also explains the 

inverse trend observed between values of predicted saturated matrix conductivity (Ksm) 

and dg by the DPeM (Table 7c) even though there was no significant (P=0.228) 

difference  in Ksm values between Group I (0.16 cm/hr) and Group II (0.33 cm/hr).  

Since field stockpiles of coarsely and finely ground wood material are unsaturated 

most of the time, the low values of predicted unsaturated conductivity suggest that water 

(and hence, contaminants) will move slowly through them. However, when there are 

extended and substantial rains the stockpiled wood material may retain a greater amount 
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of water leading to a preferential flow in regions of greater saturation (Molson et al., 

2005) and perhaps an increase in leachate especially from piles of finely ground material.  

3.3.Relationship between particle size and optimized hydraulic parameters 

 

A way to assess whether the predicted hydraulic parameters have a physical 

meaning is to find a correlation with independently measured physical properties of the 

system such as parameters defining particle size distributions (PSD) like the geometric 

mean diameter (dg) and the sorting coefficient (So). 

 The average value of parameter n predicted by the SPM demonstrated a direct 

relationship with dg (Fig. 10). This trend is physically sound since n is regarded as the 

slope of the water retention curve and as such it is expected to be greater for samples with 

larger pores (larger dg) to simulate the rapid drop in their water contents with small 

pressure changes near saturation. Models that consider a dual organization of pores 

(DPM and DPeM) have parameters that assign weights to the pore systems or pore 

domains. In the DPM, the parameter w1 is a measure of the importance of the first 

subsystem of pores (near saturation). The values of parameter w1 predicted by the DPM 

increased with dg up to about 3000 µm and thereafter remained constant at 0.60 (Fig. 11), 

indicating that the system of larger pores was more important in samples of larger 

particles. This trend is consistent with the fact that samples with dg > 3000 µm hold more 

water between saturation and -2 cm, and therefore have lower water contents at – 2 cm 

(0.38) than samples with dg < 3000 µm (0.49). In samples with a dg of about 2000 µm 

both pore systems were seen to be equally important (w1=0.5). For the DPeM, the 

parameter wM (Table 3) denotes the macroporosity in a sample. Unlike w1 the predicted 
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wM values did not show any relationship with dg and it was not significantly (P=0.397) 

different between Groups I (0.48) and II (0.51). This result is expected since the predicted 

saturated macropore conductivities (KsM) (Table 7c) did not show a trend with dg 

themselves or a significant (P=0.535) difference between groups implying that the 

macropore system itself behaved in the same manner.   

Both the hydraulic parameters of the second subsystem of pores i.e., α2 and n2, 

obtained by fitting the steady state retention data, decreased with increase in dg (Figs. 12 

and 13). This indicates that samples with larger sized particles have fewer small pores 

than samples with lower dg values, and release water gradually at very low negative 

pressure potentials. 

Predicted macropore inflection points (αM) by the DPeM demonstrated a direct 

relationship with dg. Since the inflection point is considered to be roughly the inverse of 

the air entry value (van Genuchten and Nielsen, 1985) the result indicates a decrease in 

the air entry pressure potential for the macropore region with increase in particle size 

(Fig. 14). Consequently stockpiles with larger sized particles will be expected to drain 

faster with small pressure potential changes near saturation. A similar result was obtained 

by Han et al. (2011) in their study on paper waste of different particle sizes. 

An important finding in this study was that of a direct relationship between the 

ratio of the first to the second inflection point, IR, with dg for both the DPM and the 

DPeM (Fig. 15). The IR-dg relationship is significant in that it enables the inflection point 

of one pore system (or pore domain) to be calculated if the PSD of the material and the 

inflection point of the second pore system (or pore domain) is known.  



21 

 

 

 

4. Conclusions  
 

Recycled wood material was found to have a complex pore system, requiring a 

dual subsystem of pores to describe its water retention and a dual flow domain model to 

describe its outflow characteristics. Hydraulic parameters estimated from inverse 

modeling using transient flow data were more representative of the pore system found in 

wood mulch than parameters estimated from static measurements of water retention. This 

validates the use of transient flow data over steady-state data to describe the hydraulic 

properties of the system. The geometric mean diameters of particle size distributions 

were correlated to several hydraulic parameters which opens the possibility to estimate 

them from particle size data.  

Results of this investigation suggest that water movement through recycled wood 

stockpiles is slow except for periods of extended and substantial rain events which might 

lead to preferential flow through regions of higher saturation in the pile. Since smaller 

sized wood particles have lower porosities and higher water absorption rates than larger 

pieces, it may be necessary then to grind incoming material at wood recycling facilities 

only once for on-site storage to limit the amount of leachate. Simulations of 2D/3D 

movement of water through the stockpiles of different geometries may then help 

determine the pile geometry that leads to the least leachate as has been done for waste 

rock pile from mines (Fala et. al., 2005).   
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Table 1. Physical and hydraulic characteristics of woody biofilter media. 

 

Reference Particle size 

Bulk 

density (ρb) 

(kg/m3) 

Porosity (η) 

(cm3/cm3) 

Saturated hydraulic 

conductivity 

(Ks)(cm/hr) 

Mass 

percent of 

fines 
d
 

Robertson et al. 

2005 
a
 

1-50 mm NR
c
 NR 39600 ± 10800 NR 

Van Driel et al. 

2006
 a

 

coarse (1- 50 mm) 

fine (1-5 mm) 

NR 

0.70 (coarse); 

0.47 (fine) 

4320 ± 3600 (coarse); 

432 ± 252(fine) 

NR 

Ima and Mann. 

2007
 b

 
2-25 mm 286 ± 1.7 0.63 ± 0.013 NR 7.4 

Christianson et al. 

2009
 b

 
0-30 mm 200 - 243 0.66 -0.78 34200 ± 5760 <2 

Chun et al.,  

2009
 b

 
0–510 mm 200 0.79 9720 - 17640 29.5

 e
 

a Field study; b Laboratory study; c NR - Not reported; d particles ≤2800 µm; e mass percentage of particles < 6000 µm. 
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Table 2. Parameter values from (Eq. (5)) obtained by fitting data pairs of 

geometric mean diameter (dg) and corresponding volumetric water contents (θ) 

retained at different pressure potentials by woodchip mixes of different sizes (see 

also Figure 2). 
 

Pressure potential (cm) Fitted p Fitted q 

-200 0.1983 0.0250 

-500 0.1865 0.0095 

-2000 0.1484 0.0281 

-10000 0.0820 0.0558 
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Table 3. Continuity equations, water retention [θ(h)] and hydraulic conductivity [K(h)] functions and the inverse 

modeling strategies for the three pore models considered.  
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SPM DPM DPeM 
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Fixed parameters θs 
h,θr 

i, Ks = measured value θs 
h, θr 

i, Ks = measured value, α2 
j, n2 

k 
θsM = 1, θrM = 0, θsm 

l, θrm 
i, αm 

j, nm 
k a= rg

m β=3, γw =0.4 

Optimized 

parameters 

α, n α1, n1, w1 KsM, Ksm, αM, nM, wM, Ka 

a Richards’ equation. θ(h) [L3L−3] and K(h) [LT−1] are the volumetric water content and the hydraulic conductivity functions respectively, corresponding to pressure head h [L],  

 t is time [T], and z is the vertical axis [L]. 
b and c The continuity eqn. for the macropore and matrix systems, respectively (Gerke and van Genuchten, 1993). The macropore system was assumed to cover the range 0 to -2 cm. 

wM is the fraction of the total volume occupied by macropores (0<wM<1). Гw [T-1] describes water exchange between the pore systems, calculated using     
 

  
      (   

  ) where Ka is the effective saturated hydraulic conductivity of the interface between the two pore systems [LT-1], β [−] is the shape factor of the porous particles of the material, 

a is the characteristic length of a particle [L], and γw is the dimensionless scaling factor.  
d van Genuchten (1980). θs and θr are the saturated and residual water contents, respectively, α [L-1] and n [-] are curve fitting parameters and   (  

 

 
). 

e Durner (1994). k=2 for the DPM, 0<wi<1 and ∑wi =1. 
f van Genuchten (1980) applied separately to each pore system. Subscript i =M for the macropore and i =m for the matrix system. For the overall system,  ( )      ( )  (  
  )  ( ) and  ( )      ( )  (    )  ( ). Numerical solutions of the DPeM were accepted only if the ratio of the predicted saturated hydraulic conductivity of the 

overall system (    =       (    )   ) to that of its measured value (  ) was between 0.5 and 2. 

 



 

 

     

 

3
1
 

g Mualem (1976).    = 
 ( )   

      
 ;   (  

 

 
). 

h Taken as the average of the measured porosity of the column (η) and water content at saturation (θś) calculated from the multistep outflow experiment. 
i θr and θrm  were kept fixed at the value of θr  of the Durner (1994) function obtained by fitting steady state water retention measurements with the SWRC Fit program. 
j α2 and αm  were kept fixed at the value of α2  of the Durner (1994) function obtained by fitting steady state water retention measurements with the SWRC Fit program. 
k n2 and nrm  were kept fixed at the value of n2 of the Durner (1994) function obtained by fitting steady state water retention measurements with the SWRC Fit program. 
l θsm fixed at the water content measured at -2 cm from the multistep outflow experiment.  
m  geometric mean radius = dg/2 (cm). 
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Table 4. Average ± standard deviation of air-dried mass (mp), volume (vp), and 

porosity (ηp) of wood particles from different size classes saturated for 15 days. 
 

Size class (µm) mp (g) vp (cm
3
) ηp (-) 

>25400 5.712 ± 2.311 13.47 ± 4.094 0.59 ± 0.04 

19050-25400 4.327 ± 1.680 8.617 ± 2.222 0.60 ± 0.05 

9525-19050 1.333 ± 0.931 2.596 ± 1.783 0.47 ± 0.10 

5660-9525 0.259 ± 0.217 0.933 ± 0.438 0.35 ± 0.16 

2830-5660 0.185 ± 0.247 0.717 ± 0.378 0.24 ± 0.11 

1410-2830 0.014 ± 0.008 0.423 ± 0.019 0.06 ± 0.01 

297-1410 0.006 ± 0.001 0.399± 0.020 0.02 ± 0.01 

 
 

 

 

Table 5. Physical properties of the six samples selected for hydraulic 

characterization. Values shown are the average ± standard deviation of geometric 

mean diameter (dg) and sorting coefficient (So) calculated from particle size 

distribution data. Values of dry packing density (ρb), porosity (η), saturated water 

content from the multistep outflow experiment (θso) and saturated hydraulic 

conductivity (Ks) are provided for each duplicate sample.  

 

 
dg (µm) So (µm)  ρb (kg/m

3
) η (cm

3
/cm

3
) θso Ks (cm/hr) 

1403±208 2.77 230/ 230 0.79/ 0.78 0.83/ 0.86 61 ±1/ 55 ±4 

2255±260 2.43 240/ 240 0.75/ 0.76 0.79/ 0.77 65 ±2/ 63 ±1 

3482±457 2.21 250/ 240 0.73/ 0.74 0.82/ 0.77 63 ±2/ 62 ±1 

4402±1852
 a
 4.74 230/ 220 0.73/ 0.76 0.73/ 0.75 64 ± 1/ 54 ±0 

5512±632 1.76 240/ 240 0.74/ 0.75 0.82/ 0.85 51 ±1/ 80 ±2 

8130±1354
 a
 2.83 240/ 240 0.72/ 0.72 0.79/ 0.79 61 ±1/ 53 ±0 

 

a  Group I  
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Table 6a. Parameters θr, α and n of the van Genuchten (1980) model (Table 3) 

obtained by fitting the model separately to duplicate samples selected for hydraulic 

characterization. Samples are identified by their average geometric mean diameter 

(dg). 
 

dg (µm) θr (cm
3
/cm

3
) α(cm

-1
) n (-) 

1403 6.7E-07/1.2E-07 5.53/11.55 1.17/1.16 

2255 2.8E-02/2.1E-06 4.37/26.85 1.18/1.14 

3482 3.3E-07/6.7E-06 29.78/63.26 1.14/1.12 

4402 
a, b

 2.1E-06/1.8E-06 2431.5/572050 1.09/1.09 

5512
 
 4.8E-06/9.7E-08 51.89/13.31 1.12/1.15 

8130
 a
 5.9E-07/2.7E-06 1241.7/1036.9 1.09/1.10 

 

a Group I.  

b The van Genuchten (1980) function  fitted the water retention data of replicates of sample 4402 poorly. 
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Table 6b. Parameters θr, α1, n1, w1, α2 and n2 of the bimodal Durner (1994) 

model (Table 3) obtained by fitting the model separately to duplicate samples 

selected for hydraulic characterization. Samples are identified by their average 

geometric mean diameter (dg). 

 

dg (µm) θr (cm
3
/cm

3
) α1 (cm

-1
) n1(-) w1(-) α2(cm

-1
) n2

 
(-) 

1403 0.08/0.02 571.83/0.66 1.64/7.31 0.36/0.44 0.198/0.195 1.295/1.187 

2255 0.04/0.03 2.62/302.71 1.53/1.48 0.55/0.44 0.109/0.278 1.174/1.168 

3482 0.05/2.1E-05 0.97/6.99 3.94/1.51 0.53/0.62 0.095/0.040 1.202/1.122 

4402 
a
 0.00/6.2E-05 13.40/6.72 22.08/35.50 0.77/0.51 0.055

b
/0.029

 b
 1.150

 b
/1.135

b
 

5512
 
 0.10/0.10 0.65/0.64  8.55/6.62 0.61/0.57 0.022/0.034 1.345/1.337 

8130 
a
 6.6E-07/0.00 626.50/86.10 1.24/129.00 0.66/0.56 0.026/0.048 1.121/1.137 

 

a Group I.  

c The Durner (1994) model was fitted poorly to the water retention data of replicates of sample 4402. For inverse 

modeling, parameters α2 and n2 were kept fixed at the values given in this table and not those fitted by the SWRC Fit 

software (Seki, 2007). 
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Table 7a. Optimized parameters α and n and the coefficients of determination 

(R
2
) of duplicate samples obtained by inversely modeling cumulative outflow and 

pressure head data using the single porosity model (SPM) in HYDRUS-1D. The 

samples selected for hydraulic characterization are identified by their geometric 

mean diameter (dg). 

  

dg (µm) α(cm
-1

) n(
_
) R

2
 

1403 0.37/0.77 1.49/1.33 0.83/0.92 

2255 0.46/0.37 1.34/1.48 0.94/0.82 

3482 0.80/0.37 1.38/1.47 0.92/0.88 

4402 
a
 0.38/0.39 1.49/1.59 0.88/0.87 

5512 0.62/0.39 1.54/1.58 0.92/0.73 

8130
 a
 0.92/0.79 1.38/1.45 0.90/0.83 

 

a Group I.  
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Table 7b. Optimized parameters α1, n1 and w1 and the coefficients of 

determination (R
2
) of duplicate samples obtained by inversely modeling cumulative 

outflow and pressure head data using the dual porosity model (DPM) in HYDRUS- 

1D. The samples selected for hydraulic characterization are identified by their 

geometric mean diameter (dg). The values of α2 and n2 were kept fixed during 

inverse modeling at values shown in Table 6b. 
 

dg (µm) α1 (cm
-1

) n1(-) w1(-) R
2
 

1403 0.56/2.08 14.71/1.58 0.36/0.55 0.92/0.91 

2255 0.65/0.63 1.69/7.35 0.54/0.45 0.97/0.95 

3482 2.56/0.40 1.79/2.23 0.58/0.61 0.90/0.96 

4402 
a
 0.62/0.71 9.34/6.00 0.57/0.62 0.93/0.93 

5512 1.73/-
b
 2.24/-

 b
 0.64/-

 b
 0.95/-

 b
 

8130 
a
 4.07/1.61 1.83/3.28 0.62/0.58 0.79/0.93 

 

a Group I.  

b poor prediction for replicate 2 of sample 5512. 
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Table 7c. Optimized parameters αM, nM, wM Ksm, KsM, Ka and the coefficient of 

determination (R
2
) of duplicate samples obtained by inversely modeling cumulative 

outflow and pressure head data using the dual permeability model (DPeM) in 

HYDRUS-1D. The samples selected for hydraulic characterization are identified by 

their geometric mean diameter (dg). The values of αm and nm were kept fixed during 

inverse modeling at values of α2 and n2 shown in Table 6b. 

 

dg (µm) αM (cm
-1

) nM(-) wM(-) 

Ksm 

(cm/hr) 

KsM 

(cm/hr) 

Ka
 

(cm/hr)
b
 

R
2
 

1403 0.16/0.24 2.28/1.71 0.50/0.63 0.12/0.57 35/53 1.5/0.9 0.86/0.88 

2255 0.16/0.27 2.71/2.84 0.43/0.39 0.75/11.9 60/195 1.0/0.02 0.94/0.94 

3482 0.52/0.29 1.58/2.19 0.62/0.48 0.19/0.62 49/93 1.4/1.1 0.90/0.91 

4402 
a
 0.45/0.34 2.39/2.74 0.45/0.50 0.36/0.10 12/107 1.9/1.0 0.94/0.86 

5512 0.36/0.45 2.90/1.73 0.47/0.58 0.05/0.01 110/102 1.0/1.0 0.88/0.67 

8130 
a
 0.87/1.17 2.08/2.64 0.50/0.48 0.03/0.13 81/77 1.1/3.9 0.88/0.97 

 

a Group I.  

b Multiply value given in the table by 10-4 to get the actual value of the effective saturated hydraulic conductivity of the 

interface between the two pore systems (Ka ) (Refer to Table 3). 
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Table 8. Sum of the square of the residuals (SSR), lack of fit (LOFIT), and 

deviation from AICmin value (∆) for a given sample and model for the cumulative 

outflow and pressure head data. 
 

Cumulative Outflow 

Sample 
SSR LOFIT ∆  

SPM DPM DPeM SPM DPM DPeM SPM DPM DPeM 

1403 (1) 18 59 6 2.1E-01 5.4E-01 4.1E-04 40 98 0 

1403 (2) 23 40 23 2.3E-01 1.5E-01 2.0E-01 0 29 9 

2255 (1) 8 24 1 2.3E-01 5.1E+00 1.1E-02 168 255 0 

2255 (2) 17 48 1 8.2E-04 2.8E+01 1.0E-02 199 271 0 

3482 (1) 8 39 4 3.0E-01 1.0E-01 1.4E-01 61 194 0 

3482 (2) 9 21 6 1.0E-02 3.0E+00 8.4E-02 17 76 0 

4402 (1) 29 230 3 7.9E-01 1.2E+02 3.1E-01 131 260 0 

4402 (2) 17 204 33 4.0E-01 1.2E+02 1.0E+01 0 157 52 

5512 (1) 8 21 2 3.7E-02 1.7E-02 1.2E-01 101 180 0 

5512 (2) 29 4841 34 6.6E-01 4.0E+03 8.6E+00 0 401 21 

8130 (1) 17 40 17 1.5E-01 1.9E-02 1.2E+00 0 60 12 

8130 (2) 40 35 3 1.0E-04 4.6E-02 3.8E-02 165 159 0 

Pressure head 

Sample 
SSR LOFIT ∆ 

SPM DPM DPeM SPM DPM DPeM SPM DPM DPeM 

1403 (1) 3033 3641 3396 293 476 189 0 19 19 

1403 (2) 2522 5353 1889 141 1625 9 16 83 0 

2255 (1) 1973 1917 1853 700 680 117 2 0 1 

2255 (2) 1553 1378 1368 469 33 323 10 0 6 

3482 (1) 4486 12700 4389 47 3177 62 0 177 5 

3482 (2) 3101 2595 1942 873 896 1043 41 24 0 

4402 (1) 3507 1706 1852 2356 767 578 87 0 17 

4402 (2) 2499 1383 2571 1535 124 748 71 0 84 

5512 (1) 1277 3651 4812 186 1029 1836 0 164 213 

5512 (2) 7656 313693511 9118 6597 114205306 5270 0 1659 36 

8130 (1) 6772 30747 7335 507 10041 596 0 202 19 

8130 (2) 4625 8408 2021 189 2023 31 106 190 0 
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Figure 1. Volumetric water content (θ) retained at a given pressure potential as 

a function of geometric mean diameter (dg) for the different wood particle mixes 

placed in the pressure plate extractor. Eq. (5) has been fitted (lines) to the 

measurements (symbols). Parameters resulting from the fits are listed in Table 2.  
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Figure 2. The flow cell with upper (T1) and lower (T2) tensiometers inserted. 

The pressure transducers attached to the tensiometers are not shown. 
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Figure 3. Graphical description of the pore system in wood particle media 

showing pores filled with air (white) and water (blue) and the pore models used to 

characterize it. In the single porosity model (SPM) and the dual porosity model 

(DPM) wood particles are impervious and fluid flow takes place only through inter 

particle pores. The SPM and DPM are characterized by unimodal and bimodal 

distributions of pore sizes, respectively. In the DPM one mode represents large 

pores (1) and the other smaller pores (2). In the dual permeability model (DPeM) 

wood particles are permeable leading to slower flow in the intra-particle domain or 

matrix (m) than in the interparticle domain or macropore (M). Both domains have 

unimodal pore systems, each with their own water retention [θ(h)] and hydraulic 

conductivity [K(h)] functions.  
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Figure 4.  Sorting coefficient (So) as a function of geometric mean diameter (dg) 

of particle size distributions of the 30 wood mulch samples (see Appendix I). The 

numbers alongside the filled data points denote the dg of the samples selected for 

hydraulic characterization.  
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Figure 5. Particle size distributions of (a) Group I and (b) Group II samples 

selected for hydraulic characterization and identified by their geometric mean 

diameter (dg) values (in µm). Symbols represent measurements and solid lines fits 

with Eq. 1 (Group I) and Eq. 2 (Group II).  
 

(a) 

 

(b) 
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Figure 6. Volumetric water absorbed (Φt) as a function of time for woodchips of 

different sizes (in µm).  
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Figure 7. Measured (symbols) and predicted (lines) cumulative outflow and 

upper (T1) and lower (T2) pressure potentials of Group II samples 2255 and 5512 

and Group I sample 8130. Models used are the single porosity (SPM), dual porosity 

(DPM) and dual permeability (DPeM).  
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Figure 8. Measured and predicted water contents (θ) over the range of 

measured pressure potentials. Predicted water contents were obtained by fitting the:  

(a)  van Genuchten (1980) model, (b) Durner (1994) model, or by inverse solution of 

cumulative outflow and pressure head data using models: (c) SPM, (d) DPM, and (e) 

DPeM as implemented in HYDRUS-1D. The line is the 1:1 line. Fitted equations are 

given below.  
 

 

 

 

 

 

 

  

(a)  θpredicted =0.9886θmeasured + 0.0058; R
2
 = 0.996. 

(b)  θpredicted =0.9962θmeasured + 0.0013; R
2
 = 0.997. 

(c)  θpredicted =1.2454θmeasured - 0.1108;  R
2
 = 0.859. 

(d)  θpredicted =1.0296θmeasured - 0.0057;  R
2
 = 0.976. 

(e)  θpredicted =1.1054θmeasured -0.084;  R
2
 = 0.846. 
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Figure 9. Predicted hydraulic conductivity [K(h)] of Group II samples 2255 and 

5512 and Group I sample 8130 by the single porosity (SPM), dual porosity (DPM) 

and dual permeability (DPeM) models. Note that the measured values of saturated 

hydraulic conductivity (Ks) is indicated in the log-scale at h= -0.1 cm instead of h=0 

cm.  
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Figure 10. Relationship between the average values of n in the van Genuchten 

(1980) model obtained from the single porosity model (SPM) and the geometric 

mean diameter (dg) of the samples chosen for hydraulic characterization. The filled 

data point was not considered for determining the relationship equation. 

 

 

 

 

Figure 11. Relationship between the average values of w1 in the Durner (1994) 

model obtained from the dual porosity model (DPM) and the geometric mean 

diameter (dg) of the samples chosen for hydraulic characterization. 
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Figure 12. Relationship between the fitted average values of α2 in the Durner 

(1994) model and the geometric mean diameter (dg) of the six samples chosen for 

hydraulic characterization. The filled data point was not considered for determining 

the relationship equation. 
 

 

 

 

Figure 13. Relationship between the fitted average values of n2 in the Durner 

(1994) model and the geometric mean diameter (dg) of the six samples chosen for 

hydraulic characterization. The filled data point was not considered for determining 

the relationship equation. 
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Figure 14. Relationship between the average macropore air entry pressure 

potential (1/αM) obtained from the dual permeability model (DPeM) and the 

geometric mean diameter (dg) of the six samples chosen for hydraulic 

characterization. 
 

 

 

 

Figure 15. Relationship between the average inflection point ratio (IR) and 

geometric mean diameter (dg) for the dual porosity (DPM) and dual permeability 

(DPeM) models of the six samples chosen for hydraulic characterization. The 

relationship equations are given below.  
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Appendices 

Appendix I. Dry bulk density changes with increasing compaction as measured by 

the number of drops from a height of 15 cm and particle size distribution (PSD) 

curves for the 30 samples in this study. The chart titles refer to the geometric mean 

diameter of the sample, dg (in µm). For bulk density the line denotes the average of 

the three replicates and for PSD it denotes the fit of either Eq. (1) or Eq. (2).  
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Appendix II. Measured (symbols) and predicted (lines) cumulative outflow and 

pressure potential of the six samples selected for hydraulic characterization. 

Samples are labeled by their geometric mean diameter, dg (in µm). Sample replicate 

numbers are given within parentheses.  
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Appendix III. Measured (symbols) and predicted (lines) water retention and 

unsaturated hydraulic conductivity of the six samples selected for hydraulic 

characterization. Samples are labeled by their geometric mean diameter, dg (in µm). 

Sample replicate numbers are given within parentheses. The measured saturated 

hydraulic conductivities (Ks) are indicated in the log-scale of the K(h) charts at h= 

-0.1 cm instead of h=0 cm.  
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